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Introduction générale

Ces derniéres annees,, la physique du solide a connu un essor impressionnant de par la
mise au point des nouvelles techniques de calcul, plus rapides, plus précises et permettant
d’obtenir avec une grande rapidité les propriétés de nombreux matériaux. Ceci a permis la
création d’un grand nombre de matériaux utilisés actuellement dans les nouvelles
technologies.

Les méthodes de simulation ont joué un réle trés important pour la détermination des
différents propriétés; elles ont, en effet, donné une nouvelle dimension a I’investigation
scientifigue de nombreux phénomeénes physiques et chimiques. Parmi ces méthodes les
méthodes ab-initio [1]  qui sont devenues aujourd'hui un outil de base pour le calcul des
différentes propriétés des systemes les plus complexes ,

Le calcul ab initio (a partir de principes premiers) consiste a résoudre les équations

de la mécanique quantique [2] dans les matériaux réels. Connaissant la composition
atomique d’un cristal ou d’une molécule, il serait possible d’en prédire toutes les propriétés
physiques a I’aide de simulations numériques. Cette approche laisse entrevoir des bénéfices
technologiques mirobolants. Si I’on peut atteindre la précision souhaitée & un colt numérique
raisonnable, la recherche de matériaux de pointe s’en trouve accélérée par les ressources
computationelles disponibles. On imagine par exemple rechercher une propriété particuliere
dans une base de données de matériaux hypothétiques, ou simplement dans des matériaux
connus ol cette propriété n’a pas encore été mesurée. A un niveau plus fondamental, les
calculs ab initio permettent d’interpréter les mesures expérimentales et d’en comprendre les
mécanismes qui oeuvrent a I’échelle nanoscopique. lls permettent de tester des hypotheses, et
de développer des modeles plus simples pour décrire différents phénomenes.

Les propriétés physiques des solides tels que la structure Heusler peuvent déterminer
par plusieurs méthodes. Parmi les méthodes ab-initio les plus connues est les plus utilisables,
on cite la méthode des ondes planes augmentées linéarisées (FP-LAPW) utilisée pour le calcul
des propriétés physiques des matériaux. Elle est restée de loin la plus utilisée et la plus
efficace pendant plusieurs années. D’ailleurs, son avantage réside dans le fait qu’elle peut
traiter un grand nombre d’atomes. Ce dernier atteint actuellement une dizaine de centaines et

pourrait atteindre une centaine de milliers dans les prochaines années.

L’objectif du travail est 1’étude des propriétés structurales, €lectroniques, magnétiques

et elastique des alliages Heusler quaternaires composés de PdCoMnGa . Nous avons effectué
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des calculs dans le cadre des méthodes basé sur la théorie fonctionnelle de la densité (DFT)
[3,4] en utilisant I’approximation de la densité locale (GGA) [5] et Aussi Nous avons adopté
dans les calculs La méthode des ondes planes augmentées linéarisées(LAPW) implémentés

dans le code de calcul vien2K [6]

Ce mémoire aura pour objectif principal de comprendre et de se familiariser avec I’outil
théorique, informatique et d’investir les systémes de calcul cités précédemment. Ce manuscrit

est composeé 3 chapitre ;
Le chapitre | ; nous présentons la théorie de la fonctionnelle de la densité

Le chapitre 1l nous abordons la méthode des ondes planes linéairement augmentés
(LAPW), et Le troisieme chapitre contient nos résultats numériques obtenus, concernant les

propriétés structurales, élastiques, électroniques et magnétiques .

Enfin, nous présentons une conclusion générale de ce travail a la fin du meémoire.

Références bibliographiques :

[1] S. Chelli, these de Doctorat, Université Badji Mokhtar ,Annaba (2015).
[2] K.Schwarz,p .Blaha,G.K.H.Madsen .Comp .Phys.Com .147 (2012)

[3]. N.Bohr. Phil.Mag. I, 26:1,(1913).

[4]. N.Bohr. Phil.Mag. |, 26:857,(1913)

[5] J.P.Perdew, K.Burke, and M.Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) .
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Le chapitre | : Théorie de La Fonctionnelle De La Densité

1.1 Introduction

La Théorie de la Fonctionnelle de la Densité ou DFT (pour Density Functional Theory)
forme aujourd'hui I'une des méthodes les plus utilisées dans les calculs quantiques de la
structure électronique de la matiere (atomes, molécules, solides) autant en physique de la

matiere condensée qu'en chimie quantique.

La DFT trouve ses origines dans le modele développé par Llewellyn Thomas et Enrico
Fermi a la fin des années 1920. Néanmoins il faudra attendre le milieu des années 1960 et les
contributions de Pierre Hohenberg, Walter Kohn et Lu Sham pour que soit établi le

formalisme théorique sur lequel repose la méthode actuelle.

La théorie DFT a été a l'origine essentiellement développée dans le cadre de la théorie
quantique non-relativiste (équation de Schrddinger indépendante du temps) et dans
I'approximation de Born-Oppenheimer. La théorie fut ensuite étendue au domaine de la
mécanique quantique dépendante du temps (on parle alors de TDDFT pour Time-Dependent
Density Functional Theory) et au domaine relativiste. La DFT est aussi utilisée pour la
description thermodynamique des fluides classiques.En 1998, Walter Khon (1923-) fut
récompensé du prix Nobel deChimie pour «son développement de laThéorie de la

Fonctionnelle de la Densité»[1].

1.2 Equation de Schrodinger

L’équation de Schrdodinger est 1’équation de base de la physique théorique des solides.
Elle permit de trouver les énergies et les fonctions d’ondes associées aux régimes
stationnaires d’un systéme donné. Pour un systéme composé Ne électrons de coordonnées r;
et de masse m et charge e, et N,, noyaux de coordonnées Ry et de nombre atomique Z,, et de
masse m,, , I’équation de Schrddinger s’écrit [2] (pour des effets relativistes, nous devons

employer 1’équation du Dirac)

H =T,+T, + Ve—e.+V,_y + Vnn

2[5<
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Dans laquelle les termesT, T,,, Ve_n , Ve o€t Vnin correspondent respectivement :

h? . S .
o T,=- Z{V - \71-2 I’énergie cinétique des €lectrons .
h J4 . . o
o T,=-%¢ o V2 est I’énergie cinétique des noyaux.
Ze? 5y . . . .
o V._y = Zum est I’énergie potentielle de I’interaction
iy

(électrons — noyaux).

1 2 : . . .
e .= EZi < ]F% est ’énergie potentielle de 1’interaction
vt

(électrons —  électrons)

ZIZ]EZ
R

21<]

> est I’énergie potentielle de I’interaction

(noyaux — noyaux)

e : la charge de I’¢lectron.

m : la masse de I’¢électron.

M : masse de noyau.

r~;,1; - définissent les positions des électrons (i) et (j ), respectivement.
R”;,R™, - définissent les positions des noyaux (j) et (i), respectivement.

Z7;,Z";  sont les nombres atomiques des noyaux (j) et (i), respectivement.
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hZ hZ Z 2 VAYA 9

— N 2 A 2 it ) A

- _Zi ;‘71 - 21 EVI - ler —>| + - qu |—» ﬁ| Z1<j |—> —)l (1-0)

Pour connaitre I'énergie et la fonction d'onde du systeme il faut résoudre cette équation a
plusieurs variables, ce probléme est connu en physique théorique sous le nom probleme a
plusieurs corps, et c’est pratiquement impossible méme pour les systemes d'un nombre de

particules peu élevé.

1.2.1 Le probléme a N corps

La fonction d'onde de N électrons dépende de 3N coordonnées spatial et de N coordonnées
de spins. Ou N est le nombre d'électrons. Par exemple, nous prenons l'atome d'oxygéne qui

possede Z=8 électrons.

YT X7, X3, XY)

Donc, sa fonction d'onde contient 4x8 = 32 variables. Pour stocker cette fonction sur un
tableau de 10 valeurs par coordonnées des 8 électrons, il fautl01x4x8=1032 octets s0it1020
To! (si I'on admet que chaque valeur est stockée sur 1 octet). En postulant un moyen de
stockage futuriste ayant un débit de 1 To/s, il faudra tout de méme 3 169 milliards d'années
pour écrire la fonction d'onde (sachant que l'univers est vieux d'environ 13,7 milliards
d'années !) [3].

