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Introduction

L’origine des études sur les phénoménes d’attente remonte aux années "1909 1920" avec les tra-
vaux de 'ingénieur Danois Anger Krarup Erlang concernant le réseau téléphonique de Copenhague.
Apartir des années 30 la théorie des files d’attente adopte un langage de plus en plus mathématique qui
a été développée notamment grace aux contributions de Palm, Kolmogorov, Khintchine, Pollaczek,...
Les files d’attente peuvent étre considérées comme un phénomeéne caractéristique de la vie contempo-
raine, un outil d’analyse et de modélisation . L’étude mathématique des phénomeénes d’attente constitue
un champ d’application important des processus stochastiques. On parle des files d’attente chaque fois
que certaines unités appelées "clients" se présentent d’une maniére aléatoire & des "stations" afin de
recevoir un service dont la durée est généralement aléatoire.
Par la suite, les files d’attente ont été intégrés dans la modélisation de divers domaines d’activité. On
assista alors & une évolution rapide de la théorie des files d’attente qu’on appliqua & I’évaluation des
performances des systémes informatiques et aux réseaux de communication. Les chercheurs oeuvrant
dans cette branche d’activité ont élaboré plusieurs nouvelles méthodes qui ont été ensuite appliquées
avec succés dans d’autres domaines, notamment dans le secteur de la fabrication.
Nous nous intéressons dans ce mémoire & la stabilité de modeéles de files d’attente avec rappels. Ces
modeéles sont caractérisés par le fait que le client arrivé qui trouve le serveur occupé doit rejoindre
une file supplémentaire de clients appelée "orbite", et réessaye ultérieurement de rejoindre le serveur
d’apreés une politique particuliére de rappels. Si par contre le client arrivé trouve le serveur libre, il
prend son service et quitte le systéme. Il existe essentiellement trois politiques de rappels dans la litté-
rature. La politique classique dite politique linéaire (linear policy), ot chaque client en orbite tente de
rejoindre le serveur indépendamment des autres clients en orbite, de ce fait le taux de rappels dépend
linéairement du nombre de clients en orbite. La deuxiéme politique est appelée politique de controéle
des rappels (control policy) ou politique constante (constant retrial policy), introduite par Fayolle [16].
Dans cette politique, 'orbite effectue les rappels indépendamment du nombre de clients en orbite, et
si le serveur est trouvé libre alors un client en orbite (le premier ou un client choisi aléatoirement)
prend son service. Enfin, la troisiéme politique est une combinaison des deux précédentes et est appelée
politique versatile (versatile retrial policy). Pour cette politique, l'orbite effectue un rappel de temps
aléatoire, ensuite chaque client émet son propre "signal" pour joindre le serveur et prendre son service,
cette derniere a été introduite par Artalejo et Gomez-Corral [4].

L’approche utilisée dans ce travail pour obtenir des conditions de stabilité est basée sur la mo-
délisation de la dynamique du systéme par une suite récursive stochastique, qui est de nature plus

générale que les processus de Markov. En utilisant la technique des événements de rénovation on ob-



tient la convergence couplée au sens fort (strong coupling convergence) vers un régime stationnaire
et ergodique. Pour la politique de rappels linéaire, Altman et Borovkov [2] ont obtenu des conditions
suffisantes pour la stabilité sous différentes suppositions générales sur les temps d’inter-arrivées et
de services. En particulier, ils ont appliqué la méthode des événements de rénovation pour obtenir
Iergodicité sous la supposition que la suite des temps de services est stationnaire et ergodique (sans
Ihypothese d’indépendance) et des temps d’inter-arrivées et de rappels i.i.d de distributions exponen-
tielles.

Dans le chapitre 1, nous présentons les notions de bases de I’étude des systémes de files d’attente,
a savoir les processus stochastiques (processus de comptage, processus de renouvellement, processus
de Poisson). Dans le chapitre 2, On présente les principales approches de stabilité des systémes de files
d’attente. on passe en revue quelques résultats de stabilité obtenus dans les systémes de files d’attente
avec rappels pour les trois principales politiques de rappels (constante, linéaire et versatile). Dans le
chapitre 3, on modélise le systéme avec rappels et politique versatile par une suite récursive stochas-
tique et on applique la méthode des événements de rénovation pour obtenir une condition suffisante
de stabilité sous la supposition que la suite des temps de services est stationnaire et ergodique et des

temps d’inter-arrivées et de rappels i.i.d de distributions exponentielles.

L’arrivée d’un client négatif engendre immédiatement 1’élimination d’un client régulier, s’il en
existe. Le concept de client négatif a été introduit par, Gelenbe et al [22] ont obtenu des conditions de
stabilité pour deux modeles de clients négatifs, le modeéle avec élimination du client en service (RCS)
et ¢limination du dernier client de la file (RCE). Artalejo et Gomez-Corral [5], [6] ont généralisé le
concept de client négatif au cas ou les clients régulier suivent une politique de rappels. Finalement,
la stabilité d’un systéme avec rappels versatiles, le premier modéle de ce type avec politique linéaire
classique a été étudié par Falin [10], qui a établit la distribution jointe de I’état du serveur avec la
taille de la file. Une étude plus détaillée a été faite ultérieurement par Falin [11], on étudie la stabilité
et I'instabilité de modéles avec rappels et politique de controle des rappels sous la supposition que les

temps de rappels suivent une distribution générale.



Chapitre 1

Généralités sur les processus

stochastiques

1.1 Le Processus de comptage

Définition 1.1 (processus de comptage) Un processus stochastique [N (t),t € R] est un processus de
comptage si N (t) représente le nombre total d’événements qui se sont produits entre O et t ,il doit donc
satisfaire

-N(t) >0

-N(t) a des valeurs entiéres uniquement.

-pour s < t,N(t) — N(s) est le nombre d’événements qui ont eu lieu entre s et t.

Un processus de comptage est un processus discret a temps continu. Un second processus peut étre
associé au processus des temps d’occurrence, processus des temps d’inter-arrivées {Wy,m € No} ot

ieme

ieme
1) et n occurrences,

Vn € Ny la variable aléatoire N, est le temps d’attente entre les (n —
c-a-d :

Wn = Tn - Tnfl

Proposition 1.2 Les relations suivantes sont triviales tel que Ty = 0 a vérifier :

1.1, — Wi+ Wy + ...+ W,Vn > 1;
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Preuve. On a

W, = T,—T,1

T, = Wi+We+...+W,
e T —Ty+T—Ty+T5—Tot oo+ Ty — Ty + Ty — Ty
= To+T1,

= T, carTp =0

Définition 1.3 (processus a accroissements indépendants)
Un processus {X;} tel que Xo =0 est a accroissements indépendants si pour tout suite finie 0 < t; <

lg <13 < ... <ty les variables aléatoires Xt , X, — X¢y, .y Xe,, — Xy, _, Sont indépendantes.

Définition 1.4 (Un processus & accroissements indépendants est a4 accroissements stationnaires) si

la loi de laccroissement (Xiys — Xt) ne dépend pas de t pour tout t > 0.

Définition 1.5 (Un processus de comptage)

{N(t);t>0} est un processus de poisson d’intensité X >0 si :
-N(0) =0,

-le processus est & accroissements stationnaires ,

-le processus est a accroissements indépendants ,

V0 < s < t, la variable aléatoire N(t) — N(s) suit une loi de poisson deparamétre \(t — s).

1.2 Rappels : loi de Poisson et loi exponentielle :

1.2.1 Deéfinitions et généralité :

Définition 1.6 Une variable aléatoire X o valeurs entiéres suit une loi de Poisson de paramétre X > 0
St
k

A
exp(—Ak)

VkEN, P(X =k) =7

Définition 1.7 Une variable aléatoire Y o valeurs réelles strictement positives suit une loi exponen-
tielle de paramétre p > 0 st
Vit >0, P(Y =t) = pexp(—ut)



1.2.2 Distribution de Poisson

Soit n une variable aléatoire discréte avec n = 0,1, ... qui suit une distribution Poisson. La distri-
bution de probabilité de n est P, = A" exp(—X\)/nl.

L’espérence et la variance de n sont E(n) = A, et V(n) = A, respectivement. La distribution de
Poisson peut également étre définie en unités de temps t. Dans ce cas, la variable discréte n représente

le nombre d’occurrences dans le temps ¢ devient,
P(n,t) = (At)" exp(—At)/n!

1.2.3 Distribution exponentielle

Soit ¢ une variable aléatoire avec ¢ > 0 qui suit une distribution exponentielle. La densité de
probabilité de ¢ est f(t) = pexp(—put) et la distribution cumulée correspondante est F(t) = 1 —

exp(—put). L’espérance et la variance de t sont E(t) = 1/u, et V() = 1/u?, respectivement.

1.2.4 Relation entre la distribution Exponentielle et la distribution de Poisson :

La densité de probabilité d’une distribution exponentielle f(¢) = aexp(—at) Supposons 7 est
exponentielle avec une espérance 1/, et n est de Poisson de moyenne a. on a :
P(r>t) = 1—F(t)
= exp(—at)
= P(n=0)ent
= P(0,t)*

Notons P(n,t) la probabilité d’avoir n unités dans le temps .

P(0,t) = efp(—at)
P(1,t) = [ P(0,7)f(1—7)dT = atexp(—at)

7=0
P(2,t) = IOP(LT)f(l —7)d7 = (at)? exp(—at) /2!
P3,t) = ...
t
P4, t)= [ P(n—1,7)f(1—7)dr = (at)" exp(—at)/n!

7=0

Définition 1.8 Une variable aléatoire X est dite sans mémoire (ou sans usure)si :

Vs,t >0 P(X>t+s/X >t)=P(X > s)



Si X est la durée de vie d’'un matériel quelconque l’équation précédente s’interprété de la maniére
suivante, sachant le matériel en état de bon fonctionnement au temps t, la loi de probabilité de sa
durée de vie future est la méme que celle de sa durée de vie initiale. En d’autres termes, le matériel

ne s’use pas.
Exemple 1.9 Une variable aléatoire de loi exponentielle est sans mémoire.

Remarque 1.10 L’unique loi de probabilité continue sans mémoire est la loi exponentielle, cette dé-
finition est similaire o la version discréte o ['exception des variables s et t sont réelles positives et
non entiéres, plutdt que de compte le nombre d’essais jusqu’au premier succés on peut penser & l’heure

d’arrivée du premier appel téléphonique dans un centre d’appel.

