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Introduction

En théorie des semi-groupe le théorème de Hill-Yosida est un outil puis-

sant et fondamental reliant les propriétés d'un opérateur non-borné

A : D(A) ⊂ E → E (E un espace de Banach) à l'existence et l'unicité et la

régularité des solutions d'une équation di�érentielle(
x
′
(t) = Ax(t)

x(0) = x0

Ce résultat permet notament de donner l'existence , l'unicité et la régularité

des solutions d'une équation di�érentielle fonctionnelle partielle plus é�ca-

cement que le théorème de Cauchy-Lipschitz plus adapté au (EDO).

Par une équation di�érentielle fonctionnelle partielle,nous entendons un sys-

téme d'évolution décrit par

1- L'équation di�érentielle

(P1). . . .

{
du
dt

(t) = Au(t) + F (ut), pour, t ≥ 0

u0 = ϕ ∈ CE

Oú CE = C([−r, 0];E), r > 0, désigne l'espace des fonctions conti-

nues de [−r, 0] vers un espace de Banach E muni de la topologie de

la convergence uniforme et A : D(A) ⊆ E → E est un opérateur

linéaire.pour u ∈ C([−r, b];E),

b > 0 et t ∈ [0, b], ut désigne, l'élement de CE dé�ni par

ut(θ) = u(t+ θ), pour, θ ∈ [−r, 0].

F est une fonction continue de CE vers E.
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2- L'équation intégro- di�érentielle

(P2). . . .

 du
dt

(t) = Au(t) +

∫ t

0

B(t− s)u(s)ds+ F (t, ut), pour, t ≥ 0

u0 = ϕ ∈ CE

(P2.1). . . .

 du
dt

(t) = Au(t) +

∫ t

0

B(t− s)u(s)ds+ g(t), pour, t ≥ 0

u(0) = u0 ∈ E

Oú CE = C([−r, 0];E), r > 0, désigne l'espace des fonctions conti-

nues de [−r, 0] vers un espace de Banach E muni de la topologie de

la convergence uniforme et A : D(A) ⊆ E → E est un opérateur li-

néaire.pour u ∈ C([−r, b];E), b > 0 et t ∈ [0, b], B(t) est un opérateur

linéaire fermé avec domaine D(A) ⊂ D(B), ut désigne l'élement de

CE dé�ni par, ut(θ) = u(t+ θ), pour, −r ≤ θ ≤ 0,

F : R+ × C → E, et, g : R+ → E sont des fonctions continues, dans le

cas où B = 0. (P2) et (P2.1) devient (P1).

C'est bien connu que si A est un générateur in�nitésimal d'un semi-groupe

fortement continu d'opérateur linéaires bornés (T (t))t≥0 dans E est équi-

valent a

(i) D(A) = E

(ii) il existe M ≥ 0, ω ∈ R tel que si λ > ω, (λI − A)−1 ∈ L(E)et

|(λ− ω)n(λI − A)−n| ≤M, pour, n ∈ N,

alors la théorie classique des semi-groupes assure la bonne pose aux problemes

(P1) et [(P2),(P2.1) le cas où B=0], l'autre supposé que F est globalement

Lipschitzienne continue de CE vers E.ils ont prouvé leurs résultats en utuli-

sant la formule de variation de la constante suivante

(E1). . . . u(t) =

 T (t)ϕ(0) +

∫ t

0

T (t− s)F (us(., ϕ))ds, pour, t ≥ 0

ϕ(t), pour, t ∈ [−r, 0],

plus récemment, Parrott [7] établi en raison de l'existence local dans le cas

oú A satisfait (i) et (ii), et F satisfait la condition( Lipschtzienne continue

). Elle utilisait le résultat de Desch et Schappacher [12] pour developper le

principe de stabilitée linéaire de (P1) et [(P2),(P2.1) le cas où B=0] .
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Dans ce travail, nous invésterons le cas où A satisfait la condition de Hill-

Yocida, á savoir (ii) avec un domaine non-dense, et, F satisfait la condition

( localement Lipschitzienne ).Nous montrons l'existence local des solutions

de (P1) et [(P2),(P2.1) le cas où B=0],et dans le cas où F est globalement

Lipschitzienne continue, nous étudions le probleme du stabilité linéaire prés

d'un point d'équilibre.

Pour (P2),(P2.1) ,i,e B 6= 0 l'existence et l'unicité de solution représenté par

la formule de variation de la constante avec autres proprietés de l'opérateur

résolvant. Rappelons que l'opérateur résolvant joue un role plus important

pour la résolution du (P2) et (P2.1), il remplace le role du théorème des

C0-semi-groupe
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Chapitre 1

C0-semi-groupes

Résultats préliminaires

La fonction exponentielle réalise l'isomorphisme fondamental algébrique

et topologique entre le groupe topologique aditif des nombres réels et le

groupe topologique multiplicatif des nombres réels strictement positifs,on

peut constater que la fonction t 7→ eta, a ∈ R, est une solution réele continue

de l'équation fonctionnelle de Cauchy f(t + s) = f(t)f(s) avec la condition

f(0) = 1.

D'autre part, il est trés bien connu que la fonction exponentielle t 7→ eta est

la solution unique sur R de l'équation di�érentielle x
′
= ax, avec la condition

initiale x(0) = 1.

L'importance des fonctions exponentielles a connu une grande croissance

aprés l'année 1888, quand le grand mathématicien Giuseppe Piano a eu l'ins-

piration d'écrire la solution du probléme de Cauchy vectoriel{
x
′
= Ax

x(0) = I

oú A est une matrice quadratique, sous la forme

t 7→
∞∑
n=0

tnAn

n!

Ce résultat a été étendu aux équations di�érentielles opératorielles X
′
= AX,

oú A est un opérateur linéaire borné dans un espace de Banach E , qui a pour

7



8 C0-semi-groupes

solution fondamentale la fonction exponentielle t 7→ etA, A ∈ B(E)

Ces extentions de la fonction exponentielle admettent un modéle général

dans le cadre des algébre de Banach abstraites. Plus précisement, si B est

une algébre de Banach avec l'unité I et a ∈ B, alors la fonction

R→ B
t 7→ eta =

∑∞
n=0

tnan

n!

est dérivable et elle est l'unique solution du probléme de Cauchy{
x
′
= ax

x(0) = I

Compte tenu de l'unicité des solutions du probléme de Cauchy, il en résulte

que la fonction f(x) = eta satisfait sur R á l'équation fonctionnelle de Cau-

chy.

Le probléme reciproque de savoire si les solutions de l'équation fonctionnelle

de Cauchy sont des solutions pour les équations di�érentielles linéaires de

premiére ordre x
′
= ax, s'est avéré être plus di�cile, mais il a été résolu par

Nathan et Yosida.

Donc la double caractérisation de la fonction exponentielle par l'équation

fonctionnelle de Cauchy et par l'équation di�érentielle linéaire de premier

ordre a été établie pour le cas général des algébre de Banach abstraites.

Ces caractérisations importantes ont suggéré l'idée d'étudier les équations

di�érentielles linéaires du premiér ordre par des extentions adéquates de la

fonction exponentielle.

De cette maniére est apparu la nécessité de considérer les équations di�éren-

tielles vectorielles de premier ordre x
′

= Ax oú A n'est pas un opérteur de

l'algébre de Banach des opérateurs linéaires bornés B(E).

Mais pour un opérateur linéaire non- borné dans un espace de Banach E. La

dé�nition d'une fonction exponentielle comme une solution de cette équation

a été realisée par l'introduction des semi-groupes de classe C0.

Mais dans ce cas l'équation fonctionnelle de Cauchy se rèfére aux fonctions

[0,∞) −→ B(E)

t 7→ T (t)
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avec T (0) = I, satisfaisant la relation T (t+ s) = T (t)T (s) et qui sont forte-

ment continues, c'est á dire ayant la propriété

lim
t→0

T (t)x = x, pourtout, x ∈ E

Les résultats fondamentaux pour les semi-groupes de classe C0 dans les es-

paces de Banach ont été obtenus par Hille-Yosida-Feller- Miadera et Phillips,

qui ont crée la théorie des semi-groupes et de leurs générateurs.

Le célébre théorème de Hille-Yosida-Feller-Miadera-Phillips, rétablit le lien

entre l'équation fonctionnelle de Cauchy T (t+ s) = T (t)×T (s) et l'équation

di�érentielle x
′

= Ax, oú A est un opérateur non-borné fermé et densément

dé�ni dans un espace de Banach E. Dans ce cas-la, T (t) représente dans un

certaine sens la fonction exponentielle.

Le moment le plus important concernant la généralisation des semi-groupes

de classe C0 est marqué par l'introduction des semi-groupes intégrés á la �n

des années '80. Dans la théorie des semi-groupes intégrés un rôle important

revient á un théorème classique de représentation de la transformée de La-

place pour une fonction avec valeurs réelles prouvé par Widder. mais dans

1960. Zaidman a prouvé que le théorème de Widder ne peut être étendu aux

fonctions á valeurs dans un espace de Banach arbitraire.

En 1987 Arendt a prouvé un vertion " intégré " du théorème de Widder pour

des fonctions dans un espace de Banach, avec lequel il a obtenu une caracté-

risation compléte pour le générateur d'un semi-groupe intégré.

Dans le cas des smi-groupes intégrés on peut voir que le générateur n'est

pas nécessairement á domaine dense, Dans la suite, nous noterons par E un

espace de Banach sur le corps des nombres complexes C, par L(E) l'algébre

de Banach des opérateurs linéaire bornés dans E et par I l'unité de L(E)

Pour un opérateur linéaire A : D(A) ⊂ E → E nous noterons par

ρ(A) =
{
λ ∈ C | (λI − A)−1, existe, dans,L

}
l'ensemble résolvant de A ∈ L(E) et par

R(.;A) : ρ(A)→ L(E)

R(λ;A) = (λI − A)−1

la résolvante de l'opérateur A.
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1.1 Générateur in�nitésimal du C0-semi-groupe

De�nition 1.1.1. On appelle C0-semi-groupe d'opérateurs linéaires bornés

sur E une famille (T (t))t≥0 ⊂ L(E) véri�ant les propriété suivantes ;

i) T (0) = I;

ii) T (t+ s) = T (t)T (s),∀t, s ≥ 0;

iii) limt↘0 T (t)x = x,∀x ∈ E.

De�nition 1.1.2. On appelle générateur in�nitésimal du C0-semi-groupe

(T (t))t≥0, un opérateur A dé�ni sur l'ensemble ;

D(A) =

{
x ∈ E | lim

t↘0

T (t)x− x
t

existe

}
Par

Ax = lim
t↘0

T (t)x− x
t

,∀x ∈ D(A).

De�nition 1.1.3. Nous noterons par SG(M,ω) l'ensemble des C0-semi-

groupe (T (t))t≥0 ⊂ L(E) pour lesquels il existe ω ≥ 0 et M ≥ 1 tel que

‖T (t)‖ ≤Meωt,∀t ≥ 0.

Dans ce cas on dit que (T (t))}t≥0 est exponentiellement borné

Proposition 1.1.1. Soient (T (t))t≥0 un C0-semi-groupe et A son générateur

in�nitésimal.Si x ∈ D(A), alors T (t)x ∈ D(A) et on a l'égalité ;

T (t)Ax = AT (t)x,∀t ≥ 0.