Plusieurs questions sont apparues autour de ce probleme : Comment résoudre le
probléme a N corps ? Autrement dit, comment obtenir I’état fondamental du systéme a partir
de I’équation de Schrdédinger ?, sachant qu’a partir de trois corps en interaction, il est

impossible de répondre a cette question exactement.

Pour répondre a toutes ces questions des nombreuses approches ont été développé

pour affranchir cette difficulté. Premiérement, on trouve I’approximation de Born
Oppenheimer suivi par approximation de Hartee et aussi 1’approximation de Hartee—Fock. En
suite la Théorie de la Fonctionnelle de la Densité qui repose sur la notion de la densité comme

une quantité dépendante de 3 variables seulement.

2[5<
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1.3 L’approximation de Born Oppenheimer

Les diverses méthodes de calcul de la structure de bandes électroniques des matériaux a
I'état solide mises au point au cours des derniéres décennies reposent sur un certain nombre
d'approximations. Suivant Born et Oppenheimer [4], on commence par négliger le
mouvement des noyaux par rapport a celui des électrons et I'on ne prend en compte que celui
des électrons dans le réseau rigide périodique des potentiels nucléaires. On néglige ainsi
I'énergie cinétique T,, des noyaux et I'énergie potentielle noyaux-noyaux devient une

constante qu'on peut choisir comme la nouvelle origine des énergies.

2 Ze* 1 e’
H=-YN—v2_-Y —“=+-Y_— (1,1)
Lom ot <J |rl-—r]-|

LI |?i_EI)| 2

He = Te + Ve—N + Ve_e

I'équation de schrodinger et donc réécrire de fagon suivante :

Hee = Epp, (1.3)

Alors ;

_ZI.Vh_Zv.Z—Z- ZI_‘32+12. et Ve = E P (1.,4)
Com 't T AU Ry T 2 AT TR Ve T Fee ’

avec E et 1’¢état propre et 1’énergie propre du systéme de N electrons.
La fonction d’onde s’écrit de la forme suivante :([1;. R;]) = X(R) ¢ ([;. R;]) (1,5

Ou X(R) est la fonction d’onde nucléaire et ¢ ([r;. R;]) _la fonction d’onde électronique
correspondant aux positions [Rj]des noyaux fixes, ou les positions R sont des parameétres
fixés. Si on remplace les équations (1.4) et (1.5) dans I’équation (1.3), on obtient:

Heo([ri- RiD=E, ¢([r;-Ri]) (1,6)
L’¢énergie totale du systéme sera donc la somme de 1’énergie électronique et 1’énergie des

noyaux:
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E=E. + E, 1.7

1.4 Approximation de Hartree :

La complexité de résoudre 1’équation (1.6)est du aux interactions électron-électron qui
empéche la séparation de cette équation en n équations électroniques. Dans 1’approximation
de Hartree [5], On considére les électrons comme indépendants, dans lequel chaque électron

se déplace dans un champ moyen créé par les noyaux et les autres électrons

désignant par I’énergie potentielle de 1’¢électron dans ce champ, a chaque électron correspond
une orbitale et la fonction d’onde totale s’écrit comme un produit de fonction d’onde a un

électron, de sorte que [6]:

YTy 15 e e e = (r) W () Y(13) e Y(n,) (1.8)

L'énergie d'interaction de toutes ces paires d'électrons du cristal peut étre mise sous la forme

d'une somme des termes d’énergie €;

22/1‘1—7"/_)2Q (1)

J#i

L’Hamiltonien électronique s’écrit de la forme suivante :

e?
_Zévz i _ZLI|ZIe |+ Zl<] |—> —>| ‘712 ZLI|ZIe |+Z Qi (ri) (19)

lZm

L’énergie potentielle ;(7;)) d’un électron i dépend non seulement des mouvements de tous
les autres électrons, mais aussi indirectement de son propre mouvement .L’équation de

Schrédinger a un électron s’écrit de la forme suivante:

—%v?dn(rﬂ S Xj=i/ i(1)/? ke]—(Za 1/r )¢ (r)=€;¢; (1) (1.10)

La fonction d’onde s’écrit de la forme suivante :([r;. R;]) = X(R) ¢([1:. R;])

> [ 1<
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Le premier terme correspond a 1’énergie cinétique de I’électron et le second représente le
potentiel que subit I’électron (potentiel de Hartree), le troisiéme terme est le potentiel créé par

les noyaux

1.5 Approximation de Hartree-Fock

Le systeme électronique dans 1’approximation de Hartree est non complétement décrit.En
1930, Fock [7] a montré que la fonction d’onde de Hartree (1.8) viole le principe d’exclusion
de Pauli parce qu’elle n’est pas antisymétrique par rapport a I’échange de deux électrons. Il a

remplacé la fonction d’onde ¢ (ry,1,.73,,,,,,, ) par un déterminant de Slater[2].

G1(r) Do) P3(r) - pr(1)
1 [p1(r2)  @a(r2) P3(r2) e Pp(r2) (1.11)

¢(T1,T2.T3,,,Tn) = \/_ﬁ . .
Gd1(1m)  P2(m)  P3(m) e bn (1)

Ce déterminant comprend des fonctions d’onde monoélectroniques comme combinaison
linéaire de toutes les fonctions de Hartree, qui sont antisymétrique par rapport a 1’échange. En

utilisant ce déterminant, nous trouvons I'expression de I'énergie suivante :

%2i¢jf¢* (ruma... ):TZJ-¢(7”1»7”2» w2 )dr (1.12)

Notons que la premiére intégrale de cette équation est identique au terme correspondant de
'équation de Hartree, le deuxiéme terme contient des intégrales d'échange qui n’existent pas

dans I'équation de Hartree

2y Ta(=D* [ b7 (07 (1) = i ) () (1.13)

Lorsque (k=I)_nous retrouvons I'énergie d'interaction électrostatique moyenne de Hartree E,

et lorsque (k#l) nous obtenons 1'énergie d'échangeFE,
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1 [ o1 (rj)drrddi(r))

Ey = EZk,lf : l/ri]_rj/ = drydr; (1.14)
1 [ oo (rj)drTddi(r))

E, = EZk,lf k l/ri]—r,/ J dr;dr, (1.15)

On voit donc que I’Hamiltonien mono-électronique contient un terme qui décrit
I’interaction coulombienne classique entre électrons (terme de Hartree) et un terme purement
quantique (terme d’échange) qui résulte de 1’application du principe de Pauli. Ce terme, qui

est attractif, atténue le caractere répulsif des interactions coulombiennes entre électrons.

Il traduit le fait que deux électrons de méme spin ne peuvent occuper la méme
position. Ainsi chaque électron est entouré d’un trou d’échange qui maintient les autres
électrons a une certaine distance, ce qui diminue la répulsion coulombienne qui est une
fonction décroissante de la distance entre particules ayant une charge de méme signe.
L’approximation d’Hartree-Fock permet donc d’aborder le probléme a N corps comme un
probleme a un seul corps, dans lequel chaque électron est soumis a un potentiel effectif qui est
en partie généré par les autres électrons.

C’est pourquoi il faut résoudre 1’Hamiltonien mono-€électronique de fagon autocohérente: a

partir d’un ensemble d’états initiaux. Pour cela on procede de la fagon suivante:

1. On suppose une distribution spatiale des noyaux, ce qui détermine I’énergie

d'interaction entre noyaux ainsi que le potentiel de Hartree en tout point de I’espace.

2. On résout de facon cohérente les équations monoélectroniques (1.6).
» [1Pour celaonc initiale d’orbitales, généralement des orbitales

atomiques ou ondes planes. A 1’aide de cette base, on calcule les potentiels

d’interactions VH(r) et VX(r) que I’on introduit dans les équations

monoélectroniques.

» On réitére la procédure jusqu’a ce que 1’on obtienne un jeu de fonctions

mono¢lectroniques ainsi que les valeurs propres qui n’évoluent plus (valeurs stationnaires).