1.3 Le Processus de renouvellement

Introduction :
Un processus de renouvellement & pour fonction de dénombrer les occurrences d’'un phénomeéne
donné, lorsque les délais entre deux occurrences consécutives sont des variables aléatoires indépendantes

et identiquement distribuées.

Exemple 1.11 1] peut s’agir de compter le nombre de pannes d’un matériel électronique en théorie de
la fiabilité (le matériel est alors renouvelé aprés chaque panne, d’ou la dénomination), de dénombrer les
arrivées de clients dans une file d’attente, de recenser les occurrence d’un sinistre pour une compagnie

d’assurance...

Définition 1.12 (processus de renouvellement)
Un processus de comptage dont la suite des inter-arrivées forme une suite de variables aléatoires

indépendantes et identiquement distribuées s’appelle processus de renouvellement.

Définition 1.13 (processus de renouvellement)
Soit (X )n>0 une suite de variables aléatoire positives on note Sy, la suite des sommes partielles, Sop = 0

et Sp = X + Sp—1 pour tout n > 1 on considére alors le processus Ry défini comme suit :
Ry =card{n > 1,8, <t} = > lyg,<n
n>1

Par exemple, si les X, modélisent les durées de vie d’une ampoule R; représente le nombre d’ampoules
changées avant l'instant t, les X,, peuvent également représenter le temps séparant deux ventes succes-

sives, ou deur sinistres successifs pour une compagnie d’assurance. Ry désignera alors, suivant le cas,



le nombre d’articles vendus ou le nombre sinistres survenus au cours de lintervalle de temps [0,¢],
la suite Sy est appelée processus de renouvellement associé aux (Xp)n>o et le processus (Ry) est le

processus de comptage. Par abus de langage, on appelle également R; Processus de renouvellement.

1.4 Systémes de Files d’Attente Classiques

1.4.1 Les différents types de files d’attente

Les figures suivantes représentent les différents systémes de files d’attente selon ’espace d’attente

et 'espace de service :

Fig 1 : File d’attente avec un seul espace

d’attente et un seul serveur

—

o0®

Fig 2 : File d’attente avec un seul espace

d’attente et plusieurs serveurs



—
—>
—

Fig 3 : File d’attente avec plusieurs

espaces d’attente et plusieurs serveurs

1.4.2 File d’attente simple

La file simple

Une file d’attente simple est un systéme constitué d’un ou plusieurs serveurs et d’un espace d’at-
tente. les clients arrivent de I'extérieur, patientent éventuellement dans la file d’attente, recoivent un
service, puis quittent la station [33]. Afin de spécifier complétement une file d’attente simple, on doit
caractériser le processus d’arrivée des clients, le temps de service ainsi que la structure et la discipline

de service de la file d’attente.

1.4.3 Notations de Kendall

Pour classifier les files d’attente, on a recours & une notation symbolique appelée notation de

Kendall, qui prend la forme générale suivante : A/B/s[/K][/S], ou

e A est la distribution des temps d’inter-arrivées et B est la distribution des temps de service,
e 5 est le nombre de serveurs en paralléle,

e K est la taille de la salle d’attente, qui sera considérée infinie par défaut.

e S représente la discipline de service, qui est FIFO par défaut.

A et B appartiennent typiquement a ’ensemble {M, D, P, G, GI}, on M désigne la loi exponentielle,
D la loi déterministe, P une loi périodique, G une loi générale, et GI désigne des variables générales

mais i.1.d.
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1.4.4 Processus d’arrivées de Poisson

Souvent dans les systémes d’attente, on suppose que le processus des arrivées suit une loi de Poisson

ou bien, de maniére équivalente, comme on le verra dans cette section, les temps d’inter-arrivées suivent
une distribution exponentielle.
Soit une suite de variables aléatoires positives 71,72,... indépendantes et de distribution de probabilité
commune. Il s’agira de considérer 7,, comme le temps écoulé entre la (n — 1)°™€ et la n®™ occurences
ou arrivée d’un certain événement spécifique dans une situation probabiliste, comme, par exemple les
appels dans un central téléphonique, les émissions de particules radioactives, les arrivées de clients
devant un guichet, etc.

Notons par
So=0 et Snzzzzl’l'k, n=12,..

Alors S,, représente Iinstant d’arrivée du n™ client. Pour tout ¢ > 0, on définit la variable aléa-

toire N (t) par

N(t)=inf{n e N: S, >t}

La variable aléatoire N (¢) représente le nombre d’événements se produisant dans I'intervalle de temps
[0,t]. Le processus de comptage Ny (t) est appelé processus de Poisson avec taux A si les inter occurences
T1,T2,... ont une fonction de distribution exponentielle commune P{r,, < 2} =1 — e 2 > 0.

Pour tout ¢ > 0, on definit la variable aléatoire «y, par
v, = le temps qui sépare l'instant ¢ de la prochaine arrivée. (1.1)

Plus précisément, t est donnée par

Vi = Sn) —t (1.2)
v, est appellée le temps résiduel d’arrivée au temps t. La variable aléatoire v, posséde la méme dis-
tribution exponentielle de moyenne 1/ si le processus de comptage est de Poisson Ny. Clest a dire
P{y, <2} =1—e** 2 >0, indépendamment de ¢.

1.4.5 File M/G/1 avec clients négatifs

Le concept de client négatif dans les modeles d’attente a été introduit par Gelenbe [21], et a

été motivé par la modélisation des réseaux de neurones oul les arrivées positives et négatives repré-

11



sentent respectivement, les signaux excitateurs et inhibiteurs. Puis leurs domaines d’applications se
sont étendus aux réseaux informatiques ou ’arrivée négative modélise ’effet d’un virus sur le systéme,
¢éliminations des transactions dans les bases de données, les réseaux de télécommunications, les sys-
témes de productions,...etc.

Les arrivées négatives affectent le systéme de différentes maniéres :

e Elimination individuelle : I'arrivée négative élimine un client positif (ordinaire). Une arrivée négative

dans un systéme vide est sans effet.
e Elimination par groupe : I’arrivée négative élimine un groupe de clients du systéme.
e Le désastre (catastrophe) : 'arrivée négative élimine tous les clients présents dans le systéme.

e Elimination d’une quantité aléatoire d’activité : I’élimination dans ce cas n’est pas nécessairement

un nombre entier de clients positifs mais une quantité aléatoire de temps d’activité du serveur.

1.5 Suites Stationnaires et Ergodiques

Suites Stationnaires

Soit {£,,} une suite aléatoire définie sur ’espace de probabilité (2, F,P) et prenant ces valeurs dans

l’espace mesurable (Y, By).

Définition 1.14 Une suite {£,,} est dite strictement stationnaire si les distributions des variables
aléatoires de dimension finie (§ypn,»Epings -,f,Hnj) ne dépendent pas de k pour tout j et ny,---,n; :
Une application T : Q) — ) est dite transformation bijective préservant la mesure si elle est bijective,
Uimage par T et par son inverse T~! d’un ensemble mesurable a la méme probabilité (mesure) que son

ensemble de départ, i.e.
P(T(A)) =P(A) et P(TY(A) =P(A) pour tout ensemble A € F.

1/- Une telle transformation induit une transformation (bijective) correspondante, qu’on note U, des

variables aléatoires définie par

pour toute variable aléatoire n mesurable par rapport & F.
Pour toute variable aléatoire n, Un posséde la méme distribution que celle de n, et en fait le processus
stochastique {n, : —oo < n < oo}, avec n, = U™n est strictement stationnaire. Ainsi, toute trans-

formation bijective préservant la mesure peut étre utilisée pour engendrer des processus stochastiques

12



strictement stationnaires.

Soit {£,,,n > 0} une suite (strictement) stationnaire. D’aprés le théoréeme de Kolmogorov d’extension
des distributions compatibles, une suite de v.a stationnaire {£,,,n > 0} peut étre étendue a la suite
{£,,, —00 < n < oo} stationnaire sur tout l'axe des temps.

2/- Une suite {n,, : —0o < n < oo} est dite compatible avec l'opérateur (shift) U si pour tout n € Z,
n, est F& mesurable et Un,, = M1

On note par T Vopérateur de translation, correspondant & U, des événements dans la o—algébre F¢ :

T{w: éj(w) €Bj,j= Lok} ={w: £j+1(°~’) €Bj,j= Lk}

et TF k> 0 est la k™ itération de T. U° et TO sont les transformations identités, et U*, T=* sont

les transformations inverses de UFet T* respectivement.

Suites Ergodiques

Un ensemble A mesurable est dit invariant par rapport a l'opérateur de translation shift T si
A = T A presque stirement.
Ainsi tout ensemble de probabilité 0 ou 1 est invariant. Les ensembles invariants forment une o—algébre.
e Une variable aléatoire n est dite invariante par rapport & un opérateur de transformation préservant
la mesure U si Un = n avec probabilité 1.
Ainsi, toute variable aléatoire presque siirement constante est invariante.
Si la variable aléatoire n est invariante, 'ensemble {w : n(w) € A} est invariant pour tout Borélien
A. Réciproquement, si I’ensemble {w : n(w) € A} est invariant pour tout Borélien A alors 7 est une
variable aléatoire invariante.
Si A est un ensemble mesurable et si 77 est une variable aléatoire qui vaut 1 sur A et zero ailleurs, alors
A est invariant si et seulement si 7 est une variable aléatoire invariante.
e Un opérateur de transformation 7" preservant la mesure est dit métriquement transitif si les seules
ensembles invariants sont ceux de probabilité 0 ou 1, c’est a dire, si les seules variables aléatoires qui
sont invariantes sont ceux qui sont constantes presque stirement. Dans ce cas, on dira aussi que son
opérateur de transformation correspondant U, des variables aléatoires, est aussi métriquement transi-
tif.
e Soit U un opérateur de transformation préservant la mesure et soit 77 une variable aléatoire. Alors le
processus {n,, = U"n,n > 0} est métriquement transitif.

e Une suite {{,,} est dite métriquement transitive (metrically transitive) si les seules ensembles inva-

13



riants de F¢ sont ceux de probabilité 0 ou 1.
e Une suite {&,} est ergodique si et seulement si pour toute variable aléatoire ¢ mesurable 7, avec

En < oo, nous avons p.s

R
lim =) U'n=En (1.3)
=1

n—-:00 7 4

Si la suite {&,,} est de plus stationnaire, la relation 1.3 peut étre exprimée par la forme suivante

-1
.1 i
nh_r)noo o g U'n = En. (1.4)
i=—n

Cette derniere relation est appelée loi forte des grands nombres de Birkhoff.
Le théoréme suivant est une version du théoréme ergodique fondamental adapté au cadre des processus

stochastiques strictement stationnaires.

