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Introduction
L�origine des études sur les phénomènes d�attente remonte aux années "1909_1920" avec les tra-

vaux de l�ingénieur Danois Anger Krarup Erlang concernant le réseau téléphonique de Copenhague.

Apartir des années 30 la théorie des �les d�attente adopte un langage de plus en plus mathématique qui

à été développée notamment grâce aux contributions de Palm, Kolmogorov, Khintchine, Pollaczek,...

Les �les d�attente peuvent être considérées comme un phénomène caractéristique de la vie contempo-

raine, un outil d�analyse et de modélisation . L�étude mathématique des phénomènes d�attente constitue

un champ d�application important des processus stochastiques. On parle des �les d�attente chaque fois

que certaines unités appelées "clients" se présentent d�une manière aléatoire à des "stations" a�n de

recevoir un service dont la durée est généralement aléatoire.

Par la suite, les �les d�attente ont été intégrés dans la modélisation de divers domaines d�activité. On

assista alors à une évolution rapide de la théorie des �les d�attente qu�on appliqua à l�évaluation des

performances des systèmes informatiques et aux réseaux de communication. Les chercheurs oeuvrant

dans cette branche d�activité ont élaboré plusieurs nouvelles méthodes qui ont été ensuite appliquées

avec succés dans d�autres domaines, notamment dans le secteur de la fabrication.

Nous nous intéressons dans ce mémoire à la stabilité de modèles de �les d�attente avec rappels. Ces

modèles sont caractérisés par le fait que le client arrivé qui trouve le serveur occupé doit rejoindre

une �le supplémentaire de clients appelée "orbite", et réessaye ultérieurement de rejoindre le serveur

d�après une politique particulière de rappels. Si par contre le client arrivé trouve le serveur libre, il

prend son service et quitte le système. Il existe essentiellement trois politiques de rappels dans la litté-

rature. La politique classique dite politique linéaire (linear policy), où chaque client en orbite tente de

rejoindre le serveur indépendamment des autres clients en orbite, de ce fait le taux de rappels dépend

linéairement du nombre de clients en orbite. La deuxième politique est appelée politique de contrôle

des rappels (control policy) ou politique constante (constant retrial policy), introduite par Fayolle [16].

Dans cette politique, l�orbite e¤ectue les rappels indépendamment du nombre de clients en orbite, et

si le serveur est trouvé libre alors un client en orbite (le premier ou un client choisi aléatoirement)

prend son service. En�n, la troisième politique est une combinaison des deux précédentes et est appelée

politique versatile (versatile retrial policy). Pour cette politique, l�orbite e¤ectue un rappel de temps

aléatoire, ensuite chaque client émet son propre "signal" pour joindre le serveur et prendre son service,

cette dernière a été introduite par Artalejo et Gomez-Corral [4].

L�approche utilisée dans ce travail pour obtenir des conditions de stabilité est basée sur la mo-

délisation de la dynamique du système par une suite récursive stochastique, qui est de nature plus

générale que les processus de Markov. En utilisant la technique des évènements de rénovation on ob-
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tient la convergence couplée au sens fort (strong coupling convergence) vers un régime stationnaire

et ergodique. Pour la politique de rappels linéaire, Altman et Borovkov [2] ont obtenu des conditions

su¢ santes pour la stabilité sous di¤érentes suppositions générales sur les temps d�inter-arrivées et

de services. En particulier, ils ont appliqué la méthode des évènements de rénovation pour obtenir

l�ergodicité sous la supposition que la suite des temps de services est stationnaire et ergodique (sans

l�hypothèse d�indépendance) et des temps d�inter-arrivées et de rappels i.i.d de distributions exponen-

tielles.

Dans le chapitre 1, nous présentons les notions de bases de l�étude des systèmes de �les d�attente,

à savoir les processus stochastiques (processus de comptage, processus de renouvellement, processus

de Poisson). Dans le chapitre 2, On présente les principales approches de stabilité des systèmes de �les

d�attente. on passe en revue quelques résultats de stabilité obtenus dans les systèmes de �les d�attente

avec rappels pour les trois principales politiques de rappels (constante, linéaire et versatile). Dans le

chapitre 3, on modélise le système avec rappels et politique versatile par une suite récursive stochas-

tique et on applique la méthode des évènements de rénovation pour obtenir une condition su¢ sante

de stabilité sous la supposition que la suite des temps de services est stationnaire et ergodique et des

temps d�inter-arrivées et de rappels i.i.d de distributions exponentielles.

L�arrivée d�un client négatif engendre immédiatement l�élimination d�un client régulier, s�il en

existe. Le concept de client négatif a été introduit par, Gelenbe et al [22] ont obtenu des conditions de

stabilité pour deux modèles de clients négatifs, le modèle avec élimination du client en service (RCS)

et élimination du dernier client de la �le (RCE). Artalejo et Gomez-Corral [5], [6] ont généralisé le

concept de client négatif au cas où les clients régulier suivent une politique de rappels. Finalement,

la stabilité d�un système avec rappels versatiles, le premier modèle de ce type avec politique linéaire

classique a été étudié par Falin [10], qui a établit la distribution jointe de l�état du serveur avec la

taille de la �le. Une étude plus détaillée a été faite ultérieurement par Falin [11], on étudie la stabilité

et l�instabilité de modèles avec rappels et politique de contrôle des rappels sous la supposition que les

temps de rappels suivent une distribution générale.
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Chapitre 1

Généralités sur les processus

stochastiques

1.1 Le Processus de comptage

Dé�nition 1.1 (processus de comptage) Un processus stochastique [N(t); t 2 R] est un processus de

comptage si N(t) représente le nombre total d�événements qui se sont produits entre 0 et t ,il doit donc

satisfaire

-N(t) � 0

-N(t) a des valeurs entières uniquement.

-pour s < t;N(t)�N(s) est le nombre d�évènements qui ont eu lieu entre s et t:

Un processus de comptage est un processus discret à temps continu. Un second processus peut être

associé au processus des temps d�occurrence, processus des temps d�inter-arrivées {Wn; n 2 N0} où

8n 2 N0 la variable aléatoire Nn est le temps d�attente entre les (n� 1)ieme et nieme occurrences,

c-à-d :

Wn = Tn � Tn�1

Proposition 1.2 Les relations suivantes sont triviales tel que T0 = 0 à véri�er :

1.Tn �W1 +W2 + :::+Wn8n � 1;

2.N(t) = sup fn � 0 : Tn � tg ;

3.P [N(t) = n] = P [Tn � t < Tn+1] ;

4.P [N(t) > n] = P [Tn < t] ;

5.P [s < Tn < t] = P [N(s) < n < N(t)] :
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Preuve. On a

Wn = Tn � Tn�1

Tn = W1 +W2 + :::+Wn

= T1 � T0 + T2 � T1 + T3 � T2 + :::+ Tn�1 � Tn�2 + Tn � Tn�1

= T0 + Tn

= Tn car T0 = 0

Dé�nition 1.3 (processus à accroissements indépendants)

Un processus {Xt} tel que X0 = 0 est à accroissements indépendants si pour tout suite �nie 0 < t1 <

t2 < t3 < ::: < tn les variables aléatoires Xt1 ; Xt2 �Xt1 ; :::; Xtn �Xtn�1 sont indépendantes.

Dé�nition 1.4 (Un processus à accroissements indépendants est à accroissements stationnaires) si

la loi de l�accroissement (Xt+s �Xt) ne dépend pas de t pour tout t � 0:

Dé�nition 1.5 (Un processus de comptage)

{N(t) ; t � 0} est un processus de poisson d�intensité � > 0 si :

-N(0) = 0;

-le processus est à accroissements stationnaires ,

-le processus est à accroissements indépendants ,

-80 � s < t, la variable aléatoire N(t)�N(s) suit une loi de poisson deparamètre �(t� s).

1.2 Rappels : loi de Poisson et loi exponentielle :

1.2.1 Dé�nitions et généralité :

Dé�nition 1.6 Une variable aléatoire X à valeurs entières suit une loi de Poisson de paramètre � > 0

si

8k 2 N; P(X = k) =
�k

k!
exp(��k)

Dé�nition 1.7 Une variable aléatoire Y à valeurs réelles strictement positives suit une loi exponen-

tielle de paramètre � > 0 si

8t > 0; P(Y = t) = � exp(��t)

6



1.2.2 Distribution de Poisson

Soit n une variable aléatoire discrète avec n = 0,1; ::: qui suit une distribution Poisson. La distri-

bution de probabilité de n est Pn = �n exp(��)=n!.

L�espérence et la variance de n sont E(n) = �, et V (n) = �, respectivement. La distribution de

Poisson peut également être dé�nie en unités de temps t. Dans ce cas, la variable discrète n représente

le nombre d�occurrences dans le temps t devient,

P (n; t) = (�t)n exp(��t)=n!

1.2.3 Distribution exponentielle

Soit t une variable aléatoire avec t � 0 qui suit une distribution exponentielle. La densité de

probabilité de t est f(t) = � exp(��t) et la distribution cumulée correspondante est F (t) = 1 �

exp(��t). L�espérance et la variance de t sont E(t) = 1=�; et V (t) = 1=�2; respectivement.

1.2.4 Relation entre la distribution Exponentielle et la distribution de Poisson :

La densité de probabilité d�une distribution exponentielle f(t) = � exp(��t) Supposons � est

exponentielle avec une espérance 1=�, et n est de Poisson de moyenne �. on a :

P (� > t) = 1� F (t)

= exp(��t)

= P (n = 0)en t

= P (0; t)�

Notons P (n; t) la probabilité d�avoir n unités dans le temps t.

P (0; t) = exp(��t)

P (1; t) =
tR

�=0

P (0; �)f(1� �)d� = �t exp(��t)

P (2; t) =
tR

�=0

P (1; �)f(1� �)d� = (�t)2 exp(��t)=2!

P (3; t) = :::

P (4; t) =
tR

�=0

P (n� 1; �)f(1� �)d� = (�t)n exp(��t)=n!

Dé�nition 1.8 Une variable aléatoire X est dite sans mémoire (ou sans usure)si :

8s; t � 0 P(X>t+ s=X > t) = P(X > s)
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Si X est la durée de vie d�un matériel quelconque l�équation précédente s�interprété de la manière

suivante, sachant le matériel en état de bon fonctionnement au temps t, la loi de probabilité de sa

durée de vie future est la même que celle de sa durée de vie initiale. En d�autres termes, le matériel

ne s�use pas.

Exemple 1.9 Une variable aléatoire de loi exponentielle est sans mémoire.

Remarque 1.10 L�unique loi de probabilité continue sans mémoire est la loi exponentielle, cette dé-

�nition est similaire à la version discrète à l�exception des variables s et t sont réelles positives et

non entières, plutôt que de compte le nombre d�essais jusqu�au premier succès on peut penser à l�heure

d�arrivée du premier appel téléphonique dans un centre d�appel.

1.3 Le Processus de renouvellement

Introduction :

Un processus de renouvellement à pour fonction de dénombrer les occurrences d�un phénomène

donné, lorsque les délais entre deux occurrences consécutives sont des variables aléatoires indépendantes

et identiquement distribuées.

Exemple 1.11 Il peut s�agir de compter le nombre de pannes d�un matériel électronique en théorie de

la �abilité (le matériel est alors renouvelé après chaque panne, d�où la dénomination), de dénombrer les

arrivées de clients dans une �le d�attente, de recenser les occurrence d�un sinistre pour une compagnie

d�assurance...

