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Introduction

En théorie des semi-groupe le théoréeme de Hill-Yosida est un outil puis-
sant et fondamental reliant les propriétés d’un opérateur non-borné
A:D(A) C E — E (E un espace de Banach) a l'existence et l'unicité et la

régularité des solutions d’une équation différentielle

( 7 (t) = Az(t)
z(0) = xg

Ce résultat permet notament de donner Iexistence , 'unicité et la régularité
des solutions d’une équation différentielle fonctionnelle partielle plus éffica-
cement que le théoréme de Cauchy-Lipschitz plus adapté au (EDO).

Par une équation différentielle fonctionnelle partielle,nous entendons un sys-
téme d’évolution décrit par

1- L’équation différentielle

(P1) du () = Au(t) + F(uy), pour,t > 0
SR Ty

Ou Cg = C([-r,0]; E),r > 0, désigne l'espace des fonctions conti-
nues de [—r,0] vers un espace de Banach F muni de la topologie de
la convergence uniforme et A : D(A) C E — FE est un opérateur
linéaire.pour u € C([—r,b]; E),

b>0ette|0,0b], u désigne, I'élement de Cg défini par

u(0) = u(t + 0), pour,0 € [—r,0].

F' est une fonction continue de Cg vers E.



2- L’équation intégro- différentielle

(P2).... (1) = Au(t) +/0 B(t — s)u(s)ds + F(t, u;), pour,t > 0

up = ¢ € Cg

du(t) = Aul(t) + /t B(t — s)u(s)ds + ¢(t), pour,t > 0
U(O) =uy € F

(P2.1)....

Ou Cg = C([-r,0]; E),r > 0, désigne 'espace des fonctions conti-
nues de [—r, 0] vers un espace de Banach E muni de la topologie de
la convergence uniforme et A : D(A) C E — E est un opérateur li-
néaire.pour u € C([—r,b]; E), b > 0 et t € [0,b], B(t) est un opérateur
linéaire fermé avec domaine D(A) C D(B), u; désigne P'élement de
Cg défini par, u,(0) = u(t + 0), pour, —r < 0 <0,
F:RtxC— E,et,g: R" — E sont des fonctions continues, dans le
cas oit B =0. (P2) et (P2.1) devient (P1).
C’est bien connu que si A est un générateur infinitésimal d’un semi-groupe
fortement continu d’opérateur linéaires bornés (7°(t)):>o dans E est équi-
valent a
(i) D(A) = E
(ii) il existe M >0, w € R tel que si A > w, (Al — A)~! € L(E)et

(A —w)" (A — A)™"| < M, pour,n € N,

alors la théorie classique des semi-groupes assure la bonne pose aux problemes
(P1) et [(P2),(P2.1) le cas ou B=0], 'autre supposé que F' est globalement
Lipschitzienne continue de Cg vers E.ils ont prouvé leurs résultats en utuli-

sant la formule de variation de la constante suivante

T(t)p(0) + /Ot T(t — s)F(us(.,))ds, pour,t >0

gD(t),pOU,T‘,t € [_Ta 0]7

(E1)....u(t) =

plus récemment, Parrott |7] établi en raison de l'existence local dans le cas
ot A satisfait (i) et (ii), et F' satisfait la condition( Lipschtzienne continue
). Elle utilisait le résultat de Desch et Schappacher [12] pour developper le
principe de stabilitée linéaire de (P1) et [(P2),(P2.1) le cas ou B=0] .



Dans ce travail, nous invésterons le cas ou A satisfait la condition de Hill-
Yocida, & savoir (ii) avec un domaine non-dense, et, F' satisfait la condition
( localement Lipschitzienne ).Nous montrons l'existence local des solutions
de (P1) et [(P2),(P2.1) le cas on B=0],et dans le cas o F' est globalement
Lipschitzienne continue, nous étudions le probleme du stabilité linéaire prés
d’un point d’équilibre.

Pour (P2),(P2.1) ,i,e B # 0 l'existence et 1'unicité de solution représenté par
la formule de variation de la constante avec autres proprietés de I'opérateur
résolvant. Rappelons que l'opérateur résolvant joue un role plus important
pour la résolution du (P2) et (P2.1), il remplace le role du théoréme des

Cp-semi-groupe






Chapitre 1

Cy-semi-groupes

Résultats préliminaires

La fonction exponentielle réalise 'isomorphisme fondamental algébrique
et topologique entre le groupe topologique aditif des nombres réels et le
groupe topologique multiplicatif des nombres réels strictement positifs,on
peut constater que la fonction t — €', a € R, est une solution réele continue
de P'équation fonctionnelle de Cauchy f(t + s) = f(t)f(s) avec la condition
f0)=1.

D’autre part, il est trés bien connu que la fonction exponentielle ¢ — e est
la solution unique sur R de I'équation différentielle ' = ax, avec la condition
initiale z(0) = 1.

L’importance des fonctions exponentielles a connu une grande croissance
aprés I'année 1888, quand le grand mathématicien Giuseppe Piano a eu l'ins-

piration d’écrire la solution du probléme de Cauchy vectoriel

¥ = Az
x(0)=1

ot A est une matrice quadratique, sous la forme

LA™
n!

t—

n=0

Ce résultat a été étendu aux équations différentielles opératorielles X' = AX,

ol A est un opérateur linéaire borné dans un espace de Banach &£, qui a pour

7



8 Ch-semi-groupes

solution fondamentale la fonction exponentielle t + e/, A € B(E)
Ces extentions de la fonction exponentielle admettent un modéle général
dans le cadre des algébre de Banach abstraites. Plus précisement, si B est

une algébre de Banach avec 'unité I et a € B, alors la fonction

R— B
t — eta — ZOO t"a™

n=0 n!

est dérivable et elle est I'unique solution du probléme de Cauchy

{x((g—f

Compte tenu de I'unicité des solutions du probléme de Cauchy, il en résulte

Q

que la fonction f(z) = e satisfait sur R & I’équation fonctionnelle de Cau-
chy.

Le probléme reciproque de savoire si les solutions de I’équation fonctionnelle
de Cauchy sont des solutions pour les équations différentielles linéaires de
premiére ordre x° = ax, s’est avéré étre plus difficile, mais il a été résolu par
Nathan et Yosida.

Donc la double caractérisation de la fonction exponentielle par 1’équation
fonctionnelle de Cauchy et par 'équation différentielle linéaire de premier
ordre a été établie pour le cas général des algébre de Banach abstraites.
Ces caractérisations importantes ont suggéré l'idée d’étudier les équations
différentielles linéaires du premiér ordre par des extentions adéquates de la
fonction exponentielle.

De cette maniére est apparu la nécessité de considérer les équations différen-
tielles vectorielles de premier ordre ' = Az ot A n’est pas un opérteur de
I'algébre de Banach des opérateurs linéaires bornés B(FE).

Mais pour un opérateur linéaire non- borné dans un espace de Banach E. La
définition d’une fonction exponentielle comme une solution de cette équation
a été realisée par I'introduction des semi-groupes de classe Cj.

Mais dans ce cas ’équation fonctionnelle de Cauchy se référe aux fonctions

[0,00) — B(E)
t— T(t)
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avec T(0) = I, satisfaisant la relation T'(t + s) = T'(t)T(s) et qui sont forte-
ment continues, c¢’est & dire ayant la propriété

lim T(t)x = z, pourtout,z € E
t—0

Les résultats fondamentaux pour les semi-groupes de classe Cy dans les es-
paces de Banach ont été obtenus par Hille-Yosida-Feller- Miadera et Phillips,
qui ont crée la théorie des semi-groupes et de leurs générateurs.

Le célébre théoréme de Hille-Yosida-Feller-Miadera-Phillips, rétablit le lien
entre I’équation fonctionnelle de Cauchy T'(t+s) = T'(t) x T'(s) et Péquation
différentielle " = Az, ot A est un opérateur non-borné fermé et densément
défini dans un espace de Banach E. Dans ce cas-la, T'(t) représente dans un
certaine sens la fonction exponentielle.

Le moment le plus important concernant la généralisation des semi-groupes
de classe Cy est marqué par l'introduction des semi-groupes intégrés 4 la fin
des années ’80. Dans la théorie des semi-groupes intégrés un roéle important
revient 4 un théoréme classique de représentation de la transformée de La-
place pour une fonction avec valeurs réelles prouvé par Widder. mais dans
1960. Zaidman a prouvé que le théoréme de Widder ne peut étre étendu aux
fonctions & valeurs dans un espace de Banach arbitraire.

En 1987 Arendt a prouvé un vertion " intégré " du théoréme de Widder pour
des fonctions dans un espace de Banach, avec lequel il a obtenu une caracté-
risation compléte pour le générateur d’un semi-groupe intégré.

Dans le cas des smi-groupes intégrés on peut voir que le générateur n’est
pas nécessairement 4 domaine dense, Dans la suite, nous noterons par £ un
espace de Banach sur le corps des nombres complexes C, par L(F) l'algébre
de Banach des opérateurs linéaire bornés dans F et par I I'unité de L(FE)

Pour un opérateur linéaire A : D(A) C E — E nous noterons par
p(A) = {X e C| (M — A", existe,dans, L}
I’ensemble résolvant de A € L(F) et par

R(;A) : p(A) — L(E)
R(\ A) = (AT — A)~!

la résolvante de 'opérateur A.
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1.1 Générateur infinitésimal du C)-semi-groupe

Definition 1.1.1. On appelle Cy-semi-groupe d’opérateurs linéaires bornés
sur E une famille (T(t))i>0 C L(E) vérifiant les propriété suivantes ;

i) T(0) =1I;

i) T(t+s)=T(t)T(s),Vt,s > 0;

i) limp o T'(t)x = z,Vo € E.

