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Résumé 

 

" والأمثل الأقص ى التوليف مبدأ  " 
 :الملخص 

 

 لمعادلة C1 حلول  على التركيب هذا ويستند ، العادية التفاضلية المعادلة في المثلى التحكم لمشاكل مثاليًا توليفًا نقدم ، الأطروحة هذه في

 .بيلمان-جاكوبي-هاملتون 

 

  ،.الأمثل التوليف ، الأمثل التحكم : مفتاحية كلمات

 
 

« Principe du Maximum et Synthèse Optimale » 

Résumé : 

 

Dans ce mémoire, nous présentons une synthèse optimale pour les problèmes de contrôle 

optimal en équation différentielle ordinaire, cette synthèse est basée sur les solutions C1 

de l'équation de Hamilton-Jacobi-Bellman. 

 

Mots clés : contrôle optimal, synthèse optimale. 

 

« Principle of Maximum and Optimal Synthesis» 
Abstract : 

 

In this thesis, we present an optimal synthesis for optimal control problems in ordinary differential 

equation, this synthesis is based on the C1 solutions of the Hamilton-Jacobi-Bellman equation. 

 

Key words : optimal control, optimal synthesis. 
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Introduction

Les problèmes de contrôle en équation di¤érentielle ordinaire considèrés sont du

type 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

(P)cont

8>>>>>>>>>><>>>>>>>>>>:

inf
(x(:);u(:))

Z T

0

L(t; x(t); u(t))dt+ g(x(T ));

(EDO)c

8>>>>>><>>>>>>:
_x(t) = f(t; x(t); u(t)); pp t 2 [0; T ]

x(0) = x0;

u(:) 2 K;

x(:): [0; T ]! X est l�état du système,

u(:): [0; T ]! Z le contrôle,

avec X et Z des espaces de Banach.

Ils sont analysés pour des contrôles admissibles tels que u(t) 2 K; pp t 2 [0; T ]

et K � Z, en général compacts.

Au delà des conditions nécessaires d�optimalité l�analyse tente de réaliser ce que

l�on appelle une synthèse optimale qui consiste a dégager des procédures de calcul du

contrôle optimal et ceci quelque soit la condition initiale (t0; x(t0) ).

Nous nous proposons dans ce travail de montrer que hors le cas classique des

problèmes linéaires quadratiques à contrôle libres la synthèse optimale est di¢ cile a
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réaliser.

Cependant par les solutions dites de viscosité il sera possible d�avancer sub-

stantiellement dans la réalisation d�une telle synthèse.

Le travail est organisé en trois chapitres.

Après un rappel rapide d�optimisation abstraite, le problème (P)cont est ramené à

la forme abstraite au précisant les espaces fonctionnels et les hypothèses générales de

travail.

Les conditions de régularité sont analyseés du point de vue de la contrôlabilité

et les conditions d�optimalité sont obtenues à partir de leur expression abstraite.

Ceci termine ce premier chapitre. Dans le second nous montrons la limite de la

synthèse optimale que ce soit à partir des conditions d�optimalité, ou du problème aux

limites (état-état adjoint) ou en�n à partir du principe du Maximum. Nous verrons

alors l�intérêt majeur d�approche par l�équation Hamilton Jacobi Bellman (HJB)

pour laquelle l�hypothèse de di¤érentiabilite C1 de la fonction valeur (essentielle pour

l�équation).

Dans le troisième chapitre seront considérés quelques aspects numériques de calcul

de la fonction valeur.



Chapter 1

Optimisation abstraite et Contrôle

Optimal en équation di¤érentielle

ordinaire.

1.1 Principes généraux d�optimisation abstraite.

Soient X est un espace de Banach, D un fermé dans X appelé domaine. Considèrons

un problème d�optimisation abstrait de la forme :

(P)
�
inf '(x)

x 2 D :

La fonction '(:) : X ! R est appelée fonction coût, objectif ou critère. Tout

point x 2 X véri�ant : x 2 D, est appelé point admissible ou point réalisable du

problème (P).

Chercher une solution du problème avec contraintes (P) revient à chercher un
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point de minimum local de ' dans l�ensemble des points admissibles, au sens de les

dé�nitions suivantes :

De�nition 1.1 (Optimal local) On dit que �x est maximum local (resp minimum

local) de '(:) si

9r > 0 tel que 8x 2 B(�x; r) : '(x) � '(�x)

(resp ' (x) � ' (�x), 8 x 2 B(�x; r)).

De�nition 1.2 (Optimal global) On dit que �x est maximum global (resp minimum

global) de '(:) si

8x 2 D : '(x) � '(�x)

(resp 8x 2 D : '(x) � '(�x)):

Remarque :

Tout point de minimum global est aussi local.

1.2 Quelques éléments géométriques.

Cône et cône tangent à D

De�nition 1.3 T � X est dit un cône si : 8x 2 T; 8� � 0 : �x 2 T:Autrement dit :

�T � T; 8� � 0:



9

De�nition 1.4 1) Soient �x 2 D; v 2 X est un vecteur tangent à D en �x si 9 xn ! �x

dans D; 9 �n � 0 tels que

lim
n!+1

�n ( xn � �x) = v.

2) T (D; �x) sera l�ensemble des vecteurs tangents à D en �x:

Proposition 1.5 T (D; �x) est un cône non vide fermé.

Remarque :

Le cône tangent est un concept essentiel pour l�écriture des conditions d�optimalité.

Il sert à linéariser l�ensemble admissible au point optimal �x.

1.3 Condition d�optimalité.

Theorem 1.6 Soit '(:) di¤érentiable et �x minimum local du problème (P). Alors :

'
0
(�x) (v) � 0;8v 2 T (D; �x):

1.4 Cas d�un domaine explicité.

Soient D = fx 2 X =F (x) = 0Y g avec Y est un espace de Banach et F : X ! Y de

classe C1.