Dé�nition 1.12 (processus de renouvellement)

Un processus de comptage dont la suite des inter-arrivées forme une suite de variables aléatoires

indépendantes et identiquement distribuées s�appelle processus de renouvellement.

Dé�nition 1.13 (processus de renouvellement)

Soit (Xn)n�0 une suite de variables aléatoire positives on note Sn la suite des sommes partielles, S0 = 0

et Sn = Xn + Sn�1 pour tout n � 1 on considère alors le processus Rt dé�ni comme suit :

Rt = cardfn � 1; Sn � tg =
P
n�1

1fSn�tg

Par exemple, si les Xn modélisent les durées de vie d�une ampoule Rt représente le nombre d�ampoules

changées avant l�instant t, les Xn peuvent également représenter le temps séparant deux ventes succes-

sives, ou deux sinistres successifs pour une compagnie d�assurance. Rt désignera alors, suivant le cas,
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le nombre d�articles vendus ou le nombre sinistres survenus au cours de l�intervalle de temps [0; t],

la suite Sn est appelée processus de renouvellement associé aux (Xn)n�0 et le processus (Rt) est le

processus de comptage. Par abus de langage, on appelle également Rt Processus de renouvellement.

1.4 Systèmes de Files d�Attente Classiques

1.4.1 Les di¤érents types de �les d�attente

Les �gures suivantes représentent les di¤érents systèmes de �les d�attente selon l�espace d�attente

et l�espace de service :

Fig 1 : File d�attente avec un seul espace

d�attente et un seul serveur

Fig 2 : File d�attente avec un seul espace

d�attente et plusieurs serveurs
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Fig 3 : File d�attente avec plusieurs

espaces d�attente et plusieurs serveurs

1.4.2 File d�attente simple

La �le simple

Une �le d�attente simple est un système constitué d�un ou plusieurs serveurs et d�un espace d�at-

tente. les clients arrivent de l�extérieur, patientent éventuellement dans la �le d�attente, reçoivent un

service, puis quittent la station [33]. A�n de spéci�er complètement une �le d�attente simple, on doit

caractériser le processus d�arrivée des clients, le temps de service ainsi que la structure et la discipline

de service de la �le d�attente.

1.4.3 Notations de Kendall

Pour classi�er les �les d�attente, on a recours à une notation symbolique appelée notation de

Kendall, qui prend la forme générale suivante : A/B/s[/K][/S], où

� A est la distribution des temps d�inter-arrivées et B est la distribution des temps de service,

� s est le nombre de serveurs en parallèle,

� K est la taille de la salle d�attente, qui sera considérée in�nie par défaut.

� S représente la discipline de service, qui est FIFO par défaut.

A et B appartiennent typiquement à l�ensemble fM;D;P;G;GIg, oùM désigne la loi exponentielle,

D la loi déterministe, P une loi périodique, G une loi générale, et GI désigne des variables générales

mais i.i.d.
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1.4.4 Processus d�arrivées de Poisson

Souvent dans les systèmes d�attente, on suppose que le processus des arrivées suit une loi de Poisson

ou bien, de manière équivalente, comme on le verra dans cette section, les temps d�inter-arrivées suivent

une distribution exponentielle.

Soit une suite de variables aléatoires positives �1,�2,... indépendantes et de distribution de probabilité

commune. Il s�agira de considérer �n comme le temps écoulé entre la (n� 1)�eme et la n�eme occurences

ou arrivée d�un certain évènement spéci�que dans une situation probabiliste, comme, par exemple les

appels dans un central téléphonique, les émissions de particules radioactives, les arrivées de clients

devant un guichet, etc.

Notons par

S0 = 0 et Sn =
Pn
k=1 �k; n = 1; 2; :::

Alors Sn représente l�instant d�arrivée du n�eme client. Pour tout t � 0, on dé�nit la variable aléa-

toire N (t) par

N (t) = inffn 2 N : Sn � tg

La variable aléatoire N (t) représente le nombre d�évènements se produisant dans l�intervalle de temps

[0; t]. Le processus de comptageN�(t) est appelé processus de Poisson avec taux � si les inter occurences

�1; �2,... ont une fonction de distribution exponentielle commune Pf�n � xg = 1� e��x, x � 0.

Pour tout t � 0, on de�nit la variable aléatoire 
t par


t � le temps qui sépare l�instant t de la prochaine arrivée. (1.1)

Plus précisément, t est donnée par


t = SN (t) � t (1.2)


t est appellée le temps résiduel d�arrivée au temps t. La variable aléatoire 
t possède la même dis-

tribution exponentielle de moyenne 1=� si le processus de comptage est de Poisson N�. C�est à dire

Pf
t � xg = 1� e��x, x � 0, indépendamment de t.

1.4.5 File M/G/1 avec clients négatifs

Le concept de client négatif dans les modèles d�attente a été introduit par Gelenbe [21], et a

été motivé par la modélisation des réseaux de neurones où les arrivées positives et négatives repré-
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sentent respectivement, les signaux excitateurs et inhibiteurs. Puis leurs domaines d�applications se

sont étendus aux réseaux informatiques où l�arrivée négative modélise l�e¤et d�un virus sur le système,

éliminations des transactions dans les bases de données, les réseaux de télécommunications, les sys-

tèmes de productions,...etc.

Les arrivées négatives a¤ectent le système de di¤érentes manières :

� Élimination individuelle : l�arrivée négative élimine un client positif (ordinaire). Une arrivée négative

dans un système vide est sans e¤et.

� Élimination par groupe : l�arrivée négative élimine un groupe de clients du système.

� Le désastre (catastrophe) : l�arrivée négative élimine tous les clients présents dans le système.

� Élimination d�une quantité aléatoire d�activité : l�élimination dans ce cas n�est pas nécessairement

un nombre entier de clients positifs mais une quantité aléatoire de temps d�activité du serveur.

1.5 Suites Stationnaires et Ergodiques

Suites Stationnaires

Soit f�ng une suite aléatoire dé�nie sur l�espace de probabilité (
;F ;P) et prenant ces valeurs dans

l�espace mesurable (Y;BY).

Dé�nition 1.14 Une suite f�ng est dite strictement stationnaire si les distributions des variables

aléatoires de dimension �nie (�k+n1 ; �k+n2 ; � � �; �k+nj ) ne dépendent pas de k pour tout j et n1; � � �; nj :

Une application T : 
 �! 
 est dite transformation bijective préservant la mesure si elle est bijective,

l�image par T et par son inverse T�1 d�un ensemble mesurable a la même probabilité (mesure) que son

ensemble de départ, i.e.

P(T (A)) = P(A) et P(T�1(A)) = P(A) pour tout ensemble A 2 F :

1/- Une telle transformation induit une transformation (bijective) correspondante, qu�on note U , des

variables aléatoires dé�nie par

U�(!) = �(T�1(!));

pour toute variable aléatoire � mesurable par rapport à F .

Pour toute variable aléatoire �, U� possède la même distribution que celle de �, et en fait le processus

stochastique f�n : �1 < n < 1g, avec �n = Un� est strictement stationnaire. Ainsi, toute trans-

formation bijective préservant la mesure peut être utilisée pour engendrer des processus stochastiques
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strictement stationnaires.

Soit f�n; n � 0g une suite (strictement) stationnaire. D�aprés le théorème de Kolmogorov d�extension

des distributions compatibles, une suite de v.a stationnaire f�n; n � 0g peut être étendue à la suite

f�n;�1 < n <1g stationnaire sur tout l�axe des temps.

2/- Une suite f�n : �1 < n < 1g est dite compatible avec l�opérateur (shift) U si pour tout n 2 Z,

�n est F� mesurable et U�n = �n+1.

On note par T l�opérateur de translation, correspondant à U , des évènements dans la ��algèbre F� :

Tf! : �j(!) 2 Bj ; j = 1; � � �; kg = f! : �j+1(!) 2 Bj ; j = 1; � � �; kg

et T k; k � 0 est la k�eme itération de T. U0 et T 0 sont les transformations identités, et U�k, T�k sont

les transformations inverses de Uket T k respectivement.

Suites Ergodiques

Un ensemble A mesurable est dit invariant par rapport à l�opérateur de translation shift T si

A = TA presque sûrement.

Ainsi tout ensemble de probabilité 0 ou 1 est invariant. Les ensembles invariants forment une ��algèbre.

� Une variable aléatoire � est dite invariante par rapport à un opérateur de transformation préservant

la mesure U si U� = � avec probabilité 1.

Ainsi, toute variable aléatoire presque sûrement constante est invariante.

Si la variable aléatoire � est invariante, l�ensemble f! : �(!) 2 Ag est invariant pour tout Borélien

A. Réciproquement, si l�ensemble f! : �(!) 2 Ag est invariant pour tout Borélien A alors � est une

variable aléatoire invariante.

Si A est un ensemble mesurable et si � est une variable aléatoire qui vaut 1 sur A et zero ailleurs, alors

A est invariant si et seulement si � est une variable aléatoire invariante.

� Un opérateur de transformation T preservant la mesure est dit métriquement transitif si les seules

ensembles invariants sont ceux de probabilité 0 ou 1, c�est à dire, si les seules variables aléatoires qui

sont invariantes sont ceux qui sont constantes presque sûrement. Dans ce cas, on dira aussi que son

opérateur de transformation correspondant U, des variables aléatoires, est aussi métriquement transi-

tif.

� Soit U un opérateur de transformation préservant la mesure et soit � une variable aléatoire. Alors le

processus f�n = Un�; n � 0g est métriquement transitif.

� Une suite f�ng est dite métriquement transitive (metrically transitive) si les seules ensembles inva-
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riants de F� sont ceux de probabilité 0 ou 1.

� Une suite f�ng est ergodique si et seulement si pour toute variable aléatoire F� mesurable �, avec

E� <1, nous avons p.s

lim
n�!1

1

n

nX
i=1

U i� = E� (1.3)

Si la suite f�ng est de plus stationnaire, la relation 1.3 peut être exprimée par la forme suivante

lim
n�!1

1

n

�1X
i=�n

U i� = E�: (1.4)

Cette dernière relation est appelée loi forte des grands nombres de Birkho¤ .

Le théorème suivant est une version du théorème ergodique fondamental adapté au cadre des processus

stochastiques strictement stationnaires.

Théorème 1.15 Soit f�n; n � 0g un processus stochastique strictement stationnaire, avec Ej�0j <1,

et soit I la �-algèbre des ensembles invariants. Alors

lim
n�!1

1

n

n�1X
i=0

�i = E[�0jI] (1.5)

avec probabilité 1. En particulier, si le processus est métriquement transitif, la limite E[�0jI] est égale

à E[�0].

Ainsi, une suite strictement stationnaire �n est ergodique si et seulement si elle est métriquement

transitive.

On peut énoncer donc la remarque suivante qui sera utile pour montrer l�ergodicité des suites régissant

la dynamique des systèmes dont on va étudier la stabilité.

Remarque 1.16 Si �n est stationnaire et ergodique alors toute suite f�n : �1 < n <1g compatible

avec l�opérateur shift U est aussi ergodique, i.e. elle satisfait à la loi forte des grands nombres de

Birkho¤.