Preuve : Soit x ∈ D(A). Alors pour tout t ≥ 0, nous avons ;

T (t)Ax = T (t) limh↘0
T (h)x−x

h
=

= limh↘0
T (h)T (t)x−T (t)x

h
= AT (t)x

Donc T (t)x ∈ D(A) et on a T (t)Ax = AT (t)x,∀t ≥ 0.

Remarque : On voit que ;

T (t)D(A) ⊆ D(A),∀t ≥ 0.
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Proposition 1.1.2. Soient (T (t))t≥0 un C0-semi-groupe et A son générateur

in�nitésimal.Alors l'application ;

t ∈ [0,∞) 7→ T (t)x ∈ E

est dérivable sur [0,∞), pour tout x ∈ D(A), et nous avons ;

d

dt
T (t)x = T (t)Ax = AT (t)x, ∀t ≥ 0.

Preuve : Soient x ∈ D(A), t ≥ 0 et h ≥ 0. Alors :

‖T (t+h)x−T (t)x
h

− T (t)Ax‖ ≤ ‖T (t)‖‖T (h)x−x
h
− Ax‖ ≤

≤Meωt‖T (h)x−x
h
− Ax‖.

Par conséquent :

lim
h↘0

T (t+ h)x− T (t)x

h
= T (t)Ax,

d'où
d+

dt
T (t)x = R(t)Ax, ∀t ≥ 0.

Si t− h > 0, alors nous avons

‖T (t−h)x−T (t)x
−h − T (t)Ax‖ ≤

≤ ‖T (t− h)‖‖T (h)x−x
h
− Ax+ Ax− T (h)Ax‖ ≤

≤Meω(t−h
(
‖T (h)x−x

h
− Ax‖+ ‖T (h)Ax− Ax‖

)
Par suite

lim
h↘0

T (t− h)x− T (t)x

−h
= T (t)Ax

et
d−

dt
T (t)x = T (t)Ax, ∀t ≥ 0.

Lemme 1.1.0.1. Soit (T (t))t≥0 un C0-semi-groupe. Alors :

lim
h↘0

∫ t+h

t

T (s)xds = T (t)x

quels que soient x ∈ E et t ≥ 0.
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Prueve : L'égalité de l'énoncé résulte de l'évaluation :

‖ 1
h

∫ t+h

t

T (s)xds− T (t)x‖ = ‖1

h

∫ t+h

t

(T (s)− T (t))xds‖ ≤

≤ sups∈[t,t+h]‖T (s)x− T (t)x‖

et de la continuité de l'application t ∈ [0,∞) 7→ T (t)x ∈ E

Proposition 1.1.3. Soient (T (t))t≥0 ∈ SG(M,ω) et A son générateur in�-

nitésimal. Si x ∈ E, alors
∫ t

0

T (s)ds ∈ D(A) et on a l'égalité :

A

∫ t

0

T (s)ds = T (t)x− x,∀t ≥ 0.

Preuve : Soient x ∈ E et h > 0. Alors :

T (h)−I
h

∫ t

0

T (s)xds =
1

h

∫ t

0

T (s+ h)xds− 1

h

∫ t

0

T (s)xds =

= 1
h

∫ t+h

h

T (u)xdu− 1

h

∫ t

0

T (s)xds =

= 1
h

∫ t+h

0

T (u)xdu− 1

h

∫ h

0

T (u)xdu− 1

h

∫ t

0

T (u)xdu =

= 1
h

∫ t+h

t

T (u)xdu− 1

h

∫ h

0

T (u)xdu.

Par passage á la limite pour h ↘ 0 et compte tenu du lemme(0.1), nous

obtenons :

A

∫ t

0

T (s)xds = T (t)x− x, ∀t ≥ 0

et ∫ t

0

T (s)xds ∈ D(A)

Theorem 1.1. Soient (T (t))t≥0 un C0-semi-groupe et A son générateur in-

�nitésimal.Alors x ∈ D(A) et Ax = y si est seulement si

T (t)x− x =

∫ t

0

T (s)yds,∀t ≥ 0.

Preuve :⇒ Si x ∈ D(A) et Ax = y, alors nous avons :

d

ds
T (s)x = T (s)Ax = T (s)y,∀s ∈ [0, t], t ≥ 0.
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d'où ∫ t

0

T (s)yds =

∫ t

0

d

ds
T (s)xds = T (t)x− x,∀t ≥ 0.

⇐Soient x, y ∈ E tel que

T (t)x− x =

∫ t

0

T (s)yds,∀t ≥ 0.

Alors nous avons

T (t)x− x
t

=
1

t

∫ t

0

T (s)yds,∀t ≥ 0.

d'où

lim
t↘0

T (t)x− x
t

= lim
t↘0

1

t

∫ t

0

T (s)yds = T (0)y = y,∀t ≥ 0.

compte tenu du lemme (1.1). Finalement on voit que x ∈ D(A), et Ax = y.

Theorem 1.2. Soient (T (t))t≥0 ∈ SG(M,ω) et A son générateur in�nitési-

mal.Alors

i) D(A) = E;

ii) A est un opérateur fermé.

Theorem 1.3. (l'unicité de l'engendrement)Soient (T (t))t≥0 et (S(t))t≥0

deux C0-semi-groupes. ayant pour générateur in�nitésimal le même opéra-

teur A. Alors :

T (t) = S(t),∀t ≥ 0.

1.2 La transformée de laplace d'un C0-semi-groupe.

Dans la suite, nous désignerons par Λω l'ensemble {λ ∈ C | Reλ > ω}.
Soit λ ∈ Λω et (T (t))t≥0 ∈ SG(M,ω). Nous avons :

‖T (t)‖ ≤Meωt, ∀t ≥ 0

et on voit que :

‖e−λtT (t)x‖ ≤ e−Reλt‖T (t)‖‖x‖ ≤Me−(Reλ−ω)t‖x‖,∀x ∈ E.

Dé�nissons l'application :

Rλ : E → E
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par

Rλx =

∫ ∞
0

e−λtT (t)xdt

Il est clair que Rλ est un opérateur linéaire borné. De plus, on a :

‖Rλx‖ ≤
∫ ∞

0

‖e−λtT (t)x‖dt ≤ M

Reλ− ω
‖x‖,∀x ∈ E.

d'oú il résulte que Rλ est un opérateur linéaire borné.

De�nition 1.2.1. L'opérateur :

R : Λω → L(E)

R(λ) =

∫ ∞
0

e−λtT (t)dt

s'appelle la transformée de la place du semi-groupe (T (t))t≥0 ∈ SG(M,ω).

Soit D ⊂ C un ensemble ouvert. Une application analytique :

λ ∈ D 7→ Rλ ∈ B(E)

qui véri�e la propriété :

Rλ −Rµ = (λ− µ)RλRµ, ∀λ, µ ∈ D,

s'appelle une pseudo résolvante.

Theorem 1.4. Soit T : [0,∞) → B(E) une application fortement cotinue

pour laquelle il existe M ≥ 0 et ω ∈ R tel que

‖T (t)‖ ≤Meωt,∀t ≥ 0.

Alors l'application

R : Λω → L(E)

R(λ) =

∫ ∞
0

e−λtT (t)dt

est une pscudo-résolvante si est seulement si on a

T (t+ s) = T (t)T (s),∀t, s ≥ 0.
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Theorem 1.5. Soient A : D(A) ⊂ E → E un opérateur linéaire fermé

á domaine dense et (T (t))t≥0 ⊂ L(E) une famille fortement continue pour

laquelle il existe M ≥ 0 et ω ∈ R tel que

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

Les a�rmations suivantes sont équivalentes :

i) (T (t))t≥0 est un C0 − semi − groupe. exponentiellement borné ayant

pour générateur in�nitésimal l'opérateur A ;

ii) Λω ⊂ ρ(A) et pour tout λ ∈ Λω et tout x ∈ E on a R(λ)x = R(λ;A)x.

Theorem 1.6. Soient (S(t))t≥0 un C0-semi-groupes. et A son générateur

in�nitésimal. Pour tout λ ∈ Λω on a ;

‖R(λ;A)n‖ ≤ M

(Reλ− ω)n
,∀n ∈ N?.

1.3 L'approximation généralisée de Yosida

Lemme 1.3.0.1. Soit A : D(A) ⊂ E → E un opérateur linéaire véri�ant les

propriétés suivantes :

i) A est un opérateur fermé et D(A) = E

ii) il existe ω ≥ 0 et M ≥ 1 tel que Λω ⊂ ρ(A) et pour λ ∈ Λω, on a :

‖R(λ;A)n‖ ≤ M

(Reλ− ω)n
,∀n ∈ N?.

Alors pour tout λ ∈ Λω, nous avons :

lim
Reλ→∞

λR(λ;A)x = x, ∀x ∈ E.

De plus λR(λ;A) ∈ L(E) et :

lim
Reλ→∞

λAR(λ;A)x = Ax, ∀x ∈ D(A).

Remarque : On peut dire que les opérateurs bornés λAR(λ;A) sont

des approximations pour l'opérateur non borné A.

De�nition 1.3.1. La famille {Aλ}λ∈Λω ⊂ B(E), où Aλ = λAR(λ;A) s'ap-

pelle l'approximation généralisée de Yosida de l'opérateur A.
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Theorem 1.7. Soient(T (t))t≥0 est un C0−semi−groupe. A son générateur

in�nitésimal et{Aµ}µ∈Λω l'approximation généralisée de Yosida de l'opérateur

A. Alors pour tout µ ∈ Λµ, il existe Ω > ω tel que ΛΩ ⊂ ρ(Λµ) et pour tout

λ ∈ ΛΩ on a

‖R(λ;A)‖ ≤ M

(Reλ− Ω)

De plus, pour ε > 0, il existe une constante C > 0 (qui dépend de M et ε)

tel que :

‖R(λ;A)x‖ ≤ C

|λ|
(‖x‖+ ‖Ax‖), ∀x ∈ D(A).

quels que soient λ, µ ∈ C, et Reµ > ω + |µ|
2
.

Theorem 1.8. (Hille-Yosida)Un opérateur

A : D(A) ⊂ E → E

est le générateur in�nitésimal d'un C0−semi−groupe. (T (t))t≥0 ∈ SG(M,ω).

si est seulement si :

i) A est un opérateur fermé et D(A) = E

ii) il existe ω ≥ 0 et M ≥ 1 tel que Λω ⊂ ρ(A) et pour λ ∈ Λω, on a :

‖R(λ;A)n‖ ≤ M

(Reλ− ω)n
,∀n ∈ N?.



Chapitre 2

Semi-groupe intégré

Propriétés élémentaires

Soient (T (t))t≥0 un C0-semi-groupe. et A son générateur in�nitésimal.

Soit

S(t) =

∫ t

0

T (s)ds,∀t ≥ 0.

Alors la transformée de Laplace de S satisfait les égalités suivantes :∫ ∞
0

e−λtS(t)dt =

∫ ∞
0

e−λt
∫ t

0

T (s)dsdt =

= 1
λ

∫ ∞
0

e−λtT (t)dt =
1

λ
R(λ;A).

