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Résumé

Le maximum ou encore le point à haut risque d’une fonction de risque conditionnel
est un paramètre d’un grand intérêt en statistique, notamment dans l’analyse de
risque séismique, car il constitue le risque maximal de survenance d’un tremblement
de terre dans un intervalle de temps donné. Au moyen d’estimations non paramé-
triques basés sur les techniques de noyau de convolution de la premiére dérivée de
la fonction de hasard conditionnel, nous établissons le comportement asymptotique
d’un taux de hasard d’une variable explicative fonctionnelle ainsi que la normalité
asymptotique de la valeur maximale pour un processus mélangeant.



Abstract

The maximum of the conditional hazard function is a parameter of great importance
in statistics, in particular in seismicity studies, because it constitutes the maximum
risk of occurrence of an earthquake in a given interval of time. Using the kernel
nonparametric estimates based on convolution kernel techniques of the first derivative
of the conditional hazard function, we establish the asymptotic behavior of a hazard
rate in the presence of a functional explanatory variable and asymptotic normality
of the maximum value in the case of a strong mixing process.



Chapitre 1

Présentation générale

1.1 Introduction

La statistique fonctionnelle est un champ de recherches d’actualité qui a connu un
très important développement ces derniéres années dans lequel viennent se mêler et
se compléter plusieurs approches de la statistique qui paraissent éloignées a priori.
Cette voie de la statistique étudie des données issues de grands échantillons et les
fonctions sont collectées sur des grilles très fines, qui peuvent être assimilées à des
courbes ou à des surfaces, par exemple fonctions du temps ou de l’espace. Le besoin
de considérer ce type de données, maintenant couramment rencontré sous le nom de
données fonctionnelles dans la littérature, est avant tout un besoin pratique. Compte
nu des capacités actuelles des appareils de mesure et de stockage informatique, les
situations pouvant fournir de telles données sont multiples et issues de domaines
variés : on peut imaginer par exemple des courbes de croissance, de température, des
images observées par satellite ...
Les tous premiers travaux dans lesquels on retrouve cette idée de données fonction-

nelles sont finalement relativement anciens : Rao (1958) [28] et Tucker (1958) [30]
envisagent ainsi l’analyse en composantes principales et l’analyse factorielle pour des
données fonctionnelles et considérent même explicitement les données fonctionnelles
comme un type particulier de données. Par la suite, on trouve les travaux de Deville
(1974) [10], Dauxois et Pousse (1976) [9],Besse et Ramsay (1986) [3]. La terminologie
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faisant référence à des données fonctionnelles semble être issue du travail de Ramsay,
en 1982, dans Psychometrika, sous le titre When the data are functions [24].
Cette dénomination semble rassembler un nombre important de statisticiens qui font
les statistiques de courbes, de lissage, de décompositions d’un espace de dimension
infinie en base de fonctions (en utilisant le théorème de Riez pour les espaces de Hil-
bert et des théorèmes un peu plus complexe pour construire une base de Schauder
pour certains espaces de Banach), de géométrie diférentielle, ... Pour plus de détails,
consulter les monographies de Ramsay et Silverman (2002 et 2005) [26], [27].
Ce mémoire est présenté en trois chapitres.
Le premier chapitre est consacré à une présentation générale du modèle fonction-
nelle, des déffinitions et des outils techniques que nous allons employer pour obtenir
et construire notre estimateur et les vitesses de convergence. En particulier, nous rap-
pelons la déffinition des modèles de survie, les problèmes discutés, traités par la sta-
tistique fonctionnelle, les déffinitions de la fonction de survie, hasard et la fonction de
hasard conditionnelle, l’inégalité exponentielle de Bernstein et celle de Fuc-Nagaev...
Dans le deuxième chapitre on s’intéresse à un modèle non paramétrique pour des va-
riables aléatoires fonctionnelles. On construit un estimateur à noyau pour la fonction
de hasard conditionnelle avec des données complétes sous des conditions générales
moins restrictives, nous établissons la convergence presque complète avec précision
dans le cas α-mélangeant. Ces propriétés asymptotiques sont étroitement liées au
phénomène de concentration de la mesure de probabilité de la variable explicative sur
des petites boules.
Le troisième chapitre est consacré à l’étude de la convergence uniforme, les propriétés
et la normalité asymptotique d’une estimation du maximum de la fonction de hasard
conditionnelle dans le cadre de la dépendance (α-mélangeant), en utilisant les esti-
mations non paramétriques du noyau de la première dérivée de la fonction de hasard
conditionnellle.
En fin une courte bibliographie sur les ouvrages de base pour ce sujet.
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1.2 Problématique concrète en statistique pour va-

riables fonctionnelles

L’essor que connaît la statistique fonctionnelle au travers de ses divers champs d’ap-
plication se retrouve au niveau des nombreuses approches théoriques développées pour
l’étude de variables aléatoires fonctionnelles, l’étude de ces divers modèles est moti-
vée au départ par des problèmes pratiques. Dans ce paragraphe nous souhaitons citer
quelques domaines dans lesquels apparaissent les données fonctionnelles, pour donner
une idée du type de problèmes que la statistique fonctionnelle permet de résoudre.
c’est une liste non exhaustive de situations oùde telles données sont rencontrées n’est
pas envisageable, mais des exemples précis de données fonctionnelles seront abordés
dans ces domaines.

• En biologie, on trouve en premier lieu le travail précurseur de Rao (1958)[28] concer-
nant une étude de courbes de croissance. Plus récemment, un autre exemple est
l’étude des variations de l’angle du genou durant la marche et les mouvements
du genou pendant l’effort sous contrainte ( Antoniadis et Sapatinas, 2007)[1].
Concernant la biologie animale, des études de la ponte de mouches méditerra-
néennes ont été faites par plusieurs auteurs ( Chiou et Müller .et al(2007))[5].
Les données consistent en des courbes donnant pour chaque mouche la quantité
d’oeufs pondus en fonction du temps.

• La chimiométrie fait aussi partie des champs d’étude propices à l’utilisation de
méthodes de la statistique fonctionnelle. Plus récemment, Ferraty et Vieu
(2002)[16] se sont intéressés à l’étude de la contenance de graisse de morceaux
de viande (variable d’intérêt) étant données les courbes d’absorbsions de
longueurs d’ondes infra-rouge de ces morceaux de viande (variable explicative).

• Des applications liées à l’environnement ont été étudiées par plusieur auteur qui
ont travaillé sur un problème de prévision de pollution. Ces données consistent
en des mesures de pics de pollution par l’ozone chaque jour (variable d’intérêt)
étant donné des courbes de polluants ainsi que de courbes météorologiques de
la veille (variables explicatives).
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• La climatologie est un domaine où les données fonctionnelles apparaissent naturel-
lement. Une étude du phénomène El Niño (courant chaud de l’océan Pacifique)
a ainsi été réalisée par Besse, Cardot et Stephenson (2000)[4] ; Ramsay et Sil-
verman (2005)[27], Hall et Vial (2006)[17].

• En linguistique, des travaux ont été réalisés, notamment concernant la reconnais-
sance vocale. (Ferraty et Vieu (2002,2006)[15][16]). Ces travaux sont fortement
liés aux méthodes de classification lorsque la variable explicative est une courbe.
Brièvement, les données sont des courbes correspondant à des enregistrements
de phonèmes prononcées par différents individus. On associe un label à chaque
phonème (variable d’intérêt) et le but est d’établir une classification de ces
courbes en utilisant comme variable explicative la courbe enregistrée.

• Dans le domaine de la graphologie, l’apport des techniques de la statistique fonc-
tionnelle a là aussi trouvé une application. Ramsay(2000)[25] par exemple mo-
délise la position du stylo (abscisses et ordonnées en fonction du temps) à l’aide
d’équations différentielles.