Théoréme 1.15 Soit {£,,,n > 0} un processus stochastique strictement stationnaire, avec E|&y| < oo,

et soit I la o-algébre des ensembles invariants. Alors

1 n—1
nh_)moo E ; &= E[§0|I] (1-5)

avec probabilité 1. En particulier, si le processus est métriquement transitif, la limite B[Ey|Z] est égale
a E[&o].

Ainsi, une suite strictement stationnaire &, est ergodique si et seulement si elle est métriquement
transitive.

On peut énoncer donc la remarque suivante qui sera utile pour montrer [’ergodicité des suites régissant

la dynamique des systémes dont on va étudier la stabilité.

Remarque 1.16 Si ¢, est stationnaire et ergodique alors toute suite {n,, : —0o < n < 0o} compatible
avec lopérateur shift U est aussi ergodique, i.e. elle satisfait o la loi forte des grands nombres de

Birkhoff.

1.6 Formule de Wald

La formule de Wald sera utile pour les systémes avec arrivées ou services en groupes. Elle permettra
de calculer, par exemple, moyenne des arrivées pendant un temps de service dans le cas des arrivées en
groupes de tailles suivant une variable aléatoire de moyenne finie. Soit X1,X5,... une suite de variables
aléatoires indépendantes et identiquements distribuées de moyenne finie. De plus, soit N une variable

aléatoire & valeurs dans N de moyenne finie. Si la variable aléatoire N est indépendante des variables
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aléatoires X1,Xs,... alors
N
E (Z Xk> = E(N)E(X)). (1.6)

La preuve de la formule 1.6 utilise la loi de I’espérance totale.
La formule 1.6 reste valable si la supposition que la variable aléatoire N est indépendante de la suite

X1,Xo,... est allégée. Supposons que les conditions suivantes sont satisfaites :

(i) X1,X2,... est une suite de variables aléatoires indépendantes et identiquements distribuées de

moyenne finie.
(ii) N est une variable aléatoire a valeurs dans N avec E(N < o0).

(iii) L’événement N = n est indépendant de X,,41,X,42,... pour tout n > 1.

Alors on a

N
E (Z Xk> = E(N)E(X,). (1.7)
k=1

La supposition E(N) < oo est essentielle dans I'équation de Wald. Pour illustrer ce fait, on
considére la marche aléatoire symétrique {S,,n > 0} avec So =0 et S, = X; +-- -+ X, ou
X1, Xo, ... est une suite de variables aléatoires indépendantes avec P{X; = 1} = P{X; = —1}
pour tout 7. On définit la variable aléatoire N comme N = min{n > 1| S, = —1},i.e, N est
I'instant de la premiére visite de la marche aléatoire au point —1. Alors E(Xy,- -+, Xy) = —1.
Notons que E(X;) = 0, et on a cependant que E(Xq,- -+, X) n’est pas égal & E(N)E(X;). La

raison est que E(N) = oo.

1.7 Files d’Attente avec Rappels

1.7.1 Déscription du modéle d’attente avec rappels

Un systéme d’attente avec rappels (Retrial Queue) est un systéme composé de c(c > 1) serveurs
identiques et indépendants, d’un buffer de capacité K — ¢(K > c¢) et d'une orbite de capacité N.
A Darrivée d’'un client, s’il y a un ou plusieurs serveurs libres et en bon état, le client sera servi
immeédiatement et quittera le systéme a la fin de son service. Sinon, s’il y a une position d’attente
libre dans le buffer, le client la rejoindra. Par ailleurs, si un client arrive et trouve tous les serveurs et
toutes les positions d’attente du buffer occupés, il quittera le systéme définitivement avec la probabilité
1— Hy, ou bien entre en orbite avec la probabilité Hy et devient une source d’appels répétés et tentera

sa chance aprés une durée de temps aléatoire. Les clients qui reviendront et rappelleront pour le service

15



sont dits en "orbite". Cette derniére peut étre finie ou infinie. Dans le cas d’une orbite a capacité finie,
si elle est pleine, un client qui trouve tous les serveurs et les positions d’attente du buffer occupés,
sera obligé de quitter le systéme définitivement sans étre servi. Chaque client en orbite appelé aussi
«client secondaire», est supposé rappeler pour le service & des intervalles de temps suivant une loi
de probabilité et une intensité de rappels bien définie (rappels constants, rappels classiques, ou bien
rappels linéaires, ...). Chacun de ces clients secondaires est traité comme un client primaire c’est-a-
dire un nouveau client qui arrive de 'extérieur du systéme. S’il trouve un serveur libre, il sera servi
immeédiatement puis quittera le systéme. Sinon, s’il y a des positions d’attente disponibles dans le
buffer, il le rejoindra. Par contre, si tous les serveurs et les positions d’attente sont encore occupés, le
client quittera le systéme pour toujours avec la probabilité 1 — Hy, (si c’est le k™€ rappel sans succes)

ou bien entre en orbite avec la probabilité Hy si 'orbite n’est pas pleine.

1.7.2 Politiques d’accés au serveur a partir de ’orbite

La définition du protocole de rappels est en effet un sujet de controverse (voir Falin (1990)[34]
et concerne 'aspect modélisation du systéme sous étude. Le protocole le plus décrit dans la théorie
classique des files d’attente avec rappels est la politique de rappels classiques dans laquelle chaque
source dans 'orbite rappelle aprés un temps exponentiellement distribué avec un parameétre «. Donc,
il y a une probabilité nadt + o(dt) d’un nouveau rappel dans le prochain intervalle (¢,¢ 4 dt) sachant
que n clients sont en orbite & l'instant ¢. Une telle politique a été motivée par des applications dans
la modélisation du comportement des abonnés dans les réseaux téléphoniques depuis les années 1940.
Dans les années précédentes, la technologie a considérablement évoluée. La littérature de files d’attente
avec rappels décrit différents protocoles de rappels spécifiques & certains réseaux, informatiques et de
communication modernes dans lesquels le temps inter-rappels est controlé par un dispositif électronique
et par conséquent, est indépendant du nombre d’unités demandant le service. Dans ce cas, la probabilité
d’un rappel durant (¢,¢ + dt), sachant que l'orbite est non vide, est vdt + o(dt). Ce type de discipline
de rappels est appelé politique de rappels constants. Le premier travail dans cette direction est celui
de Fayolle qui considére une file d’attente M /M /1, ot uniquement le client en téte de la file en
orbite peut demander un service aprés un temps de rappels exponentiellement distribué avec un taux
constant. Cette sorte de politique de controle de rappels est bien connue pour le protocole ALOHA
dans les systémes de communication. Certains autres travaux décrivent des applications aux réseaux
locaux, protocole de communication, systémes mobiles et autres (Choi (1992) [36], Shikata (1999) [37]).
Artalejo et Gémez-Corral (1997) [35] traitent les deux cas d’une maniere unifiée en définissant une

politique de rappels linéaires pour laquelle la probabilité d’un rappel durant (¢,¢ 4 dt) sachant que n
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client sont en orbite & 'instant ¢ est (v(1 — dop) + nav)dt + o(dt). On mentionne aussi 'existence d’une

autre politique dite politique de rappels quadratiques

1.7.3 Politique linéaire classique

La politique de rappels linéaire classique est caractérisée par le fait que chaque client en orbite
engendre sa propre tentative de joindre le serveur indépendamment des autres clients en orbite. Prenons
comme exemple illustratif un modele de type M/G/1.

e Modéle M/G/1 avec politique de rappels linéaire :

Les clients arrivent de lextérieur selon un processus de Poisson de taux A. Ces clients sont identifiés
comme clients primaires. Si le serveur est libre & I'instant d’arrivée d’un client primaire, ce client
obtient son service immédiatement et quitte le systéme aprés la fin de son service. D’autre part, si
un client primaire arrive et trouve le serveur occupé il rejoint alors 'orbite. Chaque client en orbite
engendre un processus de Poisson de taux u de tentatives de joindre le serveur jusqu’a ce qu’il trouve
le serveur libre pour prendre son service et quitter le systéme. Les clients primaires et ceux provenant
de Vorbite ont la méme distribution du temps de service. On note par o, le ™€ temps de service et
on suppose que la suite {o,,} est i.i.d. avec 0 < Eo,, < 0.

Sous des suppositions Markoviennes, nous verrons plus tard que la condition "naturelle" de stabilité

de ce systéme est la méme que le systéme M/G/1 classique (sans rappels) :

AEo1 < 1
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Chapitre 2

CONDITION DE LA SATBILITE
AVEC LES METHODES
STOCHASTIQUES

Dans ce chapitre, nous allons présenter un résumé des méthodes les plus importantes utilisées pour
décider de la stabilité des systémes stochastiques, en particulier les systémes de files d’attente. Il est
A noter, comme pour les systémes dynamiques déterministes, qu’il n’existe pas une notion générale
de stabilité, cela dépend du systéme étudié et de I'approche utilisée. Ensuite, nous présontons les
conditions de stabilité des modeéles classiques de files d’attente avec rappels et la stabilité de modeéle
avec clients négatifs Pour ces modéles, la méthode des fonctions de Lyapunov associée au critére de

Foster est suffisante pour établir ces conditions.

2.1 Meéthode des Fonctions de Lyapunov

On utilise dans cette méthode deux critéres principaux, 'un de I'ergodicité et I’autre de transience.

2.1.1 Chaines de Markov a espace d’états discret

Une chaine de Markov est la généralisation la plus simple d’une suite de variables aléatoires in-
dépendantes. La propriété principale d’une chaine de Markov, dite propriété Markovienne, est que le
comportement futur du processus ne dépend que de sont état présent et non de son passé.