1.6 Formule de Wald

La formule de Wald sera utile pour les systèmes avec arrivées ou services en groupes. Elle permettra

de calculer, par exemple, moyenne des arrivées pendant un temps de service dans le cas des arrivées en

groupes de tailles suivant une variable aléatoire de moyenne �nie. Soit X1,X2,... une suite de variables

aléatoires indépendantes et identiquements distribuées de moyenne �nie. De plus, soit N une variable

aléatoire à valeurs dans N de moyenne �nie. Si la variable aléatoire N est indépendante des variables
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aléatoires X1,X2,... alors

E

 
NX
k=1

Xk

!
= E(N)E(X1): (1.6)

La preuve de la formule 1.6 utilise la loi de l�espérance totale.

La formule 1.6 reste valable si la supposition que la variable aléatoire N est indépendante de la suite

X1,X2,... est allégée. Supposons que les conditions suivantes sont satisfaites :

(i) X1,X2,... est une suite de variables aléatoires indépendantes et identiquements distribuées de

moyenne �nie.

(ii) N est une variable aléatoire à valeurs dans N avec E(N <1).

(iii) L�évènement N = n est indépendant de Xn+1,Xn+2,... pour tout n � 1.

Alors on a

E

 
NX
k=1

Xk

!
= E(N)E(X1): (1.7)

La supposition E(N) < 1 est essentielle dans l�équation de Wald. Pour illustrer ce fait, on

considère la marche aléatoire symétrique fSn; n � 0g avec S0 = 0 et Sn = X1 + � � � + Xn, où

X1; X2; ::: est une suite de variables aléatoires indépendantes avec PfXi = 1g = PfXi = �1g

pour tout i. On dé�nit la variable aléatoire N comme N = minfn � 1 j Sn = �1g,i.e, N est

l�instant de la première visite de la marche aléatoire au point �1. Alors E(X1; � � �; XN ) = �1.

Notons que E(Xi) = 0, et on a cependant que E(X1; � � �; XN ) n�est pas égal à E(N)E(X1). La

raison est que E(N) =1.

1.7 Files d�Attente avec Rappels

1.7.1 Déscription du modèle d�attente avec rappels

Un système d�attente avec rappels (Retrial Queue) est un système composé de c(c � 1) serveurs

identiques et indépendants, d�un bu¤er de capacité K � c(K � c) et d�une orbite de capacité N .

À l�arrivée d�un client, s�il y a un ou plusieurs serveurs libres et en bon état, le client sera servi

immédiatement et quittera le système à la �n de son service. Sinon, s�il y a une position d�attente

libre dans le bu¤er, le client la rejoindra. Par ailleurs, si un client arrive et trouve tous les serveurs et

toutes les positions d�attente du bu¤er occupés, il quittera le système dé�nitivement avec la probabilité

1�H0, ou bien entre en orbite avec la probabilité H0 et devient une source d�appels répétés et tentera

sa chance après une durée de temps aléatoire. Les clients qui reviendront et rappelleront pour le service
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sont dits en "orbite". Cette dernière peut être �nie ou in�nie. Dans le cas d�une orbite à capacité �nie,

si elle est pleine, un client qui trouve tous les serveurs et les positions d�attente du bu¤er occupés,

sera obligé de quitter le système dé�nitivement sans être servi. Chaque client en orbite appelé aussi

«client secondaire» , est supposé rappeler pour le service à des intervalles de temps suivant une loi

de probabilité et une intensité de rappels bien dé�nie (rappels constants, rappels classiques, ou bien

rappels linéaires, ...). Chacun de ces clients secondaires est traité comme un client primaire c�est-à-

dire un nouveau client qui arrive de l�extérieur du système. S�il trouve un serveur libre, il sera servi

immédiatement puis quittera le système. Sinon, s�il y a des positions d�attente disponibles dans le

bu¤er, il le rejoindra. Par contre, si tous les serveurs et les positions d�attente sont encore occupés, le

client quittera le système pour toujours avec la probabilité 1�Hk (si c�est le kme rappel sans succès)

ou bien entre en orbite avec la probabilité Hk si l�orbite n�est pas pleine.

1.7.2 Politiques d�accès au serveur à partir de l�orbite

La dé�nition du protocole de rappels est en e¤et un sujet de controverse (voir Falin (1990)[34]

et concerne l�aspect modélisation du système sous étude. Le protocole le plus décrit dans la théorie

classique des �les d�attente avec rappels est la politique de rappels classiques dans laquelle chaque

source dans l�orbite rappelle après un temps exponentiellement distribué avec un paramètre �. Donc,

il y a une probabilité n�dt+ o(dt) d�un nouveau rappel dans le prochain intervalle (t; t+ dt) sachant

que n clients sont en orbite à l�instant t. Une telle politique a été motivée par des applications dans

la modélisation du comportement des abonnés dans les réseaux téléphoniques depuis les années 1940.

Dans les années précédentes, la technologie a considérablement évoluée. La littérature de �les d�attente

avec rappels décrit di¤érents protocoles de rappels spéci�ques à certains réseaux, informatiques et de

communication modernes dans lesquels le temps inter-rappels est contrôlé par un dispositif électronique

et par conséquent, est indépendant du nombre d�unités demandant le service. Dans ce cas, la probabilité

d�un rappel durant (t; t+ dt), sachant que l�orbite est non vide, est �dt+ o(dt). Ce type de discipline

de rappels est appelé politique de rappels constants. Le premier travail dans cette direction est celui

de Fayolle qui considère une �le d�attente M=M=1, où uniquement le client en tête de la �le en

orbite peut demander un service après un temps de rappels exponentiellement distribué avec un taux

constant. Cette sorte de politique de contrôle de rappels est bien connue pour le protocole ALOHA

dans les systèmes de communication. Certains autres travaux décrivent des applications aux réseaux

locaux, protocole de communication, systèmes mobiles et autres (Choi (1992) [36], Shikata (1999) [37]).

Artalejo et Gómez-Corral (1997) [35] traitent les deux cas d�une manière uni�ée en dé�nissant une

politique de rappels linéaires pour laquelle la probabilité d�un rappel durant (t; t+ dt) sachant que n
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client sont en orbite à l�instant t est (�(1� �0n) + n�)dt+ o(dt). On mentionne aussi l�existence d�une

autre politique dite politique de rappels quadratiques

1.7.3 Politique linéaire classique

La politique de rappels linéaire classique est caractérisée par le fait que chaque client en orbite

engendre sa propre tentative de joindre le serveur indépendamment des autres clients en orbite. Prenons

comme exemple illustratif un modèle de type M/G/1.

� Modèle M/G/1 avec politique de rappels linéaire :

Les clients arrivent de l�extérieur selon un processus de Poisson de taux �. Ces clients sont identi�és

comme clients primaires. Si le serveur est libre à l�instant d�arrivée d�un client primaire, ce client

obtient son service immédiatement et quitte le système après la �n de son service. D�autre part, si

un client primaire arrive et trouve le serveur occupé il rejoint alors l�orbite. Chaque client en orbite

engendre un processus de Poisson de taux � de tentatives de joindre le serveur jusqu�à ce qu�il trouve

le serveur libre pour prendre son service et quitter le système. Les clients primaires et ceux provenant

de l�orbite ont la même distribution du temps de service. On note par �n le n�eme temps de service et

on suppose que la suite f�ng est i.i.d. avec 0 < E�n <1.

Sous des suppositions Markoviennes, nous verrons plus tard que la condition "naturelle" de stabilité

de ce système est la même que le système M/G/1 classique (sans rappels) :

�E�1 < 1
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Chapitre 2

CONDITION DE LA SATBILITÉ

AVEC LES MÉTHODES

STOCHASTIQUES

Dans ce chapitre, nous allons présenter un résumé des méthodes les plus importantes utilisées pour

décider de la stabilité des systèmes stochastiques, en particulier les systèmes de �les d�attente. Il est

à noter, comme pour les systèmes dynamiques déterministes, qu�il n�existe pas une notion générale

de stabilité, cela dépend du système étudié et de l�approche utilisée. Ensuite, nous présontons les

conditions de stabilité des modèles classiques de �les d�attente avec rappels et la stabilité de modèle

avec clients négatifs Pour ces modèles, la méthode des fonctions de Lyapunov associée au critère de

Foster est su¢ sante pour établir ces conditions.

2.1 Méthode des Fonctions de Lyapunov

On utilise dans cette méthode deux critères principaux, l�un de l�ergodicité et l�autre de transience.

2.1.1 Chaînes de Markov à espace d�états discret

Une chaîne de Markov est la généralisation la plus simple d�une suite de variables aléatoires in-

dépendantes. La propriété principale d�une chaîne de Markov, dite propriété Markovienne, est que le

comportement futur du processus ne dépend que de sont état présent et non de son passé.

Soit fX(n); n 2 Ng une suite de variables aléatoires à valeurs dans l�ensemble S des états, supposé �ni

ou in�ni dénombrable.
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Dé�nition 2.1 Le processus stochastique X = fX(n); n 2 Ng avec espace d�états S est dit chaîne de

Markov si, pour tout n 2 N;

PfX(n+ 1) = in+1jX(0) = i0; � � �; X(n) = ing = PfX(n+ 1) = in+1jX(n) = ing;

pour toutes valeurs possibles de i0; :::; in+1 2 S

On dit qu�une chaîne de Markov fX(n); n 2 Ng est homogène si pour tout n 2 N,

8i; j 2 S; PfX(n+ 1) = jjX(n) = ig = pi;j ;

indépendamment de n. Les probabilités pi;j sont appellées probabilités de transition en une étape et

satisfont à

pi;j � 0; 8i; j 2 S et
X
j2E

pi;j = 18i 2 S:

La matrice stochastique P = (pi;j), i; j 2 S, est alors appelée la matrice de transition de X .

La probabilité de transition en n étapes est donnée par

8i; j 2 S pi;j(n) = PfX(n) = jjX(0) = ig:

Une application directe de la formule des probabilités totales montre que pi;j(n) est le terme général

de la matrice Pn. En particulier, pour tous n;m 2 N, les expressions

8i; j 2 S pi;j(n+m) =
P
K2E

pi;k(n)pk;j(m);

connues sous le nom d�équations de Chapman-Kolmogorov. Elles peuvent être données simplement par

le produit matriciel Pn+m = Pn � Pm.

� On dit que les états i et j communiquent si

9m;n 2 N; pi;j(n) > 0 et pi;j(m) > 0:

Cela dé�nit une relation d�équivalence sur l�ensemble S. L�espace d�états peut donc être décomposé en

un nombre �ni ou dénombrable de classes d�équivalence appelées les classes de communication de X .

Lemme 2.2 Un état i 2 S est récurrent si et seulement si

1X
i=1

pi;i(n) =1;
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et transient si et seulement si
1X
i=1

pi;i(n) <1:

. Si tous les états sont récurrents, la chaîne de Markov elle-même est dite récurrente.

. Si tous les états sont transients, la chaîne de Markov elle-même est dite transiente.

Corollaire 2.3 Une chaîne de Markov irréductible est soit récurrente soit transiente.

Lemme 2.4 Un état i 2 S est positif si et seulement si

lim
n�!1

sup pi;i(n) > 0;

et nul si et seulement si

lim
n�!1

pi;i(n) = 0:

Une chaîne de Markov est dite positive si tous les états sont positifs, et nulle si tous les états sont nuls.

Proposition 2.5 Une chaîne de Markov irréductible est positive s�il existe un ensemble �ni positif.