Theorem 1.7 (Lyusternik) Soit x 2 D; si ImF 0(x) = Y alors

T (D; x) = kerF 0(x):

Ceci rapproché du théorème d�optimalité mène a:
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Theorem 1.8 (Optimalit�e cas C1) On suppose que

1) ' et F sont C1;

2) �x est minimim local de (P);

3) ImF 0(�x) = Y:

Alors 9 y� 2 Y � tel que

(K � T )

�
'0(�x) + (F 0(�x))� y� = 0X� ;

F (�x) = 0Y :

Remarque :

La preuve s�appuie essentiellement sur le théorème de Lyusternik ci dessus.

1.5 Formulation Lagrangienne.

Le système (K � T ) suggère naturellement l�introduction de la fonctionnelle dite

Lagrange

L : X � Y � ! R telle que L(x; y�) = '(x) + y� (F (x))

Le théorème 1.8 s�exprime alors comme suit:

Theorem 1.9 (Optimalit�e Lagrangien) Sous les hypothèses du théorème 1.8 ci

dessus 9 �y� 2 Y � telle que

(K � T )L

�
L
0
x(�x; �y

�) = 0X�

L
0
y(�x; �y

�) = 0Y .
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1.6 Cas de Contrôle Optimal en équation di¤éren-

tielle ordinaire.

Nous noterons pour simpli�er (EDO) pour dire équation di¤érentielle ordinaire.

Soient X, Z deux espaces de Banach. Le problème considéré sera de la forme :

(P)cont

8>>>>>>>>>><>>>>>>>>>>:

inf
(x(:);u(:))

Z T

0

L(t; x(t); u(t))dt+ g(x(T ));

(EDO)c

8>>>>>><>>>>>>:
_x(t) = f(t; x(t); u(t)); pp t 2 [0; T ]

x(0) = x0;

u(:) 2 U

Où (EDO)c signi�e (EDO) contrôlée.

L�ensemble des contrôles U est tel que :

u(:) 2 U ,

8>><>>:
u(:) : [0; T ]! Z mesurable et

u(t) 2 K pp t 2 [0; T ] ,

avec K un convexe fermé borné dans Z:

1.7 Les espaces fonctionnels de travail.

Pour q 2 [1;+1] ; on considère

L�espace de Lebesgue Lq(0; T ;X)

x(:) 2 Lq(0; T ;X) signi�e x(:) : [0; T ]! X mesurable et

Z T

0

kx(t)kqX dt < 1, 8 q 2 [1;+1[ .
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Proposition 1.10 1) Lq (0; T ;X) muni de la norme kx(:)kLq(0;T ;X) =
�Z T

0

kx(t)kqX dt

� 1
q

est un espace de Banach.

2) 8q 2 [1;+1[ ; le dual topologique de Lq(0; T ;X) est donné par Lq�(0; T ;X�)

où X� est le dual topologique de X et
1

q
+
1

q�
= 1:

L�espace de Lebesgue L1(0; T ;X)

x(:) : [0; T ] �! X mesurable et 9M = kx(t)kX �M pp t 2 [0; T ] :

Proposition 1.11 1) kx(:)kL1(0;T ;X) = inf fM / kx(t)kX �M pp t 2 [0; T ]g est

une norme pour L1(0; T ;X).

2) L1(0; T ;X) est complet pour cette norme.

L�espace de Sobolev W 1;q(0; T ;X)

x(:) 2 W 1;q(0; T ;X) si

1) _x(:) existe pp t 2 [0; T ],

2) _x(:) 2 Lq(0; T ;X),

3) 8t0 2 [0; T ] ; 9 � 2 X Tel que 8t 2 [0; T ],

x(t) = �+

Z t

t0

_x(s)ds:

Proposition 1.12 1) 8q 2 [1;+1[ ;W 1;q(0; T ;X) est un espace de Banach pour la

norme

kx(:)kW 1;q(0;T ;X) =
�
kx(:)kqLq(0;T ;X) + k _x(:)k

q
Lq(0;T ;X)

� 1
q
:
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2) x(:) 2 W 1;1(0; T ;X),

8>><>>:
a) _x(:) existe pp t 2 [0; T ] ;

b) _x(:) 2 L1(0; T ;X):

3) 8q 2 [1;+1[ ; le dual topologique de W 1;q(0; T ;X) est l�espace W 1;q�(0; T ;X�)

avec X� est le dual topologique de X et
1

q
+
1

q�
= 1:

1.8 Hypothèses sur le problème (P)cont

(H1) g : X ! R; de classe C1;

(H2) L : R�X � Z ! R;et f : R�X � Z ! X, C1carathéodory,

c�est à dire:

8(a; b) 2 X � Z : f(:; a; b) et L (:; a; b) sont mesurables et f(t; :; :) et L(t; :; :) sont

C1sur X � Z pp t 2 [0; T ],

(H3) f(t; :; :) et L(t; :; :) sont bornées sur les bornés de X � Z,

(H4) kf(t; a; b)� f(t; �a; b)k � c ka� �ak (c ne dépend pas de t et b) ;

(H5) kf(t; a; b)kX � c (1 + kakX + kbkY ) pp t 2 [0; T ] :

Proposition 1.13 Sous les hypothèses (H1)_(H5); 8q 2 [1;+1] ; 8u(:) 2 Lq(0; T ;Z);

8x0 �xé, 9x(:) solution de (EDO)c et x (:) 2 W 1;q(0; T ;X):

Remarque :

(H1)_(H4) assurent l�existence locale de la solution et (H5) permet de la prolonger

sur [0; T ] :
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1.9 Réduction à la forme abstraite.

Nous ferons l�étude avec u (:) 2 L1 (0; T ;Z) et x (:) 2 W 1;1 (0; T ;X), le cas général q

2 ]1;+1[ se traite de la même manière.

Pour cela considérons:

1)

'1; '2 : W 1;1(0; T ;X)� L1(0; T ;Z)! R dé�nis par

'2(x(:); u(:)) =

Z T

0

L(t; x(t); u(t))dt

'1(x(:); u(:)) = g(x(T )):

2) Pour Y = L1 (0; T ;Z) � X on considère

 : W 1;1(0; T ;X)� L1(0; T ;Z)! Y dé�nie par

 (x(:); u(:)) =

�
h1 (:)

h2 (:)

�
;

avec 8>><>>:
h1(x(:); u(:))(t) =

:
x(t)� f(t; x(t); u(t)) pp t 2 [0; T ] et

h2(x(:); u(:)) = x (0)� x0:

Le problème (P)cont prend alors la forme abstraite:

(P)

8>>>>>><>>>>>>:
inf '(x(:); u(:))

 (x(:); u(:)) = 0L1�X

u(:) 2 U :
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avec ' = '1 + '2.

