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Introduction

Les fonctions spéciales de la physique mathématique apparaissent le plus
souvent a l'occation de la résolution d’équations aux dérivées partielles par
la méthode de séparation des variables ou & propos de la recherche des
fonctions propres d’opérateurs différentiels dans certains systémes des co-
ordonnées curvilignes.Mais, les opérateurs différentiels de la physique ma-
thématique se définissent usuellement par rapport & une propriété d’inva-
riance.Ainsi,’opérateur de LAPLACE est invariant pour les déplacements
du plan euclidien,’opérateur des ondes est invariant pour les transforma-
tions du groupe de LORENTZ etc. La détermination des fonctions propres
de ces opérateurs en est ainsi facilitée et leurs propriétés d’invariance s’ex-
priment naturellement dans le cadre de la théorie de la représentation des
groupes. Considérons en effet un opérateur A, invariant par rapport a un
certain groupe G de transformations.On peut alors montrer que ces trans-
formations font correspondre, aux fonctions propres de 'opérateur. d’autres
fonctions propres associées a la méme valeur propre.Par la aux éléments du
groupe G, sont assignées des transformations 7'(g) dans I'espace des fonctions

propres, et I'égalité
T(91)T(g2) = T(g192) (1)

est, de plus, satisfaite. Les opérateurs, définis sur un groupe et qui pos-
sédent la propriété ,sont appelés représentations du groupe.Ainsi, les fonc-
tions propres d’un opérateur invariant sont liées aux représentations du groupe
par rapport auquel cet opérateur est invariant. La connaissance de ces re-
présentations simplifie la recherche des fonctions propres et permet d’éclairer
leur comportement sous les transformations du groupe donné.On peut donner
aux opérateurs de la représentation 7'(¢) une forme matricielle, une certaine
base ayant été choisie dans l'espace de la représentation.En outre, appa-
raissent des fonctions numériques, qui sont définies sur le groupe et qui sont
les ¢léments matriciels de la représentation. Mais, les élément des groupes qui
interviennent en physique mathématique sont usuellement définis par des pa-
rameétres numériques.Ainsi, les éléments du groupe des déplacements du plan
euclidien sont donnés par les coordonnées (a,b) de I'image du point O(0, 0) et

par I'angle de rotation ¢, Les éléments du groupe des rotations de 17espace
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euclidien a trois dimensions sont définis par les angles d’EULER ¢, 0,1 etc
... .Ainsi ,par I’étude des représentations des groupes,nous arrivons aux fonc-
tions numériques de plusieurs variables. Bien entendu,il est souhaitable de
ne manipuler que des fonctions ne comportant que le nombre minimal de
variables et, si possible, d’une seule variable .Il a été montré qu’une telle cir-
constance se présente pour certains groupes (groupe des rotations de I’espace
a trois dimensions,groupe des déplacements du plan euclidien. etc...).Dans le
cas de ces groupes ,on peut choisir une base,dans I’éspace de la représen-
tation,telle qu’aux éléments d’un certain sous-groupe H .soient associées des
matrices diagonales,dont la diagonale principale est composée de fonctions
exponentielles.Les autres éléments du groupe peuvent alors étre mis sous la
forme h10hy,001 hy, he € H et on §(t) parcourt une certaine variété a un para-
meétre. I est alors possible d’exprimer les éléments matriciels des représenta-
tions de ces groupes en n’utilisant que la fonction exponentielle ou des fonc-
tions d’une seule variable ¢t .On montre que ces fonctions Coincident avec les
fonctions spéciales.qui sont classiques en physique mathématique.Ainsi, les
représentations du groupe des déplacements du plan euclidien sont associées
aux fonctions de BESSEL.J,(t),celles du groupe des rotations de 1 7espace eu-
clidien & trois dimensions,aux fonctions de LEGENDRE et de JACOBI.etc...
.Remarquons que le role joué par la fonction exponentielle n’a rien de for-

int ot n est un entier,donnent les représenta-

tuit :les fonctions de la forme e
tions du groupe des rotations du plan euclidien. Dans le cas de groupes plus
complexes(groupe des rotations de 1 7espace euclidien & n dimensions, groupe
de tous les déplacements de ce méme espace,groupe de LORENTZ.etc...).on
montre que tous les éléments matriciels de leurs représentations ne peuvent
s’exprimer au moyen des fonctions spéciales déja connues.Celles-ci ne sont
utiles que pour une partie des éléments matriciels : pour les autres, d’autres
fonctions sont nécessaires que I’Analyse mathématique n’avait pasencore ren-
contrées.Ces nouvelles fonctions possédent la méme diversité de propriétés
que les fonctions spéciales classiques. Il existe ainsi un lien entre les fonc-
tions spéciales et les éléments matriciels des représentations des groupes.Il
est nécessaire de noter que ce lien dépend également du choix du sous-groupe
H.dont les éléments, dans la réalisation correspondante, sont représentés

par des matrices diagonales(ou,plus généralement,diagonales par blocs). Par
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conséquent, dans le cas d'un groupe donné, des fonctions spéciales différentes
peuvent apparaitre comme associées puisqu’elles dépendent des divers sous-
groupes H pour lesquels les opérateurs T'(h) sont diagonalisai. Par exemple,

si G est le groupe des matrices réelles unimodulaires du second ordre et H

. cosd —sinf . .
sous-groupe des matrices . alors on obtient les fonctions co-
sinf  cos@

niques. Si on choisit pour H le sous-groupe des matrices diagonales, alors

on obtient la fonction hypergéométrique. Enfin, si H est le sous-groupe des
matrices triangulaires de la forme . ,alors on obtient les fonctions

de HANKEL. Sur ce lien que 'on a établi entre les éléments matriciels
des représentation et les fonctions spéciales, on fonde une méthode géné-
rale qui permet d’établir les propriétés de ces fonctions. Par exemple, il suit,

de légalité(1).que les éléments matriciels des représentations satisfont
tij(9192) = Ztik(gl)tkj(QZ)- (2)
k

Mais, ces éléments s’expriment au moyen de fonctions spéciales. Donc (2)
peut s’écrire en terme des fonctions spéciales; et c’est ainsi que l'on ob-
tient, en particulier, les théorique d’addition pour les fonctions de Bissi LE-
GENDRE, GEGENBAUER, étc.... Si 'on supposé que 'un des éléments de
I'égalité (2) est "infiniment proche de I'unité du groupe", alors on aboutir
a une relation de récurrence satisfaire par les fonctions spéciales correspon-
dantes.Cette approche, fondée sur la théorie des groupes, conduit, de facon
naturelle, aux représentations intégrales des fonctions spéciales. Si, dans I'es-
pace de la représentation T'(g), on choisit une base orthonormée [ey], alors

les éléments matriciels sont donnés par

tij(g) =< T(g)ej,e; > . (3)

Mais, le plus souvent, ’espace de la représentation se réalise un certain es-
pace fonctionnel (I'espace des fonctions propres d’'un opérateur invariant.
Par exemple), et le produit scalaire dans cet espace est sous forme intégrale.
Donc, le second membre de (3) s’exprime aussi sous forme intégrale. tandis
que le premier membre se réduit a des fonctions spéciales. Ce qui donne une

représentation intégrale pour les fonctions spéciales.Il peut arriver que 'on
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ne puisse pas toujours choisir dans 'espace de la représentation, une base
telle que les éléments d’un sous-groupe donné soient représentés par des ma-
trices diagonales (ou, tout au moins, diagonales par blocs). Parfois encore,
on doit choisir une réalisation de la représentation pour laquelle les éléments
de H sont représentés par des opérateurs de multiplication par une fonction
(analogue continu de la matrice diagonale). Dans ces cas, les opérateurs de
la représentation T'(g) deviennent des opérateurs intégraux, dont les noyaux
s’expriment au moyen de fonctions spéciales. Ce qui conduit a diverses rela-
tions intégrales entre les fonctions spéciales et, en particulier, & des analogues
continus des théoréemes d’addition. I.’analyse harmonique joue un role impor-
tant dans la théorie des fonctions spéciales. Considérons, a titre d’exemple,

la représentation
T(ga)f(p) = flp + ). (4)

du groupe des rotations du cercle (f(y) est une fonction définie sur le cercle et
dépendant de 'angle ¢ et est la rotation d’angle «). Développons la fonction
f(p) en série de FOURIER :

_ ine
flp) = E Cpt 7. (5)
n=-—1
Les espaces & une dimension des fonctions de la forme ¢, e restent invariants

sous les transformations 7'(g,) :
T(ga>eimp — ein(aera) — einaeimp. (6)

On dit que I'espace des fonctions f(y) définies sur le cercle a été décomposé
en sous-espaces mono dimensionnels invariants, la représentation 7'(g) ayant
été décomposée par rapport aux représentations T),(g,) = €™. Le but de ce
mémoire est de comprendre les fonctions spéciales a l'aide de la théorie de
représentations de groupes. Dans une premiére partie, nous introduirons les
définitions élémentaires des représentations de groupes ainsi que les résul-
tats qui nous seront utiles par la suite. Dans une seconde partie, nous nous
intéresserons au groupe des matrices d’ordre deux unitaires complexes de
déterminant 1, SU(2), et en déterminerons les représentations irréductibles

ensuite, nous en déduirons des relations fonctionnelles sur les coefficients
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matriciels et appliquerons ceci a la résolution de 1’équation de Laplace. Le
deuxiéme chapitre traite quelques fonctions spéciales connus dans la littéra-
ture. L’approche classique suivi dans ce chapitre est celui qu’on trouve dans
toutes les références d’analyse mathématique, c’est aborder les fonctions spé-
ciales sans tenir compte du groupe de symétrie en question. Dans le troisieme
chapitre, on traite un exemple d’utilisation de la théorie des représentations
des groupes pour avoir des formules d’addition, de multiplication et de ré-

currence qui concerne les polynomes de Legendre.
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Chapitre 1

Représentation Des Groupes

1.1 Rappel de quelques définition

Un groupe est une ensemble muni d’une loi de composition associative,possédant
un élément neutre et elle que chaque élément posséde un inverse.l.’élément
neutre,encore appelé élément unité,est diversement noté e,1 ou souvent [ s’il
s’agit d’'un groupe des matrices.

Un groupe est dit commutatif ou abélien si la loi de composition est commu-
tative.Dans ce cas la composition est en général notée + et 1’élément neutre
est en général notee 0.

On notera |X| le cardinal d’un ensemble fini, X. L’ordre d’un groupe fini,
G est le nombre,|G|,d’élément du groupe.Un élément g € G et dit d’ordre

n(n > 0) si n est le plus petit entier tel que ¢" = e

1.2 Exemples de groupes finis

1.2.1 Groupe cyclique d’ordre n

Les groupes suivants sont isomorphes et sont appelés groupe cyclique

d’ordre n :

1. Z, = Z/nZ.en particulier Z, = Z/27 noté additivement{0,1} ou

multiplicativement{1, —1}.

13



14 1.2.2 Groupe symétrique &,

2. Le groupe des rotations du plan de centre O,d’angles 2]"’7’7,0 < k <
n—1,
pour la composition.

3. Le groupe des nombres complexes,{e%% | 0 < k < n—1},pour la

multiplication.

4. Le sous-groupe {1,9,¢% ...,g" '} si g est un élément d’ordre n dans

un groupe G.

1.2.2 Groupe symétrique &,

Le groupe des permutation d’un ensemble de cardinal n est noté &, et
appelé groupe symétrique sur n éléments .L’ordre de &, est n! .
Tout élément de &, s’écrit comme un produit de transpositions. a tout élé-
ment 0 € &, on associe le nombre égale a 1 ou—1 suivant la parité du nombre
de transpositions.
Ce nombre est noté(—1)7 et appelé signature de o.
L’application o € &, +— (—1)? € Z, est un morphisme de groupes.
Le groupe alterné U, est le noyau du morphisme de signature. Si n > 2, c’est

un sous-groupe distingué¢ d’indice 2 de &,, .

