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Introduction

Les fonctions spéciales de la physique mathématique apparaissent le plus

souvent à l'occation de la résolution d'équations aux dérivées partielles par

la méthode de séparation des variables ou á propos de la recherche des

fonctions propres d'opérateurs di�érentiels dans certains systèmes des co-

ordonnées curvilignes.Mais, les opérateurs di�érentiels de la physique ma-

thématique se dé�nissent usuellement par rapport à une propriété d'inva-

riance.Ainsi,l'opérateur de LAPLACE est invariant pour les déplacements

du plan euclidien,l'opérateur des ondes est invariant pour les transforma-

tions du groupe de LORENTZ etc. La détermination des fonctions propres

de ces opérateurs en est ainsi facilitée et leurs propriétés d'invariance s'ex-

priment naturellement dans le cadre de la théorie de la représentation des

groupes. Considérons en e�et un opérateur A, invariant par rapport à un

certain groupe G de transformations.On peut alors montrer que ces trans-

formations font correspondre, aux fonctions propres de l'opérateur. d'autres

fonctions propres associées à la même valeur propre.Par la aux éléments du

groupe G, sont assignées des transformations T (g) dans l'espace des fonctions

propres, et l'égalité

T (g1)T (g2) = T (g1g2) (1)

est, de plus, satisfaite. Les opérateurs, dé�nis sur un groupe et qui pos-

sèdent la propriété ,sont appelés représentations du groupe.Ainsi, les fonc-

tions propres d'un opérateur invariant sont liées aux représentations du groupe

par rapport auquel cet opérateur est invariant. La connaissance de ces re-

présentations simpli�e la recherche des fonctions propres et permet d'éclairer

leur comportement sous les transformations du groupe donné.On peut donner

aux opérateurs de la représentation T (g) une forme matricielle, une certaine

base ayant été choisie dans l'espace de la représentation.En outre, appa-

raissent des fonctions numériques, qui sont dé�nies sur le groupe et qui sont

les éléments matriciels de la représentation. Mais, les élément des groupes qui

interviennent en physique mathématique sont usuellement dé�nis par des pa-

ramètres numériques.Ainsi, les éléments du groupe des déplacements du plan

euclidien sont donnés par les coordonnées (a, b) de l'image du point O(0, 0) et

par l'angle de rotation ϕ, Les éléments du groupe des rotations de l ?espace
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euclidien à trois dimensions sont dé�nis par les angles d'EULER ϕ, θ, ψ,etc

... .Ainsi ,par l'étude des représentations des groupes,nous arrivons aux fonc-

tions numériques de plusieurs variables. Bien entendu,il est souhaitable de

ne manipuler que des fonctions ne comportant que le nombre minimal de

variables et, si possible, d'une seule variable .Il a été montré qu'une telle cir-

constance se présente pour certains groupes (groupe des rotations de l'espace

à trois dimensions,groupe des déplacements du plan euclidien. etc...).Dans le

cas de ces groupes ,on peut choisir une base,dans l'éspace de la représen-

tation,telle qu'aux éléments d'un certain sous-groupe H.soient associées des

matrices diagonales,dont la diagonale principale est composée de fonctions

exponentielles.Les autres éléments du groupe peuvent alors être mis sous la

forme h1θh2,où h1, h2 ∈ H et où θ(t) parcourt une certaine variété à un para-

mètre. Il est alors possible d'exprimer les éléments matriciels des représenta-

tions de ces groupes en n'utilisant que la fonction exponentielle ou des fonc-

tions d'une seule variable t .On montre que ces fonctions Coïncident avec les

fonctions spéciales.qui sont classiques en physique mathématique.Ainsi, les

représentations du groupe des déplacements du plan euclidien sont associées

aux fonctions de BESSELJn(t),celles du groupe des rotations de l ?espace eu-

clidien à trois dimensions,aux fonctions de LEGENDRE et de JACOBI.etc...

.Remarquons que le role joué par la fonction exponentielle n'a rien de for-

tuit :les fonctions de la forme eint ,où n est un entier,donnent les représenta-

tions du groupe des rotations du plan euclidien. Dans le cas de groupes plus

complexes(groupe des rotations de l ?espace euclidien à n dimensions, groupe

de tous les déplacements de ce même espace,groupe de LORENTZ.etc...).on

montre que tous les éléments matriciels de leurs représentations ne peuvent

s'exprimer au moyen des fonctions spéciales déjà connues.Celles-ci ne sont

utiles que pour une partie des éléments matriciels : pour les autres, d'autres

fonctions sont nécessaires que l'Analyse mathématique n'avait pasencore ren-

contrées.Ces nouvelles fonctions possèdent la même diversité de propriétés

que les fonctions spéciales classiques. Il existe ainsi un lien entre les fonc-

tions spéciales et les éléments matriciels des représentations des groupes.Il

est nécessaire de noter que ce lien dépend également du choix du sous-groupe

H.dont les éléments, dans la réalisation correspondante, sont représentés

par des matrices diagonales(ou,plus généralement,diagonales par blocs). Par
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conséquent, dans le cas d'un groupe donné, des fonctions spéciales di�érentes

peuvent apparaitre comme associées puisqu'elles dépendent des divers sous-

groupes H pour lesquels les opérateurs T (h) sont diagonalisai. Par exemple,

si G est le groupe des matrices réelles unimodulaires du second ordre et H

sous-groupe des matrices

(
cos θ − sin θ

sin θ cos θ

)
alors on obtient les fonctions co-

niques. Si on choisit pour H le sous-groupe des matrices diagonales, alors

on obtient la fonction hypergéométrique. En�n, si H est le sous-groupe des

matrices triangulaires de la forme

(
1 0

t 1

)
,alors on obtient les fonctions

de HANKEL. Sur ce lien que l'on a établi entre les éléments matriciels

des représentation et les fonctions spéciales, on fonde une méthode géné-

rale qui permet d'établir les propriétés de ces fonctions. Par exemple, il suit,

de l'égalité(1).que les éléments matriciels des représentations satisfont

tij(g1g2) =
∑
k

tik(g1)tkj(g2). (2)

Mais, ces éléments s'expriment au moyen de fonctions spéciales. Donc (2)

peut s'écrire en terme des fonctions spéciales ; et c'est ainsi que l'on ob-

tient, en particulier, les théorique d'addition pour les fonctions de Bissi LE-

GENDRE, GEGENBAUER, étc.... Si l'on supposé que l'un des éléments de

l'égalité (2) est "in�niment proche de l'unité du groupe", alors on aboutir

à une relation de récurrence satisfaire par les fonctions spéciales correspon-

dantes.Cette approche, fondée sur la théorie des groupes, conduit, de façon

naturelle, aux représentations intégrales des fonctions spéciales. Si, dans l'es-

pace de la représentation T (g), on choisit une base orthonormée [ek], alors

les éléments matriciels sont donnés par

tij(g) =< T (g)ej, ei > . (3)

Mais, le plus souvent, l'espace de la représentation se réalise un certain es-

pace fonctionnel (l'espace des fonctions propres d'un opérateur invariant.

Par exemple), et le produit scalaire dans cet espace est sous forme intégrale.

Donc, le second membre de (3) s'exprime aussi sous forme intégrale. tandis

que le premier membre se réduit à des fonctions spéciales. Ce qui donne une

représentation intégrale pour les fonctions spéciales.Il peut arriver que l'on



10 TABLE DES MATIÈRES

ne puisse pas toujours choisir dans l'espace de la représentation, une base

telle que les éléments d'un sous-groupe donné soient représentés par des ma-

trices diagonales (ou, tout au moins, diagonales par blocs). Parfois encore,

on doit choisir une réalisation de la représentation pour laquelle les éléments

de H sont représentés par des opérateurs de multiplication par une fonction

(analogue continu de la matrice diagonale). Dans ces cas, les opérateurs de

la représentation T (g) deviennent des opérateurs intégraux, dont les noyaux

s'expriment au moyen de fonctions spéciales. Ce qui conduit à diverses rela-

tions intégrales entre les fonctions spéciales et, en particulier, à des analogues

continus des théorèmes d'addition. L'analyse harmonique joue un rôle impor-

tant dans la théorie des fonctions spéciales. Considérons, à titre d'exemple,

la représentation

T (gα)f(ϕ) = f(ϕ+ α). (4)

du groupe des rotations du cercle (f(ϕ) est une fonction dé�nie sur le cercle et

dépendant de l'angle ϕ et est la rotation d'angle α). Développons la fonction

f(ϕ) en série de FOURIER :

f(ϕ) =
1∑

n=−1

cne
inϕ. (5)

Les espaces à une dimension des fonctions de la forme cneinϕ restent invariants

sous les transformations T (gα) :

T (gα)einϕ = ein(ϕ+α) = einαeinϕ. (6)

On dit que l'espace des fonctions f(ϕ) dé�nies sur le cercle a été décomposé

en sous-espaces mono dimensionnels invariants, la représentation T (g) ayant

été décomposée par rapport aux représentations Tn(gα) = eniα. Le but de ce

mémoire est de comprendre les fonctions spéciales à l'aide de la théorie de

représentations de groupes. Dans une première partie, nous introduirons les

dé�nitions élémentaires des représentations de groupes ainsi que les résul-

tats qui nous seront utiles par la suite. Dans une seconde partie, nous nous

intéresserons au groupe des matrices d'ordre deux unitaires complexes de

déterminant 1, SU(2), et en déterminerons les représentations irréductibles ;

ensuite, nous en déduirons des relations fonctionnelles sur les coe�cients
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matriciels et appliquerons ceci à la résolution de l'équation de Laplace. Le

deuxième chapitre traite quelques fonctions spéciales connus dans la littéra-

ture. L'approche classique suivi dans ce chapitre est celui qu'on trouve dans

toutes les références d'analyse mathématique, c'est aborder les fonctions spé-

ciales sans tenir compte du groupe de symétrie en question. Dans le troisième

chapitre, on traite un exemple d'utilisation de la théorie des représentations

des groupes pour avoir des formules d'addition, de multiplication et de ré-

currence qui concerne les polynômes de Legendre.
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Chapitre 1

Représentation Des Groupes

1.1 Rappel de quelques dè�nition

Un groupe est une ensemble muni d'une loi de composition associative,possèdant

un élément neutre et elle que chaque élément possède un inverse.L'élément

neutre,encore appelé élément unité,est diversement notè e,1 ou souvent I s'il

s'agit d'un groupe des matrices.

Un groupe est dit commutatif ou abélien si la loi de composition est commu-

tative.Dans ce cas la composition est en général notèe + et l'élément neutre

est en général notèe 0.

On notera |X| le cardinal d'un ensemble �ni, X. L'ordre d'un groupe �ni,

G,est le nombre,|G|,d'élément du groupe.Un élément g ∈ G et dit d'ordre

n(n > 0) si n est le plus petit entier tel que gn = e

1.2 Exemples de groupes �nis

1.2.1 Groupe cyclique d'ordre n

Les groupes suivants sont isomorphes et sont appelès groupe cyclique

d'ordre n :

1. Zn = Z/nZ,en particulier Z2 = Z/2Z,noté additivement{0, 1} ou

multiplicativement{1,−1}.

13



14 1.2.2 Groupe symétrique Gn

2. Le groupe des rotations du plan de centre O,d'angles 2kπ
n
,0 6 k 6

n− 1,

pour la composition.

3. Le groupe des nombres complexes,{e 2kiπ
n | 0 6 k 6 n− 1},pour la

multiplication.

4. Le sous-groupe {1, g, g2, ..., gn−1} si g est un èlèment d'ordre n dans

un groupe G.

1.2.2 Groupe symétrique Gn

Le groupe des permutation d'un ensemble de cardinal n est noté Gn et

appelé groupe symètrique sur n éléments .L'ordre de Gn est n! .

Tout èlèment de Gn s'écrit comme un produit de transpositions. à tout élé-

ment σ ∈ Gn on associe le nombre égale à 1 ou−1 suivant la parité du nombre

de transpositions.

Ce nombre est noté(−1)σ et appelé signature de σ.

L'application σ ∈ Gn 7→ (−1)σ ∈ Z2 est un morphisme de groupes.

Le groupe alterné Vn est le noyau du morphisme de signature. Si n > 2, c'est

un sous-groupe distingué d'indice 2 de Gn .

1.3 Représentations des Groupes Finis

1.3.1 Généralités

Si E est un espace vectoriel sur K, (K = RouC), On désigne par GL(E)

le groupe des isomorphismes K-linéaire de E.

Dé�nition 1.3.1.0.1. Une représentation d'un groupe G est la donné d'un

espace vectoriel complexe de dimension �nie, E, et d'un morphisme de groupes,

ρ : G −→ GL(E)

Donc, pour tous g, g′ ∈ G,

ρ(gg′) = ρ(g)oρ(g′), ρ(g−1) = (ρ(g))−1, ρ(e) = IdE
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L'espace vectoriel E est appelé le support de la représentation et sa dimension

s'appelle la dimension de la représentation. On désigne une telle représenta-

tion par (E, ρ) ou simplement ρ.

Si en particulier, E = Cn, on dit que la représentation est une représenta-

tion matricielle de dimension n. la représentation standard ou fondamentale

d'un sous groupe G de GL(E) est la représentation de G dans E dé�nie par

l'injection canonique de G dans GL(E). On appelle représentation triviale

toute représentation telle que ρ(g) = IdE pour tout g ∈ G.

voici un premier exemple de représentation d'un groupe �nie.