Notons par D le domaine de (P) c�est à dire

(x(:); u(:)) 2 D ()

8>>>>>><>>>>>>:
1) x(:) 2 W 1;1(0; T ;X); u(:) 2 L1(0; T ;Z),

2)  (x(:); u(:)) = 0L1�X ,

3) u(:) 2 U :

1.10 Condition d�Optimalité.

Le théorème 1.6 d�optimalité général nécessite la di¤érentiabilité des fonctionnelles '

et  :

Proposition 1.14 Sous (H1) et (H2), ' est di¤érentiable avec

'
0
= '

0

1+'
0

2 o�u

8>><>>:
'
0
1(x(:); u(:)) (v(:); w(:)) = g

0
(x(T ))(v(T ))

'
0
2(x(:); u(:)) (v(:); w(:)) =

Z T

0

La(t; x(t); u(t))(v(t))dt+

Z T

0

Lb(t; x(t); u(t))(w(t))dt:

Le théorème1.6 d�optimalité pour (P) s�exprime alors par:

Theorem 1.15 On suppose que:

1) (H1)__(H5) sont satisfaites

2) (�x(:); �u(:)) est minimum local pour le (P)cont:

Alors '
0
(�x(:); �u(:)) (v(:); w(:)) � 0 8 (v(:); w(:)) 2 T (D; (�x(:); �u(:))):
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Analyse du cône tangent T (D; (�x(:); �u(:)))

Le domaine de (P) est de la forme D = D1 \D2 avec

(x(:); u(:)) 2 D1 () D1 =

8>><>>:
(x(:); u(:)) 2 W 1;1(0; T ;X)� L1(0; T ;Z) et

 (x(:); u(:)) = 0L1�X .

9>>=>>;
(x(:); u(:)) 2 D2 () D2 =

�
(x(:); u(:)) 2 W 1;1(0; T ;X)� L1(0; T ;Z) et u(:) 2 U .

	

Hypothèse de régularité :

(H6) T (D; (�x(:); �u(:))) = T (D1; (�x(:); �u(:))) \ T (D2; (�x(:); �u(:))):

Nous analyserons plus loin cette hypothèse.

Proposition 1.16 Sous les hypothèses (H1)__ (H6) l�opérateur  donné par

 (x(:); u(:)) =

�
h1(x(:); u(:))

h2(x(:); u(:))

�
est Frechet di¤érentiable  0(x(:); u(:)) (v (:) ; w (:)) =

1) h
0
1(x(:); u(:)) (v (:) ; w (:)) (t) = _v (t)� A (t) (v (t))�B (t) (w (t)) ppt 2 [0; T ]

où 8>><>>:
A(t) = f 0

a(t; x(t); u(t))

B(t) = f 0
b(t; x(t); u(t))

2) h
0
2(x(:); u(:)) (v (:) ; w (:)) = v (0) :

Remarque :

Nous savons qu�en général

T (D1; (�x(:); �u(:))) � ker 0(�x(:); �u(:)).
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De�nition 1.17 (Syst�eme Lin�earis�e) On appelle système linéarisé en (�x(t); �u(t)) 2

D, le système suivant

(Sys)lin

8>><>>:
_v(t) = A(t)v(t) +B(t)w(t) pp t 2 [0; T ]

v(0) = 0X ,

où

A(t) = f 0a(t; �x(t); �u(t)) et B(t) = f 0b(t; �x(t); �u(t)):

Theorem 1.18 Si le système linéarisé en (�x(:); �u(:)) est complètement contrôlable

alors

 0(x(:); u(:)) : W 1;1(0; T ;X)� L1(0; T ;Z)! Y est surjectif

et

T (D1; (x(:); u(:))) = ker 
0(x(:); u(:)):

Sachant que D2 = W 1;1(0; T ;X)� U , il est clair que

T (D2; (x(:); u(:))) = W 1;1(0; T ;X)� T (U ; u(:)):

Tout revient donc à expliciter T (U ; u(:)):

Proposition 1.19

w(:) 2 T (U ; u(:))) w(t) 2 T (K; u(t)) ppt 2 [0; T ] :

Proof. Soit w(:) 2 T (U ; u(:)) alors par dé�nition il existe un(:) 2 U tel que

un(:)
L1! u(:) et �n � 0; �n (un(:)� u(:))

L1! w(:):

On sait alors que
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1) 9N1 � N tel que

un(:)
K!

n!+1
n2N1

u(:) ppt 2 [0; T ] et

2) 9N2 � N1 tel que

�n (un(:)� u(:)) !
n!+1
n2N2

w(:):

Par conséquent:

un(t)
K!

n!+1
n2N2

u(t) et �n (un(t)� u(t)) !
n!+1
n2N2

w(t) pp t 2 [0; T ] :

Ainsi

w(t) 2 T (K; u(t)) ppt 2 [0; T ] :

Conditions d�Optimalité :

Sous (H6) et nous savons alors grâce au théorème 1.6 que 8(v (:) ; w (:)) tels que :8>><>>:
v(:) 2 W 1;1(0; T ;X); w(:) 2 T (U ; �u(:)) et

 0a(�x(:); �u(:))(v(:)) +  
0
b(�x(:); �u(:))(w(:)) = 0X� :

Alors

'
0
(�x(:); �u(:)) (v(:); w(:)) � 0:

Le théorème 1:9 mène alors à :

9y� = (y (:) ; �) 2 Y � avec Y � = L1 (0; T ;X�)�W 1;1 (0; T ;X�) tel que

'
0
(�x(:); �u(:)) (v(:); w(:)) + (( 0(�x(:); �u(:)))

�
y�) (v(:); w(:)) = 0R
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c�est -à-direZ T

