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Principe du Maximum et Synthese Optimale .

Résumé :

Dans ce mémoire, nous présentons une synthése optimale pour les problémes de controle
optimal en équation différentielle ordinaire, cette synthése est basée sur les solutions C1
de I'équation de Hamilton-Jacobi-Bellman.

Mots clés : contrble optimal, synthése optimale.

« Principle of Maximum and Optimal Synthesis»
Abstract :

In this thesis, we present an optimal synthesis for optimal control problems in ordinary differential

equation, this synthesis is based on the C1 solutions of the Hamilton-Jacobi-Bellman equation.

Key words : optimal control, optimal synthesis.
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Introduction

Les problémes de controle en équation différentielle ordinaire considérés sont du

type

(

) w(t) = f(t,2(t), u(t)), ppte[0,T]
(EDO)cq 2(0) = o,
\ \ u(.) € K,

x(.):[0,T] — X est I’état du systéme,

u(.):[0,T] — Z le controle,

0
avec X et Z des espaces de Banach.

IIs sont analysés pour des controles admissibles tels que u(t) € K, pp t € [0,T]
et K C Z, en général compacts.

Au dela des conditions nécessaires d’optimalité 1’analyse tente de réaliser ce que
I’on appelle une synthése optimale qui consiste a dégager des procédures de calcul du
controle optimal et ceci quelque soit la condition initiale (o, x(to) )-

Nous nous proposons dans ce travail de montrer que hors le cas classique des
problémes linéaires quadratiques & controle libres la synthése optimale est difficile a

5



réaliser.

Cependant par les solutions dites de viscosité il sera possible d’avancer sub-
stantiellement dans la réalisation d’une telle synthese.

Le travail est organisé en trois chapitres.

Aprés un rappel rapide d’optimisation abstraite, le probléme (P).,,; est ramené a
la forme abstraite au précisant les espaces fonctionnels et les hypothéses générales de
travail.

Les conditions de régularité sont analyseés du point de vue de la controlabilité
et les conditions d’optimalité sont obtenues a partir de leur expression abstraite.
Ceci termine ce premier chapitre. Dans le second nous montrons la limite de la
synthése optimale que ce soit & partir des conditions d’optimalité, ou du probléme aux
limites (état-état adjoint) ou enfin & partir du principe du Maximum. Nous verrons
alors l'intérét majeur d’approche par 1’équation Hamilton Jacobi Bellman (H.JB)
pour laquelle 'hypothése de différentiabilite C'! de la fonction valeur (essentielle pour
'équation).

Dans le troisiéme chapitre seront considérés quelques aspects numériques de calcul

de la fonction valeur.



Chapter 1

Optimisation abstraite et Controle
Optimal en équation différentielle

ordinaire.

1.1 Principes généraux d’optimisation abstraite.

Soient X est un espace de Banach, D un fermé dans X appelé domaine. Considérons

un probléme d’optimisation abstrait de la forme :

o {e

La fonction ¢(.) : X — R est appelée fonction coiit, objectif ou critére. Tout
point x € X vérifiant : x € D, est appelé point admissible ou point réalisable du
probléeme (P).

Chercher une solution du probléme avec contraintes (P) revient a chercher un
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point de minimum local de ¢ dans ’ensemble des points admissibles, au sens de les

définitions suivantes :

Definition 1.1 (Optimal local) On dit que T est mazimum local (resp minimum

local) de ¢(.) si
Ir > 0 tel que Vo € B(Z,r) : p(x) < ¢(Z)

(resp p (x) > ¢ (Z),Y x € B(Z,1)).

Definition 1.2 (Optimal global) On dit que T est mazimum global (resp minimum

global) de ¢(.) si
Vo € D:p(x) < ¢(T)

(respVx € D : p(x) > ¢(Z)).

Remarque :

Tout point de minimum global est aussi local.

1.2 Quelques éléments géométriques.

Cone et cone tangent a D

Definition 1.3 T C X est dit un cone si : Vo € T, VA > 0: \x € T. Autrement dit :

NXI'C T,VA > 0.



Definition 1.4 1) Soient z € D, v € X est un vecteur tangent & D en T si 3 x, — T

dans D, 3 A\, > 0 tels que

lim A, (z, — Z)=0.
2) T(D,z) sera l’ensemble des vecteurs tangents a D en .

Proposition 1.5 T'(D, ) est un cone non vide fermé.

Remarque :
Le cone tangent est un concept essentiel pour I’écriture des conditions d’optimalité.

Il sert a linéariser ’ensemble admissible au point optimal z.

1.3 Condition d’optimalité.

Theorem 1.6 Soit p(.) différentiable et T minimum local du probléme (P). Alors :

!

0 (%) (v) > 0,Yv € T(D, 7).