Soit t ∈ σ3 la transposition 123 7−→ 132 et c la permutation circulaire 123 7−→
231 qui engendrent σ3. On pose j = e

2iπ
3 . On peut représenter σ3 dans C en

posant

ρ(e) = I, ρ(t) =

(
0 1

1 0

)
, ρ(c) =

(
j 0

0 j2

)
Dé�nition 1.3.1.0.2. Soit 〈, 〉 un produit scalaire sur E. On dit que la re-

présentation est unitaire si ρ(g) est unitaire ∀g, c'est-à -dire,

∀g ∈ G,∀x, y ∈ E, 〈ρ(g)x, ρ(g)y〉 = 〈x, y〉

Une représentation est dite unitarisable s'il existe un produit scalaire sur E

tel que (ρ, 〈, 〉) est unitaire.

Lemme 1.3.1. Soit G un groupe �ni. Pour toute fonction ϕ sur G à valeur

dans un espace vectoriel

∀g ∈ G,
∑
h∈G

ϕ(gh) =
∑
h∈G

ϕ(hg) =
∑
k∈G

ϕ(k) (1.1)

Démonstration : En e�et, g est �xé, tout élément de G s'écrit d'une

manière et d'une seule sous la forme gh (resp., hg), ou h ∈ G.

Théorème 1.3.1. Toute représentation d'un groupe �ni G est unitarisable.

Démonstration : Soit (E, ρ) une représentation d'un groupe �ni, G, et soit

〈, 〉 un produit scalaire sur E considérons :

〈x, y〉′ =
1

|G|
∑
g∈G

〈ρ(g)x, ρ(g)y〉
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qui est un produit scalaire sur E. En e�et, supposons 〈x, x〉′ = 0,

⇒ 1

|G|
∑
g∈G

〈ρ(g)x, ρ(g)x〉 = 0

⇒ 〈ρ(g)x, ρ(g)x〉 = 0 ∀g ∈ G

en particulier pour g = e , ρ(g) = idE donc : 〈x, x〉 = 0⇒ x = 0

Montrons que 〈, 〉′ est invariant par ρ (ρ unitaire par rapport à 〈, 〉′)
En e�et :

〈ρ(g)x, ρ(g)y〉′ = 1
|G|

∑
h∈G

〈ρ(h)ρ(g)x, ρ(h)ρ(g)y〉

= 1
|G|

∑
h∈G

〈ρ(hg)x, ρ(hg)y〉

= 1
|G|

∑
k∈G

〈ρ(k)x, ρ(k)y〉

= 〈x, y〉′

oú nous utilisè la relation fondamentale(1,1),valable pour toute ϕ fonction

sur G

Donc ρ est une Représentation unitaire de G dans (E, 〈, 〉′)

1.3.2 Représentations irréductibles

Dé�nition 1.3.2.0.1. Soit (E, ρ) une représentation d'un groupe G, F ⊂ G

un sous espace vectoriel de E, On dit que F est invariant par ρ (stable) si

est seulement si :

ρ(g)F ⊂ F, ∀g ∈ G

ce qui entraine ρ(g)F = F, ∀g
Donc on peut parler d'une représentation ρ restreinte à F : c'est une repré-

sentation de G dans F

ρ/F est appelée sousreprésentation.

Dé�nition 1.3.2.0.2. Une représentation (E, ρ) de G est dite irréductible.

Si E 6= {0} et les seules sous espaces vectoriels de E invariants par ρ sont 0

et E
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Exemple La représentation de dimension 2 de σ3 dans l'exemple précé-

dent 1.3.1 est irréductible, car les sous espaces propres de ρ(t) et de ρ(c) sont

d'intersection nulle.

Proposition 1.3.1. Toute représentation irréductible d'un groupe �ni G est

de dimension �nie.

Démonstration Soit (E, ρ) une représentation irréductible d'un groupe

�ni G et soit x ∈ E. Le sous ensemble {ρ(g)x/g ∈ G} étant �ni, Cette

ensemble engendre un sous espace vectoriel de dimension �ni de E. Si x 6= 0,

ce sous-espace vectoriel de E n'est pas réduit à {0} et c'est un espace invariant

par ρ. il coincide donc avec E, qui est donc dimE <∞.

1.4 Opération sur les représentations

1.4.1 Somme directe de représentations

Dé�nition 1.4.1.0.1. Soient (E1, ρ1) et (E2, ρ2) des représentations de G.

Alors on dé�nit (E1 ⊕ E2, ρ1 ⊕ ρ2) par :

(ρ1 ⊕ ρ2)(g)(x1, x2) = (ρ1(g)x1, ρ2(g)x2),∀g ∈ G, x1 ∈ E1, x2 ∈ E2

Si ρ1 et ρ2 sont matricielles, Alors la matrice de ρ1 ⊕ ρ2(g) est :(
ρ1(g) 0

0 ρ2(g)

)
Plus généralement si m > 0 on dé�nit ρ1 ⊕ ρ2 ⊕ ...⊕ ρm
En particulier : Si (E, ρ) est une représentation de G, On note :

ρ⊕ ρ⊕ ...⊕ ρ︸ ︷︷ ︸
mfois

=
⊕
m

ρ = mρ

Dé�nition 1.4.1.0.2. Une représentation est dite complètement réductible

si elle est somme directe de représentation irréductible.

Lemme 1.4.1. Soit ρ une représentation unitaire d'un groupe G dans (E, 〈, 〉).
Si F ⊂ E est invariant par ρ.
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Démonstration Soit y ∈ F⊥ = {y ∈ E/〈x, y〉}
〈x, ρ(g)y〉 = 〈ρ(g−1)x, y〉 = 0, ∀x ∈ F, ∀g
car F est invariant par ρ

⇒ ρ(g)y ∈ F⊥

⇒ F⊥ est invariant par ρ

Théorème 1.4.1. (Théorème de Maschke) Toute représentation de dimen-

sion �nie d'un groupe �ni est complètement réductible.

Démonstration Soit (E, ρ) une représentation de G d'après le théorème

1.3.1, ρ est supposé unitaire. Si ρ n'est pas irréductible.

Soit F un sous espace vectoriel invariant par ρ avec F 6= {0} et F 6= E

Alors : E = F ⊕ F⊥

F⊥ aussi invariant par ρ et dimF < dimE et 0 < dimF⊥ < dimE

par récurrence sur la dimension de E, on obtient le résultat :

ρ = ρ1 ⊕ ρ2 ⊕ ...⊕ ρm
Remarque ce théorème est vrai sous des hypothèses plus général (groupes

compacts et localement compacts).

1.4.2 Produits tensoriels de représentations

Dé�nition 1.4.2.0.1. Soit(E1, ρ1)et(E2, ρ2)des représentations d'un même

groupe G.Rappelons que, par dé�nition,ρ1 ⊗ ρ2 est la représentation de G

dansE1 ⊗ E2 dé�nie par :

(ρ1 ⊗ ρ2)(g)(x1 ⊗ x2) = (ρ1(g)x1 ⊗ ρ2(g)x2), ∀g ∈ G, x1 ∈ E1, x2 ∈ E2

1.4.3 Opérateurs d'entrelacement et lemme de Schur

Dé�nition 1.4.3.0.1. Soit(E1, ρ1)et(E2, ρ2)des représentations de groupe G.On

dit qu'une application linére, T : E1 −→ E2, entrelace ρ1 et ρ2 si

∀g ∈ G, ρ1(g) ◦ T = T ◦ ρ2(g)

et T s'appelle alors opérateur d'entrelacement entre ρ1 et ρ2.

La dé�nition exprime la commutativité du diagramme suivant, pour tout g ∈
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G,

E1
T−→ E2

ρ1(g) ↓ ↓ ρ2(g)

E1
T−→ E2

Les expression suivantes sont diversement utilisées pour exprimer cette même

propriété :

• T est un opérateur d'entrelacement entre ρ1 et ρ2,

• T est équivariant pour ρ1 et ρ2,

• T est un morphisme de G-espace vectoriels,

• T est un morphisme,

• T ∈ HomG(E1, E2).

Si E1 = E2 = E et si ρ1 = ρ2 = ρ,un opérateur qui entrelace ρ1 et ρ2

est simplement un opérateur commute avec ρ.

Dé�nition 1.4.3.0.2. Les reprèsentations ρ1 et ρ2 sont èquivalentes s'il

existe un opèrateur d'entrelacement bijective entre ρ1 et ρ2

Dans ce cas :

∀g ∈ G, ρ2(g) = T ◦ ρ1(g) ◦ T−1 (1.2)

La relation dè�nie par (1.2) est bien une relation d'èquivalence sur les reprè-

sentation d'où la notation : (1.2)=ρ1 ∼ ρ2, (ce cas n'est véri�er que si E1 et

E2 sont isomorphes).

En particulier pour des reprèsentations matricielles on obtient des matrices

semblables : ie :

∀g ∈ G : [ρ1(g)] est semblable á [ρ2(g)] avec la même matrice de passage.

Lemme 1.4.2. Si T entrelace ρ1 et ρ2 ,le noyau de T ,KerT , est invariant

par ρ1 et l'image de T , ImT , est invariante parρ2.

Démonstration.Si x ∈ E1 et Tx = 0,alors T (ρ1(g)x) = ρ2(g)(Tx) = 0.
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Donc KerT est un sous-espace de E1,invariant par ρ1 .

Soit y ∈ ImT . Il existe x ∈ E1 tel que y = Tx.Alors

ρ2(g)y) = ρ2(g)(Tx) = T (ρ1(g)x

, donc ImT est unsous-espace de E2,invariant par ρ2 .

Lemme 1.4.3. Si T commute avecρ,tout sous-espace propre de T est inva-

riant par ρ.

Démonstration. En e�et,si Tx = λx, λ ∈ C,alors T (ρ(g)x) = λρ(g)x.Donc

le sous- espace propre de T correspondant à la valeur propre λ est invariant

par ρ.

Théorème 1.4.2. (Lemme de Schur).Soit T un opèrateur entrelaçant des

reprèsentations irrèductibles de G ,(E1, ρ1)et(E2, ρ2).

• Si ρ1 et ρ2 ne sont pas équivalentes, alors T = 0.

• Si E1 = E2 = E et ρ1 = ρ2 = ρ,alors T est un multiple scalaire de

l'identité de E.

Démonstration.Si ρ1 et ρ2 ne sont pas équivalentes,T n'est pas bijectif,

donc ou bien KerT 6= 0,ou bien ImT 6= E2.D'aprè le lemme1.4.2,KerT est

invariant par ρ1.

Commeρ1 est irrèductible, si KerT 6= 0, alors KerT = E1, doncT = 0.

D'après le lemme1.4.2,ImT est invariant par ρ2.

Commeρ2 est irrèductible, si ImT 6= E2, alors ImT = 0, doncT = 0.

Si E1 = E2 = E et ρ1 = ρ2 = ρ,alors, pour tout g ∈ G, ρ(g)◦T = T ◦ρg,et T
commute avec la re présentation ρ. Soit λ une valeur propre de T , qui existe

car T est un endomorphisme de E, espace vectoriel sur C,et soit Eλ le sous-

espace propre associé à λ. D'après le lemme1.4.3, Eλ est invariant parρ Par

hypothè est non nul, donc, comme ρ est irréductible, Eλ = E, ce qui sini�e

que T = λIdE. Remarquons que la démonstration de la deuxième partie du

théorème utilise l'hypothèse que l'espace de la reprèsentations considérée est

un espace vectoriel complexe.
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1.5 Caractère d'une représentation

1.5.1 Fonctions sur un groupe, coe�cients matricieels

On désignera par F(G),ou parfois par C[G],l'espace vectoriel des fonctions

sur G à valeurs dans C, Lorsque cet espace vectoriel est muni du produit

scalaire dé�ni ci-dessous, on désigne hilbertien ainsi dé�fni par L2(G)

Dé�nition 1.5.1.0.1. Sur L2(G) ,le produit scalaire est dé�ni par

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g).

On va s'intéresser aux coe�cents matriciels des représentations. de�nition

Dé�nition 1.5.1.0.2. Si ρ est une représentation deG dans Cn, pour tout

couple (i, j), 1 6 i 6 n, 1 6 j 6 n, la fonction ρij ∈ L2(G) qui associe à

g ∈ G le coe�cient de la matrice ρ(g) situé sur la ie ligne et je colonne ,

(ρ(g))ij ∈ C est appelée un coe�cient matriciel de ρ.

Pour une représentation ρ dans un espace vectoriel E , on dé�nit les coe�-

cients matriciels ρij relativement à une base (ei) , qui véri�ent

ρ(g)ei =
∑
i

ρij(g)ei

Si ρ est une représentation unitaire dans un expace de Hilbert de dimension

�nie, alors

ρ(g−1) = (ρ(g))−1 = tρ(g)

d'où, dans une base orthonormale,

ρij(g
−1) = ρij(g)

et, en particulier, les coe�cients diagonaux de ρ(g) et ρ(g−1) sont des nombres

complexes conjugués.

1.5.2 Caractère d'une représentation, relations d'ortho-

gonalité

On désigne par Tr la trace d'un endomorphisme.
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Dé�nition 1.5.2.0.1. Soit (E; ρ) une représentation du groupe �ni G. On

appelle caractère de ρ la fonction χρ sur G à valeurs complexes dé�nie par

∀g ∈ G,χρ(g) = tr(ρ(g)).

Des représentations équivalentes ont même caractère.

Pour une représentation matriciel de dimension n ;

χρ(g) =
n∑
i=1

(ρ(g))ii (1.3)

Sur chaque classe de conjugaison de G , la fonction χρ est constante.

Dé�nition 1.5.2.0.2. On appelle fonction centrale sur G une fonction constante

sur chaque classe de conjugaison.

Les caractères des représentations sont donc des fonctions centrales sur le

groupe.

Proposition 1.5.1. Soit (E; ρ) une représentation de degré n et χρ son

caractère.

•χρ(e) = dimρ.

•∀g ∈ G,χρ(g−1) = χρ(g).

• Le caractère d'une somme directe de représentations et la somme des

caractères,

χρ1⊕ρ2 = χρ1 + χρ2 .