0

L
0

a(�x(t); �u(t))(v(t)) + L
0

b(�x(t); �u(t))(w(t))dt+ g0(�x(T )) (v(T )) = 0

+

Z T

0

hy�;  0a(�x(t); �u(t))(v(t)) +  0b(�x(t); �u(t))(w(t))iY Y � dt 8 (v(:); w(:))

Ainsi pour:

1) (v(:); w(:)) = (v(:); 0) on obtient :

'
0

a(�x(:); �u(:)) (v(:); w(:)) +
�
( 0a(�x(:); �u(:)))

�
y�
�
(v(:); w(:)) = 0R

c�est à dire8v(:) 2 W 1;1(0; T ;X)

hN0; v(T )iXX�+ h�; v(0)iXX�+

Z T

0

la(t)(v(t))dt+

Z T

0

hy (t) ; _v(t)� A(t)v(t) i dt = 0R

(1.1)

avec 8>>>>>><>>>>>>:
la(t) = L0a(t; �x(t); �u(t));

N0 = g0(x(T )),

A(t) = f 0
a(t; �x(t); �u(t)):

L�égalité (1:1) prend la forme 8v(:) 2 W 1;1(0; T ;X) on a :

hN0; v(T )i
XX�

+h�; v(0)i
XX�

+

Z T

0

y (t) ( _v(t))dt+

Z T

0

hla (t)� A�(t)y(t); v (t) i
XX�

dt = 0R.

(1.2)

Calculons par parties les intégrales suivantes :Z T

0

hla(t); v(t)iXX� dt etZ T

0

hA�(t)y(t); v(t)i
XX�

dt.
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Si q(t) =
Z T

t

la(s)ds alors _q(t) = �la(t) et

Z T

0

la(t)(v(t))dt =

Z T

0

q(t)( _v(t))dt� hq(0); v(0)iRn

si �(t) =
Z T

t

A�(s)y(s)ds alors _�(t) = �A�(t)y(t) et

�
Z T

0

(A�(t)y(t))(v(t))dt = �
Z T

0

�(t)( _v(t))dt+ h�(0); v(0)iRn :

Par ailleurs, comme v(:) 2 W 1;1(0; T ;X), v(T ) = v(0) +

Z T

0

_v(s)ds:

Par suite

hN0; v(T )i
XX�

= hN0; v(0)i
XX�

+

Z T

0

N0( _v(t))dt

donc (1:2) devient :

Pour tout v (:) 2 W 1;1(0; T ;X);

hN0 + �(0) + �� q(0); v(0)i
XX�

+

Z T

0

hq(t) +N0 + y (t)� �(t); _v(t)iXX� dt = 0R.

D�après un théorème général de Riesz [6:p 81.Th 5 ] on a :8>><>>:
�� q(0) +N0 + �(0) = 0X

y (t)� �(t) +N0 + q(t) = 0X� pp t 2 [0; T ]

ce qui donne

y(t) = �g0(x(T ))�
Z T

t

la(s)ds+

Z T

t

A�(s)y(s)ds pp t 2 [0; T ] :
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Il est alors clair que y (:) 2 W 1;1(0; T ;X�) et donc8>><>>:
_y(t) = la(t)� A�(t)y(t) pp t 2 [0; T ]

y(T ) = �g0(x(T )).

2) Pour (v(:); w(:)) = (0; w(:)) ; on obtient :

'
0

b(�x(:); �u(:)) (v (:) ; w(:)) + ( 
0
b(�x(:); �u(:)))

�y�)(v (:) ; w(:)) � 0 8 w(:) 2 T (U ; �u(:))

c�est-à-dire

Z T

0

hlb(t)�B�(t)y(t); w(t)i
Y Y �

dt � 0 ; 8w(:) 2 T (U ; �u(:))

avec 8>><>>:
lb(t) = L0b(t; �x(t); �u(t))

B(t) = f 0b(t; �x(t); �u(t))

la proposition 1.8 donne alors

8w(:) =w(t) 2 T (K; u(t)) pp t 2 [0; T ]

on a : Z T

0

hlb(t)�B�(t)y(t); w(t)i
Y Y �

dt � 0:

Proposition 1.20 Soit d(t) = lb(t)�B�(t)y(t). Si

Z T

0

hd(t); w(t)i
Y Y �

dt � 0;8w(:) = w(t) 2 T (K;u(t)) pp t 2 [0; T ] . (1.3)

Alors

d(t) 2 T (K;u(t))� pp t 2 [0; T ] .
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Proof. Pour w(t) = b 2 K; 8t 2 [0; T ], w (:) 2 L1(0; T ;Z) car I = [0; T ] est

compact, et donc

(1:3) () inf
w(:)2T (U ;�u(:))

Z T

0

hd(t); w(t)i
Z
dt � 0

par un théorème de sélection mesurable [17] on a :

inf
w(:)2T (U ;�u(:))

Z T

0

hd(t); w(t)i
Z
dt =

Z T

0

inf
b2T (K;�u(t))

hd(t); bi
Z
dt � 0

par suite :

hd(t); bi
Z
� 0 pp t 2 [0; T ] ;8b 2 K

c�est-à-dire

d(t) 2 T (K; �u(t)) pp t 2 [0; T ] :

Sachant que

Z t

0

�(r)dr � 0 8t 2 [0; T ]) �(t) � 0 pp t 2 [0; T ]

on a :

hd(t); bi
Z
� 0 8b 2 T (K; �u(t)) pp t 2 [0; T ] ,

c�est-à-dire

d(t) 2 T (K; �u(t))� pp t 2 [0; T ] :

En conclusion nous avons le théorème
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Theorem 1.21 On suppose :

1) (H1)__ (H6) satisfaites,

2) (�x(:); �u(:)) 2 W 1;1(0; T ;X)� L1(0; T ;Z) est minimum local de (P)cont,

3) Le système linéarisé en (�x(:); �u(:)) est complètement contrôlable.

Alors 9 y(:) 2 W 1;1(0; T ;X�) tel que

(EDO)�

8>>>>>><>>>>>>:
_y(t) = �A�(t)y(t) + la(t),

�B�(t)y(t) + lb(t) 2 T (K; �u(t))�,
pp t 2 [0; T ]

y(T ) = �g0(x(T )),

avec

A(t) = f 0
a(t; �x(t); �u(t)), B(t) = f 0

b(t; �x(t); �u(t)),

la(t) = L0a(t; �x(t); �u(t)), lb(t) = L0b(t; �x(t); �u(t)).
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Chapter 2

Autour de la Synthèse Optimale.