1.4 Cas d’un domaine explicité.

Soient D = {x € X /F(z) =0y} avec Y est un espace de Banach et F': X — Y de

classe C'.
Theorem 1.7 (Lyusternik) Soit x € D, si Im F'(z) =Y alors
T(D,x) = ker F'(x).

Ceci rapproché du théoréme d’optimalité méne a:
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Theorem 1.8 (Optimalité cas C') On suppose que
1) p et F sont Ct,
2) & est minimim local de (P),
3)Im F'(z) =Y.

Alors A y* € Y* tel que

Remarque :

La preuve s’appuie essentiellement sur le théoréme de Lyusternik ci dessus.

1.5 Formulation Lagrangienne.

Le systéeme (K — T) suggere naturellement l'introduction de la fonctionnelle dite

Lagrange

L: X xY" — R telle que L(z,y") = p(z) + y* (F(z))

Le théoréme 1.8 s’exprime alors comme suit:

Theorem 1.9 (Optimalité Lagrangien) Sous les hypothéses du théoréme 1.8 ci

dessus 3 y* € Y™ telle que
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1.6 Cas de Controle Optimal en équation différen-

tielle ordinaire.

Nous noterons pour simplifier (EDQO) pour dire équation différentielle ordinaire.

Soient X, Z deux espaces de Banach. Le probléme considéré sera de la forme :

.

(x(jl)r,lf(.))/o L(t, x(t), u(t))dt + g((T)),

(

#(t) = f(t,x(t), u(t)), pptel0,T)]

(EDO)c§ z(0) = o,

(P) cont

u(.) el

\ \

Ou (EDO), signifie (EDO) controlée.

L’ensemble des controles U est tel que :

u(.):[0,T] — Z mesurable et
u(.) el &

u(t) e K ppte(0,T],

avec K un convexe fermé borné dans Z.

1.7 Les espaces fonctionnels de travail.
Pour ¢ € [1,4+00], on considére

L’espace de Lebesgue L7(0,T; X)

x(.) € L90,T; X) signifie z(.) : [0, 7] — X mesurable et

T
/ |z(t)]|% dt < oo,V g€ l,+ool.
0
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1

T q
Proposition 1.10 1) L7 (0,T; X) muni de la norme ||z(.)|| a0 7,x) = (/ |l (t)|% dt)
0
est un espace de Banach.
2) Vq € [1,+0c0[, le dual topologique de L4(0,T; X) est donné par LY (0, T; X*)

1 1
ou X* est le dual topologique de X et — + — = 1.
q q

L’espace de Lebesgue L>(0,7T; X)

z(.): [0,T] — X mesurable et IM / ||z(t)||x <M  ppte[0,T].

Proposition 1.11 1) [[z(.)|| oo 7.x) = E{M / [lz(t)[|x < M pp t €[0,T]} est
une norme pour L>(0,T; X).

2) L>(0,T; X) est complet pour cette norme.

L’espace de Sobolev WY(0,T; X)

z(.) € Wh(0,T; X) si
1) #(.) existe ppt € [0,T],
2) @(.) e LY0,T; X),

3) Vo€ [0,T], 3 e X Tel que Vt € [0,T],

z(t) = a+ /t:i:(s)ds.

to

Proposition 1.12 1) Vq € [1,+oo[, WY9(0,T; X) est un espace de Banach pour la

norme

1

Hx(')HWLq(O,T;X) = <||$(-)||qu(o,T;X) + ||f(')||qu(o,T;X)> "
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a) (.) existe pp t € [0,T],
2) x(.) € W0, T; X)

b) () € L=(0,T; X).
3) Vq € [1,+o0|, le dual topologique de W14(0,T; X) est I’espace W14 (0, T; X*)

1 1
avec X* est le dual topologique de X et —+ — =1.
qa g

1.8 Hypothéses sur le probléme (P).,,;

(Hy) g: X — R, de classe C',

(Hy) L:Rx X xZ —Ret f:Rx X x Z— X, Clcarathéodory,

c’est a dire:

V(a,b) € X x Z : f(.,a,b) et L(.,a,b) sont mesurables et f(t,.,.) et L(t,.,.) sont
Clsur X x Z ppte|0,T),

(Hs) f(t,.,.) et L(t,.,.) sont bornées sur les bornés de X x Z,

(Hy) || f(t,a,b) — f(t,a,b)| < cl|la—al|l (c ne dépend pas de t et b),

(Hs) [1f(t,a,0)[[x < c(1+lallx +blly) pptel0,T].

Proposition 1.13 Sous les hypothéses (H1) _(Hs), Vq € [1,+o0], Yu(.) € L4(0,T; Z),

Vo fiwé, Jx(.) solution de (EDO), etz (.) € WH(0,T; X).

Remarque :

(Hy)_(H,) assurent 'existence locale de la solution et (H5) permet de la prolonger

sur [0,77].
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1.9 Réduction a la forme abstraite.

