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0.1 Introduction
Fractional calcus is a new power full tool which has been recently em-

ployed to model complex systems with non-linear in spite of its complicated
mathemathical background, fractional calculus came into being of some sim-
ple questions which were related to the derivation concept; such question
as while the first order derivative represent the slope of a function reveal
about it? Finding answers to such question, scientists managed to open a
new window of opportunity to mathematical and real world, which has arisen
many new question and intriguing result. For example, the fractional order
derivative of a constant function, unlik the ordinary derivative, is note always
zero.[16]

history of Fractional Calculus

Fractional Calculus was born on 30thseptember,1695 by question of G.F.A
de L′Hospital(1661− 1704) to G.W Leibniz(1646− 1716) for the derivative

"Wath if the order will be n =
1

2
",In that year Leibniz in a letter replied:

"It will lead to a paradox, from which one day useful consequences will
be drawn." The issue raised by Leibniz for a fractional derivative (semi-
derivative, to be more precise) was an ongoing topic in decades to come
Following L’Hopital’s and Liebniz’s first inquisition, fractional calculus was
primarily a study reserved for the best mathematical minds in Europe. Euler
wrote in 1730:

"When n is a positive integer and P function of x,P = P (x),The ratio of
dp

dxn
can be always be expressed algebraically. But what kind of ratio can

then be made if n be a fraction?"

Subsequent references to fractional derivatives were made by Lagrange in
1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, Riemann in 1847,
Green in 1859, Holmgren in 1865, Grunwald in 1867, Letnikov in 1868, Sonini
in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, Weyl in 1919, and
other. During 19th century the theory of fractional calculus was developed
primarily in this way, trough insight and genius of great mathematicians.
Namely, in 1819 Lacroix, gave the correct answer to the problem raised by
Leibnitz and L’Hospital for the first time. Lacroix developed the formula
for n-th derivative of y = xm, with m being a positive integer and he Replaced
the factorial symbol by Gamma function

Dα
xx

β =
Γ(β + 1)

Γ(β − α + 1)
xβ−α.
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In particular, Lacroix calculated

D1/2
x x =

Γ(2)

Γ(3/2)
x1/2.

Surprisingly, the previous definition gives a nonzero value for the fractional
derivative of a constant function
(β = 0), since

Dα
x1 = Dα

xx
0 =

1

Γ(1− α)
x−α 6= 0.

Using linearity of fractional derivatives, the method of Lacroix is appli-
cable to any analytic function by term-vise differentiation of its power series
expansion. Unfortunately, this class of functions is too narrow in order for
the method to be considered general.[15]

Over the years, many mathematicians, using their own notation and ap-
proach, have found various definitions that fit the idea of a non-integer order
integral or derivative. One version that has been popularized in the world
of fractional calculus is the Riemann Liouville definition. It is interesting
to note that the Riemann-Liouville definition of a fractional derivative gives
the same result as that obtained by Lacroix in equation . Since most of the
other definitions of fractional calculus are largely variations of the Riemann-
Liuoville version.[12]

The subject of fractional calculus has applications in diverse and widespread
fields of engineering and science such as electromagnetics, viscoelasticity, fluid
mechanics, electrochemistry, biological population models, optics, and signals
processing. It has been used to model physical and engineering processes that
are found to be best described by fractional differential equations. The frac-
tional derivative models are used for accurate modelling of those systems
that require accurate modelling of damping. In these fields, various analyti-
cal and numerical methods including their applications to new problems have
been proposed in recent years. This special issue on “Fractional Calculus and
its Applications in Applied Mathematics and Other Sciences” is devoted to
study the recent works in the above fields of fractional calculus done by the
leading researchers. The papers for this special issue were selected after a
careful and studious peer-review process.

Mathematical modelling of real-life problems usually results in fractional
differential equations and various other problems involving special functions
of mathematical physics as well as their extensions and generalizations in one
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or more variables. In addition, most physical phenomena of fluid dynamics,
quantum mechanics, electricity, ecological systems, and many other mod-
els are controlled within their domain of validity by fractional order PDEs.
Therefore, it becomes increasingly important to be familiar with all tradi-
tional and recently developed methods for solving fractional order PDEs and
the implementations of these methods.

At present, the use of fractional order partial differential equation in
real-physical systems is commonly encountered in the fields of science and
engineering. The efficient computational tools are required for analytical
and numerical approximations of such physical models. The present issue
has addressed recent trends and developments regarding the analytical and
numerical methods that may be used in the fractional order dynamical sys-
tems. Eventually, it may be expected that the present special issue would
certainly helpful to explore the researchers with their new arising fractional
order problems and elevate the efficiency and accuracy of the solution meth-
ods for those problems in use nowadays.

This memory contains three chapters in which we summaries the frac-
tional differentiation.

The first chapter will be devoted to the basic elements of fractional cal-
culus, Some special function his propriéties and exemple used in this work.
the second chapter we present some approaches to fractional integrals and
fractional derivatives illustrated by examples.
the third chapter is dedicated to the different extensions of the gamma and
betta functions with applications; and extension of the fractional derivative
of Riemman-Liouville



Chapter 1

Some special function

Special Function are found to be of particular importance in mathemat-
ical analysis or in other applications. This definition possibly vague, since
there is no consensus a general definition of special, but there exists a com-
mon agreement on a large amount of them, like those reported here, appear
anther as integrals of some elementary function or as solution of deferential
equation.The following description of some kinds of special function is limited
to those used in this subject.

1.1 The Gamma function
The gamma function was first introduction by the Swiss mathematician

Leonhard Euler (1707−1783) in his goal to generalize the factorial to non inte-
ger values. Later, because of its great importance, it was studied by other em-
inent mathematician like Adrien-Marie Legendre(1752−1833), Carl Friedrich
Gauss(1777 − 1855), Christoph Gudermann(1798 − 1852), Joseph Liouville
(1822− 1897), Charler Hermite(1822− 1901), as well as many others.[22]

Definition 1.1.1. [22]
The most basic interpretation of the Gamma function is simply the

generalization of the factorial for all real numbers. Its definition is given by

Γ(x) =

∫ ∞
0

e−ttx−1dt, x ∈ C, (Re(x) > 0).

Some properties of the Gamma function:

1. Finite Difference Formula

Γ(x+ 1) = xΓ(x), x ∈ R.

7
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2.
Γ(n+ 1) = n!, n ∈ N.

3.
Γ(0) =∞.

4.

Γ(n+
1

2
) =

(2n)!
√
π

4nn!
, n ∈ N.

proof .1.

1. For x ∈ R we have

Γ(x+ 1) =

∫ ∞
0

e−ttxdt

= lim
p→∞

∫ p

0

e−ttxdt

= lim
p→∞

[
(−tx exp−t) +

∫ p

0

xtx−1e−tdt

]
= lim

p→∞

[
(−px exp−p) + x

∫ p

0

tx−1e−tdt

]
= x

∫ ∞
0

tx−1e−tdt

= xΓ(x)

2. we have Γ(1) = 1
For n = 1 , Γ(1 + 1) = 1Γ(1) = 1!
For n = 2 , Γ(2 + 1) = 2Γ(2) = 2!
The hypothese Γ(x+ 1) = x!
proof that Γ(x+ 2) = (x+ 1)!
we have

Γ(x+ 2) = (x+ 1)Γ(x+ 1)

= (x+ 1)x!

= (x+ 1)!

3. We have Γ(1) = 1 and Γ(n+ 1) = nΓ(n)

So, Γ(n) = Γ(n+1)
n
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put, n = 0

Γ(0) =
Γ(0 + 1)

0

=
1

0
= ∞.

4. definition by recurrence:

(a) for n = 0

Γ(0 +
1

2
) =

(0)!
√
π

400!
=
√
π.

so, for n = 0 is true

(b) Γ(n+ 1
2
) = (2n)!

√
π

4nn!
is true proof about (n+ 1)

Γ(n+ 1 +
1

2
) = (n+

1

2
)Γ(n+

1

2
)

= (n+
1

2
)
(2n)!

4nn!

√
π

=
(2n+ 1)(2n)!

2 ∗ 4nn!

√
π

=
(2n+ 1)!

2 ∗ 4nn!

√
π

=
(2(n+ 1)− 1)!

2 ∗ 4nn!

√
pi

=
(2(n+ 1))!

(2(n+ 1))2 ∗ 4nn!

√
pi

=
(2(n+ 1))!

4n+1(n+ 1)!

√
pi.

So, by recurrence Γ(n+ 1
2
) = (2n)!

√
π

4nn!
is true



10 CHAPTER 1. SOME SPECIAL FUNCTION

Example 1.1.1.
Γ(1) = 1.

Γ(1) =

∫ +∞

0

exp(−t)dt

Γ(1) = −exp(−t)|+∞0

Γ(1) = 1

Example 1.1.2.

Γ(
1

2
) =
√
π

Γ(
1

2
) =

∫ +∞

0

exp(−t)t(1/2−1)dt

If we let t = y2 , then dt = 2ydy and we now have

Γ(
1

2
) = 2

∫ +∞

0

exp(−y2)dy (1.1)

we can write:

Γ(
1

2
) = 2

∫ +∞

0

exp(−x2)dx (1.2)

If we multiply together (1.1) and (1.2) we get

[Γ(
1

2
)]2 = 4

∫ +∞

0

∫ +∞

0

exp(−x2 − y2)dxdy

with polar coordinates :

[Γ(
1

2
)]2 = 4

∫ π

2

0

∫ +∞

0

exp(−r2)drdθ = π

So,

Γ(
1

2
) =
√
π

Example 1.1.3.