• Le caractére d'un produit tensoriel de représentations est le produit des

caractéres,

χρ1⊗ρ2 = χρ1χρ2 .

Démonstration.La première propriété est conséquenceé de la formule (1.3).

Pour démontrer la seconde formule, on peut supposer que ρ est unitaire pour

un certain produit scalaire et choisir une base orthonoemale. La propriété des

somme directes est évidente.

La relation suit du fait que la trace d'un produit tensoriel de matrices est le

produit de traces.
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On a ; d'apprès la proposition1.5.1, pour des représentations ρ1 et ρ2 de

G,

〈χρ1 , χρ2〉 =
1

|G|
∑
g∈G

χρ1(g
−1)χρ2(g). (1.4)

Les caractéres de représentations irréductibles inéquivalentes sont orthogo-

naux et que le caractère d'une représentations irréductibles est de norme 1.

Proposition 1.5.2. Soient (E1; ρ1) et (E2; ρ2) deux représentations irréduc-

tibles de G et soit u : E1 −→ E2 application linéaire ,Tu, de E1 dans E2,

dé�nie par

Tu :=
1

|G|
∑
g∈G

ρ2(g)uρ1(g)−1, (1.5)

entrelace ρ1 et ρ2.

Démonstration. Calculons

ρ2(g)Tu =
1

|G|
∑
h∈G

ρ2(gh)uρ1(h
−1)

ρ2(g)Tu =
1

|G|
∑
k∈G

ρ2(k)uρ1(k
−1g),

d'aprés la relation fondamentale (1.1).D'où,

ρ2(g)Tu = Tuρ1(g).

L'opérateur Tu est donc un opérateur d'entrelacement entre ρ1 et ρ2.

Proposition 1.5.3. Soient (E1; ρ1) et (E2; ρ2) deux représentations irréduc-

tibles de G et soit u : E1 −→ E2 application linéaire ,et soit Tu dé�ni par la

formule (1.5).

(i) Si ρ1 et ρ2 sont inéquivalentes, alors Tu = 0.

(ii) Si E1 = E2 et ρ1 = ρ1 = ρ, alors

Tu =
tr(u)

dimE
IdE

.
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Preuve. La premiére assertion est claire d'après le lemme de Schur. Pour la

deuxième, il faut seulement calculer λ sachant que Tu = λIdE.

Or

trTu =
1

|G|
∑
g∈G

tr(u) = tr(u),

donc λ =
tr(u)

dimE
.

Proposition 1.5.4. Soient (E1; ρ1) et (E2; ρ2) deux représentations irréduc-

tibles de G. On choisit des bases dans E1 et E2 .

(i) Si ρ1 et ρ2 sont inéquivalentes,

∀i, j, k, l,
∑
g∈G

(ρ2(g))kl(ρ1(g
−1))ji = 0.

(ii) Si E1 = E2 et ρ1 = ρ1 = ρ,

1

|G|
∑
g∈G

(ρ(g))kl(ρ(g−1))ji =
1

dimE
δkiδlj.

Démonstration.Utilisons une base (ei) de E1, 1 6 j 6 dimE1, et une base

(fl) de E2, 1 6 l 6 dimE2.Pour u : E1 −→ E2, Tu est dé�ni par(1.5).On a,

pour 1 6 i 6 dimE1, 1 6 k 6 dimE2,

(Tu)ki =
1

|G|
∑
g∈G

dimE1∑
m=1

dimE2∑
p=1

(ρ2(g))kpupm(ρ1(g
−1))mi.

Choisissons, pour application linéaire u, l'application ulj : E1 −→ E2 dé�ni

par ulj(ek) = δjkfl. Alors

(u(lj))pm = δlpδjm,

et par conséquent

(Tu(lj))ki =
1

|G|
∑
g∈G

(ρ2(g))kl(ρ1(g
−1))ji

On applique maintenant la proposition 1.5.2.

Si ρ1 et ρ2 sont inéquivalentes,toujours nul, d'où (i).

Si E1 = E2 et ρ1 = ρ1 = ρ, alors

1

|G|
∑
g∈G

(ρ(g))kl(ρ(g−1))ji = (Tu(lj))ki =
δkiδlj
dimE

=
tru(lj)
dimE

δki.

ce qui démontre (ii).
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Corollaire 1.1. Soient (E1; ρ1) et (E2; ρ2) deux représentations unitaires

irréductibles de G. On choisit des bases orthonormales dans E1 et E2 .

(i) Si ρ1 et ρ2 sont inéquivalentes,pour tous i, j, k, l,

〈(ρ1)ij, (ρ2)kl〉 = 0.

(ii) Si E1 = E2 et ρ1 = ρ1 = ρ,

〈ρij, ρkl〉 =
1

dimE
δkiδlj.

Démonstration.En e�et, si ρ1 est unitaire pour un produit scalaire sur E1

et si la base choisie dans E1 est orthonormale,

1

|G|
∑
g∈G

(ρ2(g))kl(ρ1(g
−1))ji =

1

|G|
∑
g∈G

(ρ2(g))kl(ρ1(g))ji = 〈(ρ1)ij, (ρ2)kl〉.

La proposition 1.5.4 entraîne donc (i) et (ii)

Théorème 1.5.1. (Relation d'orthogonalité).

(i) Si ρ1 et ρ2 sont des représentations irréductibles inéquivalentes,de G,

〈χρ1 , χρ2〉 = 0.

(ii) Si ρ est une représentation irréductible de G,

〈χρ, χρ〉 = 1.

Démonstration.D'aprés la relation (1.4) et la proposition éprécédente, si ρ1

et ρ2 sont des représentations irréductibles inéquivalentes,alors 〈χρ1 , χρ2〉 = 0.

Si ρ1 = ρ1 = ρ,

1

|G|
∑
g∈G

(ρ(g))ii(ρ(g−1))jj =
δij

dimE
,

d'oú 〈χρ, χρ〉 = 1.
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1.6 Représentations des groupes compacts

Dé�nition 1.6.0.0.1. Un groupe G muni d'une structure d'espace topo-

logique est dit être un groupe topologique si et seulement si les fonctions

G×G −→ G, dé�nie par (x; y) 7−→ xy ; et G −→ G, dé�nie par x 7−→ x−1,

sont continues, où la topologie sur G × G est celle de la topologie produit.

Nous dirons qu'un groupe topologique G est compact si et seulement si G est

compact comme espace topologique et qu'un groupe topologique G est locale-

ment compact si et seulement si tout g ∈ G a un voisinage compact. Nous al-

lons maintenant présenter quelques exemples de groupes localement compacts.

Tous ces groupes seront des sous-ensembles de RN pour un N ∈ N avec la

topologie induite par la métrique usuelle, à savoir si x = (x1, x2, ..., xN) et

y = (y1, y2, ..., yN), alors la distance d(x; y) est

d(x; y) =

√√√√ N∑
i=1

(xi − yi)2

et G sera muni de la topologie comme sous-espace deRN. Noter qu'avec cette

topologie un sous-ensemble X de RN est compact si et seulement si X est

un fermé borné par le théorème de Heine-Borel. Le groupe additif (Rn; +)

des nombres réels est un groupe topologique localement compact. Rn n'est pas

compact, parce que Rn n'est pas borné.

1.6.1 Mesure de Haar

Sur un groupe �ni G, on sait que pour toute fonction f ∈ F(G) et ∀g ∈ G,∑
h∈G

f(h) =
∑
h∈G

f(gh) =
∑
h∈G

f(hg)

Si l'on désigne par lg (resp.,rg) la multiplication à gauche (resp., droite) par

g ∈ G, on a par dé�nition f(gh) = (f ◦ lg)(h) et f(hg) = (f ◦ rg)(h). Par

conséquent, l'opération de moyenne,

M : f 7−→M(f) =
1

|G|
∑
g∈G

f(g)

véri�e :
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• M est une forme linéaire sur F(G), positive, c'est-à -dire prenant des

valeurs positives sur les fonctions réelles positives.

•M est invariante à gauche et à droite, c'est-à -dire

∀g ∈ G,M(f ◦ lg) = M(f ◦ rg) = M(f)

• M(1)=1

Sur les groupes compacts, il existe une mesure, la mesure de Haar, qui possède

des propriétés analogues. Plus généralement sur un groupe localement com-

pact, il existe des mesures ayant une propriété d'invariance soit à gauche,

soit à droite (mais pas les deux en général).

Théorème 1.6.1. Soit G un groupe localement compact.

(i) Il existe sur G une mesure positive, �nie sur les compacts, non iden-

tiquement nulle et invariante à gauche, i.e., pour toute fonction inté-

grable f et pour tout h ∈ G,∫
G

f(hg)dµ(g) =

∫
G

f(g)dµ(g)

Une telle mesure est unique à un facteur scalaire réel positive près. Si

f est continue, f > 0 et
∫
G
f(g)dµ(g) = 0, alors f=0.

(ii) Si G est compact, il existe sur G une unique mesure invariante à

gauche µ telle que
∫
G
dµ(g) = 1.

(iii) Sur un groupe compact, toute mesure invariante à gauche est inva-

riante à droite.

Démonstration

(i) Nous admettrons ce résultat.

(ii) Si µ0 est une mesure invariante à gauche sur G compact et si∫
G

dµ0(g) = m

On pose µ = 1
m
µ0 et µ est clairement l'unique mesure invariante à

gauche telle que
∫
G
dµ(g) = 1.
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(iii) Soit µ une mesure invariante à gauche sur G localement compact.

Pour f continue à support compact, posons µ(f) =
∫
G
f(g)dµ(g).

Soit h ∈ G et considérons µh(f) =
∫
G
f(gh)dµ(g), c'est-à -dire

µh(f) = µ(f ◦ rh)

Alors,

∀k ∈ G, µh(f ◦ lk) =

∫
G

f(kgh)dµ(g) =

∫
G

f(gh)dµ(g) = µh(f)

donc, d'après l'unicité des mesures invariantes à gauche à un facteur

prés, il existe un scalaire ∆(h) ∈ R+ véri�ant

µh(f) = ∆(h)µ(f)

Si G est compact, on peut intégrer la fonction constante 1. On obtient

µh(1) = µ(1) = ∆(h)µ(1). D'où ∆ = 1 et µ est donc aussi invariante

à droite, i, e., ∫
G

f(gh)dµ(g) =

∫
G

f(g)dµ(g), ∀h ∈ G

Dé�nition 1.6.1.0.1. Sur un groupe compact, l'unique mesure invariante á

gauche et á droite, et de masse totale 1, s'appelle la mesure de Haar.

Sur un groupe localement compact G, la fonction ∆ : h ∈ G 7−→ ∆(h) ∈ R+

est appelée la fonction modulaire de G.

Elle véri�e ∆(hh′) = ∆(h)∆(h′) car

∆(hh′)µ(f) = µhh′(f) = µ(f◦rhh′) = µ(f◦rh′◦rh) = ∆(h)µ(f◦rh′) = ∆(h)∆(h′)µ(f)

On dit que le groupe localement compact G est unimodulaire si ∆ = 1.

Le théorème précédent dit que si G est compact, alors G est unimodulaire.

On écrit souvent
∫
f(g)dg ou lieu de

∫
f(g)dµ(g). Ainsi, si G est compact,

pour toute fonction mesurable f,

∀h ∈ G,
∫
G

f(g)dg =

∫
G

f(hg)dg =

∫
G

f(gh)dg

et l'on impose à µ de satisfaire la condition de normalisation,
∫
G
dg = 1
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1.7 Représentations des groupes de Lie. Lemme

de Schur

Tous les espaces de Hilbert considérés sont sur le corps des complexes et

supposés séparables, c'est-á-dire possédant une base hibertienne dénombrable.

1.7.1 Généralités

Dé�nition 1.7.1.0.1. Soit G un groupe de Lie.On appelle représentation

continue, ou simplement représentation,de G la donnée d'un espace de Hilbert

E et d'un morphisme de groupes tel que , pour tout x ∈ E,

est une application continue. Une condition su�sante pour que la condi-

tion de continuité ci-dessus soit satisfaite est que c'est-á-dire que ρ soit conti-

nue comme application de G dans GL(E) muni de la topologie induite par

la norme de L(E,E).Si E est de dimension �nie, cette condition su�sante

est aussi nécessaire. La dimension, �nie ou in�nie, de E s'appalle la dimen-

sion de ρ. La représentation triviale dans un espace vectorielE EST Dé�-

nie par ρ(g) = IdE, pour tout g. Soit E un espace de Hilbert complexe. Si

u ∈ L(E,E), l'adjoint u∗ de u est dé�ni par

∀x, y ∈ E, 〈ux, y〉 = 〈x, u∗y〉,

et un élément u ∈ GL(E) est un opéréateur unitaire si uu∗ = u∗u = IdE.

Le groupe des opéréateurs unitaires deE est noté U(E).En dimension �nie

et dans une base othonormale, un opéréateur unitaire est représenté par une

matrice unitaire. Une représentation ρ de G dans E est dite unitaire
e
e
e
e
e

si E est un espace de Hilbert complexe et si , pour tout g ∈ G, ρ(g) est un

opérateur unitaire. Alors , pour tous g ∈ G, x, y ∈ E, 〈ρ(g)x, ρ(g)y〉 = 〈x, y〉
et , en particulier, ‖ρ(g)x‖ = ‖x‖.
Remarque. On peut dé�nir deé la même manière les représéentation dans

des espaces de Hilbert réels. Dans ce cas, on parlera de représentations or-

thogonales.
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1.7.2 Coe�cients d'une représentation

Pour x ∈ E et ξ ∈ E∗,on pose

ρxξ(g) =< ξ, ρ(g)x >,

où < , > désigne le crochet de dualité.En dimension �nie, étant donnée une

base (ei) de E, de base duale (e∗i ),on retrouve les coe�cients matriciels ρij ,

dé�nis

ρeje∗i (g) =< e∗i , ρ(g)ej >= ρij(g).