• Les applications à l’économie sont aussi relativement nombreuses. Récemment les
études de Benko, Härdle et Kneip (2006)[2], basés notamment sur une analyse
en composantes principales fonctionnelle. Cette méthode d’estimation sera ana-
lysée lorsqu’on l’utilisera, même si on peut déjà souligner que l’idée de base est,
lors de l’estimation de l’opérateur de covariance, d’estimer des produits scalaires
entre les courbes observées au lieu d’estimer des courbes elles-mêmes.

Il existe d’autres domaines où la statistique fonctionnelle a été employée comme
par exemple le traitement de signaux sonores ou enregistrés par un radar, les études
démographiques, la géologie (Manté et al (2007))[23],... et des applications dans des
domaines aussi variés que la criminologie (comment modéliser et comparer l’évolution
de la criminalité d’un individu au cours du temps ?) La paléo pathologie (peut-on
dire si un individu souffrait d’arthrite à partir de la forme de son fémur ?) L’étude de
résultats à des tests scolaires,...

Enfin, on peut être amené à étudier des variables aléatoires fonctionnelles même si
l’on dispose de données initiales réelles ou multi variées indépendantes. C’est ainsi le
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cas lorsque l’on souhaite comparer ou étudier des fonctions que l’on peut estimer à
partir des données. Parmi les exemples typiques de ce type de situation on peut évo-
quer la comparaison de différentes fonctions de densité, de fonctions de régressions,
l’étude de la fonction représentant la probabilité qu’un individu a de répondre cor-
rectement à un test en fonction de ses "qualités" (Ramsay et Silverman (2002)[26],...

1.3 Modèles de survie

On peut faire remonter l’analyse des données de survie à 1693 avec l’astronome
"Halley" qui aprés une étude des relevés d’état civil de Londres donna les premières
tables de mortalité et enseigna le moyen d’y lire la probabilité de survie d’un
individu. Ces analyses, très générales, ne sont affinées qu’à partir du 19-ème siècle,
avec l’apparition de catégorisations suivant des "variables exogènes" (sexe, nationa-
lité, catégories socio-professionnelles, ...). Durant ce siècle, apparaissent également
les premières modélisations concernant la probabilité de mourir à un certain âge,
probabilité qui sera par la suite désignée sous le terme de "fonction de risque".

Enfin, l’analyse des données de survie commence de déborder le cadre stricte de
la démographie pour investir, au 20-ème siècle, notamment dans les années qui ont
suivi la seconde guerre mondiale, on s’est intéressé à l’analyse des données de survie
plus pour des applications industrielles (avec l’apparition de la théorie de la fiabilité)
en utilisant des modèles paramétriques avec des lois exponentielles ou de Weibull. Ce
n’est que plus récemment, motivées par des applications médicales (pharmaceutique,
biomédicale), que sont apparues les méthodes non-paramétriques (Kaplan-Meier 1958
)[19], pour l’estimation non-paramétrique d’une fonction de survie. De l’estimateur
résultant, ils étudient l’espérance, la variance et les propriétés asymptotiques. L’aspect
semi-paramétrique a été initié par Cox en 1972 [6]. Ce dernier modèle comporte
des variables exogànes qui sont introduites, dans la fonction de risque, au moyen
d’une composante de régression paramétrique, le reste de cette fonction de risque,
non paramétrique, demeurant indéterminée.
Les modèles de survie forment une classe de méthodes statistiques qui ont pour
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but d’étudier le nombre et la répartition des temps d’apparition des événements.
On peut s’intéresser à des modèles où l’on ne considère que le temps d’apparition
des événements, mais on s’intéresse plus généralement à des modèles où le risque
d’apparition d’un événement dépend de covariables. On retrouve ainsi l’expression
d’un modèle de régression.

1.3.1 Analyse des données de survie

L’analyse des données de survie est l’étude de la survenue, au cours du temps, d’un
événement précis pour un ou plusieurs groupes d’individus donnés. Cet événement,
souvent appelé décès, peut aussi bien être la mort d’un individu que la survenue d’une
maladie, la réponse à un traitement ou la panne d’une machine (c’est un changement
d’état en général.) Chaque observation est définie par :
Une date d’origine : Cela peut être la date de naissance du sujet, si l’on étudie

l’âge du sujet lorsque survient l’événement ou la date de mise en contact avec un
agent infectieux, si l’on l’étudie la durée d’incubation d’une maladie infectieuse.
Chaque individu a une date d’origine différente sur le calendrier, mais la mesure qui
nous intéresse est le délai depuis cette date. La date d’origine définit pour chaque
individu le temps 0.

Pour permettre la comparaison des durées de survie entre les individus, une
définition précise de l’événement d’intérêt est nécessaire. S’il s’agit du décès
provoqué par une maladie, il faut s’assurer que chaque décès est effectivement dû à
la maladie étudiée, et non à d’autre cause.

La durée de survie : Elle est définie comme le délai entre la date d’origine et la
survenue de l’événement d’intérêt. Les durées de survie correspondent à des variables
aléatoires positives, de distribution le plus souvent dissymétrique, rendant difficile
leur description par les lois de distribution usuelles.

Les individus ou groupes d’individus sont susceptibles de différer pour un ou
plusieurs facteurs. Ces facteurs, dénommés variables explicatives ou covariables
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peuvent expliquer une différence importante de la durée de survie des sujets étudiés.
Leurs effets sont analysés par des modèles de régression. Il peut s’agir de facteurs
individuels (sexe, âge, paramètres biologiques relatifs à une maladie, paramètres
génétiques..), ou liés à un essai thérapeutique (appartenance au groupe de traitement
ou au groupe placebo, dosage médicamenteux...).

L’analyse des données de survie s’attache alors à la description des temps de
survie et à voir dans quelle mesure ils dépendent de ces variables explicatives. Les
approches classiques en analyse des données de survie sont de type stochastique, le
temps d’apparition d’un événement est supposé être la réalisation d’un processus
aléatoire associé à une distribution particulière.

De nombreux travaux sont consacrés à l’analyse des données de survie : Kalbeisch
et Prentice (1980) [18], Cox et Oakes (1984) [7], Klein et Moeschberger (1997) [20],
...

1.3.2 Fonctions associées aux distributions de survie

Soit T la variable aléatoire positive correspondant à la durée de survie. La loi de
probabilité de T peut être caractérisée par plusieurs fonctions liées entre elles.

Définition 1.3.1. La fonction de densité de probabilité, notée f(t) :

f(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t)

∆t

f(t)∆t + o(∆t) est donc la probabilité de connaître l’événement d’intérét entre t et
t+ ∆t.

Définition 1.3.2. La fonction de répartition, notée F (t), vérifie :

F (t) = P(T ≤ t) =

∫ t

0

f(u)du
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F (t) définit la probabilité de connaître l’événement d’intérêt entre [0, t], cette fonction
est monotone et l’on a

F (0) = 0 et lim
t→∞

F (t) = 1.

Définition 1.3.3. La fonction de survie, notée S(t) définie par :

S(t) = P(T > t) = 1− F (t)

Cette fonction représente la probabilité de connaître l’événement d’intérêt au delà du
temps t. C’est une fonction monotone décroissante telle que

S(0) = 1 et lim
t→∞

S(t) = 0.

Elle caractérise également la loi de T .