Γ(
3

2
) =

√
π

4

= Γ(
1

2
+ 1)

=
1

2
Γ(

1

2
)

=

√
π

2
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1.2 The Beta function:

The beta function is a unique function where it is classified as the first kind of
Euler’s integral. The beta function is defined in the domain of real number.
The beta function is meant by B(p,q).

Definition 1.2.1. [22]
the Beta function is defined by a definite integral. Its definition is given by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y ∈ C, (Re(x), Re(y) > 0.

Remark:

The Beta function can also be defined in terms of the Gamma function: for
(Re(x), Re(y) > 0)

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y ∈ C.

Lemma 1.2.1. [22]
The Beta function is symmetric which means the order of its parameters does
not change the outcome of the operation.

B(x, y) = B(y, x)

proof .2. we have ∫ a

0

f(x)dx =

∫ a

0

f(1− x)dx

so

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

=

∫ 1

0

(1− t)x−1(1− (1− t))y−1dt

=

∫ 1

0

(1− t)x−1(t)y−1dt

= B(y, x).
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Some properties of the Beta function:[22]

1. B(x, y) = B(x, y + 1) +B(x+ 1, y).

2. B(x, y + 1) = B(x, y).[ y
x+y

].

3. B(x+ 1, y) = B(x, y).[ x
x+y

].

4. B(x, y).B(x+ y, 1− y) = π
x
sin(πy).

5. The important integrals of beta functions are:

(a) B(x, y) =
∫∞

0
tn−1

(1+t)x+y
dt

(b) B(x, y) = 2
∫ π

2

0
sin2x−1θcos2y−1dθ

Example 1.2.1.

B(
1

2
,
1

2
) =

Γ(
1

2
)Γ(

1

2
)

Γ(1)

=

√
π
√
π

1
= π

Example 1.2.2.

B(2, 3) =

∫ 1

0

t(1− t)2dt

=

∫ 1

0

(t− 2t+ t3)dt

=
1

12

The Beta function can also be defined in terms of the Gamma function:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y ∈ R+.
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1.3 The Mittag-Leffler function
The Mittag-Leveler function is named after a Swedish mathematician who
defined and studied it in 1903 [11]. The function is a direct generalization
of the exponential function, and it plays a major role in fractional calculus.
The one and two-parameter

Definition 1.3.1. (Mittag-Leffler function to one parameter)
The classical Mittag Leffler function to one parameter α, is defined by the
expression

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
; z ∈ C, Re(z) > 0.

Example 1.3.1. [18]

E1(z) = ez,

E2(z) = cosh(
√
z).

Definition 1.3.2. (Mittag-Leffler function to two parameters)
The classical Mittag Leffler function to two parameters α, β is given by the
expression:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
; z ∈ C, β ∈ C, Re(α) > 0.

Example 1.3.2. [9]

1. Eα,1(z) = Eα(z).

2. E1,2(z) =
ez − 1

z
.

3. E2,2(z) =
sinh(

√
z)√

z
.

4. Eα,β(z) + Eα,β(−z) = 2E2α,β(z2).

5. Eα,β(z)− Eα,β(−z) = 2zE2α,α+β(z2).

1.4 The Mellin-Ross Function
The Mellin-Ross function Et(v, a), arises when finding the fractional integral
of an exponential e(at). The function is closely related to both the incomplete
Gamma and Mittag-Leffler functions. Its definition is given by



14 CHAPTER 1. SOME SPECIAL FUNCTION

Definition 1.4.1.
Et(v, a) = tve(at)Γ∗(v, t)

We can also write,

Et(v, a) = tv
k=0∑
∞

(at)k

Γ(k + v + 1)

= tvE1,v+1(at)

1.5 Macdonald Function
Modified cylinder function, Bessel function of imaginary argument
A function

Ks(z) =
π

2

I−S(z)− IS(z)

sin(sπ)

Where s is an arbitrary non-integral real number and

Is(z) =
∞∑
m=0

(
z

2
)s+2m

m!Γ(s+m+ 1)

is a cylinder function with pure imaginary argument; They have been dis-
cussed by H.M. Macdonald [15]
If n is an integer, then

Kn(z) = lim
s→n

Ks(z)

The Macdonald function Ks(z) is the solution of the differential equation

z2d
2y

dz2
+ z

dy

dz
− (z2 − s2)y = 0.

Properties 1.5.1. [15]

1. Series and asymptotic representations are:

K
n+

1

2

(z) =
( π

2z

)1

2 e−z
n∑
r=0

(n+ r)!

r!(n− r)!(2z)r

Where n is a non-negative integer:

K0(z) = −ln(
z

2
)I0(z) +

∞∑
m=0

(
z

2
)2m 1

(m!)2
ψ(m+ 1)
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ψ(1) = −C, ψ(m+ 1) = 1 +
1

2
+ · · ·+ 1

m
− C

Where C = 0.5772157 . . . is the Euler constant;

Ks(z) =
1

2

s−1∑
m=0

(−1)m(s−m− 1)!

m!(
z

2
)s−2m

+ (1.3)

+ (−1)s−1

∞∑
m=0

(
z

2
)s+2m

m!(s+m)!

[
ln(

z

2
)− ψ(m+ 1) + ψ(s+m+ 1)

2

]
.

(1.4)

where n ≥ 1 is integer,

Kv ∼ (
π

2z
)
1
2 e−z

[
1 +

4v2 − 12

1!8z
+

(4v2 − 12)(4v2 − 32

2!(8z)2
+ ....

]
,

for large z and |argz| < π
2
.

2. Recurrence formulas:

Kv−1(z)−Kv+1(z) = −2v

z
Kv(z),

Kv−1(z) +Kv+1(z) = 2
dKv(z)

dz

1.6 hypergeometric functions

In this part, we give definitions and some properties of the hypergeometric
functions, (see [24] for details).
The second order linear differential equation

z(1− z)
d2y

dz2
+ [c− (a+ b+ 1)z]

dy

dz
− aby = 0

where a, b and c are complex parameters, is called hypergeometric equation.
The solutions (as series expansion) of the hypergeometric equation are valid
in the neighborhood of z = 0, 1 or∞. Thus, if c is not an integer, the general
solution of differential equation is valid in a neighborhood of the origin and
can be given by :

y = A2 F1(a, b; c; z) +Bz1−c
2F1(a− c+ 1, b− c+ 1; 2− c; z)
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where A and B are arbitrary constants, and

2F1(a, b; c; z) = 1 +
ab

c.1
z +

a(a+ 1)b(b+ 1)

c(c+ 1).1.2
z2 + .....

=
∞∑
n=0

(a)n(b)n
(cn)

zn

n!

(c 6= 0,−1,−2, .....)

and (λ)v denotes the Pochhammer symbol defined by

(λ)0 ≡ 1 and (λ)v :=
Γ(λ+ v)

Γ(λ)

Hence

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

is called Gauss hypergeometric function. This serie is convergent for |z| < 1
where <e(c) > <e(b) > 0 and |z| = 1 where <e(c− a− b) > 0.
The Gauss hypergeometric function can be given by Euler’s integral repre-
sentation as follows:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt

(|z| < 1; <e(c) > <e(b) > 0)

Replacing z = z
b
and by letting |b| → ∞ in Gauss’s hypergeometric equation,

we have
z
d2y

dz2
+ (c− z)

dy

dz
− ay = 0

This equation has a regular singularity at z = 0, The simplest solution of the
equation is

φ(a; c; z) = 1 +
a

c.1
z +

a(a+ 1)

c(c+ 1).1.2
z2 + .....

=
∞∑
n=0

(a)n
(c)n

zn

n!

(c 6= 0,−1,−2, ....)

Hence, we get

φ(a; c; z) =
∞∑
n=0

(a)n
(c)n

zn

n!
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which is called confluent hypergeometric function.
The confluent hypergeometric function can be given by an integral represen-
tation as follows:

φ(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1exp(zt)dt

(<e(c) > <e(a) > 0)

A generalized form of the hypergeometric function is

pFq(α1, ..., αp; γ1, ...., γq; z) =
∞∑
n=0

(α1)n.....(αp)n
(γ1)n.....(γq)n

zn

n!
(1.5)

(p, q = 0, 1, ....)

Setting p = 2, q = 1 in (1.5), we get the Gauss hypergeometric function,

F (α1, α2; γ1; z) :=2 F1(α1, α2; γ1; z) =
∞∑
n=0

(α1)n(α2)n
(γ1)n

zn

n!

Setting p = q = 1 in (1.5) , we get confluent hypergeometric function

φ(α1; γ1; z) =1 F1(α1; γ1; z) =
∞∑
n=0

(α1)n
(γ1)n

zn

n!

1.7 Whittaker function
In mathematics, a Whittaker function is a special solution of Whittaker’s
equation, a modified form of the confluent hypergeometric equation intro-
duced by Whittaker (1903) to make the formulas involving the solutions
more symmetric. More generally, Jacquet (1966, 1967) introduced Whittaker
functions of reductive groups over local fields, where the functions studied by
Whittaker are essentially the case where the local field is the real numbers
and the group is SL2(R).