2.1 Synthèse état�état adjoint.

Ce paragraphe est consacré á des tentatives de synthèse optimale pour faire ressortir

les limites des di¤érentes approches.

Soit
�
z(:) =

0BB@ �x(:)

y(:)

1CCA ;
�
z(:) est solution du problème aux limites contraint suivant

(Plim)

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

_z(t) = F (z(t); �u(t)); pp t 2 [0; T ]

z(0) =

0BB@ �x(0)

y(0)

1CCA ;

z(T ) =

0BB@ �x(T )

y(T )

1CCA ,
�(z(t); �u(t)) 2 T (K; �u(t))� pp t 2 [0; T ] ;

25
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avec

F (z(t); �u(t)) =

0BB@ f(t; �x(t); �u(t))

�A�(t)y(t) + la(t)

1CCA
�(z(t); �u(t)) = �B�(t)y(t) + lb(t):

Remarque :

Il n�est pas possible même sans la contrainte dé�ni par � (:; :) de résoudre (Plim)

car y(0) et �x(T ) sont indéterminés.

Nous allons voir dans le paragraphe suivant que même pour le cas linéaire quadra-

tique des di¢ cultés persistent.

2.1.1 Cas linéaire quadratique.

Il correspond au cas où X, Z sont des espaces de Hilbert et

8>>>>>><>>>>>>:
L(t; a; b) = 1

2
ha;R(t)aiX + 1

2
hb;Q(t)biZ ,

g(�) = 1
2
h�; F �iX ,

f (t; a; b) = A(t)a+B(t)b;

avec

R(t) 2 L(X;X) symétrique,

Q(t) 2 L(Z;Z) symétrique,

F 2 L(X;X) symétrique,

A(t) 2 L(X;X) et B(t) 2 L(Z;X):
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Le système d�optimalité devient :

Opt(LQR)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

:
�x(t) = A(t)�x(t) +B(t)�u(t)

_y(t) = �A�(t)y(t) +R(t)�x(t)

pp t 2 [0; T ]

�x(0) = x0

y(T ) = F �x(T )

�B�(t)y(t) +Q(t)�u(t) 2 (T (K; �u(t)))� pp t 2 [0; T ] : (2:1)

Remarque :

Le système Opt (LQR) ne peut être résolu du fait de la contrainte (2:1) et la

synthèse n�est donc pas possible.

2.1.2 Cas linéaire quadratique à controles libres.

Il correspond au cas où K = Z, c�est-à-dire la contrainte (2:1) devient alors

�B�(t)y(t) +Q(t)�u(t) = 0 ppt 2 [0; T ] :

Si on suppose que Q(t) est inversible pp t 2 [0; T ] :Alors

�u(t) = Q�1(t)B�(t)y(t) pp t 2 [0; T ] :

Remarque :

Les hypothèses classiques sur Q(:) sont généralement Q(t) symétrique uniformé-

ment dé�nie positive c�est-á-dire :

9� > 0 / Q(t) (a; a) � � k a k2 pp t 2 [0; T ] :
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En remplaçant l�expression de �u(t) dans la système Opt (LQR); on obtient le

système réduit à :

(LQR)r�eduit

8>>>>>>>>>><>>>>>>>>>>:

:
�x(t) = A(t)�x(t) +B(t)Q�1(t)B�(t)y(t),

_y(t) = �A�(t)y(t) +R(t)�x(t),

pp t 2 [0; T ]

�x(0) = x0,

y(T ) = F �x(T ).

C�est encore un problème aux limites en

0BB@ �x(:)

y(:)

1CCA qui peut théoriquement être

résolu par la méthode du tir mais dont nous pouvons éviter la résolution grâce au

principe du découplage qui consiste à rechercher y(:) sous la forme :

y(t) = m(t)�x(t),

avec m(t) : X ! X et m(:) di¤érentiable.

Ainsi

_y(t) = _m(t)�x(t) +m(t)
:
�x(t): (2.2)

Les équations du système (LQR)r�eduit deviennent8>><>>:
:
�x(t) = (A(t) +B(t)Q�1(t)B�(t)m(t))

_
x(t)

_y(t) = (R (t)� A� (t)m(t))
_
x(t)

pp t 2 [0; T ] .

En remplaçant les expressions de
:
�x(t) et _y(t) dans (2:2) on aboutit à 8�x (:) 2

W 1;1(0; T ;X)

�
_m(t) +m(t)A(t) +m(t)B(t)Q�1(t)B�(t)m(t)�R (t) + A� (t)m(t)

� _
x(t) = 0 pp t 2 [0; T ] :
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Par ailleurs

y(T ) = m(T )x(T ) = Fx(T ); 8x(:) 2 W 1;1(0; T ;X):

Ce qui mène aisément à l�équation de Riccati :

(Riccati)

8>><>>:
_m(t) +m(t)A(t) +m(t)B(t)Q�1(t)B�(t)m(t) + A�(t)m(t)�R(t) = 0L(X) pp t 2 [0; T ]

m(T ) = F .

Conclusion :

La synthèse optimale est alors possible et s�e¤ectue comme suit:

1) Résoudre l�équation de Riccati, on obtient m (:) :

2) Résoudre l�équation :8>><>>:
:
�x(t) = S(t)�x(t) pp t 2 [0; T ]

�x(0) = x0

on obtient l�état �x () ; avec

S(t) = A(t) +B(t)Q�1(t)B�(t)m(t).

3) Le contrôle optimal est alors sous la forme feedback :

�u(t) = Q�1(t)B�(t)m(t)�x(t).

Conclusion sur la synthèse optimale

Ainsi une synthèse optimal n�est possible qu�en situation Hilbertienne pour les

systèmes linéaires quadratiques à contrôles libres.