3. On calcule alors I’énergie totale du systeme d’atomes et 1’on ajuste la distribution

spatiale des noyaux de fagcon a minimiser cette énergie totale.
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Cette méthode, qui est assez lourde, n'est pas pour autant exacte. En effet I'état
fondamental correspond a un minimum global sur un ensemble de fonctions beaucoup plus
étendues que celui couvert par un déterminant de Slater. Ainsi en utilisant la fonction d'essai
(2-19) on ne peut espérer obtenir qu’une borne supérieure de I'énergie de 1'état fondamental.

On montre néanmoins que l'on sapproche graduellement de I'état fondamental en
écrivant 8comme une somme de déterminants de Slater. Cela rendrait le calcul trés lourd du
point de vue numérique. C’est pourquoi la méthode de la fonctionnelle de densité est souvent

utilisée car elle simplifie considérablement et de maniére étonnante les calculs.

1.6 La théorie de la fonctionnelle de la densité (DFT)

L’ equation de Schrodinger traité précédemmant et écrite en fonction de fonction
d’onde car elle conient toutes les informations du systéme mais elle ne peut pas étre
directement mesurée a cause de nombre élevé des interactions. pour résoudre se probléme en
passe de fonctionnelle de la fonction d’onde de la fonctionnelle de la densité, cette théorie est
appelé de la théorie de la fonctionnelle de la densité DFT qui repose sur les deux théorémes

fandamentaux Hohemberg et Kohn [8]

1.6.1 Theoremes de Hohenberg-Kohn

Les deux théorémes de Hohenberg et Kohn formulés en 1964 [9] ont permis de donner
une cohérence aux modeles développés sur la base de la théorie proposée par Thomas et
Fermi a la fin des années 30.

1.6.1.1 . Premier théoreme :

Le premier théoreme démontre que pour un systeme électronique décrit par un
hamiltonien H de la forme de celui utilisé en début de ce chapitre (I), le potentiel externe v(r)
est déterminé, & une constante additive pres, par la densité électronique p(r) du systéme.
Comme p(r) détermine le nombre d'électrons, la densité nous permet donc d'accéder a toutes

les propriétés électroniques relatives a I'état fondamental du systeme.

On peut alors utiliser la densité électronique comme variable de base pour la résolution de
I'équation de Schrodinger électronique. Etant donné que p(r) est liée au nombre d'électrons du

systeme, elle peut en effet également déterminer les fonctions propres ¥ de I'état fondamental
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ainsi que toutes les autres propriétés électroniques du systeme ; si N est le nombre d'électrons

du systéeme, on a que :

fp(r). dr=N

Connaissant la densité électronique p(r) d'un systeme, on a donc acces au nombre
d'électrons, au potentiel externe, ainsi qu'a I'énergie totale Ey, [p]. Celle-ci peut s'écrire sous la

forme :

Eylp] = Tlp]l + [ pV (r)dr + V,_.[p] (1.16)

ot Fri[p] = Tlp] + V._elp] est la fonctionnelle universelle de Hohenberg et Kohn.

Fyi[p] est une fonctionnelle prenant en compte tous les effets inter électroniques ; elle est
indépendante du potentiel externe, et elle est donc valable quelque soit le systeme étudié. La
connaissance de Fj,; [p] permet I'étude de tous les systémes moléculaires, malheureusement la

forme exacte de cette fonctionnelle est a I'heure actuelle loin d'étre connue, et il faut avoir

recours a des approximations.

1.6.1.2 Deuxiéme théoreme

Le second théoréme établit le principe variationnel de I'énergie Ey[p]. Pour une

densité électronique d'essaip(r™), telle que p(r”) =0 et p(r).dr =N, on atoujours
Ey[p] < Ey[p~]

La condition pour qu'une fonctionnelle telle que Ey[p] admette un extremum est que sa

dérivée fonctionnelle s'annule. D'apres la définition :

SE, = f%dpdr =0 (1.17)

La relation § E,, = O est donc vérifiée si :
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OEy,
Sp
La résolution du probléme consiste dés lors a chercher a minimiser E3,[[C  avec la
contrainte.fp(r)dr =N On résout le probléme une fois encore par I'utilisation de

multiplicateurs de Lagrange. Soit :

= [ p(r)dr -N (1.18)

La contrainte devient G[p] = 0, et si on introduit une fonctionnelle auxiliaire A[[ telle

que :

Alp] = Ey[p] — u G[p] (1.19)

ou [J est un multiplicateur de Lagrange, le probléme se résume alors a résoudre :

SA[p] = ‘W” Spdr (1.20)
Soit :
8{Ey[p] — ulf p(r)dr —N]}= (1.21)

Il faut alors calculer la dérivée fonctionnelle de A[p] :

8A[p] _ SEvlp] _ i

5 = —{ ulf p(r)dr — N]}-——"— 5p L [[ p(r)dr]
_SEylp]
bl _ (1.22)

Si I'on remplace I'expression ci-dessus dans I'expression de SA[p], il vient :

>[= ] <
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SA[p] = | [M;L;p] — [l] Spdr =0 (1.23)

SEy(p]
f[(;’—;)] Spdr = [udpdr

[ = n (1.24)

et il reste a calculer la dérivée fonctionnelle de E,[[1].D'aprés les éq

(1.17), il vient :

SEylp]l _ SFuk
5o V(r)+ o (1.25)
En remplacant cette derniére équation dans I'expression (1.24), on obtient I'équation

fondamentale de la DFT, qui est une équation de type Euler-Lagrange :

u= SEy[p] — V(T') + 6Fpk

5p o (1.26)

ou la quantité p est appelée « potentiel chimique » du systéme.

Les théoremes de Hohenberg et Kohn ne donnent cependant aucune information sur la
maniere de trouver la fonctionnelle Fyk[p], et il va donc falloir trouver une méthode adéquate

pour traiter ce probléme.

1.6.2 .Kohn et Sham

Kohn et Sham [10] ont introduit un développement supplémentaire qui consiste a
remplacerle systeme réel interactif en un systeme fictif non interactif.

Pour ce systeme fictif, les théorémes de Hohenberg et Kohn s’appliquent également.

La fonctionnelle de la densité Ey[p] pour le systéme interactif (dd a I’introduction

du terme de 1I’échange et de la corrélation) peut etre défini par I’expression

suivante ;
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Evlp]l = Tolp(r) I + Vi [p(M)] + Vxc [p(M] + Vexe[p(1)] (1.27)

Ou Tyest I’énergie cinétique du systeme sans interaction, Vydésigne le terme de

Hartree (1’interaction de Coulomb classique entre les électrons), V. le terme qui

comprend les effets de 1’échange et de la corrélation, et V,,; [ inclut D’interaction
coulombiennedes électrons avec les noyaux et celle des noyaux entre eux. Le terme de
Hartree et celui de I’énergie cinétique jouent un réle important dans la description

des états des électrons libres. Ces termes sont les plus importants dans le traitement

de l'interaction des électrons. La différence entre 1’énergie cinétique réelle et celle des
électrons non interagissant ainsi que la différence entre 1’énergie d’interaction réelle et celle

de Hartree sont prises en compte dans 1’énergie d’échange etcorrélationEyc[p].

L’équation de Kohn-Sham s’écrit :

Hysp; = €;¢; (1.28)

Hy, =Ty + [v_H T V_xc+ vext] (1.29)
Veff

La densité de charge p est donnée par :

p(r) =23 fi/$:i(1)/? (1.30)

le facteur 2 précédant la sommation sur les états i rend compte de la double occupation de
chaque orbitale (spatiale) due a la dégénérescence de spin. Le terme fi correspond a
I’occupation partielle de I’orbitale (0 < fi < 1).

Le terme d’échange-corrélation est donné par la dérivée de la fonctionnelle

_dE [p()]
X dp(r)
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pour résoudre 1’ equation de Kohn- Sham nous devons définir le potentiel de Hartree Vy et le
potentiel d’ échange et de corrélation Vy. donc il faut déterminer la densité électronique qui
est elle-méme dépend de la fonction d’onde [8]

Ce probléme est résolut en utilisant 1’argorithme suivante ;

1. Difinir une densité électronique initial d’essai p(r~) .

2. résoudre I’equation de kohn-sham en utilisant la densité d’essai p(r~) por trouver la
fonction d’onde d’une seule particuleg; (™) .

3. calculer la densite €lectronique p, (r~) en utilisant la fonction d’onde définie dans I’
étape précédante.