Nous ferons I'étude avec u (.) € L* (0,T; Z) et = (.) € W1 (0,T; X), le cas général g
€ ]1, +o0[ se traite de la méme maniére.

Pour cela considérons:
D
o1y WYY, T; X) x LY(0,T; Z) — R définis par
poeO) = [ 1trto), e
oz ul)) = gl (D))

2) Pour Y = L' (0,T;Z) x X on considére

Y o WHY(0,T;X) x L'0,T;Z) — Y définie par

w0 = (30)):

avec

P () u())(8) = i) = f(t,2(t),u()) ppite0,T] et

ho(x(.),u(.)) = 2 (0) — xo.

Le probleme (P)_ . prend alors la forme abstraite:

.

inf o(z(.),u(.))
(P) 9 w(z(),u()) = 0pixx

u(.) eU.

\
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avec ¢ = 1 + P,.
Notons par D le domaine de (P) c’est a dire

( 1) 2(.) € WH(0,T; X), u()) € LY(0,T; Z),

(x()7u<)) €D <~ 2) ¢($<),U(>) — 0L1><X7

3) u(.) e U.

\

1.10 Condition d’Optimalité.

Le théoréeme 1.6 d’optimalité général nécessite la différentiabilité des fonctionnelles ¢

et .

Proposition 1.14 Sous (H,) et (Hz), ¢ est différentiable avec

T T
o (), u() (v(), w()) = /0 La(t, (1), u(t)) (v(1))dt +/0 L(t, x(t), u(t))(w(t))
Le théorémel.6 d’optimalité pour (P) s’exprime alors par:
Theorem 1.15 On suppose que:

1) (Hy)__(Hs) sont satisfaites

2) (z(.),u(.)) est minimum local pour le (P)econt-
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Analyse du cone tangent 7'(D, (z(.), u(.)))

Le domaine de (P) est de la forme D = Dy N Dy avec

(z(.),u(.)) € WHH0,T; X) x LY(0,T; Z) et
(z(.),u(.)) € Dy <= Dy =

¥(z(.),ul.)) = Opixx -
(@(),u()) € Dy <= Dy={(x(),u(.)) € W"(0,T; X) x L'(0,T; Z) et u(.) € U .}

Hypothése de régularité :

(He) T(D, (z(.), u(.))) = T(Dy, (2(.), u(.))) N T(Dy, (z(.), u(.))).

Nous analyserons plus loin cette hypothése.

Proposition 1.16 Sous les hypothéses (Hy) _ (Hg) l'opérateur v donné par

hl(l’(-)?U(-)))
ha(x(.), ul.))

est Frechet différentiable ' (z(.),u(.)) (v (.),w(.)) /

o) =

1) hy(a() () (v (), w () (8) =0 (8) = A(t) (v () = B(t) (w(t)) ppt €[0,T]

ol

Remarque :

Nous savons qu’en général

T(Dy, (2(.),a())) C kerd/(2(.), al.)).
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Definition 1.17 (Systeme Linéarisé) On appelle systéme linéarisé en (Z(t), u(t)) €

D, le systéme suivant

(Sy3>lin

ol

Theorem 1.18 Si le systéme linéarisé en (Z(.),u(.)) est complétement contrélable
alors

O (x(),u() : W0, T; X) x L0, T; Z) — Y  est surjectif

et
T(Dy, (x(.), u(.)) = ker i)' (z(.), u(.)).
Sachant que Dy = W10, T; X) x U, il est clair que
T(Dy, (z(.),u(.))) = WHH0,T; X) x T(U,u(.)).
Tout revient donc a expliciter T'(U, u(.)).
Proposition 1.19
w(.) e TU,u(.)) = w(t) € T(K,u(t)) ppt € [0,T] .
Proof. Soit w(.) € T'(U, u(.)) alors par définition il existe u,(.) € U tel que
L Iy

un(.) = ul.) et Ay >0, Ay (un(L) —u(l) = w(.).

On sait alors que
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1) IN; C N tel que

Un () % u(.)  ppt €10,T] et
neNy

2) IN, C N tel que

An (up () —ul() — w(.).

n—-+4o0o
neNa

Par conséquent:

Un (1) £+ u(t) et Ao (ua(t) —u(®)) — w(t) ppte[0,T].
neN2 neNa

Ainsi

w(t) € T(K,u(t)) ppt €]0,T].