Whittaker’s equation is:

d2w

dz2
+

(
−1

4
+
k

z
+

1
4

+ µ2

z2
w

)
= 0

It has a regular singular point at 0 and an irregular singular point at∞. Two
solutions are given by the Whittaker functions Mk,µ(z), wk,µ(z), defined in
terms of Kummer’s confluent hypergeometric functions M and U by:

Mk,µ(z) = exp(
−z
2

)zµ+ 1
2M(µ− k +

1

2
, 1 + 2µ, z)
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Wk,µ(z) = exp(
−z
2

)zµ+ 1
2U(µ− k +

1

2
, 1 + 2µ, z)

The Whittaker functions Mk,µ(z) and Wk,µ(z) are the same as those with
opposite values of µ, in other words considered as a function of µ at fixed k
and z they are even functions. When k and z are real, the functions give real
values for real and imaginary values of µ. These functions of µ play a role in
so-called Kummer spaces.

1.8 Mellin Transform
Definition 1.8.1. The Mellin transform of a function f(t) defined by

M{f, s} = ϕ(s) =

∫ ∞
0

ts−1f(t)dt (1.6)

and the inverse of the Mellin Transform defined as the following

{Mϕ(s)} = f(s) =
1

2πi

∫ u+i∞

u−i∞
t−sϕ(s)ds

Relation to Laplace and Fourier transformations

Mellin’s transformation is closely related to an extended form of Laplace’s.
The change of variables defined by

t = e−x , dt = −e−xdx

transforms the integral(1.6) into:

ϕ(s) =

∫ +∞

−∞
f(e−x)e−sxdx (1.7)

After the change of function:

g(x) = f(e−x)

one recognizes in (1.7) the two-sided Laplace L transform of g usually defined
by:

L[g, s] =

∫ +∞

−∞
g(x)e−sxdx

This can be written symbolically as

M{f, s} = L[f(e−x), s]



1.8. MELLIN TRANSFORM 19

The occurrence of a strip of holomorphy for Mellin’s transform can be de-
duced directly from this relation. The usual right-sided Laplace transform
is analytic in a half-plane Re(s) > σ1. In the same way, one can define a
left-sided Laplace transform analytic in the region Re(s) < σ2. If the two
half-planes overlap, the region of holomorphy of the two-sided transform is
thus the strip σ1 < Re(s) < σ2obtained as their intersection.
To obtain Fourier’s transform, write now s = a+ 2πjβ in (1.7):

ϕ(s) =

∫ +∞

−∞
f(e−x)e−axe−2πjβdx

The result is:
M{f(t), a+ 2πjβ} = F [f(e−x)e−ax, β]

where F represents the Fourier transformation defined by:

F [f, β] =

∫ +∞

−∞
f(x)e−2πjβdx

Thus for a given value of Re(s) = a belonging to the definition strip, the
Mellin transform of a function can be expressed as a Fourier transform.
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Chapter 2

Fractional integrals and
derivatives

Fractional calculus can be defined as a branch of mathematics that studies
the properties and integrals of non-integrals orders(called fractional deriva-
tive and integrals ). In particular, this specialization includes the idea and
methods of solution Differential equations that include fractional derivatives
of the unknown function.

2.1 Rimann-liouville fractional integral and deriva-
tive

In this section we define the first order-integral operator by:

I (f(x)) =

∫ x

0

f(s)ds.

Then we define the second order-integral by:

I2 (f(x)) = I(If(x)) = I(

∫ x

0

f(s)ds) =

∫ x

0

∫ y

0

f(s)dsdy.

by calculat: ∫ x

0

∫ y

0

f(s)dsdy =

∫ x

0

f(s)

∫ y

0

dyds.∫ x

0

∫ y

0

f(s)dsdy =

∫ x

0

f(s)[y + c]y0ds.

Replace y = (x− s)∫ x

0

∫ y

0

f(s)dsdy =

∫ x

0

(x− s)f(s)ds.

21
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So,

I2 (f(x)) =

∫ x

0

(x− s)f(s)ds.

Lemma 2.1.1. [26]
For any n ∈ N , if f is locally integrable

In (f(x)) =

∫ x

0

(x− s)n−1

(n− 1)!
f(s)ds. (2.1)

proof .3.
For n = 1we have:

I1(f(x)) =

∫ x

0

(x− s)1−1

(1− 1)!
f(s)ds.

I1(f(x)) =

∫ x

0

f(s)ds.

So, Lemma true (n = 1) assume Lemma true for n and we prove that true
for n+ 1

In+1 (f(x)) = I(Inf(x)) = I(

∫ x

0

(x− s)n−1

(n− 1)!
f(s)ds).

In+1 (f(x)) =

∫ x

0

(∫ y

0

(y − s)n−1

(n− 1)!
f(s)ds

)
.

Changing order of integration
{0 ≤ y ≤ x, 0 ≤ s ≤ y} = {0 ≤ s ≤ x, s ≤ y ≤ x}, we get

Ik (f(x)) =

∫ 0

x

∫ s

x

(y − s)k−1

(k − 1)!
f(s)dyds

=

∫ x

0

f(s)

∫ x

s

(y − s)k−1

(k − 1)!
dyds

=

∫ x

0

f(s)
(x− s)k

k(k − 1)!
ds

=

∫ x

0

(x− s)k

k!
f(s)ds.

So, Lemma (2.1) is proved for any n ∈ N
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2.1.1 Rimann-liouville fractional integral

In the same manner as Lemma used; then n-fold integrated integral is given
by

In (f(x)) =

∫ x

a

dx1

∫ x1

a

dx2

∫ xn−1

a

f(xn)dxn.

In (f(x)) =

∫ x

0

(x− s)n−1

(n− 1)!
f(s)ds.

In (f(x)) =
1

(n− 1)!

∫ x

0

1

(x− s)1−nf(s)ds.

Remark 2.1.1. For generalization of intrgral of f of frational order remplace
n by α; α > 0; writing (n− 1)! = Γ(n)

Definition 2.1.1. [26]
The Riemann-Liouville fractional integral of order α ∈ R+ is given by

Iαa (f(x)) =
1

Γ(α)

∫ x

a

1

(x− s)1−αf(s)ds.

In the right hand we have :(−∞ < a < x < +∞)

Iαa+ (f(x)) =
1

Γ(α)

∫ x

a

1

(x− s)1−αf(s)ds.

In the left hand we have :(−∞ < x < b < +∞)

Iαb− (f(x)) =
1

Γ(α)

∫ b

x

1

(s− x)1−αf(s)ds.

Properties 2.1.1. [26]

(a) The Riemann - Liouville integral operator of order is a linear operator.
That means

Iα(af(x) + bg(x)) = aIαf(x) + bIαg(x), a, b ∈ R,α ∈ R+.

(b) We have Ik(I lf(x)) = Ik+lf(x).

(c) We have Ik[I lf(x)] = I l[Ikf(x)], k, l ∈ R+.

proof .4.
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(a) We using the definition of fractional integral operator, we get

Iα(af(x) + bg(x)) =
1

Γ(α)

∫ x

0

af(x) + bg(x)

(x− s)1−α ds.

= a
1

Γ(α)

∫ x

0

f(x)

(x− s)1−αds+ b
1

Γ(α)

∫ x

0

g(x)

(x− s)1−αds.

= aIαf(x) + bIαg(x).

(b) Using the definition of fractional integral ,we get

Iα(Iβf(x)) = Iα
[

1

Γ(β)

∫ x

0

f(s)ds

(x− s)1−β

]
=

1

Γ(α)

∫ x

0

1

(x− y)1−α
1

Γ(β)

∫ y

0

f(s)ds

(y − s)1−β dy.

Changing the order of the integration, we get

Iα(Iβf(x)) =
1

Γ(α)

1

Γ(β)

∫ x

0

∫ y

0

1

(x− y)1−α
1

(y − s)1−β f(s)dsdy.

=
1

Γ(α)

1

Γ(β)

∫ x

0

[∫ x

s

1

(x− y)1−α
dy

(y − s)1−β

]
f(s)ds.

Now, we will obtain the integral

A(x, s) =

∫ x

s

1

(x− y)1−α
dy

(y − s)1−β

putting y − s = twe get dy = dt and

A(x, s) =

∫ x−s

0

dt

(x− s− t)1−αt1−β

Putting t = (x− s)u, we get, dt = (x− s)du, then

A(x, s) =

∫ 1

0

(x− s)du
(x− s)1−α(1− u)1−α(x− s)1−βu1−β

=
1

(x− s)1−(α+β)

∫ 1

0

du

(1− u)1−αu1−β

=
1

(x− s)1−(α+β)

∫ 1

0

(1− u)−1+αu−1+βdu

=
1

(x− s)1−(α+β)
B(α, β)

=
1

(x− s)1−(α+β)

Γ(α)Γ(β)

Γ(α + β)
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s

dy

(x− y)1−α(y − s)1−β =
1

(x− s)1−(α+β)

Γ(α)Γ(β)

Γ(α + β)
.

Then

Iα(Iβf(x)) =
1

Γ(α)

1

Γ(β)

∫ x

0

1

(x− s)1−(α+β)

Γ(α)Γ(β)

Γ(α + β)
f(s)ds.

=
1

Γ(α + β)

∫ x

0

f(s)ds

(x− s)1−(α+β)

= Iα+β(f(x)).

(c) Applying semigroup properties, we get

Iα(Iβf(x)) = Iα+β(f(x))

= Iβ+α(f(x))

= Iβ(Iαf(x)).