Le théorème (1.4) conduit á la question suivante : on peut trouver une équa-

tion fonctionelle véri�ée par S tel que l'application

λ ∈ Λω 7→ λ

∫ ∞
0

e−λtS(t)dt

est une pseudo-résolvante ? On a le théorème suivant

Theorem 2.1. Soit S : [0,∞) → L(E) une application fortement continue

pour laquelle il existe M ≥ 0 et ω ∈ L tel que

‖S(t)‖ ≤Meωt,∀t ≥ 0.

Alors les a�rmations suivantes sont équivalentes :

17
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i) l'application R : Λω → L(E)

R(λ) = λ

∫ ∞
0

e−λtS(t)dt

est une pseudo-résolvante ;

ii) pour tous t, s ≥ 0 on a

S(t)S(s) =

∫ t+s

t

S(r)dr −
∫ s

0

S(r)dr.

De�nition 2.0.1. Soit E Un espace de Banach. Une famille

(S(t))t≥0 ⊂ L(E) est dite semi-groupe intégré si elle satisfait les conditions

suivantes

(i) S(0) = 0

(ii) ∀x ∈ E , S(t)x est une fonction continue en t ≥ 0 a valeur dans E

(iii) ∀t, x ≥ 0, S(s)S(t) =

∫ s

0

(S(t+ τ)− S(τ))dτ.

Remarque : Soit (S(t))t≥0 ⊂ L(E) un semi-groupe intégré. Pour tout

N ∈ N, nous désignerons par Cn l'ensembe

{x ∈ E | S(.)x ∈ Cn([0,∞);E)}

avec la convention C0 = E.

Alors la propriété(iii) de la dé�nition (1.0.1) peut être remplacée par

S(t)x ∈ C1

et

S
′
(τ)S(t)x = S(τ + t)x− S(τ)x,∀τ, t ≥ 0,∀x ∈ E.

De plus,nous avons

S(t);Cn → Cn+1,∀n ∈ N, et,∀t ≥ 0

et

S
′
(t);Cn → Cn,∀n ∈ N, et,∀t ≥ 0

Proposition 2.0.1. Soit (S(t))t≥0 ⊂ L(E) un semi-groupe intégré.Alors :
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i) pour tout x ∈ C1 on a

S(τ)S
′
(t)x = S(τ + t)x− S(τ)x,∀τ, t ≥ 0,

ii) pour tout x ∈ C1 on a

S
′
(t)x = S

′′
(0)S(t)x+ S

′
(0)x,∀t ≥ 0,

iii) pour tout x ∈ C2 on a

S
′′
(0)S(t)x = S(t)S

′′
(0)x,∀t ≥ 0,

Preuve :

i) Soit x ∈ C1 et r, t ≥ 0. Alors

S(r)S
′
(t)x = d

dt
[S(r)S(t)]x = d

dt
[S(t)S(r)]x =

= d
dt

[∫ t

0

[S(τ + r)− S(τ)]dτ

]
x = S(t+ r)x− S(t)x.

ii) Soit x ∈ C1 et r, t ≥ 0. Alors

S
′′
(r)S(t)x = d

dt
[S
′
(r)S(t)x] =

= d
dt

[S(r + t)x− S(r)x] = S
′
(r + t)x− S ′(r)x.

Pour r = 0, en résulte :

S
′′
(0)S(t)x = S

′
(t)x− S ′(0)x,∀t ≥ 0.

d'où on obtient (ii).

iii) Soit x ∈ C1 et r, t ≥ 0. Alors

S(r)S
′′
(t)x = d

dt
[S(r)S

′
(t)]x = d

dt
[S(r + t)x− S(r)x] =

= S
′
(r + t)x− S ′(r)x.

Pour t = 0, il vient

S(r)S
′′
(0)x = S

′
(r)x− S ′(0)x,∀r ≥ 0.

Compte tenu de l'égalité(ii),il en suit (iii).

Exemple : Soit (T (t))t≥0 un semi-groupe de classe C0. Alors la famille

(S(t))t≥0

S(t) =

∫ t

0

T (s)ds.

est un semi-groupe intégré sur E
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2.1 Espace dégénéré du semi-groupe intégré

De�nition 2.1.1. On appelle espace dégénéré du semi-groupe intégré (S(t))t≥0

l'ensemble

N = {x ∈ E | S(t)x = 0,∀t ≥ 0}

Remarque : N est un sous-espace fermé de C1.

Proposition 2.1.1. Soit (S(t))t≥0 un semi-groupe intégré et

N1 = {x ∈ C1 | S ′(0)x = 0}.

Alors N = N1

Preuve : Soit x ∈ N . Alors S(t)x = 0, pour tout t ≥ 0. par conséquent

S
′
(t)x = 0, pour tout t ≥ 0, d'où il résulte S

′
(0)x = 0. Donc x ∈ N1 et, par

suite, N ⊂ N1.

Soit x ∈ N1. Alors S
′
(0)x = 0. De l'égalité

S(r)S
′
(t)x = S(t+ r)x− S(t)x, ∀t, r ≥ 0

on obtient

S(r)x = 0, ∀r ≥ 0

et on voit que x ∈ N . Par suite N1 ⊂ N .

Finalement, on voit que N = N1.

De�nition 2.1.2. On dit que le semi-groupe intégré (T (t))t≥0 et non-dégénéré

si N = {0}. En cas contraire, on dit que (T (t))t≥0 est un semi-groupe intégré

dégénéré.

Remarque :Un semi-groupe intégré (S(t))t≥0 est non-dégénéré si

∀t ≥ 0, S(t)x = 0⇒ x = 0.

Proposition 2.1.2. Un semi-groupe intégré (S(t))t≥0 est non-dégénéré si est

seulement si on a S
′
(0)x = x pour tout x ∈ C1.
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Preuve : ⇒ Soit (S(t))t≥0un semi-groupe intégré non-dégénéré.Alors

S(t)x = 0 ,pour tout t ≥ 0, implique x = 0.

Soit x ∈ C1. Avec la proposition(1.0.1). pour tout t, t ≥ 0 on voit que

S(r)S
′
(t)x = S(r + t)x− S(t)x

d'où, pour t = 0 il s'ensuit

S(r)S
′
(0)x = S(r)x,∀r ≥ 0.

ou bien

S(r)[S
′
(0)x− x] = 0,∀r ≥ 0.

Comme (S(t))t≥0 est un semi-groupe intégré non-dégénéré, il en résulte

S
′
(0)x− x = 0⇒ S

′
(0)x = x

⇐ Soit (S(t))t≥0un semi-groupe intégré tel que S(0)x = 0, pour tout

x ∈ C1. Soit x ∈ N . Alors S
′
(0)x = 0 et par conséquent , x = S

′
(0)x = 0,

d'où il ensuit que N = {0}. Il en résult que (S(t))t≥0un semi-groupe intégré

non-dégénéré

Theorem 2.2. Soit (S(t))t≥0un semi-groupe intégré non-dégénéré.Alors (S
′
(t))t≥0

est un C0 − semi− groupe sur C1.

Preuve : Pour tout x ∈ C1, l'application

t ∈ [0,∞) 7−→ S
′
(t)x ∈ C1

est continue. Compte tenu de la proposition (1.0.3) on a S
′
(0) = I et avec la

proposition (1.0.1), on voit que

S
′
(r)S

′
(t)x = S

′
(r + t),∀r, t ≥ 0.

Il en résulte que (S
′
(t))t≥0 est un C0 − smi− groupe sur C1.
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2.2 Opérateur générateur du semi-groupe inté-

gré

De�nition 2.2.1. Un semi-groupe intégré (S(t))t≥0 est dit exponentielement

borné, s'il existe une constante M ≥ 0 et ω ∈ R tel que

‖S(t)‖ ≤Meωtpour, t ≥ 0

Si (S(t))t≥0 est un semi-groupe intégré, exponentielement borné, Alors la

transformée de Laplace R(λ) = λ

∫ +∞

0

e−λtS(t)dt existe pour tout,

λ > ω.

De�nition 2.2.2. Un opérateur A est dit générateur d'un semi-groupe inté-

gré non-dégénéré, s'il existe ω ∈ R tel que (ω,+∞) ⊂ ρ(A) (la résolvante de

A). et une famille exponentielement bornée (S(t))t≥0 d'opérateurs lineaires

bornées tel que S(0) = 0 et R(λ,A) =

∫ +∞

0

e−λtS(t)dt pour toute λ > ω, oú

R(λ,A) = (λI − A)−1 pour λ ∈ ρ(A)

Remarque : On voit que x ∈ D(A) et Ax = y si et seulement si x ∈ C1 et

S
′
(t)x− x = S(t)y,∀t ≥ 0.

Proposition 2.2.1. Soit A : D(A) ⊂ E → E le générateur d'un semi-groupe

intégré non-dégénéré, (S(t))t≥0. Alors

C2 ⊂ D(A) ⊆ C1

et

Ax = S
′′
(0)x,∀x ∈ C2.

Proposition 2.2.2. Soit A : D(A) ⊂ E → E le générateur d'un semi-groupe

intégré non-dégénéré, (S(t))t≥0.Alors A est un opérateur fermé.

Proposition 2.2.3. Soit A un générateur d'un semi-groupe intégré non-

dégénéré (S(t))t≥0. Alors pour toute x ∈ E et t > 0∫ t

0

S(s)xds ∈ D(A), et, S(t)x = A

(∫ t

0

S(s)xds

)
+ tx
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En plus, pour toute x ∈ D(A), t ≥ 0

S(t)x ∈ D(A), AS(t) = S(t)Ax

Et

S(t)x =

∫ t

0

S(t)Axdx+ tx

Lemme 2.2.0.1. Soit A : D(A) ⊂ E → E le générateur d'un semi-groupe

intégré non-dégénéré, (S(t))t≥0. et

ϕ : [0,∞) −→ E

une application continue tel que∫ t

0

ϕ(s)ds ∈ D(A),∀t ≥ 0.

Si

A

∫ t

0

ϕ(s)ds = ϕ(t),∀t ≥ 0.

alors ϕ(t) = 0, pour tout t ≥ 0.

Theorem 2.3. (l'unicité de l'engendrement) Soient (S(t))t≥0. et (U(t))t≥0.

deux semi-groupes intégrés ayant pour générateur le même opérateur

A : D(A) ⊂ E → E. Alors pour tout t ≥ 0 on a S(t) = U(t).

Preuve : Pour tout x ∈ E on considére l'application

ϕ : [0,∞) −→ E

ϕ(t) = S(t)− U(t)

compte tenu de la proposition (2.0.6), on obtient

A

∫ t

0

ϕ(s)ds = A

∫ t

0

S(s)xds−
∫ t

0

U(s)xds =

= S(t)x− tx− U(t)x+ tx = ϕ(t).∀t ≥ 0.

Avec le lemme (2.0.0.1) il s'ensuit

ϕ(t) = 0.∀t ≥ 0.

d'où l'a�rmation de l'énoncé en découle immédiatement.
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Corollaire 2.1. Soit A un générateur d'un semi-groupe intègré (S(t))t≥0.

Alors pour toute x ∈ E et t ≥ 0 on a S(t)x ∈ D(A). En plus ,

Soit x ∈ E Alors S(.)x est di�erentiable adroite en t ≥ 0 si est seulement si

S(t)x ∈ D(A). dans ce cas

S
′
(t)x = AS(t)x+ x

2.3 Opérateur de Hill-Yocida

Le cas le plus important est la où le semi-groupe intégré est localement

Lipschitzien continu.