Conditions d’Optimalité :
Sous (Hg) et nous savons alors grace au théoréme 1.6 que V(v (.),w(.)) tels que :

() € WHH(0,T; X),w() € TU, a(.)) et
Ya(@(), u())(v(.) + ¥h(2(), u() (w(.)) = Ox-.
Alors
o (@(),a() (v(.),w(.) > 0.
Le théoreme 1.9 méne alors a :

Jy* = (y(.),a) € Y*avec Y* = L' (0,T; X*) x W1 (0,T; X*) tel que
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c’est -a-dire
/0 Lo (2(8), a()) (0(t)) + Ly(2(2), u(t))(w(t))dt + ¢'(#(T)) (v(T)) = 0

+/O (", o (@(t), u(t)) (v(t)) + Vh(Z(t), u(t)) (w(t)))yy- dt vV (v(.),w(.))
Ainsi pour:

1) (v(.),w(.)) = (v(.),0) on obtient :

a(@(),a()) (v(), w() + ((WL(@() a() ") (v(),w(.) = 0=

c’est a direVo(.) € WHH(0,T; X)

(No, o(T)) yx- + {00, 0(0)) - + / L(1) (0(1))dt + / (y (1) 5(t) — A)o(t) ) dt = 0x

(1.1)

avec

L’¢galité (1.1) prend la forme Vo(.) € WH1(0,T; X) on a :

<No,v(T)>XX*+<0<,U(O)>XX*+/O y (1) (D(t))dt+/0 (la (t) = A"()y(t), v (t) ), . dt =

(1.2)

Calculons par parties les intégrales suivantes :

/OT (la(t),v(t)) x x« dt et
/0 (A (y(t), o(t)) _dt.
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Siq(t) = /t lo(8)ds alors ¢(t) = —1,(t) et
/0 lo(£)(v(t))dt = /0 q(t)(0(t))dt — {g(0),v(0))gn

si 0(t) = /t A*(s)y(s)ds alors 0(t) = —A*(t)y(t) et

—/OT(A* /9 ))dt + (6(0), v(0))

T

Par ailleurs, comme v(.) € WH1(0,T; X), v(T) = v(0) —I—/ 0(s)ds.
0

Par suite

(No,o(T)) = (No,v(0)) + [ No(0(t))dt

XX* XX* 0
donc (1.2) devient :

Pour tout v (.) € WH(0,T; X),

(Vo 000) +0 = a(0),000) -+ [ {alt) + No+1(0) = 00), 50)) - = .

D’aprés un théoréeme général de Riesz [6.p 81.Th 5] on a :

a—q(0) 4+ No+0(0) = 0x

y(t) —0(t) + No+q(t) =0x- pptel[0,T]

ce qui donne
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Il est alors clair que y(.) € WH(0,T; X*) et donc

y(t) = la(t) = A*()y(t) ppt€[0,T]

2) Pour (v(.),w(.)) = (0,w(.)), on obtient :

op(x(),a() (v (), w()) + Wh(a(), a())y) (v (), w() 20 ¥ w() € TU. al.))

c’est-a-dire

/0 (1) — B*(ty(t),w(t))  dt >0, Yu() e TWU.a()

YY

avec

bh(t) = Ly(t, 2(t), u(t))
B(t) = fi(t, z(t), u(t))
la proposition 1.8 donne alors

Vw(.) Jw(t) € T(K,u(t)) ppt € [0,T]

on a :

[ = 50000, e >0
Proposition 1.20 Soit d(t) = l,(t) — B*(t)y(t). Si

/0 (d(t),w(t)) dt>0,Yw(.) /w(t) € T(K,u(t)) pptel0,T]. (1.3)

YY*

Alors

d(t) € T(K,u(t))® pptel0,T].



22

Proof. Pour w(t) = b € K, Vt € [0,T], w(.) € L'0,T;Z) car I = [0,T] est

compact, et donc

(1.3) <  inf ))/0 (d(t), w(t)), dt >0

w()eTU,al.

par un théoréme de sélection mesurable [17] on a :

e /0 (), w(t)), dt = /0 inf (), b), dt > 0

w()eTU,u (K,a(t))

par suite :

(d(t),b), >0 ppt€[0,T],Vbe K

c’est-a-dire

d(t) € T(K,u(t)) ppt€|0,T].

Sachant que
t
/ O(r)dr >0 Yte[0,T] = 6(t) > 0 ppt e [0,T]
0

on a :

(d(t),b), >0 VbeT(K,u(t)) pptel0,T],

c’est-a-dire

d(t) € T(K,a(t))® ppte|0,T].

En conclusion nous avons le théoréme



Theorem 1.21 On suppose :
1) (Hy) __ (Hg) satisfaites,
2) (z(.),u(.)) € WH(0,T; X) x LY(0,T; Z) est minimum local de (P)econt,
3) Le systéme linéarisé en (Z(.),u(.)) est complétement contrélable.

Alors 3 y(.) € WH>(0,T; X*) tel que

y(t) = A" y(t) + la(t),

(EDO),§ —=B*#)y(t) + L(t) € T(K,u(t))®,

pp t € 10,7

23
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Chapter 2

Autour de la Synthése Optimale.

2.1 Synthése état—état adjoint.

Ce paragraphe est consacré & des tentatives de synthese optimale pour faire ressortir

les limites des différentes approches.