Example 2.1.1. [26]
f(x) = 1

Iα(1) =
1

Γ(1 + α)
xα, for all α > 0, x > 0.

Example 2.1.2. [26]
f(x) = xβ

Iα(xβ) =
1

Γ(α)

∫ x

0

sβ

(x− s)1−αds = xβ+α Γ(β + 1)

Γ(α + β + 1)
.

Iα(xβ =
1

Γ(α)

∫ x

0

(x− s)α−1sβds

=
1

Γ(α)

∫ x

0

(1− s

x
)α−1xα−1sβds

Putting s = ux, we get dt = xdu; Then

=
1

Γ(α)

∫ 1

0

(1− u)α−1xα−1(ux)βxdu

=
1

Γ(α)
xα+β

∫ 1

0

(1− u)α−1uβdu

=
1

Γ(α)
xα+βB(β + 1, α)

= xβ+α Γ(β + 1)

Γ(α + β + 1)
.
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In particular, if α = 1
2

I
1
2x0 =

Γ(1)

Γ(3
2
)
x

1
2 = 2

√
x

π
.

I
1
2x1 =

Γ(2)

Γ(5
2
)
x

3
2 =

4

3

√
x3

π
.

I
1
2x2 =

Γ(3)

Γ(7
2
)
x

5
2 =

16

15

√
x5

π
.

Example 2.1.3. [26]

f(x) = eβt

Iα(eβt) = ET (α, β).

Iα(eax) =
1

Γ(α)

∫ x

0

eas

(x− s)1−αds

Putting
y = x− s

, we get

Iα(eax) =
1

Γ(α)

∫ x

0

ea(x−y)

y1−α dy

According to the The Mellin-Ross Function, We get

Iα(eax) = Ex(α, a)

In particular, if α =
1

2
,

I
1
2 (eax) = Ex(

1

2
, a) = a−

1
2 eaxErf(ax)

1
2

Example 2.1.4. [26]

f(x) = teβt

Iα(teβt) = tET (α, β)− αEt(α + 1, β).
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2.1.2 Rimann-liouville fractional derivative

We will obtain the Riemann-Liouville fractional derivative by definition of
Rimann-liouville fractional integral(2.1.1) if f(x) ∈ C([a, b]) and a < x < b
then:

Iαa (f(x)) =
1

Γ(α)

∫ x

a

1

(x− s)1−αf(s)ds.

If α ∈ [−∞,+∞] is called the Riemann-Liouville fractional integral
of order α;
In the same fashion for α ∈ [0, 1], We let

Dα
a (f(x)) =

1

Γ(1− α)

d

dx

∫ x

a

1

(x− s)α
f(s)ds.

Which is called the Riemann-Liouville fractional derivative of order α

Definition 2.1.2. [26]
the Riemann-Liouville fractional derivative or the Riemann-Liouville frac-
tional operator of order α
for α > 0, x > 0; α, x ∈ R ,Is given by

Dα (f(x)) =


1

Γ(n− α)

dn

dxn
∫ x

0

f(s)

(x− s)(1−n+α)
ds, n− 1 < α < n;n ∈ N

dn

dxn
f(x), α = n;n ∈ N.

Lemma 2.1.2. [26]
Let n− 1 < α < n, n ∈ N,α ∈ R ,and f(x)be such that Dα (f(x)) exist.Then

Dα (f(x)) = DdαeIα−dαef(x).

This means the Riemann-Liouville fractional derivative is equivalent to
(dαe − α)-fold integration anddαe-th order differential.

Properties 2.1.2. [26]

1. The Riemann-Liouville fractional differential operator of order is a linear
operator. That means

Dα(af(x) + bg(x)) = aDαf(x) + bDαg(x)a, b ∈ R,α ∈ R+.

2. The following non-semigroup properties hold

DαDβ 6= Dα+β, α; β ∈ R+.
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3. The following non-commutative properties hold suppose that
n− 1 < α < n, n;m ∈ N
Then in general:

DmDαf(x) = Dm+αf(x) 6= DαDmf(x).

4. For any constant C, the formulas hold

Dα(c) =
1

Γ(1− α)
x−α

proof .5.

1. Using the definition of Dα , we get

Dα(af(x) + bg(x)) =
1

Γ(dαe − α)

ddαe

dxdαe

∫ x

0

af(s) + bg(s)

(x− s)1−dαe+αds.

=
a

Γ(dαe − α)

ddαe

dxα

∫ x

0

f(s)

(x− s)1−dαe+αds

+
b

Γ(dαe − α)

ddαe

dxα

∫ x

0

bg(s)

(x− s)1−dαe+αds

= aDαf(x) + bDαg(x)

2. Let α = 1
2
, f(x)1, β = 1 using the definition of Dα, we get

D
1
2D1(1) = D

1
2 (0) = 0.

D
3
2 (1) =

−1

2
√
π
x
−3

2

D
1
2D1(1) = 0 6= −1

2
√
π
x

−3
2 = D

3
2 (1)

That means
D

1
2D1(1) 6= D

3
2 (1)

(non-semigroup)

3. Let α = 1
2
, f(x)1, β = 1 using the definition of Dα, we get

D1D
1
2 (1) = D1

(
1√
π
x

1
2

)
=
−1

2
√
π
x

−3
2

D
1
2D1(1) = 0 6= −1

2
√
π
x

−3
2 .
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That means
D1D

1
2 (1) 6= D

1
2D1(1)

(non-commutative)

4. Using the definition of Dα, we get

=
1

Γ(dαe − α)

ddαe

dxdαe

∫ x

0

c

(x− s)1−dαe+αds.

=
c

Γ(dαe − α)

d

dx

[
−(x− s)1−α

(1− α)
|x0
]

Example 2.1.5. The fractional derivative of f(x) = xµ of order v

Dvf(x) = D1[I(1−v)f(x)]

= D1[I(1−v)xµ]

= D1

[
Γ(µ+ 1)

Γ((µ− v + 1) + 1)
x(µ−v+1)

]
= (µ− v + 1)

Γ(µ+ 1)

(µ− v + 1)Γ(µ− v + 1)
xµ−v

=
Γ(µ+ 1)

Γ(µ− v + 1)
xµ−v.

Examples for 1/2th-order derivative:

D1/2xµ =
Γ(µ+ 1)

Γ(µ− 1/2 + 1)
xµ−1/2.

D1/2x1 =
Γ(2)

Γ(3/2)
x1/2 = 2

√
x

π
.

D1/2x2 =
Γ(3)

Γ(5/2)
x3/2 =

8

3

√
x3

π
.

2.2 The Caputo fractional derivative
Definition 2.2.1. [26]
Suppose that α > 0, x > 0, α, x ∈ R. The fractinal derivative

Dα
∗ f(x) =


1

Γ(n− α)

∫ x

0

f (n)(s)ds

(x− s)α+1−n , n− 1 < α < n ∈ N

dn

dxn
f(x), α = n ∈ N.
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Is called the Caputo fractional derivative or Caputo fractional differential
operator of order α.

Properties 2.2.1.

1. Caputo fractional differential operator Dα
∗ of order α is a linear operator.

That means

Dα
∗ (af(x) + bg(x)) = aDα

∗ f(x) + bDα
∗ g(x).a, b ∈ R,α ∈ R+.

2. The following non-semigroup properties hold

Dα
∗D

β
∗ f(x) 6= Dα+β

∗ f(x).α, β ∈ R+.

3. For any constant properties hold Dα
∗ (c) = 0

proof .6.

1. Using the definition of Dα
∗ , we get

Dα
∗ (af(x) + bg(x)) =

1

Γ(dαe+ α)

∫ x

0

1

(x− s)1−dαe+α
ddαe

dsα
[af(s) + bg(s)]ds.

= a
1

Γ(dαe+ α)

∫ x

0

1

(x− s)1−dαe+α
ddαe

dsα
f(s)ds+

+ b
1

Γ(dαe+ α)

∫ x

0

1

(x− s)1−dαe+α
ddαe

dsα
g(s)ds.

= aDα
∗ f(x) + bDα

∗ g(x).

2. Let α = 1, β =
1

2
, f(x) = x. Then applying the definition, We get

D1
∗D

1
2
∗ (x) = D1

∗(D

1

2
∗ (x))

D
1
2
∗ (x) =

1

Γ(
1

2
)

∫ x

0

1

(x− s)
1

2

d

ds
(s)ds

=
1

Γ(
1

2
)

∫ x

0

1

(x− s)1/2
ds =

2
√
x√
π
.

D1
∗(D

1
2
∗ (x)) = D1

∗

(
2
√
x√
π

)
=

1√
πx
.
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and

D
1+ 1

2
∗ (x) = D

3
2
∗ (x)

=
1

Γ(
1

2
)

∫ x

0

1

(x− s) 1
2

dd2e

dsd2e
(s)ds

=
1

Γ(
1

2
)

∫ x

0

1

(x− s) 1
2

d

ds
(1)ds = 0.

We see that:
D1
∗D

1
2
∗ (x) =

1√
πx
6= 0 = D

1+ 1
2

∗ (x).

3. Using the definition, we get

Dα
∗ (c) =

1

Γ(n− α)

∫ x

0

1

(x− s)α+1−n
dn

dsn
(c)ds

We have
dn

dsn
(c) = 0 , So Dα

∗ (c) = 0.