Definition 1.1.2. On appelle générateur infinitésimal du Cy-semi-groupe

(T'(t))i>0, un opérateur A défini sur ’ensemble ;
T(t)x —
D(A) = {x € E | lim Mea:ist@}
N0 t

Par -
w,vx € D(A).

Az = lim
N0

Definition 1.1.3. Nous noterons par SG(M,w) [’ensemble des Cy-semi-
groupe (T'(t))i>0 C L(E) pour lesquels il existe w > 0 et M > 1 tel que

[T < Me, ¥t > 0.
Dans ce cas on dit que (T'(t)) }i>0 est exponentiellement borné

Proposition 1.1.1. Soient (T'(t)):>o un Co-semi-groupe et A son générateur
infinitésimal.Si © € D(A), alors T'(t)x € D(A) et on a ’égalité ;

T(t)Ax = AT (t)x,Vt > 0.
Preuve : Soit z € D(A). Alors pour tout ¢t > 0, nous avons ;

T(t)Ax = T(t)limys o T2 =

— limao T(h)T(t;foT(t)x — AT(1)z

Donc T'(t)x € D(A) et on a T'(t)Az = AT (t)z, ¥Vt > 0.

Remarque : On voit que;

T(t)D(A) C D(A),¥t > 0.
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Proposition 1.1.2. Soient (T'(t))i>0 un Cy-semi-groupe et A son générateur

infinitésimal. Alors Uapplication ;
€[0,00) = T(t)x € E

est dérivable sur [0,00), pour tout x € D(A), et nous avons;

d

ST = T(t) Az = AT(t)a, ¥t > 0,

Preuve : Soient z € D(A),t > 0 et h > 0. Alors :

ha: T T(hxz—=x
u”— T(t)Az|| < | T(t)[|| "8 — Az|| <
< Meet|| T g,

Par conséquent :
T(t+h)x—=T(t
lim LR =Tz T(t) Az,
AN\O h

d’ou
d+
dt

Sit— h > 0, alors nous avons

S T(t)a = R(t)Az, ¥t > 0.

[ — T(1) As| <
< |T(t = )||F45=* — Az + Az — T(h)Az|| <

< Melt=h (HT(’"LT ~ Aal| + | T(h) Az — Aal])

Par suite T T
lim (t=hjr = T(t) =T(t)Az
R\0 —h
et
d-

—T(t) = T(t) Ax,Vt > 0.

Lemme 1.1.0.1. Soit (T(t)):>0 un Co-semi-groupe. Alors :
t+h
}111{‘% t T(s)xds =T(t)x

quels que sotent x € B ett > 0.
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Prueve : L’égalité de 'énoncé résulte de I’évaluation :

t+h t+h
I [ T)eds =Tl =I5 [ () = T(0)ads] <
< supscieesnll T(s)e — T(t)e]

et de la continuité de application ¢ € [0,00) — T'(t)z € E

Proposition 1.1.3. Soient (T'(t))>0 € SG(M,w) et A son générateur infi-
i
nitésimal. Si x € E, alors / T(s)ds € D(A) et on a l’égalité :
0
¢
A/ T(s)ds =T(t)x — z,Vt > 0.
0
Preuve : Soient z € E' et h > 0. Alors :
t 1 t 1 t
T(h)_l/ T(s)xds = —/ T(s+ h)xds — —/ T(s)xds =
0 h Jo h Jo
t+h 1 t
/ T(u)xdu — E/ T(s)xds =
ht-i-h 1 Oh 1 t
/ T(u)xdu — —/ T(u)zdu — —/ T(u)zdu =
0 h Jo h Jo
t+h 1 h
= %/ T(u)xdu — E/ T (u)zdu.
¢ 0

Par passage 4 la limite pour h N\, 0 et compte tenu du lemme(0.1), nous

S

=

obtenons : .
A/ T(s)xds =T(t)r —x,Vt >0
0

et

/tT(s)xds € D(A)

Theorem 1.1. Soient (T(t))i>0 un Co-semi-groupe et A son générateur in-
finitésimal.Alors x € D(A) et Ax =y si est seulement si

t
Tt)r —x= / T(s)yds,Vt > 0.
0
Preuve := Si z € D(A) et Az = y, alors nous avons :

d
d—T(s)x =T(s)Ax =T(s)y,Vs € [0,t],t > 0.
s
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d’out . '
/ T(s)yds = / —T(s)xds =T (t)x — x,Vt > 0.
0 o ds

<Soient z,y € F tel que
t
T(t)r —x = / T(s)yds,Vt > 0.
0

Alors nous avons

T(t)r — 1/t
M = —/ T(S)yd‘g’vt > 0.
t t Jo
d’ou 0 .
Tt)x —x 1
Iltl\r% ; 11{% P, T(s)yds =T(0)y =y,vt >0

compte tenu du lemme (1.1). Finalement on voit que x € D(A), et Az = y.

Theorem 1.2. Soient (T'(t))i>0 € SG(M,w) et A son générateur infinitési-

mal. Alors

i) D(A) = E;

ii) A est un opérateur fermé.

Theorem 1.3. (l'unicité de ’engendrement)Soient (T(t))i>0 et (S(t))i>o0
deuxr Cy-semi-groupes. ayant pour générateur infinitésimal le méme opéra-
teur A. Alors :

T(t) = S(t),vt > 0.

1.2 La transformée de laplace d’un Cj-semi-groupe.

Dans la suite, nous désignerons par A, 'ensemble {\ € C | Re\ > w}.
Soit A € A, et (T(t))i>0 € SG(M,w). Nous avons :

IT(t)| < Me“* )Vt >0
et on voit que :
leT )|l < e "X T O[] < Mem WA |jz||, Vo € B.

Définissons I'application :
Ry:EFE—F



14 1.2 La transformée de laplace d’un Cj-semi-groupe.

par
R,\x:/ e MT(t)wdt
0

Il est clair que R, est un opérateur linéaire borné. De plus, on a :
Rl < [ e Tt < ol o € B
0 Rel —w
d’ot il résulte que Ry est un opérateur linéaire borné.
Definition 1.2.1. L’opérateur :
R:A, — L(E)

R()\) = /0 h e MT(t)dt

s’appelle la transformée de la place du semi-groupe (T'(t))i>0 € SG(M,w).

Soit D C C un ensemble ouvert. Une application analytique :
AeDw— Ry, eB(E)
qui vérifie la propriété :
Ry—R,=(A—p)R\R,,VY\, € D,
s’appelle une pseudo résolvante.

Theorem 1.4. Soit T : [0,00) — B(E) une application fortement cotinue
pour laquelle il existe M > 0 et w € R tel que

IT(t)| < Me*', ¥t > 0.

Alors Uapplication
R:A, — L(E)

est une pscudo-résolvante si est seulement si on a

T(t+s)=T(t)T(s),Vt,s > 0.
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Theorem 1.5. Soient A : D(A) C E — E un opérateur linéaire fermé
d domaine dense et (T(t))i>0 C L(E) une famille fortement continue pour
laquelle il existe M > 0 et w € R tel que

IT(#)]| < Me**, ¥t > 0.

Les affirmations suivantes sont équivalentes :
i) (T(t))e>0 est un Cy — semi — groupe. exponentiellement borné ayant
pour générateur infinitésimal ['opérateur A ;
ii) A, C p(A) et pour tout A € A, et tout v € E on a R(\)x = R(\; A)x.

Theorem 1.6. Soient (S(t))i>0 un Co-semi-groupes. et A son générateur

infinitésimal. Pour tout A € A, on a;

[R(A; A)"|| < ,Vn € N".

(ReX —w)”

1.3 L’approximation généralisée de Yosida

Lemme 1.3.0.1. Soit A: D(A) C E — E un opérateur linéaire vérifiant les
propriétés suivantes :

i) A est un opérateur fermé et D(A) = E
i) il existe w >0 et M > 1 tel que A, C p(A) et pour A € A, on a :

| RN\ A" < ~,Vn € N*.

(ReX — w)

Alors pour tout X € A, nous avons :

lim AR\ A)x =x,Vx € E.

Rel—00

De plus AR(X\; A) € L(E) et :

lim MNAR(N A)x = Az, Vo € D(A).

Rel—o0
Remarque : On peut dire que les opérateurs bornés NAR(\; A) sont

des approximations pour 'opérateur non borné A.

Definition 1.3.1. La famille {A\}ren, C B(E), ot Ay = NMAR(X\; A) s’ap-

pelle Uapprozimation généralisée de Yosida de l'opérateur A.
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Theorem 1.7. Soient(T(t))i>o0 est un Cy— semi— groupe. A son générateur
infinitésimal et{ A, }en,, Uapprozimation généralisée de Yosida de opérateur
A. Alors pour tout p € A, il existe Q > w tel que Ag C p(A,) et pour tout
A€ Aqg on a

M
[R(A; A < (RT—Q)

De plus, pour € > 0, il existe une constante C > 0 (qui dépend de M et )
tel que :

C
[R(X; A)z]| < W(lell + [[Az]]), Ve € D(A).