De�nition 2.3.1. Un semi-groupe intégré (S(t))t≥0 est dit localement Lip-

schitzien continu, si pour toute τ > 0 il existe un constant K(τ) > 0 tel

que

|S(t)− S(s)| ≤ K(τ)|t− s|, pour, t, s ∈ [0, τ ] .

Dans ce cas (S(t))t≥0 est exponentielement borné.

De�nition 2.3.2. Un opérateur linéair A satisfait la condition de Hill-

Yosida (ou est un opérateur de Hill-Yosida ) s'il existe M ≥ 1 et ω ∈ R
tel que (ω,+∞) ⊂ ρ(A) et

sup{(λ− ω)n|R(λ,A)n|pour, n ∈ N, λ > ω} ≤M.

Le theoréme suivant est appelé la condition de Hill-Yosida qui caractérisé

les générateurs des semi-groupes intégrés localement Lipschitziens continus.

Theorem 2.4. Les assertions suivantes sont equivalantes

(i) A est générateur d'un semi-groupe intégré localement Lipschitzien continu,

(ii) A satisfait la condition de Hill-Yosida

Remarque : Si A est un générateur d'un semi-groupe (S(t))t≥0 dans E

Alors la partie AF de A dans F = D(A) est un générateur du C0-semi-groupe

(T (t))t≥0 dans F et on a, pour x ∈ F, S(t)x =

∫ t

0

T (s)(x)ds; t ≥ 0. Ainsi

pour x ∈ E \ F la fonction t −→ S(t)x n'est pas di�érentiable pour t ≥ 0



Chapitre 3

Équations di�érentielles

fonctionnelles partielles

Résultats préliminaires

Dans cette séction nous donnons quelque resultats pour l'existence des

solutions au probleme de Cauchy suivant.

(P1.1). . . .

{
du
dt

(t) = Au(t) + f(t).pourt ≥ 0

u(0) = x ∈ E

Où A satisfait la condition de Hill-Yosida dans E sans être densément dé�ni

. Par une solution de (P1.1) dans [0, T ] où T ≥ 0, nous comprenons une

fonction u ∈ C1([0, T ]) satisfait u(t) ∈ D(A) pour t ∈ [0, T ], tel que les deux

relations de (P1.1) se réalisent.

La dé�nition suivante est de Da Prato et Sinestrari.

De�nition 3.0.1. Soit f ∈ L1
loc(0,+∞;E) et x ∈ E, on sait que

u : [0,+∞) → E est une solution intégrale de (P1.1) si les assértions sui-

vantes sont vraies

(i) u ∈ C([0,+∞);E),

(ii)

∫ t

0

u(s)ds ∈ D(A) pour t ≥ 0,

(iii) u(t) = A

(∫ t

0

u(s)ds

)
+

∫ t

0

f(s)ds, pour, t ≥ 0.

25
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Remarque : Apartire de cêtte dé�nition, on déduit que pour toute solu-

tion intégrale u, on a, u(t) ∈ D(A),pour tout, t > 0. car u(t) = limh→0
1
h

∫ t+h

t

u(s)ds

et
∫ t+h

t

u(s)ds ∈ D(A), En particulier, x ∈ D(A). est une condition nécés-

saire pour l'existence d'une solution intégrale de (P1.1).C'est suggestif á ré-

soudre (P1.1) par la méthode de variation de la constante la où S(t) est un

semi-groupe généré par A.

Theorem 3.1. Supposons que A satisfait la condition de Hill-Yosida dans

E, x ∈ D(A) et f : [0,+∞) → E est une fonction continue. Alors (P1.1)

admet une unique solution qui est donnée par la formulle de variation de la

constante suivante

(E1). . . . u(t) = S
′
(t)x+

d

dt

∫ t

0

S(t− s)f(s)ds, pour, t ≥ 0,

En plus la fonction u satisfait l'approximation suivante,

|u(t)| ≤Meωt
(
|x|+

∫ t

0

e−ωs|f(s)|ds
)
, pour, t ≥ 0.

Notons que le théorème (3.1) dit encor que
∫ t

0

S(t − s)f(s)ds est di�é-

rentiable par rapport á t

3.1 Éxistence local et régularité des solutions

Dans la suite nous considérons que.

(H1) A est un opérateur de Hill-Yosida.

(H2) F : CE → E est localement Lipschtziene continue, i.e., pour toute

ρ > 0 il existe une constante C0(ρ) > 0 tel que si ϕ1, ϕ2 ∈ CE et

|ϕ1|, |ϕ2| ≤ ρ alors

|F (ϕ1)− F (ϕ2)| ≤ C0(ρ)|ϕ1 − ϕ2|.

D'apres le théoreme (2.4), A est le générateur du semi-groupe intégré locale-

ment Lipschitzien continu (S(t))t≥0 dans E et |S(t)| ≤Meωt pour t ≥ 0.
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De�nition 3.1.1. On sait que la fonction u : [−r,+∞)→ E est une solution

intégrale de (P1) si les conditions suivantes sont vraies,

(i) u ∈ C([−r,+∞);E)

(ii) u0 = ϕ,

(iii)

∫ t

0

u(s)ds ∈ D(A) pour, t ≥ 0,

(iv) u(t) = ϕ(0) + A

(∫ t

0

u(s)ds

)
+

∫ t

0

F (us)ds pour,t ≥ 0.

De�nition 3.1.2. On sait que la fonction u : [−r,+∞)→ E est une solution

stricte de (P1) si les conditions suivantes sont satisfaites,

(i) u ∈ C1([−r,+∞);E),

(ii) u0 = ϕ,

(iii) u satisfait (P1) pour, t ≥ 0.

Apartir de la fèrméture de l'opérateur A. on peut voir les résultats sui-

vants.

Proposition 3.1.1. (i) Si u est une solution intégrale, de, (P1) dans,

[−r, a], alors pour toute, t ∈ [0, a], u(t) ∈ D(A). En particulier ϕ(0) ∈
D(A).

(ii) Si u est une solution intégrale, de (P1), dans, [−r, a],tel que, u ap-

partienne a C1([0, a];E) ou C([0, a];D(A)), alors u est encor solution

stricte de (P1) dans [−r, a].

D'apres le théoréme (3.1). si la solution intégrale u existe, alors. u est

donné par la formulle de variation de la constante suivante.

(E2). . . . u(t) =

 S
′
(t)ϕ(0) + d

dt

∫ t

0

S(t− s)F (us)ds, pourt ∈ [0, T ]

ϕ(t), pourt ∈ [−r, 0],

Theorem 3.2. Supposons que, (H1) et (H2) sont satisfaites. Soit, ϕ ∈ CE
tel que, ϕ(0) ∈ D(A) Alors il existe un interval maximal d'existence [−r, Tϕ),

Tϕ > 0, et une unique solution intégrale u(., ϕ) de (P1) dé�nie sur [−r, Tϕ)

et soit.

Tϕ = +∞, ou; = lim
t→T−ϕ

sup|u(t, ϕ)| = +∞
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De plus, u(t, ϕ) est une fonction continue de ϕ, dans ce sense si, ϕ ∈ CE,

ϕ(0) ∈ D(A) et t ∈ [0, ϕ), alors il existe des constantes, L et ε tel que, pour,

Ψ ∈ CE, Ψ(0) ∈ D(A) et |ϕ−Ψ| < ε, on a

t ∈ [0, Tϕ), et, |u(s, ϕ)− u(s,Ψ)| ≤ L|ϕ−Ψ|, pour, s ∈ [−r, t]

Preuve : Notons que (H2) implique que, ∀ρ > 0,∃, C0 > 0 tel que pour

ϕ ∈ C0, et, |ϕ| ≤ ρ,on a

|F (ϕ)| ≤ C0(ρ)|ϕ|+ |F (0)| ≤ ρC0(ρ) + |F (0)|.

Soit ϕ ∈ CE, ϕ(0) ∈ D(A), ρ = |ϕ|+ 1, c1 = ρC0(ρ) + |F (0)|, et T1 > 0,

Considérons l'ensemble suivant .

Zϕ = {u ∈ C([−r, T1];E) : u(s) = ϕ(s), si, s ∈ [−r, 0], et, sup0≤s≤T1|u(s)− ϕ(0)| ≤ 1} ,

où C([−r, T1];E) est doté de la topologie de convergence uniforme.donc il est

clair que, Zϕ est un ensemble fèrmé de C([−r, T1];E).

Considérer la cartographie.

H : Zϕ → C([−r, T1];E)

Dé�nie par.

H(u)(t) =

 S
′
(t)ϕ(0) + d

dt

∫ t

0

S(t− s)F (us)ds, pour, t ∈ [0, T1]

ϕ(t), pour, t ∈ [−r, 0].

Notons que le point �xe de H est une solution intégrale de (P1). Il faux

montrér que.

H(Zϕ) ⊆ Zϕ.

Soit u ∈ Zϕ,et t ∈ [0, T1], On a pour des constants quelconques, M, et, w,

|H(u)(t)− ϕ(0)| ≤ |S ′(t)ϕ(0)− ϕ(0)|+ | d
dt

∫ t

0

S(t− s)F (us)ds|

≤ |S ′ϕ(0)− ϕ(0)|+Mewt
∫ t

0

e−ws|F (us)ds|.

Sans perte de généralité, on suppose que, w > 0. Alors,

|H(u)(t)− ϕ(0)| ≤ |S ′(t)ϕ(0)− ϕ(0)|+Mewt
∫ t

0

|F (us)|ds.
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A partir de |u(s) − ϕ(0)| ≤ 1, pour, s ∈ [0, T1], et ρ = |ϕ| + 1, on obtien.

|u(s)| ≤ ρ, pour, s ∈ [−r, T1].Alors, |u(s)| ≤ ρ, pour s ∈ [0, T1], et

|F (us)| ≤ C0(ρ)|us|+ |F (0)|
≤ c1

Considérons la constante, T1 > 0 su�sament grande tel que.

sup0≤s≤T1

{
|S ′(s)ϕ(0)− ϕ(0)|+Mewsc1s

}
< 1.

Nous déduirons que.

|H(u)(t)− ϕ(0)| ≤ |S ′(t)ϕ(0)− ϕ(0)|+Mewtc1t

< 1

Par conséquent,

H(Zϕ) ⊆ Zϕ.

D'autre part, soit, u, v ∈ [0, T1]. on a.

|H(u)(t)−H(v)(t)| = | d
dt

∫ t

0

S(t− s)(F (us)− F (vs))ds|

≤Mewt
∫ t

0

|F (us)− F (vs)|ds

≤MewtC0(ρ)

∫ t

0

|us − vs|ds

≤MewT1C0(ρ)T1|u− v|C([−r,T1];E).

Notons que, ρ = |ϕ|+ 1, alors, c1 = ρC0(ρ) + |F (0)| > C0(ρ) et

MewT1C0(ρ)T1 ≤MewT1c1T1

≤ sup0≤s≤T1
{
|S ′(s)ϕ(0)− ϕ(0)|+Mewsc1s

}
< 1

Il ensuit que H est une contraction strict en Zϕ et H á un et un seul point

�xe u dans Zϕ.Nous concluons que (P1) á une et une seulle solution intégrale

qui est dé�nie sur l'interval, [−r, T1].