On peut aussi considérer, pour x, y ∈ E,

ϕρxy(g) =< x, ρ(g)y > .

Si ρ est unitaire,

ϕρxy(g
−1) = ϕρyx(g).

En dimension �nie, pour toute base (ei) de E, on considère les coe�cients

ϕρij(g) =< ei, ρ(g)ej > .

Si la base (ei) est orthonormale,

ϕij = ρij.

1.7.3 Complète réductibilité

Théorème 1.7.1. Toute représentation d'un groupe compact est unitari-

sable.

Schéma d'une démonstration. Soit G un groupe compact, et soit (E, ρ)

une représentation de G. On pose, pour x, y ∈ E,

〈x, y〉′ =
∫
G

〈ρ(g)x, ρ(g)y〉dg

où dg est la mesure de Haar sur G. C'est bien un produit scalaire car, si

〈x, x′〉 = 0, alors d'après le théorème (1.6.1) ,〈ρ(g)x, ρ(g)x〉 = 0,∀g ∈ G, et
par conséquent, x=0. D'autre part,

〈ρ(g)x, ρ(g)y〉′ =
∫
G

〈ρ(hg)x, ρ(hg)y〉dh =

∫
G

〈ρ(h)x, ρ(h)y〉dh = 〈x, y〉′

Ainsi ρ(g) est unitaire pour 〈, 〉′.
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Corollaire 1.7.1. Toute représentation de dimension �nie d'un groupe com-

pact est complètement réductible.

Théorème 1.7.2. Toute représentation irréductible d'un groupe compact est

de dimension �nie.

Remarque Cet énoncé, comme spéci�é plus haut, sous-entend qu'il s'agit

de représentations continues dans des espaces de Hilbert complexes séparables.

Il n'est pas vrai en toute généralité, mais reste vrai pour des représentations

continues à valeurs dans certains espaces vectoriels topologiques plus généraux

que les espaces de Hilbert.

1.7.4 Relations d'orthogonalité

Dé�nition 1.7.4.0.1. On dé�nit un produit scalaire sur l'espace vectoriel

des fonctions continues à valeurs complexes sur G par

〈f1, f2〉 =

∫
G

f1(g)f2(g)dg

où dg est la mesure de Haar. On désigne par L2(G) l'espace de Hilbert obtenu

en complétant cet espace pré hilbertien pour la norme dé�nie par ce produit

scalaire. C'est l'espace de Hilbert des classes d'équivalences (pour la relation

d'égalité presque par tout) de fonctions de carré intégrable sur G.

On sait que les représentations irréductibles de G sont de dimension �nie.

Les relations d'orthogonalité des caractères des représentations irréductibles

des groupes �nis s'étendant au cas compact.

Théorème 1.7.3. Soit G un groupe compact et soient (E1, ρ1) et (E2, ρ2)

des représentations unitaires irréductibles de G. ∀x1, y1 ∈ E1 et ∀x2, y2 ∈ E2,

〈ϕρ1x1y1 , ϕ
ρ2
x2y2
〉 =

{
0 si ρ1 � ρ2

1
dimE
〈x2, x1〉〈y1, y2〉 si E1 = E2 = E et ρ1 = ρ2 = ρ

Démonstration En généralisant le procédé utilisé dans la proposition (1.5.2)

et (1.5.4), pour toute application linéaire continue u : E1 → E2 , on dé�nit

l'opérateur qui entrelace ρ1 et ρ2,

Tu =

∫
G

ρ2(g)uρ1(g)−1dg
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On considère l'application linéaire uy1y2 : E1 −→ E2 dé�nie par

uy1y2(x) = 〈y1, x〉y2 pour x dans E1. En utilisant le fait que ρ1 est unitaire,

on obtient alors la relation 〈ϕρ1x1y1 , ϕ
ρ2
x2y2
〉 = 〈x2, Tuy1y2x1〉.

On applique ensuite le lemme de Schur. Cette quantité est nulle si ρ1 n'est pas

équivalente à ρ2. Si E1 = E2 = E et ρ1 = ρ2 = ρ, alors Tuy1y2 = τ(y1, y2)IdE,

où τ(y1, y2) est antilinéaire en x1 et linéaire en x2. On calcule τ(y1, y2) en

calculant la trace de Tuy1y2 . Celle-ci est égale à la trace de uy1y2 car, pour toute

application linéaire u, TrTu =
∫
G
Tr(ρ(g)◦u◦ρ(g−1))dg =

∫
G
Trudg = Tru.

Comme on a Truy1y2 = 〈y1, y2〉, on obtient le résultat cherché.

En particulier, si ρ1 et ρ2 ne sont pas équivalentes, dans toute bases ortho-

normales,

〈ϕρ1ij , ϕ
ρ2
kl 〉 = 0 (1.6)

et, si ρ1 = ρ2 = ρ, alors

〈ϕρij, ϕ
ρ
kl〉 =

1

dimE
δikδjl (1.7)

On désigne par Ĝ l'ensemble des classes d'équivalence de représentations ir-

réductibles d'un groupe compact G. Lorsque L2(G) est séparable, ce qui a lieu

dans les cas que l'on rencontre en pratique, les relations d'orthogonalité ci-

dessus impliquent que Ĝ est dénombrable.

D'après (1.6) et (1.7) les coe�cients matriciels dans des bases orthonor-

males des représentations unitaires irréductibles inéquivalentes de G forment

un système orthogonal dans L2(G). On démontre qu'ils forment une base or-

thogonale de L2(G) au sens hilbertien. Ce résultat constitue le théorème de

Peter-Weyl qui peut s'énoncer :

Théorème 1.7.4. (Théorème de Peter-Weyl pour les groupes com-

pacts) Toute fonction f ∈ L2(G) admet un développement de Fourier convergent

au sens de L2,

f =
∑
α∈Ĝ

dimρα∑
i,j=1

cαijρ
α
ij (1.8)

où les ρα sont des représentants unitaires des classes de représentations ir-

réductibles inéquivalentes de G, les ραij sont leurs coe�cients matriciels dans

des bases orthonormales, et

cαij = (dimρα)〈ραij, f〉 = (dimρα)

∫
G

f(g)ραij(g)dg (1.9)
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Théorème 1.7.5. (Relation d'orthogonalité) Soient ρ1 et ρ2 des représenta-

tions irréductibles de G. Alors

〈χρ1 , χρ2〉 =

{
0 si ρ1 � ρ2

1 si ρ1 ∼ ρ2

Démonstration Compte tenu du théorème (1.7.1), ces relations sont une

conséquence des formules précédentes (1.6) et (1.7).

Une représentation ρ est irréductible si et seulement si 〈χρ1 , χρ2〉 = 1

Si ρ est une représentation de G, on peut la décomposer en somme hilber-

tienne de représentations irréductibles, ρi ∈ Ĝ. On écrira

ρ = ⊕̂ρi∈Ĝmiρi

où

mi = 〈χρi , χρ〉

On peut avoir mi =∞
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Chapitre 2

Quelques fonctions spéciales

2.1 Fonction Gamma

Dé�nition 2.1.0.0.1. Pour tout nombre complexe z tel que Re(z) > 0, on

dé�nit la fonction suivante, appelée fonction gamma, et notée par la lettre

grecque Γ

Γ : z 7→
∫ +∞

0

tz−1 e−t dt (2.1)

Cette intégrale impropre converge absolument sur le demi-plan complexe où la

partie réelle est strictement positive. Cette fonction peut être prolongée ana-

lytiquement en une fonction méromorphe sur l'ensemble des nombres com-

plexes, excepté pour z = 0,−1,−2,−3... qui sont des pôles.

C'est ce prolongement qu'on appelle généralement � fonction gamma �. L'uni-

cité du prolongement analytique permet de montrer que la fonction prolongée

véri�e encore l'équation fonctionnelle précédente. Cela permet une dé�nition

plus simple, à partir de l'intégrale, et un calcul de proche en proche de Γ pour

z − 1, z − 2, etc..

Par changement de variable, l'intégrale précédente pour (Re(z) > 0) s'écrit

aussi :

Γ(z) = 2

∫ +∞

0

u2z−1e−u
2

du et Γ(z) =

∫ 1

0

(− ln s)z−1 ds

La dé�nition suivante de la fonction gamma par produits in�nis, due à

Euler, a un sens pour les nombres complexes z qui ne sont pas des entiers

35
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négatifs ou nuls :

Γ(z) = lim
n→+∞

n! nz

z (z + 1) · · · (z + n)
=

1

z

+∞∏
k=1

(1 + 1/k)z

1 + z/k
.

Elle est équivalente à celle donnée par Schlömilch,[sourceinsuffisante] :

Γ(z) =
e−γz

z

+∞∏
k=1

ez/k

1 + z/k

où

γ =
∞∑
k=1

[
1

k
− ln

(
1 +

1

k

)]
Propriétés Γ(z + 1) = zΓ(z) et Γ(1) = 1, on déduit :

∀n ∈ N,Γ(n+ 1) = n!.

On interprète donc la fonction gamma comme un prolongement de la facto-

rielle à l'ensemble des nombres complexes (à l'exception des entiers négatifs

ou nul). Une notation alternative est la fonction Γ, introduite par Gauss :

Π(z) = Γ(z + 1) = z Γ(z) (et donc Γ(z) = Π(z − 1) = Π(z)/z de telle façon

que :

Π(n) = n!.

Caractérisations Sur l'ensemble des réels La fonction gamma est entiè-

rement caractérisée sur R∗+ par les trois propriétés suivantes (théorème de

Bohr-Mollerup) :

1. Γ(1) = 1

2. Pour tout x > 0, on a : Γ(x+ 1) = xΓ(x)

3. la fonction composée ln ◦Γ est convexe sur R∗+ Sur le demi-plan com-

plexe Re(z)>0

La fonction gamma est entièrement caractérisée parmi les fonctions holo-

morphes du demi-plan complexe Re(z)>0 par les trois propriétés suivantes

(théorème de Wielandt) :

1. Γ(1) = 1



2.1 Fonction Gamma 37

2. Pour tout z tel que Re(z) > 0,Γ(z + 1) = z Γ(z)

3. |Γ(z)| est bornée dans la bande 1 ≤ Re(z) ≤ 2

Autres propriétés Formule des compléments La fonction gamma véri�e la

formule de ré�exion d'Euler, ou formule des compléments

∀z ∈ C \ Z Γ(1− z) Γ(z) =
π

sin(πz)
,

Formule de multiplication La fonction gamma véri�e également la formule

de duplication : Γ(z) Γ
(
z + 1

2

)
= 21−2z √π Γ(2z).

La formule de duplication est un cas particulier du théorème de multipli-

cation :

Γ(z) Γ

(
z +

1

m

)
Γ

(
z +

2

m

)
· · ·Γ

(
z +

m− 1

m

)
= (2π)(m−1)/2 m1/2−mz Γ(mz).

Dérivées La fonction gamma est in�niment dérivable sur R∗+(c'est-à-dire p
fois dérivable pour tout entier p). Sa dérivée est exprimée à l'aide de la fonc-

tion digamma : Γ′(z) = Γ(z)ψ0(z).

Plus généralement, sa dérivée p-ième possède sur R∗+ l'expression intégrale

suivante :

Γ(p)(x) =

∫ +∞

0

(ln t)p tx−1 e−t dt

La dé�nition de la fonction gamma sous forme d'intégrale la fait apparaître

comme une convolution entre un caractère additif (l'exponentielle) et un ca-

ractère multiplicatif (x 7−→ xs).

Lien avec d'autres fonctions La fonction gamma est reliée à la fonction ζ

de Riemann par :

ζ(s) Γ(s) =

∫ +∞

0

ts−1

et − 1
dt

Elle est reliée à la fonction êta de Dirichlet par :

Γ(s) η(s) =

∫ ∞
0

xs−1

ex + 1
dx =

∫ 1

0

∫ 1

0

(− ln(xy))s−2

1 + xy
dx dy

Dans la dé�nition de la fonction gamma sous forme d'intégrale, les bornes

de l'intégrale sont �xées ; la fonction gamma incomplète est la fonction obte-

nue en en modi�ant la borne inférieure ou la borne supérieure. La valeur de
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Γ(1/2) =
√
π est celle de l'intégrale de Gauss ; elle peut aussi se déduire de la

formule des compléments. Cette valeur permet, par récurrence, de déterminer

les autres valeurs de la fonction gamma pour les demi-entiers positifs :

Γ(3/2) =
√
π
2
, Γ(5/2) = 3

√
π

4
, . . . ,

Γ
(
n+ 1

2

)
=
(
n− 1

2

)
Γ
(
n− 1

2

)
=
(
n− 1

2

) (
n− 3

2

)
· · · 3

2
1
2

Γ
(
1
2

)
= (2n)!

22nn!

√
π

mais aussi négatifs, par exemple :

Γ(−1/2) = −2
√
π

En ce qui concerne ses dérivées, avec ? la constante d'Euler-Mascheroni :

Γ′(n+ 1) = Γ(n+ 1)ψ0(n+ 1) = n!

(
−γ +

∑
1≤k≤n

1

k

)

Γ′
(
n+

1

2

)
= Γ

(
n+

1

2

)
ψ0

(
n+

1

2

)
=

(2n)!

22nn!

√
π

(
−γ − 2 ln 2 +

∑
1≤k≤n

2

2k − 1

)
Γ′′(1/2) =

√
π(γ + 2 ln(2))2 + π5/2

2
, Γ′′(1) = γ2 + π2

6
, Γ′′(2) = (1− γ)2 + π2

6
− 1

On connaît quelques résultats de transcendance et même d'indépendance al-

gébrique sur les valeurs de Γ en certains points rationnels.

2.2 Fonction Bêta

Dé�nition 2.2.0.0.1. la fonction bêta est un type d'intégrale d'Euler dé�nie

pour tous nombres complexes, x et y de parties réelles strictement positives

par :

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt.