‘ |l
quels que sotent A\, u € C, et Repp > w + %

Theorem 1.8. (Hille-Yosida)Un opérateur
A:DA)CE—E

est le générateur infinitésimal d’un Co—semi—groupe. (T'(t))>0 € SG(M,w).
st est seulement si :

i) A est un opérateur fermé et D(A) = FE
ii) il existe w >0 et M > 1 tel que A, C p(A) et pour A € A, on a :

IR A < ~n € N

M
(ReX —w)



Chapitre 2

Semi-groupe intégré

Propriétés élémentaires

Soient (7(t))i>0 un Cp-semi-groupe. et A son générateur infinitésimal.
Soit

S(t) = /0 T (s)ds, ¥t > 0.

Alors la transformée de Laplace de S satisfait les égalités suivantes :

/ e MS(t)dt / / s)dsdt =
0

—MT —R(A A).
0 A

Le théoréme (1.4) conduit & la question suivante : on peut trouver une équa-

tion fonctionelle vériffée par S tel que I'application
AEA, = A / e MS(t)dt
0

est une pseudo-résolvante 7 On a le théoréme suivant

Theorem 2.1. Soit S : [0,00) — L(E) une application fortement continue
pour laquelle il existe M > 0 et w € L tel que

1S(t)]| < Me®", vt > 0.
Alors les affirmations suivantes sont équivalentes :

17



18 Semi-groupe intégré

i) Uapplication R : A, — L(E)

est une pseudo-résolvante ;

ii) pour toust,s >0 on a

S(t)S(s) = /t o S(r)dr — /0 " S(r)dr.

Definition 2.0.1. Soit £ Un espace de Banach. Une famille
(S(t))e>0 C L(E) est dite semi-groupe intégré si elle satisfait les conditions
sutvantes

(i) S(0)=0

(1)) Yz € E , S(t)x est une fonction continue en t > 0 a valeur dans E

(iii) Y2 > 0, S(s)S(t) = /O (S(t+7) — S())dr

Remarque : Soit (S(t))i>0 C L(F) un semi-groupe intégré. Pour tout

N € N, nous désignerons par C" 'ensembe
{re E]S5()reC"([0,00); E)}

avec la convention C° = E.

Alors la propriété(iii) de la définition (1.0.1) peut étre remplacée par
S(t)xr € C!

et

/

S (r)S(t)x = S(t+t)xr — S(r)z,Vr,t > 0,Vz € E.
De plus,nous avons
S(t); C" — C"™' ¥n € N, et,Vt >0

et
S'(t);C" — C",Vn € N, et,Vt > 0

Proposition 2.0.1. Soit (S(t))i>0 C L(E) un semi-groupe intégré. Alors :
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i) pour tout v € C on a
S(1)S' (t)x = S(r + t)x — S(7)x,¥r,t >0,
i) pour tout x € C! on a

1

S'(t)x = S"(0)S(t)z + S (0)x, ¥Vt > 0,

i1) pour tout x € C? on a

Preuve :
i) Soit z € C! et r,t > 0. Alors

S()S' (r = FISMSHx = FSHS(r)]w =

4IS(r +t)x — S(r)z] = S (r +t)x — S (r)x.
Pour r = 0, en résulte :
S"(0)S(t)z = S (t)x — S (0)z, ¥t > 0.
d’ott on obtient (ii).
iii) Soit x € C' et r,t > 0. Alors

S(r)S" (tx = L[S(r)S (t)x =L [S(r+t)x — S(r)z] =

S(r)S"(0)x = S (r)x — S (0)x, Vr > 0.

Compte tenu de I'égalité(ii),il en suit (iii).
Exemple : Soit (7'(t));>0 un semi-groupe de classe Cj. Alors la famille

(S(t))e=0 t
S(t):/o T(s)ds.

est un semi-groupe intégré sur £
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2.1 Espace dégénéré du semi-groupe intégré

Definition 2.1.1. On appelle espace dégénéré du semi-groupe intégré (S(t))i>o

l’ensemble

N={zxeFE|St)z=0,Vt>0}
Remarque : AV est un sous-espace fermé de C!.
Proposition 2.1.1. Soit (S(t))i>0 un semi-groupe intégré et
M ={zeC|S(0)z=0}.
Alors N = N}

Preuve : Soit x € N. Alors S(t)z = 0, pour tout ¢t > 0. par conséquent
S'(t)z = 0, pour tout t > 0, d’ott il résulte S'(0)z = 0. Donc = € N et, par
suite, N' C M.

Soit x € N. Alors S'(0)x = 0. De I'égalité

!

S(r)S (t)x =St +r)x— S{t)z,Vt,r >0

on obtient
S(r)x=0,Vr >0

et on voit que x € N/. Par suite V] C N.
Finalement, on voit que N = M.

Definition 2.1.2. On dit que le semi-groupe intégré (T (t))i>o et non-dégénéré
si N'={0}. En cas contraire, on dit que (T(t));>0 est un semi-groupe intégré

dégénére.
Remarque :Un semi-groupe intégré (S(t)):>o est non-dégénéré si
Vi >0,5(t)x=0=x=0.

Proposition 2.1.2. Un semi-groupe intégré (S(t))i>o est non-dégénéré si est

seulement si on a S’ (0)x = = pour tout x € C*.
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Preuve : = Soit (S(t));>oun semi-groupe intégré non-dégénéré.Alors
S(t)x =0 ,pour tout ¢t > 0, implique x = 0.
Soit z € C!. Avec la proposition(1.0.1). pour tout ¢, > 0 on voit que

ou bien

/

S(r)[S (0)x —z] =0,Vr > 0.
Comme (S(t))i>0 est un semi-groupe intégré non-dégénéré, il en résulte

!

S0)z-—2=0=50)z=z

< Soit (S(¢))i>oun semi-groupe intégré tel que S(0)x = 0, pour tout
x € C'. Soit x € N. Alors S'(0)x = 0 et par conséquent , x = S (0)z = 0,
d’ou il ensuit que N/ = {0}. Il en résult que (S(t))i>oun semi-groupe intégré

non-dégénéré

Theorem 2.2. Soit (S(t));>oun semi-groupe intégré non-dégénéré. Alors (S’ (t))io

est un Cy — semi — groupe sur C*.
Preuve : Pour tout o € C!, 'application
te0,00) — S (t)x € C!

est continue. Compte tenu de la proposition (1.0.3) on a S'(0) = I et avec la
proposition (1.0.1), on voit que
S'(r)S (t)x = S (r +1t),¥r,t > 0.

Il en résulte que (S'(t))i>0 est un Cy — smi — groupe sur C'.
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2.2 Opérateur générateur du semi-groupe inté-
gré

Definition 2.2.1. Un semi-groupe intégré (S(t))i>o est dit exponentielement
borné, s’il existe une constante M >0 et w € R tel que

ISt < Me® pour,t >0

Si (S(t))e>0 est un semi-groupe intégré, exponentielement borné, Alors la
“+oo
transformée de Laplace R(\) = )\/ e MS(t)dt existe pour tout,
0
A > w.
Definition 2.2.2. Un opérateur A est dit générateur d’un semi-groupe inté-

gré non-dégénéré, s’il existe w € R tel que (w,+00) C p(A) (la résolvante de

A). et une famille exponentielement bornée (S(t))i>o d’opérateurs lineaires
+o0

bornées tel que S(0) =0 et R(\, A) = / e MS(t)dt pour toute X > w, o1
0
R(A, A) = (M — A)~! pour X € p(A)

Remarque : On voit que z € D(A) et Az = y si et seulement si z € C' et

/

S (t)yxr —z=S8(t)y,Vt > 0.

Proposition 2.2.1. Soit A: D(A) C E — E le générateur d’un semi-groupe
intégré non-dégénéré, (S(t))i>o. Alors

C’c D(A) cct

et
Az = 5" (0)z, Yz € C%.

Proposition 2.2.2. Soit A: D(A) C E — FE le générateur d’un semi-groupe

intégré non-dégénéré, (S(t))io.Alors A est un opérateur fermé.

Proposition 2.2.3. Soit A un générateur d’un semi-groupe intégré non-
dégénéré (S(t))iso. Alors pour toute v € E et t >0

/OtS(s)xds € D(A),et,S(t)x = A (/Ots(s)xds) .
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En plus, pour toute x € D(A),t >0
S(t)x € D(A), AS(t) = S(t)Ax

Et .
S(t)x = / S(t)Axdzx + tz
0

Lemme 2.2.0.1. Soit A: D(A) C E — E le générateur d’un semi-groupe

intégré non-dégénéré, (S(t))i>o. et
v :]0,00) — E

une application continue tel que

/iM$%61XAwwzo.

alors @(t) = 0, pour tout t > 0.

Theorem 2.3. (l'unicité de l’engendrement) Soient (S(t))i>o0. €t (U(t))i>o0-
deur semi-groupes intégrés ayant pour générateur le méme opérateur
A:D(A) C E — E. Alors pour tout t > 0 on a S(t) = U(t).

Preuve : Pour tout x € E on considére I’application
¢:[0,00) — E

p(t) = S(t) - U(#)

compte tenu de la proposition (2.0.6), on obtient
t t t
A/ p(s)ds = A/ S(s)xds — / U(s)xds =
0 0 0
= S(t)x —te —U(t)x + tx = p(t).Vt > 0.
Avec le lemme (2.0.0.1) il s’ensuit
o(t) = 0.Vt > 0.

d’ou affirmation de 'énoncé en découle immeédiatement.
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Corollaire 2.1. Soit A un générateur d’un semi-groupe intégré (S(t))i>o.
Alors pour toute x € E et t > 0 on a S(t)x € D(A). En plus ,
Soit x € E Alors S(.)x est differentiable adroite en t > 0 si est seulement si

S(t)x € D(A). dans ce cas

S'(t)x = AS(t)x + x

2.3 Opérateur de Hill-Yocida

Le cas le plus important est la ot le semi-groupe intégré est localement

Lipschitzien continu.