Soit u(., ϕ), l'unique solution intégrale de (P1),dé�nie sur sont interval maxi-

mal d'existence, [0, Tϕ], Tϕ > 0 supposons que, Tϕ < +∞ et

lim
t→T−ϕ

sup|u(t, ϕ)| < +∞.
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Alors, il existe une constante, ρ telle que, |u(t, ϕ)| ≤ ρ pour t ∈ [−r, Tϕ).

Soit t, t+ h ∈ [0, Tϕ) h > 0 et θ ∈ [−r, 0].

Si t+ θ ≥ 0, on obtien

|u(t+ θ + h, ϕ) −u(t+ θ, ϕ)| ≤ |(S ′(t+ θ + h)− S ′(t+ θ))ϕ(0)|

+| d
dt

∫ t+θ+h

0

S(t+ θ + h− s)F (us, ϕ)ds− d

dt

∫ t+θ

0

S(t+ θ − s)F (us, ϕ)ds|

Il ensuit que.

|u(t+ θ + h, ϕ) −u(t+ θ, ϕ)| ≤ |S ′(t+ θ)||S ′(h)ϕ(0)− ϕ(0)|

+| d
dt

∫ t+θ+h

t+θ

S(s)F (ut+θ+h−s, ϕ)ds|

+| d
dt

∫ t+θ

0

S(s)(F (ut+θ+h−s, ϕ)− F (ut+θ+h, ϕ))ds|.

Ce qui implique que,

|ut+h(θ, ϕ)− ut(θ, ϕ)| ≤MewTϕ|S ′(h)ϕ(0)− ϕ(0)|+MewTϕc1h

+MewTϕC0(ρ)

∫ t

0

|us+h(., ϕ)− us(., ϕ)|ds.

Si t+ h < 0 alors considérons h0 > 0 su�sament grand tel que pour

h ∈ (0, h0).

|ut+h(θ, ϕ)− ut(θ, ϕ)| ≤ sup−r≤σ≤0|u(σ + h, ϕ)− u(σ, ϕ)|.

Par conséquent, pour t, t+ h ∈ [0, Tϕ), h ∈ (0, h0);

|ut+h(., ϕ)− ut(., ϕ)| ≤ δ(h) +MewTϕ(|S ′(h)ϕ(0)− ϕ(0)|+ c1h)

+MewTϕC0(ρ)

∫ t

0

|us+h(., ϕ)− us(., ϕ)|ds.

Où

δ(h) = sup−r≤σ≤0|u(σ + h, ϕ)− u(σ, ϕ)|.

D'apres le lemme de Gronwell on a.

|ut+h(., ϕ)− ut(., ϕ)| ≤ β(h) exp[C0(ρ)MewTϕTϕ],

Avec.

β(h) = δ(h) +MewTϕ
[
|S ′(h)ϕ(0)− ϕ(0)|+ c1h

]
.
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Utilisons certainne arguments, Un on peut prouvé quel que résultats pour

h ≤ 0 il ensuit imédiatement que, limt→T−ϕ u(t, ϕ) existe. par conséquent,

u(., ϕ) peut être étendu á Tϕ ce qui contredit que [0, Tϕ) est maximal.

Autrement, nous prouvons que la solution dépand continument ax condition

initial.

Soit, ϕ ∈ CE, ϕ(0) ∈ D(A) et t ∈ [0, Tϕ). Nouns posons,

ρ = 1 + sup−r≤s≤t|u(s, ϕ)|

et

c(t) = Mewt exp(MewtC0(ρ)t)

Soit ε ∈ (0, 1) tel que, c(t)ε < 1 et Ψ ∈ CE,Ψ(0) ∈ D(A) tel que.

|ϕ−Ψ| < ε

On a.

|Ψ| ≤ |ϕ|+ ε < ρ.

Soit

T0 = sup{s > 0 : |uσ(.,Ψ)| ≤ ρ, pour, σ ∈ [0, s]}.

Si nous supposons que, T0 < t, nous obtenons pour, s ∈ [0, T0],

|us(., ϕ)− us(.,Ψ)| ≤Mewt|ϕ−Ψ|+MewtC0(ρ)

∫ s

0

|uσ(., ϕ)− uσ(.,Ψ)|dσ.

D'apré le lemme de Gonwall nous déduirons que.

|us(., ϕ)− us(.Ψ)| ≤ c(t)|ϕ−Ψ|. . . . (E3)

Ce qui implique que.

|us(.,Ψ)| ≤ c(t)ε+ ρ− 1 < ρ, pour, s ∈ [0, T0].

Il en suit que T0 ne peut pas être le plus grand nombre s > 0 tel que,

|uσ(.,Ψ)| ≤ ρ, pour σ ∈ [0, s]. donc , T0 > t et t < TΨ.En plus , |us(.,Ψ) ≤ ρ

pour s ∈ [0, t] alors en utilisant l'inégalité (E3) nous deduirons la dépendance

continue par rapport aux données initiales .
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Theorem 3.3. Supposons que les hypotheses du théorème( 3.5) sont satis-

faites en plus supposons que F : CE → E est continument di�érentiable

et F
′

: CE → L(CE, E) satisfait la condition (H2) (F
′
est localement lip-

schitzienne),i.e, pour tout ρ > 0 il existe un constant C1(ρ) > 0, tel que si

ϕ1, ϕ2 ∈ CE et |ϕ1|, |ϕ2| ≤ ρ alors

|F ′(ϕ1)− F ′(ϕ2)| ≤ C1(ρ)|ϕ1 − ϕ2|.

Pour chaque ϕ ∈ C1
E = ([−r, 0], E)satisfaisant

ϕ(0) ∈ D(A), ϕ
′
(0) ∈ D(A), et, ϕ

′
(0) = Aϕ(0) + F (ϕ),

Alors l'unique solution intégrale u(., ϕ) : [−r, Tϕ)→ E de (P1) est une solu-

tion stricte de (P1) sur [−r, Tϕ).

Preuve : Soit ϕ ∈ C1
E tel que ϕ(0) ∈ D(A), ϕ

′
(0) ∈ D(A) et ϕ

′
(0) =

Aϕ(0)+F (ϕ).Soit u := u(., ϕ).l'unique solution intégrale de(P1) sur [−r, Tϕ)

et T1 ∈ (0, Tϕ). il est clair qu'ell'existe une unique fonction v : [0, T1] → E

qui résout l'équation intégrale suivante.

v(t) =

 S
′
(t)ϕ

′
(0) + d

dt

∫ t

0

S(t− s)F ′(us)(vs)ds.

ϕ
′
(t), pour, t ∈ [−r, 0].

On dé�nie la fonction ω par

ω(t) =

{
ϕ(0) +

∫ t

0

v(s)ds, pourt ∈ [0, T1] ∈

Nous prouverons que u = ω. En utilisant " l'éxprétion de v nous obtenons

pour t ∈ [0, T1]

ω(t) = ϕ(0) + S(t)ϕ
′
(0) +

∫ t

0

S(t− s)F ′(us)(vs)ds.

Nous avons ϕ(0) ∈ D(A), ϕ
′
(0) ∈ D(A) et ϕ

′
(0) = Aϕ(0) + F (ϕ), alors

S(t)ϕ
′
(0) = S(t)Aϕ(0) + S(t)F (ϕ).

En Utulisant le corollaire (2.1).Nous déduirons que

S(t)ϕ
′
(0) = S

′
(t)ϕ(0)− ϕ(0) + S(t)F (ϕ).



3.1 Éxistence local et régularité des solutions 33

On plus, on a ∫ t

0

S(t− s)F (ωs)ds =

∫ t

0

S(s)F (ωt−s)ds.

Et comme les fonctions t → ωωt et F sont continuments di�érentiables, la

fonction

t→
∫ t

0

S(t− s)F (ωs)ds

est encor continument di�érentiable et

d

dt

∫ t

0

S(t− s)F (ωs)ds = S(t)F (ϕ) + c

nous déduirons que

S(t)F (ϕ) =

∫ t

0

S(t− s)F ′(ωs)(vs)ds.

Par conséquent ω satisfait, pour t ∈ [0, T1]

ω(t) = S
′
(t)ϕ(0) + S(t)F (ϕ) +

∫ t

0

S(t− s)F ′(ωs)(vs)ds.

Cela implique que

ω(t) = S
′
(t)ϕ(0) + d

dt

∫ t

0

S(t− s)F (ωs)ds

−
∫ t

0

S(t− s)F ′(ωs)(vs)ds+

∫ t

0

S(t− s)F ′(us)(vs)ds.

Par conséquent nous obtenons

u(t)− v(t) = d
dt

∫ t

0

S(t− s)(F (us)− F (ωs))(vs)ds∫ t

0

S(t− s)(F ′(us)− F
′
(ωs))(vs)ds.

Alors nous déduirons, pour t ∈ [0, T1], que

|ut − ωt| ≤MeωT1
(∫ t

0

|F (us)− F (ωs)|ds+

∫ t

0

|F ′(us)− F
′
(ωs)||vs|ds

)
Soit

ρ = (sup−r≤s≤T1 |u(s)|, sup−r≤s≤T1 |v(s)|, sup−r≤s≤T1|ω(s)|)
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Ils existes C0(ρ), C1(ρ) ≥ 0 tel que si ϕ1, ϕ2 ∈ CE et |ϕ1|, |ϕ2| ≤ ρ, alors{
|F (us)− F (ωs)| ≤ C0(ρ)|ϕ1 − ϕ2|
|F ′(us)− F

′
(ωs)| ≤ C1(ρ)|ϕ1 − ϕ2|.

Cela implique que

|ut − ωt| ≤MeωT1 (C0(ρ) + ρC1(ρ))

∫ t

0

|us − ωs|ds.

Par le lemme de Gronwall nous déduirons que u = ω dans [0, T1].

3.2 Stabilité et comportement asymptotique

Dans cette section nous donnons un résultat pour la stabilité linéaire

prés d'un point d' équilibre. Par un équilibre nous voulons dire une solution

constante.

Sans pert de généralité,nous supposons que 0 est un point d'équilibre . nous

gardons l'hypothése (H1) dans la section (2) et au lieu de (H2) nous faisons

l'hypothése suivante ,

(H
′
2) : F est continument di�érentiable, F (0) = 0 et F est globalement Lip-

schtzienne continue sur CE,
Apartir du théorème (3.5) et le lemme de Gronwall's, la condition (H

′
2) im-

plique que pour tout ϕ ∈ CE, tel que ϕ(0) ∈ D(A), (P1) admet une unique

solution intégrale qui est dé�nie sur [0,∞) par

(E3). . . . u(t, ϕ) = S
′
(t)ϕ(0) +

d

dt

∫ t

0

S(t− s)F (us(., ϕ))ds, pour, t ≥ 0.

Notons par X l'espace de phase de (P1) dé�ni par

X = {ϕ ∈ CE : ϕ(0) ∈ D(A)}.