Stabilité d�une chaîne de Markov :

Soit �(n) la distribution de X(n), à savoir 8i 2 S, �i(n) = P(X(n) = i):

D�après la formule des probabilités totales, on obtient �(n+ 1) = �(n)P, si bien que

8n 2 N, �(n) = �(0)Pn:

En particulier, une mesure de probabilité � sur S qui satisfait � = �P est appelée distribution

stationnaire de la chaîne de Markov, puisque

�(0) = � ) 8n 2 N, �(n) = �:

Lorsqu�une telle distribution stationnaire existe, la chaîne de Markov est dite stable. Sinon, la

chaîne de Markov est dite instable.

Le résultat fondamental suivant permet de caractériser la stabilité des chaînes de Markov à espace

d�états discrets.

Théorème 2.6 Soit X = fXn; n 2 Ng une chaîne de Markov irréductible.
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� X est stable si et seulement si X est positive, auquel cas la distribution stationnaire � est unique.

Si de plus X est apériodique, alors pour toute distribution initiale �(0),

lim
n�!1

�(n) = �;

� X est instable si et seulement si X est nulle, auquel cas pour toute distribution initiale �(0);

lim
n�!1

�(n) = 0:

Une chaîne de Markov irréductible, apériodique et positive est dite ergodique.

Théorème 2.7 (Théorème ergodique)

Soit X une chaîne de Markov irréductible, apériodique et positive, de distribution stationnaire �. Pour

toute fonction f : S! R telle que j�(f)j <1, on a

limN�!1
1
N

PN
n=1 f(X(n))!p:s �(f).

Critères de Foster : Le résultat suivant donne une condition su¢ sante pour l�ergodicité d�une chaîne

de Markov.

Théorème 2.8 Pour une chaîne de Markov X = fX(n)g irréductible et apériodique d�espace d�états

S, une condition su¢ sante pour l�ergodicité est l�existence d�une fonction positive L, et � > 0 tels que

pour tout x 2 S

E[L(X(n+ 1))� L(X(n))jX(n) = x] <1;

et

E[L(X(n+ 1))� L(X(n))jX(n) = x] � ��;

pour tout x 2 S sauf peut être en un nombre �ni de points.

Une généralisation naturelle du critère de Foster est donnée par le résultat suivant.

Corollaire 2.9 (Critère de Foster généralisé)

Soit une chaîne de Markov X = fX(n)g irréductible. Une condition su¢ sante pour que X soit positive

est qu�il existe un ensemble �ni A, une fonction de Lyapunov L, et une fonction m sur S à valeurs

entières non-nulles, tels que

sup
x2A

E[L(X(n+m(x)))� L(X(n))jX(n) = x] <1;
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et pour une certaine constante � > 0,

8x ( A; E[L(X(n+m(x)))� L(X(n))jX(n) = x] � ��m(x):

Critère pour la transience : Le critère suivant donne une condition pour la non ergodicité d�une

chaîne de Markov à espace d�états Z+ (voir Sennot et al. [31]).

Théorème 2.10 Une chaîne de Markov X = fX(n)g irréductible et apériodique d�espace d�états Z+
est non ergodique (transiente) si

E[X(n+ 1)�X(n)jX(n) = i] <1; 8i 2 Z+;

et il existe une constante k > 0 telle que

X
j<i

(j � i)pi;j � �k;

de plus, il existe N tel que

E[X(n+ 1)�X(n)jX(n) = i] � 0; pour i � N:

2.1.2 Stabilité de la File M/GI/1

Nous avons vu précédemment que si X(n) = X(sn+) désigne le nombre de clients dans la �le à

l�instant sn du départ du n�eme client, fX(n)g est une chaîne de Markov irréductible véri�ant

X(n+ 1) = X(n) +N�(�n+1)� 1;

si X(n) > 0, où �n est le temps de service du n�eme client et N� le processus de Poisson de taux �

des arrivées. Sur l�ensemble fX(0) > 0g, on a donc

E[X(1)�X(0)jX(0)] = �E� � 1;

autrement dit, si �E� < 1, la fonction identité est une fonction de Lyapunov et sous cette condition,

la chaîne fX(n)g est ergodique.

Réciproquement si �E� > 1, il existe un K tel que �E(minf�n;Kg) > 1, si on remplace les services (�n)

par les services bornés (minf�n;Kg), il est clair que la chaîne de Markov eX(n) ainsi obtenue minorera
la chaîne X(n). De cette façon les sauts de eX(n) on un moment d�ordre 2 borné. Par conséquent,
fX(n)g est aussi transiente dans ce cas.
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2.1.3 Chaînes de Markov à espace d�états continu

Dans cette section, nous noterons X = fX(n); n 2 Ng une suite de variables aléatoires sur un

espace de probabilité (
;P), à valeurs dans un espace d�états continu S, muni d�une �-algèbre Bs.

Comme nous allons le voir, la plupart des propriétés des chaînes de Markov à espace d�états discret

ont leurs analogues dans le cas continu, pourvu que la notion d�état individuel ou d�ensemble �ni

d�états individuels du cas discret soit remplacée par la notion de "petit ensemble" dans le cas continu.

Dé�nition 2.11 (Chaîne de Markov) On dit que X est une chaîne de Markov si pour tout n 2 N,

tout ensemble borélien A 2 Bs, et tous éléments x0; � � �; xn�1; x de S,

P(X(n+ 1) 2 AjX(n) = x;X(n� 1) = xn�1; � � �; X(0) = x0)

= P(X(n+ 1) 2 AjX(n) = x):

On dit qu�une chaîne de Markov X est homogène si pour tout n 2 N,

8x 2 S; 8A 2 Bs; P(X(n+ 1) 2 AjX(n) = x) = P (x;A);

indépendamment de n. Comme dans le cas discret, nous ne considérerons que des chaînes de Markov

homogènes par la suite.

Nous appellerons P = fP (x;A); x 2 S; A 2 Bsg le noyau de transition de X .

Pour tout n 2 N, soit

P (n)(x;A) = P(X(n) 2 AjX(0) = x):

Les équations de Chapman-Kolmogorov s�écrivent

8n;m 2 N; P (n+m)(x;A) =

Z
s
P (n)(x; dy)Pm(y;A):

La notion d�irréductibilité di¤ère sensiblement de celle du cas discret.

Dé�nition 2.12 (Petits ensembles ) On dit qu�un ensemble A 2 Bs est n-petit s�il existe n � 1, une

mesure de probabilité � sur S, et une constante 
 > 0 ,tels que

8x 2 A; P (n)(x; :) � 
�(:):

Supposons que X soit irréductible. Tout ensemble accessible contient alors un ensemble n-petit A tel
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que �(A) > 0. On dé�nit la période de la chaîne de Markov comme le plus grand entier d tel que

A est n� petit =) n 2 dN:

Lorsque d = 1, X est dite apériodique.

Proposition 2.13 Une chaîne de Markov irréductible est apériodique s�il existe un ensemble 1-petit

A tel que �(A) > 0.

Par la suite, un ensemble 1-petit sera simplement dit petit.

Récurrence au sens de Harris : Pour tout x 2 S, on notera Px la mesure de probabilité P condi-

tionnellement à l�évènement fX(0) = xg. Pour tout ensemble A 2 Bs, soit �A le temps de retour vers

A, à savoir

�A = minfn � 1; X(n) 2 Ag:

L�ensemble A est dit récurrent au sens de Harris si

8x 2 S; Px(�A <1) = 1:

Proposition 2.14 Une chaîne de Markov irréductible est récurrente au sens de Harris s�il existe un

petit ensemble récurrent au sens de Harris.

Soit NA le nombre de visites de l�ensemble A, c�est-à-dire

NA =

1X
n=1

1fX(n)2Ag:

L�espérence du nombre de visites de l�ensemble A, partant d�un état initial x, est donnée par

Ex(NA) =
1X
n=1

P (n)(x;A):

Un ensemble A 2 Bs est récurrent si

8x 2 A; Ex(NA) =1:

Proposition 2.15 Une chaîne de Markov irréductible est positive s�il existe un petit ensemble positif.

Notion de stabilité pour espace d�états continu : Soit �(n) la distribution de X(n), à savoir

8A 2 Bs; �(n)(A) = P(X(n) 2 A):
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D�après la formule des probabilités totales, on obtient

8A 2 Bs; �(n+1)(A) =

Z
E
�(n)(dx)P (x;A):

En particulier, une mesure de probabilité � sur S qui satisfait

8A 2 Bs; �(A) =

Z
s
�(dx)P (x;A);

est appelée distribution stationnaire de la chaîne de Markov, puisque

�(0) = � =) 8n 2 N; �(n) = �:

L�orsqu�une telle distribution stationnaire existe, la chaîne de Markov est dite stable. Sinon, la chaîne

de Markov est dite instable. On a le résultat fondamental suivant.

Théorème 2.16 Une chaîne de Markov irréductible est stable si et seulement si elle est positive, au-

quel cas la distribution stationnaire � est unique.

Une chaîne de Markov irréductible, apériodique, récurrente au sens de Harris et positive est dite ergo-

dique.

Critère de Foster pour espace d�états continu : Le résultat suivant donne une condition su¢ sante

pour la récurrence au sens de Harris.

Théorème 2.17 Soit une chaîne de Markov X = fX(n)g irréductible. Une condition su¢ sante pour

que X soit récurrente au sens de Harris et positive est qu�il existe un petit ensemble A et une fonction

de Lyapunov L bornée sur A, tels que

sup
x2A

E[L(X(n+ 1)�X(n))jX(n) = x] <1;

et pour une certaine constante � > 0;

8x ( A; E[L(X(n+ 1)�X(n))jX(n) = x] � ��:

2.2 Méthode des évènements de rénovation

soient fX(n); n � 0g et f�ng deux suites aléatoires dé�nies sur le même espace de probabilité

(
;F ;P) et prenant leurs valeurs dans les espaces mesurables (X;Bx) et (Y;By) respectivement. On
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suppose de plus, qu�une fonction mesurable f :

X� Y 7! X est dé�nie sur (X� Y;Bx � By)

2.2.1 Suites Récursives Stochastiques

Dé�nition 2.18 Une suite aléatoire fX(n)g est dite Suite Récursive Stochastique (SRS) régie par la

suite de contrôle f�ng si fX(n)g obéit à l�équation

X(n+ 1) = f(X(n); �n); 8n � 0

2.2.2 Évènements de rénovation

Dé�nition 2.19 Un évènement A 2 F�n+m, m � 0, est un évènement de rénovation (renovation

event) pour la SRS X(n) sur le segment [n; n +m] s�il existe une fonction mesurable g : Ym+1 7! X

telle que sur l�ensemble A

X(n+m+ 1) = g(�n; :::; �n+m): (2.1)

La suite fAng, An 2 F�n+m, est une suite d�évènements de rénovation (renovating sequence of events)

pour la SRS X(n) s�il existe un entier n0 tel que (2.1) est vraie pour n � n0 avec la même fonction g

pour tout n.

� On dit que la suite d�évènements fAng est stationnaire si Ak = T kA0 pour tout k.