La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques

Binet. Elle est en relation avec la fonction Gamma d'Euler.

Il existe aussi une version incomplète de la fonction bêta, la fonction

bêta incomplète ainsi qu'une version régularisée de celle-ci, la fonction bêta

incomplète régularisée.

Propriétés

. Dans sa dé�nition sous forme d'intégral le changement de variable u =

1− t prouve que cette fonction est symétrique c'est-à-dire que :
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B(x, y) = B(y, x).

. Elle peut prendre aussi les formes intégrales

B(x, y) = 2
∫ π/2
0

sin2x−1 θ cos2y−1 θ dθ (par le changement de variable

t = sin2 θ),

. B(x, y) =
∫∞
0

tx−1

(1+t)x+y
dt

Elle satisfait des équations fonctionnelles telles que :

B(x, y + 1) = y
x+y

B(x, y)

B(x, y) B(x+ y, 1− y) =
π

x sin(πy)
,

B(x, x) = 21−2xB
(
1
2
, x
)

Elle est liée à la fonction gamma par l'équation suivante :

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)

Si x et y sont des entiers strictement positifs, cette équation se réécrit, en

termes de factorielles ou de coe�cient binomial :

x+ y

xyB(x, y)
=

(x+ y)!

x!y!
=

(
x+ y

x

)
Si x et y sont deux rationnels et si ni x, ni y, ni x + y ne sont entiers,

alorsB(x, y) est un nombre transcendant.

Dérivation Nous avons :

∂

∂x
B(x, y) = B(x, y)

(
Γ′(x)

Γ(x)
− Γ′(x+ y)

Γ(x+ y)

)
= B(x, y)(ψ(x)− ψ(x+ y)),

où ψ(x) est la fonction digamma.

Fonction bêta incomplète La fonction bêta incomplète est dé�nie par :

B(x; a, b) =

∫ x

0

ta−1 (1− t)b−1dt

et véri�e trivialement :

B(x; a+ 1, b) + B(x; a, b+ 1) = B(x; a, b)
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et

xa(1− x)b = aB(x; a, b+ 1)− bB(x; a+ 1, b)

Pour x = 1, elle correspond à la fonction bêta de paramètres a et b.

La fonction bêta incomplète régularisée consiste à diviser la fonction bêta

incomplète par la fonction bêta complète

Ix(a, b) =
B(x; a, b)

B(a, b)
.

Les relations précédentes deviennent ainsi

aIx(a+ 1, b) + bIx(a, b+ 1) = (a+ b)Ix(a, b)

Ix(a, b+ 1)− Ix(a+ 1, b) = xa(1− x)b
a+ b

abB(a, b)
.

On déduit de la seconde (par une récurrence immédiate) le lien suivant avec

le développement binomial et la loi binomiale :

Ip(a, n− a+ 1) =
n∑
j=a

(
n

j

)
pj(1− p)n−j.

2.3 Fonction de Bessel .

2.3.1 Équation de Bessel

Dé�nition 2.3.1.0.1. les fonctions de Bessel interviennent dans de nom-

breux proplèmes physiques, par l'intermédiaire de solutions particulières de

certaines équations aux dérivées partielles.On les voit notamment apparaître

dans des solutions de l'equation de Laplace

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 (2.2)

Rappelons qu'une telle fonction u. dite fonction harmonique du pointM(x, y, z)

est l'expression la plus générale du potentiel d'un champ de gradients qui est

aussi á �ux conservatif

Transformons(2.1), où x, y, z sont les coordonnées de M dans un repère or-

thonormé, en exprimant u(M) à l'aide desà coordonnées cylindriques asso-

ciées, dé�nies par x = r cos θ, y = r sin θ, z = v.
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De r2 = x2 + y2, on tire

r
∂r

∂x
= x,

∂r

∂x
=
x

r
= cos θ

r
∂r

∂y
= y,

∂r

∂y
=
y

r
= sin θ

De tan θ = y
x
, on tire

(1 + tan2 θ)
∂θ

∂x
= − y

x2
,
∂θ

∂x
= − y

r2
= −sin θ

r

(1 + tan2 θ)
∂θ

∂y
=

1

x
,
∂θ

∂y
=

x

r2
=

cos θ

r

En outre
∂v

∂x
=
∂v

∂y
= 0,

∂v

∂z
= 1

on a donc :
∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x
+
∂u

∂v

∂v

∂x
=

= cos θ
∂u

∂r
− sin θ

r

∂u

∂θ

∂2u

∂x2
= − sin θ

∂θ

∂x

∂u

∂r
+ cos θ(

∂2u

∂r2
∂r

∂x
+

∂2u

∂r∂θ

∂θ

∂x
)− cos θ

r

∂θ

∂x

∂u

∂θ
+

+
sin θ

r2
∂r

∂x

∂u

∂θ
− sin θ

r
(
∂2u

∂θ2
∂θ

∂x
+

∂2u

∂r∂θ

∂r

∂x
)

(sant les dérivées secondes continues).

Aprés réduction on obtient :

∂2u

∂x2
=

sin2

r

∂u

∂r
+ cos2 θ

∂2u

∂r2
− 2

sin θ cos θ

r

∂2u

∂r∂θ
+

+
sin2 θ

r2
∂2u

∂θ2
+

2 sin θ cos θ

r2
∂u

∂θ

On obtiendrait de même :

∂2u

∂y2
=

cos2

r

∂u

∂r
+ sin2 θ

∂2u

∂r2
+ 2

sin θ cos θ

r

∂2u

∂r∂θ
+

+
cos2 θ

r2
∂2u

∂θ2
− 2 sin θ cos θ

r2
∂u

∂θ
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∂2u

∂z2
=
∂2u

∂v2

D'où

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+
∂2u

∂v2

Cherchons de solutions de ∆u = 0 sous la forme

u = f(r)g(z)h(θ)

conduit à f(r) = y(αr) , y(t) étant solution de l'equation de Bessel d'ordre λ

t2
d2y

dt2
+ t

dy

dt
+ (t2 − λ2)y = 0 (2.3)

Une solution particuliére de cette équation est

Jλ(t) =
∞∑
m=0

(−1)m

m! Γ(m+ λ+ 1)

(x
2

)2m+λ

, où− λ /∈ N∗, t > 0

Si λ n'est pas entier, (2.2)a pour solution général

y(t) = aJλ(t) + bJ−λ(t)

On a J 1
2
(t) =

√
2
πt

sin t, J− 1
2
(t) =

√
2
πt

cos t

Si λ est un entier n les fonctions de Bessel de première espèce Jn sont dé�nies

par la série entière (de rayon de convergence in�ni) suivante :

Jn(x) =
(x

2

)n ∞∑
p=0

(−1)p

22pp!(n+ p)!
x2p

et on peut, par un passage à la limite, dé�nir

J−n(t) = (−1)nJn(t)

En particulier

J0(t) =
+∞∑
p=0

(−1)p
t2p

22p(p!)2

La solution générale de (2.2) est alors

y(t) = aJn(t) + bYn(t), oùYn(t) = lim
λ→n

Jλ(t) cosλπ − J−λ(t)
sinλπ

est une fonction de Bessel de seconde espèce.
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2.3.2 Relations de récurence sur les fonctions de Bessel.

• Jn+1(t) = nJn(t)
x
− J ′n(t)

• Jn+1(t) + Jn−1(t) = 2n
t
Jn(t)

• Jn+1(t)− Jn−1(t) = −2J ′n(t)

On en déduit :

• J1(t) = −J ′0(t)
• d

dt
(tnJn(t)) = tnJn−1(t)

2.3.3 Forme intégrale de Jn, n entier.

Jn(t) =
1

π

∫ π

0

cos(nτ − t sin τ) dτ.

ou encore par :

Jn(t) =
1

2π

∫ π

−π
e−i (nτ−t sin τ) dτ.

2.3.4 Dévloppement en série de Fourier de eit sinx.

eit sinx =
+∞∑
−∞

Jn(t)einx

2.3.5 Fonction génératrice.

e
1
2
(z− 1

z
) =

+∞∑
−∞

Jn(t)zn, z 6= 0

2.4 Polynômes de Legendre

Dé�nition 2.4.0.0.1. Les polynômes de Legendre constituent l'exemple le

plus simple d'une suite de polynômes orthogonaux. Ce sont des solutions

polynomiales Pn(x) de l'équation di�érentielle de Legendre :

d

dx

[
(1− x2) d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0 (2.4)
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dans le cas particulier où le paramètre n est un entier.

Les polynômes de Legendre sont dé�nis uniquement pour x ∈ [−1; 1] puisque

les points x = ±1 sont des points singuliers réguliers de cette équation di�é-

rentielle. Ces polynômes orthogonaux ont de nombreuses applications tant en

mathématiques, par exemple pour la décomposition d'une fonction en série de

polynômes de Legendre, qu'en physique, où l'équation de Legendre apparaît

naturellement lors de la résolution des équations de Laplace ou de Helmholtz

en coordonnées sphériques.

Dé�nition 2.4.0.0.2. les polynômes de Legendre sont les fonctions propres

de l'endomorphisme dé�ni sur R[X] par :

P ∈ R[X] 7→ u(P ) =
d

dx

[
(1− x2)dP

dx

]
(2.5)

pour la valeur propre −n(n+ 1), n ∈ N.
Remarque : Les polynômes de Legendre constituent le cas particulier des

polynômes de Jacobi P
(α,β)
n , pour lequel les paramètres α et β sont nuls :

Pn(x) = P (0,0)
n

Dé�nition 2.4.0.0.3. On appelle équation de Legendre l'équation

d

dx

[
(1− x2)dy

dx

]
+ α(α + 1) y = 0 (2.6)

avec en général α ∈ R.

Proposition 2.4.1. le polynôme de LegendrePn (pour tout entier naturel n,

et pour x ∈ [−1; +1]) est une solution de l'équation di�érentielle :

d

dx

[
(1− x2)dPn(x)

dx

]
+ n(n+ 1)Pn(x) = 0, Pn(1) = 1. (2.7)

Cette équation est naturellement liée à l'équation de Laplace ∆f = 0,

écrite en coordonnées sphériques, qui intervient notamment en électrosta-

tique. En e�et, lors de la recherche d'une solution ne dépendant pas de l'angle

d'azimut ϕ sous la forme d'un produit f(r, θ) = A(r)B(θ) de deux fonctions

d'une seule variable, l'équation véri�ée par B ainsi obtenue est de la forme :
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(
1

sin θ

)
d

dθ

(
sin θ

dB

dθ

)
+ n(n+ 1)B = 0

où n(n+1) est la constante de séparation. Le changement de variable x = cosθ

permet de véri�er que B suit l'équation de Legendre2. Les seules solutions

physiquement acceptables, c'est-à-dire qui ne divergent pas pour x → ±1

sont alors celles pour lesquelles n est entier, donc les polynômes de Legendre

Dèmonstration En e�et, en coordonnées sphériques (r, θ, ϕ) l'équation de

Laplace s'écrit :

1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
= 0

. Dans le cas où le problème est telle que la solution ne dépend pas de l'angle

d'azimut ϕ, et en recherchant donc une solution par la méthode de séparation

des variables, soit de la forme f(r, θ) = A(r)B(θ) il vient par substitution :

1

r2
d

dr

(
r2
dA

dr

)
B(θ) +

1

r2 sin θ

d

dθ

(
sin θ

dB

dθ

)
A(r) = 0

soit en divisant membre à membre par le produit A(r)B(θ) :

1

A(r)r2
d

dr

(
r2
dA

dr

)
= − 1

B(θ)r2 sin θ

d

dθ

(
sin θ

dB

dθ

)

Comme on doit avoir égalité entre chacun des deux membres, dépendant de

deux variables di�érentes, pour toutes les valeurs possible de ces dernières,

chacun d'eux doit être égal à une constante, dite de séparation, qu'il est pos-

sible d'écrire sans perte de généralité sous la forme α(α + 1) avec α réel. Le

changement de variable x = cosθ permet de mettre l'équation issue du second

membre sous la forme d'une équation de Legendre. Toutefois en physique on

cherche des solutions dé�nies pour toutes les valeurs possibles de l'angle θ,

soit en fait régulières en x = ±1, donc avec α = n, n entier, la partie angu-

laire de l'équation de Laplace se met donc bien sous la forme indiquée.
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2.4.1 Fonction génératrice

Dé�nition 2.4.1.0.1. On peut aussi dé�nir cette suite de polynômes par sa

série génératrice :
1√

1− 2xz + z2
=
∞∑
n=0

Pn(x) zn

Cette expression intervient notamment en physique, par exemple dans le dé-

veloppement à grande distance du potentiel électrostatique ou gravitationnel

(développement multipolaire).

Si l'on considère qu'en général z est complexe, le calcul des coe�cients de la

série de Laurent donne alors :

Pn(x) =
1

2πi

∮
(1− 2xz + z2)−1/2 z−n−1 dz

où le contour entoure l'origine et est pris dans le sens trigonométrique.

Il est possible de dé�nir les polynômes de Legendre par cette fonction géné-

ratrice, comme les coe�cients de l'expansion.

2.4.2 Formule de récurrence de Bonnet

Cette formule permet rapidement d'obtenir l'expression du polynôme de

Legendre d'ordre (n+ 1) à partir de ceux d'ordres n et (n− 1).

Pour tout entier n ≥ 1 :

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (2.8)

avec P0(x) = 1 et P1(x) = x. Démonstration Elle se démontre fa-

cilement à partir de la fonction en dérivant par rapport à la variable t la

dé�nition des polynômes de Legendre à partir de la fonction génératrice, il

vient après réarrangement :

x− t√
1− 2xt+ t2

= (1− 2xt+ t2)
∞∑
n=1

nPn(x)tn−1.