Example 2.2.1. [26]

Dα
∗ (xβ) =


0 ifβ ∈ N0 andβ < dαe,

Γ(β + 1)xβ−α

Γ(β + 1− α)
ifβ ∈ N0 andβ ≥ dαe orβ ∈ N andβ > dαe.

Here; N0 = N
⋃
{0}.

1. If β ∈ N0 and β < dαe, Than Ddαe∗ (uβ) = 0, and using this formula

Dα
∗ f(x) =

1

Γ(dαe+ α)

∫ x

0

1

(x− u)1−dαe+αD
dαef(u)du; x, α ∈ R+ (2.2)

We get
Dα
∗ f(x) = 0

2. Ifβ ∈ N0andβ ≥ dαeorβ ∈ Nandβ > dαe, Then Ddαe∗ (uβ) =
Γ(β + 1)

Γ(β + 1− α)
uβ−α

Using formula(2.2), We get

Dα
∗ (xβ) =

1

Γ(dαe+ α)

∫ x

0

1

(x− u)1−dαe+αD
dαeuβdu

=
1

Γ(dαe+ α)

∫ x

0

1

(x− u)1−dαe+α
Γ(β + 1)

Γ(β + 1− α)
uβ−αdu.



32 CHAPTER 2. FRACTIONAL INTEGRALS AND DERIVATIVES

Putting u = xp, we get du = xdp; Then

Dα
∗ (xβ) =

Γ(β + 1)

Γ(β + 1− α)Γ(dαe+ α)

∫ 1

0

x

[x(1− p)]1−dαe+α
(xp)β−dαedp

=
Γ(β + 1)xβ−α

Γ(β + 1− α)Γ(dαe − α)

∫ 1

0

pβ−dαe(1− p)dαe−α−1dp

=
Γ(β + 1)xβ−α

Γ(β + 1− α)Γ(dαe − α)
B(β − dαe+ 1, dαe − α)

=
Γ(β + 1)xβ−α

Γ(β + 1− α)
.

2.3 Hadamard fractional integrals and fractional
derivative

In this section, we present the definitions and the some properties of the
Hadamard fractional integrals and Hadamard fractional derivatives[14],[11],[25],[23].

2.3.1 Hadamard fractional integrals

Definition 2.3.1. (Hadamard fractional integral to left sided)
Hadamard fractional integral to left sided of complex order α such that
Re(α) ≥ 0 of a function f is given respectively by the expression:

(HIa+
α f)(x) =

1

Γ(α)

∫ x

a

(
log

x

t

)α−1

f(t)
dt

t
, a < x < b (2.3)

Definition 2.3.2. (Hadamard fractional integral to right sided)
Hadamard fractional integral to right sided of complex order α such that
Re(α) ≥ 0 of a function is given respectively by the expression

(HIb−α f)(x) =
1

Γ(α)

∫ b

x

(
log

t

x

)α−1

f(t)
dt

t
, a < x < b (2.4)

In particular, if a = 0 and b =∞

(HI0
αf)(x) =

1

Γ(α)

∫ x

0

(
log

x

t

)α−1

f(t)
dt

t
x > 0

(HI∞−α f)(x) =
1

Γ(α)

∫ ∞
x

(
log

t

x

)α−1

f(t)
dt

t
x > 0
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2.3.2 Hadamard Fractional Derivatives

Definition 2.3.3. (Hadamard fractional derivative to left sided)
The left-sided Hadamard fractional derivative of order α ∈ C, Re(α) ≥ 0); in
interval (a, b), is defined by:

we have δ = xD and D =
d

dx

(Dα
a+y)(x) = δn((HIn−αa+ y)(x)) =

(
x
d

dx

)n
1

Γ(n− α)

∫ x

a

(
log

x

t

)
(n−α+a)

y(t)dt

t

; (a < x < b)

Definition 2.3.4. (Hadamard fractional derivative to right sided)
The right-sided Hadamard fractional derivative of order α ∈ C, Re(α) ≥ 0);

in interval (a, b), is defined by we have δ = xD and D =
d

dx

(Dα
b−y)(x) = −δn((HIn−αb− y)(x)) =

(
−x d

dx

)n
1

Γ(n− α)

∫ x

a

(
log

t

x

)
(n−α+a)

y(t)dt

t

; (a < x < b)

In particular, if a = 0 and b =∞ (Dα
0+y)(x) = (Dα

−∞y)(x)

Properties 2.3.1. For Re(α) > 0, Re(β) > 0, and 0 < a < b < ∞, we
have

1.
(HIa+

α (log
t

a
)β−1)(x) =

Γ(β)

Γ(β + α)
(log

x

a
)β+α−1.

2.
(Da+

α (log
t

a
)β−1)(x) =

Γ(β)

Γ(β + α)
(log

x

a
)β−α−1.

3.
(HIb−α (log

b

t
)β−1)(x) =

Γ(β)

Γ(β + α)
(log

b

x
)β+α−1.

4.

(Db−
α (log

b

t
)β−1)(x) =

Γ(β)

Γ(β + α)
(log

b

x
)β−α−1.

2.4 Caputo-Fabrizio fractional integrals and Frac-
tional Derivative

Recently, a new derivative was launched by Caputo and Fabrizio and it was
followed by some related theoretical and applied results , We recall that the
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existing fractional derivatives have been used in many real world problems
with great success but still there are many thinks to be done in this direction.
The Caputo-Fabrizio fractional derivative in the Caputo sense is defined by
Letf ∈ H1(a, b), a < b, a ∈ (−∞, t), 0 < α < 1;

(CFCDα
a f)(t) =

B(α)

1− α

∫ t

a

f ′(s)e−
α

1−α (t−s)ds.

2.4.1 Caputo-Fabrizio fractional integral

Definition 2.4.1. [19]
The Caputo-Fabrizio fractional integral of order is defined by
Let a, b, α ∈ R, a < b, 0 < α < 1, f ∈ H1(a, b).

Iαa f(t) = (1− α)f(t) + α

∫ t

a

f(s)ds.

2.4.2 Caputo-Fabrizio fractional derivative

Definition 2.4.2. [19]
The Caputo-Fabrizio fractional derivative of orderα is defined by
Let a, b, α ∈ R, a < b, 0 < α < 1, f ∈ H1(a, b).

(Dα
a f)(t) =

1

1− α

∫ t

a

f ′(s)e−
α

1−α (t−s)ds.

(Dα
a f)(t) =

1

1− α

(
f(t)− e−

α
1−α tf(a)

)
− α

(1− α)2

∫ t

a

f(s)e−
α

1−α (t−s)ds.

Properties 2.4.1. [19]

1. Let f ∈ C1[a, b] . Then Dα
atf(t) ∈ C1[a, b].

2. The operator Dα
at : C1[a, b]→ C1[a, b] is bounded and

‖Dα
atf‖C1[a,b] ≤

1

α

(
1− e−

α
1−α (b−a)

)
‖f‖C1[a,b]. (2.5)

3. Let f ∈ C1[a, b], Then Dα
atf(t) ∈ W1.p[a, b], 1 ≤ p ≤ ∞.

4. The subspace C1[a, b]1 is invariant with respect to the Caputo-Fabrizio oper-
ator Dα

at.

proof .7.
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1. As the function

yτ =
1

1− α
e−

α
1−α (t−τ)f ′(τ).

Is continuous and integrable for all t,τ ∈ [a, b];We conclude that the function

F (t) =
1

1− α

∫ t

a

e−
α

1−α (t−τ)f ′(τ)dτ

Is differentiable in [a, b], This means that Dα
atf(t) ∈ C[a, b].

2. We have,

‖Dα
atf‖C1[a,b] = ‖ 1

1− α

∫ t

a

e−
α

1−α (t−ξ)f ′(ξ)dξ‖C1[a,b]

≤ ‖ 1

1− α

∫ t

a

e−
α

1−α (t−ξ) | f ′(ξ) | dξ‖C1[a,b]

≤ ‖ 1

1− α

∫ t

a

e−
α

1−α (t−ξ)(| f(ξ) | + | f ′(ξ) |)dξ‖C1[a,b]

≤ 1

1− α
‖f‖C1[a,b]

∫ t

a

e−
α

1−α (t−ξ)

≤ 1

α
‖f‖C1[a,b]

(
1− e−

α
1−α (t−a)

)
≤ 1

α
‖f‖C1[a,b]

(
1− e−

α
1−α (b−a)

)

(2.6)

The inequality (2.5) follows from (2.6)

3. Let f ∈ C1[a, b], Then Dα
atf(t) ∈ W1.p[a, b], 1 ≤ p ≤ ∞. As f ∈ C1[a, b], we

obtain from property one that Dα
atf(t) ∈ C1[a, b], 1 ≤ p ≤ ∞. We know that

C1[a, b] ⊂ W1.p[a, b],∀p ≥ 1. Therefore Dα
atf(t) ∈ W1.p[a, b].

4. The subspace C1[a, b]1 is invariant with respect to the Caputo-Fabrizio oper-
ator Dα

at. We want to show that for all f ∈ C1[a, b], then Dα
atf ∈ C1[a, b], We

know that C1[a, b] ⊂ H1. Let f ∈ C1[a, b]. then using property 1 we conclude
that Dα

atf ∈ C1[a, b].
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Chapter 3

Generalized incomplete gamma
and Beta functions

In this chapter, we give denition and properties the generalized gamma func-
tion and incomplete gamma; Beta functions.