() | -

Soit 2(.) = , Z(.) est solution du probléme aux limites contraint suivant
y()

i(t) = F(z(t),a(t), pptel0T]
z(0)

2(0) = (

(Pu) y(0)

z(T)

A(T) = 7
y(T)

| az(),a(t)) e T(K,a(t)® pptel0,T],

25
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avec

ft,2(t),ul?))

—A"()y(t) + la(t)
a(z(t),ut)) = =B )y(t) + b(t).

Remarque :

Il n’est pas possible méme sans la contrainte défini par «(.,.) de résoudre (Pyp,)
car y(0) et Z(T) sont indétermineés.

Nous allons voir dans le paragraphe suivant que méme pour le cas linéaire quadra-

tique des difficultés persistent.

2.1.1 Cas linéaire quadratique.

Il correspond au cas ou X, Z sont des espaces de Hilbert et

avec
R(t) € L(X, X) symétrique,
Q(t) € L(Z,Z) symétrique,
F € L(X, X) symétrique,

At) e L(X,X) et B(t) € L(Z,X).
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Le systéme d’optimalité devient :

Z(t) = A()Z(t) + B(t)u(t)
ppt € [0,T]
y(t) = —A*(t)y(t) + R(t)z(t)
Opt(LQR) § #(0) = x,
y(T) =F (T)
| — B ®y(0) + QE)ut) € (T(K,u(t)))®  pptel0,T]. (2.1)

Remarque :
Le systéeme Opt (LQR) ne peut étre résolu du fait de la contrainte (2.1) et la

synthése n’est donc pas possible.

2.1.2 Cas linéaire quadratique a controles libres.

11 correspond au cas ou K = Z, c’est-a-dire la contrainte (2.1) devient alors

—B (1) + Q()a(t) =0 ppt € [0,T).

Si on suppose que Q(t) est inversible pp t € [0,7] .Alors

a(t) = Q7 (t) B (t)y(t) ppt €0, T].

Remarque :

Les hypotheses classiques sur Q(.) sont généralement (t) symétrique uniformé-

ment définie positive c’est-d-dire :

Ja>0/ Q) (a,a)>alal®* pptel0,T].
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En remplagant l'expression de u(t) dans la systéme Opt (LQR), on obtient le

systeme réduit a :

(LQR>réduit
E(O) = Xy,
| (1) = F (1)
. z(.)
C’est encore un probléme aux limites en
y(.)

qui peut théoriquement étre

résolu par la méthode du tir mais dont nous pouvons éviter la résolution grace au

principe du découplage qui consiste a rechercher y(.) sous la forme :

y(t) = m(t)z(t),

avec m(t) : X — X et m(.) différentiable.

Ainsi

y(t) = m(t)z(t) + m(t)z(t).

Les équations du systéme (LQR), ¢qui¢ deviennent

z(t) = (A(t) + B(H)Q ™' (t) B*(t)m(1)) (t)

y(t) = (R (t) = A* (t) m(t))z(t)

(2.2)

ppte€|0,T].

En remplacant les expressions de Z(t) et 9(¢) dans (2.2) on aboutit a Vz (.) €

W0, T; X)

((t) + m(t)A(t) + m(t) B(t)Q (1) B*(t)m(t) — R (t) + A* (t)m(t)) z(t) = 0 ppt € [0,T7.
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Par ailleurs

y(T) = m(T)x(T) = Fx(T), Vax(.) € WH(0,T; X).

Ce qui méne aisément a I’équation de Riccati :

m(t) +m(t)A(L) + m(t)B(E)QT () B*(t)m(t) + A*(t)m(t) — R(t) = Ogixy ppt €[0,1

(Riccati)
m(T) = F.

Conclusion :

La syntheése optimale est alors possible et s’effectue comme suit:

1) Résoudre I’équation de Riccati, on obtient m (.).

2) Résoudre I'équation :

on obtient I’état z (), avec

S(t) = A(t) + Bt)Q ' (t) B*(t)m(t).

3) Le controle optimal est alors sous la forme feedback :

Conclusion sur la synthése optimale

Ainsi une synthése optimal n’est possible qu’en situation Hilbertienne pour les

systémes linéaires quadratiques a controéles libres.

Et donc pour des situations différentes de celle qui précéde d’autres approches

sont nécessaires.
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2.2 Principe du Maximum (PM).

2.2.1 Fonction de Pontryaguine.

Soient X et Z des espaces de Banach .

Definition 2.1 On appelle fonction de Pontryaguine la fonction

H(,.,.,.) @ RxXxZxX"—-R/

H(t,a,b,c) = (e, f(t,a,b))xx- — L(t,a,b).