1.3 Représentations des Groupes Finis

1.3.1 Généralités

Si E est un espace vectoriel sur K, (K = RouC), On désigne par GL(FE)

le groupe des isomorphismes K-linéaire de F.

Définition 1.3.1.0.1. Une représentation d’un groupe G est la donné d’un

espace vectoriel complexe de dimension finie, E, et d’un morphisme de groupes,
p:G— GL(E)
Donc, pour tous g,¢' € G,

p(99') = p(9)op(d), p(g™") = (p(g)) ", ple) = Idg
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L’espace vectoriel E est appelé le support de la représentation et sa dimension
s’appelle la dimension de la représentation. On désigne une telle représenta-
tion par (E,p) ou simplement p.

Si en particulier, E = C", on dit que la représentation est une représenta-
tion matricielle de dimension n. la représentation standard ou fondamentale
d’un sous groupe G de GL(E) est la représentation de G dans E définie par
Vinjection canonique de G dans GL(E). On appelle représentation triviale

toute représentation telle que p(g) = Idg pour tout g € G.

voici un premier exemple de représentation d’un groupe finie.
Soit t € o3 la transposition 123 — 132 et ¢ la permutation circulaire 123 —

231 qui engendrent o3. On pose j = e%". On peut représenter o3 dans C en

p<e>=1,p<t>=<‘f ;>,p<c>= (g ;)

Définition 1.3.1.0.2. Soit (,) un produit scalaire sur E. On dit que la re-

posant

présentation est unitaire si p(g) est unitaire Vg, c’est-a -dire,

Vg € G,Vx,y € E,(p(g)r, p(9)y) = (,y)

Une représentation est dite unitarisable s’il existe un produit scalaire sur E

tel que (p,(,)) est unitaire.

Lemme 1.3.1. Soit G un groupe fini. Pour toute fonction ¢ sur G & valeur

dans un espace vectoriel

Vg e G,y wlgh) =) wlhg) =Y (k) (1.1)
heG heG keG
Démonstration : En effet, g est fizé, tout élément de G s’écrit d’une

maniere et d’une seule sous la forme gh (resp., hg), ou h € G.

Théoréme 1.3.1. Toute représentation d’un groupe fini G est unitarisable.
Démonstration : Soit (E, p) une représentation d’un groupe fini, G, et soit

(,) un produit scalaire sur E considérons :

(@) = g 2ol o)y

geG
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qui est un produit scalaire sur E. En effet, supposons (x,a:)' =0,

= |—Cl;| > p(9)z, plg)z) =0

geG

= (p(9)z,p(g)z) =0 VgeG

en particulier pour g =e , p(g) = idg donc : (x,x) =0= 2 =10
Montrons que {,) est invariant par p (p unitaire par rapport @ (,)")
En effet :

!

(p(9)z,p(g)y) =

al-
g

{(p(h)p(g)x, p(h)p(9)y)
{(p(hg)z, p(hg)y)

(p(k)x, p(k)y)

>
m
@

Q-
]

L
G

>
@

S

>
m
ng

= (z,y)
ot nous utilisé la relation fondamentale(1,1),valable pour toute ¢ fonction

sur G

Donc p est une Représentation unitaire de G dans (E, (,)")

1.3.2 Représentations irréductibles

Définition 1.3.2.0.1. Soit (E, p) une représentation d’un groupe G, F C G
un sous espace vectoriel de E, On dit que F est invariant par p (stable) si
est seulement si :

p(g)F C F.Nge G

ce qui entraine p(g)F = F,Vg
Donc on peut parler d’une représentation p restreinte a F : c’est une repreé-
sentation de G dans F

p/F est appelée sousreprésentation.

Définition 1.3.2.0.2. Une représentation (E,p) de G est dite irréductible.
Si E # {0} et les seules sous espaces vectoriels de E invariants par p sont 0
et B
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Exemple La représentation de dimension 2 de o3 dans [’exemple préce-
dent 1.3.1 est irréductible, car les sous espaces propres de p(t) et de p(c) sont

d’intersection nulle.

Proposition 1.3.1. Toute représentation irréductible d’un groupe fini G est

de dimension finie.

Démonstration Soit (E,p) une représentation irréductible d’un groupe
fini G et soit ¥ € E. Le sous ensemble {p(g9)x/g € G} étant fini, Cette
ensemble engendre un sous espace vectoriel de dimension fini de E. Si x # 0,
ce sous-espace vectoriel de E n’est pas réduit a {0} et c¢’est un espace invariant

par p. il coincide donc avec E, qui est donc dimE < oo.

1.4 Opération sur les représentations

1.4.1 Somme directe de représentations

Définition 1.4.1.0.1. Soient (Ey, p1) et (Fa, p2) des représentations de G.
Alors on définit (Ey @ Es, p1 @ pa) par :

(p1 ® p2)(9) (21, 22) = (p1(9)71, p2(9)72), Vg € G, 71 € By, 22 € By

Si p1 et pg sont matricielles, Alors la matrice de p; @ pa(g) est :

(m(g) 0 )
0 p(9)

Plus généralement si m > 0 on définit p; & p2 & ... B pm

En particulier : Si (E, p) est une représentation de G, On note :
p@p@...@p:@p:mp
—_——
mfois m
Définition 1.4.1.0.2. Une représentation est dite complétement réductible

st elle est somme directe de représentation irréductible.

Lemme 1.4.1. Soit p une représentation unitaire d’un groupe G dans (E, (,)).

Si F C E est invariant par p.
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Démonstration Soit y € F*+ = {y € E/(x,y)}
(z,p(9)y) = (p(g~")z,y) =0, Va € F Vg
car F' est invariant par p
= plg)y € I+
= F* est invariant par p

Théoréme 1.4.1. (Théoréme de Maschke) Toute représentation de dimen-
ston finte d’un groupe fini est completement réductible.

Démonstration Soit (E,p) une représentation de G d’apres le théoréme
1.3.1, p est supposé unitaire. Si p n’est pas irréductible.

Soit F' un sous espace vectoriel invariant par p avec F' # {0} et F # E
Alors : E=F @ F+

FL aussi invariant par p et dimF < dimE et 0 < dimF+ < dimFE

par récurrence sur la dimension de E, on obtient le résultat :
pP=p1Dp2D...Dpm

Remarque ce théoréeme est vrai sous des hypothéses plus général (groupes

compacts et localement compacts).

1.4.2 Produits tensoriels de représentations

Définition 1.4.2.0.1. Soit(Ey, p1)et(Es, p2)des représentations d’un méme
groupe G.Rappelons que, par définition,p1 @ ps est la représentation de G
dansE; ® Es définie par :

(P1 ® p2)(9) (21 @ x2) = (p1(9)T1 ® p2(9)712), Y9 € G, 11 € By, 79 € Ey

1.4.3 Opérateurs d’entrelacement et lemme de Schur

Définition 1.4.3.0.1. Soit(E, p1)et(E2, po)des représentations de groupe G.On
dit qu’une application linére, T : £y — F5, entrelace py et ps st

Vg € G,pi(g) oT =T o pa(g)

et T s’appelle alors opérateur d’entrelacement entre py et ps.

La définition exprime la commutativité du diagramme suivant, pour tout g €
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G,
B, 5 B,
pi(g) L pa(g)
B 5 B

Les expression suivantes sont diversement utilisées pour exprimer celte méme
Propriéteé :

o T est un opérateur d’entrelacement entre py el ps,
o T est équivariant pour py et pa,

o T est un morphisme de G-espace vectoriels,

o T est un morphisme,

ol € Homg(El, EQ)
St By = Ey = FE et si pp = py = p,un opérateur qui entrelace py et po

est simplement un opérateur commute avec p.

Définition 1.4.3.0.2. Les representations py et py sont equivalentes s’il
existe un operateur d’entrelacement bijective entre py et po
Dans ce cas :

Vg€ G,pa(g) =Topi(g)oT™ (1.2)

La relation définie par (1.2) est bien une relation d’équivalence sur les repre-
sentation d’ot la notation : (1.2)=py ~ pa, (ce cas n’est vérifier que si By et
Ey sont isomorphes).

En particulier pour des représentations matricielles on obtient des matrices
semblables : ie :

Vg € G : [p1(g)] est semblable d [pa(g)] avec la méme matrice de passage.

Lemme 1.4.2. Si T entrelace py et ps ,le noyau de T ,KerT, est invariant
par p1 et ['image de T, ImT, est invariante parps.
Démonstration.Si x € Ey et Tx = 0,alors T'(p1(g9)z) = p2(g)(Tx) = 0.
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Donc KerT est un sous-espace de Ey,invariant par p; .
Soit y € ImT. Il existe v € Ey tel que y = Tx.Alors

p2(9)y) = p2(9)(Tx) = T(p1(g9)z

, donc ImT' est unsous-espace de Fs,invariant par py .

Lemme 1.4.3. Si T commute avecp,tout sous-espace propre de T est inva-
riant par p.
Démonstration. En effet,si Tz = Az, A € C,alors T(p(g)x) = Ap(g)z.Donc

le sous- espace propre de T correspondant & la valeur propre \ est invariant

par p.

Théoréme 1.4.2. (Lemme de Schur).Soit T un opérateur entrelacant des

représentations irreductibles de G ,(E1, p1)et(Es, p2).

e 51 p1 et py ne sont pas équivalentes, alors T = 0.

o Si KBy = Fy = FE et pp = ps = p,alors T est un multiple scalaire de
lidentité de E.

Démonstration.Si p; et ps ne sont pas équivalentes, T n’est pas bijectif,
donc ou bien KerT # 0,0u bien ImT # FEy.D’apre le lemmel. 4.2, KerT est
mvariant par py.

Commep, est irréductible, si KerT # 0, alors KerT = FEy, doncl = 0.
D’apres le lemmel.4.2,ImT est invariant par ps.

Commepy est irreductible, si ImT # E2, alors ImT =0, doncT = 0.

Si By = Ey = E et p1 = py = p,alors, pour tout g € G,p(g)oT =Topg,et T
commute avec la re présentation p. Soit X une valeur propre de T, qui existe
car Test un endomorphisme de E, espace vectoriel sur C,et soit Ey le sous-
espace propre associé a \. D’apres le lemmel.}.3, Ey est invariant parp Par
hypothé est non nul, donc, comme p est irréductible, B\ = FE, ce qui sinifie
que T = M dg. Remarquons que la démonstration de la deuziéme partie du
théoréeme utilise I'hypothese que ['espace de la représentations considérée est

un espace vectoriel compleze.



1.5 Caractére d’une représentation 21

1.5 Caractére d’une représentation

1.5.1 Fonctions sur un groupe, coefficients matricieels

On désignera par F(G),ou parfois par C[G],I’espace vectoriel des fonctions
sur GG & valeurs dans C, Lorsque cet espace vectoriel est muni du produit

scalaire défini ci-dessous, on désigne hilbertien ainsi défifni par L?(G)

Définition 1.5.1.0.1. Sur L*(G) ,le produit scalaire est défini par

(f1, f2) = ]_SJ\ZMJCQ(Q)'

geG

On va s’intéresser auz coefficents matriciels des représentations. definition

Définition 1.5.1.0.2. Si p est une représentation deG dans C", pour tout
couple (i,7), 1 < i < n,1 < j<n, la fonction p;; € L*(G) qui associe a
g € G le coefficient de la matrice p(g) situé sur la i¢ ligne et j¢ colonne ,
(p(9))ij € C est appelée un coefficient matriciel de p.

Pour une représentation p dans un espace vectoriel E |, on définit les coeffi-

cients matriciels p;; relativement a une base (e;) , qui vérifient
p(g)ei =D pi(ge:
i

Si p est une représentation unitaire dans un expace de Hilbert de dimension

finie, alors

p(g™") = (p(g)) " =tp(g)

d’ou, dans une base orthonormale,

pii(g~") = pij(9)

et, en particulier, les coefficients diagonauz de p(g) et p(g~') sont des nombres

complexes conjugués.