On dé�ni sur X l'opérateur Ũ pour t ≥ 0 par

Ũ(t) = ut(., ϕ),

où u(., ϕ) est l'unique slution intégrale de (P1) .
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Proposition 3.2.1. La famille (Ũ)t≥0 est un semi-groupe fortement continu

tel que

i) Ũ(0) = 0

ii) Ũ(t+ s) = Ũ(t) Ũ(s) pour t, s ≥ 0,

iii) pour tout ϕ ∈ X, Ũ(t)(ϕ) est une fonction continue en t ≥ 0 avec

valeurs dans X.

iv) pour tout t ≥ 0 , Ũ(t) est continue de X dans X.

v) ( ˜U(t))t≥0 satisfaisant pour t ≥ 0 et θ ∈ [−τ, 0] la propriété de traduc-

tion suivante.

(Ũ(t)(ϕ))(θ) =

{
(Ũ(t+ θ)(ϕ))(0), si, t+ θ ≥ 0

ϕ(t+ θ) si, t+ θ ≤ 0,

vi) il existe γ > 0 et M ≥ 0 tel que

|(Ũ(t)(ϕ1))− (Ũ(t)(ϕ2))| ≤Meγt|ϕ1 − ϕ2|, pour, ϕ1, ϕ2 ∈ X.

Considérons l'équation linéaire de (P1) correspondant á la dérivée

F
′
(0)

(P1.2). . . .

{
d(u(t)
dt

= Au(t) + F
′
(0)(ut), pourt ≥ 0

u0 = ϕ ∈ CE,

et soit le semi-groupe (U(t))t≥0) la solution corréspondant sur X.

Proposition 3.2.2. La dérivée á zéro du semi-groupe non-linéaire (Ũ(t))

pour t ≥ 0 est le semi-groupe linéaire associé á (P1.2).

De�nition 3.2.1. Soit Y un espace de Banach et (V (t))t≥0 le semi-groupe

fortement continu d'opérateurs V (t) : W ⊆ Y → W, t ≥ 0, et x0 ∈ Wun

équilibré de (V (t))t≥0 (i.e., V (t)x0 = x0, pour tout t ≥ 0).

L'équilibré x0 est dit exponentiellement asymptotiquement stable s'il existe

δ > 0, µ > 0, k ≥ 1 tel que

|V (t)x− x0| ≤ ke−µt|x− x0|, pour, x ∈ W,avec|x− x0| ≤ δ, et, t ≥ 0.

Nous avons le résultat suivant.

Theorem 3.4. Supposons que (U(t))t≥0) est exponentiellement stable, alors

l'équilibré zéro est exponentiellement asymptotiquement stable de (Ũ(t))t≥0.
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3.3 Analyse spéctrale et équation caractéris-

tique

Dans cette séction, on considére l'équation di�érentielle linéaire fonction-

nelle partielle suivante

(P1.3). . . .

{
du
dt

(t) = Au(t) + L(ut), pour, t ≥ 0

u0 = ϕ ∈ CE

Oú L est l'opérateur linéaire borné de CE au E. Laissey-nous vous présenter

la partie A0 de l'opérateur A dans D(A). qui dé�nie par{
D(A0) = {x ∈ D(A) : Ax ∈ D(A)},
A0 = A, dansD(A0).

Pour la suite, on introduire l'opérateur T0(t) = S
′
(t), pourt ≥ 0.

Lemme 3.3.0.1. L'opérateur A0 est le générateur in�nitésimal de(T0(t))t≥0

dans D(A).

En plus ; la formulle (E2) est équivalante a la formulle suivante

(E4). . . . u(t) =

 T0(t)ϕ(0) + limλ→∞

∫ t

0

T0(t− s)BλL(us)ds, pour, t ≥ 0,

ϕ(t), pour, t ∈ [−r, 0],

Où Bλ = λ(λI − A)−1. Soit (U(t))t≥0 le semi-groupe solution associé au

(P4) Pour étudier la comportement asymptotique des solutions,nous devons

d'abord calculer le générateur in�nitésimal AU de (U(t))t≥0

Theorem 3.5. Le générateur in�nitésimal AU de semi-groupe (U(t))t≥0

sur X est donnér par
D(AU) = { ϕ ∈ C1([−r, 0];E) : ϕ(0) ∈ D(A), ϕ

′
(0) ∈ D(A)

et, ϕ
′
(0) = Aϕ(0) + L(ϕ)},

AUϕ = ϕ
′

Preuve : Soit AU Le générateur in�nitésimal de semi-groupe (U(t))t≥0
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sur X et soit ϕ ∈ D(AU) .Alors{
limt→0+ → U(t)ϕ−ϕ

t
= Ψ, existe, dansX,

AUϕ = ϕ
′

La premiere expression implique que

lim
t→0+

ϕ(t+ θ)− ϕ(θ)

t
= Ψ(θ), pour, θ ∈ [−r, 0).

D'autre part , on a

lim
t→0+

ϕ(t+ θ)− ϕ(θ)

t
= D+ϕ(θ), pour, θ ∈ [−r, 0),

Où D+ϕ est la dérivée a droite du fonction ϕ. Alors D+ϕ = Ψ existe et

D+ϕ est continue sur [−r, 0).Pour le prochain nous devons utiliser le lemme

suivant

Lemme 3.3.0.2. Soit ϕ un fonction continue et di�érentiable a droite sur

[a, b). Si la fonction D+ϕ est continue sur [a, b), alors ϕ est continument

di�éretiable sur [a, b).

On déduit d'aprés ce lemme que la fonction ϕ est continument di�é-

rentiable sur [−r, 0), et ϕ
′

= Ψ, sur [−r, 0). Notons que Ψ ∈ X. Alors

limθ→0 ϕ
′
(θ) = Ψ(0), existe. Cela prouve que la fonction ϕ est continument

di�érentiable sue [−r, 0] et ϕ
′
= Ψ.D'autre part , comme ϕ ∈ D(AU), alors le

semi-groupe t → U(t)ϕ est di�éretiable. Cela implique que la solution inté-

grale u : t→ (U(t)ϕ)(0) du (P1) est continument di�érentiable sur [0,+∞).

Par la proposition (3.2.1) nous déduirons que u est une solution stricte de

(P1). Alors on obtient

lim
t→0+

u(t)− ϕ(0)

t
= u

′
(0) = ϕ

′
(0), et, u

′
(0) = Au(0) + L(u0).

Par conséquent

ϕ
′
(0) = Aϕ(0) + L(ϕ).

Nous avons prouvé que
D(AU) = { ϕ ∈ C1([−r, 0];E) : ϕ(0) ∈ D(A), ϕ

′
(0) ∈ D(A)

et, ϕ
′
(0) = Aϕ(0) + L(ϕ)},

AUϕ = ϕ
′
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Considérons ϕ ∈ C1([−r, 0];E) tel que

ϕ(0) ∈ D(A), ϕ
′
(0) ∈ D(A), et, ϕ

′
(0) = Aϕ(0) + L(ϕ).

Soit u : [−r,+∞)→ E l'unique solution intégrale de (P1) on a

u(t) =

{
(U(t)ϕ)(0), t > 0,

ϕ(t), t ∈ [−r, 0].

D'aprét le théorème (3.3), nous déduirons que u est une solution stricte . cela

implique encor que t → ut est continument di�érentiable sur [0,+∞). Par

conséquent ϕ ∈ D(AU).

Dans la suite , on suppose que

(H3) Le semi-groupe (T0(t))t≥0 est compact sur D(A), i.e que pour tout t ≥ 0

l'opérateur T0(t) est compact sur D(A).

Theorem 3.6. Supposons que (H3) détient. Alors le semi-groupe (U(t))t≥0

est compact sur X, quel que soit t > r.

Corollaire 3.1. Supposons que (H3) détient.Alors pour tout t ≥ r, le spectreσ(U(t))

est un ensemble dénembrable et il est compact avec le seul point d'accumu-

lation 0 et si µ 6= 0 ∈ σ(U(t)) alors µ ∈ Pσ(AU) . où Pσ(AU) désigne le

spectre ponctuel .

Corollaire 3.2. Supposons que (H3) détient. Alors il existe un nembre réel δ

tel que Reλ ≤ δ pour tout λ ∈ σ(AU).En plus si β est un nombre réel donné

alors il existe un nombre �ni de λ ∈ Pσ(AU) tel que Re > β.

Nous pouvons maintenant donner une estimation exponentielle de semi-

groupe solution.

Proposition 3.3.1. Supposons que (H3) détient. Soit δ un nombre réel tel

que Reλ ≤ δ pour tout valeur caractéristique λ de (P1). Alors , pour γ > 0

il existe un constant k(γ) ≥ 1 tel que

|U(t)ϕ| ≤ k(γ)e(δ+γ)t|ϕ|, pour, t ≥ 0, et, ϕ ∈ X.

Theorem 3.7. Supposons que (H3) détient.Soit δ le plus petit nombre réel

tel que si λ est une valeur caractéristique quelconque de (P1). Alors Reλ ≤ δ.

si δ ≤ 0 ,alors pour tout ϕ ∈ X, |U(t)ϕ| → 0 quand t → +∞.Si δ = 0 alors

il existe ϕ ∈ X \ {0} tel que |U(t)ϕ| = |ϕ| , pour tout t ≥ 0. Si δ > 0, alors

il existe ϕ ∈ X tel que |U(t)ϕ| → +∞ quand t→ +∞.
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3.4 La formulle de variation de la constante

Dans cette séction, nous considérons l'équation di�érentielle fonctionnelle

partielle linéaire non-homogéne suivante

(P1.3). . . .

{
du
dt

(t) = Au(t) + L(ut) + f(t), pour, t ≥ 0

u0 = ϕ ∈ CE

Oú f est une fonction continue de R vers E. Pour construire une formulle de

variation de la constante pour (P1.3) , nous dé�nirons l'espace X ⊕〈X0〉, où
〈X0〉, est l'espace donné par

〈X0〉 = {X0c; c ∈ E}

et la fonction X0c est dé�nie par

(X0c)(θ) =

{
0 si, θ ∈ [−r, 0),

c si, θ = 0.

X ⊕ 〈X0〉 est muni de la norme suivante

|ϕ+X0c| = |ϕ|+ |c|.

Theorem 3.8. L'extention continue ÃU de l'opérateur AU dé�ni sur X ⊕
〈X0〉 par{

D(ÃU) = {ϕ ∈ C1([−r, 0];E) : ϕ(0) ∈ D(A), etϕ
′
(0) ∈ D(A)}

ÃUϕ = ϕ
′
+X0(Aϕ(0) + L(ϕ)− ϕ′(0)),

est un Hill-Yocida opérateur

Considérons maintenant le problème de Cauchy non-homogéne suivant.

(P1.4). . . .

{
du
dt

(t) = ÃUu(t) +X0f(t), pour, t ≥ 0

u0 = ϕ ∈ CE

De�nition 3.4.1. La fonction continue u : [0,+∞) → CE est dite solution

intégrale de (P1.4) si

(i)

∫ t

0

u(s)ds ∈ D(ÃU), pour, t ≥ 0,
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(ii) u(t) = ϕ+ ÃU

∫ t

0

u(s)ds+X0

∫ t

0

f(s)ds, pour, t ≥ 0.

Appliquons le théorème (3.1),nous conclurons que pour tout ϕ ∈ X (P1.4)

á une unique solution intégrale qui est donné par la formulle suivante

u(t) = U(t)ϕ+ lim
λ→→+∞

∫ t

0

U(t− s)B̃λX0f(s)ds, pour, t ≥ 0.

Où B̃U = λ(λI − ÃU)−1.