4. comparer la densité €lectronique p, (r~) avec la densité d’essai p(r~) si elles sont
egaux donc la densité p, (rest densité électronique de I’etat fondamantale danc en

peut calculer I’energie totale , sinons en recommence par 1’etape 2

donc ce processus est une méthode répétitive auto- cohérente qui permet de résoudre les
équation de Kohn- Sham [8]

1.6.3 .Approximation de la densité locale (LDA)

La fonctionnelle d’échange-corrélation est une grandeur dépendant a priori de
plusieurs paramétres (densité électronique, énergie cinétique...). Cette dépendance est
complexe et,auparavant, seule la fonctionnelle du systéme du gaz uniforme d’¢électrons était
bien connue. Par conséquent, les premicres fonctionnelles d’échange corrélation utilisées
étaient celles de ce gaz d’électrons qui approchaient localement la fonctionnelle du systéme

réel. Ainsi, dans le cadre de cette approximation, nous pouvons écrire :

Ex'=[pmet[p()]dr? (1.31)

Ou ekPA[p(r)] est I’énergie d’échange corrélation par électron pour un gaz homogéne
d’électrons de densité p(r). Des leur article original, Kohn et Sham ont remarqué que les
solides peuvent souvent étre considérés comme proches de la limite du gaz d’électrons

homogene pour lequel les effets d’échange et de corrélation sont locaux. L’approximation de

>[5 <
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la densité¢ locale (Local Density Approximation, LDA) consiste a choisir pour 1’énergie

d’échange-corrélation celle d’un gaz homogeéne d’électrons de densité p(r)

DA p(M)] = XA (p(r) = X2 (p(r))

Le potentiel d’échange-corrélation s’écrit

8[p(MeklAp(n)] dekDA
ViA(r) = % = e (p() + P(l‘)ed—p (1.32)

La premiére méthode de la fonctionnelle densité qui décrivit avec succes un systeme
réel, fut introduite par Dirac et Slater [11] L’idée fut de remplacer le terme d’échange

Hartree-Fock par la fonctionnelle d’échange locale définie par :
> 3(3 >
exlp@1=2(2) p)~*/* (1.33)

Enfin, Ceperley et Adler [12], et plus récemment Ortiz et Ballone [13], ont déterminé
numériquement la contribution des corrélations par des simulations de type Monte-Carlo

quantique.

1.6.4 Approximation du gradient généralisé (GGA)

On utilise pour la LDA le modéle du gaz d’électron uniforme. Cependant,de maniere
générale la densité n’est pas uniforme, et on peut introduire une prise en compte de ces
variations en utilisant les méthodes dites GGA (pour Generalized Gradient Approximation,
approximation du gradient généralisé¢). On considere alors un gaz d’électron uniformément
variant. L’énergie ne dépend plus alors de la seule densité mais aussi de la variation de

celleci.

Egé4 = [ p(r)exclp, Vpldr (1.34)

Ces fonctionnelles améliorent dans de nombreux cas les résultats structuraux et
énergétiques. Les plus utilisées sont celles proposées par Perdew (P86) [14], Becke (B88)
[15], Perdew et Wang (PW86 et PW91) [16, 17] et par Perdew, Burke et Ernzerhof (PBE)
sous sa forme initiale [18] ainsi que sous sa forme modifiée [22]. La fonctionnelle d’échange
corrélation reste la seule approximation liée & la DFT, méme si sa qualité s’améliore
constamment avec
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par exemple I’apparition de fonctionnelles non locales [20]. La partie échange est calculée sur

la méme base que pour la LDA, mais en ajoutant un facteur d’amélioration f () dépendant

du gradient :
ESFAp] = [ p(MER™ [p(M] f (Qdr (1.35)
avec
_ /Vp/?
f@©Q= 2Ga2y 3Tl (1.36)

Les GGA semi-empiriques obtiennent de trés bons résultats pour les systemes particuliers
comme les petites molécules, mais échouent dans ce cas-la a reproduire le comportement des
électrons délocalisés d’un gaz d’électron homogéne (comme par exemple dans un métal).

La deuxiéme méthode est moins spécialisée mais plus robuste est la GGAPBE [21,18] que
nous utiliserons dans nos calculs. Nous avons vu qu’il était possible de réduire le probléme de
plusieurs électrons interagissant a un probleme a une particule dans un potentiel effectif

(voir 111-8 et 111-28). Cependant, malgré cette simplification, 1’é¢tude des propriétés d’un
cristal, méme nano-scopique, serait impossible si 1’on devait simuler le comportement
indépendant du millier ou plus d’atomes qui le composent. On peut surmonter ce probléme en
effectuant les calculs sur un systeme périodique, qui serait donc virtuellement infini.

On utilise pour cela notamment le théoreme de Bloch [19].
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p(r™)

[ Calculer V(r) ]

[ Résoudre les équations KS ]

[Déterminer Er ]

[ Calculer o, ¢ ]

Non Oui

< Converge? >— Stop

Figure 1.1. Cycle auto-cohérent de la théorie de la fonctionnelle de la
densité (DFT).
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1.1 Introduction

Il existe pluseiurs méthodes de calcul des propriétés des solides et leur point commun est la
résolution de I’équation de Kohn et Sham de facon autocohérente. Cette derniere est 1’origine
de plusieurs méthodes numériques.
la méthode des ondes planes augmentées linéarisées a potentiel total (FP-LAPW : Full
Potential Linearized Augmented Plane Wave) qui permettent de gagner plusieurs ordres de

grandeur dans le temps de calcul qui seront présentées dans les paragraphes suivants :

1.2 La méthode des ondes planes augmenteées linéarisées a potentiel total
(FP-LAPW) :

La méthode LAPW (linearized augmented plane wave), développée par Andersen [1],est
fondamentalement une amélioration de la méthode dite des ondes planes augmentées (APW)
élaborée par Slater [2] [3] (Les détails de cette méthode peuvent étre trouvés dans lelivre de
Loucks [4]).

Une nouvelle technique pour résoudre I'équation de Poisson [5] a été ajoutée a la méthode
LAPW pour que nous puissions traiter I'absorption moléculaire sur les surfaces. Ainsi La
méthode LAPW, qui assure la continuité du potentiel a la surface de la sphére« muffin-tin »

MT, développe le potentiel sous la forme suivante

Yim Vim(M)yim(r) alint érieur de la sphére

: 2.1
3 vy et al'extérieur de la sphére 1)

V) = {

Ce qui est I’origine du nom de la méthode FP-LAPW « full-potential LAPW». Ainsi,
avant decrire la méthode FP-LAPW, et d’exposer leur principe, nous allons voir les différents

aspects de la méthode APW, nous rappellerons les bases de cette derniére

> ]<
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1.3.

La méthode des ondes planes augmentées (APW) :

Dans article Slater 2, L’idée qui est a I’origine de la base des Ondes Planes Augmentées

(Augmented Plane Wave, APW) est que, loin des noyaux, les électrons sont plus en moins «

libres », et peuvent €tre assez bien décrits par des ondes planes. Inversement, a proximité d’un

noyau, 1’¢lectron se comporte plus ou moins comme s’il était dans un atome isolé. La

méthode APW consiste, comme il est montré dans la Figure I1.5, a séparer I’espace en deux

régions :

1.

une région interne des sphéres atomiques S de rayon Rmt qui entourent les noyauxet
ne se chevauchent pas. Une telle sphere est souvent appelée muffin tin sphere (nid
d’abeille).

la région complémentaire hors des spheres, appelée région interstitielle

région

interstitielle

spheres
muffin tin

N

Figure .2. 1.. Répartition des cellules atomiques unitaires en sphéres muffin tin (S)

de rayon R mt et en une région interstitielle (1) adoptée dans la méthode APW.