Definition 2.3.1. Un semi-groupe intégré (S(t))i>o est dit localement Lip-
schitzien continu, si pour toute T > 0 il existe un constant K(t) > 0 tel
que

|S(t) — S(s)| < K(7)|t — s|,pour,t,s € [0,7].

Dans ce cas (S(t));>0 est exponentielement borné.

Definition 2.3.2. Un opérateur linéair A satisfait la condition de Hill-
Yosida (ou est un opérateur de Hill-Yosida ) s’il existe M > 1 et w € R
tel que (w,+00) C p(A) et

sup{(A — w)"|R(\, A)"|pour,n € N, A > w} < M.

Le theoréme suivant est appelé la condition de Hill-Yosida qui caractérisé

les générateurs des semi-groupes intégrés localement Lipschitziens continus.

Theorem 2.4. Les assertions suivantes sont equivalantes
(i) A est générateur d’un semi-groupe intégré localement Lipschitzien continu,
(ii) A satisfait la condition de Hill-Yosida

Remarque : Si A est un générateur d’un semi-groupe (S(t)):>o dans F

Alors la partie Ap de A dans F' = D(A) est un générateur du Cyp-semi-groupe
t

(T'(t))i>o dans F et on a, pour x € F,S(t)x = / T(s)(x)ds;t > 0. Ainsi
0
pour x € E'\ F la fonction t — S(t)z n’est pas différentiable pour ¢ > 0



Chapitre 3

Equations différentielles

fonctionnelles partielles

Résultats préliminaires

Dans cette séction nous donnons quelque resultats pour l'existence des

solutions au probleme de Cauchy suivant.

(P1.1).... { Bi(t) = Au(t) + f(t).pourt >0
u(O) =x el

Ou A satisfait la condition de Hill-Yosida dans E sans étre densément défini
. Par une solution de (P1.1) dans [0,7] oa T" > 0, nous comprenons une
fonction u € C'([0,T)) satisfait u(t) € D(A) pour t € [0,T7], tel que les deux
relations de (P1.1) se réalisent.

La définition suivante est de Da Prato et Sinestrari.

Definition 3.0.1. Soit f € L} (0,400; E) et x € E, on sait que

loc

u : [0,+00) = E est une solution intégrale de (P1.1) si les assértions sui-
vantes sont vraies
(i) u € C([0, +00); E),
t

(i1) /0 u(s)ds € D(A) pourt >0,

fiii) u(t) = A (/Otu(s)ds) + /Otf(s)ds, pour, £ > 0.

25
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Remarque : Apartire de cétte définition, on déduit que pour toute solu-

t+h
tion intégrale u, on a, u(t) € D(A),pour tout, ¢ > 0. car u(t) = limy,_,o + / u(s)ds
t

t+h
et / u(s)ds € D(A), En particulier, x € D(A). est une condition nécés-
t

saire pour l'existence d’une solution intégrale de (P1.1).C’est suggestif & ré-
soudre (P1.1) par la méthode de variation de la constante la ou S(¢) est un

semi-groupe généré par A.

Theorem 3.1. Supposons que A satisfait la condition de Hill-Yosida dans

E, x € D(A) et f:[0,400) — E est une fonction continue. Alors (P1.1)
admet une unique solution qui est donnée par la formulle de variation de la

constante suivante

/

(E1)....u(t) =95 (t)x +%/o S(t—s)f(s)ds,pour,t >0,

En plus la fonction u satisfait approrimation suivante,

t
o) < 3e (jol + [ e 1f(0)ds ) pour e > 0.
0

t
Notons que le théoréme (3.1) dit encor que / S(t — s)f(s)ds est diffé-
0

rentiable par rapport a ¢

3.1 Existence local et régularité des solutions

Dans la suite nous considérons que.

(Hy) A est un opérateur de Hill-Yosida.

(Hy) F : Cp — E est localement Lipschtziene continue, i.e., pour toute
p > 0 il existe une constante Cy(p) > 0 tel que si p1,¢2 € Cg et
|p1l, 02| < p alors

[F(¢1) = F(p2)| < Colp)ler — wal-

D’apres le théoreme (2.4), A est le générateur du semi-groupe intégré locale-
ment Lipschitzien continu (S(t));>0 dans F et |S(¢)] < Me** pour ¢ > 0.
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Definition 3.1.1. On sait que la fonction u : [—r,+00) — E est une solution
intégrale de (P1) si les conditions suivantes sont vraies,

(i) u € C([—?", +00); E)

(117) / s)ds € D(A) pour, t > 0,

(iv) u(t) = p(0) + A (/Ot (s)ds) —|—/OtF(uS)ds pourt > 0.

Definition 3.1.2. On sait que la fonction u : [—r,+00) — E est une solution
stricte de (P1) si les conditions suivantes sont satisfaites,

(i) u € CY[—r,+00); E),

(i1) ug = ¢

(ii1) w satisfait (P1) pour, t > 0.

Apartir de la férméture de I'opérateur A. on peut voir les résultats sui-

vants.

Proposition 3.1.1. (i) Si u est une solution intégrale, de, (P1) dans,
(=7, a), alors pour toute, t € [0,a],u(t) € D(A). En particulier ¢(0) €
D(A).
(i1) Siu est une solution intégrale, de (P1), dans, [—r,a],tel que, u ap-
partienne a C*([0, al; E) ou C([0,a); D(A)), alors u est encor solution
stricte de (P1) dans [—r,al.

D’apres le théoréme (3.1). si la solution intégrale u existe, alors. u est

donné par la formulle de variation de la constante suivante.

S'(t)p(0) + 4 /t S(t — s)F(us)ds, pourt € [0,T]
o(t), pourt € [—r,0],

(E2)....u(t) =

Theorem 3.2. Supposons que, (Hy) et (Hy) sont satisfaites. Soit, ¢ € Cg
tel que, ¢(0) € D(A) Alors il existe un interval mazimal d’existence [—r,T,),
T, > 0, et une unique solution intégrale u(.,p) de (P1) définie sur [—r,T,)
et soit.

Tgo — —|—OO, ou; = lim Sup|u(ta 90)| = +00
t—T,
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De plus, u(t,p) est une fonction continue de ¢, dans ce sense si, p € Cg,

©(0) € D(A) ett €[0,¢), alors il existe des constantes, L et ¢ tel que, pour,

Vel V0)eDA) et|lp—V|<e, ona
te [OaTSO)7€t7 |U(Sa ()0) - U(S, \Ij>| < L|<l0 - \Ij|ap0ura s € [_Tv t]

Preuve : Notons que (Hy) implique que, Vp > 0,3, Cy > 0 tel que pour
p € Cy, et, |p| < p,on a

[E ()] < Colp)lel + [F(0)] < pColp) + [F(0)]-

Soit ¢ € Cg, p(0) € D(A), p=|¢| + 1, c1 = pCo(p) + |F(0)|, et Ty > 0,
Considérons 'ensemble suivant .

Zy,={ue C([-r,T1]; E) : u(s) = v(s), si,s € [—r,0], et, supo<s<m |u(s) — ¢(0)] < 1},

ou C([—r,T1]; E) est doté de la topologie de convergence uniforme.donc il est
clair que, Z, est un ensemble férmé de C([—r,T1]; E).

Considérer la cartographie.
H:Z,— C([-r,T1]; E)

Définie par.

H(u)(t) = S (t)p(0) + a/o S(t — s)F(us)ds, pour,t € [0, T1]
p(t), pour,t € [=r,0].

Notons que le point fixe de H est une solution intégrale de (P1). Il faux

montrér que.

H(Z,) C Z,.
Soit u € Z,.et t € [0,71], On a pour des constants quelconques, M, et, w,
t
[H(u)(t) = ¢(0)] < [S"()(0) = ¢(0)] + I%/0 S(t — s)F(us)ds|
t
<8000 = o) + Mt [ e\ F(u)ds|.
0

Sans perte de généralité, on suppose que, w > 0. Alors,

[H (u)(t) = p(0)] < |S"(1)p(0) — (0)] + Me"" /Ot | F'(us)]ds.
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A partir de |u(s) — p(0)] < 1, pour, s € [0,T1], et p = |p| + 1, on obtien.
‘U<S)| S p, pour, s € [—7‘, Tl].AIOI'S, |'LL(S)| S p, pour s € [07T1]7 et

[F(us)| < Colp)|us| + [F(0)]
<

Considérons la constante, T} > 0 suffisament grande tel que.

supo<cr, {15 ()9(0) = 9(0)] + Meers} < 1.
Nous déduirons que.

[H(u)(t) = ¢(0)] < S (1)9(0) — ¢(0)] + Me'ert
<1

Par conséquent,
H(Z,) C Z,.