Définition 1.3.4. La fonction de risque, ou fonction de hasard, ou bien le risque
instantané de changement d’état notée h(t), (hazard function en englais, car hazard
veut dire risque en anglais), elle est définie comme étant la probabilité instantanée
qu’une durée T de "séjour" dans un état se termine à l’instant t+ ∆t sachant qu’on
y était à l’instant t, i.e. :

h(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t/T ≥ t)

∆t

On montre facilement que

h(t) = f(t)
S(t)

= −dlog(s(t))
d(t)

donc h(t)∆t représente, quand ∆t est petit, la probabilité "approchée" pour un indi-
vidu d’atteindre l’événement d’intérêt avant t + ∆t, conditionnellement au fait qu’il
est encore dans l’état précédent juste avant t. Cette fonction est aussi appelée risque
instantané à l’instant t.
On constate aussi que la fonction de risque caractérise la loi de T (ou S(t).)
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Définition 1.3.5. La fonction de risque cumulé, notée H(t) définie par :

H(t) =

∫ t

0

h(u)du

Par manipulation des définitions précédentes, on retrouve facilement les relations
suivantes :

f(t) = −dS(t)
dt

S(t) = exp(−
∫ t

0
h(u)du)

S(t) = exp(−H(t))

f(t) = h(t) exp(−
∫ t

0
h(u)du)

Donc la fonction de risque cumulé caractérise la loi de T (ou S(t).)

Définition 1.3.6. La fonction de durée moyenne de survie, notée r(t) définie par :

r(t) = E(T − t/T > t)

On montre que

r(t) = 1
S(t)

∫∞
t
S(u)du et S(t) = r(0)

r(t)
e−

∫ t
0

1
r(u)

du

ce qui permet de dire aussi que la fonction de durée moyenne de survie caractérise la
loi de T (ou S(t).)
La distribution de la durée de survie T peut être décrite par l’une des fonctions
définies ci-dessus. Toutefois l’une des plus intéressantes est la fonction de risque h(t)

car elle est une description probabiliste du futur immédiat du sujet "encore à risque" et
reflète des différences entre les modèles souvent moins visibles au travers des fonctions
de répartition ou de survie. En épidémiologie, elle peut dans certains cas s’interpréter
en termes d’incidence.
On constate que si h(t) est constante (on la note λ), alors

f(t) = λ exp(−λt)
F (t) = 1− exp(−λt)
S(t) = exp(−

∫ t
0
h(u)du) = e−λt

H(t) = λt

r(t) = 1/λ
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devient la queue d’une distribution de loi exponentielle.

1.4 Estimation de la fonction de hasard

L’estimation de la fonction de hasard à un grand intérêt en statistique. En effet,
elle est utilisée dans l’analyse de risque ou pour l’étude des phénomènes de survie. Le
taux de hasard inconditionnel est défini comme étant la probabilité instantanée que
le changement d’état se fasse dans l’instant infinitésimal qui suit l’instant présent,
noté t. Plus précisément, le taux de hasard h(t) est défini par :

h(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t/T ≥ t)

∆t
(t > 0)

Il n’est pas difficile de voir que que le taux de hasard peut être réécrit comme étant
le rapport de la densité f(.) dont elle est absolument continue par rapport à la mesure
de Lebesgue et la fonction de survie S(.) = 1 − F (.) de T à l’instant t ; autrement
dit :

h(t) =
f(t)

S(t)
(1.1)

où la fonction de survie S(t) n’est autre que la fonction de répartition du complémen-
taire de l’évènement considéré. En fait c’est la dérivée d’une probabilité que la durée
soit comprise entre t et ∆t, sachant que l’on ait atteint la période t. Plus pratique-
ment il s’agit d’un taux instantané de sortie de l’état à la date t. La courbe de survie
prend une signification particulière donnée par :

S(t) = exp(−
∫ t

0

h(u)du)

Il existe une littérature étendue sur l’estimateur du taux hasard non paramétrique,
d’une manière approximative et pour le cas non paramétrique, deux méthodes ont été
proposées pour estimer le taux du hasard.
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La première approche remplace f(t) et S(t) dans l’expression de h(t) par leurs es-

timateurs f̂(t) et Ŝ(t) respectivement, ce qui nous donne l’estimateur du taux de
hasard par :

ĥ(t) =
f̂(t)

Ŝ(t)
(1.2)

Nielsen et Linton (1995) appellent ce type d’estimateur par (estimateur externe).
L’estimateur à noyau externe du taux de hasard des données non censurées a été
introduit par Watson et Leadbetter (1964) et Munhy (1965).
La deuxième méthode est basée sur la relation entre le hasard cumulé et le taux de
hasard où le hasard cumulé est défini par :

H(t) =

∫ t

0

h(u)du (1.3)

Nielsen et Linton (1995) appellent ce type d’estimateurs par (estimateur interne).
La relation entre le hasard cumulé et le taux de hasard suggère que h(t) peut être
obtenue en lissant H(t) en utilisant un noyau autrement dit :

h(t) =

∫
Kh(t− u)dĤu

où h est une largeur de fenêtre tel que h → 0 quand n → ∞. L’estimateur interne
du taux de hasard pour les données censurées à été aussi introduit par Watson et
Leadbetter (1964). Ramlau-Hansen (1983), Yandell(1983), Tanner et Wong (1983,
1984), Blum et susarla (1980), Fötdes et Retjö (1981) et Lo, Mack et Wang (1989)
ont étudié des estimateurs similaires en présence des données censurées. De plus,
Tanner et Wang (1984) ainsi que Sarda et Vieu (1996) utilisent la sélection de la
largeur de fenêtre pour ce type d’estimateurs. Jusqu’à maintenant, l’intérêt porté sur
le taux de hasard va généralement dépendre de certaines covariances, par exemple, le
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temps de survie d’un patient va être affecté par plusieurs caractéristiques tels l’âge et
le genre. Le taux de hasard conditionnel de t sachant X = x est définie par :

hx(t) = lim
∆t→0

P(T ≤ t+ ∆t/T > t,X = x)

∆t

Ainsi la fonction de hasard conditionnelle T sachant X = x est définie par :

ĥx(t) =
f̂x(t)

1− F̂ x(t)

tel que F x (resp fx) est la distribution conditionnelle (resp. la densité conditionnelle)
de T sachant X = x qu’on suppose qu’elle est absolument continue par rapport à la
mesure de Lebesgue sur R.
Afin d’illustrer l’importance de la fonction de hasard conditionnelle on considère
l’exemple suivant.
Exemple : Supposons qu’un matériel de durée de vie Y soit en état de bon fonc-
tionnement a l’instant t et on veut calculer la probabilité conditionnelle, sachant
X = x, d’une panne dans l’intervalle de temps (t, t + ∆t). Cette probabilité est bien
Px(Y ∈ (t, t+ ∆t)/Y > t).
Or,

Px(Y ∈ (t, t+ ∆t)/Y > t) =
Px(Y ∈ (t, t+ ∆t), Y > t)

Px(Y > t)

=
Px(Y ∈ (t, t+ ∆t))

Px(Y > t)

=
F x(t, t+ ∆t)− F x(t)

1− F x(t)
,

il s’ensuit par passage à la limite

lim
∆t→0

1

∆t
Px(Y ∈ (t, t+ ∆t)/Y > t) = hx(t)

Autrement dit, la quantité hx(t)∆(t) est une approximation à la probabilité condi-
tionnelle "instantanée" de panne à l’instant t.
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1.5 Outils

Proposition 1.5.1. Soient (Xn)n∈N, (Yn)n∈N deux suites de variables aléatoires
réelles. Si Xn converge presque complète vers 0 et s’il existe ∃δ > 0 tel que∑∞

i=1 P{Yn < δ} < ∞. Alors, la suite (Xn/Yn)n∈N converge presque complète vers
0.