3.1 The generalized gamma function

Definition 3.1.1. [12]
The first generalized gamma function is defined by

Γc(s) =

∫ ∞
0

ts−1e−t−cdt.(Re(c) > 0;Re(s) > 0).

Notice that in the case c = 0 the function conclude with the classical
gamma function.

Remark 3.1.1. For Re(c) > 0and | arg(
√
c) |< π,

Γc(s) = 2c
s
2Ks(2

√
c).0

Ks is a Macdonald function

Properties 3.1.1. [7]

1. The difirence formula

Γc(s+ 1) = sΓc(s) + cΓc(s− 1).

37



38CHAPTER 3. GENERALIZED INCOMPLETE GAMMA AND BETA FUNCTIONS

2. Log-convex property

Let 1 < n <∞ and (
1

n
) + (

1

m
) = 1;

Then

Γc(
α

n
+
β

m
) ≤ (Γc(α))

1

n (Γc(β))

1

m, (c ≥ 0, α > 0, β > 0).

3. The reection formula
For R(c) > 0;

csΓc(−s) = Γc(s)

4. Product Formula
For, c ≥ 0; Re(q) > 0, Re(s) > 0

Γc(s)Γs(q) = 2

∫ ∞
0

τ 2(s+q)e−τ
2

B(s, q;
c

τ 2
)dτ.

Where

B(x, y; c) =

∫ 1

0

tx−1(1− t)y−1e
−

c

t(1− t)dt.

Is the Extended Beta Function.

3.2 The generalized incomplete gamma func-
tion

The lower incomplete gamma function is defined as

γ(s, x) =

∫ x

0

ts−1e−tdt.

The upper incomplete gamma function is defined as

Γ(s, x)

∫ ∞
x

ts−1e−tdt.

The lower and upper Incomplete Gamma Functions were rst invastigated for
x ∈ R by Legendre. Nevertheless, these functions give rise to some difficul-
ties mostly in the neighborhood of 0. In order to overcome these problems,
Chaudhry et al. [5], using an exponential regulazing term, Chaudhry et al.
extended the incomplete gamma function as follow
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Definition 3.2.1. [5]
The generalized incomplete gamma function; Chaudhry and Zubair introduced
the definition of Generalized Incomplete Gamma functions as

γ(s, x; c) =

∫ x

0

ts−1e−t−
c
t dt (3.1)

and
Γ(s, x; c) =

∫ ∞
x

ts−1e−t−
c
t dt (3.2)

Found useful in a variety of heat conduction problems [6] The decompo-
sition and extension of these functions were also found to be useful[5]
Miller and Moskowitz [21] found a representation of the generalized incom-
plete function (3.2) in terms of the Kampé de Fériet (KdF) functions and
discussed its closed form representations. Miller [20] found several reduction
formulae of the KdF functions in terms of the function (3.2) and discussed
its relations with incomplete Weber integrals.
In this section we introduce a pair of functions :

γ(s, x; c, β) =

∫ x

0

ts−1e−t−( c

tβ
)dt (3.3)

and
Γ(s, x; c, β) =

∫ ∞
x

ts−1e−t−( c

tβ
)dt (3.4)

and call them extended incomplete gamma functions, we note that the gen-
eralized incomplete gamma functions (3.1),(3.2)are special cases of (3.3)(3.4)
when β = 1

γ(s, x; c, 1) = γ(s, x; c). (3.5)

Γ(s, x; c, 1) = Γ(s, x; c). (3.6)

Theorem 3.2.1. ( Recurrence formula) [11]:
The recurrence formula for the extended incomplete gamma function (3.4)
naturally and simply extends the recurrence relation of the classical and gen-
eralized incomplete gamma functions.

Γ(s+ 1, x; c, β) = sΓ(s, x; c, β) + cβΓ(s− β, x; c, β) + xse−x−cx
−β

(3.7)

proof .8.
Let us define

f(t) = e−t−ct
−βH(t−x),(3.8)
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Where

H(t− x) =

{
1 ift > x,
0 ift < x,

Is the Heaviside unit step function. The extended gamma function (3.4) is
simply the Mellin transform of the function f(t) in[10]

Γ(s, x; c, β) = M{f(t) : t→ s} =

The differentiation of (3.8) in the sense of distribution yields

d

dt
{f(t)} = (−1 + cβt−β−1)f(t) + e−t−βt

−β
δ(t− x),

Where
δ(t− x) =

d

dt
(H(t− x)), (3.9)

Is the Dirac delta function.
The Mellin transform of a function and its derivative are related via [10]

−(s− 1)M{f(t) : t→ s− 1} = M

{
d

dt
(f(t)); t→ s

}
(3.10)

From (3.9) and (3.10) we get

−(s−1)Γ(s−1, x; c, β) = −Γ(s, x; c, β)+cβΓ(s−β−1, x; c, β)+xs−1e−x−cx
−β

Which simplifies to give

Γ(s, x; c, β) = (s− 1)Γ(s− 1, x; c, β) + cβΓ(s− β − 1, x; c, β) + xs−1e−x−cx
−β

(3.11)
Replacing s by s+ 1 in (3.11) yields (3.7)

Corollary 3.2.1. [5]
We have

Γ(s+ 1, x; c) = sΓ(s, x; c) + cΓ(s− 1, x; c) + xse−x−cx
−1

(3.12)

proof .9.
This follows from (3.7) when we take β = 1. It is to be noted that the
substitution c = 0 in (3.12) yields the recurrence relation

Γ(s+ 1, x) = sΓ(s, x) + xse−x

For the classical incomplete gamma function
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Theorem 3.2.2. [11]
For Re(c) ≥ 0

γ(s, x; c) + Γ(s, x; c) = Γc(s).

proof .10.
When we add lower and upper incomplete gamma functions, we get

γ(s, x; c) + Γ(s, x; c) =

∫ x

0

ts−1e−t−ct
−1

dt+

∫ ∞
x

ts−1e−t−ct
−1

dt

Hence ∫ ∞
0

ts−1e−t−ct
−1

dt = Γc(s)

Theorem 3.2.3. [5]
For a > 0 ∫ ∞

x

ts−1e−at−t
−1

dt = a−sΓ(s, ax; ac)

proof .11.
Substitutiont = µ

a
in
∫∞
x
ts−1e−at−t

−1
dt and use (3.1); we get

a−s
∫ ∞
ax

µs−1e−µ−acµ
−1

dµ = a−sΓ(s, ax; ab)

Theorem 3.2.4. (Parametric differentiation)[5].

d

dc
(Γ(s, x; c)) = −Γ(s− 1, x; c)

We have

Γ(s+ 1, x; c) = sΓ(s, x; c) + cΓ(s− 1, x; c) + xse−x−cx
−1

proof .12.

d

dc
(Γ(s, x; c)) =

d

dc

(∫ ∞
x

ts−1e−t−
c
t dt

)
= −

∫ ∞
x

ts−2e−t−
c
t dt

= −Γ(s− 1, x; c)

Theorem 3.2.5. (Decomposition formula)[5]
The decomposition formula

γ(s, x) + Γ(s, x) = Γ(s).
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For the classical incomplete gamma functions was proved to be a special case
of the decomposition formula [?]

γ(s, x, c) + Γ(s, x, c) = 2b

α

2Kα(2
√
b).

For the generalized incomplete gamma functions. One could expect to have a
similar formula for the extended incomplete gamma functions.

These extensions are useful and provide new connections with error and
Whittaker functions, for p = 0 they will be reduced to the known gamma
Instead of using the exponential function.
Chaudhry and Zubair [5] proposed a new generalized extensions of incomplete
gamma functions in the following form

γµ(α, x; p) =

√
2p

π

∫ x

0

tα−
3
2 e−tKµ+ 1

2

(p
t

)
dt, (3.13)

Γµ(α, x; p) =

√
2p

π

∫ ∞
x

tα−
3
2 e−tKµ+ 1

2

(p
t

)
dt. (3.14)

Recently and Inspired by the work of Agarwal [2], abbas et al. in [1] introduce
a new generalized incomplete gamma functions by replacing the Macdonald
function Kα(z) by it’s extended one developed by Boudjelkha , namely the
function

RK(z, α, q, λ) =
(z/2)α

2

∫ ∞
0

t−α−1 e
−qt−z2/4t

1− λe−t
dt, (3.15)

where | arg z2| < π/2, 0 < q ≤ 1 and −1 ≤ λ ≤ 1.

Definition 3.2.2. The extended generalized incomplete gamma functions are
given by [1]

γµ(α, x; q;λ; p) =

√
2p

π

∫ x

0

tα−
3
2 e−tRK

(
p

t
,−µ− 1

2
, q, λ

)
dt (3.16)

Γµ(α, x; q;λ; p) =

√
2p

π

∫ ∞
x

tα−
3
2 e−tRK

(
p

t
,−µ− 1

2
, q, λ

)
dt (3.17)

where <e(x) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1 and <e(p) > 0.
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3.3 The Extended Beta Function
Definition 3.3.1. [4]
For Re(c) > 0; y and x arbitary complex number the Extended Beta Function
is dened as

Bµ(x, y; p;m) =

√
2p

π

∫ 1

0

t
x−

1

2 (1− t)
y−

1

2 (1− zt)−aK
µ+

1

2

(
p

tm(1− t)m

)
dt.