Théorème 2.20 Soit f�ng une suite stationnaire, et supposons que pour la SRS fXng il existe une

suite d�évènements de rénovation fAng telle que

lim
n�!1

P

0@ n[
j=1

AjT
�sAj+s

1A = 1 (2.2)

uniformément en s � 1. Alors on peut dé�nir sur le même espace de probabilité que fX(n)g une suite

stationnaire fXn � UnX0g satisfaisant à l�équation Xn+1 = f(Xn; �n) telle que

lim
n�!1

PfX(k) = Xk; 8k � ng = 1 (2.3)

Inversement, si une suite f�ng est ergodique et (2.3) est satisfaite, alors il existe une suite d�évènements

de rénovation fAng qui satisfait (2.2).

Si la suite f�ng est ergodique et les évènements An sont stationnaires, alors les relations P(A0 > 0) et
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P(
S1
n=0An) = 1 sont équivalentes et impliquent (2.3).Notons que, si on introduit la mesure �(B) =

P(X0 2 B), la convergence (2.3) implique la convergence en variation

lim
n�!1

sup
B2BX

j P(X(n) 2 B)� �(B) j= 0:

2.2.3 Convergence couplée au sens fort pour les SRS

Dé�nition 2.21 La SRS fX(n)g est couplée (couple-converges) avec fXng, si elle satisfait

lim
n�!1

PfX(k) = Xk; 8k � ng = 1: (2.4)

Introduisons la variable aléatoire

v0 � minfn � 0 : X(k) = Xk 8k � ng;

la relation (2.4) devient équivalente à

P(v0 <1) = 1:

Posons

Xk(n) = U
�kX(n+ k); pour n � �k;

et

vk = minfn � �k : Xk(n) = Xng:

Notons par v = supk�0 vk l�instant de couplage où toute les suites fXk(n); n � 0; k � 0g ren-

contrent la suite fXng.

Dé�nition 2.22 Une suite fX(n)g est couplée au sens fort (strong coupling convergent) avec la suite

fXn � UnX0g, si

v <1 p:s

La variable v est appelée l�instant de couplage fort. Notons que la convergence couplée au sens fort

implique la convergence couplée, qui elle même implique la convergence en variation totale et ainsi

la convergence en distribution. Le théorème suivant donne une condition nécéssaire et su¢ sante de

convergence couplée au sens fort d�une SRS vers un régime stationnaire et ergodique.

Théorème 2.23 L�existence d�une suite d�évènements de rénovation stationnaire fAng avec P(An) >

0 est une condition nécessaire et su¢ sante de convergence couplée au sens fort de la SRS X(n) vers

une suite stationnaire Xn obéissant à l�équation Xn+1 = f(Xn; �n) où �n est stationnaire et ergodique.
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2.2.4 Application aux Systèmes avec Clients Négatifs

Les résultats de cette section sur la stabilité de certains modèles avec clients négatifs ont été obtenus

par Kernane [27].

Élimination du client en service :

� Arrivées stationnaires et ergodiques pour les clients négatifs

Considérons une �le à un serveur dans laquelle les arrivées des clients réguliers suivent un processus de

Poisson de taux �+, et à chaque instant d�arrivée un groupe de clients de taille aléatoire ai, avec ai une

suite i.i.d de moyenne a, entre dans le système. On note par �+i les temps d�inter-arrivées des clients

réguliers. La �le est de capacité in�nie et on suppose des disciplines de service conservatives telles que

FIFO, LIFO ou accés aléatoire au service. On considère le cas où un client négatif élimine le client en

service (RCS). Un client négatif n�a aucun e¤et sur un système vide. Les clients négatifs arrivent aux

temps tn ; n = 0; 1; ::: et on note par ��n = tn+1 � tn leurs temps d�inter-arrivées. On suppose que ��n
est une suite stationnaire (au sens strict) et ergodique (sans l�hypothèse d�indépendance). Le service

des clients réguliers est é¤ectué en groupes de tailles aléatoires bj , avec bj une suite i.i.d de moyenne

b, et le temps Sj requis pour les servir est de distribution exponentielle de taux �+. L�arrivée négative

élimine le groupe bj qui est en service. Soit N�+(t) (respectivement N�+(t)) le processus de comptage

de Poisson de paramètre �+ (resp. �+) qui compte le nombre d�arrivées de clients réguliers (resp.

services) durant l�intervalle de temps [0; t]. On suppose que les entrées des clients (régulier et négatifs),

tailles des groupes d�arrivées ou de service et temps de service sont mutuellement indépendants. Soit

X(t) le nombre de clients dans le système au temps t. On considère le processus induit X(n) juste

après le temps tn (i.e., X(n) = X(tn)). Le processus X(n) peut être représenté par une suite récursive

stochastique (SRS) comme suit :

X(n+ 1) =

0@X(n) + N�+(��n )X
i=1

ai �
N�+(��n )X
i=1

bi � bN�+(��n )+1

1A+ ; (2.5)

où (x)+ = max(0; x). On note par

�n =

N�+(��n )X
i=1

ai �
N�+(��n )X
i=1

bi � bN�+(��n )+1: (2.6)

Notons par V0 = 0 et Vn =
Pn
i=1 ��i. La proposition suivante donne une condition de stabilité par la

convergence couplée au sens fort vers un régime stationnaire et ergodique.

Proposition 2.24 Si (�+a � �+b)E��1 < b, alors le processus X(n) est couplé au sens fort avec un
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unique régime stationnaire et ergodique eX(n) tel que
eX(0) = sup

n�0
Vn:

Si (�+a� �+b)E��1 > b, alors le processus X(n) converge en distribution vers une limite impropre.

Preuve. Nous avons d�après la formule de Wald et la propriété de perte de mémoire du processus

de Poisson

E�n = �+aE��1 � �+bE�
�
1 � b:

Puisque ��n est stationnaire et ergodique alors �n est aussi stationnaire et ergodique.

Si la condition (�+a� �+b)E��1 < b est satisfaite alors E�n < 0.

Temps de services stationnaires et ergodiques

On suppose maintenant que les temps de services Sn forment une suite stationnaire et ergodique

et les arrivées des clients négatifs suivent un processus de Poisson de taux ��. Puisque les temps de

service Sn sont stationnaire alors ils ont la même distribution B(t) et avec une transformée de Laplace

(LST) B�(s) =
R1
0 B(t)e�stdt. Si elle possède une densité b(t) alors on note par ��(s) sa transformée

de Laplace correspondante.

Dé�nissons sn comme l�instant de �n du (n� 1)�eme temps de service. Les temps de service, les entrées

des clients, les tailles des lots d�arrivées ou de services sont mutuellement indépendants. On considère

le processus X(n) induits juste après le temps sn (i.e., X(n) = X(sn+)). Le processus X(n) satisfait

la relation suivante :

X(n+ 1) =

0@X(n) + N�+(min(Sn;��n ))X
i=1

ai � bn

1A+ ; (2.7)

dans ce cas E�n = �+aE(min(S1; ��1 )) � b. Puisque �
�
1 est de distribution exponentielle de taux �

�

alors on a

E(min(S1; ��1 )) =
Z 1

0
(1�B(s))e�s��ds = (1� ��B�(��))

��
; (2.8)
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Élimination du dernier client dans la �le

Arrivées stationnaire ergodique pour les clients négatifs

La suite des temps d�inter-arrivées des clients négatifs f��n g est supposée stationnaire et ergodique

et les clients réguliers sont éliminés à partir de la queue de la �le, au instants d�arrivées tn, en groupes

de tailles aléatoires dn avec fdng une suite i.i.d de moyenne d. On suppose les �ux d�arrivées, tailles

des groupes et temps de service sont mutuellement indépendants. Soit X(n) le processus induit juste

avant l�arrivée d�un client négatif. La représentation de X(n) comme une suite récursive stochastique

(SRS) est donnée par :

X(n+ 1) =

0@X(n) + N�+(��n )X
i=1

ai �
N�+(��n )X
i=1

bi � dn

1A+ : (2.9)

On obtient le résultat suivant.

Proposition 2.25 Si (�+a� �+b)E��1 < d alors le processus X(n) couple-converge au sens fort vers

un unique régime stationnaire et ergodique eX(n) tel que
eX(0) = sup

n�0
Vn:

Si (�+a� �+b)E��1 > d alors le processus X(n) converge en distribution vers une limite impropre.

Suite des temps de service stationnaire ergodique

On suppose maintenant que les temps de service Sn sont stationnaire et ergodique et les inter-

arrivées des clients négatifs sont i.i.d de distribution exponentielle de taux ��. Le processus X(n) est

induit immediatement après la �n du (n�1)me temps de service. Le processus X(n) satisfait la relation

récursive suivante :

X(n+ 1) =

0@X(n) + N�+(Sn)X
i=1

ai �
N�+(Sn)X
i=1

ci � bn

1A+ : (2.10)

On obtient la proposition suivante.

Proposition 2.26 Si (�+a � ��c)ES1 < b, alors le processus X(n) est couplé au sens fort avec un

unique régime stationnaire et ergodique eX(n) tel que eX(0) = supn�0 Vn.
Si (�+a� ��c)ES1 > b, alors le processus X(n) converge en distribution vers une limite impropre.
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2.3 Stabilité de modèles classiques

2.3.1 Politique de rappels linéaire :

File M/M/1/1

Les arrivées de l�extérieur forment un processus de Poisson de paramètre �, les temps de services f�ng

sont i.i.d de distribution exponentielle de moyenne E�1, et les temps d�inter-rappels de chaque client

en orbite sont une suite i.i.d de distribution exponentielle de paramètre �. Soit X(t) le nombre de

clients en orbite au temps t, et C(t) le nombre de clients en service, i.e. pour un système à un serveur

si C(t) = 0 alors le serveur est libre au temps t, et si C(t) = 1 le serveur est occupé. Dans le cas d�une

�le M/M/1/1 le processus fY (t) = (X(t); C(t)); t � 0g est une chaîne de Markov à temps continu et

les résultats suivants sont connus dans la littérature :

� Si �E�1 < 1 alors la chaîne de Markov Y (t) est récurrente positive,

� Si �E�1 = 1 et �E�1 � 1 alors la chaîne de Markov Y (t) est récurrente nulle,

� Si �E�1 = 1 et �E�1 < 1 alors la chaîne de Markov Y (t) est transiente,

� Si �E�1 > 1 alors la chaîne de Markov Y (t) est transiente.

Voir Falin [14].

File M/G/1/1

Considérons la �le M/G/1 avec rappels linéaires. Les temps de services f�ng sont i.i.d de distribution

générale B(x) et de moyenne �nie E�1. Considérons le processus induit X(n) = X(sn+) à l�instant

sn de �n du (n � 1)�eme temps de service. Le processus fX(n); n � 0g représente donc une chaîne de

Markov à temps discret véri�ant la récurrence

X(n+ 1) = X(n)� In +N�(�n); (2.11)

si X(n) > 0, où In est une fonction indicatrice telle que In = 1 si le client qui rejoint le service après

l�instant n (i.e. sn+) vient de l�orbite et In = 0 s�il vient de l�extérieur. N�(�n) est le nombre d�arrivées

de l�extérieur durant le temps de service �n.

D�après la formule (1.8), on a

PfIn = 0jX(n) = kg =
�

�+ k�
; (2.12)

PfIn = 1jX(n) = kg =
k�

�+ k�
: (2.13)

Pour utiliser le critère de Foster on doit choisir une fonction test de Lyapunov convenable. On peut

choisir dans notre cas L(k) = k et calculer donc la dérive moyenne suivante en utilisant les formules
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(2.11) et (2.13)

E[X(n+ 1)�X(n)jX(n) = k] = E[�In +N�(�n)jX(n) = k]

= �E[InjX(n) = k] + E[N�(�n)jX(n) = k]

= �PfIn = 1jX(n) = kg+ E[N�(�n)]

= � k�

�+ k�
+ �E�1

ainsi

limk!1 E[X(n+ 1)�X(n)jX(n) = k] = �1 + �E�1.