Theorem 2.2 (P.M)
Soient (Z(.),u(.)) optimal local et §(.) I’état adjoint associé alors pour tout t point

de continuité du controéle u(.), nous avons :

H(t> j(t)7 ﬂ(t), g(t)) = %?%H(t’ f(t)a b, g(t))

2.2.2 Probléme Feedback.
C’est le probléme :

Peea {supH(t, a,b,c).
be K

Considérons 'opérateur multivoque dit minimiseur associé:

M : [0,7T] x X x X* = K défini par

M(t,a,c) = {be K |/ solution optimale de P..;} .



31

Theorem 2.3 (Principe du Feedback) Tout état optimal T(.) et tout état adjoint

y (.) sont reliés aux controles optimaux correspondants par le principe du Feedback:

u(t) € M(t,z(t),y(t)), pptel0,T].

Neyd|

Si Precq admet une solution unique alors le minimiseur M (., .,.) est univoque et

le contréle optimal Feedback est unique.

2.2.3 Limite de ’approche par le Principe du maximum.

Le principe du Maximum permet en principe d’obtenir le contrél optimal 4(.) en fonc-
tion de I’état z(.) et de ’état adjoint y(.), mais ceci n’est qu'une résolution théorique
qui nécessite de coupler les équations d’états du probléme (P).ont, & celles de I'état
adjoint y(.) et nous renvoie donc a des difficultés de méme ordre que celui du para-

graphe de la synthese état - état adjoint (2.1).

La derniére approche que nous allons présenter rassemble les travaux de Hamilton
Jacobi et Bellman et présente I'avantage de mener a des synthéses optimales méme

pour des controles contraints.
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2.3 Théorie d’Hamilton-Jacobi-Bellman (HJB).

2.3.1 Paramétrisation par la condition initiale.

Le probléme (P)qon¢ initial est plongé dans une famille de problémes du méme type a

deux parametres (t, z) € [0,7] x X comme suit :

/

Lt [ L) o) + g(a(T)
P (t, ) #(s) = [(s,2(s),uls))  ppselt,T]

cont

x(t) =z

\ u(.) € Uy = {u(.) € LNt T, Z) ) u(s) € K} .

On notera par D(t, z) le domaine du probléme P(¢, z)

cont

’

z(.) e WH(t,T; X), u(.) € L*(t,T; Z)
(z(t),u(t)) € D(t,2) < q i(s) = f(s,z(s), u(s)) pp s € [t,T] et

z(t) = z.

\

P(t,2),,,; €st un probléme du contrdle paramétré par la condition initiale (¢, z).

2.3.2 Fonction de Bellman.

C’est la fonction valeur de P(t, z),,,,, c’'est & dire :

V(,.) : [0,7] x X — R donnée par :

T
¥Ww)Z(MJ%m@llﬁw®wwﬁﬁ+ﬂﬂﬂ)
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Theorem 2.4 (Equation Hamilton — Jacobi — Bellman) SiV(.,.) est continument

différentiable alors V(.,.) est solution de l’équation aux dérivés partielles dite (HJB):

) ~HED = B 05 0) o+ 1050)
V(T z) = g(2).

Proof. Pour h petit, décomposons le controle u(.) en

avec
(
u(s) sur J¢t,t+ h|
ui(s) =
0sur [t+h, T
)
0 sur |t,t+ h]
uz(s) =
u(s) sur [t + h, T

La solution z(.) se décompose en :

1(8) = f(s,x(s),u1(s)) s €Jt,t+h|
(EDO),
\ z1(t) =y
to(8) = f(s,2(s),uz(s)) se€[t+hT]
(EDO),
xo(t + h) = x1(t + h).

\

par suite

V(s+ h,z2(s+h)) = V(s+h,zi(s+h))

T

= gl(f)/SJth(@,IL‘Q(Q),UQ(H))dQ+g(x2(T))
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D’autre part nous avons :

V(t,2) =  inf )[/tTL(s,:c(s),ul(s)—|—uz(s))d5+g(:ﬁ(T))]

wy (.),ua(.

=t L s i+ [ nsao).u)is + o)

ul(')7u2(-) +h

/tT L(s,x5(8),ua(s))ds + g(m(T)))]

+h

t+h
= inf {/ L(s,z1(s),u1(s))ds + inf (
u1(.) ¢ uz(.)

- inf [ /t N s (), s (5))ds 4 V(E+ b ay(t 4 h))}

z1(t+h) = x1(t) + hii(t) + o(h)
= m(t) +1n

= z+n etn—0

ou o(h) = he(h) avec e(h) — 0, et comme V(.,.) est supposée C', on obtient

h—0
par développement :
oV ov
V<t + hv Z + 77) - V(tv Z) + E(t Z)h + <§(t7 Z)u TI>XX* + 0<<h77]))
oV ov ) oV
= V() S+ (S 2, (0) b+ (S0 2),2 () ol ()
et avec 1) = hi;(t) + o(h) nous avons
oV oV
V(t +h,z+ 77) = V(t7 Z) + E(u Z)h’ + <£(t7 Z), ;'El(t»XX*h’ + O(h)
oV ov