If x, y ∈ Cm > 0,and R(µ) ≥ 0.

Connection with other special functions [4]

As mentioned in the Introduction, this extension of the beta function is
justified not only by the fact that most properties of the beta function are
carried over simply, but also by the fact that this function is related to other
special functions for particular values of the variables. In this section, we
demonstrate this fact for the cases y = −x and y = x, There may well be
other such relations to be discovered for other special cases.

Theorem 3.3.1.
The extended beta function is related to the Whittaker function( Whittaker
function[27]) by

B(α, α, b) =
√

2π
−α
b

(α−1)
2 e−2bW−α

2
,α
2
(4b); Re(b) > 0. (3.18)

proof .13. The substitution y = x in

B(x, y, b) = 21−x−y
∫ 1

−1

(1 + t)x−1(1− t)y−1e
−4b

(1−t2)dt

;yield

B(x, x, b) = 21−2x

∫ 1

−1

(1− t2)x−1e
−4b

(1−t2)dt

Since the integrand on the right-hand side is even, it follows that:

B(x, x, b) = 22−2x

∫ 1

0

(1− t2)x−1e
−4b

(1−t2)
dt.(3.19)

The substitution ξ = 1− t2in (3.19) yields

B(x, x, b) = 22−2x

∫ 1

0

ξx−1(1− ξ)
1

2
−1
e

−4b
ξ dξ. (3.20)
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The integral on the right-hand side of (3.20) is a special case of the result
[27,p.384(3.471)(2)]∫ u

0

x(v−1)(u− x)µ−1e
−
β

x dx = β
(v−1)

2 u
(2µ−v−1)

2 e
−β
2u Γ(µ)W

(
(1−2µ−v)

2
, v
2

)
(
β

u
)

(Re(µ) > 0;Re(β) > 0;u > 0)
With β = 4b, u = 1, v = x and µ = 1

2
, this gives

B(x, x, b) =
√

2π
−x
b

(x−1)
2 e−2bW−x

2
,x
2
(4b); Re(b) > 0. (3.21)

Replacing x by α in (3.21)completes the proof of (3.18).

Properties 3.3.1. [4]

1. For Re(c) ≥ 0;
B(x, y; c) = B(y, x; c).

2. Functional relation

B(x, y + 1; c) +B(x+ 1, y; c) = B(x, y; c).

3. For Re(c) > 0

B(x, y; c) =
∞∑
n=0

B(x+ n, y + 1; c).

4. For Re(c) > 0

B(x, 1− y; c) =
∞∑
n=0

(y)n
n!

B(x+ n, 1; c).

proof .14.

1.

B(x, y; c) =

∫ 1

0

tx−1(1− t)y−1e−
c

t(1−t)dt.

Replace t = 1− µ, we fined

B(x, y; c) =

∫ 1

0

tx−1(1− t)y−1e−
c

t(1−t)dt

=

∫ 1

0

(1− µ)x−1µy−1e−
c

t(1−t)dµ

=

∫ 1

0

µy−1(1− µ)x−1e−
c

t(1−t)dµ

= B(y, x; c).
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2.

B(x, y + 1; c) +B(x+ 1, y; c) =

∫ 1

0

tx−1(1− t)ye−
c

t(1−t)dt+

∫ 1

0

tx(1− t)y−1e−
c

t(1−t)dt

=

∫ 1

0

tx(1− t)ye−
c

t(1−t) [t−1 + (1− t)−1]dt

=

∫ 1

0

tx(1− t)ye−
c

t(1−t) [
1

t(1− t)
]dt

=

∫ 1

0

tx−1(1− t)y−1e−
c

t(1−t)dt

= B(x, y; c).

3. The factor (1− t)y−1has the series representations as the following

1

1− t
=
∞∑
n=0

tn.

So

(1− t)y−1 = (1− t)y
∞∑
n=0

tn.

B(x, y; c) =

∫ 1

0

tx−1(1− t)y−1e−
c

t(1−t)dt

=

∫ 1

0

tx−1(1− t)y
∞∑
n=0

tne−
c

t(1−t)dt

=
∞∑
n=0

∫ 1

0

(1− t)ytn+x−1e
c

t(1−t)dt

=
∞∑
n=0

B(x+ n, y + 1; c).

4. The factor (1− t)−yhas the series representations as the following

(1− t)−y =
∞∑
n=0

(y)n
n!

tn
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Using the denition of extended beta function; we get

B(x, 1− y; c) =

∫ 1

0

tx−1(1− t)−ye−
c

t(1−t)dt

=

∫ 1

0

tx−1

∞∑
n=0

(y)n
n!

tne−
c

t(1−t)dt

=

∫ 1

0

∞∑
n=0

(y)n
n!

tn+x−1e−
c

t(1−t)dt

=
∞∑
n=0

(y)n
n!

∫ 1

0

tn+x−1e−
c

t(1−t)dt

=
∞∑
n=0

(y)n
n!

B(x+ n, 1; c).

Recently and Inspired by the work of Agarwal [2], abbas et al. [1] intro-
duce a new generalized Euler’s beta functions by replacing the Macdonald
function Kα(z) by it’s extended one developed by Boudjelkha.

Definition 3.3.2. The extended generalized beta function is given by

Bµ(x, y; q;λ; p;m) =

√
2p

π

∫ 1

0

tx−
3
2 (1−t)y−

3
2RK

(
p

tm(1− t)m
,−µ− 1

2
, q, λ

)
dt,

(3.22)
where x, y ∈ C, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0 and <e(p) > 0.

Remark 3.3.1. Taking λ = 0 and q = 1, the equation (3.22) reduces to the
extended Euler beta function defined by Agarwal et al.[2] .

Properties 3.3.2 (Functional relations).

1. The following formula holds:

Bµ(x, y; q;λ; p;m) = Bµ(x+ 1, y; q;λ; p;m) +Bµ(x, y + 1; q;λ; p;m). (3.23)

2. Let n ∈ N. Then the following summation formula holds:

Bµ(x, y; q;λ; p;m) =
n∑
k=0

Bµ(x+ k, y + n− k; q;λ; p;m). (3.24)

proof .15.
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1. The right-hand side of (3.23) reads√
2p

π

∫ 1

0

{
tx−

1
2 (1− t)y−

3
2 + tx−

3
2 (1− t)y−

1
2

}
RK

(
p

tm(1− t)m
,−µ− 1

2
, q, λ

)
dt,

which, after simplification, yields√
2p

π

∫ 1

0

tx−
3
2 (1− t)y−

3
2RK

(
p

tm(1− t)m
,−µ− 1

2
, q, λ

)
dt,

which is equal to the left-hand side of (3.23).

2. The case n = 0 of (3.24) holds trivially. The case n = 1 of (3.24) is just the
relation (3.23). For the other cases we can easily proceed by induction on n.

Properties 3.3.3. The following formula holds

Bµ(x, 1− y; q;λ; p;m) =
∞∑
n=0

(y)n
n!

Bµ(x+ n, 1; q;λ; p;m). (3.25)

proof .16. We have

Bµ(x, 1−y; q;λ; p;m) =

√
2p

π

∫ 1

0

tx−
3
2 (1−t)−y−

1
2RK

(
p

tm(1− t)m
,−µ− 1

2
, q, λ

)
dt.

(3.26)
By substituting the formula

(1− t)−y =
∞∑
n=0

(y)n
tn

n!
, (|t| < 1, y ∈ C), (3.27)

in the right-hand of (3.26) and after interchanging the order of integral and
summation we get (3.25).

Properties 3.3.4. The following formula holds

Bµ(x, y; q;λ; p;m) =
∞∑
n=0

Bµ(x+ n, y + 1; q;λ; p;m). (3.28)

proof .17. By substituting the following formula

(1− t)y−1 = (1− t)y
∞∑
n=0

tn, (|t| < 1), (3.29)

in the right-hand of (3.22) and similarly as in the proof of proposition 3.3.3
we get the desired result.
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3.4 The Extended Riemann-Liouville type frac-
tional

We first recall that the classical Riemann-Liouville fractional derivative is
defined by

Dv
zf(z) =

1

Γ(−v)

∫ z

0

(z − t)−v−1f(t)dt.

Where R(v) < 0 and the integration path is a line from 0 to z in the complex
t-plane.
It coincides with the fractional integral of order −v . In case m−1 < R(v) <
m,m ∈ N it is customary to write:

Dv
zf(z) =

dm

dzm
Dv−m
z f(z) =

dm

dzm

{
1

Γ(m− v)

∫ z

0

(z − t)m−v−1f(t)dt

}
.

We present the following new extended Riemann-Liouville-type fractional
derivative operator

Definition 3.4.1. [2]
The extended Riemann-Liouville fractional derivative of f(z) of order v is
defined by:
For Re(v) > 0, Re(p) > 0, Re(m) > 0, and Re(µ) ≥ 0.

Dv,µ;p;m
z f(z) =

1

Γ(−v)

√
2p

π

∫ z

0

(z − t)−v−1f(t)Kµ+ 1
2

(
pz2m

tm(z − t)m

)
dt.

Remark 3.4.1.
If we take m = 0, µ = 0 and p → 0 Then the above extended Riemann-
Liouville fractional derivative operator reduces to the classical Riemann-Liouville
fractional derivative operator.