En utilisant à nouveau

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x)tn
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, il vient∑∞
n=0 xPn(x)tn −

∑∞
n=0 Pn(x)tn+1 =

∑∞
n=0(n+ 1)Pn+1(x)tn − 2

∑∞
n=0(n+ 1)xPn+1(x)tn+1+

+
∑∞

n=0(n+ 1)Pn+1(x)tn+2.

En identi�ant alors les coe�cients des termes de même puissance de t, il

vient alors :

• pour n = 0, xP0(x) = P1(x), soit en prenant pour condition de norma-

lisation P0(x) = 1,∀x ∈ [−1, 1], il vient P1(x) = x ;

• pour n = 1, 3xP1(x)− P0(x) = 2P2(x), soit avec la même condition de

normalisation que précédemment P2(x) = 3x2−1
2

• de façon générale pour n ≥ 1, (2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x),

ce qui redonne bien la formule de récurrence précédente.

Propriétés

• Degré Le polynôme Pn est de degré n.

• Base La famille (Pn)n≤N étant une famille de polynômes à degrés éta-

gés, elle est une base de l'espace vectoriel RN [X].

• Parité Les polynômes de Legendre suivent la parité de n. On peut ex-

primer cette propriété par :

Pn(−x) = (−1)nPn(x). Pn(−x) = (−1)nPn(x).

(en particulier, Pn(−1) = (−1)n et P2n+1(0) = 0.

• Orthogonalité Une propriété importante des polynômes de Legendre est

leur orthogonalité. Il est possible de montrer, pour tout m, n entiers,

que :

∫ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δmn

Il est possible d'interpréter cette relation en introduisant le produit

scalaire de deux fonctions, dé�ni à partir de l'intégrale du produit des

deux fonctions sur un intervalle borné :

〈f, g〉 =

∫ b

a

f(x)g(x)W (x) dx
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où w(x) est appelé � fonction poids �, [a , b] étant l'intervalle d'ortho-

gonalité des deux fonctions, qui peut être in�ni sous réserve de conver-

gence de l'intégrale. Dans le cas des polynômes de Legendre l'intervalle

d'orthogonalité est [ ?1, 1] et la fonction poids est simplement la fonc-

tion constante de valeur 1, il est donc possible d'écrire : ces polynômes

sont orthogonaux par rapport au produit scalaire 〈·, ·〉 dé�ni sur R[X]

par la relation :

〈Pm, Pn〉 =

∫ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δmn

Démonstration

De plus, comme (Pn)n≤N est une base de RN [X], on a PN+1 ∈ (RN [X])⊥,

c'est-à-dire :

∀Q ∈ RN [X],

∫ 1

−1
PN+1(x)Q(x) dx = 0

• Norme Le carré de la norme, dans L2([-1,1]), est

‖Pn‖2 =
2

2n+ 1
.

En e�et, pour tout n > 1, on peut établir la relation

P ′n+1 − P ′n−1 = (2n+ 1)Pn,

dont on déduit (en utilisant que pour tout k, P
′

k−1 est de degré k−2 < k

donc est orthogonal à Pk, et en e�ectuant une intégration par parties) :

〈Pn, (2n+ 1)Pn〉 = 〈Pn, P ′n+1 − P ′n−1〉 = 〈Pn, P ′n+1〉 =

= [PnPn+1]
1
−1 − 〈P ′n, Pn+1〉 = [PnPn+1]

1
−1.

Comme PnPn+1 est impair et pour tout k, Pk(1) = 1, on aboutit ainsi

à (2n+ 1)||Pn||2 = 2.

2.4.3 Décomposition en série de polynômes de Legendre

• Décomposition d'une fonction holomorphe : Toute fonctions f ,

holomorphe à l'intérieur d'une ellipse de foyers -1 et +1, peut s'écrire
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sous la forme d'une série qui converge uniformément sur tout compact

à l'intérieur de l'ellipse :∀n ∈ N, λn ∈ C.

f(z) =
∞∑
n=0

λnPn(z) (2.9)

• Décomposition d'une fonction lipschitzienne :

On note P̃n le quotient du polynôme Pn par sa norme.

Soit f une application continue sur [−1; 1]. Pour tout entier naturel

n on pose

cn(f) =

∫ 1

−1
f(x)P̃n(x) dx, (2.10)

Alors la suite (cn(f)) est de carré sommable, et permet d'expliciter le

projeté orthogonal de f sur Rn[X] :

Snf =
n∑
k=0

ck(f)P̃k. (2.11)

On a de plus :

∀x ∈ [−1, 1], Snf(x) =

∫ 1

−1
Kn(x, y)f(y) dy (2.12)

avec le noyau

Kn(x, y) =
n+ 1

2

P̃n+1(x)P̃n(y)− P̃n+1(y)P̃n(x)

x− y
(2.13)

et

Snf(x)− f(x) =

∫ 1

−1
Kn(x, y)(f(y)− f(x)) dy. (2.14)

Supposons de plus que f est une fonction lipschitzienne. On a alors la

propriété supplémentaire :

∀x ∈]− 1, 1[, lim
n→∞

Snf(x) = f(x). (2.15)

autrement dit, l'égalité

f =
∞∑
n=0

cn(f)P̃n (2.16)

est vraie non seulement au sens L2 mais au sens de la convergence

simple sur ]− 1; 1[.
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2.5 Polynômes de Jacobi

Dé�nition 2.5.0.0.1. les polynômes de Jacobi sont une classe de polynômes

orthogonaux. Ils sont obtenus à partir des séries hypergéométriques dans les

cas où la série est en fait �nie :

P (α,β)
n (z) =

(α + 1)n
n!

2F1

(
−n, 1 + α + β + n;α + 1;

1− z
2

)
, (2.17)

où (α + 1)n est le symbole de Pochhammer pour la factorielle croissante,

(Abramowitz - Stegun p561 [archive].) et ainsi, nous avons l'expression ex-

plicite

P (α,β)
n (z) =

Γ(α + n+ 1)

n!Γ(α + β + n+ 1)

n∑
m=0

(
n

m

)
Γ(α + β + n+m+ 1)

Γ(α +m+ 1)

(
z − 1

2

)m
,

(2.18)

pour laquelle la valeur �nale est

P (α,β)
n (1) =

(
n+ α

n

)
. (2.19)

Ici, pour l'entier

n

(
z

n

)
=

Γ(z + 1)

Γ(n+ 1)Γ(z − n+ 1)
, (2.20)

et Γ(z) est la fonction gamma usuelle, qui possède la propriété 1/Γ(n+ 1) = 0

Ainsi,(
z
n

)
= 0 pour n < 0.

Les polynômes ont la relation de symétrie

P (α,β)
n (−z) = (−1)nP (β,α)

n (z) (2.21)

ainsi, l'autre valeur �nale est

P (α,β)
n (−1) = (−1)n

(
n+ β

n

)
(2.22)

Pour un nombre réel x, le polynôme de Jacobi peut être écrit alternative-

ment sous la forme

P (α,β)
n (x) =

∑
s

(
n+ α

s

)(
n+ β

n− s

)(
x− 1

2

)n−s(
x+ 1

2

)s
(2.23)
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où s ≥ 0 et en− s ≥ 0 Dans le cas particulier où les quatre quantités n, n+ α, n+ β

et n+ α + β sont des nombres entiers positifs, le polynôme de Jacobi peut

être écrit sous la forme

P (α,β)
n (x) = (n+ α)!(n+ β)!

∑
s

[s!(n+ α− s)!(β + s)!(n− s)!]−1×

×
(
x− 1

2

)n−s(
x+ 1

2

)s
(2.24)

La somme sur s s'étend sur toutes les valeurs entières pour lesquelles les ar-

guments des factorielles sont positives. Dérivées La k-éme dérivée de l'ex-

pression explicite conduit à

dk

dzk
P (α,β)
n (z) =

Γ(α + β + n+ 1 + k)

2kΓ(α + β + n+ 1)
P

(α+k,β+k)
n−k (z). (2.25)

2.6 Les Harmonique Sphériques

Les harmonique spheriques jouent un rôle imporôtant en électrodynamique

et en mécanique .Nous allons montrer comment elles apparaissent dans la

théorie des représentations du groupe des rotations, SO(3) .Chaque repré-

sentations irréductible de SO(3) peut être réalisée dans un espace de Hilbert

de dimension �nie de fonction sur la sphère, les restrictions de polynômes

homogènes, de degré donné, qui sont harmoniques, et cette représentation est

unitaire.

2.6.1 Rappel sur L2 (S 2 )

On désigne par S2 la sphère unité de R3,

S2 = {(x1, x2, x3) ∈ R3|x21 + x22 + x23 = 1}.

On introduit sur R3 les coordonnées sphériques, (r, θ, φ), r > 0, θ ∈ [0, π], φ ∈
[0, 2π[, tel que

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ

L'angle φ est la longitude et θ est la co-latitude. Sur R3 privé de l'axe Ox3(r >

0 et 0 < θ < π),le passage des coordonnées cartésiennes aux coordonnées
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sphériques est de classe C∞.

On désigne par L2 (S 2 ) l'espace de Hilbert séparable des fonctions complexes

sur S2 de carré intégrable pour le produit scalaire,

〈f1, f2〉 =
1

4π

∫
S2

f1(θ, φ)f2(θ, φ) sin θdθdφ.

En coordonnées sphériques, le laplacien,∆ = ( ∂
∂x1

)2 + ( ∂
∂x2

)2 + ( ∂
∂x3

)2,s'ecrit

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆S2 ,

2.6.2 Les polynômes harmoniques

Si f est une fonction sur R3, et si g ∈ SO(3), on pose pour x ∈ R3,

(g.f)(x) = f(g−1x),

et l'on dé�nit ainsi une représentation de SO(3) dans l'espace vectoriel des

fonction sur R3,

On notera σ cette représentation, dé�nit par

σ(g)f = g.f

Nous introduisons les polynômes harmoniques, on obtient toutes les repré-

sentations irréductibles de SO(3).

Dé�nition 2.6.2.0.1. On appelle fonction harmonique sur R3 toute fonction

f de classe C2 telle que

∆f = 0

Pour l entier positif ou nul, on désigne par P (l) l'espace vectoriel des poly-

nômes homogènes de degré l à coe�cients complexes sur R3.

On considère alors le sous-espace vectoriel de P (l) constitué des polynômes

harmoniques,c'est-à-dire à laplacien nul, que nous noterons H(l).

Lemme 2.6.2.1. L'espace vectoriel de H(l) est de dimension 2l + 1.

Démonstration.Un polynôme homogène de degré l sur R3 est déterminé par

l+1 polynômes homogènes en deux variables, de degrés respectifs 0, 1, ..., l.on

obtient

dimP (l) = 1 + 2 + ....+ (l + 1) =
(l + 1)(l + 2)

2
.
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Montrons que l'application linéaire, ∆ : P (l) −→ P (l−2),est surjective.On

remarque d'abord que , pour tout q3 ∈ N, xq33 ∈ Im(∆) puisque

∆(xq3+2
3 ) = (q3 + 2)(q3 + 1)xq33 .

De même, on voit facilement que x1x
q3
3 et x2x

q3
3 sont dans Im∆.La formule,

valable pour tous q1, q2, q3 ∈ N,

∆(xq31 x
q3
2 x

q3
3 ) = q1(q1−1)xq1−21 xq22 x

q3
3 +q2(q2−1)xq11 x

q2−2
2 xq33 +q3(q3−1)xq11 x

q2
2 x

q3−2
3 ,

montre que si la propriété xq31 x
q3
2 x

q3
3 ∈ Im∆ est vraie pour q1 + q2 = q − 2,

elle est vraie pour q1 + q2 = q. Cette propriété étant vraie pour q = 0 et pour

q = 1 , la surjectivité de l'application linéaire, ∆ : P (l) −→ P (l−2) est donc

démontrée par récurrence sur q . Par conséquent,

dimH(l) = dimP (l) − dimP (l−2) = 2l + 1.

Proposition 2.6.1. Le sous-espace H(l) de P (l) est invariant par σ.

Démonstration.Soit f une fonction de trois variables de classe C2 et soit

g dans SO(3). Désignons par (Aij), i, j = 1, 2, 3, la matrice de g et par (yi)

les composantes de y = g(x), pour x ∈ R3. On a

∂

∂xi
(f ◦ g)(x) =

3∑
j=1

Aij
∂f

∂yi
(y).

D'oú

(∆(f ◦ g))(x) =
3∑

i,j,k=1

AjiAki
∂2f

∂yj∂yk
(y).

Puisque (Aij) est une matrice orthogonale, on obtient

(∆(f ◦ g))(x) =
3∑
j=1

∂2f

∂y2j
(y) = (∆f)(g(x)),

c'est-à-dire

∆(f ◦ g) = (∆f) ◦ g.

Par conséquent, si P est un olynôme harmonique, pour tout g ∈ SO(3), le

polynôme

σ(g)P = g.P = P ◦ g−1
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est aussi harmonique.D'autre part, un polynôme homogène P étant donné,

les coe�cients des polynômes g.P dépendent continûment des coe�cients de

la matrice g ∈ SO(3).On peut donc énoncer ce qui suit .

Proposition 2.6.2. . Par restriction de σ, on obtient, pour chaque l ∈ N,
une représentation (H l, σl) de SO(3) de dimension 2l + 1.

La représentation σl de SO(3) dans H(l) est équivalente à la représentation

Dl. Démonstration.Le polynôme Pl = (x1 + ix2)
l appartient à P (l).

On véri�e facilement qu'il est harmonique.De plus, dans la représentation

σl de SO(3) dans H(l), il est fonction propre de ϕ(gθ) pour la valeur propre

e−2ilθ, car

ϕ(gθ) = ϕ(exp 2θξ3) = Rot(e3, 2θ) =

 cos 2θ − sin 2θ 0

sin 2θ cos 2θ 0

0 0 1


et, par conséquent,

(ϕ(gθ)).Pl = e−2ilθPl.