D’autre part, soit, u,v € [0,7}]. on a.

| H(u)(t) — Hw)(®) %/ (t — 8)(Flus) — F(u.)ds

< Me" /|F us) — F(vg)|ds
< Me™tCo(

) |U _Us|d8
0
< Me wT1C'O(p>T1|u - U|C([—T,Tl]?E)'

Notons que, p = |p| + 1, alors, ¢; = pCo(p) + |F(0)| > Co(p) et

Mele Co<,0)T1 S Mele C1T1
< supocs<ry {19 (8)p(0) = p(0)] + Mevseys} < 1

Il ensuit que H est une contraction strict en Z, et H & un et un seul point
fixe u dans Z,.Nous concluons que (P1) &4 une et une seulle solution intégrale
qui est définie sur l'interval, [—r, T1].

Soit u(., ), 'unique solution intégrale de (P1),définie sur sont interval maxi-

mal d’existence, [0,7,],T, > 0 supposons que, T, < +00 et

lim sup|u(t, p)| < +oo.
t—T,
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Alors, il existe une constante, p telle que, |u(t, )| < p pour t € [—r,T,).
Soit t,t+h €[0,T,) h > 0et 6 € [—r,0].
Sit+6 >0, on obtien

u(t + 6+ h,) —u(t+0,0)| <[(S'(t+6+h) =S (t+6))p0)

t+-60

) t+0+h d
+| 5 i S(t—|—9+h—s)F(us,g0)ds—% i S(t+ 60 — s)F(us, )ds|

Il ensuit que.
ut +0+h,0) —u(t+0,0)] <[S'(t+0)||S"(h)e(0) — ¢(0)]

t+0+h
e / S (s @)
t+

t+0
Jr|%/ S(8)(F(Utrorn—s,0) — F(Uso4n, p))ds|.
0
Ce qui implique que,
[ueen(6,9) — (8, 0)] < Me"™2|S'(h)p(0) — (0)] + Me"Tecih

t
L MevTe Co(p) / g (s 0) — s ) d.
0

Sit+ h < 0 alors considérons hy > 0 suffisament grand tel que pour
h € (0, hy).

[uesn (0, ) — (0, 9)| < sup—r<o<olul(o + h, ) — ulo, p)|.
Par conséquent, pour t,t +h € [0,1,),h € (0, hy);
uen(-0) —w(, )| < d(h) + Me”T*"(JS'(h)sO(O) —(0)] + c1h)
M Colp) [ Tuanop) — sl s
0

Ot
d(h) = sup_r<o<olu(o + h, @) — u(o, )|.

D’apres le lemme de Gronwell on a.

[uesn(. ) = wl, 9)| < B(h) exp[Colp) Me" T,

Avec.
B(R) = (k) + Me™™ |5 (R)p(0) = p(0)| + e1h]
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Utilisons certainne arguments, Un on peut prouvé quel que résultats pour
h < 0 il ensuit imédiatement que, hmt—m; u(t, ) existe. par conséquent,
u(., ) peut étre étendu & T, ce qui contredit que [0,7,,) est maximal.

Autrement, nous prouvons que la solution dépand continument ax condition

initial.

Soit, ¢ € Cg, p(0) € D(A) et t € [0,T,). Nouns posons,

p =14 sup_,<s<t|u(s, ¢)|

et
c(t) = Me"" exp(Me™ Co(p)t)

Soit € € (0,1) tel que, ¢(t)e <1et ¥ € Cg, VU (0) € D(A) tel que.
lp—¥| <e

On a.
] < el +e<p.

Soit
Ty = supl{s > 0 [u(, V)] < p, pour, o € [0, 5]}

Si nous supposons que, Ty < t, nous obtenons pour, s € [0, Tp],

[us(., ) — us(, U)| < Me™ | — U| + Me" Cy(p) /0 o (., ) = to (., W)]do.
D’apré le lemme de Gonwall nous déduirons que.
|us(, @) —us (V)| < c(t)lp — ¥ (E3)
Ce qui implique que.
lus(., U)| < c(t)e +p—1< p,pour,s € [0,Tp).

Il en suit que 7y ne peut pas étre le plus grand nombre s > 0 tel que,
|ug (., ¥)| < p, pour o € [0,s]. donc , To >t et t < Ty.En plus , |us(., ¥) < p
pour s € [0, ] alors en utilisant I'inégalité (E3) nous deduirons la dépendance

continue par rapport aux données initiales .
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Theorem 3.3. Supposons que les hypotheses du théoréme( 3.5) sont satis-
faites en plus supposons que F' : Cg — E est continument différentiable
et ' : Op — L(Cg, E) satisfait la condition (Hy) (F' est localement lip-
schitzienne),i.e, pour tout p > 0 il existe un constant Cy(p) > 0, tel que si

©1,p2 € C et 1], |p2| < p alors

|F' (¢1) — F'(p2)] < Ci(p)]pr — ol

Pour chaque p € C}, = ([, 0], E)satisfaisant

’ —_—

p(0) € D(A), ¢ (0) € D(A), et, ' (0) = Ap(0) + F(¢),

Alors lunique solution intégrale u(., ) : [—r,T,) — E de (P1) est une solu-
tion stricte de (P1) sur [—r,T,).

Preuve : Soit ¢ € OF tel que ¢(0) € D(A), » (0) € D(A) et ¢ (0) =
Ap(0)+ F(p).Soit u := u(., ¢).I'unique solution intégrale de(P1) sur [—r, T,)
et 71 € (0,T,). il est clair qu’ell’existe une unique fonction v : [0,77] — E

qui résout ’équation intégrale suivante.

(t)p dt/ S(t — s)F' (us)(vs)ds.

@ (t), pour,t € |

u(t) =
On définie la fonction w par

w(t) = { ©(0) + /Otv(s)ds,pourt €[0,71] €

Nous prouverons que v = w. En utilisant " I’éxprétion de v nous obtenons
pour t € [0, 7}]

o(0) = 9(0) + 509 0) + | St =s)F (w)v)ds
Nous avons ¢(0) € D(A), ¢ (0) € D(A) et ¢’ (0) = Ap(0) + F(¢p), alors

S(t)e (0) = S()Ap(0) + S(t) F(p).

En Utulisant le corollaire (2.1).Nous déduirons que

S(t)e (0) =5 ()e(0) = ¢(0) + S(E)F ().



3.1 Existence local et régularité des solutions 33

On plus, on a

/Ot S(t — 8)F(ws)ds = /Ot S(5)F(w_y)ds.

Et comme les fonctions t — ww; et F sont continuments différentiables, la

fonction .
- / S(t — 8)F(ws)ds
0
est encor continument différentiable et

%/O S(t— s)F(ws)ds = S(t)F(p) + ¢

nous déduirons que

S(t)F(p) = /0 S(t — ) F (ws)(vs)ds.

Par conséquent w satisfait, pour ¢ € [0, T}]

/

w(t) =S5 (t)p(0) + S(t)F(p) + /0 S(t — 8)F (ws)(vs)ds.

Cela implique que

w(t) = S (t)e(0) + %/0 S(t — s)F(ws)ds
—/0 S(t — s)F (ws)(vs)ds + /0 S(t — 8)F (ug)(vs)ds.

Par conséquent nous obtenons

u) =0t = & [ St =s)(F(u) ~ Flw)(w)ds

t (ws))(vs)ds.

i S(t—s)(F (us) — F'

Alors nous déduirons, pour ¢ € [0,7}], que

o=l < 0 ([P G) — Pl + [ 1F () = F (@ndas)

Soit

p = (Sup_r<s<t,|u(8)], SUp_r<s<r; [V(8)], SUP_r<s<ry |w(5)])
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Ils existes Co(p), C1(p) > 0 tel que si 1,02 € Cg et |1], |p2] < p, alors

{mwa—ﬂ%ns%@ma—m|
|F/<us) - Fl(ws)l S Cl(P)‘% - 902"

Cela implique que

t
\mﬂMSMWW%w+mWW/WrWM&
0

Par le lemme de Gronwall nous déduirons que v = w dans [0, 73].

3.2 Stabilité et comportement asymptotique

Dans cette section nous donnons un résultat pour la stabilité linéaire
prés d’un point d’ équilibre. Par un équilibre nous voulons dire une solution
constante.

Sans pert de généralité,nous supposons que 0 est un point d’équilibre . nous
gardons I'hypothése (H;) dans la section (2) et au lieu de (Hj) nous faisons
I’hypothése suivante ,

(H,) : F est continument différentiable, F(0) = 0 et F est globalement Lip-
schtzienne continue sur Cg,

Apartir du théoréme (3.5) et le lemme de Gronwall’s, la condition (H,) im-
plique que pour tout ¢ € Cg, tel que ¢(0) € D(A), (P1) admet une unique

solution intégrale qui est définie sur [0, 00) par

/

(E3)....u(t,p) =5 (t)p(0) + %/0 S(t — s)F(us(.,))ds, pour,t > 0.

Notons par X l'espace de phase de (P1) défini par

X ={peCr:¢p0)e DA}

On défini sur X lopérateur U pour t > 0 par

ot u(., ) est 'unique slution intégrale de (P1) .
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Proposition 3.2.1. La famille (U)o est un semi-groupe fortement continu
tel que
i) U0) =0
i) U(t+s) = U(t) U(s) pourt,s >0,
iii) pour tout o € X, U(t)(¢) est une fonction continue en t > 0 avec
valeurs dans X.
iv) pour tout t >0, U(t) est continue de X dans X.
v) (U)o satisfaisant pour t > 0 et 0 € [—7,0] la propriété de traduc-
lion suivante.