Lemma 3.4.1. [2]
If R(v) < 0, then we have:

Dv,µ;p;m
z {zλ} =

zλ−v

Γ(−v)
Bµ(λ+

3

2
,−v1

2
; p;m).

proof .18.
Using definition of The extended Riemann-Liouville fractional derivative; we
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have:

Dv,µ;p;m
z {zλ} =

1

Γ(−v)

√
2p

π

∫ z

0

(z − t)−v−1f(t)Kµ+ 1
2

(
pz2m

tm(z − t)m

)
dt

=
zλ−v

Γ(−v)

√
2p

π

∫ 1

0

(1− u)
(−v+

1

2
)−

3

2u
(λ+

3

2
)−

3

2Kµ+ 1
2

(
p

um(z − u)m

)
du

=
zλ−v

Γ(−v)
Bµ(λ+

3

2
,−v1

2
; p;m).

Lemma 3.4.2. [2]
Let R(v) < 0, and suppose that a function f(z) is analytic at the origin
with its Maclaurin expansion given by f(z) =

∑∞
n=0 anz

n, (z < ρ) for some
ρ ∈ R+. Then we have:

Dv,µ;p;m
z {f(z)} =

∞∑
n=0

anD
v,µ;p;m
z {zn}.

proof .19.

Using definition of The extended Riemann-Liouville fractional derivative
To the function f(z) with its series expansion, we have:

Dv,µ;p;m
z {f(z)} =

1

Γ(−v)

√
2p

π

∫ z

0

(z − t)−v−1Kµ+ 1
2

(
pz2m

tm(z − t)m

) ∞∑
n=0

ant
ndt.

Since the power series converges uniformly on any closed disk centered at the
origin with its radius smaller than ρ, so does the series on the line segment
from 0 to a fixed z for z < ρ. This fact guarantees term-by-term integration
as follows:

Dv,µ;p;m
z {f(z)}=

∑∞
n=0 an

{
1

Γ(−v)

√
2p
π

∫ z
0

(z − t)−v−1Kµ+ 1
2

(
pz2m

tm(z−t)m

)
tndt

}
=
∞∑
n=0

anD
v,µ;p;m
z {zn}.

As a consequence we have the following result.

Theorem 3.4.1.
Let R(v) < 0 and suppose that a function f(z) is analytic at the origin with
its Maclaurin expansion given by f(z) =

∑∞
n=0 (|z| < ρ) for some ρ ∈ R+.
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Then we have:

Dv,µ;p;m
z {zλ−1f(z)} =

∞∑
n=0

anD
v,µ;p;m
z {zλ+n−1}

=
zλ−v−1

Γ(−v)

∞∑
n=0

anBµ

(
λ+ n+

1

2
,−v +

1

2
; p;m

)
zn

r r rrr

Finally we’ll see a new extended generalized Riemann-Liouville fractional
derivative operator [1].

Definition 3.4.2. The extended generalized Riemann-Liouville fractional
derivative is defined as

Dδ,µ;p;q;λ;m
z f(z) :=

1

Γ(−δ)

√
2p

π

∫ z

0

(z−t)−δ−1f(t)RK

(
pz2m

tm(z − t)m
,−µ− 1

2
, q, λ

)
dt,

(3.30)
where <e(δ) < 0, <e(p) > 0, <e(m) > 0, <e(µ) > 0 and 0 < q ≤ 1,
−1 ≤ λ ≤ 1.
For n− 1 < <e(δ) < n, n ∈ N we write

Dδ,µ;p;q;λ;m
z f(z) :=

dn

dzn
Dδ−n,µ;p;q;λ;m
z f(z) =

dn

dzn

{
1

Γ(n− δ)

√
2p

π

∫ z

0

(z − t)n−δ−1f(t)

× RK

(
pz2m

tm(z − t)m
,−µ− 1

2
, q, λ

)
dt

}
(3.31)

Remark 3.4.2.
If we take m = 0, µ = 0, λ = 1, and p → 0, then the above extended
generalized Riemann-Liouville fractional derivative operator reduces to the
classical Riemann-Liouville fractional derivative operator

In order to calculate the extended generalized fractional derivatives for
some functions, We begin by two results involving extended generalized
Riemann-Liouville fractional derivative operator of some elementary func-
tions which will be useful in the sequel.

Lemma 3.4.3. Let −m − 1 < <e(δ) < −m for some positif integer m and
β > −3

2
. Then we have

Dδ,µ;p;q;λ;m
z {zβ} =

zβ−δ

Γ(−δ)
Bµ(β +

3

2
,−δ +

1

2
; p; q;λ;m). (3.32)
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proof .20. Using definition 3.4.2, and a local setting t = zu we obtain

Dδ,µ;p;q;λ;m
z {zβ} =

1

Γ(−δ)

√
2p

π

∫ z

0

(z − t)−δ−1tβRK

(
pz2m

tm(z − t)m
,−µ− 1

2
, q, λ

)
dt

=
zβ−δ

Γ(−δ)

√
2p

π

∫ z

0

(1− u)(−δ+ 1
2

)− 3
2u(β+ 3

2
)− 3

2

× RK

(
p

um(1− u)m
,−µ− 1

2
, q, λ

)
dt

=
zβ−δ

Γ(−δ)
Bµ(β +

3

2
,−δ +

1

2
; p; q;λ;m).

More generally, we give the extended generalized Riemann-Liouville frac-
tional derivative of an analytic function f at the origin.

Lemma 3.4.4. Let −m− 1 < <e(δ) < −m for some positif integer m. If a
function f is analytic at the origin then we have

Dδ,µ;p;q;λ;m
z {f(z)} =

∞∑
n=0

anD
δ,µ;p;q;λ;m
z {zn}.

proof .21.
Since f is analytic at the origin, its Maclaurin expansion is given by
f(z) =

∑∞
n=0 anz

n (for |z| < ρ with ρ ∈ R+ is the convergence radius).
Substitute entire power series in definition 3.4.2, we obtain

Dδ,µ;p;q;λ;m
z {f(z)} =

1

Γ(−δ)

√
2p

π

∫ z

0

(z−t)−δ−1RK

(
pz2m

tm(z − t)m
,−µ− 1

2
; q;λ

) ∞∑
n=0

ant
ndt.

By virtue of the uniform continuity on the convergence disk, we can do inte-
gration term by term in the equation above, so we obtain yet:

Dδ,µ;p;q;λ;m
z {f(z)} =

∞∑
n=0

an

(
1

Γ(−δ)

√
2p

π

∫ z

0

(z − t)−δ−1

)

× RK

(
pz2m

tm(z − t)m
,−µ− 1

2
; q;λ

)
tndt

=
∞∑
n=0

anD
δ,µ;p;q;λ;m
z {zn}.

proof .22.
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Using binomial theorem for (1− z)−α and lemma 3.4.3 we obtain:

Dδ,µ;p;q;λ;m
z {(1− z)−α} = Dδ,µ;p;q;λ;m

z

{
∞∑
n=0

(α)n
zn

n!

}
=
∞∑
n=0

(α)n
n!

Dδ,µ;p;q;λ;m
z {zn}

=
z−δ

Γ(−δ)

∞∑
n=0

(α)nBµ

(
n+

3

2
,−δ +

1

2
; p, q;λ;m

)
zn

n!
.

Whence the result.

Combining the previous lemmas we obtain again a generalized extended
derivative of the product of analytic with power function.

Theorem 3.4.2. Let m− 1 ≤ <e(β) < m for some m ∈ N. Suppose that a
function f(z) is analytic at the origin with its Maclaurin expansion given by
f(z) =

∑∞
n=0 anz

n, (|z| < ρ) for some ρ ∈ R+. Then we have

Dδ,µ;p;q;λ;m
z {zβ−1f(z)} =

∞∑
n=0

anD
δ,µ;p;q;λ;m
z {zβ+n−1}

=
zβ−δ−1

Γ(−δ)

×
∞∑
n=0

anBµ(β + n+
1

2
,−δ +

1

2
; p; q;λ;m)zn.

proof .23.
Since the function zβ−1f(z) can be rewritten as a serie expansion, by defini-
tion 3.4.2, we get

Dδ,µ;p;q;λ;m
z {zβ−1f(z)} =

∞∑
n=0

anD
δ,µ;p;q;λ;m
z {zβ+n−1}

=
zβ−δ−1

Γ(−δ)

∞∑
n=0

anBµ

(
β + n+

1

2
,−δ +

1

2
; p; q;λ;m

)
zn

(3.33)
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3.5 Conclusion
This thesis introduced the concept of Fractional calculus. The branch of
mathematics that explores fractional integrals and their derivatives. In the
introduction, we gave a brief of the Fractional Calculus history and then we
started with some Basic techniques and functions, such as the gamma func-
tion, the beta function, The Error function,The Mittag-Leffler function And
the Function of Mellin-Ross, which was necessary to understand the rest of
these papers.

Thereafter we proved the construction of the Riemann-Liouville method to
define a differintegral and his properties; Then we checked in some examples
for Rimann-liouville fractional integral and derivative.

Next we studied the Caputo fractional derivative and his properties and
some examples.

We also explored Hadamard fractional integrals to left sided and to right
sided then Hadamard Fractional Derivatives to left sided and to right sided
with properties and some examples.

I added Caputo-Fabrizio fractional integrals and Fractional Derivative with
properties.

At last we spoked about Generalized incomplete gamma and Beta functions
with some theorems plus The Extended Riemann-Liouville type fractional .
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