Lemme 1.5.1. "Inégalité exponentielle de Bernstein"
Soit X1, . . . , Xn des variables aléatoires réelles centrées, indépendantes et de même
loi (i.i.d) définies sur l’espace de probabilité, telles qu’il existe deux réels positifs θ1 et

θ22 vérifiant X1 < θ1 et EX2
1 < θ2 alors, pour tout ε ∈]0, θ1

θ2
[ on a :

P

(
n−1

∣∣∣∣∣
∞∑
i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−nε2

4θ2

)

Lemme 1.5.2. "Inégalité de type Fuk-Nagaev sous mélange algébrique"
Soit {∆i, i ∈ N} une famille de variables aléatoires à valeur dans R fortement mélan-
geantes, de coefficient de mélange algébriquement décroissant. On pose

s2
n =

n∑
i=1

n∑
j=1

|cov(∆i,∆j)|

Si ∀i, ‖∆i‖∞ <∞, alors pour tout ε > 0 et pour tout r > 1, on a :

P

(∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > 4ε

)
≤ 4

(
1 +

ε2

rs2
n

)−r
2

+ 2ncr−1

(
2r

ε

)a+1

Lemme 1.5.3. "Inégalité de covariance pour variables bornées"
Soit {∆i, i ∈ N} une famille de variables aléatoires à valeur dans R fortement mélan-
geantes telle que ∀i, ‖∆i‖∞ <∞, alors, pour tout i 6= j

|cov(∆i,∆j)| ≤ 4‖∆i‖∞‖∆j‖∞α(|i− j|).

Définition 1.5.1. la dépendance : Nous supposons que les données d’échantillon
(Xi, Zi)1≤i≤n sont dépendantes et satisfont la condition de mélange fort (α-mélange),
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introduite par Rosenblatt (1956)[29], définie comme :
Soit N∗ désigne l’ensemble des entiers positifs, et pour tout i et j dans N∗∪∞, (i ≤ j),

de ne F ji comme une algèbre étendue par les variables (zi, xj)...(zj, xj). On dit que la
séquence (Zi, Xi) se α-mélange s’il existe des coefficients de mélange α(k) tels que
|P(A ∩ B) − P(A)P(B)| ≤ α(k), pour tout ensemble A et B qui sont respectivement
Fmi -mesurable F∞m+k-mesurable (k,m entiers positifs), et α(k) ↓ 0.

C’est la condition la plus faible utilisée dans les études d’échantillons dépendants (par
exemple le processus ARMA généré par un bruit blanc continu le vérifie). Le lecteur
peut consulter Doukhan (1994)[8] pour une discussion plus complète de la condition
de mélange fort.



Chapitre 2

Estimation non paramétrique de la

fonction de hasard conditionnelle

2.1 Introduction

L’objectif de ce chapitre est consacré au problème de l’estimation de la fonction de
hasard conditionnelle, d’une variable aléatoire réelle Y sachant une variable aléatoire
X à valeurs dans un espace fonctionnel (espace probabilisé fonctionnel semi-métrique)
avec des données complètes, c’est à dire on observe tout l’événement. Comme dans
tout problème d’estimation non-paramétrique, la dimension de l’espace F joue un
rôle important dans les propriétés de concentration de la variable X . L’estimation
est faite par la méthode du noyau.
Il est présenté en deux sections. La première section est consacrée à la présentation
du modèle et à la construction de l’estimateur de la fonction de hasard condition-
nelle. Dans la deuxième section, on s’intéresse à la convergence presque complète de
l’estimateur construit dans le cas où les observations α-mélangeantes.

2.2 Modèle non paramétrique

Soit (X, Y ) un couple de variable aléatoire à valeur dans F ×R où F est un espace
semi-métrique muni d’une semi-métrique d(.; .). Ce chapitre est consacré au problème
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général de l’estimation d’une fonction de hasard conditionnelle d’une variable aléatoire
réelle Y sachant une variable aléatoire X à valeurs dans un espace fonctionnel (espace
probabilisé fonctionnel semi-métrique,) où X et Y sont définies sur un même espace
probabilisé (Ω,A,P). Par ailleurs, pour pouvoir étendre au cas dépendant les résultats
obtenus dans le cas indépendant. Nous allons adopter certaines hypothèses sur le
processus (Xi;Yi)i∈N. Soient :

Yi : (Ω,A,P) → (R,BR)

Xi : (Ω,A,P) → (F ,F)

où F est muni d’une semi-métrique di; i ∈ N, on se propose d’estimer la fonction de
hasard conditionnelle de Y sachant X = x.
On désigne par F x la fonction de répartition conditionnelle de Y sachant X = x,
on suppose que F x est absolument continue par rapport à la mesure de Lebesgue de
densité fx.
Etant donné (X1, Y1), . . . , (Xn;Yn) une suite des observations de même loi que (X, Y )

l’éstimateur de la fonction de répartition conditionnelle F x par la méthode du noyau

(noté F̂ x), défini par :

F̂ x(y) =

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K d(x,Xi)

) ∀y ∈ R.

où K est un noyau, H est une fonction de répartition et hK = hK,n (resp. hH = hH,n)
est une suite de réels positifs. On pose

Ki(x) = K(h−1
K d(x,Xi)) et Hi(y) = H(h−1

H (y − Yi))

Ce qui nous permet d’exprimer F̂ x(y) par :

F̂ x(y) =
F̂ x
N(y)

F̂ x
D

avec
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F̂ x
N(y) = 1

nEK1

n∑
i=1

KiHi(y) et F̂ x
D = 1

nEK1

n∑
i=1

Ki

A partir de cette estimateur, on déduit un estimateur pour la densité conditionnelle,

noté f̂x, défini par :

f̂x(y) =

h−1
H

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H ′
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K d(x,Xi)

) ∀y ∈ R.

Ce qui s’écrit aussi

f̂x(y) =
f̂xN(y)

F̂ x
D

où

f̂xN(y) =
1

nhHEK1

n∑
i=1

KiH
′
i(y)

Le taux de hasard conditionnel de Y sachant X = x est défini par

hx(y) = lim
∆→∞

P(Y ≤ y + ∆y/Y > y,X = x)

∆y
y > 0

A présent le taux de hasard peut être écrit comme le taux de la densité conditionnelle
fx(.) et la fonction de survie Sx(.) = 1− F x(.) de y, c’est à dire :

hx(y) =
fx(y)

Sx(y)

Ainsi la fonction de hasard conditionnelle Y sachant X = x est définie par :

∀X ∈ F , ∀Y ∈ R hx(y) =
fx(y)

1− F x(y)
(2.1)

L’objectif principal de ce chapitre est de donner la vitesse de convergence de notre

estimateur qui est défini par : ĥx(y) = f̂x(y)

1−F̂x(y)
vers hx(y) = fx(y)

1−Fx(y)
dans le cas où les

observations sont indépendantes identiquement distribuées et le cas des observations
α-mélangeantes.
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2.3 Cas dépendant

L’objectif de cette section est d’étudié un modèle de hasard conditionnel dans
lequel la variable explicative X n’est pas nécessairement réelle ou multidimensionnelle
mais seulement supposée être à valeurs dans un espace abstrait F muni d’une semi-
métrique d. Comme dans tout problème d’estimation non-paramétrique, la dimension
de l’espace F joue un rôle important dans les propriétés de concentration de la variable
X. Ainsi, lorsque cette dimension n’est pas nécessairement finie, les fonctions de
probabilité de petites boules définies par :

φx(h) = P(X ∈ B(x, h)) = P(X ∈ {x′ ∈ F/d(x, x′) < h})

interviennent de manière directe dans le comportement asymptotique de tout estima-
teur non-paramétrique fonctionnel.