Theorem 3.9. Soit x une solution intégrale de (P1.3), alors la fonction u

donné par

u(t) = xt, pour, t ≥ 0

est l'unique solution intégrale de (P1.4).Inversement, si u est une solution

intégrale de (P1.4), alors la fonction x est dé�nie par

x(t) =

{
u(t)(0) si, t ≥ 0,

ϕ(t) si, t ≤ 0,

est une solution intégrale de (P1.3).

3.5 Application

Pour illustrer les résultats ci-dessus,nous considérons l'équation di�éren-

tielle fonctionnelle partielle suivante avec di�ution qui décrit l'évolution d'une

espéce animale á di�ution unique avec une densité de population u

(P1.5). . . .



∂
∂t
ω(t, ξ) = a ∂2

∂ξ2
ω(t, ξ) + bω(t, ξ)+

∫ 0

−r
G(θ)ω(t+ θ, ξ)dθ + f(ω(t− r, ξ)),

pour, t ≥ 0, et, 0 ≤ ξ ≤ Π,

ω(t, 0) = ω(t,Π) = 0, pour, t ≥ 0,

ω(θ, ξ) = ω0(θ, ξ), pour,−r ≤ θ ≤ 0, et, 0 ≤ ξ ≤ Π.

Où a, b et r sont des constants positifs, f : R → R est une fonction conti-

nue, G : [−r, 0] → Rcontinue et ω : [−r, 0] × [0,Π] → R est une fonction

continue.Dans l'ordre de réécrire (P1.5) dans l'équation abstraite (P1) nous

introduisons E = C([0,Π];R), l'espace des fonctions continues de [0,Π] vers
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R, muni la topologie de la norme uniforme, et nous dé�nissons l'opérateur

linéaire A : D(A) ⊆ E → E{
D(A) = {y ∈ C2([0,Π];R) : y(0) = y(Π) = 0},
Ay = y

′′
.

C'est bien connu que{
(0,+∞) ⊂ ρ(A),

|(λI − A)−1| ≤ 1
λ
, pour, λ > 0.

Cela implique que l'hypothése (H1) est satisfaite.D'autre part,nous pouvons

voir que

D(A) = {y ∈ E; y(0) = y(Π) = 0} 6= E.

Soit l'ensemble
x(t)(ξ) = ω(t, ξ), t ≥ 0, ξ ∈ [0,Π],

ϕ(θ)(ξ) = ω0(θ, ξ), θ ≤ 0, ξ ∈ [0,Π],

F (φ)(ξ) = aφ(0)(ξ) + f(φ(−r)(ξ)) +

∫ 0

−r
G(θ)φ(θ)(ξ)dθ, ξ ∈ [0,Π], φ ∈ CE.

Alors, (P1.5) prend la forme abstraite suivante ,{
dx
dt

(t) = Ax(t) + F (xt), pour, t ≥ 0,

x0 = ϕ ∈ CE.

Nous supposons que,

(i) f est localement Lipschitzienne continue.Il ensuit que F est locale-

ment Lipschtzienne continue,Soit ϕ ∈ CE tel que ϕ(0) ∈ D(A).Alors

le théorème (3.1) assuré l'existence de l'interval maximal d'existence

[−r, bω0) et une unique solution intégrale ω(t, ξ) sur [−r, bω0)× [0,Π].

Pour enquêter que la solution intégrale ω de (P1.5) est strict, nous

ajoutons les hypothéses suivantes,

(ii) f est continument di�érentiable et f
′
est localement Lipschitzienne

continue,

(iii) ω0 ∈ C2([−r, 0]× [0,Π];E), avec ∂
∂θ
ω0(0, 0) = ∂

∂θ
ω0(0,Π) = 0 et

∂
∂θ
ω0(0, ξ) = a ∂2

∂ξ2
ω0(0, ξ) + bω0(0, ξ)

+

∫ 0

−r
G(θ)ω0(θ, ξ)dθ + f(ω0(−r, ξ)), pour, ξ ∈ [0,Π].
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Alors, F est continument di�érentiable sur CE et φ, ψ ∈ CE,ξ ∈ [0,Π]

on a

F
′
(φ)(ψ)(ξ) = bψ(0)(ξ)+

∫ 0

−∞
G(θ)ψ(θ)(ξ)dθ+f

′
(φ(−r)(ξ))ψ(−r)(ξ).

F
′
est encor localement Lipschitzienne continue sur CE .Par consé-

quent , tous les conditions du théorème (3.5) sont satisfaits. Donc ω

est une solution strict de (P1.5).Dans l'ordre d'étudier la stabilité,

nous supposons que,

(iv) f est continument di�érentiable á 0 , f(0) = 0 , f
′
(0) = 0 et f est

globalement Lipschitzienne.

Alors F est continument di�érentiable á 0 avec F (0) = 0 est F est

globalement Lipschitzienne sur CE.Considérons l'équation linéarisée

de (P1.5) corréspondant a la dérivée F
′
(0) á 0,

(P1.6). . . .



∂
∂t
ω(t, ξ) = a ∂2

∂ξ2
ω(t, ξ) + bω(t, ξ)+

∫ 0

−r
G(θ)ω(t+ θ, ξ)dθ,

pour, t ≥ 0, et, 0 ≤ ξ ≤ Π,

ω(t, 0) = ω(t,Π) = 0, pour, t ≥ 0,

ω(θ, ξ) = ω0(θ, ξ), pour,−r ≤ θ ≤ 0, et, 0 ≤ ξ ≤ Π.

Soit A0 la partie de l'opérateur A dans D(A) donné par{
D(A0) = {y ∈ C2([0,Π];R) : y(0) = y

′′
(0) = y(Π) = y

′′
(Π) = 0},

A0y = y
′′
.

Alors A0 généré un semi-groupe fortement continu qui est compact.Soit AU
le générateur in�nitésimal du semi-groupe associe á (P1.6) et soit σp(AU)

dénoter le spectre ponctuel de AE .Alors λ ∈ σp(AU) si est seulement si il

existe φ ∈ D(AE), φ 6= 0 tel que AUφ = λφ.

Il ensuit que φ(θ) = eλθy avec y 6= 0, y ∈ D(A) et λy = Ay + F
′
(0)(eλy).

Il ensuit que λ ∈ σp(AU) si est seulement si il existe y ∈ D(A) et y 6= 0 tel

que

λy = Ay + by +

(∫ 0

−r
G(θ)eλθdθ

)
y.

Ce qui signi�e que

λ− b−
∫ 0

−r
G(θ)eλθdθ ∈ σp(A) = σp(A0).
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Nous savons que le spectre ponctuel σp(A0) de A0 est donné par

σp(A0) = {−an2 : n ∈ N∗}.

Donc la stabilité exponentielle de solutions de (P1.6) est déterminée par

l'équation caractéristique suivante

(E5). . . . λ− b−
∫ 0

−r
G(θ)eλθdθ = −an2, pour, n ≥ 0.

Lemme 3.5.0.1. Supposons que G est positif,

∫ 0

−r
G(θ)dθ = 1 et 1 < a− b.

Alors, toutes les racines de (E5) a une partie réelle négative.

Démonstration. Prnant la partie réelle dans l'équation caractéristique (E5),on

a

Re(λ) = b+

∫ 0

−r
G(θ)eRe(λ)θ cos(Im(λθ))dθ − an2,

Qui implique que

Re(λ) ≤ b+

∫ 0

−r
G(θ)eRe(λ)θ cos(Im(λθ))dθ − a,

et

Re(λ) ≤ b+ 1− a < 0.

Par conséquent, toute valeur caractéristique avoir une partie réelle négative

et nous déduirons que le semi-groupe solution de (P1.6)est exponentiellement

stable.
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Chapitre 4

Équations intégro-di�érentielles

fonctionnelles partielles

Résultats préliminaires

Dans cette séction nous collectons un résultat de base sur les opérateurs

resolvants de l'équation linéaire homogéne suivante

(P2.2) . . .

 dv
dt

(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds, pour, t ≥ 0

v(0) = v0 ∈ E

Où A et B(t) sont des opérateurs linéaires fermés sur E.Dans la suite Y

dénote l'espace de Banach D(A) = Y muni d'un norme dé�ni par

|y|Y = |Ay|+ |y|, pour, y ∈ Y.

C([0,+∞);Y ) est l'espace des fonctions continues de [0,+∞) vers Y .

De�nition 4.0.1. L'opérateur resolvant de (P2.2) est l'opérateur borné

R(t) ∈ E pour t ≥ 0 tel que

(i) R(0) = I, et, |R(t)| ≤ Neβt, pour certaine constante N et β.

(ii) Pour tout x ∈ L(E), R(t)x est fortement continu pour t ≥ 0.

(iii) R(t) ∈ Y pour t ≥ 0. pour x ∈ Y, R(.)x ∈ C1([0,+∞);E) ∩

45
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C([0,+∞);Y ) et

R
′
(t)x = AR(t) +

∫ t

0

B(t− s)R(s)ds

= R(t)Ax+

∫ t

0

R(t− s)B(s)ds, pour, t ≥ 0.

Theorem 4.1. Supposons que (P2.2) á un opérateur résolvant . Si u est une

solution stricte de (P2.1), alors

u(t) = R(t)u0 +

∫ t

0

R(t− s)g(s)ds, pour, t ≥ 0. . . . (2.1)

Dans la suite.On suppose que

(H0) (P2.2) a un opérateur résolvant

(H1) A génére un semi-groupe fortement continu dans E

(H2) Pour tout t ≥ 0, B(t) est l'opérateur linéaire fermé de D(A) vers

E, et B(t) ∈ L(Y,E), où L(Y,E), est l'espace de tout les 'opérateurs

linéaires bornés de Y vers E.Pour tout y ∈ Y , la carte t→ B(t)y est

uniformément continue bornée, di�érentiable et sa dirévée t→ B
′
(t)y

est uniformément continue bornée sur R+.

Theorem 4.2. Supposons que (H1 et (H2) sont satisfaites. Alors il existe un

unique opérateur résolvant pour (P2.2)

Le théorème suivant donne la condition su�sante qui assure l'existence

du solution stricte pour (P2.1), qui généralisé le résultat bien connu dans la

théorie des semi-groupes.

Theorem 4.3. Soit g ∈ C1([0,+∞);E) et v dé�ni par

v(t) = R(t)v0 +

∫ t

0

R(t− s)g(s)ds, pour, t ≥ 0.

Si v0 ∈ D(A), alors v est une solution stricte pour (P2.1)
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4.1 Existance global et gon�ement de la solu-

tion douce

Proposition 4.1.1. Supposons que (H0) est satisfaite .Si u est une solution

stricte de (P2) alors

u(t) = R(t)ϕ(0) +

∫ t

0

R(t− s)F (s, us)ds, pour, t ≥ 0. . . . (2.2)

Remarque : La reciproque n'est pas vraie .i.e .Si u satisfait (2.2) ,u peut

être non di�érentiable, c'est pourquoi nous distinguons entre douce et stricte

solutions.

De�nition 4.1.1. La fonction continue u : [−r,+∞)→ E est une solution

douce de (P2) si elle satisfait l'equation suivante u(t) = R(t)ϕ(0) +

∫ t

0

R(t− s)F (s, us)ds, pour, t ≥ 0

u0 = ϕ.