1.5.2 Caractére d’une représentation, relations d’ortho-

gonalité

On désigne par Tr la trace d’un endomorphisme.
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Définition 1.5.2.0.1. Soit (E;p) une représentation du groupe fini G. On

appelle caractére de p la fonction x, sur G a valeurs complezes définie par

Vg € G, x,(9) = tr(p(g))-

Des représentations équivalentes ont méme caractére.

Pour une représentation matriciel de dimension n ;

n

Xplg) = Z(p(g))ii (1.3)

=1

Sur chaque classe de conjugaison de G, la fonction X, est constante.

Définition 1.5.2.0.2. On appelle fonction centrale sur G une fonction constante
sur chaque classe de conjugaison.
Les caractéres des représentations sont donc des fonctions centrales sur le

groupe.

Proposition 1.5.1. Soit (E;p) une représentation de degré n et x, son
caractere.
ox,(e) = dimp.

oVg € G, x,(97") = X,(9)-
e Le caractére d’une somme directe de représentations et la somme des

caracteres,

Xp1@p2 = Xp1 T Xpo-

e Le caractére d’un produit tensoriel de représentations est le produit des

caractéres,

Xp1®@p2 = Xp1 Xp2-

Démonstration.La premiére propriété est conséquenceé de la formule (1.3).
Pour démontrer la seconde formule, on peut supposer que p est unitaire pour
un certain produit scalaire et choisir une base orthonoemale. La propriété des
somme directes est évidente.

La relation suit du fait que la trace d’un produit tensoriel de matrices est le

produit de traces.
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On a; d’apprés la propositionl.5.1, pour des représentations p; et py de
G,

(Xor Xon) = |G|pr1 9 e (9)- (1.4)

geG

Les caractéres de représentations irréductibles inéquivalentes sont orthogo-

naur et que le caractére d’une représentations irréductibles est de norme 1.

Proposition 1.5.2. Soient (E1;p1) et (Eo; p2) deuz représentations irréduc-
tibles de G et soit u : Ey —> Ey application linéaire T, de E; dans Es,
définie par

Zpg gupi(g)~", (1.5)

gEG

entrelace py et ps.

Démonstration. Calculons

u 202 gh Upl )

hEG

T, sz Jupr (k™ 9)

kEG

d’aprés la relation fondamentale (1.1).D’o1,

L’opérateur T, est donc un opérateur d’entrelacement entre py et ps.

Proposition 1.5.3. Soient (E1;p1) et (Ea; pe) deus représentations irréduc-
tibles de G et soit u : By — FEy application linéaire ,et soit T, défini par la
formule (1.5).

(i) Si p1 et py sont inéquivalentes, alors T,, = 0.

(ii) Si By = Ey et p1 = p1 = p, alors

tr(u)
T, = Id
YT dimE "
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Preuve. La premiére assertion est claire d’aprés le lemme de Schur. Pour la

deuxieme, il faut seulement calculer \ sachant que T, = N\ dg.

Or
T, Z tr

gEG
tr(u)
dimE’
Proposition 1.5.4. Soient (E1;p1) et (Ea; pe) deut représentations irréduc-
tibles de G. On choisit des bases dans Ey et Ey .

donc \ =

(1) Si p1 et py sont inéquivalentes,
Vi, j, k?LZ (p2(9))i(pr(g7))ji = 0.
geG
()SZEl Egetpl—pl—p,
1
= ———04i01;.
Z ))] dimE Y
gEG
Démonstration. Utilisons une base (e;) de Fy, 1 < j < dimkE, et une base
(f1) de Eg, <l < dimEy.Pour v : By — Ey, T, est défini par(1.5).0n a,

pour 1 <1 < dimby,1 < k< dimkEs,
dimF1 dimFE>

Tk = \G! Z Z Z p2(g kpupm<pl<gil))mi-

geG m=1 p=1
Choisissons, pour application linéaire u, Uapplication w;; : By — Ey défini
par wi(eg) = 0,1 f1. Alors
(wj))pm = O1pOjm,
et par conséquent
-1
gGG
On applique maintenant la proposition 1.5.2.
Si p1 et py sont inéquivalentes,toujours nul, d’ou (7).

Si By = E2 et py = p1 = p, alors

(5]“5[ tT’U(l )
= (T, / L O
’G| 926; i = ki = dimE — dimE "

ce qui démontre (ii).
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Corollaire 1.1. Soient (Fi;p1) et (Eq;p2) deux représentations unitaires

irréductibles de G. On choisit des bases orthonormales dans E; et s .

(1) Si p1 et py sont inéquivalentes,pour tous i, j, k, 1,

(1) (p2)wt) = 0.
(4i) Si By = Ey et p1 = p1 = p,
1
<pij7pkl> = mfski@j-

Démonstration. En effet, si p; est unitaire pour un produit scalaire sur F,

et si la base choisie dans E, est orthonormale,

1G] Z p2(9))ki(pr(g™ ")) = il Z p2(9)ki(p1(9)) i = ((p1)i5, (P2)ki)-

9eG geqG

La proposition 1.5.4 entraine donc (i) et (ii)

Théoréme 1.5.1. (Relation d’orthogonalité).

(1) Si py et po sont des représentations irréductibles inéquivalentes,de G,
(Xp1» Xp2) = 0.

(17) Si p est une représentation irréductible de G,
(Xpr Xp) = 1.

Démonstration.D’aprés la relation (1.4) et la proposition éprécédente, si py

et pa sont des représentations irréductibles inéquivalentes,alors (X, , Xp,) = 0.

Sip1=p1=0p,

gEG

d’oi (xp, X,) = L.
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1.6 Représentations des groupes compacts

Définition 1.6.0.0.1. Un groupe G muni d’une structure d’espace topo-
logique est dit étre un groupe topologique st et seulement si les fonctions
G x G — G, définie par (z;y) — vy ; et G — G, définie par v — x7,
sont continues, ot la topologie sur G x G est celle de la topologie produit.
Nous dirons qu’un groupe topologique G est compact si et seulement si G est
compact comme espace topologique et qu’un groupe topologique G est locale-
ment compact si et seulement si tout g € G a un voisinage compact. Nous al-
lons maintenant présenter quelques exemples de groupes localement compacts.
Tous ces groupes seront des sous-ensembles de RN pour un N € N avec la
topologie induite par la métrique usuelle, a4 savoir si x = (x1, %2, ...,xN) et

y = (y1,Y2, .., Yn), alors la distance d(z;y) est

et G sera muni de la topologie comme sous-espace deRN. Noter qu’avec cette
topologie un sous-ensemble X de RN est compact si et seulement si X est
un fermé borné par le théoréme de Heine-Borel. Le groupe additif (R™;+)
des nombres réels est un groupe topologique localement compact. R™ n’est pas

compact, parce que R™ n’est pas borné.

1.6.1 Mesure de Haar

Sur un groupe fini G, on sait que pour toute fonction f € F(G) et Vg € G,
D fhy=>flgh)=>_ f(hg)
heG heG heG

Si Uon désigne par l, (resp.,ry) la multiplication a gauche (resp., droite) par

g € G, on a par définition f(gh) = (f oly)(h) et f(hg) = (f ory)(h). Par
conséquent, l’opération de moyenne,

M%%MmﬂéZM)

geG

vérifie :
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o M est une forme linéaire sur F(G), positive, c¢’est-a -dire prenant des

valeurs positives sur les fonctions réelles positives.

o M est invariante a gauche et a droite, c’est-a -dire
Vge G,M(foly)=M(fory) =DM(f)

o M(1)-1

Sur les groupes compacts, il existe une mesure, la mesure de Haar, qui posséde
2 p 2

des propriétés analogues. Plus généralement sur un groupe localement com-

pact, il existe des mesures ayanl une propriélé d’invariance soit & gauche,

soit a droite (mais pas les deux en général).

Théoréme 1.6.1. Soit G un groupe localement compact.

(1) 1l existe sur G une mesure positive, finie sur les compacts, non iden-
tiquement nulle et invariante a gauche, i.e., pour toute fonction inté-
grable f et pour tout h € G,

/G f(hg)du(g) = /G f(g)du(g)

Une telle mesure est unique a un facteur scalaire réel positive prés. Si
[ est continue, f >0 et [, f(g)du(g) =0, alors f=0.

(1) Si G est compact, il eriste sur G une unique mesure invariante a

gauche p telle que [, du(g) = 1.

(111) Sur un groupe compact, toute mesure invariante & gauche est inva-

riante o droite.
Démonstration
(i) Nous admettrons ce résultat.

(i1) Si po est une mesure invariante a gauche sur G compact et si

/Gduo(g) =m

On pose p = %,uo et p est clairement ['unique mesure invariante a

gauche telle que [, du(g) = 1.
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(iii) Soit p une mesure invariante & gauche sur G localement compact.
Pour f continue & support compact posons p(f) = [, f(g)du(g)

Soit h € G et considérons pu,(f fG (gh) du ), c’est-a -dire

pn(f) = p(f orn)

Alors,

k€ Gyl oly) = /fkghdu /fghdll in(f)

donc, d’apres 'unicité des mesures invariantes a gauche a un facteur

prés, il existe un scalaire A(h) € RT vérifiant

Si G est compact, on peut intégrer la fonction constante 1. On obtient
pn(1) = u(l) = A(h)p(1). Doa A =1 et p est donc aussi invariante

ddroiteie
/fghdu /f Ydu(g Vh e G

Définition 1.6.1.0.1. Sur un groupe compact, l'unique mesure invariante d
gauche et d droite, et de masse totale 1, s’appelle la mesure de Haar.
Sur un groupe localement compact G, la fonction A - h € G — A(h) € RT

est appelée la fonction modulaire de G.

FElle vérifie A(hh') = A(h)A(R') car

AR u(f) = pnw (f) = p(fornw) = p(forporn) = A(R)u(forw) = A(h)A(R ) u(f)

On dit que le groupe localement compact G est unimodulaire si A = 1.

Le théoreme précédent dit que si G est compact, alors G est unimodulaire.
On écrit souvent [ f(g)dg ou liew de [ f(g)du(g). Ainsi, si G est compact,
pour toute fonction mesurable f,

VheG,/Gf(g)dgz/Gf(hg)dQZ/Gf(gh)dg

et l'on impose a p de satisfaire la condition de normalisation, fG dg=1
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1.7 Représentations des groupes de Lie. Lemme
de Schur

Tous les espaces de Hilbert considérés sont sur le corps des complexes et

supposés séparables, c¢’est-d-dire possédant une base hibertienne dénombrable.

1.7.1 Généralités

Définition 1.7.1.0.1. Soit G un groupe de Lie.On appelle représentation
continue, ou simplement représentation,de G la donnée d’un espace de Hilbert

E et d’un morphisme de groupes tel que , pour tout x € E,

est une application continue. Une condition suffisante pour que la condi-
tion de continuité ci-dessus soit satisfaite est que c’est-d-dire que p soit conti-
nue comme application de G dans GL(E) muni de la topologie induite par
la norme de £(E, E).Si E est de dimension finie, cette condition suffisante
est aussi nécessaire. La dimension, finie ou infinie, de E s’appalle la dimen-
sion de p. La représentation triviale dans un espace vectorielE EST Défi-
nie par p(g) = Idg, pour tout g. Soit E un espace de Hilbert compleze. Si
u € L£(F, F), ladjoint u* de u est défini par

Va,y € E, (uz,y) = (z,u"y),

et un élément u € GL(E) est un opéréateur unitaire si uu* = u*u = Idg.
Le groupe des opéréateurs unitaires deF est noté U(E).En dimension finie
et dans une base othonormale, un opéréateur unitaire est représenté par une
si B est un espace de Hilbert complexe et si , pour tout g € G,p(g) est un
opérateur unitaire. Alors , pour tous g € G,x,y € E, (p(g)z, p(9)y) = (z,y)
et , en particulier, ||p(g)z| = ||=].