Alors la fonction d'onde ¢ (r) est de la forme :

o

1 i(G+K)T
Q1/2 ZG Cge ( ) r > Ra

ZlmAlmUl(r)Ylm(r) r< Ra

(11.2)

)

ou R, représente le rayon de la sphére MT, Qle volume de la cellule, c; et A, les

coefficients du développement en harmoniques sphériques Y,

>z 1<
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la fonction U;(r) est une solution réguliere de I'équation de Schrodinger pour la partie radiale

qui s'écrit sous la forme :

d? 1(1+1)
{—p +E2 4V () - El}rUl(r) =0 (11 .3)

V/(r) représente le potentiel Muffin-Tin et E;| I'énergie de linéarisation. Les fonctions radiales
définies par (2)sont orthogonales a tout état propre du coeur. Cetorthogonalité disparait en

limite de sphere [1] comme le montre I'équation de Schrodinger suivante :

d’ru, d?ru,
dr? L gr2

(E; — EprU, U, = U, (11.4)

avecU, et U,sont les solutions radiales aux différentes énergies E; et E, respectivement.
Slater introduit une modification a ce choix particulier présentant les ondes

planes comme solutions de 1’équation de Schrodinger dans un potentiel constant. Cette
approximation du potentiel, appelée I’approximation muffin-tin (MT). Il est toujours
nécessaire que les représentations définies dans les expressions ((I11.7)) soient continues sur
les limites des spheres. Ainsi, les Alm doivent étres définis en termes des CG et complétement

déterminé par les coefficients d’ondes planes.

anit ) N
Aim = 1 —— X6 ci(/k + g/ Re)Yim (k + G) (11.5)
Q2U(Rq)
L'origine est prise au centre de la sphere, et les coefficients 4,,, sont déterminés a partir de
ceux des ondes planes c; .Les parameétres d'énergie E; sont appelés les coefficients

variationnels de la méthode APW.

Les fonctions individuelles, étiquetées par G deviennent ainsi compatibles avec les fonctions
radiales dans les sphéres, et on obtient alors des ondes planes augmentées (APWS).

2 [=]<



Chapitre 11 : Méthode des ondes planes linéairement augmentées

Les fonctions APWs sont des solutions de I'équation de Schrédinger dans les spheres, mais
seulement pour I'énergie E;. En conséquence, I'énergie E; doit étre égale a celle de la bande
d'indice G. Ceci signifie que les bandes d'énergie (pour un point k) ne peuvent pas étre
obtenues par une simple diagonalisation, et qu'il est nécessaire de traiter le déterminant
séculaire comme une fonction de I'énergie.

La méthode APW, ainsi construite, présente quelques dificultés liées a la fonction U;(R,) qui
apparait au dénominateur de I'équation (4). En effet, suivant la valeur du parametre E;, la
valeur de U, (R,) peut devenir nulle a la surface de la sphére MT, entrainantune séparation
des fonctions radiales par rapport aux fonctions d'onde plane. Afin desurmonter ce probléme
plusieurs modifications a la méthode APW ont été apportées,notamment celles proposées par
Koelling [6 1 et par Andersen [1].

I1.4. Principe de la méthode (LAPW).

La méthode LAPW constitue 1’une des bases les plus précises pour le calcul des
solides cristallins, et comme nous avons déja mentionné dans les paragraphes précédents que
cette derniere utilise une description du potentiel de type Muffin-Tin et correspond a une
amélioration de la méthode APW développée par Andersen [7,1], Koelling et Arbman [7,8]
basé sur 1’idée de Marcus.
Dans la méthode LAPW les fonctions de base dans MT sont des combinaisons linéaires

des fonctions radiales U;(r)y;,et de leurs dérivées u; (r)yy, par rapport al’énergie. Les

fonctions | U comme dans la méthode APW (Il .3) et la fonction U, (r)y;,doivent satisfaire

la condition suivante :

d? 1(1+1)
{— s + V() — El} rU,(r) = 0 (2.6)

r2

Les fonctions radiales u;(r)et u;(r)assurent, a la surface de la sphere MT, la continuité
avec les ondes planes. Les fonctions d’onde ainsi augmentées constituent lesfonctions de base
de la méthode LAPW [9] :

Avec ce développement, la forme explicite des fonctions de base est :
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1 i(G+K)Tr
{ Q172 ZG Cge€ r>R (27)

Zlm[Almul(rr EO) + Blm Ui(r: EO)]ylm(r) r <R

Ou Ejest I’énergie de linéarisation, B, sont les coefficients qui corresponds a la fonction
u;(r) et de méme nature que les coefficients 4,,, .
Ces derniers sont déterminés pour assurer la continuité du potentiel a la surface de la sphére

«muffintin».

Dans la méthode LAPW, on utilise uniquement des ondes planes dans la zone
interstitielle comme dans la méthode APW. Alors que a la région des spheres « Muffin-tin »
les fonctions LAPW sont mieux adaptées que les fonctions APW .

Par conséquent, les fonctions radiales obéissent a I’équation de linéarisation suivante qui se
base sur la série de Taylor [7] ou la fonction u;(r) U rpeut étre développée en fonction de

dérivée u;(r) et de I’énergie E|

U (r,E) = U, (r, E) + (E + Eg)Uj(r, Ey) + O((E — Ep)?) (2.8)
Ou Ui(r,Ey) = %

O((E — Ey)?) : représente I’erreur quadratique énergétique

La méthode LAPW assure ainsi la continuité de la fonction d’onde a la surface de las phéere
MT. Mais, avec cette procédure, les calculs perdent en précision, par rapport a la méthode
APW qui reproduit les fonctions d’onde trés correctement,

tandis que la méthode

LAPW entraine une erreur sur les fonctions d’onde de 1’ordre de (E — E| 0)2 et une autre

sur les énergies de bandes de ’ordre de (E — E 0)4Malgré cet ordre d’erreur,

les fonctions LAPWSs forment une bonne base qui permet, avec une seule valeur d’ E;
d’obtenir toutes les bandes de valence dans une grande région d’énergie. Lorsque cela n’est
pas possible, on peut

géneralement diviser la fenétre énergétique en deux parties, ce qui est une grande

2 [=]<
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simplification par rapport a la méthode APW. En général, si u;est égale a zéro a la surface de

la sphére, sa dérivée U; sera différente de zéro.

11.5.  Les réles des énergies de linéarisation

Nous avons cité déja au-dessus que les erreurs commises dans la fonction d’onde (la
densité de charge) sont ’ordre de (E — Ey)?et dans les bandes d’énergie de 1’ordre de (E —

Ey)*ce qui indique qu’il faut choisir un paramétre E ;pres du central de la bande oU

On veut obtenir un bon résultat, et on peut optimiser le choix du paramétre E ;en calculant
L’énergie totale du systéme pour plusieurs valeurs de El et en sélectionnant I’ensemble
quidonne 1’énergie la plus inférieure. Malheureusement, quand ces stratégies marchent bien

dans plusieurs cas, elles échouent misérablement dans plusieurs d’autres.

La raison de cet échec est décrite dans la présence et 1’étendue de 1’état du coeur
(seulement connu comme état de semi-coeur) dans plusieurs éléments en particulier: métal
alcalin, les terres rares, recemment les métaux de transitions et les actinides.

Comme mentionné, les fonctions augmentées U, ()Y, et U;(r)Y;,, sont
orthogonales a chaque état du coeur, cette condition n’est jamais satisfaite exactement excepté
pour le cas ou les états du coeur ne posséderaient paslemémel.

Les effets de cette orthogonalité inexacte aux états du coeur dans la méthode (FPLAPW)
sont sensibles aux choix de E ; .Le cas le plus critique, la ou il y a un chevauchement entre les
bases (FP-LAPW) et les états du coeur, ce qui introduit de
faux états du coeur dans le spectred’énergie, ces états sont connus sous le nom de bandes

fantdbmes

Ces dernieres sont facilement identifiées, elles ont une trés petite dispersion et sont
hautement localisées dans la sphére, et ont un caractére | de 1’état de coeur.
Pour éliminer les bandes fantdmes du spectre, on peut mettre le paramétre d’énergie

E ;égal a I’énergie de 1’état du coeur.
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I1.6. Développement en orbitales locales :

Le but de la méthode LAPW est d’obtenir des énergies de bande précises au Vvoisinage
des énergies de linéarisation El [1]. Dans la plupart des matériaux, il suffit de choisir ces
énergies au voisinage du centre des bandes. Ceci n’est pas toujours

possible et il existe des matériaux pour lesquels le choix d’une seule valeur de El n’est
pas suffisant pour calculer toutes les bandes d’énergie, c’est le cas pour les matériaux ayant
des orbitales 4f [10,11] et les métaux de transition [12,13]. C’est le probléme fondamental de
I’état de semi-coeur qui est intermédiaire entre 1’état de valence et celui de coeur.