Cette dernière limite est négative si et seulement si �E�1 < 1. En appliquant le critère de Foster

on obtient que la condition �E�1 < 1 est su¢ sante pour l�ergodicité de la chaîne de Markov induite

fX(n)g.

Pour montrer que �E�1 < 1 est nécessaire pour l�ergodicité on utilise le critère pour la transience.

Puisque pour le système considéré on a X(n+ 1)�X(n) � �1, et si �E�1 � 1 alors

E[X(n+ 1)�X(n)jX(n) = k] = � k�

�+ k�
+ �E�1

� � k�

�+ k�
+ 1 =

k�

�+ k�
> 0:

On obtient ainsi le résultat classique suivant (voir Falin et Templeton [12])

La chaîne de Markov fX(n)g est ergodique si et seulement si �E�1 < 1.

Si �E�1 > 1 alors la chaîne de Markov fX(n)g est transiente, et ainsi la �le M/G/1/1 avec rappels de

politique linéaire est instable. Il n�existe pas de résultats de stabilité pour le cas �E�1 = 1. Voir Deul

[9], Falin [14], Greenberg et Wol¤ [24].

M/G/1/1 avec clients impatients

Dans beaucoup de situations pratiques, les clients font des rappels un certain nombre (aléatoire) de

fois et quitte l�orbite sans obtenir de service. Ce genre de clients est appelé "impatient". Soit �n la

probabilité qu�un client retourne à l�orbite après sa n�eme tentative non réussie d�obtenir un service, et

quitte le système sans être servi avec probabilité 1� �n. Dans le cas où �n = � = 1 pour tout n � 1,

la condition de stabilité donnée par

�0�E�1 < 1;

a été montré par Falin [13].

Dans le cas � < 1, le système est stable si le temps moyen de rappels est �ni (voir Fayolle et Brun
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[18]).

File M/M/s/s Deul [9], Falin [14] [15] et Hanschke [26] ont montré que la condition nécessaire et

su¢ sante de stabilité est

�E�1 < s:

Ils ont utilisé une chaîne de Markov incluse et le critère de Foster pour obtenir le résultat précédent.

2.3.2 Politique constante

Considérons maintenant le système M/G/1 avec politique de rappels constante. Les arrivées de

l�extérieur forment un processus de Poisson de paramètre �, les temps de services f�ng sont i.i.d de

distribution générale et de moyenne �nie E�1 et les temps de rappels de l�orbite sont de distribution

exponentielle de paramètre �. Le processus fX(n); n � 0g véri�e la récurrence

X(n+ 1) = X(n)� In +N�(�n);

avec maintenant les relations suivantes pour In :

PfIn = 0jX(n) = kg =
�

�+ �
;

PfIn = 1jX(n) = kg =
�

�+ �
;

ainsi

E[X(n+ 1)�X(n)jX(n) = k] = � �

�+ �
+ �E�1:

En appliquant le critère de Foster, on obtient que la condition �E�1 < (�=(�+ �)) est su¢ sante pour

l�ergodicité de la chaîne de Markov induite fX(n)g.

Pour montrer que �E�1 < 1 est nécessaire pour l�ergodicité, on utilise le critère pour la transience.

Donc, on peut énoncer le résultat suivant pour le système M/G/1 avec rappels et politique constante :

La chaîne de Markov fX(n)g est ergodique si et seulement si :

�E�1 <
�

�+ �
:

2.3.3 Politique de rappels versatile

La politique versatile est une combinaison des deux précédentes politiques que sont la politique

linéaire et la politique constante. La probabilité d�avoir un rappel durant l�intervalle de temps (t; t+�t),

sachant que j clients sont en orbite au temps t, est (�(1� �j) + j�)�t+ o(�t). Le système considéré
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est toujours un M/G/1 avec cette dernière politique de rappels. La chaîne de Markov modélisant le

système est toujours de la forme (2.11) avec pour k � 1

PfIn = 0jX(n) = kg =
�

�+ � + k�
; (2.14)

PfIn = 1jX(n) = kg =
� + k�

�+ � + k�
; (2.15)

pour k = 0 il est évident que PfIn = 0jX(n) = 0g = 1:

On a donc

E[X(n+ 1)�X(n)jX(n) = k] = � � + k�

�+ � + k�
+ �E�1;

et ainsi pour � > 0 on a

limk!1 E[X(n+ 1)�X(n)jX(n) = k] = �1 + �E�1:

La conclusion est donc la même que pour la politique linéaire classique, i.e. La chaîne de Markov

fX(n)g est ergodique si et seulement si �E�1 < 1:

Pour � = 0 on retrouve le cas de la politique constante.
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Chapitre 3

STABILITÉ DE MODÈLES AVEC

POLITIQUE DE RAPPELS

VERSATILE ET POLITIQUE DE

CONTRÔLE

3.1 Politique de Rappels Versatile

Considérons un système à une �le d�attente avec rappels et un serveur dans lequel les clients

primaires entrent de l�extérieur aux temps fti; i = 1; 2; :::g. Soit � i = ti+1 � ti les temps successifs

d�inter-arrivées, i = 1, 2,... . Si le i�eme client arrivé trouve le serveur libre, il prend son service puis

quitte le système. Autrement, si le serveur n�est pas libre, le client arrivé rejoint immédiatement

l�orbite. La probabilité d�avoir un rappel durant l�intervalle de temps (t; t+�t), sachant que j clients

sont en orbite au temps t, est (�(1� �o;j) + j�)�t+ o(�t). Cela signi�e qu�après un temps aléatoire

de loi exponentielle de taux � (qu�on appelle temps de rappels de l�orbite), indépendant du processus

d�arrivées, chaque client en orbite génère un �ot Poissonien de tentative de rappels avec paramètre

� et se comporte indépendamment des autres clients en orbite et du �ux extérieur des arrivées. Ce

modèle, introduit par Artalejo et Gomez-Corral [4], incorpore simultanément la politique de rappels

classique et la politique constante. Si � = 0, on obtient la politique de rappels constante de paramètre

�. Si le temps de rappels de l�orbite se termine avant une arrivée extérieure, alors un client de l�orbite

(le premier de la �le ou un autre choisi aléatoirement) occupe le serveur. Le n�eme temps de service

est �n, et on suppose que 0 < E�n < 1. On suppose durant toute cette section que la suite f�ng
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est stationnaire et ergodique, les suites des temps d�inter arrivées f� ig sont i.i.d. exponentiellement

distribués avec paramètre �. Les temps d�inter-arrivées, temps de rappels de l�orbite et temps de

rappels de chaque client en orbite sont mutuellement indépendantes et indépendantes de f�ng. Soit

X(t) le nombre de clients en orbite au temps t. On dé�nit sn comme étant l�instant de �n du (n�1)�eme

service. On considère le processus induit X(n) juste après le temps sn, (i:e:;X(n) = X(s+n )). Après

la �n du (n � 1)�eme service, une compétition entre deux lois indépendantes (puisque le temps de

rappels de l�orbite et les temps de rappels de chaque client en orbite sont indépendants du temps

d�inter-arrivée) exponentielles avec taux respectifs � et � + X(n)� déterminent le client suivant qui

va rejoindre le serveur. La probabilité qu�un temps de rappel expire avant le temps d�inter-arrivée est

alors (� +X(n)�)=(� + � +X(n)�). Soit u1n et u
2
n deux suites de variables aléatoires i.i.d distribuées

uniformément sur [0, 1], mutuellement indépendantes et indépendantes de la suite �n. u1 = fu1ng

génère le processus des arrivées, et u2 = fu2ng génère le type d�arrivée (extérieur ou de l�orbite) à la

�n des périodes successives de services.

Soit
Q
: R+ � [0; 1] �! N l�inverse de la distribution de Poisson

Y
(t; x) = inf

 
n 2 N :

nX
k=0

tk exp(�t)
k

� x
!
: (3.1)

Ainsi
Q
(t; u1n) est une variable aléatoire de Poisson de paramètre t.

3.1.1 Stabilité du Système

Le résultat suivant a été obtenu par Kernane et Aïssani [27]

Théorème 3.1 Soit un système M/G/1/1 avec rappels et politique versatile de paramètres (�; �), de

�ux d�arrivées Poissonien de taux � et de suite des temps de service f�ng stationnaire et ergodique.

Alors.

� Le processus X(n) = X(sn+) induit aux instants de départs, satisfait la représentation sous forme

de SRS

X(n+ 1) = (X(n) + �n)
+;

où x+ = max[0; x] et �n est dé�nit par

�n =
Y
(��n; u

1
n)� I

�
u2n �

� +X(n)�

�+ � +X(n)�

�
(3.2)

� Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergodique si une des

conditions suivantes est satisfaite :
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1/ � > 0, � = 0 et �E�1 < �
�+� ;

2/ � � 0, � > 0 et �E�1 < 1:

Preuve. Pour la construction de la SRS X(n), il faut noter seulement que la variable
Q
(��n; u

1
n)

compte le nombre d�arrivées pendant le temps de service �n et l�indicatrice I
n
u2n �

�+X(n)�
�+�+X(n)�

o
vaut

1 si un client de l�orbite a obtenue le service après le temps sn, et vaut 0 si c�est un client de l�extérieur

qui l�obtient.

Pour la convergence couplée au sens fort du processus fX(n)g, considérons en premier le cas � > 0 et

� = 0, alors la suite (3.2) a la forme suivante

�n =
Y
(��n; u

1
n)� I

�
u2n �

�

�+ �

�
:

Puisque la suite fuing est identiquement distribuée i = 1,2, et donc stationnaire, elle peut être dé�nie

pour tout entier �1 < n <1 . Dé�nissons les �-algèbres :

F�;un = �(�k; u
1
k; u

2
k; k � n) et F�;u = �(�k; u1k; u2k;�1 < k < 1). Soit U l�opérateur de translation

préservant la mesure des variables aléatoires F�;u-mesurables générées par f�n; u1n; u2n;�1 < n <1g.

Puisque pour tout n 2 Z, la variable aléatoire �n est générée par f�n; u1n; u2ng, alors �n+1 = U�n et

f�n : �1 < n < 1g est stationnaire. De plus, puisque f�n : �1 < n < 1g est stationnaire et

ergodique, et la suite f�n : �1 < n < 1g est compatible avec l�opérateur de translation U, la suite

f�n : �1 < n <1g est ergodique. Nous avons

E(�n) = �E�1 �
�

�+ �
:

Donc si

�E�1 <
�

�+ �

est véri�ée alors E(�n) < 0. Sans perte de généralité, nous supposerons que X(0) = a � 0. Pour tout

choix de n0, les évènements An = TnA0, où A0 est donné par

A0 =

n0�1\
k=0

f��1 + � � �+ ��1�k � 0g
\
l�1
f��1 + � � �+ ��n0�l � �ag; (3.3)

forment une suite stationnaire d�évènements de rénovation avec m = 0 et g(y) � y+.