2.3.1 Notations générales et hypothèses

Tous le long de notre étude, quand aucune confusion ne sera possible, on note A
et/ou A′ une certaine constante générique de R∗+ On fixe un point x dans F dont on
note Nx un voisinage de ce point et on pose B(x, h) = P(X ∈ {x′ ∈ F/d(x, x′) < h}
la boule de centre x et de rayon h.
On introduit les hypothèses suivantes :

(H1) ∀x ∈ F ,∀h > 0,P(X ∈ B(x, h)) = φx(h) > 0

(H2) ∀y ∈ S, F x(y) < 1, ∀(y1, y2) ∈ S × S,∀(x1, x2) ∈ Nx ×Nx,

|F x1(y1)− F x2(y2)| ≤ Ax(d(x1, x2)b1 + |y1 − y2|b2), b1 > 0, b2 > 0,

(H3) ∀(y1, y2) ∈ S × S,∀(x1, x2) ∈ Nx ×Nx

|fx1(y1)− fx2(y2)| ≤ Ax(d(x1, x2)b1 + |y1 − y2|b2), b1 > 0, b2 > 0,

(H4) ∀(y1, y2) ∈ R2, |H(j)(y1)−H(j)(y2)| ≤ A|y1 − y2|∫
|t|b2H(1)(t)dt < 1 et ∃ν > 0,∀j′ ≤ j+1, lim

y→∞
|y|1+ν |H(j′)(y)| = 0 pour j = 0, 1

(H5) K un noyau à support compact (0, 1) vérifiant 0 < A1 < K(t) < A2 < 1

(H6) lim
n→∞

hK = 0 et lim
n→∞

log n

nhjHφx(hK)
= 0, ∀j = 0, 1
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(H7) lim
n→∞

hH = 0 et lim
n→∞

nαhH = 0, ∀α > 0.

(H’1) La suite (Xi;Yi)i=1,...,n est α-mélangeante dont le coefficient de mélange vérifie :

∃a > 5 +
√

17

2
, c ∈ R telque α(n) ≤ cn−a

(H’2)
sup
i 6=j

P((Xi, Xj) ∈ B(x, h)× b(x, h))

PXi∈B(x,h)
= O((n−1φx(h))1/a)

(H’3) ∃η > 0, An
3−a
a+1

+η ≤ hhφx(hK) et φx(hK) ≤ A′n
1

1−a .

2.3.2 Propriétés asymptotiques

Théorème 2.3.1. Sous les hypothèses (H1)-(H7) et (H’1)-(H’3) on a :

sup |ĥx(y)− hx(y)| = O(hb1K) +O(hb2H) +O

(√
log n

nhHφx(hK)

)
(2.2)

où φx(hK) est la concentration de la mesure de probabilité de la variable fonctionnelle
X dans la boule de centre x et de rayon hk.
Preuve :

On peut écrire ĥx(y)− hx(y) sous la forme

ĥx(y)− hx(y) =
f̂x(y)

1− F̂ x(y)
− fx(y)

1− F x(y)

=
f̂x(y)− f̂x(y)F x(y)− fx(y) + fx(y)F̂ x(y)

(1− F̂ x(y))(1− F x(y))

=
1

1− F̂ x(y)

[
(f̂x(y)− fx(y)) +

fx(y)

1− F x(y)
(F̂ x(y)− F x(y))

]
(2.3)

D’après la décomposition précédente, il suffit de montrer que :

sup |F̂ x(y)− F x(y)| = O(hb1K) +O(hb2H) +O

(√
log n

nφx(hK)

)
p.co (2.4)
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sup |f̂x(y)− fx(y)| = O(hb1K) +O(hb2H) +O

(√
log n

nhHφx(hK)

)
p.co (2.5)

∃δ > 0 telque
∞∑
j=0

p
{

inf
y∈S
|1− F̂ x(y)| < δ

}
<∞. (2.6)

On remarque que

F̂ x(y)− F x(y) = 1

F̂xD

{(
F̂ x
N(y)− EF̂ x

N(y)
)
−
(
F x(y)− EF̂ x

N(y)
)}

+ Fx(y)

F̂xD

{
F̂ x
D − EF̂ x

D

} (2.7)

f̂x(y)− fx(y) = 1

f̂xD

{(
f̂xN(y)− Ef̂xN(y)

)
−
(
fx(y)− Ef̂xN(y)

)}
+ fx(y)

F̂xD

{
F̂ x
D − EF̂ x

D

} (2.8)

�

Ce qui nous permet de conclure que la preuve du théorème est basée sur les résultats
ci-dessous.

Lemme 2.3.1. Sous les hypothèses du théorème (2.3.1) on a :

F̂ x
D − EF̂ x

D = O

(√
log n

nφx(hK)

)
p.co (2.9)

Preuve :

notre objectif est de démontrer ;

∞∑
n=1

P

(∣∣∣f̂xD − Ef̂xD
∣∣∣ > ε

√
log n

nφx(hK)

)
≤ ∞ (2.10)

on a

f̂xD − Ef̂xD =
1

nEK1

n∑
i=1

∆i
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tel que ∆i = Ki − EKi Il suffit d’appliquer l’inégalité de Fuc-Nagaev. Pour cela, on
doit d’abord calculer asymptotiquement s2

n définie par :

s2
n =

n∑
i=1

n∑
j=1

|cov(∆i,∆j)| = s∗
2

n +
n∑
i=1

var(∆i) (2.11)

telque

s∗
2

n =
n∑
i=1

∑
i 6=j

|cov(∆i,∆j)|

ainsi pour tout i 6= j on a

cov(∆i,∆j) = E(∆i∆j)− E(∆i)E(∆j)

Donc Par définition on trouve

|cov(∆i,∆j)| ≤ AE(IB(x,hK)×B(x,hK)(Xi, Xj)) + AE(IB(x,hK)(Xi))E(IB(x,hK)(Xj))

≤ AP((Xi, Xj) ∈ B(x, hK)×B(x, hK)) + AP(Xi ∈ B(x, hK))P(Xj ∈ B(x, hK))

≤ A′φx(hk)
(
(n−1φx(h))1/a + φx(hk)

)
(2.12)

En utilisant les techniques de Masry (1986)[28] et on définit les ensembles S1, S2,

S1 = {(i, j) telque 1 ≤ j − i ≤ mn};

S2 = {(i, j) telque mn + 1 ≤ j − i ≤ n− 1}.

où (mn)n est une suite arbitraire d’entier positive vérifiant mn → ∞. Donc pour n
assez grand on obtient

s∗
2

n =
∑
S1

|cov(∆i,∆j)|+
∑
S2

|cov(∆i,∆j)|

D’après la définition de S1 et (2.12) on déduit que

∑
S1

|cov(∆i,∆j)| ≤ A′nmnφx(hk)(n
−1φx(h))1/a
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Il résulte d’après l’inégalité de covariance pour variable borné (Lemme 1.5.3) on ob-
tient : ∑

S2

|cov(∆i,∆j)| ≤ An2α(mn) ≤ A′n2m−an

On prend mn =
(

n
φx(hk)

)1/a

, il résulte que

s∗
2

n = O(nφx(hk)).

Dans un second temps, on a, pour tout i = 1, . . . , n

n∑
i=1

var(∆i) =
n∑
i=1

E(∆2
i )− (E(∆i))

2.

On montre par la même méthode utiliser dans le calcul de la cov(∆i,∆j) que

cov(∆i,∆j) ≤ A′φx(hk).

et par suite
n∑
i=1

var(∆i) ≤ o(nφx(hk)) (2.13)

Finalement, d’après ces résultat on trouve

s2
n = o(nφx(hk)) (2.14)

et on a achever à calculer asymptotiquement s2
n.

L’inégalité de Fuk-Nagaev sur la variable ∆i entraîne pour ε > 0 et r > 1,

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
)

= P

(∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > εnEK1

)
≤ 4

(
1 + ε2n2E2K1

16rs2n

)−r
2

+ 2ncr−1
(

8r
εnEK1

)a+1
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Ainsi on arrive à

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
√

logn
nφx(hK)

)
≤ 4

(
1 +

ε2n2E2K1
logn

nφx(hK )

16rs2n

)−r
2

+ 2ncr−1
(

8r
εnEK1

√
logn

nφx(hK)

)a+1

≤ 4
(

1 + ε2n logn nφx(hK)
16rs2n

)−r
2

+

Anraε−(a+1)(n log n nφx(hK))
−(a+1)

2

≤ An1− (a+1)
2 raε−(a+1)(n log n nφx(hK))

−(a+1)
2 +

4
(

1 + ε2 logn
16r

)−r
2

≤ An1− (a+1)
2 raε−(a+1)(log n)1− (a+1)

2 φx(hK)1− (a+1)
2 +

Ae−r
2

log
(

1 + ε2 logn
16r

)
On peut toujours choisir r sous la forme r = C(log n)2, où C est une constante.