Et donc pour des situations di¤érentes de celle qui précède d�autres approches

sont nécessaires.
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2.2 Principe du Maximum (PM) :

2.2.1 Fonction de Pontryaguine.

Soient X et Z des espaces de Banach .

De�nition 2.1 On appelle fonction de Pontryaguine la fonction

H(:; :; :; :) : R�X � Z �X� ! R =

H(t; a; b; c) = hc; f(t; a; b)iXX� � L(t; a; b):

Theorem 2.2 (P:M)

Soient (�x(:); �u(:)) optimal local et �y(:) l�état adjoint associé alors pour tout t point

de continuité du contrôle �u(:); nous avons :

H(t; �x(t); �u(t); �y(t)) = max
b2K

H(t; �x(t); b; �y(t)):

2.2.2 Problème Feedback.

C�est le problème :

Pfeed

�
sup
b2K

H(t; a; b; c):

Considérons l�opérateur multivoque dit minimiseur associé:

M : [0; T ]�X �X� � K dé�ni par

M(t; a; c) =
�
b 2 K = solution optimale de Pfeed

	
:
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Theorem 2.3 (Principe du Feedback) Tout état optimal �x(:) et tout état adjoint

_
y (:) sont reliés aux contrôles optimaux correspondants par le principe du Feedback:

�u(t) 2M(t; �x(t);
_
y(t)); ppt 2 [0; T ] :

Si Pfeed admet une solution unique alors le minimiseur M (:; :; :) est univoque et

le contrôle optimal Feedback est unique.

2.2.3 Limite de l�approche par le Principe du maximum.

Le principe du Maximum permet en principe d�obtenir le contrôl optimal �u(:) en fonc-

tion de l�état �x(:) et de l�état adjoint y(:), mais ceci n�est qu�une résolution théorique

qui nécessite de coupler les équations d�états du problème (P )cont, à celles de l�état

adjoint y(:) et nous renvoie donc à des di¢ cultés de même ordre que celui du para-

graphe de la synthèse état - état adjoint (2:1).

La dernière approche que nous allons présenter rassemble les travaux de Hamilton

Jacobi et Bellman et présente l�avantage de mener à des synthèses optimales même

pour des contrôles contraints.
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2.3 Théorie d�Hamilton-Jacobi-Bellman (HJB).

2.3.1 Paramétrisation par la condition initiale.

Le problème (P )cont initial est plongé dans une famille de problèmes du même type à

deux paramètres (t; z) 2 [0; T ]�X comme suit :

P (t; z)cont

8>>>>>>>>>><>>>>>>>>>>:

inf
(x(:);u(:))

Z T

t

L(s; x(s); u(s))ds+ g(x(T ))

_x(s) = f(s; x(s); u(s)) pp s 2 [t; T ]

x(t) = z

u(:) 2 U[t;T ] = fu(:) 2 L1(t; T ;Z)= u(s) 2 Kg :

On notera par D(t; z) le domaine du problème P(t; z)cont

(x(t); u(t)) 2 D(t; z),

8>>>>>><>>>>>>:
x(:) 2 W 1;1(t; T ;X), u(:) 2 L1(t; T ;Z)

_x(s) = f(s; x(s); u(s)) pp s 2 [t; T ] et

x(t) = z:

P(t; z)cont est un problème du contrôle paramétré par la condition initiale (t; z).

2.3.2 Fonction de Bellman.

C�est la fonction valeur de P(t; z)cont c�est à dire :

V (:; :) : [0; T ]�X ! R donnée par :

V (t; z) = inf
(x(:);u(:))2D(t;z)

Z T

t

L(s; x(s); u(s)) ds+ g(x(T ))
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Theorem 2.4 (Equation Hamilton� Jacobi�Bellman) Si V (:; :) est continument

di¤érentiable alors V (:; :) est solution de l�équation aux dérivés partielles dite (HJB):

(HJB)

8>><>>:
�@V

@t
(t; z) = inf

b2K

�

@V
@z
(t; z); f(t; z; b)

�
XX� + L(t; z; b)

	
V (T; z) = g(z):

Proof. Pour h petit, décomposons le contrôle u(:) en :

u(s) = u1(s) + u2(s)

avec

u1(s) =

8>><>>:
u(s) sur ]t; t+ h[

0 sur [t+ h; T [

u2(s) =

8>><>>:
0 sur ]t; t+ h[

u(s) sur [t+ h; T [

La solution x(:) se décompose en :

(EDO)1

8>><>>:
_x1(s) = f(s; x(s); u1(s)) s 2 ]t; t+ h[

x1(t) = y.

(EDO)2

8>><>>:
_x2(s) = f(s; x(s); u2(s)) s 2 [t+ h; T [

x2(t+ h) = x1(t+ h).

par suite

V (s+ h; x2(s+ h)) = V (s+ h; x1(s+ h))

= inf
u2(:)

Z T

s+h

L(�; x2(�); u2(�))d� + g(x2(T )).



34

D�autre part nous avons :

V (t; z) = inf
u1(:);u2(:)

�Z T

t

L(s; x(s); u1(s) + u2(s))ds+ g(x(T ))

�
= inf

u1(:);u2(:)

�Z t+h

t

L(s; x1(s); u1(s))ds+

Z T

t+h

L(s; x2(s); u2(s))ds+ g(x(T ))

�
= inf

u1(:)

�Z t+h

t

L(s; x1(s); u1(s))ds+ inf
u2(:)

�Z T

t+h

L(s; x2(s); u2(s))ds+ g(x(T ))

��
= inf

u1(:)

�Z t+h

t

L(s; x1(s); u1(s))ds+ V (t+ h; x1(t+ h))

�
comme :

x1(t+ h) = x1(t) + h _x1(t) + o(h)

= x1(t) + �

= z + � et � ! 0

où o(h) = h"(h) avec "(h) !
h!0

0; et comme V (:; :) est supposée C1; on obtient

par développement :

V (t+ h; z + �) = V (t; z) +
@V

@t
(t; z)h+ h@V

@z
(t; z); �i

XX� + o((h; �))