Remarque. On peut définir deé la méme maniere les représéentation dans
des espaces de Hilbert réels. Dans ce cas, on parlera de représentations or-

thogonales.
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1.7.2 Coefficients d’une représentation
Pour x € E et £ € E*,on pose

pag(9) =< &, p(g)x >,
o < , > désigne le crochet de dualité. En dimension finie, étant donnée une
base (e;) de E, de base duale (€}),on retrouve les coefficients matriciels p;; |
définis
Peser (9) =< €7, plg)e; >= pij(9)-
On peut aussi considérer, pour x,y € F,

. (9) =< z,p0(9)y > .

St p est unitaire,

(pgy(gil) = ©y2(9)-
En dimension finie, pour toute base (e;) de E, on considére les coefficients
©ii(g) =< ei, p(g)e; > .

Si la base (e;) est orthonormale,

Pij = Pij-

1.7.3 Compléte réductibilité

Théoréme 1.7.1. Toute représentation d’un groupe compact est unitari-

sable.

Schéma d’une démonstration. Soit G un groupe compact, et soit (E,p)

une représentation de G. On pose, pour x,y € F,

<%M“—L@@MW@MW9

ot dg est la mesure de Haar sur G. C’est bien un produit scalaire car, si
(x,2") =0, alors d’apres le théoreme (1.6.1) ,(p(g)z, p(g)x) = 0,Vg € G, et
par conséquent, t=0. D’autre part,
(oa)z.p9)) = [ (olh)z. pthgls)an = [ {ph)e. p(h)u)dh = Go.v)
a €]
Ainsi p(g) est unitaire pour ().
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Corollaire 1.7.1. Toute représentation de dimension finie d’un groupe com-

pact est complétement réductible.

Théoréme 1.7.2. Toute représentation irréductible d’un groupe compact est

de dimension finie.

Remarque Cet énoncé, comme spécifié plus haut, sous-entend qu’il s’agit
de représentations continues dans des espaces de Hilbert complexes séparables.
1l n’est pas vrai en toute généralité, mais reste vrai pour des représentations
continues & valeurs dans certains espaces vectoriels topologiques plus généraur

que les espaces de Hilbert.

1.7.4 Relations d’orthogonalité

Définition 1.7.4.0.1. On définit un produit scalaire sur [’espace vectoriel

des fonctions continues a valeurs complexes sur G par

<hM=AE@M%@

ot dg est la mesure de Haar. On désigne par L*(G) Uespace de Hilbert obtenu
en complétant cet espace pré hilbertien pour la norme définie par ce produit
scalaire. C’est Uespace de Hilbert des classes d’équivalences (pour la relation
d’égalité presque par tout) de fonctions de carré intégrable sur G.

On sait que les représentations irréductibles de G sont de dimension finie.
Les relations d’orthogonalité des caractéres des représentations irréductibles

des groupes finis s’étendant au cas compact.

Théoréme 1.7.3. Soit G un groupe compact et soient (Ey,p1) et (Ea, ps2)

des représentations unitaires irréductibles de G. Vx1,y, € Ey et Voo, ys € Fs,

0 st p1 ¢ P2
<g001 ,S0P2 > —
117 Foaye (o, 1) (y1,y2) 8§ Er=Ey=FE etp =py=p

Démonstration En généralisant le procédé utilisé dans la proposition (1.5.2)
et (1.5.4), pour toute application linéaire continue u : Ey — Ey , on définit

l’opérateur qui entrelace py et ps,

Rzém@wMW@
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On constdére Uapplication linéaire uy,,, : By — Ey définie par

Uyryo (T) = (Y1, )y pour & dans Ey. En utilisant le fait que py est unitaire,
on obtient alors la relation (@8, @22 )= (x2, Ty, ,, 1)

On applique ensuite le lemme de Schur. Cette quantité est nulle si p1 n’est pas
équivalente @ py. Si By = By = E et py = py = p, alors Ty, = 7(y1,y2) I dg,
ot T(y1,y2) est antilinéaire en x1 et linéaire en x5. On calcule T(y1,y2) en
calculant la trace de T,

Uyl y2 °

application linéaire u, TrT, = [, Tr(p(g)oucp(g~"))dg = [, Trudg = Tru.

Celle-ci est égale a la trace de w,,,, car, pour toute

Comme on a Truy,,, = (Y1,Y2), on obtient le résultat cherché.
En particulier, si p1 et ps ne sont pas équivalentes, dans toute bases ortho-
normales,
(i ki) =0 (1.6)

et, s1 p1 = p2 = p, alors

(¢l o) = (1.7
On désigne par G lensemble des classes d’équivalence de représentations ir-
réductibles d’un groupe compact G. Lorsque L*(G) est séparable, ce qui a lieu
dans les cas que ['on rencontre en pratique, les relations d’orthogonalité ci-
dessus impliquent que G est dénombrable.
D’apres (1.6) et (1.7) les coefficients matriciels dans des bases orthonor-
males des représentations unitaires irréductibles inéquivalentes de G forment
un systéeme orthogonal dans L*(G). On démontre qu’ils forment une base or-
thogonale de L*(G) au sens hilbertien. Ce résultat constitue le théoréme de

Peter-Weyl qui peut s’énoncer :

Théoréme 1.7.4. (Théoréme de Peter-Weyl pour les groupes com-
pacts) Toute fonction f € L*(G) admet un développement de Fourier convergent

au sens de L2,
dimp™
J— (6pNe
= E E CijPij (1.8)
ae@ hi=1
ot les p® sont des représentants unitaires des classes de représentations ir-
réductibles inéquivalentes de G, les pf; sont leurs coefficients matriciels dans

des bases orthonormales, et

& = (dimp®) (g%, f) = (dimp®) /G F(9)0%(9)dg (1.9)
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Théoréme 1.7.5. (Relation d’orthogonalité) Soient py et py des représenta-

tions irréductibles de G. Alors

0 st p1op2
<Xp1’ sz) = 1 .
81 p1~ P2

Démonstration Compte tenu du théoréeme (1.7.1), ces relations sont une
conséquence des formules précédentes (1.6) et (1.7).

Une représentation p est irréductible si et seulement si (X1, Xpy) = 1

St p est une représentation de G, on peut la décomposer en somme hilber-
tienne de représentations irréductibles, p; € G. On écrira

P = épleamlpl

ou
m; = <Xpw Xp>

On peut avoir m; = o0
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Chapitre 2

Quelques fonctions spéciales

2.1 Fonction Gamma

Définition 2.1.0.0.1. Pour tout nombre compleze z tel que Re(z) > 0, on
définit la fonction suivante, appelée fonction gamma, et notée par la lettre

grecque I'
“+oo
[:z— / = ltetdt (2.1)
0

Cette intégrale tmpropre converge absolument sur le demi-plan complexe ot la
partie réelle est strictement positive. Cette fonction peut étre prolongée ana-
lytiquement en une fonction méromorphe sur l’ensemble des nombres com-
plexes, excepté pour z =0,—1,—2, —3... qui sont des pdles.

C’est ce prolongement qu’on appelle généralement « fonction gamma ». L uni-
cité du prolongement analytique permet de montrer que la fonction prolongée
vérifie encore I’équation fonctionnelle précédente. Cela permet une définition
plus simple, a partir de l'intégrale, et un calcul de proche en proche de I' pour
z—1,2z—2 etc..

Par changement de variable, l'intégrale précédente pour (Re(z) > 0) s’écrit

ausst :

400 1
[(z) = 2/ W e du et T(z)= / (—Ins)” " ds
0 0

La définition suivante de la fonction gamma par produits infinis, due a

Euler, a un sens pour les nombres complexes z qui ne sont pas des entiers

35
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négatifs ou nuls :

8

| oz + z
I(:) = lim nln 1 (14+1/k)

notooz (24 1) (24m) 20t 142z/k '

Il
,_.

FElle est équivalente a celle donnée par Schlomilch,[sourceinsuf fisante] :

—z F90 ez/k

z o1+ z/k

= 1 1
- ——In(1+4=
¥ 2 n( +k)]
k=1

Propriétés I'(z + 1) = zI'(z) et T'(1) = 1, on déduit :

€

['(z) =

ot

VneNT'(n+1)=nl

On interpréte donc la fonction gamma comme un prolongement de la facto-
rielle a 'ensemble des nombres complexes (a l'exception des entiers négatifs
ou nul). Une notation alternative est la fonction I', introduite par Gauss :
(z) =T(z+1) = 2zT(2) (et donc I'(z) =11(z — 1) =11(z)/z de telle fagon
que :

[I(n) = nl.

Caractérisations Sur l'ensemble des réels La fonction gamma est entie-

rement caractérisée sur R’ par les trois propriétés suivantes (théoréme de
Bohr-Mollerup) :

L. T(1) =1
2. Pour tout x >0, on a : I'(x + 1) = z['(x)

3. la fonction composée InoI' est convexe sur R Sur le demi-plan com-
pleze Re(z)>0

La fonction gamma est entiérement caractérisée parmi les fonctions holo-

morphes du demi-plan complexe Re(z)>0 par les trois propriétés suivantes

(théoreme de Wielandt) :
1. T(1)=1
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2. Pour tout z tel que Re(z) > 0,I'(z 4+ 1) = 2z I'(2)
3. |I'(2)| est bornée dans la bande 1 < Re(z) < 2

Autres propriétés Formule des compléments La fonction gamma vérifie la

formule de réflexion d’Euler, ou formule des compléments

™

V2e C\Z T'(1—-2)T(z) =

sin(mz)’

Formule de multiplication La fonction gamma vérifie également la formule
de duplication : T'(2) T (z + 3) = 272 /7 ['(2z).

La formule de duplication est un cas particulier du théoréme de multipli-
cation :

I'(z) T (z + %) r (z + %) .7 <z + m—_l) = (2m)m=D/2 pl/2mme P (myz),

m

Dérivées La fonction gamma est infiniment dérivable sur RY (c’est-a-dire p
fois dérivable pour tout entier p). Sa dérivée est exprimée a l'aide de la fonc-
tion digamma : I"(2) = T'(2)Yo(2).

Plus généralement, sa dérivée p-ieme posséde sur RY 'expression intégrale

suivante :

“+o0o
r®(z) = / (Int)Pt*~ 1 et dt
0

La définition de la fonction gamma sous forme d’intégrale la fait apparaitre
comme une convolution entre un caracteére additif (I’exponentielle) et un ca-
ractére multiplicatif (x — x°).

Lien avec d’autres fonctions La fonction gamma est reliée a la fonction ¢

de Riemann par :

+o00 s—1
<(s)r<s):/0 ef_ldt

Elle est reliée a la fonction éta de Dirichlet par :

o —ln:cy
r = dd
) = [ = [ R g,

Dans la définition de la fonction gamma sous forme d’intégrale, les bornes

de l'intégrale sont fixées; la fonction gamma incompléte est la fonction obte-

nue en en modifiant la borne inférieure ou la borne supérieure. La valeur de
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['(1/2) = /7 est celle de Uintégrale de Gauss; elle peut aussi se déduire de la
formule des compléments. Cette valeur permet, par récurrence, de déterminer

les autres valeurs de la fonction gamma pour les demi-entiers positifs :
I'(3/2) =¥~ T(5/2)=37

2 4
P(n+g)=(@m-5)T(n—5)= (-3 (-5 35T ()=
mais ausst négatifs, par exemple :

[(~1/2) = 27

En ce qui concerne ses dérivées, avec ? la constante d’Euler-Mascheroni :

I"n+1)=T(n+1)¢o(n+1) =n! (—’y—i— Z %)

1<k<n

/ 1 1 1 (2n)! 2
I (n+§> :F<n+§>¢o (n—i—§> :22nn!\/7_r<—7—21n2+ Z 2k—1>

1<k<n

I"(1/2) = Valy +2In(2)2 + 57, I"(1)=*+Z, I"2)=(1-7)2+% -1

On connait quelques résultats de transcendance et méme d’indépendance al-

gébrique sur les valeurs de I' en certains points rationnels.