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
√

logn
nφx(hK)

)
≤ An

−ε2
32 + A(log n)2a− (a+1)

2 n1− (a+1)
2 φx(hK)

−(a+1)
2 Grâce

à l’inégalité de gauche en (H’3)

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
√

logn
nφx(hK)

)
≤ An

−ε2
32 + A(log n)2a− (a+1)

2 n1− (a+1)
2 n−

(a+1)
2

( 3−a
a+1

+η)

≤ An
−ε2
32 + An2a− (a+1)

2 n1− (a+1)
2 n−

(a+1)
2

( 3−a
a+1

+η)

≤ An
−ε2
32 + An−1−(

(1−a)
2

+
(a+1)

2
η)

pour ε suffisamment grand et ν > 0 on aboutira,

P

(∣∣∣F̂ x
D − EF̂ x

D

∣∣∣ > ε

√
log n

nφx(hK)

)
≤ A′n−1−ν (2.15)
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finalement,

P

(∣∣∣F̂ x
D − EF̂ x

D

∣∣∣ > ε

√
log n

nφx(hK)

)
≤

∞∑
n=1

A′n−1−ν <∞. (2.16)

�

Corollaire 2.3.1. Sous les hypothèses du lemme (2.3.1), on a :

n∑
i=1

P
(
F̂ x
D < 1/2

)
<∞

Preuve :

on a {
|F̂ x
D| < 1/2

}
⊆
{
|F̂ x
D − 1| < 1/2

}
par suite

P
{
|F̂ x
D| < 1/2

}
≤ P

{
|F̂ x
D − 1| < 1/2

}
≤ P

{
|F̂ x
D − EF̂ x

D| < 1/2
}

car EF̂ x
D = 1 on applique le résultat du lemme (2.3.1) on montre que

n∑
i=1

P
(
F̂ x
D < 1/2

)
<∞

�

Lemme 2.3.2. Sous les hypothèses (H1)-(H6), on a :

1

F̂ x
D

sup
y∈S
|F x(y)− EF̂ x

N(y)| = O(hb1K) +O(hb2H) (2.17)

1

F̂ x
D

sup
y∈S
|fx(y)− Ef̂xN(y)| = O(hb1K) +O(hb2H) (2.18)
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Preuve :

Nous obtenons successivement

EF̂ x
N(y)− F x(y) = 1

nE(K1)

∞∑
i=1

E(Ki)Hi(y)− F x(y)

= 1
E(K1)

[
EK1H1

(
y−Yi
hH

)
F x(y)

]
= 1

E(K1)
E
(
K1

[
E
(
H1(h−1

H (y − Yi)/X)
)
− F x(y)

]) (2.19)

On a

E
(
H1(h−1

H (y − Yi)/X)
)

=

∫
R
H

(
y − u
hH

)
fx(u)du

=

∫
R
H(1)(t)F x(y − hHt)dt

par ailleurs on a

|E
(
H1(h−1

H (y − Yi)/X)
)
− F x(y)| =

∣∣∣∣∫
R
H

(
y − u
hH

)
fx(u)du− F x(y)

∣∣∣∣
=

∫
R
H(1)(t)|F x(y − hHt)− F x(y)|dt

Ainsi, grâce à l’hypothèse (H2) on obtient

|E
(
H1(h−1

H (y − Yi)/X)
)
− F x(y)| ≤ Ax

∫
R
H(1)(hb1k + |t|b2hb2H)dt (2.20)

Cette inégalité est uniforme en y, en remplaçant dans l’équation (2.19) et en simpli-
fiant le terme E(K1) on trouve

EF̂ x
N(y)− F x(y) ≤ Ax

(
hb1k

∫
R
H(1)(t) + hb2H

∫
R
|t|b2H(1)(t)dt

)
Finalement, l’hypothèse (H4) et le corollaire (2.3.1) entraînent la preuve de l’équation
(2.17).
Il nous reste à montrer l’équation (2.18), en effet

Ef̂xN(y)− fx(y) = 1
hHE(K1)

[
EK1H

(1)
1

(
y−Yi
hH

)
− hHfx(y)

]
= 1

hHE(K1)
E
(
K1

[
E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)
− hHfx(y)

])
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de plus

E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)

=

∫
R
H(1)

(
y − u
hH

)
fx(u)du

= hH

∫
R
H(1)(t)fx(y − hHt)dt

Et par suite

|E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)
− hHfx(y)| ≤ hH

∫
R
H(1)(t)|fx(y − hHt)− fx(y)|dt

l’hypothèse (H3) entraîne que

|E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)
− hHfx(y)| ≤ AxhH

∫
R
H(1)(hb1k + |t|b2hb2H)dt

l’hypothèse (H4) et le corollaire (2.3.1) entraînent la preuve de l’équation (2.18). Ce
qui achève la preuve du lemme (2.3.2).

Lemme 2.3.3. Sous les hypothèses du théorème (2.3.1) on a :

1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− EF̂ x

N(y)| = O

(√
log n

nφx(hK)

)
p.co (2.21)

1

F̂ x
D

sup
y∈S
|f̂xN(y)− Ef̂xN(y)| = O

(√
log n

nhHφx(hK)

)
p.co (2.22)

Preuve :

L’idée de la preuve est de recouvrir le compact S par des intervalles Sk de longueurs
égales. Cependant, La compacité de S implique qu’on peut extraire de cet recouvre-
ment un recouvrement fini dont le nombre des intervalles sera noté Sn. Autrement

dit, S ⊂
Sn⋃
k=1

Sk où Sk = (mk − ln,mk + ln)

Posons my = arg min
k∈1,...,Sn

|y −mk| en ajoutant et retranchant le terme

F̂ x
N(my)− EF̂ x

N(my) et appliquant l’inégalité trigonométrique. On montre que :
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|F̂ x
N(y)−EF̂ x

N(y)| ≤ |F̂ x
N(y)− F̂ x

N(my)|+ |F̂ x
N(my)−EF̂ x

N(my)|+ |EF̂ x
N(my)−EF̂ x

N(y)|
Ainsi

1

F̂xD
sup
y∈S
|F̂ x
N(y)− EF̂ x

N(y)| ≤ 1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)|︸ ︷︷ ︸
T1

+
1

F̂ x
D

sup
y∈S
|F̂ x
N(my)− EF̂ x

N(my)|︸ ︷︷ ︸
T2

+

1

F̂ x
D

sup
y∈S
|EF̂ x

N(my)− EF̂ x
N(y)|︸ ︷︷ ︸

T3

(2.23)
• Concernant (T1) L’hypothèse (H4) entraîne

1

F̂xD
sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)| ≤ 1

F̂xD
sup
y∈S

1

nEK1

n∑
i=1

|Hi(y)−Hi(my)|Ki

≤ 1

F̂xD
sup
y∈S

A|y −my|
hH

(
1

nEK1

n∑
i=1

Ki

)
≤ 1

F̂xD
sup
y∈S

A|y −my|
hH

F̂ x
D

≤ A ln
hH
.