Proposition 2.6.3. Pour tout l > 2 ,

P (l) = H(l) ⊕ r2P (l−2).

Démonstration.La somme des dimensions des sous-espaces H(l) et r2P (l−2)

de P (l) est égale à la dimension de P (l), Montrons que leur intersection est

nulle. Si P ∈ P (l), à l'aide de l'identité d'Euler,

x1
∂P

∂x1
+ x2

∂P

∂x2
+ x3

∂P

∂x3
= lP

on établit, pour tout entier k > 0, la formule

∆(r2kP ) = 2k(2l + 2k + 1)r2k−2P + r2k∆P

Soit P ∈ H(l) , et soit k le plus grand entier tel qu'il existe un polynôme

Q ∈ P (l−2k) véri�ant P = r2kQ.Né cessairement k = 0, car sino Q serait

divisible par r2 , ce qui contredit l'hypothèse faite sur k .

On déduit de cette proposition que

P (l) = H(l) ⊕ r2H(l−2) ⊕ ...., (2.26)

où le dernier terme est rlH(0) si l est pair, et rl−1H(1) si l est impair.
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2.6.3 Les harmoniques sphériques

Un polynôme homogène sur R3 est entièrement déterminé par sa restric-

tion à la sphère unité S2.

Dé�nition 2.6.3.0.1. Les fonctions sur la sphère obtenues par restriction

de polynôme homogènes harmoniques sont des harmoniques sphériques.

Pour chaque entier positif ou nul l,les harmoniques sphériques de degré l

forment un espace vectoriel �H(l) de dimension (2l + 1),isomorphe H̃(l), et

contenu dans l'espace des fonctions de classe C∞ sur la sphère, lui-même

contenu dans L2(S2).

Remarque 2.6.1. Remarquons d'abord que, d'aprés la relation(2.1),l'espace

des restrictions à la sphère de polynômes homogènes de degré l s'écrit

P̃ (l) = H̃(l) ⊕ r2H̃(l−2) ⊕ ...., (2.27)

où le dernier terme est rlH̃(0) si l est pair, et rl−1H̃(1) si l est impair.

2.6.4 Représentations de SO(3) dans les espaces d'har-

moniques sphériques

Pour chaque l ∈ N, par l'identi�cation de H̃(l) avec H l, on obtient une re-

présentation, encore notée σl, de SO(3) dans l'espace des harmoniques sphé-

riques de degré l.

Ces représentations sont unitaires, comme on le voit facilement en utilisant

l'invariance par rotation de la mesure sur S2 .

En e�et, pour toutes fonctions

〈σ(g)f1, σ(g)f2〉 =

∫
S2

f1(g−1x)f2(g
−1x)dµ(x) =

∫
S2

f1(x)f2(x)dµ(x) = 〈f1, f2〉.

2.6.5 Bases des espaces d'harmoniques sphériques

On appelle plus particuliè harmoniques sphériques les élééments d'une

base orthonormale,Y l
m, −l 6 m 6 l, de H̃ l ⊂ L2(S2), pour chaque entier

naturel l.

Soit par rapport au produit scalaire non normalisé dé�ni par
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〈f1, f2〉 =

∫ π

0

∫ 2π

0

f1(θ, φ)f2(θ, φ) sin θdθdφ

On dé�nit les fonctions suivantes, pour l > 0.Si0 6 m 6 l, on pose

Y l
m(θ, φ) = C l

mZ
l
m(θ)eimφ,

où

Z l
m(θ) = sinm θQl

m(cos θ), Ql
m(x) =

dl+m

dxl+m
(1− x2)l,

C l
m est nombre réelé,

C l
m =

(−1)l+m

2ll!

√
2l + 1

4π

√
(l −m)!

(l +m)!
.

Si −l 6 m < 0, on pose

Y l
m = (−1)mY l

−m.

On dé�nit ainsi, pour chaque l > 0, une famille Y l
m, −l 6 m 6 l, de 2l + 1

fonctions sur la sphère.

Nous allons montrer que ces fonctions sont des harmoniques sphériques au

sens précédent, et qu'elles forment une base orthonormale de l'espace H̃(l)

pour le produit scalaire non normalisé, 〈, 〉.
D'une part, les fonctios Y l

m sont vecteurs propres de l'opérateurJ3 = −i ∂
∂φ

avec la valeur propre m,

J3Y
l
m = mY l

m (2.28)

D'autre part, les fonctions Y l
m satisfont les relations

J+Y
l
m =

√
(l −m)(l +m+ 1)Y l

m+1 (2.29)

où

J−Y
l
m =

√
(l +m)(l −m+ 1)Y l

m−1 (2.30)

que l'on véri�e faccilement en distinguant les cas m > 0 et m < 0.

On voit donc que les fonctios Y l
m sont vecteurs propres de J2 = −∆S2 avec

la valeur propre l(l + 1), celle-ci étant indépendante de m,

J2Y l
m = l(l + 1)Y l

m (2.31)
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Chaque fonction Y l
m est donc bien une harmonique sphérique.

L'opérateur J3 étant hermitien, les fonctions Y l
m sont deux à deux orthogo-

nales.

Ces 2l + 1 fonctions de H̃(l) en forment donc une base orthogonale.

Théorème 2.6.1. . Les harmoniques sphériques Y l
m, l ∈ N? − l 6 m 6 l,

forment une base hilbertienne de L2(S2) muni du produit scalaire non nor-

malisé.

En d'autres termes, toute fonction appartenant à L2(S2) a un développement

en harmoniques sphériques, convergent au sensde la norme de L2(S2),

f =
∞∑
l=0

∑
−l6m6l

f lmY
l
m = f 0

0Y
0
0 + f 1

1Y
1
1 + f 1

0Y
1
0 + f 1

−1Y
1
−1 + ...,

où les coe�cients du développement sont donnés par les produits scalaires

non normalisés de fonctions sur la sphère,

f lm = 〈Y l
m, f〉.

Remarque 2.6.2. Les polynômes de Legendre sont dé�nis, pour l ∈ N, par

Pl(x) =
(−1)l

2ll!

dl

dxl
(1− x2)l,

et les fonctions de Legendre sont dé�nies, pour m ∈ N et pour x ∈ [−1, 1],par

Pl,m = (−1)m(1− x2)
m
2
dm

dxm
Pl(x) =

(−1)l+m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(1− x2)l.

On exprime en général les harmoniques sphériques Y l
m, à l'aide des fonctions

de Legendre, Pl,m.On voit que, pour m > 0,

Y l
m(θ, φ) = Cl,mPl,m(cos θ)eimφ,

où

Cl,m =

√
2l + 1

4π

√
(l −m)!

(l +m)!
.

Les fonctions notées Z l
m(θ) ci-dessus ne di�èrent des fonctions Pl,m(cos θ)

que par un facteur numérique,

Z l
m(θ) = (−1)l+m2ll!Pl,m(cos θ)eimφ,
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et les constantes C l
m et Cl,m sont liées par

C l
m =

(−1)l+m

2ll!
Cl,m

Exemple P 0
0 (cos θ) = 1 (Y0 0 est isotrope) ;

P 0
1 (cos θ) = cos θ

P 1
1 (cos θ) = − sin θ

P 1
3 (cos θ) =

3

2
· sin θ · (−5 · cos2 θ + 1)

Les fonctions Y l
m(θ, φ) présentent de plus en plus de symétries au fur et à

mesure que l croît (sauf lorsque l = 0, puisque Y0 0 est une fonction constante

et décrit donc une sphère).

Polynômes de Legendre

Pour les harmoniques circulaires, on utilise des polynômes Pl de la fonction

cosinus :

Yl(θ) = Pl(cos θ) Les polynômes Pl utilisés sont les polynômes de Le-

gendre :

Pl(X) =
1

2l · l!
· d

l

dX l

[
(X2 − 1)l

]
(formule de Rodrigues, mathématicien français) On obtient :

P0(cos θ) = 1 (fonction isotrope) ; P1(cos θ) = cos θ

P2(cos θ) =
1

2
(3 cos2 θ − 1)

;

P3(cos θ) =
1

2
(5 cos3 θ − 3 cos θ)

Harmoniques sphériques normalisées

Base orthonormale des harmoniques sphériques Parmi les 2l +1 fonctions,

l'habitude a été prise de sélectionner une base orthonormale sur la sphère S2

munie de la mesure

dµ =
1

4π
sin θdθdφ

soit le produit scalaire (hermitien en fait) :
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〈f1 | f2〉 =
1

4π

∫∫
S2

f ∗1 f2 sin θdθdφ

Les harmoniques sphériques sont les solutions de l'équation aux valeurs propres1 :

−∆Yl,m(θ, ϕ) = l(l + 1)Yl,m(θ, ϕ)

où l'opérateur laplacien s'écrit en coordonnées sphériques sur la sphère de

rayon unité J2 :

∆f(θ, ϕ)
def
= J2f =

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2

Elles sont fonctions propres de l'opérateur

J3 = −i ∂
∂φ
J3 = −i ∂

∂φ

J3Yl,m = m · Yl,m
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Chapitre 3

Exemple d'aplication polynômes

de Legendre

3.1 Éléments matriciels des représentations Tl(g)

Nous allons maintenant calculer les éléments matriciels des représenta-

tions unitaires irréductibles Tl(u) du groupe SU(2).

Nous nous placerons d'abord dans le cas des représentations Tl(g) du groupe

SL(2,C), qui s'obtient, rappelons le, par complexi�cation de SU(2).

Il su�ra ensuite de donner aux paramétres des valeurs réelles pour revenir

aux représentations Tl(u).

On montrera que ces éléments matriciels s'expriment au moyen de la fonction

exponentielle et des polynômes P l
mn(z), qui ont un lien étroit avec les poly-

nômes classiques de Legendre et de Jacobi . C'est en exploitant cette situation

que nous établirons la plupart de leurs propriétés.

Calcul des éléments matriciels.

On a vu que les représentations Tl(g) du groupe SL(2,C) étaient donnée

par la formule

Tl(g)ϕ(x) = (βx+ δ)2lϕ(
αx+ γ

βx+ δ
) (3.1)

61
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où ϕ(x) est un polynôme de degré 2l et g =

(
α β

γ δ

)
Considérons dans la

base formée des monômes

ψn(x) =
xl−n√

(l − n)!(l + n)!
,−l 6 n 6 l. (3.2)

On a démontré que cette base est orthonormée relativement au produit scalaire

dans Hl, et invariante par l'action des opérateurs Tl(u), u ∈ SU(2). Il s'ensuit

qu'aux opérateurs Tl(u) des représentations unitaires irréductibles du groupe

SU(2) correspondent, dans cette base , des matrices unitaires.

Posons alors

aij =< Aej, ei >, (3.3)

où ei est une base orthonormée. Dans le cas présent , cette formule devient

tlmn(g) =< Tl(g)ψn, ψm >=
< Tl(g)xl−n, xl−m >√

(l −m)!(l +m)!(l − n)!(l + n)!
. (3.4)

Mais

Tl(g)xl−n = (αx+ γ)l−n(βx+ δ)l+n. (3.5)

Par conséquent

tlmn(g) =
< (αx+ γ)l−n(βx+ δ)l+n, xl−m >√

(l −m)!(l +m)!(l − n)!(l + n)!
. (3.6)

Dévloppons(3.6)en tenant compte que < xl−k, xl−m >= 0 pour k 6= m et vaut

(l −m)!(l +m)! pour k = m. D'où

tlmn(g) =

√
(l −m)!(l +m)!

(l − n)!(l + n)!

N∑
j=M

C l−m−j
l−n C l

l+nα
l−m−jβjγm+j−nδl+n−j =

=
√

(l −m)!(l +m)!(l − n)!(l + n)!αl−mγm−nδl+n×

×
N∑

j=M

1

j!(l −m− j)!(l + n− j)!(m− n+ j)!
(
βγ

αδ
)j (3.7)

où M = max(0, n−m) et N = min(l −m, l + n). Ainsi, nous avons trouvé

l'expression des éléments matriciels des représentations Tl(g) en fonction de

ceux des matrices g. Remarquons qu'en fait , cette expression est indépen-

dante de β, puisque l'unimodularité de g implique βγ = αδ − 1.
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3.2 théorème d'addition.

De nombreuses et importantes propriétés des fonctions P l
mn(z) sont liées

à leur théorème d'addition. Pour l'obtenir ,nous allons utiliser la relation

Tl(g1g2) = Tl(g1)Tl(g2), (3.8)

qui s'écrit

tlmn(g1g2) =
l∑

k=−l

tlmk(g1)t
l
kn(g2). (3.9)

Introduisons les angles d'Euler des matrices g1 et g2, c'est-à-dire, respective-

ment, 0, θ1, 0 et ϕ2, θ2, 0.On a donc

tlmk(g1) = P l
mk(cos θ1) (3.10)

et

tlkn(g2) = e−ikϕ2P l
kn(cos θ2) (3.11)

Les éléments matriciels tlmn(g1g2)sont la forme

tlmn(g1g2) = e−i(mϕ+nψ)P l
mn(cos θ). (3.12)

où θ, ϕ, ψ sont les angles d'Euler de la matrice g1g2. l'on a les formules

cos θ = cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2 (3.13)

eiϕ =
sin θ1 cos θ2 + cos θ2 sin θ2 cosϕ2 + i sin θ2 sinϕ2

sin θ
(3.14)

e
i(ϕ+ψ)

2 =
cos θ1

2
cos θ2

2
e
iϕ2
2 − sin θ1

2
sin θ2

2
e−

iϕ2
2

cos θ
2

(3.15)

où, rappelons-le 0 6 Reθ < π, 0 6 Reϕ < 2π, −2π 6 Reψ < 2π Repor-

tant les expressions précédents dans (3.9),on obtient le théorème d'addition

suivant :

e−i(mϕ+nψ)P l
mn(cos θ) =

l∑
k=−l

e−ikϕ2P l
mk(cos θ1)P

l
kn(cos θ2). (3.16)
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Considérons certains cas particuliers du théorème précédent.Soit ϕ2 = 0.