2.2 Fonction Béta

Définition 2.2.0.0.1. la fonction béta est un type d’intégrale d’Euler définie
pour tous nombres complexes, x et y de parties réelles strictement positives

par :
1
B(z,y) = / (1 —t)vlde,
0

La fonction béta a été étudiée par Euler et Legendre et doit son nom a Jacques
Binet. Elle est en relation avec la fonction Gamma d’Euler.

Il existe aussi une version incompléte de la fonction béta, la fonction
béta incompléte ainsi qu’une version réqularisée de celle-ci, la fonction béta
incompléte régularisée.

Propriétés
. Dans sa définition sous forme d’intégral le changement de variable u =

1 —t prouve que cette fonction est symétrique c’est-a-dire que :
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B(z,y) = B(y, z).
. Elle peut prendre aussi les formes intégrales
B(z,y) =2 foﬂ/Q sin®** 10 cos®~10 df (par le changement de variable
t = sin?0),
. Blz,y) = [ % dt
Elle satisfait des équations fonctionnelles telles que :

B(z,y+1) = 255B(2,9)

T4y

v
B(z,y) Bz +y,1 -y) = m;

B(z,z) =2'">B (1, 2)
Elle est liée a la fonction gamma par ’équation suivante :
() M'(y)

I'(z+y)

St x et y sont des entiers strictement positifs, cette équation se réécrit, en

B(z,y) =

termes de factorielles ou de coefficient binomial :

r+y (v +y)! [(r4y
vyB(z,y)  zly! x

Si x et y sont deuzr rationnels et si ni z, ni y, ni r + y ne sont entiers,
alorsB(z,y) est un nombre transcendant.

Dérivation Nous avons :

5B = Ble) (i~ Tt ) = Bl s) (6(e) - (o + ).

ot P(z) est la fonction digamma.

Fonction béta incompléte La fonction béta incompléte est définie par :

B(z; a,b) = / (1 — ) de
0

et vérifie trivialement :

B(xz; a+ 1,b) + B(z; a,b+ 1) = B(x; a, b)
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et
2°(1 — 2)" = aB(x; a,b+ 1) — bB(z; a + 1,b)
Pour x =1, elle correspond a la fonction béta de parameétres a et b.

La fonction béta incompléte régularisée consiste a diviser la fonction béta

incompléte par la fonction béta compléte

B(zx; a,b)
B(a,b)

Les relations précédentes deviennent ainsi

I.(a,b) =

al,(a+1,0) +bl.(a,b+ 1) = (a+b)I.(a,b)

+b
L(a,b+1) = L(a+1,b) = 2°(1 — 2)’ —=——
(@041) = Lfa-+ 1,8) = (1~ )0

On déduit de la seconde (par une récurrence immédiate) le lien suivant avec

le développement binomial et la loi binomiale :

L(a,n—a+1) = En: (?)ﬁ@ — )y,

2.3 Fonction de Bessel .

2.3.1 Equation de Bessel

Définition 2.3.1.0.1. [es fonctions de Bessel interviennent dans de nom-
breuz proplémes physiques, par lintermédiaire de solutions particulieres de
certaines équations aux dérivées partielles.On les voit notamment apparaitre
dans des solutions de [’equation de Laplace

Pu  Pu | Pu

Au = 0x? * 0y? * 072

0 (2.2)

Rappelons qu’une telle fonction u. dite fonction harmonique du point M (x,y, z)
est ['expression la plus générale du potentiel d’un champ de gradients qui est
aussi 4 flux conservatif

Transformons(2.1), 0w x,y, z sont les coordonnées de M dans un repére or-
thonormé, en exprimant uw(M) a Uaide desa coordonnées cylindriques asso-

ciées, définies par x = rcosf,y =rsinf, z = v.
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De r? = 22 4+ 2, on tire

o _ L O T s0
To — D gy = 5 = 0
r&— &—g—sine
&y_y’ay_r_

De tan = £, on tire

00 y 00 Y sin 6
2 —_— = ——  — = —— =
(1+ tan”0) ox x2’ Ox 72 r

0971 89737 cos 0

2
(1+ tan 6)3_y_578_y_ﬁ: .
En outre
o0 oo
ox Oy "0z
on a donc :
Ou  Oudr OJudd Oudv
9x ~ Orox 990z  ovdr
= COSQ@ — sin&@
or r 00
0%u .00 0u 0%u Or 0*u 00 cos 6 90 Ou
o~ W0 T e o T araaar) T owdn

+sin0 or ou Sin0(02u a0 N 0*u 87“)
r2 Oz 00 r 00%20x  O0rdf ox
(sant les dérivées secondes continues).

Aprés réduction on obtient :

O*u  sin® Ou , 0%u  _sinfcosf 0*u

o2 r Or or? r 8r@9+

sin? 0 92u N 2 sin 6 cos 6 @
r2 002 r2 09

On obtiendrait de méme :

0%u _ cos? Ou 9%u sinf cosf 0*u

+ sin% 6

o2 r or 912 . orag

cos? 0 0%u _ 2sinfcost %
r2 002 72 00
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Pu O%u
022 Ov?
D’ou
Pu  10u 10%u 0%u
~ Or2 +7’8r +7’2862 * ov?
Cherchons de solutions de Au = 0 sous la forme

u = f(r)g(z)h(0)

conduit a f(r) = y(ar) , y(t) étant solution de l’equation de Bessel d’ordre A

Au

2y d
th—tf + td—z F (=N =0 (2.3)

Une solution particuliére de cette équation est

N (=D z\ImE N
J/\(t)_zmlf(m+)\+1)<§> ou—AEN,E>0

m=0
Si A n'est pas entier, (2.2)a pour solution général
y(t) = GJ)\(t) + bJ,)\@)

On a J%(t) =,/ sint, J_%(t) = /2 cost
Si A\ est un entier n les fonctions de Bessel de premiére espece J,, sont définies

par la série entiére (de rayon de convergence infini) suivante :

10 = (5)" S e

p=0
et on peut, par un passage o la limite, définir

Iy = (=1)"Ju(t)

En particulier

La solution générale de (2.2) est alors

Jn(t A — J_
Y(t) = adu(t) + BY,(1), 0¥, (t) = lim A()szn;rw A

est une fonction de Bessel de seconde espece.
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2.3.2 Relations de récurence sur les fonctions de Bessel.
(1) = "5 = J(1)
(1) + Juca (1) = 27,1
(t) = Ju-a(t) = —2J,,(2)
On en déduit :
o Ji(t) = —Jj(t)
o A1) = 1"y (1)

hd Jn+1
L Jn+1
JnJrl

2.3.3 Forme intégrale de J,,n entier.

1 ™
Jn(t) = —/ cos(nt — tsinT)dr.
T Jo
0U encore Par :
J (t) _ i /ﬂ— e—i(n’r—tsinﬂ') dr
" 21 ) '

2.3.4 Deévloppement en série de Fourier de e/s"?,

—+00
eitsinx _ Z Jn(t)ezna:
—0o0

2.3.5 Fonction génératrice.
1 1 =
ez(372) = Z Jn(t)z", 2 #0

2.4 Polyndémes de Legendre

Définition 2.4.0.0.1. Les polynomes de Legendre constituent [’exemple le
plus simple d’une suite de polyndmes orthogonauzr. Ce sont des solutions
polynomiales P,(x) de l’équation différentielle de Legendre :

d

4 {(1 _ xZ)EPn(x)} Fn(n+1) Pa(z) =0 (2.4)

dx
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dans le cas particulier ou le paramétre n est un entier.
Les polynomes de Legendre sont définis uniquement pour x € [—1; 1] puisque
les points x = £1 sont des points singuliers réguliers de cette équation diffé-
rentielle. Ces polyndomes orthogonaux ont de nombreuses applications tant en
mathématiques, par exemple pour la décomposition d’une fonction en série de
polynomes de Legendre, qu’en physique, ot [’équation de Legendre apparait
naturellement lors de la résolution des équations de Laplace ou de Helmholtz

en coordonnées sphériques.

Définition 2.4.0.0.2. les polynomes de Legendre sont les fonctions propres

de Uendomorphisme défini sur R[X]| par :

d dp] (25)

P € R[X] — u(P) = o {(1 — xz)a

pour la valeur propre —n(n + 1), n € N.
Remarque : Les polynomes de Legendre constituent le cas particulier des

)

polynomes de Jacobi ples , pour lequel les parameétres a et 5 sont nuls :

P,(z) = POV

Définition 2.4.0.0.3. On appelle équation de Legendre I’équation
d dy
— (1 —2%)== Hy=0 2.6
3 |a-] raas vy 26)

avec en général a € R.

Proposition 2.4.1. le polynome de LegendreP, (pour tout entier naturel n,

et pour x € [—1;41]) est une solution de ’équation différentielle :

d—‘i [(1 — xZ)dP;—j@l +n(n+1) P,(x) =0, P,(1) = 1. (2.7)

Cette équation est naturellement liée a l’équation de Laplace Af = 0,
écrite en coordonnées sphériques, qui intervient notamment en électrosta-
tique. En effet, lors de la recherche d’une solution ne dépendant pas de l’angle
d’azimut ¢ sous la forme d’un produit f(r,0) = A(r)B(0) de deuzx fonctions

d’une seule variable, [’équation vérifice par B ainsi obtenue est de la forme :
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1 d /. ,dB
(sin@) 0 (smﬁﬁ) +nn+1)B=0

oun(n+1) est la constante de séparation. Le changement de variable x = cosf
permet de vérifier que B suit ’équation de Legendre2. Les seules solutions
physiquement acceptables, c’est-a-dire qui ne divergent pas pour r — =+1
sont alors celles pour lesquelles n est entier, donc les polynémes de Legendre
Démonstration En effet, en coordonnées sphériques (r,0,¢) 'équation de

Laplace s’écrit :

10 (,0f 19 (. 0f 1 of _
r2 Or (T 87") +r28m989 (sm@ae) +7“281H298902 =0

. Dans le cas ou le probleme est telle que la solution ne dépend pas de ’angle

d’azimut @, et en recherchant donc une solution par la méthode de séparation

des variables, soit de la forme f(r,0) = A(r)B(0) il vient par substitution :

1d [ ,dA 1 d (. dB

soit en divisant membre & membre par le produit A(r)B(0) :

Lod(,dA\_ 1 d (. dB
Aryzdr \\ dr ) T B@)r2smods \O o

Comme on doit avoir égalité entre chacun des deur membres, dépendant de
deux variables différentes, pour toutes les valeurs possible de ces derniéres,
chacun d’euzx doit étre égal a une constante, dite de séparation, qu’il est pos-
sible d’écrire sans perte de généralité sous la forme oo+ 1) avec «v réel. Le
changement de variable x = cost permet de mettre ’équation issue du second
membre sous la forme d’une équation de Legendre. Toutefois en physique on
cherche des solutions définies pour toutes les valeurs possibles de I’angle 0,
soit en fait réquliéres en x = £1, donc avec o = n, n entier, la partie angu-

laire de l’équation de Laplace se met donc bien sous la forme indiquée.
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2.4.1 Fonction génératrice

Définition 2.4.1.0.1. On peut aussi définir cette suite de polyndémes par sa

série génératrice :

\/1—2:1:z+22 ZP

Cette expression intervient notamment en physique, par exemple dans le dé-
veloppement a grande distance du potentiel électrostatique ou gravitationnel
(développement multipolaire).
Si lon considére qu’en général z est complexe, le calcul des coefficients de la
série de Laurent donne alors :

1

Pu(w) = i

j{(l—2x2+z )2zl

ot le contour entoure 'origine et est pris dans le sens trigonométrique.
1l est possible de définir les polynomes de Legendre par cette fonction géné-

ratrice, comme les coefficients de ’expansion.