Pour pouvoir remédier cette situation on a recours soit a 1’'usage des fenétres d’énergies

multiples, soit a I'utilisation d’un développement en orbitales locales.

11.6.1. La méthode LAPW+LO

Le développement de la méthode LAPW en orbitales locales consiste a modifier les
orbitales de sa base pour éviter I’utilisation de plusieurs fenétres, en utilisant une troisiéme
catégorie de fonctions de base. Le principe est de traiter I’ensemble des bandes a partir d’une
seule fenétre d’énergie. Singh [14] a donné ces orbitales, notées « LO » sous forme d’une
combinaison linéaire de deux fonctions radiales correspondant a deux énergies différentes et

de la dérivée par rapport a I’énergie de I’une des de ces fonctions

o(1) { 0 r >R,
r=
[Ajn Uy (1, E)) + By Ui(r, ED Ci Uy (r ED Y (r) - 7 < Ry

(2.9)

Ou les coefficients Cp,, sont de la méme nature que les coefficients A;, et By,
définisprécédemment.

Une orbitale locale est définie pour un ‘I’ et un ‘m’ donnés et également pour un

atome donné (dans la cellule unitaire, tous les atomes étant considérés et non seulement les
atomes inéquivalents). Ces orbitales locales peuvent également étre utilisées au-dela d’un
traitement des états de semi-coeur pour améliorer la base vis-a-vis des bandes de conduction.
Cette amélioration de la méthode LAPW est a I’origine du succes de la méthode de
linéarisation basée sur la méthode LAPW dans la mesure ou elle permet d’étendre cette

méthode originelle a une catégorie de composés beaucoup plus large.

> = 1<
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11.6.2. La méthode APW+lo :

Le probleme rencontré dans la méthode APW était la dépendance en énergie de 1’ensemble
des fonctions de base. Cette dépendance a pu étre éliminée dans la méthode LAPW+LO mais
au prix d’une base de taille plus importante, et de ce fait les méthodes APW et LAPW+LO

acquierent toutes deux une limitation importante.

Sjosted, Nordstrom et Singh [15] ont apporté une amélioration en réalisant une base qui
combine les avantages de la méthode APW et ceux de la méthode LAPW+LO. Cette méthode
est appelée « APW+lo » et correspond a une base indépendante de 1’énergie (comme était la
méthode LAPW+LO) et qui ne requiert qu’une énergie de coupure d’ondes planes trés
faiblement supérieure a celle nécessaire dans le cadre de la méthode APW.

Elle consiste a utiliser une base APW standard mais en considérant UI(r) pour une
énergie El fixée de maniére a conserver 1’avantage apporté par la linéarisation du probléme
aux valeurs propres. Mais du fait qu’une base d’énergies fixes ne fournit pas une description
satisfaisante des fonctions propres, on y ajoute également des orbitales locales qui permettent
d’assurer une flexibilité variationnelle au niveau des fonctions de base radiales.Une base «

APW+lo » est définie par 1’association des deux types de fonctions d’onde suivants :

» [1Des ondes planes APW av E, fixees :

1 i(G+K)T
— cpe r>R
() { Lc e ¢ (2 .10)
ZlmAlmUla(T' El)Ylm(T) r< Ra

> [Des orbitales locales différentes de celle:

(r_))—{ 0 r >R,
? [Aim Uy (r, E)) + Bpyy Ui (r, ED Y (1) r< Rg

(2.11)
Dans un calcul, une base mixte LAPW et APW+lo peut étre employée pour des
atomes différents et méme pour des valeurs différentes du nombre I. En général, on décrit les

orbitales qui convergent plus lentement avec le nombre des ondes planes (comme les états 3d
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des metaux de transition), ou bien les atomes ayant une petite taille de sphére avec la base
APWH+lo et le reste avec une base LAPW [16].

11.8. Le principe de la méthode FP-LAPW :

Dans la méthode des ondes planes augmentées linéarisées a potentiel total (Full
Potentiel Linearized Augmented plane Waves : FP-LAPW) telle qu’elle est implémentée dans
le code wien2k [17], la base LAPW donnée par 1’équation (6) et la base APW+lo donnée par
les équations (1) et (10) sont impliquées et utilisées en fonction de la nature des états
électroniques du systéme étudiés comme c’est expliqué cidessus. En revanche, aucune
approximation n’est faite pour la forme du potentiel ni de la densité de charge. En effet, le
potentiel décrivant les interactions entre noyaux et électrons peut étre traité différemment
suivant que 1’on se trouve a l’intérieur ou a D’extérieur de la sphére muffin tin . Il est
développé en harmoniques (dans chaque atome sphérique muffin tin) et en séries de Fourier

(dans les régions interstitielles) :

Youm Vim (M) yim (r) alint érieur de la sphére

V) = { (2 11)

Y v et a I'extérieur de la sphére

Le potentiel a alors wune dépendance angulaire & I’intérieur par
I’interventiond’harmoniques sphériques. L’introduction d’un potentiel de ce type
donne a la méthodeFP-LAPW la caractéristique « full potentiel » car elle prend en

compte la dépendance angulaire dans tout I’espace

11.8. Le code WIENZ2k :

WIENZ2k est un programme informatique écrit en Fortran permettant d'effectuer des
calculs quantiques sur les solides périodiques. WIENZ2k utilise la méthode full-potential
(linearized) augmented plane-wave and local-orbitals [FP-(L)APW+lo] pour résoudre les

équations de Kohn-Sham de la théorie de la fonctionnelle de la densité.

A Tl'origine, WIEN2k a été développé par Peter Blaha et Karlheinz Schwarz de I'Institut de
Chimie des Matériaux de I'Université Technique de Vienne (Autriche). Le code a été distribué
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pour la premiére fois en 1990 [18]. Les versions suivantes ont été WIEN93, WIEN97,
et WIEN2k.[17]

111.8.1 Le code de calcul Wien2k

Dans ce travail, nous avons utilise la méthode FP-LAPW, implémentée dans le code
Wien2k. Le code Wien2k consiste en différents programmes indépendants figure (I11.1) qui

sont liés par C. Shell Script :

NN : C’est un programme qui donne les distances entre plus proches voisins, qui aide a

déterminer le rayon atomique de la spheére.

LSTART : Un programme qui génére les densités atomiques et détermine comment les
différentes orbitales sont traitées dans le calcul de la structure de bande, comme des états du

coeur avec ou sans orbitales locales.

SYMMETRY : Il génere les opérations de symétrie du groupe spatial, détermine le groupe
ponctuel des sites atomiques individuels, génére 1’expansion LM pour les harmoniques du

réseau et détermine les matrices de rotation locale.

KGEN : Il génere une maille k dans la zone de Brillouin.

DSTART : Il génére une densité de départ pour le cycle SCF par la superposition des densités
atomiques générées dans LSTART.
Alors un cycle self consistant est initialisé et répété jusqu'a ce que le critere de convergence

soit vérifié. Ce cycle s’inscrit dans les étapes suivantes :

LAPWO : Génére le potentiel pour la densiteé.
LAPWL. : Calcul les bandes de valence, les valeurs propres et les vecteurs propres.
LAPW?2 : Calcul les densités de valence pour les vecteurs propres.

LCORE : Calcul les états du coeur et les densités.