Soit {X(n),n € N} une suite de variables aléatoires a valeurs dans ’ensemble S des états, supposé fini

ou infini dénombrable.
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Définition 2.1 Le processus stochastique X = {X(n),n € N} avec espace d’états S est dit chaine de

Markov si, pour tout n € N,
]P){X(TL + 1) = Z'n_:,_l‘X(O) =10, ", X(n) = Zn} = ]P’{X(n + 1) = in+1|X(n) = in},

pour toutes valeurs possibles de ig, ..., int1 €S

On dit qu’une chaine de Markov {X (n),n € N} est homogéne si pour tout n € N,
Vi,jeS, P{X(n+1)=jlX(n)=1i}=p;

indépendamment de n. Les probabilités p;; sont appellées probabilités de transition en une étape et
satisfont a

pij =0, Vi,jES et Y piy=1vi€eS.
j€EE

La matrice stochastique P = (p; j), i,j € S, est alors appelée la matrice de transition de X .

La probabilité de transition en n étapes est donnée par
Vi,j €S p;j(n) =P{X(n) =j]X(0) =i}

Une application directe de la formule des probabilités totales montre que p; j(n) est le terme général

de la matrice P". En particulier, pour tous n,m € N, les expressions

Vi,j €S pij(n+m)= 3 pir(n)pk;(m),
KeR

connues sous le nom d’équations de Chapman-Kolmogorov. Elles peuvent étre données simplement par
le produit matriciel P"T™ = P™ x P™,

e On dit que les états i et j communiquent st
dIn,neN, p;jn)>0 et p;;(m)>0.

Cela définit une relation d’équivalence sur l’ensemble S. L’espace d’états peut donc étre décomposé en

un nombre fini ou dénombrable de classes d’équivalence appelées les classes de communication de X .

Lemme 2.2 Un état i € S est récurrent si et seulement si

(9]
sz‘,z’(ﬂ) = 00,
i=1
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et transient si et seulement si

o0
Zp”(n) < 00.
i=1

. Si tous les états sont récurrents, la chaine de Markov elle-méme est dite récurrente.

. Si tous les états sont transients, la chaine de Markov elle-méme est dite transiente.
Corollaire 2.3 Une chaine de Markov irréductible est soit récurrente soit transiente.

Lemme 2.4 Un état i € S est positif si et seulement si

lim supp;i(n) >0,
n———a_o

et nul si et seulement si

lim p;i(n)=0.
n—-aoo
Une chaine de Markov est dite positive si tous les états sont positifs, et nulle si tous les états sont nuls.

Proposition 2.5 Une chaine de Markov irréductible est positive s’il existe un ensemble fini positif.

Stabilité d’une chaine de Markov :
Soit p(n) la distribution de X (n), a savoir Vi € S, p;(n) = P(X(n) = 1).

D’apres la formule des probabilités totales, on obtient u(n + 1) = u(n)P, si bien que
VneN, p(n)=p0)P".

En particulier, une mesure de probabilité m sur S qui satisfait 7 = 7P est appelée distribution

stationnaire de la chaine de Markov, puisque
pw0)=m=vVneN, un)=mr.

Lorsqu’une telle distribution stationnaire existe, la chaine de Markov est dite stable. Sinon, la
chaine de Markov est dite instable.
Le résultat fondamental suivant permet de caractériser la stabilité des chaines de Markov & espace

d’états discrets.

Théoréme 2.6 Soit X = {X,,,n € N} une chaine de Markov irréductible.
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o X est stable si et seulement si X est positive, auquel cas la distribution stationnaire w est unique.
Si de plus X est apériodique, alors pour toute distribution initiale 11(0),

lim p(n) =m,
n———aoo

e X est instable si et seulement si X est nulle, auquel cas pour toute distribution initiale (0),

lim p(n)=0.

n—-aoo
Une chaine de Markov irréductible, apériodique et positive est dite ergodique.

Théoréme 2.7 (Théoréme ergodique)
Soit X une chaine de Markov irréductible, apériodique et positive, de distribution stationnaire w. Pour
toute fonction f : S — R telle que |7(f)| < 0o, on a
limy o0 % 22;1 f(X(n)) =P = (f).
Critéres de Foster : Le résultat suivant donne une condition suffisante pour l’ergodicité d’une chaine

de Markov.

Théoréme 2.8 Pour une chaine de Markov X = {X(n)} irréductible et apériodique d’espace d’états
S, une condition suffisante pour ’ergodicité est l’existence d’une fonction positive L, et € > 0 tels que
pour tout x € S

E[L(X(n+1)) — L(X(n))|X(n) =z] < oo,

et
E[L(X(n+1)) — L(X(n))|X(n) = z] < —¢,

pour tout x € S sauf peut étre en un nombre fini de points.

Une généralisation naturelle du critére de Foster est donnée par le résultat suivant.

Corollaire 2.9 (Critére de Foster généralisé)
Soit une chaine de Markov X = {X(n)} irréductible. Une condition suffisante pour que X soit positive
est qu’il existe un ensemble fini A, une fonction de Lyapunov L, et une fonction m sur S a valeurs

entiéres non-nulles, tels que

sup B{L(X (n-+ m(2))) — L(X (n)|X (n) = 2] < o0,
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et pour une certaine constante € > 0,
Vo C A, E[L(X(n +m(2))) — L(X(n)|X(n) = 2] < —em(a).

Critére pour la transience : Le critére suivant donne une condition pour la non ergodicité d’une

chaine de Markov & espace d’états Z4 (voir Sennot et al. [31]).

Théoréme 2.10 Une chaine de Markov X = {X(n)} irréductible et apériodique d’espace d’états Z.

est non ergodique (transiente) si
E[X(n+1)— X(n)|X(n) =1 <o, VieZs,
et il existe une constante k > 0 telle que

> G —i)piy > —k,

j<t

de plus, il existe N tel que
EX(n+1)— X(n)|X(n) =4 >0, pour i>N.

2.1.2 Stabilité de la File M/GI/1

Nous avons vu précédemment que si X (n) = X(s,+) désigne le nombre de clients dans la file a

Iinstant s, du départ du n®™ client, {X(n)} est une chaine de Markov irréductible vérifiant
X(n+1)=X(n)+Ni(on1) — 1,

si X(n) > 0, oit o, est le temps de service du n™ client et Ny le processus de Poisson de taux A

des arrivées. Sur I'ensemble {X(0) > 0}, on a donc
E[X (1) — X(0)|X(0)] = A\Eo — 1,

autrement dit, si Ao < 1, la fonction identité est une fonction de Lyapunov et sous cette condition,
la chaine {X (n)} est ergodique.
Réciproquement si AEo > 1, il existe un K tel que AE(min{o,, K}) > 1, si on remplace les services (o)
par les services bornés (min{c,, K'}), il est clair que la chaine de Markov X (n) ainsi obtenue minorera
la chaine X (n). De cette fagon les sauts de X(n) on un moment d’ordre 2 borné. Par conséquent,

{X(n)} est aussi transiente dans ce cas.
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2.1.3 Chaines de Markov a espace d’états continu

Dans cette section, nous noterons X = {X(n),n € N} une suite de variables aléatoires sur un
espace de probabilité (2,P), & valeurs dans un espace d’états continu S, muni d’une o-algébre B;.
Comme nous allons le voir, la plupart des propriétés des chaines de Markov & espace d’états discret
ont leurs analogues dans le cas continu, pourvu que la notion d’état individuel ou d’ensemble fini

d’états individuels du cas discret soit remplacée par la notion de "petit ensemble" dans le cas continu.

Définition 2.11 (Chaine de Markov) On dit que X est une chaine de Markov si pour tout n € N,

tout ensemble borélien A € Bs, et tous éléments xqg,- - -, Tp_1,x de S,

P(X(n+1) € AlX(n)=z,X(n—1)=x,_1, -, X(0) =z0)

= P(X(n+1)e€ AlX(n) =x).
On dit qu’une chaine de Markov X est homogéne si pour tout n € N,
VeeS, VAeBs;, P(X(n+1)e€AlX(n)=x)=P(z,A),

indépendamment de n. Comme dans le cas discret, nous ne considérerons que des chaines de Markov
homogénes par la suite.
Nous appellerons P = {P(x,A),x € S, A € Bs} le noyau de transition de X.

Pour tout n € N, soit

P (z, A) = P(X(n) € A|X(0) = z).

Les équations de Chapman-Kolmogorov s’écrivent
Vn,m eN, PO (g A) = /P(”)(x,dy)Pm(y, A).

La notion d’irréductibilité différe sensiblement de celle du cas discret.

Définition 2.12 (Petits ensembles ) On dit qu’un ensemble A € By est n-petit s’il existe n > 1, une

mesure de probabilité p sur S, et une constante v > 0 ,tels que
Vo e A, P™(z,.) > yu(.).

Supposons que X soit irréductible. Tout ensemble accessible contient alors un ensemble n-petit A tel
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que p(A) > 0. On définit la période de la chaine de Markov comme le plus grand entier d tel que
A estn — petit = n € dN.

Lorsque d =1, X est dite apériodique.

Proposition 2.13 Une chaine de Markov irréductible est apériodique s’il existe un ensemble 1-petit
A tel que u(A) > 0.

Par la suite, un ensemble 1-petit sera simplement dit petit.

Récurrence au sens de Harris : Pour tout x € S, on notera P, la mesure de probabilité P condi-
tionnellement o ’événement { X (0) = x}. Pour tout ensemble A € Bs, soit T4 le temps de retour vers
A, a savoir

74 =min{n > 1, X(n) € A}.

L’ensemble A est dit récurrent au sens de Harris si
Ve €S, Pp(ta<oo)=1.

Proposition 2.14 Une chaine de Markov irréductible est récurrente au sens de Harris s’il existe un
petit ensemble récurrent au sens de Harris.

Soit N le nombre de visites de ’ensemble A, c’est-a-dire
Ny = Z Lix(n)eay-
n=1

L’espérence du nombre de visites de l’ensemble A, partant d’un état initial x, est donnée par

[e.9]

Eo(Na) =Y P (z, A).

n=1
Un ensemble A € By est récurrent si

Vx € A, Ex(NA) = Q.

Proposition 2.15 Une chaine de Markov irréductible est positive s’il existe un petit ensemble positif.