= V(t,z2)+ E(t, z) + <§(t’ 2),81(t)) v | B+ 0(R)
et comme par ailleurs

/t L(s,z1(s),u1(s))ds = L(t, z1(t), u1(t))h + o(h)
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on aboutit a :

Vit z)= 1gl(f) {L(t, z1(t),ur(t))h + V(t, z) + aa—‘t/(t, 2)h + (aa—‘:(t, 2),&1()) oy P + O(h)]

c’est-a-dire

a—V(t, z)h+ inf {L(t,zl(t),ul(t))h +V(t,z) = V(t,z)+ (8—V(t, ), il(t))x

X *

et donc

ov

T2+ inf Lt () + (500,10 e+ (1) =0

et pour h — 0, on aboutit a :

av . oV
_E(tv Z) = bléllf( |:L(t7 Zs b) + <%(tv Z)a f(t7 <, b)>Xx*:|

car u1(t) = u(t) = b quelconque dans K.

Enfin
T

V(T,z) = inf / L(s, , ds + T)) = T
T =t L), uls)ds + g(alT) = g(alT))

et comme z(7T) = z, on obtient

V(T 2) = g(2).

Nous savons que la fonction de Bellman solution de ’équation d’Hamilton-Jacobi-
Bellman (HJB) permet une synthése optimale mais sous la condition d’étre C*,
régularité qui est rarement satisfaite. De facon générale, la résolution de I’équation
de (HJB) ne sont pas plus faciles a résoudre que la fonction de Bellman non diféren-

tiables.
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2.4 Synthése (HJB)-(PM).

Remarquons que

ov ov
= Sup |:—L<t,Z, b) + <_8_V(ta Z)vf(t7z7b)> :| :
beK 0z X X*

Par conséquent :

1% oV
P 1. 2) = max {H(t, 202 z>>}

et pour z = z (t) on aboutit a :

ov

o (G (1) = max {H(t,z (1) b,y (1))}

avec
t) = ——(,z()).
(1) = =2 (b, 1)
Ainsi —9%(t,z (t)) est I'état adjoint associé & x (t) et tout control optimal % (.)
satisfait :
ov

u(t) € M(t,i:(t),—a(t,i“(t)))

ou M est le minimiseur de probleme P fc.q.

Synthése optimale

La détermination & priori de la fonction valeur solution de 1’équation d’Hamilton-
Jacobi-Bellman (H J B) donne dans le cas semi linéaire (c’est a dire lineaire seulement par rapport au contr

a controle libre le controle optimal sous la forme Feedback :

(s) = ~Q 7 (5)B(5,2(s) 3 (5.7(5)
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qui mene alors I’état optimal par retour a I’équation d’état :

#(s) = F(s,z(s))  pp selt,T]

avec

On a alors :

1) L’¢tat optimal Z(t) comme solution de (EDO), ..

2) Le controdl optimal



38



Chapter 3

Calcul numérique de la fonction

valeur

3.1 Programmation Dynamique discréte

L’algorithme présenté ci dessous est trés simple (Programmation Dynamique dis-
créte). La programmation Dynamique est une méthode exacte de résolution de prob-

léemes discrets de commande optimale du type :

N—
inf Z i (@i, u;) (xN)

{ui}¢:0,1,...N 1,—0
( ~
Pdis (Z) Tiy1 = f Z(xlvul)

cont

(EDO)aq xp =2 i=0,1,...N—1

u; € K;
\ \

39
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Le probleme consiste a trouver un processus

Ugy, UY 5.y UN
Ty X1 ey TN
minimisant I'objectif et la forme additive de I'objectif donne lieu au schéma de
calcul suivant :
1) Le probléme est plongé dans un cadre plus large de recherche d’une suite de

commandes minimisant le critére :

( N-1
I (z;) = Ei(xi,ui) + Ly(zy) & partir de 'état x;, pour i =0,1,.... N — 1

(p tijont)

a partir de I’état initial z;.

2) La solution si elle existe s’exprime sous la forme :

’
Jz(-rz) :minuig;{ ]l(flfz) 120,1,,]\]—1

. uN:EK

(plcont) ~

Tip1 = f (i, )

u; € Kz

\
3) L’objectif I;(x;) peut s’écrire sous la forme
N-1 3
Il(l'l) :LZ(.Qﬁl,UZ)—‘— Z Ll(:cl,ul)—l—LN(xN) i:O,l,...,N— 1.
I=i+1
le terme entre crochet du second membre étant égal a I; 41 (1)

4) En explicitant la relation entre les solutions et les données entre les étapes @ et

141, on voit que 'optimum de I'objectif & 'instant i est égal & 'optimum de 1’objectif
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immeédiat L;(z;, u;) plus la valeur de objectif J;,1(2;41) en partant du nouveau point
Z;.

Ce qui méne a :

.