2.4.2 Formule de récurrence de Bonnet

Cette formule permet rapidement d’obtenir ['expression du polyndéme de
Legendre d’ordre (n+ 1) a partir de ceuzr d’ordres n et (n —1).

Pour tout entiern >1 :
(n+1)Prpi(z) = 2n+ 1)z Py(x) —n Py_1(2) (2.8)

avec Py(x) = 1 et Pi(x) = z. Démonstration Elle se démontre fa-
cilement a partir de la fonction en dériwant par rapport a la variable t la
définition des polyndomes de Legendre & partir de la fonction génératrice, il

vient apres réarrangement :

r—t
V1 — 2zt + 2

En utilisant ¢ nouveau

= (1 — 2zt +1?) ZnP A

n=1

P tTL
V1—2xt+ VIi—2zt+ 2 Z
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, il vient

S 2Py @)t = Y Pa(a)t = Y (04 1) Py (@)t — 255 o1+ )Py ()7 +
+ 2o+ 1) P ()62,

En identifiant alors les coefficients des termes de méme puissance de t, il

vient alors :
e pour n = 0,xP(z) = Pi(x), soit en prenant pour condition de norma-
lisation Py(x) = 1,Vx € [—1,1], il vient Pi(z) = z;
e pour n = 1,3xP(z) — Py(x) = 2P2(x), soit avec la méme condition de

3z2-1

normalisation que précédemment Py(x) = =%

o de fagon générale pourn > 1, 2n + 1)z P, (z) = (n+ 1) P11 (x) + nPy_1(x),

ce qui redonne bien la formule de récurrence précédente.
Propriétés
e Degré Le polynome Pn est de degré n.

e Base La famille (P,),<n €tant une famille de polynomes a degrés éta-

gés, elle est une base de Iespace vectoriel Ry[X].

e Parité Les polynomes de Legendre suivent la parité de n. On peut ex-

primer cette propriété par :

Po(=z) = (=1)"Pa(2). Po(—2) = (=1)"Pa(2).
(en particulier, P,(—1) = (—=1)" et Pap41(0) = 0.
e Orthogonalité Une propriété importante des polynomes de Legendre est

leur orthogonalité. Il est possible de montrer, pour tout m, n entiers,

que :

/_1 P(x)P,(x)dx = 2

—5mn
1 2n+1

1l est possible d’interpréter cette relation en introduisant le produit
scalaire de deux fonctions, défini a partir de l'intégrale du produit des

deux fonctions sur un intervalle borné :

b
mmz/fmwmwwm
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ol w(z) est appelé « fonction poids », [a , b] étant Uintervalle d’ortho-
gonalité des deux fonctions, qui peut étre infini sous réserve de conver-
gence de l'intégrale. Dans le cas des polyndmes de Legendre l’intervalle
d’orthogonalité est [ 71, 1] et la fonction poids est simplement la fonc-
tion constante de valeur 1, il est donc possible d’écrire : ces polynémes
sont orthogonaux par rapport auw produit scalaire (-,-) défini sur R[X]

par la relation :

1
2

Démonstration

De plus, comme (P,)n<n est une base de Ry[X], on a Py, € (Ry[X])*,

c’est-a-dire :
1

\ONS RN[X],/ Py (2)Q(x)dx =0

-1
e Norme Le carré de la norme, dans L2([-1,1]), est

2
2n+1

1Pl =
En effet, pour tout n > 1, on peut établir la relation

dont on déduit (en utilisant que pour tout k, P,;fl est de degré k—2 < k

donc est orthogonal & Py, et en effectuant une intégration par parties) :
(Po, 2n+1)P,) = <PN7P7/L+1 - P, )= <P77/7P7’/L+1> =
- [PnPn+1]—11 - <P7;, Pn+1> = [Pnpm-l]—ll-
Comme P, P, est impair et pour tout k, P.(1) = 1, on aboutit ainsi

i (2n + 1)||Pnl|? = 2.

2.4.3 Décomposition en série de polynémes de Legendre

e Décomposition d’une fonction holomorphe : Toute fonctions f,

holomorphe o lintérieur d’une ellipse de foyers -1 et +1, peut s’écrire



2.4.3 Décomposition en série de polynémes de Legendre 49

sous la forme d’une série qui converge uniformément sur tout compact
a Uintérieur de lellipse NYn € N, \,, € C.

F(2) =D MPul2) (2.9)

e Décomposition d’une fonction lipschitzienne :
On note P, le quotient du polynome P, par sa norme.
Soit f une application continue sur [—1;1]. Pour tout entier naturel

n on pose
ealf) = / )Py () da. (2.10)

Alors la suite (c,(f)) est de carré sommable, et permet d’expliciter le

projeté orthogonal de [ sur R,[X] :
5.0 =S alf)E (211)
k=0
On a de plus :

Vo€ [-1,1), S,/f(x) = / e )y (212

avec le noyau

Kn(x, y) _ n""1pn+1(x)1f)n(yx>:5n+1(y)pn<x> (2.13)
et .
Suf () — f(z) = / Kae, )7~ fa) dy (2.14)

Supposons de plus que f est une fonction lipschitzienne. On a alors la

propriété supplémentaire :
Ve €] —1,1], lim S,f(z) = f(z). (2.15)
n—oo

autrement dit, [’égalité
F=3 P, (2.16)
n=0

est vraie non seulement au sens L* mais au sens de la convergence

simple sur | — 1;1].
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2.5 Polyndémes de Jacobi

Définition 2.5.0.0.1. les polynémes de Jacobi sont une classe de polynomes
orthogonauz. Ils sont oblenus a partir des séries hypergéomélriques dans les

cas ot la série est en fait finie :

(a+1),

Pe () = 4T
n:

1 —
o (—n,1+a+ﬁ+n;a+1;Tz>, (2.17)
ot (a+1), est le symbole de Pochhammer pour la factorielle croissante,
(Abramowitz - Stegun p561 [archive].) et ainsi, nous avons l’expression ex-

plicite

P8 (2) [la+n+1) i(n)F(a+5+n+m+1) (z_1>m7

n :n!F(a+6+n+1) m MNa+m+1) 2
(2.18)

m=0

pour laquelle la valeur finale est

Pd) (1) = (n * O‘) . (2.19)

n

Ici, pour ’entier

. (z) _ I'(z+1) (2.20)

n Fn+1DI'(z—n+1)
et T'(2) est la fonction gamma usuelle, qui posséde la propriété 1/T'(n+1) =0
Ainsi,
(Z) =0 pour n<DO.

Les polynomes ont la relation de symélrie
PP (=z) = (~1)" PP (2) (2.21)

ainsi, 'autre valeur finale est

POA(—1) = (~1)" (”+5> (2.22)

n

Pour un nombre réel z, le polynome de Jacobi peut étre écrit alternative-

ment sous la forme

o= ()GE) ) () e

S
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ous>0eten —s >0 Dansle cas particulier ot les quatre quantitésn,n + a,n + 3
et n+ a+ B sont des nombres entiers positifs, le polynome de Jacobi peut

étre écrit sous la forme

P (z) = (n+a)l(n+ B> [sln+a—s)(8+s)(n—s)" x

s

X (x;)n (:::-;1) (2.24)

La somme sur s s’étend sur toutes les valeurs entiéres pour lesquelles les ar-

guments des factorielles sont positives. Dérivées La k-éme dérivée de l'ex-

pression explicite conduit a

k
d—P(“ﬁ)(z) _Tla+B+n+1+k) plethsh)
2MNa+pB+n+1) "

(). (2.25)

dzk™ ™

2.6 Les Harmonique Sphériques

Les harmonique spheriques jouent un réle impordtant en électrodynamique
et en mécanique .Nous allons montrer comment elles apparaissent dans la
théorie des représentations du groupe des rotations, SO(3) .Chaque repré-
sentations irréductible de SO(3) peut étre réalisée dans un espace de Hilbert
de dimension finie de fonction sur la spheére, les restrictions de polynomes
homogénes, de degré donné, qui sont harmoniques, et cette représentation est

unitaire.

2.6.1 Rappel sur L?(S5?)
On désigne par S? la sphére unité de R3,
§* = {(w1,72,73) € BVt + 23 + 2§ = 1},

On introduit sur R? les coordonnées sphériques, (r,0,¢),r > 0,0 € [0,7],¢ €
[0, 27[, tel que

x1 =rsinfcos ¢, xy = rsinfsin ¢, x5 = rcosb

L’angle ¢ est la longitude et 0 est la co-latitude. Sur R? privé de I’aze Oxs(r >

0 et 0 <6 < m),le passage des coordonnées cartésiennes aux coordonnées
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sphériques est de classe C*.
On désigne par L?(S?) lespace de Hilbert séparable des fonctions complezes

sur S? de carré intégrable pour le produit scalaire,

(f1, f2) = ][ 110, 0) f2(6, ¢) sin 0dOde.
En coordonnées sphériques, le laplacien,A = (8%1)2 + (6%2)2 + (%)2,3’667”%
9?2 20 1
A= 122 4 DA
o2 T ror o

2.6.2 Les polyndémes harmoniques

Si f est une fonction sur R3, et si g € SO(3), on pose pour v € R3,

(9./)(x) = flg~"2),

et l'on définit ainsi une représentation de SO(3) dans l’espace vectoriel des
fonction sur R3,

On notera o cette représentation, définit par

og)f=9.f

Nous introduisons les polynémes harmoniques, on obtient toutes les repreé-

sentations irréductibles de SO(3).

Définition 2.6.2.0.1. On appelle fonction harmonique sur R? toute fonction
f de classe C? telle que
Af=0

Pour 1 entier positif ou nul, on désigne par PY Uespace vectoriel des poly-
nomes homogénes de degré | & coefficients complezes sur R3.
On considére alors le sous-espace vectoriel de PY constitué des polynémes

harmoniques, c’est-a-dire & laplacien nul, que nous noterons H®.

Lemme 2.6.2.1. L’espace vectoriel de HY est de dimension 21 + 1.
Démonstration. Un polynéme homogéne de degré | sur R? est déterminé par
[+ 1 polynomes homogénes en deuz variables, de degrés respectifs 0,1, ...,1.on

obtient
(l+1)(+2)

dimPY =142+ ...+ (1+1) = >
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Montrons que Uapplication linéaire, A : PO — PU=2) est surjective.On

remarque d’abord que , pour tout g3 € N, 2% € Im(A) puisque
A(z§%) = (g3 +2)(gs + 1)25".

De méme, on voit facilement que 1123 et xoxd® sont dans ImA.La formule,

valable pour tous qq,q2,q3 € N,

A(zPafaf) = g —1)a] e af (=12l af *af +g5(gs—1)a af?a 7,

montre que si la propriété P aPxP € ImA est vraie pour ¢ + g2 = q — 2,

elle est vraie pour q, + qo = q. Cette propriété étant vraie pour ¢ = 0 et pour
q =1, la surjectivité de Uapplication linéaire, A : PV —s PU=2) est done

démontrée par récurrence sur q . Par conséquent,
dimH®Y = dimPWY — dimP=? = 2] + 1.

Proposition 2.6.1. Le sous-espace HY de PY est invariant par o.
Démonstration.Soit f une fonction de trois variables de classe C? et soit
g dans SO(3). Désignons par (Aj),i,j = 1,2,3, la matrice de g et par (y;)

les composantes de y = g(x), pour v € R*. On a

0 . Of

oz, (fog)(z) = ;Aija—%(y)-
D’oy

O’ f
Y

Ao = 3 Audustl 5y

i,7,k=1

Puisque (A;;) est une matrice orthogonale, on obtient

(A(f Z ay] (AF)(g(x))

c’est-a-dire
A(feg)=(Af)ey.
Par conséquent, si P est un olynéme harmonique, pour tout g € SO(3), le
polynome
o(g)P=g.P=Pog*
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est ausst harmonique.D’autre part, un polyndome homogéne P étant donné,
les coefficients des polynomes g.P dépendent contindment des coefficients de

la matrice g € SO(3).0n peut donc énoncer ce qui suit .