MIXER : Mélange les densités d’entré et de sortie.
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Fig. (2.2) : Organisation des programmes dans WIEN2K [14].
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11.9.CONCLUSION :

DANS CE CHAPITRE Nous avons présenté la méthode FP. LAPW qui est ['une des
méthode les plus utilisée pour determiner la structure d’un matériau avec précision ,basée sur

la Thérie de la Fonctionnelle de la Densité DFT .

cette théorie a été mise en eouvre par le cod WIEN pour calcul des propriétés structurales des
solides.Ceci fais 1’objet du chapitre 3 ou nous présentons nos résultats de calcul des propriétés
structurales et électronique et magnétique et élastique de composés PACoMnGa par la version
du cod WIEN2K
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II1.1. Introduction

Les alliages Heusler consistent en une grande famille des composés qui attirent
régulierement une attention considérable en raison de la variété des phénomenes magnétiques.
Derniérement, l'intérét a été concentré sur ceux qui sont des demi-métaux (DM) [1]. comme
NiMnSb ou Co2MnSn [2-5]. Ces composes sont des ferromagnétiques, Sa polarisation de
spin au niveau de Fermi peut atteindre 100%. Ces matériaux sont d'un intérét particulier pour

les applications spintroniques

Récemment, une autre famille des composés Heusler connus sous le nom d'alliages
Heusler quaternaires de formule chimique XX'YZ (X, X 'et Y sont des métaux de transition,
et Z est un élément du groupe principal) ont été considérés. Les composés Heusler
quaternaires XX'YZ cristallisent dans la structure cristalline de type LiMgPdSn [6, 7] avec
une symétrie N° 216 (F-43m). Dans ces composés, le nombre atomique de X ‘est
habituellement inférieur a la valence des atomes X, et le nombre atomique de I'élément Y est
inférieur a celui de X et X'. Une variété de nouvelles recherches liées aux alliages Heusler
quaternaires montre qu'ils présentent une demi métal ferromagnétique (DMF )[8,9]. Le
groupe de recherche de Felser [6,10,11] a théoriquement prédit le ferromagnétisme (DM)
dans plusieurs composés Heusler quaternaires tels que CoFeMnZ (Z = Al, Si, Ga, Ge),
NiFeMnGa et NiCoMnGa. lls ont egalement synthétisé avec succes ces composés et observé.
Par rapport aux demi-métaux pseudoternaires de Heusler, les quaternaires ayant une
stoechiométrie 1: 1: 1: 1 ont I'avantage d'une dissipation de puissance plus faible en raison du

léger désordre [11].

Pourtant les composés de Heusler quaternaires avec des propriétés intéressantes n'ont
pas été étudiés. Afin de poursuivre la conception et le développement de nouveaux composés
Heusler quaternaires répondant aux exigences de la spintronique, nous avons utilisé des
calculs ab initio pour prédire ce composé intéressant pour les applications spintroniques .
Dans le présent travail, nous présentons les résultats des propriétés structurelles, structurales
électroniques et magnétiques,obtenus par le calcul ab-intio du nouveau alliage quaternaire
Heusler PdCoMnGa.
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III.2. Méthode de calculs:

Les calculs actuels sont effectués en employant la méthode des ondes planes
linéairement augmentée (FP-LAPW) [12] implémentée avec le code Wien2k [13] dans le
cadre de la Théorie de la fonctionnelle de la densité (DFT) [14,15], en traitant 1’énergie
d’échange et de corrélation par I’approximation du gradient généralisé (GGA 2008) [16]. Les
fonctions de base, les densités d’électrons et le potentiel sont calculés avec la géométrie du
champ self-consistent. Les fonctions d’onde, les densités électroniques et le potentiel
sont développées en combinaison harmoniques sphériques autour des sites atomiques c’est-
a-dire dans les sphéres Muffin-tin .

Dans les calculs ab-initio la structure cristalline est tres nécessaire pour calculer les
physiques. la plus part des composés quaternaire Heusler XX'YZ se cristallisent dans la
phase cubique de groupe spatial N° 216 (F-43m) dont les positions des atomiques voir
figures 111.1 a,betc Pour le calcul des propriétés structurales électroniques, magnétiques et
élastique, nous avons effectué un échantillonnage de la zone de Brillouin en utilisant une
grille de Monkhorst-Pack (14x14x14) contenant 120 points k, correspondant & 3000 points k
dans la zone de Brillouin. Nous avons choisi les rayons muffin-tin égaux reporté dans le
tableau 111 -1 . Les effets relativistes sont pris en compte par l'utilisation de I'approximation
relativiste scalaire lors du calcul des états électroniques du quaternaire Heusler cubique
PdCoMnGa. .

La configuration électronique de chaque élément est :

< Pd : [Kr] 4d"™

< Co :[Ar] 4s*3d’

< Mn :[Ar] 4s” 3d°

< Ga :[Ar] 4s? 3d" 4p*
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Matériau PdCoMnGa
Pd= 24

Rmt (U,a) Co= 24
Mn= 24
Ga=2.25

Tableau I11 -1 : Rayons muffin-tin Ryt des éléments constitutifs de PdCoMnGa

111.3. Résultats et discussions

11.3.1. propriétés structurales

Comme décrit dans les Réf. [17-18], un alliage ternaire Heusler X2YZ habituellement
a la structure L21 avec le groupe d'espace de Fm- 3m N°216. Quand I'un des atomes X est
substitué par un autre élément de métal de transition, nous pouvons obtenir la structure d'un
composé de Heusler quaternaire XX'YZ Le structurel prototype des composés quaternaires
Heusler est le LiMgPdSb[19]. Il y a trois types différents d'arrangement atomique dans le
composé quaternaire Heusler PdCoMnGa dans la Figure (11l.1-a,b et c) avec le groupe
d'espace de N° 216 (F-43m).

Afin de déterminer la structure la plus stable des composés quaternaires Heusler
PdCoMnGa, nous avons dabord effectuer une optimisation des trois configurations
différentes en calculant les énergies totales en fonction du volume pour non magnétique (NM)
et ferromagnétique (FM). Les constantes de reseau d'équilibre obtenues et les énergies totales
correspondantes sont présentées dans leTableau (111.2) et les Figures (111.2 ,3, 4)

La structure type (1) est la plus stable parmi des trois configurations en raison de
I'énergie totale la plus basse,. Cela indique que le quaternaire des composés Heusler avec une
stoechiométrie 1: 1: 1: 1 préferent cristalliser dans la structure de type (1). Dans la suite, nous
discutons principalement des propriétés élastiques, électroniques et magnétiques de la

structure la plus stable .
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Figure I11.1-a : Positions atomiques :Pd(3/4, 3/4,3/4) ,Co(1/4, 1/4, 1/4),Mn(1/2, 1/2, 1/2) ,
Ga (0, 0,0)pour le composé quaternaire Heusler (PdCoMnGa) de type 1

Figure 111.1-b : Positions atomiques : Pd(3/4, 3/4, 3/4), Co(1/2, 1/2, 1/2) ),Mn(1/4, 1/4, 1/4)
Ga (0, 0,0) pour le composé quaternaire Heusler(PdCoMnGa) de type 2
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Figure 111.1-c : Positions atomiques :Pd(3/4, 3/4, 3/4), Co(0, 0, 0) ),Mn(1/2, 1/2, 1/2)
Ga (1/4, 1/4, 1/4) pour le composé quaternaire Heusler(PdCoMnGa) de type 3

PdCoMnGa Eror(NM) Eror (FM) Demi-métallicité

Type 1 -19074.078903 | -19074.186159 | Le plus stable car :
Ei<Esz<E;

TYPE 2 -19074.068020 | -19074.120995

TYPE 3 -19074.078129 | -19074.142283

Tableau I11.2 :Représente I'énergie totale a I'équilibre des trois types de la structure
PdCoMnGa
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D'aprés la Figure Ill. 5 O déduit que le type (1) est le plus stable pour la structure de
PdCoMn(Ga), la suite, sera consacreé a I'étude du type 1 (FM)

111.3.3.Propriétés élastiques :

Les materiaux cubiques possedent trois constantes élastiques indépendantes C11, C12
et C44. A partir des constantes élastiques monocristallines, on peut calculer d'autres modules

d'élasticité importants a l'aide des équations suivantes:

Ci1, +2C
B = 113 12

3

1
ﬁ_E_cll+zclz
G:C44

Cll_CIZ

G' =
2

CP = C12—Cyy

A= 2Cy4

C11—C12
Ou Le (B) le module de compressibilité la compressibilité¢, (B ) le module de
cisaillement, (G) le module de cisaillement tétragonal, (Go) la pression de Cauchy (CP) et le

facteur d’anisotropie €lastique de Zener (A)

Les modules de cisaillement de Reuss (GR) et de Voigt (GV ) sont considérés comme
les limites inférieure et supérieure du module de cisaillement G, respectivement, et sont
exprimes comme suit :

G = 5(C11 — C12)Cyq
R 4C0 +3(C1y — Cry)
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Le module de cisaillement de Hill (GH) est la moyenne arithmétique des valeurs de Reuss

__ GrptGy

et Voigt .G, = >

Le module de Young (E) et le coefficient de Poisson (s ) sont donnés par :