Ji(x;) = min .. Li(ziyuw;) + Ly (zi01) i=0,1,...., N — 1 avec

i uN:EK
(pcont) -
Tip1 = [ (w5, us)

UZ'GKZ'
\

c’est a dire

Ji(z;) = 5161% Li(x;,u;) + uirfllélK[i+1(xi+1) i=0,1,.,N—-1
uN:EK

Tit1 = f z(xzyuz)
avec

U¢€Ki

par suite

;

Jz(xz) = Minycf Li(%’, Ul) + Jz’+1(~”3¢+1)] i=0,1,.., N — 1 avec

(pf:ont) Tip1=f i(xia UZ)

u; € K;

Remplacant dans le second membre z,.; par f i(x;,u;), la relation prend la forme

définitive, dite equation de Bellman :

(Eg-Bellman)
JN(l‘N) = EN(.CEN) (52)

Elle permet de calculer de proche en proche les valeurs Jy(zy), Jy_1(Tn_1), -,

Ji(x1), Jo(zo) et s’effectue a partir de I'état final z .
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La méthode de recherche de la fonction inconnue Jy(zo) & 'aide des relations

(5.1) et (5.2) s’appelle Programmation Dynamique discréte. Elle est due a R.Bellman

[2].

3.2 Discrétisation de Probléme continu.

Rappelons le probléme de controle P(t, z)

cont

.

e | Lls.sts)uts)ds + gla(1)

P (t,2) i(s) = f(s,x(s),uls))  ppsel(t)

cont

x(t) =z

ul() € Usgy = {ul) € LI R™)/ uls) € K}

.\

Une discrétisation en temps de P(¢, 2)_,,, raméne a un probléme discret de type
précédant, que par une discrétisation de type d’Euler.

Pour des discrétisations différentes nous aurons des systémes discrétisés soit avancés,
soit retardés, soit implicites ou finalement mixtes qui ne relevent pas de la Program-
mation Dynamique classique.

Soit h = % le pas de discrétisation.

Nous noterons

si(t) = t + ih, i=0,-- ,N—1
1) La Discrétisation de #(s) = f(s,x(s),u(s)) s’obtient alors par :

$(8z+1(t))h— z(si(t)) +e(h) = f(s:(t), z(si(t)), u(s:(t)))

avec € (h) — 0 pour h — 0.



43

En introduisant les notations :

f(si(t), ) = fil, -

\

La discrétisation de I’équation d’état revient & choisir h suffisamment petit pour
pouvoir remplacer I’équation continue par I’équation discréte.

Tiy1 — T
ZTZ — filzi,u;) =0
c’est a dire

Tiv1 :xl—l—hfz(xz,ul) ZIO,,N—l

2) La Discrétisation de I'objectif
Elle revient a discrétiser l'integrale par la méthode des Trapézes. Ce qui donne

la forme
N—1

siv1(t)
Z/ L(s, 2(s), u(s))ds + g(2(T))

i=0 /i)
Et comme par ailleurs h = s;,1(t) — s;(t), la formule de la moyenne donne :
si+1(t)
/ L(s, x(s), u(s))ds = hL(si(t), z(si(t)), u(si(t))) + o (h) (1)
Si(t)

En notant L(s;(t), z(s;(t)), u(s;(t))) par L;(x;, u;).

L’objectif prend la forme

N-1

Z hL;(z;,u;) + g(xn)+o(h) N.

i=0
Le probleme discrétise revient donc & minimiser ’'objectif

N-1

1=0
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reste a expliciter les contraintes sur le controle.

Soient

Ury = {u(.) € L(I(t);R™)/ u(s) € K}

x(t) = z,

et avec les notations (5.3) la contraint u(.) € Uy devient

u; € K 1=0,....N—1
Top — <2
ou
N-1
160 = | (), sen (0]
=0

Nous obtiendrons en definitive le probléme discret

( N-1

V(h,t,z) = inf Z hL;(z;,w;) + g(zN),

yeen

V(h,T,z) = g(2) i=N

(P(t; Z)cont )d Tip1 = T; + hfz(ﬂﬂz, Ui)a
(Sysais) § 20 = 2, i=0,1,...N—1

u; € K;.

\ \

avec comme équation de Bellman

V(h,x;) = ming ek, [hL;i(zi,w;) + V(h,x; + hfi(z,w))], i=0,1,...

(Eg-Bellman)

V(h,zn) = g(zN).

Remarque :
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T.Havarneanu [6] et M.Bardi [1] ont montré que pour une discrétisation du
Probléme continu, la solution discréte obtenue par le principe Bellman donne une
convergence uniformément continue.

Conclusion
Nous présentons une synthése optimale pour les problémes de controle optimal
en équation différentielle ordinaire, cette synthése est basée sur les solutions C! de

I’équation d’Hamilton-Jacobi-Bellman.
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