Alors, si Re(θ1 + θ2) < π, nous avons θ = θ1 + θ2, ϕ = π = 0,(3.16) devient

P l
mn[cos(θ1 + θ2)] =

l∑
k=−l

P l
mk(cos θ1)P

l
kn(cos θ2). (3.17)

Et, si Re(θ1 + θ2) > π, alors θ = 2π − θ1 − θ2, ϕ = π et ψ = π. D'où la

formule (3.16) prend la forme

P l
mn[cos(θ1 + θ2)] = (−1)m+n

l∑
k=−l

P l
mk(cos θ1)P

l
kn(cos θ2). (3.18)

Soit, maintenant, le cas ϕ2 = π.Si Reθ1>Reθ2, alors θ = θ1 − θ2,ϕ = 0, ψ =

π,et l'on a

P l
mn[cos(θ1 − θ2)] =

l∑
k=−l

(−1)n−kP l
mk(cos θ1)P

l
kn(cos θ2). (3.19)

En particulier, pour θ1 = θ2 = θ :

l∑
k=−l

(−1)n−kP l
mk(cos θ)P l

kn(cos θ) = δmn. (3.20)

Si θ réel, on peut écrire

P l
mn(cos θ) = (−1)n−mP l

mn(cos θ)

Dans le cas où θ1 et θ2 sont réels, la formule (3.19) devient :

P l
mn[cos(θ1 − θ2)] =

l∑
k=−l

P l
mk(cos θ1)P l

kn(cos θ2). (3.21)

où θ1 > θ2. Si θ1 = θ2 :

l∑
k=−l

P l
mk(cos θ1)P l

kn(cos θ1) = P l
mn(1) = δmn. (3.22)

L'égalité (3.22) s'interpréte facilement en termes des groupes. Si θ est réel,

la matrice g(0, θ, 0) appartient au sous-groupe SU(2) . Mais, Tl(u) est une
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représentation unitaire de ce sous-groupe et, par conséquent, la matrice d'élé-

ments P l
mn(cos θ) est unitaire. Nous aurons encore besoin, pour ce qui suit,

du cas ϕ2 = π
2
. Dans ce cas ,les formule (3.13)− (3.14) se simpli�ent :

cos θ = cos θ1 cos θ2 (3.23)

eiϕ =
sin θ1 cos θ2 + i sin θ2

sin θ
(3.24)

e
i(ϕ+ψ)

2 =

√
2[cos θ1+θ2

2
+ i cos θ1−θ2

2
]

2 cos θ
2

(3.25)

Au lieu des formules (3.23)− (3.25), il convient de prendre les formules

tanϕ =
sin θ2

sin θ1 cos θ2
, (3.26)

tanψ =
sin θ1

sin θ2 cos θ1
, (3.27)

qui s'obtiennent immédiatement à partir des formules ()− () Ainsi,

e−i(mϕ+nψ)P l
mn(cos θ) =

l∑
k=−l

i−kP l
mk(cos θ1)P

l
kn(cos θ2). (3.28)

3.2.1 Théorème d'addition pour les polynômes de Le-

gendre.

Il ne s'agira que d'un cas particulier du théorème précédent. Les polynômes

et les polynômes associés de Legendre sont respectivement dé�nis par

Pl(z) = P l
00(z) (3.29)

et

Pm
l (z) = lm

√
(l +m)!

(l −m)!
P l
m0(z) (3.30)

En faisant n = 0 dans la formule(3.16) et en utilisant les relations (3.29) −
(3.30) , on obtient

e−imϕPm
l (cos θ) =

= lm

√
(l +m)!

(l −m)!

l∑
k=−l

l−k

√
(l − k)!

(l + k)!
e−lkϕ2P l

mk(cos θ1)P
k
l (cos θ2). (3.31)
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Et si m = n = 0 :

Pl(cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2) =

=
l∑

k=−l

(−1)k
(l − k)!

(l + k)!
e−ikϕ2P k

l (cos θ1)P
k
l (cos θ2) (3.32)

On peut simpli�er cette relation de la faÇon suivante : en vertu de la symétrie

P l
m0(z) = P l

−m0(z) et de la formule(3.30), nous avons

P−ml (z) = (−1)m
(l −m)!

(l +m)!
Pm
l (z).

Par conséquent, les polynômes de Legendre satisfont au théorème d'addition

suivant

Pl(cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2) =
l∑

k=−l

e−ikϕ2P k
l (cos θ1)P

−k
l (cos θ2).

(3.33)

3.3 La formule de multiplication.

Supposons que , dans la formule(3.28) l'angle d'Euler ϕ2 soit réel.Alors,

on peut considérer que l'on se trouve en présence du développement en série

de fourier de la fonction e−i(mϕ+nψ)P l
mn(cos θ) (où ϕ, ψ et θ dépendent de ϕ2

par les formules(3.13)− (3.15). Par conséquent,

P l
mk(cos θ1)P

l
kn(cos θ2) =

1

2π

∫ π

−π
ei(kϕα−mϕ−nψ)P l

mn(cos θ)dϕ2 (3.34)

Nous dirons que cette formule est la formule de multiplication pour les fonc-

tions P l
mn(z). La formule(3.34)admet le cas particulier m = n = 0, qui s'écrit

en vertu de la relation(3.35) :

1

2π

∫ π

−π
eikϕαPl(cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2)dϕ2 =

= (−1)k
(l − k)!

(l + k)!
P k
l (cos θ1)P

k
l (cos θ2) = P k

l (cos θ1)P
−k
l (cos θ2). (3.35)
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Puisque Pl(cos θ1 cos θ2− sin θ1 sin θ2 cosϕ2) est une fonction paire en ϕ2, on

a
1

π

∫ π

0

Pl(cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2) cos kϕ2dϕ2 =

= P k
l (cos θ1)P

−k
l (cos θ2). (3.36)

Si on fait également k = 0, nous obtenons

1

2π

∫ π

−π
Pl(cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2)dϕ2 =

= Pl(cos θ1)Pl(cos θ2). (3.37)

La signi�cation géométrique de la formule (3.34) est la suivante. Choisissons

sur la sphère unité un point A tel que sa latitude par rapport au pôle nord N

soit θ1 et traçons sur la sphère un cercle de centre A et de rayon sphérique

θ2.Notons par θ la distance polaire du point B de ce cercle tel que l'arc AB

de grand cercle forme un angle ϕ2 avec le méridien AN .la formule (3.34)si-

gni�e que P k
l (cos θ1)P

−k
l (cos θ2) est la valeur moyenne de Pl(cos θ)eikϕ2 sur

ce cercle. En particulier, le produit Pl(cos θ1)Pl(cos θ2) est la valeur moyenne

de Pl(cos θ). Transformons la formule (3.35). Nous supposerons que θ1, θ2, ϕ2

sont des nombres réels tels que 0 6 θ1 < π, 0 6 θ2 < π, 0 6 θ1 + θ2 < π (si

cette dernière condition n'est pas remplie, on doit changer θ1 et θ2 en π− θ1
et π − θ2),et faisons le changement de variables

cos θ = cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2. (3.38)

Notons par Tn(x) la fonction cos(n arccosx). Cette fonction est le polynôme

de Cebysev de première espèce. De (3.38), il suit que

cos kϕ2 = Tk

(
cos θ1 cos θ2 − cos θ

sin θ1 sin θ2

)
. (3.39)

et, de plus,

dϕ2 =
− sin θdθ√

[cos θ − cos(θ1 + θ2)][cos(θ1 − θ2)− cos θ]
. (3.40)

Puisque, ϕ2 variant de 0 à π, la variable θ varie de θ1 + θ2 à θ1 − θ2 alors

le changement de variables dé�ni par (3.38) transforme l'intégrale(2)de la

façon suivante :

1

π

∫ θ1+θ2

θ1−θ2
Pl(cos θ)Tk

(
cos θ1 cos θ2 − cos θ

sin θ1 sin θ2

)
×
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× sin θdθ√
[cos θ − cos(θ1 + θ2)][cos(θ1 − θ2)− cos θ]

=

= P k
l (cos θ1)P

−k
l (cos θ2). (3.41)

L'expression qui �gure au dénominateur de (3.41), a une signi�cation géo-

métrique simple : elle représente l'aire du triangle sphérique de côtés θ1, θ2,

θ, divisée par 4π2.

3.4 Formules de récurrence.

Nous allons maintenant établir les formule de récurrence pour les fonc-

tions P l
mn(z), relatives aux indices m et n. On peut les considérer comme des

formes in�nitésimales du théorème d'addition. Elles s'obtiennent,à partir de

ce théorème, pour θ2 in�niment petit.On devra di�érentier les deux membres

de la formule générale (7) en θ2 et faire θ2 = 0. Il nous su�ra, au lieu de la

formule générale (7) d'utiliser ses cas particuliers ϕ2 = 0 et ϕ2 = π
2
(formule

(3.17)et (3.28). Calculons d'abord d
dθ

[P l
mn(cos θ)] pour θ = 0.On obtient

d

dθ
[P l
mn(cos θ)]θ=0 =

i

4π

√
(l −m)!(l +m)!

(l − n)!(l + n)!
×

×
∫ 2π

0

[(l − n)e−i(n+1)ϕ + (l + n)e−i(n−1)ϕ]eimϕdϕ. (3.42)

Il est clair que le membre de driote de(3.42)est nul si m est di�érent de

(n+ 1) ou (n− 1). Si m = n+ 1, il vient

d

dθ
[P l
n+1,n(cos θ)]θ=0 =

l

2

√
(l − n)(l + n+ 1). (3.43)

Demême, pour m = n− 1 :

d

dθ
[P l
n−1,n(cos θ)]θ=0 =

l

2

√
(l + n)(l − n+ 1). (3.44)

Venons-en maintenant aux formules de récurrence proprement dites.

kDi�érentions en θ2 les deux membres de la formule(3.17) faisons θ2 = 0 et

utilisons les relations (3.43)et (3.44).Posant z au lieu de cos θ1, nous obte-

nons la formule cherchée :

√
1− z2dP

l
mn(z)

dz
=
l

2
[
√

(l − n)(l + n+ 1)P l
m,n+1(z)+
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+
√

(l + n)(l − n+ 1)P l
m,n−1(z)]. (3.45)

Pour obtenir une deuxiéme formule de récurrence, partons de la formule

(3.41) que l'on di�érentie en θ2. On donne ensuite à θ2 la valeur 0 et on

utilise les relation (3.24)-(3.26).Aprés des transformations simples, il vient

l[m
dϕ

dθ2
+ n

dψ

dθ2
]θ2=0P

l
mn(cos θ1)−

dP l
mn(cos θ1)

dθ1

dθ

dθ1
|θ2=0 =

=
l

2
[
√

(l + n)(l − n+ 1)P l
m,n−1(cos θ1)−

−
√

(l − n)(l + n+ 1)P l
m,n+1(cos θ1)]. (3.46)

où θ, ϕ, ψ s'expriment au moyen de θ1 et θ2 par les formule (3.24)-(3.26)

précitées. Il nous reste à trouver les valeurs des dérivées

dϕ

dθ2
|θ2=0=

1

sin θ1
et

dψ

dθ2
|θ2=0 = − cot θ1

Reportant ces valeurs dans (3.46)et remplaÇant cos θ1 par z, nous obtenons

l[
m− nz√
l − z2

]P l
mn(z) =

=
l

2
[
√

(l + n)(l − n+ 1)P l
m,n−1(z)−

−
√

(l − n)(l + n+ 1)P l
m,n+1(z)]. (3.47)

Des formules (3.45)et(3.47), on déduit facilement :

√
1− z2dP

l
mn(z)

dz
+
nz −m√
l − z2

P l
mn(z) =

= −l
√

(l − n)(l + n+ 1)P l
m,n+1(z). (3.48)

et
√

1− z2dP
l
mn(z)

dz
+
nz −m√
l − z2

P l
mn(z) =

= −l
√

(l + n)(l − n+ 1)P l
m,n−1(z). (3.49)

En vertu des relations de symétrie, il vient :

√
1− z2dP

l
mn(z)

dz
+
mz − n√
l − z2

P l
mn(z) =
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= −l
√

(l −m)(l +m+ 1)P l
m+1,n(z). (3.50)

et
√

1− z2dP
l
mn(z)

dz
− mz − n√

l − z2
P l
mn(z) =

= −l
√

(l +m)(l −m+ 1)P l
m−1,n(z). (3.51)

Par soustration de (3.48)et (3.49), nous obtenons une relation de récurrence,

qui lie trois fonctios P l
mn, d'indices n en progression arithmétique de raison

1.

2
nz −m√
l − z2

P l
mn(z) =

= l[
√

(l + n)(l − n+ 1)P l
m,n−1(z)−

−
√

(l − n)(l + n+ 1)P l
m,n+1(z)] (3.52)

Par addition de (3.48)et (3.49) :

√
1− z2dP

l
mn(z)

dz
=

= − l
2

[
√

(l + n)(l − n+ 1)P l
m,n−1(z)+

+
√

(l − n)(l + n+ 1)P l
m,n+1(z)] (3.53)

Faisons dans (3.48)et (3.49) m = 0 et utilisons l'égalité

P l
0n(z) = l−n

√
(l − n)!

(l + n)!
P n
l (z).

Nous obtenons des formules de récurrence pour les fonctions associées

de Legendre P l
mn :

√
1− z2dP

n
l (z)

dz
+

nz√
l − z2

P n
l (z) = −P n+1

l (z). (3.54)
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