Notion de stabilité pour espace d’états continu : Soit u(n) la distribution de X(n), a savoir

VA e B, p™(A)=P(X(n)e A).
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D’apres la formule des probabilités totales, on obtient

VA e B,, pmt(A) = / p™ (dz)P(z, A).
E

En particulier, une mesure de probabilité w sur S qui satisfait
VACB, (/)= / (dz)P(z, A),
s
est appelée distribution stationnaire de la chaine de Markov, puisque
pO=r=vneN, p™=n

L’orsqu’une telle distribution stationnaire existe, la chaine de Markov est dite stable. Sinon, la chaine

de Markov est dite instable. On a le résultat fondamental suivant.

Théoréme 2.16 Une chaine de Markov irréductible est stable si et seulement si elle est positive, au-
quel cas la distribution stationnaire m est unique.

Une chaine de Markov vrréductible, apériodique, récurrente au sens de Harris et positive est dite ergo-
dique.

Critére de Foster pour espace d’états continu : Le résultat suivant donne une condition suffisante

pour la récurrence au sens de Harris.

Théoréme 2.17 Soit une chaine de Markov X = {X (n)} irréductible. Une condition suffisante pour
que X soit récurrente au sens de Harris et positive est qu’il existe un petit ensemble A et une fonction

de Lyapunov L bornée sur A, tels que

S:IEIBE[L(X(TL +1)— X(n))|X(n) =1 < oo,

et pour une certaine constante € > 0,
Yo C A, BIL(X(n+1) - X(n))|X(n) = 2] < —c.

2.2 Meéthode des événements de rénovation

soient {X(n),n > 0} et {{,} deux suites aléatoires définies sur le méme espace de probabilité

(Q,F,P) et prenant leurs valeurs dans les espaces mesurables (X, B;) et (Y, B,) respectivement. On
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suppose de plus, qu'une fonction mesurable f :

XxY—X estdéfinie sur (X x Y, B, x By)

2.2.1 Suites Récursives Stochastiques

Définition 2.18 Une suite aléatoire {X (n)} est dite Suite Récursive Stochastique (SRS) régie par la

suite de controle {£,,} si {X(n)} obéit a l’équation
X(n+1) = (X(n),€,), ¥n>0

2.2.2 Evénements de rénovation

Définition 2.19 Un événement A € FS

nams M > 0, est un événement de rénovation (renovation

event) pour la SRS X (n) sur le segment [n,n + m] s’il existe une fonction mesurable g : Y™ — X

telle que sur ’ensemble A

La suite {A,}, A, € .7-"$+m, est une suite d’événements de rénovation (renovating sequence of events)
pour la SRS X (n) s’il existe un entier ng tel que (2.1) est vraie pour n > ng avec la méme fonction g
pour tout n.

e On dit que la suite d’événements {A,} est stationnaire si Ay = Tk Ay pour tout k.

Théoréme 2.20 Soit {{,,} une suite stationnaire, et supposons que pour la SRS {X,} il existe une

suite d’événements de rénovation {A,} telle que

n

o . —S$ . f—

lim P UlAJT Ajys | =1 (2.2)
]:

uniformément en s > 1. Alors on peut définir sur le méme espace de probabilité que {X (n)} une suite

stationnaire {X™ = U" X} satisfaisant & l'équation X" = f(X™ ¢,) telle que

lim P{X(k)=X* Vk>n}=1 (2.3)

n—=ao0

Inversement, si une suite {€,,} est ergodique et (2.3) est satisfaite, alors il existe une suite d’événements
de rénovation {A,} qui satisfait (2.2).

Si la suite {&,,} est ergodique et les événements A, sont stationnaires, alors les relations P(Ag > 0) et
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P(Uy2 o An) = 1 sont équivalentes et impliquent (2.8).Notons que, si on introduit la mesure II(B) =

P(XY € B), la convergence (2.3) implique la convergence en variation

lim sup |P(X(n)e€ B)—n(B)|=0.

n——00 BcRBy
2.2.3 Convergence couplée au sens fort pour les SRS

Définition 2.21 La SRS {X(n)} est couplée (couple-converges) avec {X™}, si elle satisfait

lim P{X(k)=X" Vk>n}=1. (2.4)

n—:aoo

Introduisons la variable aléatoire
vo=min{n >0: X(k) = X" Vk>n},

la relation (2.4) devient équivalente a

P(vg < 00) =

Posons

Xi(n) =U"X(n+k), pour n > —k,

et
v = min{n > —k : Xp(n) = X"}.

Notons par v = supysqvx l'instant de couplage ou toute les suites {Xr(n), n >0, k > 0} ren-

contrent la suite {X™}.

Définition 2.22 Une suite {X(n)} est couplée au sens fort (strong coupling convergent) avec la suite
{X"=U"X", si

v< 00 p.S

La variable v est appelée 'instant de couplage fort. Notons que la convergence couplée au sens fort
implique la convergence couplée, qui elle méme implique la convergence en variation totale et ainsi
la convergence en distribution. Le théoréme suivant donne une condition nécéssaire et suffisante de

convergence couplée au sens fort d’une SRS vers un régime stationnaire et ergodique.

Théoréme 2.23 L’existence d’une suite d’événements de rénovation stationnaire {A,} avec P(Ay) >
0 est une condition nécessaire et suffisante de convergence couplée au sens fort de la SRS X (n) vers

une suite stationnaire X" obéissant a l’équation X"t = f(X",&,) ou €, est stationnaire et ergodique.

27



2.2.4 Application aux Systémes avec Clients Négatifs

Les résultats de cette section sur la stabilité de certains modeéles avec clients négatifs ont été obtenus
par Kernane [27].
Elimination du client en service :
e Arrivées stationnaires et ergodiques pour les clients négatifs
Considérons une file a un serveur dans laquelle les arrivées des clients réguliers suivent un processus de
Poisson de taux A, et a chaque instant d’arrivée un groupe de clients de taille aléatoire a;, avec a; une
suite i.i.d de moyenne @, entre dans le systéme. On note par T;r les temps d’inter-arrivées des clients
réguliers. La file est de capacité infinie et on suppose des disciplines de service conservatives telles que
FIFO, LIFO ou accés aléatoire au service. On considére le cas ol un client négatif élimine le client en
service (RCS). Un client négatif n’a aucun effet sur un systéme vide. Les clients négatifs arrivent aux
temps t,; n = 0,1, ... et on note par 7., = t,4+1 — t,, leurs temps d’inter-arrivées. On suppose que 7,
est une suite stationnaire (au sens strict) et ergodique (sans ’hypothése d’indépendance). Le service
des clients réguliers est éffectué en groupes de tailles aléatoires b;, avec b; une suite i.i.d de moyenne
b, et le temps S; requis pour les servir est de distribution exponentielle de taux pu*. L’arrivée négative
¢limine le groupe b; qui est en service. Soit N+ (t) (respectivement N+ (t)) le processus de comptage
de Poisson de paramétre A* (resp. put) qui compte le nombre d’arrivées de clients réguliers (resp.
services) durant l'intervalle de temps [0, ¢]. On suppose que les entrées des clients (régulier et négatifs),
tailles des groupes d’arrivées ou de service et temps de service sont mutuellement indépendants. Soit
X (t) le nombre de clients dans le systéme au temps t. On considére le processus induit X (n) juste
apres le temps ¢, (i.e., X(n) = X(¢,)). Le processus X (n) peut étre représenté par une suite récursive

stochastique (SRS) comme suit :

Nat(mn) Nut(ra)
X+ =[Xm)+ Y ai— > bi—by o] (2.5)
i=1 i=1
ot (z)* = max(0, 7). On note par
Na+(mn) Npu+(m7)
&n = Z Z bi — b/\/u +(mn )41 (2.6)

=1

Notons par Vo =0 et V,, = > ", £_;. La proposition suivante donne une condition de stabilité par la

convergence couplée au sens fort vers un régime stationnaire et ergodique.

Proposition 2.24 Si (\Ta — uTb)Er] < b, alors le processus X(n) est couplé au sens fort avec un
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unique régime stationnaire et ergodique )N((n) tel que

X (0) = sup Vy,.
n>0
Si (\T@ — utb)Ery > b, alors le processus X(n) converge en distribution vers une limite impropre.

Preuve. Nous avons d’aprés la formule de Wald et la propriété de perte de mémoire du processus
de Poisson

E¢,, = )\+6E71_ — ,u+5E7'1_ —b.

Puisque 7,; est stationnaire et ergodique alors &,, est aussi stationnaire et ergodique.
Si la condition (A\T@ — pTb)Er] < b est satisfaite alors E¢, < 0. m

Temps de services stationnaires et ergodiques

On suppose maintenant que les temps de services 5,, forment une suite stationnaire et ergodique
et les arrivées des clients négatifs suivent un processus de Poisson de taux A™. Puisque les temps de
service S, sont stationnaire alors ils ont la méme distribution B(t) et avec une transformée de Laplace
(LST) B*(s) = [,° B(t)e *!dt. Si elle possede une densité b(t) alors on note par 5*(s) sa transformée
de Laplace correspondante.
Définissons s, comme 'instant de fin du (n — 1)°™¢ temps de service. Les temps de service, les entrées
des clients, les tailles des lots d’arrivées ou de services sont mutuellement indépendants. On considére
le processus X (n) induits juste apres le temps s, (i.e., X(n) = X(s,+)). Le processus X (n) satisfait

la relation suivante : N
N+ (min(Sn,mn))

X(n+1)=|X(n)+ > ai—bn | (2.7)

=1

dans ce cas B¢, = ATaE(min(S1,77)) — b. Puisque 77 est de distribution exponentielle de taux A~

alors on a
(1-A"B*(A\7))
)\_ )

E(min(Si,77)) = /000(1 — B(s))e ™ ds = (2.8)
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Elimination du dernier client dans la file

Arrivées stationnaire ergodique pour les clients négatifs

La suite des temps d’inter-arrivées des clients négatifs {7,, } est supposée stationnaire et ergodique
et les clients réguliers sont éliminés a partir de la queue de la file, au instants d’arrivées t,, en groupes
de tailles aléatoires d,, avec {d,} une suite i.i.d de moyenne d. On suppose les flux d’arrivées, tailles
des groupes et temps de service sont mutuellement indépendants. Soit X (n) le processus induit juste
avant larrivée d’un client négatif. La représentation de X (n) comme une suite récursive stochastique

(SRS) est donnée par :

Nat(rn) Nut(rn)

X+ =X+ > a- Y, bi—do]| . (2.9)

=1 =1

On obtient le résultat suivant.