Dans la suite nous donnons l'existence local des solutions douce de (P2).Dans

ce but ,nous faisons l'hypothése suivante.

(H3) F est localement Lipschtzienne.

Theorem 4.4. Supposons que (H0) et (H3) sont satisfaites.Soit ϕ ∈ C. Alors
il exiete un interval maximal d'existence [−r, bϕ) et une unique solution douce

u(., ϕ) de (P2) dé�nie sur [−r, bϕ) et soit

bϕ = +∞, ou, limt→b−ϕ |u(t, ϕ)| = +∞.

En plus ,u(t, ϕ) est une fonction continue en ϕ dans le sens que si ϕ ∈ C
et t ∈ [0, bϕ). alors il existe des constantes positives K et ε telles que .pour

Ψ ∈ C et |ϕ−Ψ| < ε, on a

t ∈ (0, bΨ), et, |u(s, ϕ)− u(s,Ψ)| ≤ K|ϕ−Ψ|, pourtout, s ∈ [−r, t].

Corollaire 4.1. Supposons que (H0) et (H3) sont satisfaites. Soit k1 une

fonction continue sur R+ et k2 ∈ L1
loc(R+;R+) soit tel que

|F (t, ϕ)| ≤ k1(t)|ϕ|+ k2(t), pour, t ≥ 0, et, ϕ ∈ C.

Alors (P2) á une unique solution douce qui est dé�nie pour tout t ≥ 0.
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Corollaire 4.2. Supposons que (H0) est satisfaite, et F est Lipschitzienne

en ce qui concerne le deuxième argument,á savoir

|F (t, ϕ1)− F (t, ϕ2)| ≤ L|ϕ1 − ϕ2|, pour, t ≥ 0, et, ϕ1, ϕ2 ∈ C.

Alors (P2) á une unique solution douce qui est dé�nie pour tout t ≥ 0.

Dans la suite , nous donnons une estimation des solutions

Proposition 4.1.2. Supposons que (H0) est satisfaite et F est Lipschitzienne

en ce qui concerne le deuxième argument. Soient u et û deux solutions douce

de (P2) correspondant respectivement á ϕ et ϕ̂ ∈ C.Alors{
|ut − ût| ≤ N |ϕ− ϕ̂|e(β+NL)t siβ ≥ 0

|ut − ût| ≤ Ne−βt|ϕ− ϕ̂|e(β+NLe−βt)t siβ < 0,

Où L est la constante de Lipschitz pour F .

4.2 Existence des solutions stricts

Theorem 4.5. Supposons que (H0) et (H3) sont satisfaites.et F est continu-

ment di�érentiable, en plus supposons que les dirévées partielles DtF et DϕF

sont localement Lipschitziennes dans le sens classique .Soit ϕ ∈ C1([−r, 0], E)

tel que ϕ(0) ∈ D(A), et, ϕ
′
(0) = Aϕ(0) + F (0, ϕ).

Alors la solution douce correspondant á u devient la solution strict de (P2).

4.3 Cadre général

Dans cette séction nous considérons le cas non autonome

(P2) . . .

 du
dt

(t) = Au(t) +

∫ t

0

B(t− s)u(s)ds+ F (t, ut), pour, t ≥ 0

u0 = ϕ ∈ CE

Pour tout t ≥ 0 . A(t) est un opérateur linéaire fermé avec domaine dense

D(A) qui est indépendant de t et pour 0 ≤ s ≤ t, B(t, s) est un opérateur
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linéaire fermé ,avec domaine D(A) ⊂ D(B)

Consiérons l'équation linéaire homogéne suivante

(P2.3) . . .

 dv
dt

(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds, pour, t ≥ 0

v(0) = v0 ∈ E

Supposons Z est un espace de Banach D(A) muni de la norme

|y|Z = |A(0)y|+ |y|, pour, y ∈ Z.

De�nition 4.3.1. L'opérateur résolvant A de (P2.3) est l'opérateur borné,la

fonction valorisée R(t, s) ∈ L(E), pour 0 ≤ s ≤ t, ayant les propriétés

suivantes

(i) R(t, s) est fortement continu en s et t, R(s, s) = I pour 0 ≤ s ≤ t et

|R(t, s)| ≤ N1e
β1(t−s) pour certains constants N1 et β1.

(ii) R(t, s)Z ⊂ Z, R(t, s) est fortement continu en s et t dans Z.
(iii) pour chaque x ∈ Z, R(t, s)x est fortement continu di�érentiable en

s et t et
∂R
∂t

(t, s)x = A(t)R(t, s)x+

∫ t

s

B(t, r)R(r, s)xdr,

∂R
∂s

(t, s)x = −R(t, s)A(s)x−
∫ t

s

R(t, r)B(r, s)xdr,

De�nition 4.3.2. Soit (A(t))t≥0 une famille des générateurs de C0-semi-

groupe. (A(t))t≥0 est dite stable s'il existe des reéls constants N0 ≥ 1 et α0

pour que

|Πk
j=1(A(tj)− λI)−1| ≤ N0(λ− α0)−k

pour tout λ ≥ α0, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk < +∞, pour, k = 1, 2, . . .

Obtenir l'existence de l'opérateur résolvant de (P2.1) nous supposons les hy-

pothéses suivantes en raison de Grimmer[10].

(H4) (A(t))t≥0 est une famille stable des générateurs tel que A(t)x est

fortement continu di�érentiable sur [0,+∞) pour x ∈ Z. En plus ,

B(t)x est fortement continu di�érentiable sur [0,+∞) pour x ∈ Z.
(H5) B(t) est continu sur [0,+∞) dans L(Z,F) ,où F est le sous-espace

de l'ensemble des fonctions continues unifomément bornées de R+ vers
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E noté par CUB(R+;E) , F est un espace de Banach avec une norme

plus fort que la norme sup sur CUB(R+;E) où B(.) est dé�ni par

(B(t)x)(s) = B(t+ s, t)x, pour, x ∈ Z, et, t, s ≥ 0.

(H6) B(t) : Z → D(Ds) pour tout t ≥ 0, où Ds est le générateur de

C0-semi-groupe. (S(t))t≥0 sur F dé�ni par

S(t)F (s) = F (t+ s), pour, t, s ≥ 0

(H7) DsB(t) est continu sur [0,+∞) vers L(Z,F)

Theorem 4.6. Supposons (H4),(H5),(H6) et (H7) , alors (P2.1) á un unique

opérateur résolvant.

De�nition 4.3.3. La fonction continue u : [−r,+∞) → Eest une solution

strict de (P2) si les conditions suivantes sont satisfaites.

(i) u ∈ C1([0,+∞);E)
⋂
C([0,+∞);Z).

(ii) u satisfait (P2) sur [0,+∞).

(iii) u(θ) = ϕ(θ), pour,−r ≤ θ ≤ 0.

Theorem 4.7. Supposons que (H4),(H5),(H6) et (H7) sont satisfaites .Si u

est une solution strict de (P2), alors

u(t) = R(t, 0)ϕ(0) +

∫ t

0

R(t, s)F (s, us)ds, pour, t ≥ 0. . . . (2.3)

Remarque :La reciproque n'est pas vraie , si u satisfait (E6) , u n'est

pas di�érentiable en général , c'est pourquoi nous distinguons entre douce et

strict solutions.

De�nition 4.3.4. On sait que la fonction continue u : [0,+∞)→ E est une

solution douce de (P2) ,si u satisfait l'équation suivante u(t) = R(t, 0)ϕ(0) +

∫ t

0

R(t, s)F (s, us)ds, pour, t ≥ 0

u0 = ϕ.

Theorem 4.8. Supposons que (H4),(H5),(H6) et (H7) sont satisfaites et

F est Lipschitzienne en ce qui concerne le deuxième argument.Alors pour

n'importe quel ϕ ∈ C.(P2)á une unique solution douce qui est dé�nie pour

t ≥ 0.
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4.4 Application

Pour illustration, nous proposons d'étudier l'existence des solutions pour

le model suivant.

(P2.4) . . .



∂
∂t
z(t, x) = ∂2

∂x2
z(t, x) +

∫ t

0

α(t− s) ∂
2

∂x2
z(s, x)ds

+

∫ 0

−r
g(t, z(t+ θ, x))dθ, pour, t ≥ 0, et, x ∈ [0,Π],

z(t, 0) = z(t,Π), pour, t ≥ 0,

z(θ, x) = ϕ0(θ, x), pour, θ ∈ [−r, 0], et, x ∈ [0,Π].

Où g : R+×R→ R est Lipschitzienne continue en ce qui concerne le deuxième

argument,α : R+ → R est continue uniformément bornée, continument dif-

férentiable et α
′
est continue uniformément bornée, ϕ0 : [−r, 0]× [0,Π]→ R

sera précisé ultérieurement. Réécrire (P2.4) sous la forme abstraite, nous

introduisons l'espace X = C([0,Π];R), l'espace des fonctions continues de

[0,Π] vers R disparition a 0 et Π, équipé d'une topologie uniforme. Soit

A : D(A)→ X être dé�ni par{
D(A) =

{
y ∈ X ∩ C2([0,Π],R) : y

′
, y
′′ ∈ X

}
Ay = y

′′
.

Soit B : D(A)→ Xêtre dé�ni par

B(t)(y) = α(t)Ay, pour, t ≥ 0.

Soit f : C→ X être dé�nie par

f(t, ψ)(x) =

∫ 0

−r
g(t, ψ(θ)(x))dθ, pour, x ∈ [0,Π], et, t ≥ 0.

Les données initiales ϕ ∈ C est dé�nie par

ϕ(θ)(x) = ϕ0(θ, x), pour, θ ∈ [−r, 0], et, x ∈ [0,Π].

Supposons v(t) = z(t, x).Alors (P2.4) prendre la forme abstraite suivante

(P2.5) . . .

 d
dt
v(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds+ f(t, vt), pour, t ≥ 0

v0 = ϕ.
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C'est bien connu que A est un générateur d'un C0-semi-groupe,ce qui im-

plique que (H1) est satisfait.En plus (H2) est vraie, il en suit que l'équation

linéaire (P2.3) á un opérateur résolvant .puisque f est Lipschitzienne conti-

nue avec le deuxieme argument, alors par le théorème (0.4), nous déduirons

que (P2.5) á une solution douce unique qui est dé�nie pour t ≥ 0 .Pour la ré-

gularitée, nous imposons les conditions suivantes qui impliques les hypothése

du théorème (1.5)

(H8) g ∈ C1(R+×R;R), tel que ∂g
∂t

et ∂g
∂x

sont localement Lipschitziennes

continues.

(H9) ϕ0 ∈ C1([−r, 0]× [0,Π]), telque, ϕ0(0, .) ∈ D(A)

∂
∂θ
ϕ0(0, x) = ∂2

∂x2
ϕ0(0, x) +

∫ 0

−r
g(0, ϕ0(θ, x))dθ, pour, x ∈ [[0,Π].

Par conséquent, par le théorème (1.5) nous obtenons le résultat suivant d'exis-

tence.

Proposition 4.4.1. Sous ce qui précède (P2.4) á une unique solution strict

v et la solution u dé�nie par u(t, x) = v(t)(x), pour, t ≥ 0, et, x ∈ [0,Π] est

une solution de (P2.4).
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