En e¤et, pour n � n0,

X(n+ 1) = �+n p.s sur An:
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Puisque E(�n) < 0 et la suite f�ng est stationnaire et ergodique, alors d�après la loi forte des grands

nombres de Birkho¤ (1.4) pour les suites ergodiques, nous avons presque sûrement

lim
n�!1

1

n

�1X
i=�n

�i = E�1 < 0;

ce qui donne p.s.

lim
n�!1

(��1 + :::+ ��n) = �1:

Ainsi, il existe un nombre n0 = n0(a) tel que P(An) > 0 pour n � n0. Si, d�autre part les évènements

Bn, le nombre m, et la fonction g : Rm+1 �! R sont dé�nis comme

m = n0; Bn = T
mAn; g(y0; :::; ym) � y+m;

alors les évènements Bn 2 F�n+m sont de rénovation pour fX(n)g sur le segment [n; n+m] pour tout

n � 0. Donc, on peut supposer que n0 = 0. La positivité des probabilités des Bn vient du fait que les

An sont T-invariantes et cela est dû à la stationarité de la suite f�n : �1 < n <1g, donc

P(Bn) = P(TmAn)

= P(An) > 0:

Ainsi, la suite fX(n)g est couplée au sens fort avec une unique suite stationnaire

fXn � UnX0g, où X0 est F�;u-mesurable, obéissant l�équation Xn+1 = (Xn + �n)
+.

Considérons maintenant le cas � � 0 et � > 0. Les évènements de rénovation An seront construits

maintenant en deux étapes. On va introduire au début une SRS majorante X(n)� sur le même espace

de probabilité, qui va nous permettre d�obtenir des évènements stationnaires de rénovation simples A�n,

de probabilité positive, et les évènements An seront obtenus comme sous-ensembles de A�n. La SRS

X(n)� a la forme suivante

X(0)� = X(0); X(n+ 1)� = max(C;X(n)� + ��n);

où

��n =
Y
(��n; u

1
n)� I

�
u2n �

� + C�

�+ � + C�

�
:

38



La suite f��ng est mesurable par rapport à F�;u et ��n+1 = U��n. On choisit la constante C telle que

E��n < 0, si la condition �E�1 < 1 est véri�ée, où

E(��n) = �E�1 �
� + C�

�+ � + C�
:

Donc, il existe des évènements de rénovation A�n = T
nA�0, n � n0, où A�0 est dé�ni comme (3.3) avec

la suite f��ng, et P(A�0) > 0, tel que X(n)� = C sur l�ensemble A�n pour tout n � n0. Dé�nissons les

ensembles

B0 =

�Y
(���k; u

1
�k) = 0; u2�k �

� + k�

�+ � + k�
; k = 1; :::; C

�
;

Bn = T
nB0:

Les ensembles An = A�n�C \Bn forment une suite stationnaire d�évènements de rénovation pour X(n),

puisque pour tout n � n0 + C, nous avons sur An, les valeurs X(n � k) � k, k = 0; 1; :::; C; et en

particulier, X(n) = 0. On doit montrer maintenant que les évènements de rénovation An sont de

probabilités strictements positives. Pour cela il su¢ t de montrer que P(A0) > 0, car les ensembles An

sont stationnaires. On a P(A0) = P(A��C)P(B0jA��C), et puisque P(A��C) = P(TnA�0) = P(A�0) > 0, il

nous reste à montrer que P(B0jA��C) > 0. En suivant la démarche utilisée dans [2], et en l�adaptant à

la politique de rappels versatile, on a

E(��C + :::+ ��1jA��C) �
CE�1
P(A��C)

<1:

De plus

P(B0jA��C) = E[e��(��C+:::+��1)jA��C ]
CY
k=1

� + k�

�+ � + k�

� e��E(��C+:::+��1jA
�
�C)

CY
k=1

� + k�

�+ � + k�
> 0:

Ainsi, on a une suite stationnaire fAng d�évènements de rénovation de probabilités strictements po-

sitives pour la SRS X(n). Puisque la SRS X(n) véri�e une récurrence stochastique de la forme

X(n + 1) = f(X(n); �n), avec f�ng une suite stationnaire et ergodique, la convergence couplée au

sens fort du processus X(n) vers un régime stationnaire fXn � UnX0g, où X0 est F�;u mesurable,

véri�ant Xn+1 = f(Xn; �n). L�ergodicité vient du fait que Xn est compatible avec l�opérateur de

translation (shift) U .
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3.1.2 Condition d�instabilité pour la politique de rappels constante

On peut montrer une condition d�instabilité pour la politique constante puisque dans ce cas le taux

de rappels ne dépend pas du nombre de clients en orbite.

Proposition 3.2 Soit un système M/G/1/1 avec rappels et politique constante i.e., � > 0 et � = 0.

Si �E�1 > �=(� + �), alors le processus X(n) converge en distribution vers une distribution limite

impropre.

Preuve. Si la condition �E�1 > �=(� + �) est véri�ée cela entaîne que E(�n) > 0. la SRS X(n)

converge vers une limite impropre, i.e.

lim
n�!1

X(n) = +1 p.s.

3.2 Clients négatifs

Considérons maintenant une �le d�attente avec un seul serveur et deux types d�arrivées : arrivées

régulières et arrivées négatives. Dans les systèmes avec rappels, si un client régulier arrive et trouve

le serveur occupé, il rejoint l�orbite et refait sa tentative ultérieurement pour avoir un service après

un temps aléatoire, autrement, s�il trouve le serveur libre, il reçoit son service et quitte le système. Si

un client négatif arrive dans un system occupé, il élimine immédiatement un client régulier de l�orbite

s�il y en a au moins un. Autrement, si le serveur est libre il n�a aucun e¤et sur le système. Le concept

des clients négatifs a été présenté par Gelenbe [22], qui a établi la solution sous forme de produit pour

un réseau de �le d�attente comprenant des arrivées négatives aussi bien que les régulières. Un rappel

des résultats et des situations pratiques peut être trouvé dans Artalejo [3]. Gelenbe, Glynn et Sigman

[22] ont obtenu les conditions de stabilité pour deux modèles des arrivées négatives, l�élimination du

client en service (RCS) et l�élimination du client à la queue de la �le d�attente (RCT). Artalejo et

Gomez-Corral [5; 6] ont étendu les �les d�attente avec des arrivées négatives à la situation où les clients

réguliers suivent une politique de rappels. On suppose que les clients réguliers arrivent de l�extérieur

selon un processus de Poisson de taux �. L�accès au serveur à partir de l�orbite se fait selon la politique

de rappels versatile. Nous supposons que les temps de services f�ng des clients réguliers forment une

suite stationnaire et ergodique. Les clients négatifs arrivent dans le système selon un processus de

Poisson de taux �. Les suites des temps d�inter arrivées des clients réguliers, temps d�inter-arrivées

des clients négatifs, temps de rappels de l�orbite et temps de rappels de chaque client en orbite sont
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indépendantes l�une de l�autre et indépendantes de la suite f�ng. Soient fu1ng, fu2ng,fu3ng et trois

suites de variables aléatoires i.i.d distributées uniformément sur [0; 1], mutuellement indépendantes et

indépendantes de la suite f�ng. u1 = fu1ng engendrera le processus d�arrivées des clients réguliers,

u2 = fu2ng engendrera le processus d�arrivées des clients négatifs, et u3n = fu3ng engendrera le type

d�arrivée qui rejoint le service (extérieur ou de l�orbite) à la �n des temps successifs de service.

3.2.1 Stabilité du Système

Théorème 3.3 Soit un système M/G/1/1 avec clients négatifs et rappels de politique versatile de

paramètres (�; �), de �ux d�arrivées Poissoniens pour les clients réguliers et négatifs de taux � et �

respectivements et de suite des temps de service f�ng stationnaire et ergodique. Alors,

i) Le processus X(n) = X(sn+) induit aux instants de départs, satisfait la représentation sous forme

de SRS

X(n+ 1) = (X(n) + �n � �n)+;

où

�n =
Y
(��n; u

1
n)� I

�
u3n �

� +X(n)�

�+ � +X(n)�

�
; (3.4)

et

�n =
Y
(��n; u

2
n):

ii) Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergodique si une des

conditions suivantes est satisfaite :

1. � > 0, � = 0 et (���)(�+�)
� E�1 < 1,

2. � � 0, � > 0 et (�� �)E�1 < 1:

Preuve. Considérons le premier cas � > 0 et � = 0. Alors la suite (3.4) a la forme suivante

�n =
Y
(��n; u

1
n)� I

�
u3n �

�

�+ �

�
:

On dé�nit les �-algèbres F�;un = �(�k; u
1
k; u

2
k; u

3
k; k � n) et F�;u = �(�k; u1k; u2k; u3k;�1 < k <1). Soit

U l�opérateur de translation préservant la mesure des variables aléatoires F�;u-mesurables engendrées

par f�n; u1n; u2n; u3n;�1 < n < 1g. Puisque la suite �n est engendrée par f�n; u1n; u3ng et �n est

engendrée par f�n; u2ng alors �n et �n sont des suites stationnaires et ergodiques.

E(�n � �n) = �E�1 � (�=(�+ �))� �E�1 et si

(�� �)(�+ �)
�

E�1 < 1;
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alors nous avons E(�n � �n) < 0.

Nous étudierons maintenant le cas � � 0 et � > 0. Nous suivrons la même méthode que pour les

deuxièmes parties des théorèmes précédents en construisant une SRS majorante X�(n) dé�nie comme

suit :

X�(0) = X(0); X�(n+ 1) = max(C;X�(n) + ��n � �n);

où

��n =
Y
(��n; u

1
n)� I

�
u3n �

� + C�

�+ � + C�

�
:

La suite f��ng est mesurable par rapport à F�;u stationnaire et ergodique. Si (�� �)E�1 < 1 on peut

facilement trouver une constante C telle que E(��n � �n) = (�� �)E�1 � ((�+C�)=(�+ �+C�)) < 0:

3.2.2 Condition d�instabilité pour la politique de rappels constante

Une condition d�instabilité peut être obtenue dans le cas de la politique constante.

Proposition 3.4 Soit un système M/G/1/1 avec clients négatifs et rappels de politique constante i.e.,

� > 0 et � = 0. Si
(�� �)(�+ �)

�
E�1 > 1;

alors le processus X(n) converge en distribution vers une limite impropre.

3.3 Stabilité du modèle avec politique de contrôle des rappels

Considérons une �le d�attente à un serveur avec des arrivées de l�extérieur aux temps fti; i = 1; 2; ���g

suivant un processus de Poisson de taux �. On note par � i = ti+1 � ti les temps successifs d�inter-

arrivées, i = 1,2,� � � Si le client arrivée trouve le serveur occupée il rejoint un orbite de capacité in�nie.

S�il le trouve libre, il prend son service et quitte le système. L�accès de l�orbite au serveur suit une

politique de contrôle des rappels, c-à-d, après la �n d�un temps de service, on permet seulement au

client à la tête de la �le d�attente de réessayer pour atteindre le service selon une distribution de

probabilité générale R(.), de densité r(.) et transformée de Laplace r�(�). Le n�eme temps de service

est �n, et on suppose que 0 < E�n < 1. Notons par f�ng la suite des temps d�inter-rappels. On

suppose dans tout ce chapitre que la suite f�ng est stationnaire et ergodique. On suppose dans cette

section que les temps d�inter-arrivées f� ig sont i.i.d. de distribution exponentielle de paramètre �, les

suites f� ig et f�jg sont indépendante l�une de l�autre et de la suite f�ng. Soit X(t) le nombre de

clients en orbite au temps t. Pour tout t � 0, on dé�nit la variable aléatoire 
(t) comme le temps qui

42



sépare l�instant t de la prochaine arrivée. Dé�nissons sn comme l�instant de �n du (n�1)�eme temps de

service. On considère le processus X(n) induit immédiatement après le temps sn, (i.e., X(n) = X(s+n

)) et 
(s+n ) = 
n. Soit fung une suite i.i.d de variables aléatoires de distribution uniforme sur [0,1],

indépendante de la suite �n et qui générera le processus des arrivées.