= V (t; z) +
@V

@t
(t; z)h+ h@V

@z
(t; z); _x1(t)iXX�h+ h

@V

@z
(t; z); "(h)i

XX�h+ o((h; �))

et avec � = h _x1(t) + o(h) nous avons

V (t+ h; z + �) = V (t; z) +
@V

@t
(t; z)h+ h@V

@z
(t; z); _x1(t)iXX�h+ o(h)

= V (t; z) +

�
@V

@t
(t; z) + h@V

@z
(t; z); _x1(t)iXX�

�
h+ o(h)

et comme par ailleursZ t+h

t

L(s; x1(s); u1(s))ds = L(t; x1(t); u1(t))h+ o(h)
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on aboutit à :

V (t; z) = inf
u1(:)

�
L(t; x1(t); u1(t))h+ V (t; z) +

@V

@t
(t; z)h+ h@V

@z
(t; z); _x1(t)iXX�h+ o(h)

�
c�est-à-dire

@V

@t
(t; z)h+ inf

u1(:)

�
L(t; x1(t); u1(t))h+ V (t; z)� V (t; z) + h@V

@z
(t; z); _x1(t)i

XX�
h+ o(h)

�
= 0

et donc

@V

@t
(t; z) + inf

u1(:)

�
L(t; y; u1(t)) + h

@V

@z
(t; z); f(t; y; u1(t))iXX� + "(h)

�
= 0

et pour h ! 0, on aboutit à :

�@V
@t
(t; z) = inf

b2K

�
L(t; z; b) +

�
@V

@z
(t; z); f(t; z; b)

�
XX�

�
car u1(t) = u(t) = b quelconque dans K.

En�n

V (T; z) = inf
(x(:);u(:))2D(T;z)

Z T

T

L(s; x(s); u(s))ds+ g(x(T )) = g(x(T ))

et comme x(T ) = z; on obtient

V (T; z) = g(z):

Nous savons que la fonction de Bellman solution de l�équation d�Hamilton-Jacobi-

Bellman (HJB) permet une synthèse optimale mais sous la condition d�être C1;

régularité qui est rarement satisfaite. De façon générale, la résolution de l�équation

de (HJB) ne sont pas plus faciles à résoudre que la fonction de Bellman non diféren-

tiables.
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2.4 Synthèse (HJB)-(PM).

Remarquons que

@V

@t
(t; z) = sup

b2K

�
H(t; z; b;�@V

@z
(t; z))

�
= sup

b2K

�
�L(t; z; b) +

�
�@V
@z
(t; z); f(t; z; b)

�
XX�

�
:

Par conséquent :

@V

@t
(t; z) = max

b2K

�
H(t; z; b;�@V

@z
(t; z))

�
et pour z = x (t) on aboutit à :

@V

@t
(t; x (t)) = max

b2K
fH(t; x (t) ; b; y (t))g

avec

y(t) = �@V
@z
(t; x (t)):

Ainsi �@V
@z
(t; x (t)) est l�état adjoint associé à x (t) et tout contrôl optimal

_
u (:)

satisfait :

�u(t) 2 M(t;
_
x (t) ;�@V

@z
(t;

_
x (t)))

où M est le minimiseur de problème Pfeed:

Synthèse optimale

La détermination à priori de la fonction valeur solution de l�équation d�Hamilton-

Jacobi-Bellman (HJB) donne dans le cas semi linéaire (c�est à dire lineaire seulement par rapport au contrôle)

à contrôle libre le contrôle optimal sous la forme Feedback :

�u(s) = �Q�1(s)B�(s; �x(s))
@V

@z
(s; �x(s))
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qui mène alors l�état optimal par retour à l�équation d�état :

(EDO)syth

8>><>>:
_x(s) = F (s; x(s)) pp s 2 [t; T ]

x(t) = z,

avec

F (s; x(s)) = A(s; x(s))�B(s; x(s))Q�1(s)B�(s; x(s))
@V

@z
(s; x(s)):

On a alors :

1) L�état optimal �x(t) comme solution de (EDO)syth.

2) Le contrôl optimal

�u(t) = �Q�1(t)B�(t; �x(t))
@V

@z
(t; �x(t)):

3) L�état adjoint associé

_
y(t) = �@V

@z
(t; �x (t))�
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Chapter 3

Calcul numérique de la fonction

valeur

3.1 Programmation Dynamique discrète

L�algorithme présenté ci dessous est très simple (Programmation Dynamique dis-

crète). La programmation Dynamique est une méthode exacte de résolution de prob-

lèmes discrets de commande optimale du type :

Pdiscont(z)

8>>>>>>>>>>><>>>>>>>>>>>:

inf
fuigi=0;1;:::N�1

N�1X
i=0

~Li(xi; ui) + ~LN(xN)

(EDO)d

8>>>>>><>>>>>>:
xi+1 = ~f i(xi; ui)

x0 = z

ui 2 Ki

i = 0; 1; :::; N � 1

39
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Le problème consiste à trouver un processus8>><>>:
u0; u1 ; :::; uN

x0; x1 ; :::; xN

minimisant l�objectif et la forme additive de l�objectif donne lieu au schéma de

calcul suivant :

1) Le problème est plongé dans un cadre plus large de recherche d�une suite de

commandes minimisant le critère :

�
picont

�
8>>>>>>><>>>>>>>:

Ii (xi) =
N�1X
l =i

~Li(xi; ui) + ~LN(xN) à partir de l�état xi, pour i = 0; 1; :::; N � 18>><>>:
xi+1 = ~f i(xi; ui)

ui 2 Ki

à partir de l�état initial xi.

2) La solution si elle existe s�exprime sous la forme :

�
picont

�
8>>>>>>>><>>>>>>>>:

Ji(xi) = min ui2K
...

uN2K

Ii(xi) i = 0; 1; :::; N � 1

8>><>>:
xi+1 = ~f i(xi; ui)

ui 2 Ki.

3) L�objectif Ii(xi) peut s�écrire sous la forme

Ii(xi) = ~Li(xi; ui) +

"
N�1X
l=i+1

~Ll(xl; ul) + ~LN(xN)

#
i = 0; 1; :::; N � 1:

le terme entre crochet du second membre étant égal à Ii+1(xi+1):

4) En explicitant la relation entre les solutions et les données entre les étapes i et

i+1, on voit que l�optimum de l�objectif à l�instant i est égal à l�optimum de l�objectif
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immédiat ~Li(xi; ui) plus la valeur de l�objectif Ji+1(xi+1) en partant du nouveau point

xi.