(2.24)

En prenant ln = n−α−1/2 et on montre que

ln
hH

= O

(√
log n

nφx(hK)

)
= O

(√
log n(nφx(hK))−1

)
En effet

lim
n→+∞

ln
hH

(√
nφx(hK)

log n

)
= lim

n→+∞

1

hHnα

(√
nφx(hK)

log n

)
D’aprés l’hypothèse (H7) on a :

lim
n→+∞

1

hHnα

(√
nφx(hK)

log n

)
= 0

et cela montre que

ln
hH

= O

(√
log n

nφx(hK)

)
= O

(√
log n(nφx(hK))−1

)
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d’autre part on a

∀η > 0, ∃Nη > 0 pour n > Nη,
ln
hH

(√
nφx(hK)

log n

)
≤ η

donc pour

η

3
, ∃N0, pour n > N0,

ln
hH

(√
nφx(hK)

log n

)
≤ η

3

et d’après le résultat (2.24) (≤ A ln
hH

) on déduit que :

1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)| ≤
η

3

√
log n

nφx(hK)
,

et il résulte que, pour n > N0

P

(
1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)| >
η

3

√
log n

nφx(hK)

)
= 0 (2.25)

Ainsi, on peut écrire

∞∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)
≤

N0∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)

+
∞∑

n=N0+1

P

(
T1 >

η

3

√
log n

nφx(hK)

)

le premier terme du membre de droit est fini, et le second est nul d’après le résultat
(2.25). D’où

∞∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)
<∞ (2.26)

• Concernant (T2)

P

(
sup
y∈S
|F̂ x
N(my)− EF̂ x

N(my)| >
ε

3

√
log n

nφx(hK)

)
≤
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A

ln
max

mk∈(m1,...,mSn )
P

(
|F̂ x
N(my)− EF̂ x

N(my)| >
ε

3

√
log n

nφx(hK)

)

ainssi que

F̂ x
N(my)− EF̂ x

N(my) =
1

nEK1

n∑
i=1

Hi(my)Ki − E(Hi(my)Ki)︸ ︷︷ ︸
Λ∗i

Laquelle nécessite le calcul de s′2n où

s
′2
n =

n∑
i=1

n∑
j=1

|cov(Λ∗i ,Λ
∗
j |

En utilisant la même méthode utilisé dans s2
n et en prenant mn = 1

φx(hK)
, on montre

que

s
′2
n = o(nφx(hK)) +O(nφx(hK))

L’inégalité de Fuk-Nagaev sur la variable Λ∗i entraîne pour ε > 0 et r > 1

P
(
|F̂ x
N(my)− EF̂ x

N(my)| > ε
)

= P

(∣∣∣∣∣
n∑
i=1

Λ∗i

∣∣∣∣∣ > εnEK1

)

≤ 4
(

1 + ε2n2E2K1

16rs2n

)−r
2

+ 2ncr−1
(

8r
εnEK1

)a+1
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Ainsi on arrive à

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
√

logn
nφx(hK)

)
≤ 4

(
1 +

ε2n2E2K1
logn

nφx(hK )

16rs′2n

)−r
2

+ 2ncr−1
(

8r
εnEK1

√
logn

nφx(hK)

)a+1

≤ 4
(

1 + ε2n logn nφx(hK)

16rs′2n

)−r
2

+

Anraε−(a+1)(n log n nφx(hK))
−(a+1)

2

≤ An1− (a+1)
2 raε−(a+1)(n log n nφx(hK))

−(a+1)
2 +

4
(

1 + ε2 logn
16r

)−r
2

≤ An1− (a+1)
2 raε−(a+1)(log n)1− (a+1)

2 φx(hK)1− (a+1)
2 +

Ae−r
2

log
(

1 + ε2 logn
16r

)
On peut toujours choisir r sous la forme r = C(log n)2, où C est une

constante. ce qui donne P
(∣∣∣F̂ x

N(my)− EF̂ x
N(my)

∣∣∣ > ε
√

logn
nφx(hK)

)
≤ An

−ε2
32 +

A(log n)2a− (a+1)
2 n1− (a+1)

2 φx(hK)
−(a+1)

2 Grâce à l’inégalité de gauche en (H’3)

P

(∣∣∣F̂ x
N(my)− EF̂ x

N(my)
∣∣∣ > ε

√
log n

nφx(hK)

)
≤ An

−ε2
32 +A(log n)2a− (a+1)

2 n1− (a+1)
2 n−

(a+1)
2

( 3−a
a+1

+η)

donc on a

P

(
sup
y∈S
|F̂ x
N(my)− EF̂ x

N(my)| >
ε

3

√
log n

nφx(hK)

)
≤ Al−1

n

(
n
−ε2
32 + n−1− (a+1)

2
η
)

on applique le corollaire (2.3.1), sous un choix convenable de ε on montre que

n∑
i=1

P

(
sup
y∈S

∣∣∣F̂ x
N(my)− EF̂ x

N(my)
∣∣∣ > ε

3

√
log n

nφx(hK)

)
< +∞
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• Concernant (T3) Nous avons

1

F̂ x
D

sup
y∈S
|EF̂ x

N(my)− EF̂ x
N(y)| ≤ 1

F̂ x
D

sup
y∈S
|F̂ x
N(my)− F̂ x

N(y)|

et d’après le résultat (2.24)(≤ A ln
hH

) on a :

1

F̂ x
D

sup
y∈S
|EF̂ x

N(my)− EF̂ x
N(y)| ≤ A

ln
hH

on a {
T3 >

η

3

√
log n

nφx(hK)

}
⊆

{
T1 >

η

3

√
log n

nφx(hK)

}
ce qui implique

P

{
T3 >

η

3

√
log n

nφx(hK)

}
≤ P

{
T1 >

η

3

√
log n

nφx(hK)

}

et par suite

∞∑
n=1

P

(
T3 >

η

3

√
log n

nφx(hK)

)
≤

∞∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)

et finalement grâce à (2.26) nous aurions alors

∞∑
n=1

P

(
T3 >

η

3

√
log n

nφx(hK)

)
<∞ (2.27)

Ce qui prouve l’équation (2.21) du lemme (2.3.3). Il nous reste, maintenant, l’équation
(3.22), remarquons que :

1

F̂xD
sup
y∈S
|f̂xN(y)− Ef̂xN(y)| ≤ 1

F̂ x
D

sup
y∈S
|f̂xN(y)− f̂xN(my)|︸ ︷︷ ︸

F1

+
1

F̂ x
D

sup
y∈S
|f̂xN(my)− Ef̂xN(my)|︸ ︷︷ ︸

F2

+

1

F̂ x
D

sup
y∈S
|Ef̂xN(my)− Ef̂xN(y)|︸ ︷︷ ︸

F3

(2.28)
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• Concernant F1 et F3 On utilise les mêmes arguments employés dans la démons-

tration de T1 et T3, en remplace H par H(1) on montre que

1

F̂xD
sup
y∈S
|f̂xN(y)− f̂xN(my)| ≤ A

ln
h2
H

et 1

F̂xD
sup
y∈S
|Ef̂xN(my)− Ef̂xN(y)| ≤ A

ln
h2
H

On choisit maintenant ln sous la forme ln = n−
3α
2
− 1

2 et d’après (H7), on déduit que :

ln
h2
H

= O

(√
log n

nhHφx(hK)

)

• Concernant F2

P

(
sup
y∈S
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)
≤

A

ln
max

mk∈(m1,...,mSn )
P

(
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)

On a ainssi que

f̂xN(my)− Ef̂xN(my) =
1

nhhEK1

n∑
i=1

H
(1)
i (my)Ki − E(H

(1)
i (my)Ki)︸ ︷︷ ︸

Γ∗i

Laquelle nécessite le calcul de s′2n où

s
′2
n =

n∑
i=1

n∑
j=1

|cov(Γ∗i ,Γ
∗
j |

En utilisant la même méthode que dans s2
n et en prenant mn = 1

hHφx(hK)
, on montre

que

s
′2
n = O(nhHφx(hK))

L’inégalité de Fuk-Nagaev donne

P

(
sup
y∈S
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)
< A1 + A2.
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avecA1 = Ae−r
2

log
(

1 + ε2 logn
16r

)
etA2 = An1− (a+1)

2 raε−(a+1)(hH log n)1− (a+1)
2 φx(hK)1− (a+1)