Proposition 2.25 Si (\T@ — uTb)Er] < d alors le processus X(n) couple-converge au sens fort vers

un unique régime stationnaire et ergodique )N((n) tel que

X(0) = sup V.

n>0

Si (A\ta — utb)ET] > d alors le processus X(n) converge en distribution vers une limite impropre.

Suite des temps de service stationnaire ergodique

On suppose maintenant que les temps de service 5, sont stationnaire et ergodique et les inter-
arrivées des clients négatifs sont i.i.d de distribution exponentielle de taux A™. Le processus X (n) est
induit immediatement apres la fin du (n—1)™¢ temps de service. Le processus X (n) satisfait la relation

récursive suivante :

Nat(Sn)  Nat(Sn) +
X+ =[XMm)+ Y a— > c—ba| . (2.10)
=1 =1

On obtient la proposition suivante.

Proposition 2.26 Si (\ta — A\"¢)ES; < b, alors le processus X(n) est couplé au sens fort avec un
unique régime stationnaire et ergodique )?(n) tel que )N((O) = Sup,,>0 Va-

Si (\ta — A"¢)ES;y > b, alors le processus X (n) converge en distribution vers une limite impropre.
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2.3 Stabilité de modéles classiques

2.3.1 Politique de rappels linéaire :

File M/M/1/1
Les arrivées de l'extérieur forment un processus de Poisson de parameétre A, les temps de services {0, }
sont i.i.d de distribution exponentielle de moyenne Eo, et les temps d’inter-rappels de chaque client
en orbite sont une suite i.i.d de distribution exponentielle de parametre 6. Soit X (¢) le nombre de
clients en orbite au temps ¢, et C'(¢) le nombre de clients en service, i.e. pour un systéme a un serveur
si C(t) = 0 alors le serveur est libre au temps t, et si C'(¢t) = 1 le serveur est occupé. Dans le cas d’une
file M/M/1/1 le processus {Y (t) = (X(t),C(t)),t > 0} est une chaine de Markov & temps continu et
les résultats suivants sont connus dans la littérature :

— Si AEo; < 1 alors la chaine de Markov Y'(¢) est récurrente positive,

— Si AEo; =1 et fEo; > 1 alors la chaine de Markov Y (¢) est récurrente nulle,

— Si AEo; =1 et §Eo; < 1 alors la chaine de Markov Y (¢) est transiente,

— Si AEo; > 1 alors la chaine de Markov Y'(¢) est transiente.

Voir Falin [14].
File M/G/1/1
Considérons la file M/G/1 avec rappels linéaires. Les temps de services {o,,} sont i.i.d de distribution
générale B(x) et de moyenne finie Eo;. Considérons le processus induit X (n) = X (s,+) & Uinstant
sy, de fin du (n — 1)®"¢ temps de service. Le processus {X(n),n > 0} représente donc une chaine de

Markov a temps discret vérifiant la récurrence
X(n+1)=X(n)—1I, + Nx\(on), (2.11)

si X(n) > 0, ou I, est une fonction indicatrice telle que I,, = 1 si le client qui rejoint le service apres
I'instant n (i.e. s,+) vient de 'orbite et I, = 0 8’il vient de lextérieur. N(c,,) est le nombre d’arrivées
de l'extérieur durant le temps de service o,.

D’apreés la formule (1.8), on a

P{L,, = 0|X (n) = k} — Afkg (2.12)
P(Ly = 11X(n) = k) = 5 f_‘)ka. (2.13)

Pour utiliser le critére de Foster on doit choisir une fonction test de Lyapunov convenable. On peut

choisir dans notre cas L(k) = k et calculer donc la dérive moyenne suivante en utilisant les formules
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(2.11) et (2.13)

BIX(n+1) - X(m)|X(n) = k] = B[-L, + Na()|X(n) = ]
— —BLJX(n) = k] + BN (0:) | X () = K

= —P{l, = 1|X(n) = k} + BNx(0n)]

ko
_ E
Nt B

ainsi
limg oo B[ X (n 4+ 1) — X(n)| X (n) = k] = —1 + AEo;.

Cette derniére limite est négative si et seulement si AMEo; < 1. En appliquant le critére de Foster
on obtient que la condition Aoy < 1 est suffisante pour 'ergodicité de la chaine de Markov induite
{X(n)}.

Pour montrer que AEo; < 1 est nécessaire pour 'ergodicité on utilise le critére pour la transience.

Puisque pour le systéme considéré on a X (n + 1) — X (n) > —1, et si AEo; > 1 alors

EX(n+1)—X(n)|X(n)=k = —)\+k9+/\E01
ko L= k6 -
T A+ kO T A+ kO

On obtient ainsi le résultat classique suivant (voir Falin et Templeton [12])

La chaine de Markov {X(n)} est ergodique si et seulement si AEo; < 1.

Si AEo; > 1 alors la chaine de Markov {X (n)} est transiente, et ainsi la file M/G/1/1 avec rappels de
politique linéaire est instable. Il n’existe pas de résultats de stabilité pour le cas AEo; = 1. Voir Deul
[9], Falin [14], Greenberg et Wolff [24].

M/G/1/1 avec clients impatients

Dans beaucoup de situations pratiques, les clients font des rappels un certain nombre (aléatoire) de
fois et quitte l'orbite sans obtenir de service. Ce genre de clients est appelé "impatient". Soit a,, la
probabilité qu'un client retourne a Iorbite aprés sa né™¢ tentative non réussie d’obtenir un service, et
quitte le systéme sans étre servi avec probabilité 1 — «,,. Dans le cas ot o, = a = 1 pour tout n > 1,

la condition de stabilité donnée par
apA\Eo; < 1,

a été montré par Falin [13].

Dans le cas a < 1, le systéme est stable si le temps moyen de rappels est fini (voir Fayolle et Brun
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[18]).
File M/M/s/s Deul [9], Falin [14] [15] et Hanschke [26] ont montré que la condition nécessaire et

suffisante de stabilité est
NEoq < s.

Ils ont utilisé une chaine de Markov incluse et le critére de Foster pour obtenir le résultat précédent.

2.3.2 Politique constante

Considérons maintenant le systéme M/G/1 avec politique de rappels constante. Les arrivées de
Pextérieur forment un processus de Poisson de parameétre A, les temps de services {0} sont i.i.d de
distribution générale et de moyenne finie Eo; et les temps de rappels de 'orbite sont de distribution

exponentielle de parametre 6. Le processus {X(n),n > 0} vérifie la récurrence
X(n+1)=X(n)—1I, + N\(on),

avec maintenant les relations suivantes pour I, :

Pl = 01X () = b} = 12,
P{L, = 1|X(n) = k} = o,
A+ 6
ainsi
E[X(n+1) — X(n)|X(n) = k] = Aie + AEo.

En appliquant le critére de Foster, on obtient que la condition AEoy < (6/(X + 0)) est suffisante pour
Pergodicité de la chaine de Markov induite {X (n)}.

Pour montrer que AEc; < 1 est nécessaire pour ’ergodicité, on utilise le critére pour la transience.
Donc, on peut énoncer le résultat suivant pour le systéme M/G/1 avec rappels et politique constante :

La chaine de Markov {X (n)} est ergodique si et seulement si :

AEo; < ——.

2.3.3 Politique de rappels versatile

La politique versatile est une combinaison des deux précédentes politiques que sont la politique
linéaire et la politique constante. La probabilité d’avoir un rappel durant l'intervalle de temps (¢, t+At),

sachant que j clients sont en orbite au temps t, est (0(1 — 6;) + jpu) At + o(At). Le systéme considéré

33



est toujours un M/G/1 avec cette derniére politique de rappels. La chaine de Markov modélisant le

systéme est toujours de la forme (2.11) avec pour k£ > 1

A
P{l, = 0|X(n) = k} = m,
_ _ O+ ku
P{Hn—llX(n)—k}—A+9+ku,
pour k = 0 il est évident que P{I,, = 0|X(n) =0} = 1.
On a donc
0+ ku
E[X(n+1)— X(n)|X(n) =k] = ———F 1 \E
X0+ 1) = X)X n) = ] =~ + Ao

et ainsi pour > 0 on a

limg oo E[X(n 4+ 1) — X(n)| X (n) = k] = —1 + AEo;.

(2.14)

(2.15)

La conclusion est donc la méme que pour la politique linéaire classique, i.e. La chaine de Markov

{X(n)} est ergodique si et seulement si A\Eo; < 1.

Pour ;1 = 0 on retrouve le cas de la politique constante.
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Chapitre 3

STABILITE DE MODELES AVEC
POLITIQUE DE RAPPELS
VERSATILE ET POLITIQUE DE
CONTROLE

3.1 Politique de Rappels Versatile

Considérons un systéme a une file d’attente avec rappels et un serveur dans lequel les clients
primaires entrent de l'extérieur aux temps {t;,7 = 1,2,...}. Soit 7; = t;11 — t; les temps successifs
d’inter-arrivées, i = 1, 2,... . Si le i®™¢ client arrivé trouve le serveur libre, il prend son service puis
quitte le systéme. Autrement, si le serveur n’est pas libre, le client arrivé rejoint immeédiatement
Porbite. La probabilité d’avoir un rappel durant U'intervalle de temps (¢,t + At), sachant que j clients
sont en orbite au temps t, est (0(1 — d,;) + jp) At + o(At). Cela signifie qu’aprés un temps aléatoire
de loi exponentielle de taux 6 (qu’on appelle temps de rappels de Porbite), indépendant du processus
d’arrivées, chaque client en orbite génére un flot Poissonien de tentative de rappels avec paramétre
1 et se comporte indépendamment des autres clients en orbite et du flux extérieur des arrivées. Ce
modele, introduit par Artalejo et Gomez-Corral [4], incorpore simultanément la politique de rappels
classique et la politique constante. Si 4 = 0, on obtient la politique de rappels constante de parameétre
0. Si le temps de rappels de 'orbite se termine avant une arrivée extérieure, alors un client de ’orbite
(le premier de la file ou un autre choisi aléatoirement) occupe le serveur. Le ném temps de service

est oy, et on suppose que 0 < Eo, < oco. On suppose durant toute cette section que la suite {0y}
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est stationnaire et ergodique, les suites des temps d’inter arrivées {7;} sont i.i.d. exponentiellement
distribués avec parameétre A. Les temps d’inter-arrivées, temps de rappels de l'orbite et temps de
rappels de chaque client en orbite sont mutuellement indépendantes et indépendantes de {o,}. Soit
X(t) le nombre de clients en orbite au temps t. On définit s,, comme étant I'instant de fin du (n—1)m¢
service. On considére le processus induit X(n) juste aprés le temps sp, (i.e., X(n) = X(s;)). Apres
la fin du (n — 1)éme service, une compétition entre deux lois indépendantes (puisque le temps de
rappels de l'orbite et les temps de rappels de chaque client en orbite sont indépendants du temps
d’inter-arrivée) exponentielles avec taux respectifs A et 6 + X (n)u déterminent le client suivant qui
va rejoindre le serveur. La probabilité qu’'un temps de rappel expire avant le temps d’inter-arrivée est
alors (0 4+ X (n)p)/ (A + 0 + X (n)p). Soit ul et u2 deux suites de variables aléatoires i.i.d distribuées
uniformément sur [0, 1], mutuellement indépendantes et indépendantes de la suite o,,. u' = {ul}
génére le processus des arrivées, et u? = {u2} génére le type d’arrivée (extérieur ou de I'orbite) a la
fin des périodes successives de services.