Ce qui mène à :

�
picont

�
8>>>>>>>>><>>>>>>>>>:

Ji(xi) = min ui2K
...

uN2K

~Li(xi; ui) + Ii+1(xi+1) i = 0; 1; :::; N � 1 avec

8>><>>:
xi+1 = ~f i(xi; ui)

ui 2 Ki

c�est à dire

Ji(xi) = min
ui2K

266664~Li(xi; ui) + min
ui+12K
...

uN2K

Ii+1(xi+1)

377775 i = 0; 1; :::; N � 1

avec

8>><>>:
xi+1 = ~f i(xi; ui)

ui 2 Ki

par suite

�
picont

�
8>>>>>><>>>>>>:

Ji(xi) = minui2K

h
~Li(xi; ui) + Ji+1(xi+1)

i
i = 0; 1; :::; N � 1 avec8>><>>:

xi+1 = ~f i(xi; ui)

ui 2 Ki

Remplaçant dans le second membre xi+1 par ~f i(xi; ui), la relation prend la forme

dé�nitive, dite equation de Bellman :

(Eq-Bellman)

8>><>>:
Ji(xi) = minui2K

h
~Li(xi; ui) + Ji+1( ~f i(xi; ui))

i
i = 0; 1; : : : ; N � 1 (5:1)

JN(xN) = ~LN(xN) (5:2)

Elle permet de calculer de proche en proche les valeurs JN(xN); JN�1(xN�1); :::;

J1(x1); J0(x0) et s�e¤ectue à partir de l�état �nal xN .
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La méthode de recherche de la fonction inconnue J0(x0) à l�aide des relations

(5:1) et (5:2) s�appelle Programmation Dynamique discrète. Elle est due a R.Bellman

[2].

3.2 Discrétisation de Problème continu.

Rappelons le problème de contrôle P(t; z)cont

P (t; z)cont

8>>>>>>>>>><>>>>>>>>>>:

inf
(x(:);u(:))

Z T

t

L(s; x(s); u(s))ds+ g(x(T ))8>>>>>><>>>>>>:
_x(s) = f(s; x(s); u(s)) pp s 2 I(t)

x(t) = z

u(:) 2 UI(t) = fu(:) 2 L1(I(t);Rm)= u(s) 2 Kg

Une discrétisation en temps de P(t; z)cont ramène à un problème discret de type

précédant, que par une discrétisation de type d�Euler.

Pour des discrétisations di¤érentes nous aurons des systèmes discrétisés soit avancés,

soit retardés, soit implicites ou �nalement mixtes qui ne relevent pas de la Program-

mation Dynamique classique.

Soit h = T�t
N
le pas de discrétisation.

Nous noterons

si(t) = t+ ih; i = 0; � � � ; N � 1

1) La Discrétisation de _x(s) = f(s; x(s); u(s)) s�obtient alors par :

x(si+1(t))� x(si(t))

h
+ � (h) = f(si(t); x(si(t)); u(si(t)))

avec � (h) ! 0 pour h! 0:
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En introduisant les notations :8>>>>>><>>>>>>:
xi = x(si(t)),

ui = u(si(t)),

f(si(t); :; :) = fi(:; :).

i = 0; 1; :::; N (5.3)

La discrétisation de l�équation d�état revient à choisir h su¢ samment petit pour

pouvoir remplacer l�équation continue par l�équation discrète.

xi+1 � xi
h

� fi(xi; ui) = 0

c�est à dire

xi+1 = xi + hfi(xi; ui) i = 0; :::; N � 1:

2) La Discrétisation de l�objectif

Elle revient à discrétiser l�integrale par la méthode des Trapèzes. Ce qui donne

la forme
N�1X
i=0

Z si+1(t)

si(t)

L(s; x(s); u(s))ds+ g(x(T ))

Et comme par ailleurs h = si+1(t)� si(t), la formule de la moyenne donne :Z si+1(t)

si(t)

L(s; x(s); u(s))ds = hL(si(t); x(si(t)); u(si(t))) + � (h) (1)

En notant L(si(t); x(si(t)); u(si(t))) par Li(xi; ui):

L�objectif prend la forme

N�1X
i=0

hLi(xi; ui) + g(xN) + � (h) N .

Le probleme discrétise revient donc à minimiser l�objectif

N�1X
i=0

hLi(xi; ui) + g(xN):
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reste à expliciter les contraintes sur le controle.

Soient 8>><>>:
UI(t) = fu(:) 2 L1(I(t);Rm)= u(s) 2 Kg

x(t) = z;

et avec les notations (5:3) la contraint u(:) 2 UI(t) devient8>><>>:
ui 2 K i = 0; :::; N � 1

x0 = z

où

I(t) =
N�1[
i=0

[si(t); si+1(t)[ :

Nous obtiendrons en de�nitive le problème discret

(P(t; z)cont )d

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

V (h; t; z) = inf
fxi;uigi=0;1;:::N�1

N�1X
i=0

hLi(xi; ui) + g(xN);

V (h; T; z) = g(z) i = N

(Sysdis)

8>>>>>><>>>>>>:
xi+1 = xi + hfi(xi; ui),

x0 = z;

ui 2 Ki:

i = 0; 1; :::; N � 1

avec comme équation de Bellman

(Eq-Bellman)

8>><>>:
V (h; xi) = minui2Ki

[hLi(xi; ui) + V (h; xi + hfi(xi; ui))] ; i = 0; 1; : : : ; N � 1

V (h; xN) = g(xN):

Remarque :
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T.Havârneanu [6] et M.Bardi [1] ont montré que pour une discrétisation du

Problème continu, la solution discrète obtenue par le principe Bellman donne une

convergence uniformément continue.

Conclusion

Nous présentons une synthèse optimale pour les problèmes de contrôle optimal

en équation di¤érentielle ordinaire, cette synthèse est basée sur les solutions C1 de

l�équation d�Hamilton-Jacobi-Bellman.
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