(U(t+0)(¢))(0), si,t+6>0
o(t+0) si,t+6 <0,

(U (@)(0) = {

vi) il existe v >0 et M >0 tel que

[(U(t) (1)) = (U(t)(02))] < Me |1 — @al, pour, 1,02 € X.

Considérons [’équation linéaire de (P1) correspondant d la dérivée

/

F(0)

dwlt) _ 4 = y
(P1.2)....{ dt u(t) + F (0)(ue), pourt > 0

et soit le semi-groupe (U(t))i>0) la solution corréspondant sur X.

Proposition 3.2.2. La dérivée d zéro du semi-groupe non-linéaire (U(t))

pour t > 0 est le semi-groupe linéaire associé d (P1.2).

Definition 3.2.1. Soit Y un espace de Banach et (V(t))i>o le semi-groupe
fortement continu d’opérateurs V(t) : W CY — W, t >0, et xg € Wun
équilibré de (V(t))i>o (i-e., V(t)xo = xo, pour tout t > 0).

L’équilibré xy est dit exponentiellement asymptotiquement stable s’il existe
0>0,u>0k>1 tel que

\V(t)x — x| < ke ™|z — x0|, pour, x € W, avec|z — zo| < 6, et,t > 0.
Nous avons le résultat suivant.

Theorem 3.4. Supposons que (U(t))i>0) est exponentiellement stable, alors

Véquilibré zéro est exponentiellement asymptotiquement stable de (U(t))i>o.
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3.3 Analyse spéctrale et équation caractéris-
tique

Dans cette séction, on considére I’équation différentielle linéaire fonction-

nelle partielle suivante

Ot L est 'opérateur linéaire borné de Cr au E. Laissey-nous vous présenter

la partie Ay de 'opérateur A dans D(A). qui définie par

D(Ag) = {x € D(A) : Az € D(A)},
Ay = A, dansD(Ay).

Pour la suite, on introduire 'opérateur Ty(t) = S'(t), pourt > 0.

Lemme 3.3.0.1. L’opérateur Ay est le générateur infinitésimal de(Ty(t))i>o
dans D(A).

En plus; la formulle (E2) est équivalante a la formulle suivante

t
To(t)e(0) + lim,\_,oo/ To(t — s)ByL(us)ds, pour,t > 0,
0

gO(t),pO’LLT,t S [—7“, 0]7

(E4)....u(t) =

Ou By = MM — A)~'. Soit (U(t))s>0 le semi-groupe solution associé au
(P4) Pour étudier la comportement asymptotique des solutions,nous devons

d’abord calculer le générateur infinitésimal Ay de (U(t))i>o0

Theorem 3.5. Le générateur infinitésimal Ay de semi-groupe (U(t))i>0
sur X est donnér par
D(Ay) ={ ¢ €C([-,01;E) : ¢(0) € D(A), ' (0) € D(4)
et, ¢ (0) = Ap(0) + L(p)},
Ayp =

Preuve : Soit Ay Le générateur infinitésimal de semi-groupe (U(t))i>0
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sur X et soit ¢ € D(Ay) .Alors
limy o+ — w =V, existe, dansX,
App = ©
La premiere expression implique que

iy PEF0) —0(0)

t—0+ t

= U (0),pour,0 € [-1,0).
D’autre part , on a

lim
t—0t

t+0)— (0
LD A0 _ ptofs). pour.o € [1,0),
Ou Dt est la dérivée a droite du fonction ¢. Alors DT = U existe et
D7 est continue sur [—r,0).Pour le prochain nous devons utiliser le lemme

suivant

Lemme 3.3.0.2. Soit ¢ un fonction continue et différentiable a droite sur
[a,b). Si la fonction Dt est continue sur [a,b), alors ¢ est continument
différetiable sur [a,b).

On déduit d’aprés ce lemme que la fonction ¢ est continument diffé-
rentiable sur [—7,0), et ¢ = W, sur [—r,0). Notons que ¥ € X. Alors
limg_,0 ¢ (6) = W(0), existe. Cela prouve que la fonction ¢ est continument
différentiable sue [—r,0] et ¢ = W.D’autre part , comme ¢ € D(Ay), alors le
semi-groupe t — U(t)y est différetiable. Cela implique que la solution inté-
grale u : t — (U(t)p)(0) du (P1) est continument différentiable sur [0, +00).
Par la proposition (3.2.1) nous déduirons que u est une solution stricte de
(P1). Alors on obtient

lim M =4/ (0) = ¢ (0), et, u (0) = Au(0) + L(uq).

Par conséquent
¢ (0) = Ap(0) + L(p).
Nous avons prouvé que
D(Ay) ={ ¢ €C([=r,0; E) : p(0) € D(A),'(0) € D(A)

et, ' (0) = Ap(0) + L()},
Ayp = 80,
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Considérons ¢ € C'([—r,0]; F) tel que
(0) € D(A),¢'(0) € D(A),et, ' (0) = Ap(0) + L().
Soit u : [-r,+00) — E 'unique solution intégrale de (P1) on a

a(ty = 4 TO)0),1>0,
o(t),t € [-r,0].

D’aprét le théoréme (3.3), nous déduirons que u est une solution stricte . cela
implique encor que t — wu; est continument différentiable sur [0, 4+00). Par
conséquent ¢ € D(Ay).

Dans la suite , on suppose que

(Hs) Le semi-groupe (Ty(t))>0 est compact sur D(A), i.e que pour tout ¢ > 0

Vopérateur Ty(t) est compact sur D(A).
Theorem 3.6. Supposons que (Hs) détient. Alors le semi-groupe (U(t))i>o

est compact sur X, quel que soit t > r.

Corollaire 3.1. Supposons que (Hs) détient. Alors pour tout t > r, le spectrec(U(t))
est un ensemble dénembrable et il est compact avec le seul point d’accumu-
lation 0 et si p # 0 € o(U(t)) alors p € Po(Ay) . ot Po(Ay) désigne le

spectre ponctuel .

Corollaire 3.2. Supposons que (Hs) détient. Alors il existe un nembre réel §
tel que ReX < § pour tout X\ € o(Ay).En plus si 5 est un nombre réel donné
alors il existe un nombre fini de A\ € Po(Ay) tel que Re > [5.

Nous pouvons maintenant donner une estimation exponentielle de semi-

groupe solution.

Proposition 3.3.1. Supposons que (Hj) détient. Soit 6 un nombre réel tel
que ReX < & pour tout valeur caractéristique \ de (P1). Alors , pour v > 0
il existe un constant k() > 1 tel que

Ut)¢l < k(1)e 7 |pl, pour,t > 0,et, ¢ € X.

Theorem 3.7. Supposons que (Hs) détient.Soit § le plus petit nombre réel
tel que si A est une valeur caractéristique quelconque de (P1). Alors Re\ < 0.
si 6 <0 ,alors pour tout p € X,|U(t)p| = 0 quand t — +00.5i 6 = 0 alors
il existe p € X \ {0} tel que |U(t)p| = |p| , pour tout t > 0. Si § > 0, alors
il existe p € X tel que |U(t)p| — +oo quand t — +o0.
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3.4 La formulle de variation de la constante

Dans cette séction, nous considérons I’équation différentielle fonctionnelle

partielle linéaire non-homogéne suivante

(P1.3).... { du(t) = Au(t) + L(u) + f(t), pour,t >0
=peCg

Ot f est une fonction continue de R vers E. Pour construire une formulle de
variation de la constante pour (P1.3) , nous définirons 'espace X & (Xj), ot

(Xo), est 'espace donné par
(Xo) = {Xoc;c € E}
et la fonction Xyc est définie par

0 si,0 € [—r0),

(Xoc)(0) = { c si,0=0.

X @ (Xo) est muni de la norme suivante

|0+ Xoc| =[] + |cl.

Theorem 3.8. L’extention continue A~U de lopérateur Ay défini sur X @
(Xo) par

Q(ANU) = {p € CY([-1,0]; E) : p(0) € D(A), et (0) € D(A)}
Avp = ¢ + Xo(Ap(0) + L(p) — ¢'(0)),

est un Hill-Yocida opérateur

Considérons maintenant le probléme de Cauchy non-homogéne suivant.

(P1.4)....{ dt( ) = Ayu(t) + Xo f(t), pour,t >0
=pelCg

Definition 3.4.1. La fonction continue u : [0,4+00) — Cg est dite solution
intégrale de (P1.4) si

(z)/ s)ds € D(Ay), pour,t > 0,
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(ii) u(t) = o + Ay /tu(s)ds + Xo /tf(s)ds,pour,t > 0.
0 0

Appliquons le théoréme (3.1),nous conclurons que pour tout ¢ € X (P1.4)
4 une unique solution intégrale qui est donné par la formulle suivante
t

u(t) =U(t)p + lim U(t — s)B\Xof(s)ds, pour,t > 0.

A—=—+00 [
O By = A\ — Ay)~.

Theorem 3.9. Soit x une solution intégrale de (P1.3), alors la fonction u
donné par

u(t) = xy, pour,t >0

est unique solution intégrale de (P1.4).Inversement, si u est une solution

intégrale de (P1.4), alors la fonction x est définie par

) u(t)(0) sit >0,
olt) = { o(t)  sit <0,

est une solution intégrale de (P1.3).