Proposition 2.6.2. . Par restriction de o, on obtient, pour chaque | € N,
une représentation (H',o') de SO(3) de dimension 2 + 1.

La représentation o' de SO(3) dans HY est équivalente & la représentation
D'. Démonstration.Le polynéme P, = (x1 + ixo)! appartient a PO,

On vérifie facilement qu’il est harmonique.De plus, dans la représentation
ol de SO(3) dans HO, il est fonction propre de o(gg) pour la valeur propre
—2ilf

(& car

cos20 —sin20 0
©(g0) = p(exp 20&3) = Rot(es,20) = | sin20 cos20 0
0 0 1

et, par conséquent,
(o(go)).Fr = e >R,
Proposition 2.6.3. Pour tout | > 2,

PO — g g p2pi-2),

Démonstration.La somme des dimensions des sous-espaces HY et r2PU=2)

de PY est égale a la dimension de PY, Montrons que leur intersection est
nulle. Si P € PO, & laide de Uidentité d’Euler,
oP oP oP

=[P
0y + o 0xs t T 03

on établit, pour tout entier k > 0, la formule

A

A(r**P) = 2k (20 + 2k + 1)r** 2P + r**AP

Soit P € HY | et soit k le plus grand entier tel qu’il existe un polynome
Q € P20 yérifiant P = r?*Q.Né cessairement k = 0, car sino Q serait
divisible par r? , ce qui contredit ’hypothése faite sur k .

On déduit de cette proposition que
PO =Y @r?at-2qg ... (2.26)

ow le dernier terme est ' HO) si 1 est pair, et r'"'HWY si 1 est impair.
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2.6.3 Les harmoniques sphériques

Un polynéme homogeéne sur R3 est entierement déterminé par sa restric-

tion a la sphére unité S2.

Définition 2.6.3.0.1. Les fonctions sur la sphére obtenues par restriction
de polynome homogénes harmoniques sont des harmoniques sphériques.

Pour chaque entier positif ou nul l,les harmoniques sphériques de degré |
forment un espace vectoriel HY de dimension (20 + 1),isomorphe HO et

contenu dans [’espace des fonctions de classe C*° sur la sphére, lui-méme

contenu dans L*(S?).

Remarque 2.6.1. Remarquons d’abord que, d’aprés la relation(2.1),1’espace

des restrictions a la sphére de polynomes homogenes de degré | s’écrit
PO = J0 g 20D g (2.27)

ot le dernier terme est "H© si | est pair, et ' *H®Y si [ est impair.

2.6.4 Représentations de SO(3) dans les espaces d’har-

moniques sphériques

Pour chaque | € N, par l'identification de HD gquec H', on obtient une re-
présentation, encore notée o', de SO(3) dans lespace des harmoniques sphé-
riques de degré [.

Ces représentations sont unitaires, comme on le voit facilement en utilisant
Uinvariance par rotation de la mesure sur S* .

En effet, pour toutes fonctions

(0(9) 1, 0(9) fa) = /f1 Dhls () = | R hE)n(E) = (i, f).

2.6.5 Bases des espaces d’harmoniques sphériques

On appelle plus particulie harmoniques sphériques les élééments d’une
base orthonormale,Y!, — < m < I, de H' C L?(S?), pour chaque entier
naturel [.

Soit par rapport au produit scalaire non normalisé défint par
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s 2
i f) = / / F100.9) £2(6, 6) sin 664

On définit les fonctions suivantes, pour [ > 0.510 < m < [, on pose
Y,(0,0) = .2, (0)e™,

ol
dl+m

7! (0) = sin™ 0Q" (cos ), Q! () = W(l — %),

C! est nombre réelé,

T Y N (]
" 247! 4\ (L+m)!

St =l <m <0, on pose

Y= (-1)"YL,.

On définit ainsi, pour chaque | > 0, une famille Y, —1 < m <1, de 21 + 1
fonctions sur la spheére.
Nous allons montrer que ces fonctions sont des harmoniques sphériques au
sens précédent, et qu’elles forment une base orthonormale de [’espace H®
pour le produit scalaire non normalisé, (,).
D’une part, les fonctios Y, sont vecteurs propres de l'opérateur]s = —ia%
avec la valeur propre m,

JY! =mY! (2.28)

D’autre part, les fonctions Y. satisfont les relations

J YL =1 —-m)(I+m+ 1Y, (2.29)

ol

JYL = /(I+m)(l—m+1)Y! _, (2.30)

que l’on vérifie faccilement en distinguant les cas m > 0 et m < 0.
On woit donc que les fonctios Y| sont vecteurs propres de J> = —Ag» avec

la valeur propre I(l + 1), celle-ci étant indépendante de m,

JYL =11+ 1)Y}, (2.31)
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Chaque fonction Y est donc bien une harmonique sphérique.
L’opérateur Js étant hermitien, les fonctions Y. sont deux & deux orthogo-
nales.

Ces 21 + 1 fonctions de HO en forment donc une base orthogonale.

Théoréme 2.6.1. . Les harmoniques sphériques Y 1 € N? —1 < m < I,
forment une base hilbertienne de L*(S?) muni du produit scalaire non nor-
malisé.

En d’autres termes, toute fonction appartenant a L*(S?) a un développement

en harmoniques sphériques, convergent au sensde la norme de L?*(S?),
F=Y 0 MY =Y+ AV + Y + LY+
1=0 —I<m<l

ot les coefficients du développement sont donnés par les produits scalaires

non normalisés de fonctions sur la sphere,

fin = (Yo f)-
Remarque 2.6.2. Les polyndémes de Legendre sont définis, pour | € N, par

1) d
P(x) = 21 ﬂ(l_x2>l7

et les fonctions de Legendre sont définies, pour m € N et pour x € [—1,1],par

(_1)l+m dl+m

w dm )
2 o )

dxz™

I3

P = (—1)"(1 - 2?) (1 -z,

Bix) =

On exprime en général les harmoniques sphériques Y, a l'aide des fonctions

de Legendre, P, ,,.On voit que, pour m = 0,

Yﬂl’b(07 ¢) = Cl,mB,m(COS Q)Gimqb’

o 204+1 [(I—m)!
b =N T \ G m)

Les fonctions notées Z! (0) ci-dessus ne différent des fonctions P p,(cos®)

ol

que par un facteur numérique,

ZL(0) = (=12 P, (cos 0)e™?,
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et les constantes C’fn et Cy.m sont liées par

- (_1)l+m
Cm =g Cm

Exzemple P (cos0) =1 (Y0 0 est isotrope) ;
P(cosf) = cos

P/ (cosf) = —sinf
3
Py (cosf) = 5 sinf - (—=5-cos*0 + 1)

Les fonctions Y (0,¢) présentent de plus en plus de symétries au fur et a
mesure que | croit (sauf lorsque | = 0, puisque Y0 0 est une fonction constante
et décrit donc une sphére).

Polynéomes de Legendre
Pour les harmoniques circulaires, on utilise des polynomes Pl de la fonction
cosinus :

Yi(0) = P/(cosf) Les polynomes Pl utilisés sont les polynomes de Le-

gendre :

l

(formule de Rodrigues, mathématicien francais) On obtient :
Py(cos@) =1 (fonction isotrope); Py(cosf) = cosf

Py(cosb) = %(3 cos® — 1)

P3(cost) = L 5cos® 0 — 3 cos b
2

Harmoniques sphériques normalisées
Base orthonormale des harmoniques sphériques Parmi les 21 +1 fonctions,
Uhabitude a été prise de sélectionner une base orthonormale sur la sphére S

munte de la mesure

1
dp = — sin #dfd¢
47

soit le produit scalaire (hermitien en fait) :
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(fr] f2) = i //S Fi f2sin 6d6de

Les harmoniques sphériques sont les solutions de [’équation aux valeurs propresl :

—AY;m(0,0) = 1l +1)Y1,m(0, 0)

ou lopérateur laplacien s’écrit en coordonnées sphériques sur la sphére de

rayon unité J2 :
def 19 0 1 6_ : 8_f Lﬁ
Af0,0)=T°f = =55 (Smeae T 00,2

Elles sont fonctions propres de ['opérateur

Jg - —1i

ng o6

: 0

J3}/l,m =m: }/l,m
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Chapitre 3

Exemple d’aplication polynoémes

de Legendre

3.1 Eléments matriciels des représentations 7j(g)

Nous allons maintenant calculer les éléments matriciels des représenta-
tions unitaires irréductibles Tj(u) du groupe SU(2).
Nous nous placerons d’abord dans le cas des représentations T)(g) du groupe
SL(2,C), qui s’obtient, rappelons le, par complezification de SU(2).
1l suffira ensuite de donner aux paramétres des valeurs réelles pour revenir
auzx représentations T)(u).
On montrera que ces éléments matriciels s’expriment au moyen de la fonction
exponentielle et des polynomes P (z), qui ont un lien étroit avec les poly-
nomes classiques de Legendre et de Jacobi . C’est en exploitant cette situation

que nous établirons la plupart de leurs propriétés.

Calcul des éléments matriciels.

On a vu que les représentations T)(g) du groupe SL(2,C) étaient donnée
par la formule

ax + 7y

Tig)p(x) = (Ba + 6o

) (3.1)

61
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ot p(x) est un polynome de degré 2l et g = ( “ ? ) Considérons dans la
Y

base formée des mondmes

Il—n

\/(l—n) (l—i—n)

On a démontré que cette base est orthonormée relativement au produit scalaire

Yn(T) = ,—l<n<l. (3.2)

dans $, et invariante par l'action des opérateurs Ti(u), uw € SU(2). Il s’ensuit
qu’auzx opérateurs T)(u) des représentations unitaires irréductibles du groupe
SU(2) correspondent, dans cette base , des matrices unitaires.
Posons alors

a;; =< Aej, e; >, (3.3)

ol e; est une base orthonormée. Dans le cas présent , cette formule devient

<E( ) l—n :L,lfm>

! =< Ty (), oy >= 3.4
Mais
Ti(g)a' ™ = (aw + )" (B + )" (3.5)
Par conséquent
thonlg) = = oz 4 ) Pz + ) a7 > (3.6)

V=) +m)i(T = n)l(I+n)!
Dévloppons(3.6)en tenant compte que < 27k ™ > =0 pour k # m et vaut
(Il —m)!(l +m)! pour k =m. D’ou

N

(l_ 'l+m j —m—j Qj ~m+j—n n—j

tinn(g):\/(l—n'l—i—n Z JCll+nal Jgiymtimngln=j —
=M

= /(I =m)!( +m)!(l = n)(l 4 n)la'"mym e x

) ! B\
XJZ A= m =+ = m—n+ ) s’ (3.7)

ot M = max(0,n —m) et N =min(l —m,l+n). Ainsi, nous avons trouvé

Vexpression des éléments matriciels des représentations Ti(g) en fonction de
ceur des matrices g. Remarquons qu’en fait , cette expression est indépen-

dante de (3, puisque 'unimodularité de g implique By = ad — 1.
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3.2 théoréme d’addition.

De nombreuses et importantes propriétés des fonctions Pl () sont liées

a leur théoréeme d’addition. Pour 'obtenir ,nous allons utiliser la relation

Ti(9192) = Ti(91)Ti(g2), (3.8)
qui s’écrit

n(9192) Z b (1) (92). (3.9)
k=—1

Introduisons les angles d’Euler des matrices g1 et go, c¢’est-a-dire, respective-

ment, 0, 61, 0 et vy, 62, 0.0n a donc

o (91) = Py (cos 1) (3.10)

et
Ln(QQ) _ik@2pkl:n(cos 02) (311)

Les éléments matriciels tt(g1g2)sont la forme
th (gig) = e metnI Pl (cos f). (3.12)
ot 0, v, ¥ sont les angles d’Euler de la matrice g19o. l’on a les formules
cos ) = cos 67 cos B — sin f; sin O cos py (3.13)

e _ sin 6 cos By + cos 6, sin B, cos Yy + 7 sin O, sin Yy

: 3.14
sin 0 ( )
. . )
i(etw) 0080—10089262 —sm%sm%?e 3
€ = (3.15)

COS 5

NI

ot, rappelons-le 0 < Ref < w, 0 < Rep < 21, =21 < Rey < 2w Repor-
tant les expressions précédents dans (3.9),0n obtient le théoréme d’addition

suivant :

I
e~ pl - (cos6) = Z e ke pl (cos )P, (cosby). (3.16)
p—



64 3.2 théoréme d’addition.