_ 9BGy
" 3B+ Gy

et

Nous repportons dans le tableau 111.3. nos valeurs calculées des paramétres élastiques
monocristallins des composés PdCoMnGa ces résultats sont des prédictions et nous
souhaitons qu'ils peuvent utilisés par d'autres chercheurs, en attendant que ce matériau soit
synthétisé. Les paramétres élastiques de la phase monocristalline : constantes élastiques (C11,
C12 et C44, en GPa), module de compressibilité (B, en GPa), module de cisaillement (G =
C44, en GPa), module de cisaillement tétragonal (G’, en GPa), compressibilité (B ; en GPajl),

pression de Cauchy (CP, en GPa) et facteur d’anisotropie de Zener (A)

les résultats obtenus traduisent la stabilité mécanique pour le composé PdCoMnGa, car les
constantes de raideur élastiques calculées (cij) satisfont auxc critéres de stabilité mécanique
de cristaux cubiques a savoir que les inégalité suivante sont respectée

Cl1-C12>0,C11>0, C44>0,C11 +2C12>0, C12 <B < C1 En outre,

nous avons trouvé que B > G> G'. Ceci implique que le module de cisaillement G est le

parametre limitant de la stabilité mécanique.

a partir des constantes élastiques , on obtient le parameétre d’anisotropie

Un facteur d’anisotropie égal a 1 indique une isotropie parfaite (Cs = C 44). Tandis
que toute déviation par rapport a 1 implique une anisotropie. Si A <1 le cristal est plus

dur dans les directions <100>, et quand A > 1 il est plus dur dans les directions
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diagonales <111> [19].0n sait que le systéme cubique est isotrope en structure mais il
présente une anisotropie élastique. D’aprés nos calculs, le PdCoMnGa présente une
anisotropie de ’ordre de 3.40572, donc A > 1,Alors le cristal est plus dur dans les directions

diagonales <111>.

Drautre part, Le module de cisaillement de Hill (GH) et le module de Young (E) peuvent
étre considéres comme des indicateurs de rigidité : plus grande est la valeur de GH ou de E,

plus rigide est le matériau

PdCoMnGa NOS calculs pour le type 1 FM
a(A) 6.179
Cn (GPa) 239.892
Ci2 (GPa) 161.176

Cu (GPa) 34.041
B, (GPa) 187.415
A 3.405
B (GPa) 187.415

_1 0.005
F=3
G’(GPa) 39.357
CP(GPa) 27.135
Ggr(GPa) 68.308
Gy(GPa) 96.168
Gy(GPa) 82.238
E(GPa) 215.233

o 0.309

Tableau I11.3.:Représente les Constantes élastiques calculées C ij, Le module de

compressibilité (B), la compressibilité (B ), le module de cisaillement (G), le module de
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cisaillement tétragonal (Go), la pression de Cauchy (CP) et le facteur d’anisotropie élastique
de Zener (A) : module de cisaillement de Reuss (GR, en GPa), module de cisaillement de
Voigt (GV , en GPa), module

de cisaillement de Hill (GH, en GPa), rapport de Pugh (GH/B), module de Young (E,

en GPa), coefficient de Poisson (o ) pour le compose PdCoMnGa

111.3.3. Propriétés électronique et magnétique :

La structure de bandes spin-up et spin-down de PdCoMnGa est représenté sur
la figure 1ll. 6 et 7 .La structure de bandes spin-up figure 11l. 6, la bande de valence et la
bande de conduction se chevauchent (c'est-a-dire se croisent) au-dessous niveau de Fermi , ce

qui indique que l'alliage a un caractére métallique .

La figure I11. 7: la structure de bandes présente une bonne interdite entre la bande de valence
et la bande de conduction, ce qui indique que le composé PACoMnGA a un coportement de

semi-conducteur. de Ces résultats on déduit que notre composé est un demi-métall

Pour élucider la nature de la structure de bande électronique, nous avons calculé la

densité totale et les densités d'états partielles de ce composé.

Les figures 111.(8,9 et 10). Présentent les densités totales et partielles spin-up et spin down

du PdCoMnGa calculées avec le constante d'équilibre a = 6.179 A.

v" Les densités d’états totale et partielles spin up et spin down

presentent trois sous bandes :

1. Spin Up
a) la sous bande de valence superieur provient de I'nybridation des états Pd-4d ,Mn-
3d.et Co-3d

b) la sous bande de conduction est due essenticllement a un mélange d’états Ga-4S ,
Pd-4d,Co-3d ,Mn-3d et Ga -3d

c) la sous bande de semi-coeur ou sous bande de valence inferieur provient ses
états Ga -3d
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2. Spindn
a) la sous bande de valence provient de I'hybridation des états Pd-4d ,Mn-3d.et
Co-3d

b) b)la sous bande de conduction est due a la forte hybridation des états Pd-4d
,Mn-3d.et Co-3d

c) lasous bande de semi-coeur provient des états Ga -3d

Le moment magnetique totale du composé est de SuB, la contribution principale au moment
magnétique total est principalement due a I'élément de transition (Mn) avec une contibution

qui n'est pas négligable des autres éléments de transition (Pd, Co) voir Tableau I11.4

L —_
& — ~—
L ; ———
10_2_/?‘)\\_/
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Figure 111.6 : stracture de bande de spin majoritaire (up)
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e PdCoMnGa
Moment magnétique dans interstitielle -0.04532
Moment magnétique dans la sphére Pd 1.18930
Moment magnétique dans la sphére Co 0.49576
Moment magnétique dans la sphére Mn 3.40311
Moment magnétique dans la sphére Ga -0.04045
Spin moment magnétique dans la cellule 5.00240

Tableau I11.4 : Réprésente les moments maghétiques total et partiels de PdCoMnGa a
I’equilibre
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Conclusion générale :

L’étude des propriétés structurales, électroniques, magnétiques et les propriétés élastiques de
composé Heusler quaternaires de PdCoMnGa sévere indispensable pour larelations qui
existent entre les structures (la fagon dont s’organisent les éléments constituants un matériau)
et les propriétés des matériaux. Dans notre étude, nousavons appliqué le code de calcul ab
initio WIEN2K, basée sur la théorie de lafonctionnelle de la densité (DFT), on a utilisé la
méthode de (FP-LAPW) Pour étudier les propriétés structurales, la stabilité des phases, les

propriétés électroniqueset les propriétés magnétiques. Les principaux résultats obtenus sont :

1) les propriétés structurales montrent que :
» le valeur de la maille dans I’ etat d’équlibre
> la structure de type (I) est la plus stable parmi les trois configurations en

raison de I'énergie totale la plus basse

2) les propriétés élastiques

> Nous avons calculé les constantes élastiques (C11, C12 et C44) et le facteur
d’anisotropie élastique (A) Aussi module de compressibilité (B, en GPa), module de
cisaillement (G = C44, en GPa), nos résultats devraient constituer de bonnes

prédictions de propriétés élastique.

3) les propriétés électroniques et magnétiques:
Nos calculs de la stracture électronique et Dos montrent que

> Les résultats montrent que les composés ont un caractere demi-métallique ou la
chaine de spins minoritaires « dn » est semi-conducteur tandis que la chaine de
spins majoritaires « up » est métallique.

> Nous avons déterminé aussi les moments magnétiques totaux et partiels.



Résumé :

Les propriétés structurelles, €lectroniques , magnétiques et les propriétés lastiques de
compos¢ Heusler quaternaires de PdCoMnGa ont été calculées par la méthode des
ondes planes augmentées (FP-LAPW) qui se base sur la théorie de la fonctionnelle de
la densité (DFT) en utilisant le code de Wien2K. Nous avons utilisé I'approximation du
gradient généralisé¢ (GGA(08)). Les valeurs du parameétre de maille d’équilibre sont en

accord avec les resultats expérimentaux disponibles.

Les mot clé : (FP-LAPW)‘ GGA DFT

Abstract :

The structural, electronic, magnetic properties and elastic properties of quaternary
Heusler compounds of PACoMnGa have been calculated by the augmented plane wave
method (FP-LAPW) which is based on density functional theory (DFT) using the
Wien2K code. We used the generalized gradient approximation (GGA (08)). The
values of the equilibrium mesh parameter are in agreement with the available

experimental results.

Key words : (FP-LAPW)¢ GGA DFT
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