Soit [ : R4 x [0,1] — N Pinverse de la distribution de Poisson
=t exp(—t
H(t,x):inf <n€N:kZ_OeXZ()>x>. (3.1)

Ainsi J](¢,u)) est une variable aléatoire de Poisson de paramétre ¢.

3.1.1 Stabilité du Systéme

Le résultat suivant a été obtenu par Kernane et Aissani [27]

Théoréme 3.1 Soit un systéme M/G/1/1 avec rappels et politique versatile de paramétres (0, p), de
flux d’arrivées Poissonien de taux \ et de suite des temps de service {oy} stationnaire et ergodique.

Alors.

e Le processus X (n) = X(sp+) induit auzx instants de départs, satisfait la représentation sous forme

de SRS
X(n+1)=(X(n)+&,)7,

ou v = max|0, x| et &, est définit par

(3.2)

&0 = [[Oonud) 1 {ug o 0+ X }

A0+ X(n)p

e Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergodique si une des

conditions suivantes est satisfaite :
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1/60>0, p=0 et MEoy< sy,
2/0>0, u>0 et AEop <L

Preuve. Pour la construction de la SRS X(n), il faut noter seulement que la variable [J(Aop, ul)
compte le nombre d’arrivées pendant le temps de service o, et 'indicatrice I {u% < %} vaut
1 si un client de ’orbite a obtenue le service aprés le temps s, et vaut 0 si c’est un client de 'extérieur
qui I'obtient.

Pour la convergence couplée au sens fort du processus {X(n)}, considérons en premier le cas 6 > 0 et

=0, alors la suite (3.2) a la forme suivante

&0 = [[Onsut) —ﬂ{uz < Aﬁ@}

Puisque la suite {u’} est identiquement distribuée i = 1,2, et donc stationnaire, elle peut étre définie
pour tout entier —oo < n < oo . Définissons les o-algébres :

Fot = o(og,ub,ui, k < n) et FOU = o(og,up,ui, —0o < k < 00). Soit U Popérateur de translation
préservant la mesure des variables aléatoires F7-“-mesurables générées par {0y, u, u2, —co < n < oo}.
Puisque pour tout n € Z, la variable aléatoire &, est générée par {o,,up,u2}, alors &, = UE,, et
{£,, : —00 < n < oo} est stationnaire. De plus, puisque {0, : —00 < n < oo} est stationnaire et

ergodique, et la suite {,, : —00 < n < 0o} est compatible avec 'opérateur de translation U, la suite

{&, : —00 < n < oo} est ergodique. Nous avons

0

Donc si

0
AE -
1S NFo

est vérifiée alors E(,,) < 0. Sans perte de généralité, nous supposerons que X (0) = a > 0. Pour tout

choix de ng, les événements A,, = T™Ag, o Ay est donné par

no—1
Ag= (e + 4+ p <O e+ + &y < —ab, (33)
k=0 >1

forment une suite stationnaire d’événements de rénovation avec m = 0 et g(y) = y+.

En effet, pour n > ny,

X(n+1)=¢&F ps sur Ay
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Puisque E(,,) < 0 et la suite {,,} est stationnaire et ergodique, alors d’aprés la loi forte des grands
nombres de Birkhoff (1.4) pour les suites ergodiques, nous avons presque strement

) 1
lim —
n—soo n

-1
'Z & =B¢ <0,

=N

ce qui donne p.s.

lim (£, 4+...+&_,) = —oc.

n—-:o0

Ainsi, il existe un nombre ng = ng(a) tel que P(A,) > 0 pour n > ng. Si, d’autre part les événements

B,,, le nombre m, et la fonction ¢ : R™*! — R sont définis comme

m = no, BTL :TmAn7 9(9077ym) Ey:ﬁ;

alors les événements B,, € ‘7:5 +m sont de rénovation pour {X(n)} sur le segment [n,n + m] pour tout
n > 0. Donc, on peut supposer que ng = 0. La positivité des probabilités des B,, vient du fait que les

A, sont T-invariantes et cela est di a la stationarité de la suite {,, : —0o < n < oo}, donc
P(B,) =P(T™A,)

=P(A,) > 0.

Ainsi, la suite {X (n)} est couplée au sens fort avec une unique suite stationnaire

{X" =U"X}, ou XY est Fo % mesurable, obéissant 1’équation X" = (X" +¢,)7F.

Considérons maintenant le cas # > 0 et p > 0. Les événements de rénovation A, seront construits
maintenant en deux étapes. On va introduire au début une SRS majorante X (n)* sur le méme espace
de probabilité, qui va nous permettre d’obtenir des événements stationnaires de rénovation simples A7,
de probabilité positive, et les événements A, seront obtenus comme sous-ensembles de AY. La SRS

X(n)* a la forme suivante
X(0) = X(0), X(n+1)" = max(C, X (n)" +£5),

ol

Iy
3 %
Il
—~
>
)
3
e
5—/
=
—
I
S
AN

0+ Cu
A+0+Cu)
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La suite {£},} est mesurable par rapport & 77" et &, = U&,. On choisit la constante C telle que

E&; < 0, si la condition AEo; < 1 est vérifiée, on

0+Cpu

E(¢*) = Aoy — —
(€n) LT NI o+ COu

Donc, il existe des événements de rénovation Ay, = T™Af, n > ng, ot A} est défini comme (3.3) avec
la suite {&,}, et P(Af) > 0, tel que X (n)* = C sur ensemble A} pour tout n > ng. Définissons les

ensembles

0+ ku
— 1y 2 _
By = {H()\U—k’U_k;) =0, U < m, k=1, ,C} ,

B, =T"By.

Les ensembles A,, = A _~N B, forment une suite stationnaire d’événements de rénovation pour X (n),
puisque pour tout n > ng + C, nous avons sur A,, les valeurs X(n — k) < k, k = 0,1,...,C, et en
particulier, X(n) = 0. On doit montrer maintenant que les événements de rénovation A, sont de
probabilités strictements positives. Pour cela il suffit de montrer que P(Ag) > 0, car les ensembles A,
sont stationnaires. On a P(Ag) = P(A* ~)P(Bo|A* ), et puisque P(A* ) = P(T"Ag) = P(Aj) > 0, il
nous reste & montrer que P(Bg|A* ~) > 0. En suivant la démarche utilisée dans [2], et en I'adaptant a

la politique de rappels versatile, on a

CEoq
E(o_ AT ) < ———
(o_c+ ...+ 01| _C)_P(Aic)<oo
De plus
<0+ ku
P(Bnl A* - E —XNo_c+...+0-1) A*
(BolAZc) le |_d£1A+9+ku

C
> e ABO el ATo) T Agiu 50

Pt +0+kp

Ainsi, on a une suite stationnaire {A,} d’événements de rénovation de probabilités strictements po-
sitives pour la SRS X(n). Puisque la SRS X(n) vérifie une récurrence stochastique de la forme
X(n+1) = f(X(n),o0,), avec {o,} une suite stationnaire et ergodique, la convergence couplée au
sens fort du processus X (n) vers un régime stationnaire {X" = U"X°}, ou X© est F7* mesurable,
vérifiant X"t = f(X" 0,). L'ergodicité vient du fait que X" est compatible avec 'opérateur de

translation (shift) U. m
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3.1.2 Condition d’instabilité pour la politique de rappels constante

On peut montrer une condition d’instabilité pour la politique constante puisque dans ce cas le taux

de rappels ne dépend pas du nombre de clients en orbite.

Proposition 3.2 Soit un systéme M/G/1/1 avec rappels et politique constante i.e., @ > 0 et p = 0.
Si AXEoy > 0/(A + 0), alors le processus X(n) converge en distribution vers une distribution limite

mpropre.