3.5 Application

Pour illustrer les résultats ci-dessus,nous considérons I’équation différen-
tielle fonctionnelle partielle suivante avec diffution qui décrit I’évolution d’une

espéce animale & diffution unique avec une densité de population u

;

%w(t, £) = ag—;w(t, §) + bw(t, &)+ /_ G(O)w(t+0,£)d0 + f(w(t —1,£)),

(P1.5).... pour,t > 0,et,0 < & <ITI,
w(t,0) = w(t,II) = 0, pour,t > 0,
w(, &) = wo(0,$), pour,—r < 0 < 0,et,0 < ¢ <L

Ot a,b et r sont des constants positifs, f : R — R est une fonction conti-
nue, G : [-r,0] — Rcontinue et w : [—7r,0] x [0,II] - R est une fonction
continue.Dans l'ordre de réécrire (P1.5) dans 1'équation abstraite (P1) nous

introduisons E = C([0,I1]; R), 'espace des fonctions continues de [0, II] vers



3.5 Application 41

R, muni la topologie de la norme uniforme, et nous définissons 'opérateur
linéaire A: D(A)C E— E

{ D(A) = {y € C*([0,TI]; R) : y(0) = y(IT) = 0},
Ay =y,

C’est bien connu que

(0, +00) C p(A),
|(A— A)7H < £, pour, A > 0.

Cela implique que 'hypothése (H;) est satisfaite.D’autre part,nous pouvons
voir que
D(A) = {y € E;y(0) = y(II) = 0} # E.
Soit I’ensemble
z(t)(§) = w(t,§),t =0, € [0, 1],
P(0)(§) = wo(0,€),6 <0, € [0 1],

FO)E) = aol0)(©) + 56 + [ GO0OO0.E €016 € o
Alors, (P1.5) prend la forme abstraite suivante ,

df( ) Al‘( )+F(l’t),pOUT,t 2 07
—QDECE

Nous supposons que,

(i) f est localement Lipschitzienne continue.ll ensuit que F' est locale-
ment Lipschtzienne continue,Soit ¢ € Cp tel que (0) € D(A).Alors
le théoréme (3.1) assuré l'existence de l'interval maximal d’existence
[—7,b,,) et une unique solution intégrale w(t, &) sur [—r, b,,) x [0,11].
Pour enquéter que la solution intégrale w de (P1.5) est strict, nous
ajoutons les hypothéses suivantes,

(ii) f est continument différentiable et f  est localement Lipschitzienne
continue,

(iii) wo € C*([—r,0] x [0,1I]; E), avec &wy(0,0) = Zwo(0,1I) = 0 et

w0(0,6) = agezwo(0,€) + bwo(0,6)
0
T / G(0)wo(0,€)d0 + f(wo(—r, €)), pour, € € [0, 1],
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Alors, F' est continument différentiable sur Cg et ¢,v¢ € Cg,& € [0, 1]

F(o)(4)(&) = b¢(0)(£)+/_ G(0)(0)(€)db+ [ (¢(—r)(€)w(=r)(€)-

F’ est encor localement Lipschitzienne continue sur Cp .Par consé-
quent , tous les conditions du théoréme (3.5) sont satisfaits. Donc w
est une solution strict de (P1.5).Dans l'ordre d’étudier la stabilité,
nous supposons que,

(iv) f est continument différentiable 4 0, f(0) =0, f(0) = 0 et f est
globalement Lipschitzienne.
Alors F' est continument différentiable 4 0 avec F'(0) = 0 est F est
globalement Lipschitzienne sur Cg.Considérons 1’équation linéarisée
de (P1.5) corréspondant a la dérivée F(0) éOO,

e
Bw(t,€) = aZzw(t, €) + bw(t, )+ / G()w(t + 6, €)db,

-

(P1.6).... pour,t > 0,et,0 < & <1II,
w(t,0) = w(t,II) = 0, pour,t > 0,
[ w(0,€) = wo(6,€), pour, —r < < 0,et,0 < ¢ <L

Soit Ay la partie de 'opérateur A dans D(A) donné par

{ D(Ao) = {y € C*(0.1: R) : y(0) = " (0) = y(IT) = " (I) = 0},
Ay =y

Alors Ag généré un semi-groupe fortement continu qui est compact.Soit Ay
le générateur infinitésimal du semi-groupe associe 4 (P1.6) et soit o,(Ay)
dénoter le spectre ponctuel de Ag .Alors A € 0,(Ay) si est seulement si il
existe ¢ € D(Ag), ¢ # 0 tel que Ayp = \o.

Il ensuit que ¢(6) = ey avec y # 0,y € D(A) et Ay = Ay + F' (0)(e’y).

Il ensuit que A € 0,(Ay) si est seulement si il existe y € D(A) et y # 0 tel

que
0
Ay = Ay + by + (/ G(@)ewdﬁ) Y.

Ce qui signifie que

N—b— /0 G(0)eMdh € o,(A) = 0 (Ao).
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Nous savons que le spectre ponctuel 0,(Ag) de Ay est donné par
o,(Ag) = {—an® : n € N*}.

Donc la stabilité exponentielle de solutions de (P1.6) est déterminée par

I’équation caractéristique suivante

0
E5)....A—b— G(0)eMdo = —an?, pour,n > 0.
(E5) , pour,

0
Lemme 3.5.0.1. Supposons que G est positif, G0)dd =1¢et1l<a-—b.

-r
Alors, toutes les racines de (E5) a une partie réelle négative.

Démonstration. Prnant la partie réelle dans ’équation caractéristique (E5),on

a
0

Re(N\) =b+ / G(0)eRN cos(Im(N\))df — an?,

-

Qui implique que
0
Re(\) < b+ / G(0)ef?™? cos(Im(M\0))db — a,

et
Re(A\) <b+1—-a<0.

Par conséquent, toute valeur caractéristique avoir une partie réelle négative
et nous déduirons que le semi-groupe solution de (P1.6)est exponentiellement
stable.

]
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Chapitre 4

Equations intégro-différentielles

fonctionnelles partielles

Résultats préliminaires

Dans cette séction nous collectons un résultat de base sur les opérateurs

resolvants de I’équation linéaire homogéne suivante

(P2.2)... G () = Av(t) +/0 B(t — s)v(s)ds, pour,t > 0

v(0) =y € E

Ou A et B(t) sont des opérateurs linéaires fermés sur F.Dans la suite Y

dénote 'espace de Banach D(A) =Y muni d’un norme défini par
lyly = Ayl + |yl pour,y € Y.
C([0,400);Y) est lespace des fonctions continues de [0, +00) vers Y.

Definition 4.0.1. L’opérateur resolvant de (P2.2) est l'opérateur borné
R(t) € E pourt > 0 tel que

(i) R(0) = I,et,|R(t)] < NeP', pour certaine constante N et /3.

(i) Pour tout x € L(E), R(t)x est fortement continu pour t > 0.

(iii) R(t) € Y pour t > 0. pour x € Y, R(.)x € C([0,4+00); E) N

45
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C(]0,+00);Y) et

R (t)xr = AR(t) + /t B(t — s)R(s)ds

t
= R(t)Ax +/ R(t — s)B(s)ds, pour,t > 0.
0

Theorem 4.1. Supposons que (P2.2) d un opérateur résolvant . Siu est une
solution stricte de (P2.1), alors

u(t) = R(t)ug + /Ot R(t — s)g(s)ds, pour,t > 0....(2.1)

Dans la suite.On suppose que

(Hp) (P2.2) a un opérateur résolvant

(Hy) A génére un semi-groupe fortement continu dans E

(Hy) Pour tout t > 0, B(t) est Uopérateur linéaire fermé de D(A) vers
E,et B(t) € LY, E), ou L(Y, E), est U'espace de tout les ‘opérateurs
linéaires bornés de Y vers E.Pour tout y € Y, la carte t — B(t)y est
uniformément continue bornée, différentiable et sa dirévée t — B’ (t)y

est uniformément continue bornée sur RT.

Theorem 4.2. Supposons que (Hy et (Hz) sont satisfaites. Alors il existe un

unique opérateur résolvant pour (P2.2)

Le théoréme suivant donne la condition suffisante qui assure ’existence
du solution stricte pour (P2.1), qui généralisé le résultat bien connu dans la

théorie des semi-groupes.

Theorem 4.3. Soit g € C'([0,+0); E) et v défini par

v(t) = R(t)vy + /0 R(t — s)g(s)ds, pour,t > 0.

Si vy € D(A), alors v est une solution stricte pour (P2.1)
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4.1 Existance global et gonflement de la solu-

tion douce

Proposition 4.1.1. Supposons que (Hy) est satisfaite .Si u est une solution
stricte de (P2) alors

u(t) = R(t)p(0) + /Ot R(t — s)F(s,us)ds, pour,t > 0....(2.2)

Remarque : La reciproque n’est pas vraie .i.e .Si u satisfait (2.2) ,u peut
étre non différentiable, ¢’est pourquoi nous distinguons entre douce et stricte

solutions.

Definition 4.1.1. La fonction continue u : [—r,+00) — E est une solution

douce de (P2) si elle satisfait [’equation suivante

t
u(t) = R(t)p(0) + / R(t — s)F(s,us)ds, pour,t >0
0
Ug = P.
Dans la suite nous donnons ’existence local des solutions douce de (P2).Dans

ce but ,nous faisons 'hypothése suivante.

(Hj3) F est localement Lipschtzienne.

Theorem 4.4. Supposons que (Hy) et (H3) sont satisfaites.Soit p € C. Alors

il exiete un interval mazimal d’ezistence [—r, b,) et une unique solution douce
u(., ) de (P2) définie sur [—r,b,) et soit

b, = 400, ou,mt_)b; lu(t, p)| = +oo.