Considérons certains cas particuliers du théoréeme précédent.Soit ps = 0.
Alors, si Re(01 + 03) < w, nous avons 6 = 01 + 03, o =7 = 0,(3.16) devient

P! lcos(0y + 05)] Z (cos 1) P, (cos Bs). (3.17)
p—

Et, si Re(01 + 03) > , alors 0 = 2w — 0y — 0y, ¢ = 7w et b = 7. D’ou la
formule (3.16) prend la forme

P! lcos(0y + 05)] = (—1)™™™ Z P! (cos6,) P}, (cosby). (3.18)

k=—1

Soit, maintenant, le cas py = m.51 Rety>Rebsy, alors = 0, — 05,0 = 0,9 =

m,et l'on a

Pl lcos(0) — 65)] = > (=1)"* Pl (cos 61) P, (cos f). (3.19)

En particulier, pour 61 =0y =0 :

Z (—=1)"*P! (cos0) Pl (cosf) = . (3.20)

k=—1

Si 0 réel, on peut écrire
P! (cos) = (—1)""™P. (cos®)

Dans le cas ot 0, et Oy sont réels, la formule (3.19) devient :

P! [cos(6, — 65)] Z (cosb1) P!, (cosBs). (3.21)
[—

ol 01 292 Si 91 :92 J
Z ! (cos0,) Pl (cos0y) = P (1) = G- (3.22)
k=—1

L’éqalité (3.22) s’interpréte facilement en termes des groupes. Si 0 est réel,

la matrice g(0,0,0) appartient au sous-groupe SU(2) . Mais, T)(u) est une
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représentation unitaire de ce sous-groupe et, par conséquent, la matrice d’élé-
ments P.. (cosf) est unitaire. Nous aurons encore besoin, pour ce qui suit,

du cas py = 5. Dans ce cas ,les formule (3.13) — (3.14) se simplifient :

cos ) = cos 0, cos by (3.23)

; sin 64 cos 65 + 7 sin 6o
e = gz (3.24)

01405 | ;.o 010
ieg) _ V2[cos Btz cos D102 (3.25)

0
2COS§

e

Au lieu des formules (3.23) — (3.25), il convient de prendre les formules

sin 92
t = — 3.26
MY = Sin 01 cos Oy’ (3.26)
sin 91
t = — 3.27
any sin @, cos 0’ (3.27)
qui s’obtiennent immédiatement a partir des formules () — () Ainsi,
I
emimetn) pl (o5 0) = Z i"* P! (cos0)) P} (cosby). (3.28)

k=-1

3.2.1 Théoréme d’addition pour les polynémes de Le-

gendre.

1l ne s’agira que d’un cas particulier du théoreme précédent. Les polynomes

et les polynomes associés de Legendre sont respectivement définis par
Py(2) = Py(2) (3.29)
et

%Pjno(z) (3.30)

En faisant n = 0 dans la formule(3.16) et en utilisant les relations (3.29) —
(3.30) , on obtient

Pr(z) =1

e~ P (cos ) =
!

o [T Am)! e JU=R) e,
= =) I;ll b = k)!e o2 pl (cos@))Pf(cosfy).  (3.31)
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EFtsim=n=0:
Py(cos 6y cos Oy — sin 0y sin Oy cos py) =

l
l—Fk)! _,

= Z (—1)ku6_’k‘p2[’lk(cos 01) PF(cos 6,) (3.32)

= (I +k)!

On peut simplifier cette relation de la faCon suivante : en vertu de la symétrie

PLo(2) = P, o(2) et de la formule(3.30), nous avons

(Il —m)!

B"(2).
Par conséquent, les polynéomes de Legendre satisfont au théoréme d’addition
susvant
!
Py(cos 6 cos By — sin 0 sin Oy cos ) = Z e~ %2 PF(cos 0,) P " (cos ).

k=—1

(3.33)

3.3 La formule de multiplication.

Supposons que , dans la formule(3.28) l'angle d’Euler oo soit réel. Alors,
on peut considérer que ['on se trouve en présence du développement en série
de fourier de la fonction eI Pl (cos ) (o1, et O dépendent de o,
par les formules(3.13) — (3.15). Par conséquent,

T [ .
P! (cos6)P} (cosby) = %/ eilkpa—me=m) pl (o5 0)dip, (3.34)
Nous dirons que cette formule est la formule de multiplication pour les fonc-
tions P! (2). La formule(3.34)admet le cas particulier m = n = 0, qui s’écrit
en vertu de la relation(3.35) :

r [ .
Py e'*%e Py(cos ) cos g — sin 6 sin B, cos @, )dps =
™ —T
UL k k —k
=(-1) = k)'Pl (cos6y) P (cosBy) = P*(cos 1) P "(cosby).  (3.35)
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Puisque Py(cos 6 cos Oy — sin 0 sin 05 cos pq) est une fonction paire en @z, on

1 ™
— / Py(cos 6 cos By — sin 0 sin Oy cos ps) cos kpadps =
T Jo

= PF(cos6,) P " (cos ). (3.36)
St on fait également k = 0, nous obtenons
1 s

gy Py(cos 0y cos Oy — sin 0 sin O cos o)dps =
m —TT

= Pj(cos 1) P(cosbs). (3.37)

La signification géométrique de la formule (3.34) est la suivante. Choisissons
sur la sphére unité un point A tel que sa latitude par rapport au pole nord N
soit 01 et tracons sur la sphére un cercle de centre A et de rayon sphérique
0. Notons par 0 la distance polaire du point B de ce cercle tel que 'arc AB
de grand cercle forme un angle oo avec le méridien AN .la formule (3.534)si-
gnifie que PF(cos6,) P *(cosy) est la valeur moyenne de Pj(cos0)e™*#2 sur
ce cercle. En particulier, le produit P,(cos 6,)P,(cos0y) est la valeur moyenne
de P(cos0). Transformons la formule (3.35). Nous supposerons que 6, 0s, oo
sont des nombres réels tels que 0 < 01 <m, 0 < by <m, 0 <O+ 0, < (si
cette derniére condition n’est pas remplie, on doit changer 01 et 6y en ™ — 0,

et m— 05),et faisons le changement de variables
cos 0 = cos 6 cos By — sin B} sin Oy cos p,. (3.38)

Notons par T, (z) la fonction cos(narccosz). Cette fonction est le polynome

de Cebysev de premiére espéce. De (3.38), il suit que

0 0y — cos @
coskipy = T, [ S2LE802  COST ) (3.39)
sin 64 sin 6,
et, de plus,
— sin 6df
dipy = o (3.40)

V/Jcos O — cos(61 + 0)][cos(0; — By) — cosb]
Puisque, po variant de 0 a 7w, la variable 6 varie de 01 + 0y a 61 — 0y alors
le changement de variables défini par (3.38) transforme Uintégrale(2)de la

facon suivante :

01+02 _
l/ Pi(cos0)T; (cos 01 cos 0 — cos 9) y

T Jo,—6, sin 6 sin 6,
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" sin 0d0 B
\/[cos 0 — cos(0; + 05)][cos(0; — 09) — cos 0]
= P}(cos 0,) P " (cos ). (3.41)

L’expression qui figure au dénominateur de (3.41), a une signification géo-
métrique simple : elle représente Uaire du triangle sphérique de cétés 0, 05,

0, divisée par 4m>.

3.4 Formules de récurrence.

Nous allons maintenant établir les formule de récurrence pour les fonc-
tions PL. (2), relatives auz indices m et n. On peut les considérer comme des
formes infinitésimales du théoréme d’addition. Elles s’obtiennent,a partir de
ce théoréeme, pour O infiniment petit. On devra différentier les deux membres
de la formule générale (7) en Oy et faire 05 = 0. Il nous suffira, au lieu de la
formule générale (7) d’utiliser ses cas particuliers g, = 0 et py = 5 (formule
(3.17)et (3.28). Calculons d’abord L[P!. (cos®)] pour 6 =0.0n obtient

d i (I =m)( +m)!
P (cos )] = E\/ T

2m
X / [(1 = n)e D2 1 (] 4 p)e=1e)eime gy, (3.42)
0

Il est clair que le membre de driote de(3.42)est nul si m est différent de
(n+1) ou(n—1). Sim=n-+1, il vient

d [

@[P£+17H<COS 9)]9:0 = 5\/([ — n)(l +n+ 1) (343)
Deméme, pour m=n—1:

d l

@[Pfhlm(cos 0)]g—o = 5\/(l +n)(l —n+1). (3.44)

Venons-en maintenant auz formules de récurrence proprement dites.
kDifférentions en 0y les deur membres de la formule(3.17) faisons 0 = 0 et
utilisons les relations (3.43)et (3.44).Posant z au lieu de cosfy, nous obte-
nons la formule cherchée :

m% = %[\/(Z —n)(l+n+1)P, 1 (2)+
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+V(U+n)(l—n+ 1P, (2)]. (3.45)

Pour obtenir une deuxiéme formule de récurrence, partons de la formule
(3.41) que Uon différentie en 0. On donne ensuite a 6y la valeur 0 et on
utilise les relation (3.24)-(3.26).Aprés des transformations simples, il vient

de  dip

- 1, Pl —
[[m a0, +nd62]92_0 ) n(cos0)

dP! (cosf,) df @
o, dg, ="

— %[\/(l +n)(l—n+1)P,,_i(cosb)—

— V(I =n)(I+n+1)P, 1 (costr)]. (3.46)

ot 0,p,1 s’expriment au moyen de 0y et Oy par les formule (3.24)-(3.26)

précitées. Il nous reste a trouver les valeurs des dérivées

dp 1 i

= —— t —cot
@, =" sme, ¢ g lno = T coth
Reportant ces valeurs dans (5.46)et remplaCant cos 0y par z, nous obtenons
[—==1Phn(2) =

N

[
= SV =n+ 1) P (2)-
— V(=) +n+1)Py, 00 (2)]. (3.47)
Des formules (3.45)et(3.47), on déduit facilement :

dPL() nz—m
1 — 22 dz + /—l_ 2Pmn()

=1/l =n)l+n+1)P.,1(2). (3.48)

et

dP! (z nz—m
Vi-22 dz<)+ . Pl (2) =

=1/l +n)(l—n+1)P,_(2). (3.49)

En vertu des relations de symétrie, il vient :

dP! (2) mz-n
VI 2 —Prn(2) =
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= 1\ /U=m)I+m+ )P, ,.(2). (3.50)

et

——dP' (z) mz-—n _,
1— 22 dz _mpmn()

= I m) [ —m P (). (3.51)

Par soustration de (3.48)et (3.49), nous obtenons une relation de récurrence,

qui lie trois fonctios P. . d’indices n en progression arithmétique de raison

mn’
1.

2

[=n+1)Py,1(2)—

l+n+1)P, ,.(2)] (3.52)
Par addition de (3.48)et (3.49) :

Vi) _
dz

_ _é[\/a )l —n+ )P, (2)+

+ /(I =n)(l+n+1)P, .1 (2)] (3.53)
Faisons dans (3.48)et (3.49) m = 0 et utilisons [’égalité

Ph(2) = U [ )

Nous obtenons des formules de récurrence pour les fonctions associées
.
de Legendre P, :

2dPl”(z) nz nn o
V1—=z 7 + mPI (z) = =P (2). (3.54)
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