Preuve. Si la condition AEo; > 6/(\ + 0) est vérifiée cela entaine que E(¢,,) > 0. la SRS X (n)
converge vers une limite impropre, i.e.

lim X(n)=+oc0 p.s.

n—-—uoo

3.2 Clients négatifs

Considérons maintenant une file d’attente avec un seul serveur et deux types d’arrivées : arrivées
réguliéres et arrivées négatives. Dans les systémes avec rappels, si un client régulier arrive et trouve
le serveur occupé, il rejoint l'orbite et refait sa tentative ultérieurement pour avoir un service apreés
un temps aléatoire, autrement, s’il trouve le serveur libre, il regoit son service et quitte le systéme. Si
un client négatif arrive dans un system occupé, il élimine immédiatement un client régulier de I'orbite
8’il y en a au moins un. Autrement, si le serveur est libre il n’a aucun effet sur le systéme. Le concept
des clients négatifs a été présenté par Gelenbe [22], qui a établi la solution sous forme de produit pour
un réseau de file d’attente comprenant des arrivées négatives aussi bien que les régulieres. Un rappel
des résultats et des situations pratiques peut étre trouvé dans Artalejo [3]. Gelenbe, Glynn et Sigman
[22] ont obtenu les conditions de stabilité pour deux modeles des arrivées négatives, 1’élimination du
client en service (RCS) et ’élimination du client a la queue de la file d’attente (RCT). Artalejo et
Gomez-Corral [5, 6] ont étendu les files d’attente avec des arrivées négatives a la situation ou les clients
réguliers suivent une politique de rappels. On suppose que les clients réguliers arrivent de I’extérieur
selon un processus de Poisson de taux A. L’accés au serveur a partir de ’orbite se fait selon la politique
de rappels versatile. Nous supposons que les temps de services {0, } des clients réguliers forment une
suite stationnaire et ergodique. Les clients négatifs arrivent dans le systéme selon un processus de
Poisson de taux J. Les suites des temps d’inter arrivées des clients réguliers, temps d’inter-arrivées

des clients négatifs, temps de rappels de lorbite et temps de rappels de chaque client en orbite sont
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indépendantes 1'une de l'autre et indépendantes de la suite {o,}. Soient {ul}, {u2},{ud} et trois
suites de variables aléatoires i.i.d distributées uniformément sur [0, 1], mutuellement indépendantes et
indépendantes de la suite {0, }. u! = {ul} engendrera le processus d’arrivées des clients réguliers,
u? = {u?} engendrera le processus d’arrivées des clients négatifs, et u> = {u} engendrera le type

d’arrivée qui rejoint le service (extérieur ou de l'orbite) a la fin des temps successifs de service.

3.2.1 Stabilité du Systéme

Théoréme 3.3 Soit un systéme M/G/1/1 avec clients négatifs et rappels de politique versatile de
parameétres (0, ), de flur d’arrivées Poissoniens pour les clients réguliers et négatifs de taur X et §

respectivements et de suite des temps de service {o,} stationnaire et ergodique. Alors,

i) Le processus X(n) = X (sp+) induit aux instants de départs, satisfait la représentation sous forme

de SRS
X(n + 1) = (X(?’L) =+ Cn - nn)+7
ot
0+ X
n =IOty - 1{ut < o201 (3.0
et

= [[ (60, u2).

ii) Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergodique si une des
conditions suivantes est satisfaite :

1. 0>0, p=0 et w1€;01<1,

2.0>0, p>0 et (A—0Eo <1

Preuve. Considérons le premier cas 6 > 0 et ;= 0. Alors la suite (3.4) a la forme suivante

eu=TT0onuy -1{ut < 25 ).

On définit les o-algebres " = ook, up, uz, us, k < n) et FOU = ook, up, ur, u3, —0o < k < 0c). Soit
U l'opérateur de translation préservant la mesure des variables aléatoires F7'“-mesurables engendrées
par {o,,ul,u2, ud, —00 < n < oo}. Puisque la suite (,, est engendrée par {o,,ul,ud} et n, est
engendrée par {o,,u2} alors ¢, et n, sont des suites stationnaires et ergodiques.

E((,, — ) = ANEo1 — (0/(A+60)) — 6Eo et si

(A= 8)(A+0)

9 Eoi < 1,
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alors nous avons E(¢,, —n,,) < 0.

Nous étudierons maintenant le cas > 0 et p > 0. Nous suivrons la méme méthode que pour les
deuxiémes parties des théorémes précédents en construisant une SRS majorante X*(n) définie comme
suit :

X*(0)=X(0), X*(n+1)=max(C,X*(n)+{, —n,),

ou
0+Cu
*:” mut) =Tl < —— 20 4

La suite {(}} est mesurable par rapport a F7" stationnaire et ergodique. Si (A — 0)Eo; < 1 on peut
facilement trouver une constante C telle que E(¢), —n,,) = (A—6)Boy — (0 +Cpu)/(A+ 60+ Cu)) <O0.

3.2.2 Condition d’instabilité pour la politique de rappels constante

Une condition d’instabilité peut étre obtenue dans le cas de la politique constante.

Proposition 3.4 Soit un systéme M/G/1/1 avec clients négatifs et rappels de politique constante i.e.,

0>0etp=0.95
A=0)(A+0)

0 Eoi > 1,

alors le processus X (n) converge en distribution vers une limite impropre.

3.3 Stabilité du modeéle avec politique de controéle des rappels

Considérons une file d’attente a un serveur avec des arrivées de 'extérieur aux temps {¢;,7 = 1,2, -}
suivant un processus de Poisson de taux A. On note par 7; = t;41 — t; les temps successifs d’inter-
arrivées, i = 1,2,--- Si le client arrivée trouve le serveur occupée il rejoint un orbite de capacité infinie.
S’il le trouve libre, il prend son service et quitte le systéme. L’accés de l'orbite au serveur suit une
politique de contréle des rappels, c-a-d, aprés la fin d’'un temps de service, on permet seulement au
client a la téte de la file d’attente de réessayer pour atteindre le service selon une distribution de
probabilité générale R(.), de densité r(.) et transformée de Laplace r*(6). Le n®™ temps de service
est o,, et on suppose que 0 < Eo, < co. Notons par {ay,} la suite des temps d’inter-rappels. On
suppose dans tout ce chapitre que la suite {0, } est stationnaire et ergodique. On suppose dans cette
section que les temps d’inter-arrivées {7;} sont i.i.d. de distribution exponentielle de parameétre \, les
suites {7;} et {a;} sont indépendante I'une de l'autre et de la suite {o,}. Soit X(t) le nombre de

clients en orbite au temps t. Pour tout ¢ > 0, on définit la variable aléatoire y(¢) comme le temps qui
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sépare l'instant t de la prochaine arrivée. Définissons s,, comme 'instant de fin du (n — 1) temps de
service. On considére le processus X(n) induit immédiatement apres le temps s, (i.e., X(n) = X (s,
)) et v(s;") = v,,. Soit {u,} une suite i.i.d de variables aléatoires de distribution uniforme sur [0,1],
indépendante de la suite o, et qui générera le processus des arrivées.

Soit [ l'inverse de la distribution de Poisson définie comme dans le chapitre précédant par la relation
(3.1).

Le processus X(n) satisfait & la relation récursive
X(n+1)=(X(n)+¢,)"

Théoréme 3.5 Supposons que NEoq1 < r*(\). Alors le processus X (n) est couplé au sens fort avec un
unique Tégime stationnaire ergodique.

Si AXEoy > r*(\), alors le processus X(n) converge en distribution vers une limite impropre.

Preuve. Définissons les og-algébres F, % = o (og, ug, ax, k < n) et FOU = o(ok, up, ag, —00 <
k < o0). Soit U lopérateur de translation des variables aléatoires F?"“- mesurables engendrées
par {0, u, a, —00 < k < oo} puisque la variable aléatoire &, est engendrée par {o,,ul,u2}, alors
Enp1 = UE, et {£,,—00 < n < oo} est stationnaire. De plus, puisque {o,,—0c0 < n < oo} est

stationnaire et ergodique et la suite {£,,, —00 < n < oo} est compatible avec 'opérateur U. On a
E(&,,) = AEoy — P(ap, < 7,,)-

Puisque les arrivées suivent un processus de Poisson alors le temps résiduel d’arrivée v,, est de distri-

bution exponentielle de taux A, et ainsi P(a,, < 7,,) = r*(A). Alors, si
AEo1 < r*(\)

est vérifiée on aura E(§,) <0. m

3.4 Modéle avec Clients Négatifs

Nous considérons maintenant la stabilité d’une file d’attente avec rappels et deux types d’arrivées,
régulier et négatif. Nous supposons que les clients réguliers arrivent de ’extérieur selon un processus
de Poisson de taux A. L’accés de 'orbite au serveur suit la politique de contréle. Nous supposons que
les temps de service {0, } des clients réguliers forment une suite stationnaire et ergodique. Les clients

négatifs arrivent selon un processus de Poisson avec taux . Les temps d’inter-arrivées des clients
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réguliers, les temps entre arrivées des clients négatifs et les temps de rappels sont indépendant de 'un
l'autre et de la suite {0, }. u! = {ul} engendrera le processus des arrivées des clients réguliers, et
u? = {u2} engendrera le processus des arrivées des clients négatifs a la fin des périodes successives de

service. Soit X (n) défini comme ci-dessus et il a maintenant la représentation suivante :
X(n+1)=(X(n)+ ¢, —n,)"

ou

Co = [[O0nuh) — o < 7). (3.5)

et

Mn = H(éan, uazm)

Proposition 3.6 Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergo-

dique si la condition suivante est vérifiée
(A= 0)Eo; < r*(N). (3.6)

Si (A= 0)Eoy > r*(\), alors X(n) converge en distribution vers une limite impropre.

Preuve. On considére les o-algébres " = o (og, u®) u}, u2, ap, k < n) et FO = g (o, up, u2, ap, —00 <
k < o) et U l'opérateur correspondant. Puisque la suite (,, est engendrée par {o,, ul, a, } et n,, est en-
gendrée par {o,,u2} alors (,, et 7,, sont stationnaires et ergodiques. E((,, —n,,) = ABo1 —r*(\) — dEoq

et si la condition (3.6) est vraie alors on a E(¢,, —7,) <0. =

3.4.1 Elimination par Groupes

Nous pouvons permettre des éliminations en lots des clients aux occurrences des arrivées négatives,
c’est & dire si une arrivée négative se produit au temps ¢; alors un groupe de taille aléatoire b; de clients
est éliminé de Porbite. Soit b la moyenne des tailles de clients éliminées et b(™ = (b,in), k=1,2..) les
tailles de clients éliminées qui se produisent pendant o,,. La SRS dans ce modéle aura la représentation

suivante

X(n+1) = (X(n) + ¢ —m) T,

ol

Co = [[O0n ) — Mo < 7). (3.7)
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et

H(écrn,u%)
k=1

Proposition 3.7 Le processus X(n) est couplé au sens fort avec un unique régime stationnaire ergo-

dique si la condition suivante est vérifiée
(A = 0b)Eoy < 7*(N). (3.8)

Si (A — 6b)Eoy > r*(N), alors X(n) converge en distribution vers une limite impropre.

Preuve. Semblable & la preuve de la proposition précédente, : en considérant les o-algébres
Fouba U(ak,uk,u%,b(k),ak,k: < n) et Fowbe = a(ak,u}g,u%,b(k)ak,—oo < k < o0) et en no-

tant que E(¢,, —7n,,) = ABoy —7*(\) — 6bEo. m
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