Soit
Q
l�inverse de la distribution de Poisson dé�nie comme dans le chapitre précédant par la relation

(3.1).

Le processus X(n) satisfait à la relation récursive

X(n+ 1) = (X(n) + �n)
+

Théorème 3.5 Supposons que �E�1 < r�(�). Alors le processus X(n) est couplé au sens fort avec un

unique régime stationnaire ergodique.

Si �E�1 > r�(�), alors le processus X(n) converge en distribution vers une limite impropre.

Preuve. Dé�nissons les �-algèbres F�;u;�n = �(�k; uk; �k; k � n) et F�;u;� = �(�k; uk; �k;�1 <

k < 1): Soit U l�opérateur de translation des variables aléatoires F�;u;�- mesurables engendrées

par f�k; uk; �k;�1 < k < 1g puisque la variable aléatoire �n est engendrée par f�n; u1n; u2ng, alors

�n+1 = U�n et f�n;�1 < n < 1g est stationnaire. De plus, puisque f�n;�1 < n < 1g est

stationnaire et ergodique et la suite f�n;�1 < n <1g est compatible avec l�opérateur U. On a

E(�n) = �E�1 � P(�n < 
n):

Puisque les arrivées suivent un processus de Poisson alors le temps résiduel d�arrivée 
n est de distri-

bution exponentielle de taux �, et ainsi P(�n < 
n) = r�(�). Alors, si

�E�1 < r�(�)

est véri�ée on aura E(�n) < 0.

3.4 Modèle avec Clients Négatifs

Nous considérons maintenant la stabilité d�une �le d�attente avec rappels et deux types d�arrivées,

régulier et négatif. Nous supposons que les clients réguliers arrivent de l�extérieur selon un processus

de Poisson de taux �. L�accès de l�orbite au serveur suit la politique de contrôle. Nous supposons que

les temps de service f�ng des clients réguliers forment une suite stationnaire et ergodique. Les clients

négatifs arrivent selon un processus de Poisson avec taux �. Les temps d�inter-arrivées des clients
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réguliers, les temps entre arrivées des clients négatifs et les temps de rappels sont indépendant de l�un

l�autre et de la suite f�ng. u1 = fu1ng engendrera le processus des arrivées des clients réguliers, et

u2 = fu2ng engendrera le processus des arrivées des clients négatifs à la �n des périodes successives de

service. Soit X(n) dé�ni comme ci-dessus et il a maintenant la représentation suivante :

X(n+ 1) = (X(n) + �n � �n)+;

où

�n =
Y
(��n; u

1
n)� I(�n < 
n); (3.5)

et

�n =
Y
(��n; u

2
n):

Proposition 3.6 Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergo-

dique si la condition suivante est véri�ée

(�� �)E�1 < r�(�): (3.6)

Si (�� �)E�1 > r�(�), alors X(n) converge en distribution vers une limite impropre.

Preuve.On considère les �-algèbres F�;u;�n = �(�k; u
(k); u1k; u

2
k; �k; k � n) et F�;u;� = �(�k; u1k; u2k; �k;�1 <

k <1) et U l�opérateur correspondant. Puisque la suite �n est engendrée par f�n; u1n; �ng et �n est en-

gendrée par f�n; u2ng alors �n et �n sont stationnaires et ergodiques. E(�n��n) = �E�1�r�(�)��E�1
et si la condition (3.6) est vraie alors on a E(�n � �n) < 0.

3.4.1 Élimination par Groupes

Nous pouvons permettre des éliminations en lots des clients aux occurrences des arrivées négatives,

c�est à dire si une arrivée négative se produit au temps ti alors un groupe de taille aléatoire bi de clients

est éliminé de l�orbite. Soit b la moyenne des tailles de clients éliminées et b(n) = (b(n)k ; k = 1; 2; :::) les

tailles de clients éliminées qui se produisent pendant �n. La SRS dans ce modèle aura la représentation

suivante

X(n+ 1) = (X(n) + �n � �n)+;

où

�n =
Y
(��n; u

1
n)� I(�n < 
n); (3.7)
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et

�n =

�(��n;u2n)X
k=1

b
(n)
k :

Proposition 3.7 Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergo-

dique si la condition suivante est véri�ée

(�� �b)E�1 < r�(�): (3.8)

Si (�� �b)E�1 > r�(�), alors X(n) converge en distribution vers une limite impropre.

Preuve. Semblable à la preuve de la proposition précédente, : en considérant les �-algèbres

F�;u;b;�n = �(�k; u
1
k; u

2
k; b

(k); �k; k � n) et F�;u;b;� = �(�k; u
1
k; u

2
k; b

(k)�k;�1 < k < 1) et en no-

tant que E(�n � �n) = �E�1 � r�(�)� �bE�1:

45



Bibliographie

[1] Akhmarov, I. and Leont.eva, N.P., Conditions for convergence to limit processes and the strong

law of large numbers for queueing systems, Teor. Veroyatnost i ee Primenen 21 (in Russian) pp.

559-570.

[2] Altman, E. and Borovkov, A.A., On the stability of retrial queues, Queueing Systems 26 (1997),

343-363.

[3] Artalejo, J.R., G-networks : A versatile approach for work removal in queueing networks, European

J. Oper. Res. 126 (2000), 233-249.

[4] Artalejo, J.R., and Gomez-Corral, A., Steady state solutions of a single server queue with linear

repeated requests, J. Appl. Probab. 34 (1997), 223-233.

[5] Artalejo, J.R., and Gomez-Corral, A., Generalized birth and death processes with applications to

queues with repeated attempts and negative arrivals, OR Spektrum. 20 (1998), 223-233.

[6] Artalejo, J.R., and Gomez-Corral, A., On a single server queue with negative arrivals and request

repeated, J. Appl. Probab. 36 (1999), 907-918.

[7] Asmussen, S. and Foss, S.G., Renovation, regeneration, and coupling in multiple-server queues in

continuous time, Frontiers in Pure and Appl. Probab. 1, pp. 1-6, H. Niemi et al. (Eds), (1993).

[8] Borovkov, A.A., Asymptotic Methods in Queueing Theory, John Wiley et Sons, 1984.

[9] Deul, N., Stationary conditions for multiserver queueing systems with repeated calls, Elektronische

informationsverabeitung und Kybernetik, 10-12 (16) (1980), 607-613.

[10] Falin, G.I., Aggregate arrival of customers in one-line system with repeated calls, Ukr. Math. J.

28 (1976), 437-440.

[11] Falin, G.I., Functioning under nonsteady conditions of a single-channel system with group arrival

of requests and repeated calls, Ukr. Math. J. 33 (1981), 429-432.

[12] Falin, G.I. and Templeton, J.G.C., Retrial queues, Chapman and Hall, New York, 1997.

[13] Falin, G.I., Estimations of error in approximation of countable Markov chains associated with

models of repeated calls, Vestnik Moscow Univ. Ser. 1, Math. Mech., 2, 12-15.

46



[14] Falin, G.I., On ergodicity of multichannel queueing systems with repeated calls, Sov. J. Comput.

Sys. Sci., 25 (1), (1986) 60-65.

[15] Falin, G.I., On su¢ cient conditions for ergodicity of multichannel queueing systems with repeated

calls, Adv. Appl. Probab., 16, (1984), 447-448.

[16] Fayolle, G., A simple telephone exchange with delayed feedbacks, In : Teletrac/ c Analysis and

Computer Performance Evaluation, (ed. by O.J. Boxma, J.W. Cohen and H.C. Tijms), Elsevier

Science Amsterdam (1986).

[17] Fayolle, G. and Iasnogorodski, R., Criteria for the non-ergodicity of stochastic processes : appli-

cation to the exponential Back-oxo protocol, J. Appl. Probab. 24 (1987), 347-354.

[18] Fayolle, G. and Brun, M. A., On a system with impatience and repeated calls, In : Queueing

theory and its applications, CWI Monographs, 7, pages 283-303, Amsterdam-New York, 1988,

North-Holland.

[19] Foss, S.G., The method of renovating events and its applications in queueing theory, Semi Mar-

kov Models, Theory and Applications, Proc. 1-st Symp on Semi-Markov Processes, Brussel 1984

(Plenum 86).

[20] Foss, S.G. and Kalashnikov, V.V., Regeneration and renovation in queues, Queueing Systems 8 :3

(1991), 211-223.

[21] Gelenbe, E., Random neural networks with negative and positive signals and product form solu-

tion, Neural Computation 1 (1989) 502-510.

[22] Gelenbe, E., Queueing networks with negative and positive customers and prod- uct form solution,

J. Appl. Probab. 28 (1991), 656-663.

[23] Gelenbe, E., Glynn, P., and Sigman, K., Queues with negative arrivals, J. Appl. Probab. 28 (1991),

245-250.

[24] Greenberg, B. S., M/G/1 queueing systems with returning customers, J. Appl. Probab., 26 (1)

(1989) 152-163.

[25] Greenberg, B. S. and Wol¤, R. W., An upper bound on the performance of queues with returning

customers, J. Appl. Probab., 24 (2) (1987) 466-475.

[26] Hanschke, T. Explicit formulas for the characteristics of the M/M/2/2 queue with repeated at-

tempts. J. Appl. Probab., 24, (1987) 486-494.

[27] Kernane, T. and Aïssani, A., Stability of retrial queues with versatile retrial policy, Journal of

Applied Mathematics and Stochastic Analysis 2006 (2006), Article ID 54359, 16 pages.

47



[28] Kernane, T., On the stability of queues with negative arrivals, Preprint.

[29] Kumar, P.R., et Meyn, S.P., Duality and linear programs for stability and performance analysis

of queuing networks and scheduling policies, IEEE Trans. Aut. Cont. 41, No.1 (1996), 4-17.

[30] Rybko, A. N. and Stolyar, A. L., Ergodicity of stochastic processes describing the operations of

open queueing networks, Problemy Peredachi Informatsii 28 (1992), 3-36.

[31] Sennot, L. I., Humblet, P. A. and Tweedie, R. L., Mean drift and the non- ergodicity of Markov

chains, Operations Research, 17 (1969), 1058-1061.

[32] Wol¤, R. W., Stochastic Modeling and the theory of Queues. Prentice-Hall, Englewood Clixos,

New Jersey, 1989.

[33] K.B, GK, Techniques de modélisation : Méthodes analytiques.

[34] G. I. Falin. Asurvey of retrial queues. Queueing systems, 7 :127-168.....1990

[35] J. R. Artalejo and A. Gòmez-Corral. Analysis of an M/G/1 queue with constant repeated attempts

and server vacations. Computers and Operations Research, 24(6) : 493-504...2008

[36] B.D. Choi.Retrial queues with collision arising from unslotted CSMA/CD protocol. Queueing

Systems 11, 335-356,...1992

[37] shikata.Optimizing the menezes-vanstone algorithm or Non Super singular ellliptic currves...1999

48