En plus ,u(t, ) est une fonction continue en ¢ dans le sens que si ¢ € C
et t € [0,b,). alors il existe des constantes positives K et ¢ telles que .pour
Veletlp—V|<e ona

t € (0,by),et,|u(s,p) —u(s, V)| < K|p — V|, pourtout, s € [—r,t].

Corollaire 4.1. Supposons que (Hy) et (Hs) sont satisfaites. Soit ki une

fonction continue sur R et ky € L}, (RT;RY) soit tel que

[F'(t, @) < ka()lp] + ka(t), pour,t = 0,et, 0 € C.

Alors (P2) d une unique solution douce qui est définie pour tout t > 0.
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Corollaire 4.2. Supposons que (Hy) est satisfaite, et F' est Lipschitzienne

en ce qui concerne le deuxiéme arqument,d savoir
|F(t,01) = F(t, )| < Llgr — @al, pour,t > 0,et, 1,5 € C.
Alors (P2) d une unique solution douce qui est définie pour tout t > 0.
Dans la suite , nous donnons une estimation des solutions

Proposition 4.1.2. Supposons que (Hy) est satisfaite et F' est Lipschitzienne
en ce qui concerne le deuziéme arqument. Soient u et u deux solutions douce

de (P2) correspondant respectivement d ¢ et p € C.Alors

|ug — G| < Nl — plelPHVD siff >0
[ug — @] < NemP|p — plelP+ ML 5ig < 0,

Ou L est la constante de Lipschitz pour F'.

4.2 Existence des solutions stricts

Theorem 4.5. Supposons que (Hy) et (Hs) sont satisfaites.et F' est continu-
ment différentiable, en plus supposons que les dirévées partielles D, F et D, F
sont localement Lipschitziennes dans le sens classique .Soit ¢ € C*([—r,0], E)
tel que ©(0) € D(A), et, ' (0) = Ap(0) + F (0, ¢).

Alors la solution douce correspondant d u devient la solution strict de (P2).

4.3 Cadre général

Dans cette séction nous considérons le cas non autonome

(P2, ] @t =Aul) +/0 B(t — syu(s)ds + F(t, up), pour,t > 0

uy = € Cg

Pour tout ¢ > 0 . A(t) est un opérateur linéaire fermé avec domaine dense

D(A) qui est indépendant de ¢ et pour 0 < s < ¢, B(t,s) est un opérateur
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linéaire fermé ,avec domaine D(A) C D(B)

Consiérons 1’équation linéaire homogéne suivante

t
%(t) = Av(t) _|_/O B(t — s)v(s)ds, pour,t > 0
U(O) =11 € E

(P2.3)...

Supposons Z est un espace de Banach D(A) muni de la norme
lylz = [A0)y| + [y, pour,y € Z.

Definition 4.3.1. L’opérateur résolvant A de (P2.3) est l'opérateur borné,la
fonction wvalorisée R(t,s) € L(E), pour 0 < s < t, ayant les propriétés
suivantes
(i) R(t,s) est fortement continu en s et t, R(s,s) =1 pour 0 < s <t et
|R(t,s)| < N5~ pour certains constants Ny et By.
(1)) R(t,s)Z C Z,R(t,s) est fortement continu en s et t dans Z.
(111) pour chaque x € Z, R(t,s)x est fortement continu différentiable en
settet

OR (1 s)z = A()R(t, s)x + / B(t.r)R(r, s)wdr,

OR (4 s\ = —R(t,s)A(s)x — / R(t,r)B(r, s)xdr,

Definition 4.3.2. Soit (A(t))i>0 une famille des générateurs de Coy-semi-
groupe. (A(t))i>o est dite stable s’il existe des reéls constants Ny > 1 el ay
pour que

T, (A(t;) — M) < No(A — ) ™"

pour tout A > ap,0 <t; <ty < ... <t < +oo,pour,k=1,2,...
Obtenir lexistence de lopérateur résolvant de (P2.1) nous supposons les hy-
pothéses suivantes en raison de Grimmer/[10].

(Hy) (A(t))i>0 est une famille stable des générateurs tel que A(t)x est
fortement continu différentiable sur [0,+o00) pour x € Z. En plus ,
B(t)x est fortement continu différentiable sur [0, +00) pour x € Z.

(Hs) B(t) est continu sur [0,+00) dans L(Z,F) ,ou F est le sous-espace

de ’ensemble des fonctions continues unifomément bornées de R™ vers
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E noté par CUB(R™; E) , F est un espace de Banach avec une norme
plus fort que la norme sup sur CUB(R™Y; E) ou B(.) est défini par

(B(t)z)(s) = B(t+ s, t)xz,pour,x € Z, et t,s > 0.

(H¢) B(t) : 2 — D(Ds) pour tout t > 0, ot Dy est le générateur de
Co-semi-groupe. (S(t))i>o sur F défini par

S(t)F(s) = F(t +s),pour,t,s > 0
(H;) DsB(t) est continu sur [0,+00) vers L(Z,F)
Theorem 4.6. Supposons (Hy),(Hs),(Hg) et (Hz) , alors (P2.1) d un unique

opérateur résolvant.

Definition 4.3.3. La fonction continue u : [—r,+00) — Fest une solution
strict de (P2) si les conditions suivantes sont satisfaites.

(i) u e CY[0,+00); E) (N C([0, +0); Z).

(i1) u satisfait (P2) sur [0,400).

(11i) u(0) = @(0), pour,—r < 6 < 0.

Theorem 4.7. Supposons que (Hy),(Hs),(Hg) et (H7) sont satisfaites .Si u

est une solution strict de (P2), alors
¢
u(t) = R(t,0)p(0) + / R(t, s)F(s,us)ds, pour,t > 0....(2.3)
0

Remarque :La reciproque n’est pas vraie , si u satisfait (E6) , u n’est
pas différentiable en général , c’est pourquoi nous distinguons entre douce et

strict solutions.

Definition 4.3.4. On sait que la fonction continue u : [0,4+00) — E est une

solution douce de (P2) ,si u satisfait [’équation suivante

t
u(t) = R(t,0)(0) —l—/ R(t,s)F(s,us)ds, pour,t >0
0
Ug = QO

Theorem 4.8. Supposons que (Hy),(Hs),(Hg) et (Hr) sont satisfaites et
F est Lipschitzienne en ce qui concerne le deuziéeme argument.Alors pour

n’importe quel ¢ € C.(P2)d une unique solution douce qui est définie pour
t>0.
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4.4 Application

Pour illustration, nous proposons d’étudier ’existence des solutions pour

le model suivant.

> ! 02
%z(t,x) = é‘??z(t,x) +/0 at — s)@z(s,x)ds

0
(P2.4)...8 + [ gt z(t+0,2))d0, pour,t > 0,et,x € [0,11],
z(t,0) = z(t, II), pour,t > 0,

2(0,x) = @o(0, ), pour,d € [—r,0],et, z € [0,11].

\

Ou g : R* xR — R est Lipschitzienne continue en ce qui concerne le deuxiéme
argument,c : Rt — R est continue uniformément bornée, continument dif-
férentiable et o’ est continue uniformément bornée, ¢, : [—r, 0] x [0,T1] — R
sera précisé ultérieurement. Réécrire (P2.4) sous la forme abstraite, nous
introduisons l'espace X = C([0,I1I];R), I'espace des fonctions continues de
[0,1T] vers R disparition a 0 et II, équipé d’une topologie uniforme. Soit
A: D(A) — X étre défini par

{ D(A) = {ye XxnC*([0,1,R) : 4,y € X}
Ay =1,

Soit B : D(A) — Xétre défini par
B(t)(y) = a(t)Ay, pour,t > 0.

Soit f: C — X étre définie par

£t ) (@) = /0 o(t, (6)(2))d8, pour, = € [0,T1], et, ¢ > 0.

-r

Les données initiales ¢ € C est définie par
0(0)(x) = @o(0, ), pour,d € [—r,0], et, z € [0,11].

Supposons v(t) = z(t,x).Alors (P2.4) prendre la forme abstraite suivante

(P2.5)... %U(t) = Au(t) + /0 B(t — s)v(s)ds + f(t,v;), pour,t >0

Vg = @.
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C’est bien connu que A est un générateur d’un Cy-semi-groupe,ce qui im-
plique que (H;) est satisfait.En plus (Hj) est vraie, il en suit que I’équation
linéaire (P2.3) & un opérateur résolvant .puisque f est Lipschitzienne conti-
nue avec le deuxieme argument, alors par le théoréme (0.4), nous déduirons
que (P2.5) & une solution douce unique qui est définie pour ¢ > 0 .Pour la ré-
gularitée, nous imposons les conditions suivantes qui impliques les hypothése
du théoréme (1.5)

(Hg) g € CHR* x R;R), tel que % et g—g sont localement Lipschitziennes

continues.

(Hy)

o € CYH{([-r,0] x [O,H]),telquﬂe,gpo(o, .) € D(A)

2 00(0,2) = o0, ) + / 9(0, o(6, 2))d6, pour, = € [[0, 1.

T

Par conséquent, par le théoréme (1.5) nous obtenons le résultat suivant d’exis-

tence.

Proposition 4.4.1. Sous ce qui précéde (P2.4) d une unique solution strict
v et la solution u définie par u(t,z) = v(t)(x), pour,t > 0,et,x € [0,1I] est
une solution de (P2.4).
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