2

On applique l’hypothèse (H’3) et un choix de r = C(logn)2 et ln = n−
3
2
α+ 1

2 on
montre qu’il existe ν > 0 pour η assez grand, on a

1

ln
(A1 + A2) ≤ An−1−ν

d’après le corollaire (2.3.1), on en déduit

P

(
sup
y∈S
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)
≤ An−1−ν

Lemme 2.3.4. Sous les conditions du théorème (2.3.1) on a

∃δ > 0, telque
∞∑
n=1

P{inf
y∈S
|1− F̂ x(y)| < δ} <∞

preuve

A partir des lemmes précédents on déduit que

F̂ x(y)
p.co−−→ F x(y)

Ce qui implique que

∞∑
n=1

P{inf
y∈S
|F̂ x(y)− F x(y)| > ε} <∞

D’autre part, nous aurions par l’hypothèse F x < 1

inf
y∈S
|1− F̂ x(y)| ≤ (1− sup

y∈S
F x(y))/2 =⇒ sup

y∈S
|F̂ x(y)− F x(y)| ≥ (1− sup

y∈S
F x(y))/2

Ce qui implique

P{inf
y∈S
|1− F̂ x(y)| < δ} ≤ P{sup

y∈S
|F̂ x(y)− F x(y)| ≥ (1− sup

y∈S
F x(y))/2} <∞

On prend δ = 1− sup
y∈S

F x(y)/2 �



Chapitre 3

Estimation non paramétrique du

maximum de la fonction de hasard

conditionnelle

3.1 Introduction

Ce chapitre présente certaines propriétés asymptotiques liées à l’estimation non
paramétrique du maximum de la fonction de risque conditionnel. Dans un paramètre
de données fonctionnelles, la variable de conditionnement prends ses valeurs dans un
espace semi-métrique. Dans ce cas, Ferraty et cie. (2007) définissent des estimateurs
non paramétriques de la densité conditionnelle et de la distribution conditionnelle.
Ils donnent les taux de convergence (au sens presque complet) des fonctions
correspondantes dans un contexte de dépendance (α-mélangeant). Nous étendons
leurs résultats en calculant le maximum de la fonction de risque conditionnel de ces
estimations, et en établissant leur normalité asymptotique, en considérant un type

particulier de noyau pour la partie fonctionnelle des estimations. Étant donné que
l’estimateur de la fonction de risque est naturellement construit à l’aide de ces deux
derniers estimateurs.
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Ce chapitre est organisé comme suit : La section 2 décrit le cadre fonctionnel non pa-
ramétrique : la structure des données fonctionnelles et les conditions de mélange, les
opérateurs de densité conditionnelle, de distribution et de risque, et les estimateurs
de noyau non paramétriques correspondants. La section 3 présente la convergence
presque complète (avec des taux de convergence) pour les estimations non paramé-
triques de la dérivée du risque conditionnel et du risque maximal. Dans la section 4,
nous calculons la variance des estimations conditionnelles de densité, de distribution
et de risque maximal, la normalité asymptotique des trois estimateurs considérés est
développée dans cette section

3.2 Notations générales et hypothèses

Soit (Xi;Yi)i∈N un échantillon de n paires aléatoires, chacune distribuée comme
(X;Y ), où la variable X est de nature fonctionnelle et Y est de nature scalaire.
Formellement, nous considérerons que X est une variable aléatoire à valeurs dans
un espace fonctionnel semi-métrique F , notons par d la semi-métrique sous-jacente.
Pour x ∈ F , notons hx la fonction de risque conditionnelle de X1 en prenant X1 = x.
Nous supposons que hx admet un maximum unique et son point de risque le plus
élevé dans le compact S est noté θ(y) := θ, qui est défini par

hx(θ(y)) = hx(θ) := max
y∈S

hx(y) (3.1)

Un estimateur du noyau de θ est défini comme la variable aléatoire θ̂(y) := θ̂ qui

maximise un estimateur du noyau ĥx, c’est-à-dire,

ĥx(θ̂(y)) = ĥx(θ̂) := max
y∈S

ĥx(y) (3.2)

où hx et ĥx sont définis dans chapitre 2.
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Notons que l’estimation θ est une note nécessairement unique et nos résultats sont
valables pour tout choix satisfaisant (3.2). Nous rappelons que nous pouvons préciser
notre choix en prenant

θ̂(y) = inf

{
t ∈ S; ĥx(t) = max

y∈S
ĥx(y)

}
Comme dans tout problème de données fonctionnelles non paramétriques, le com-
portement des estimations est contrôlé par les propriétés de concentration φx(h) =

P(X ∈ B(x, h)) de la variable fonctionnelle X = x.
où B(x, h) est la boule de centre x et de rayon h, à savoir

B(x, h) = P(f ∈ F , d(x, f) < h)

Pour plus de détails, voir Ferraty et Vieu, 2006 , Chapitre 6 [15].
Dans ce qui suit, x sera un point fixé dans F , Nx désignera un voisinage fixe de
x, S sera un sous-ensemble compact fixe de R+. Nous allons besoin des hypothèse
ci-dessous concernant la fonction de concentration φx.

(H’4) H est différentiable tel que
(H’4a)∀(y1, y2) ∈ R2, |Hj(y1) − Hj(y2)| ≤ A|y1 − y2| pour j = 0, 1 et
H(j) sont bornés pour j = 0, 1

(H’4b)
∫
t2H2(t)dt <∞,

(H’4c)
∫
|t|βH ′2(t)dt <∞ .

(H’5) ∃γ <∞, f ′x(y) ≤ γ, ∀(x, y) ∈ F × S.

(H’6) ∃τ > 0, F x(y) ≤ 1− τ, ∀(x, y) ∈ F × S.

(H’7) Il existe une fonction ζx0 telle que pour tout t ∈ [0, 1] limh→0
φx(th)
φx(h)

= ζx0 (t).

(H’8) La largeur de bande hn, la probabilité de petite boule φx(hn) et le coeffcient
de α-mélange arithmétique avec un ordre a > 3 satisfaisant

(H’8a) ∃C > 0, h2j+1
n φx(hn) ≥ C

n2/(a+1) , pourj = 0, 1.

(H’8b)
(
φx(hn)
n

)1/a

+ φx(hn) = ( 1
n2/(a+1) ),

(H’8c) limn→∞ hn = 0, et limn→∞
logn

h2j+1
n φx(hn)

.
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3.3 Propriétés asymptotiques

Supposons qu’il existe un compact S telque hx admet son maximum unique au point
θ sur S. Nous supposerons que hx est suffisamment différentiable (au moins de classe
C2) il vérifie que h′x(θ) = 0 et h′′x(θ) < 0 .
Nous pouvons écrire un estimateur de la première dérivée de la fonction de risque
conditionnelle en fonction de la première dérivée de l’estimateur (2.1). Notre esti-

mation maximale est définie en supposant qu’il existe un θ̂ unique sur S tel que

0 = ĥ′(θ̂) <| ĥ′x(y) | pour tout y ∈ S et y 6= θ̂ .
De plus, nous supposons que θ ∈ S0, où S0 désigne l’intérieur de S, et qu’il satisfait
la condition d’unicité, c’est-à-dire ; pour tout ε > 0 et µ(x), il existe ξ > 0 tel que
| θ(x)− µ(x) |≥ ε implique que | hx(θ(x))− hx(µ(x)) |≥ ξ.
Nous pouvons écrire un estimateur de la première dérivée de la fonction de risque en
fonction la première dérivée de l’estimateur. Notre estimation maximale est définie

en supposant qu’il existe un θ̂ unique sur S0.
Il est donc naturel d’essayer de construire un estimateur de la dérivée de la fonction hx

à l’aide de cette démarche. Pour estimer la fonction de distribution conditionnelle et
la fonction de densité conditionnelle en présence de la variable aléatoire conditionnelle
fonctionnelle X = x. L’estimateur du noyau de la dérivée de la fonction fonctionnelle
aléatoire conditionnelle peut donc être construit comme suit :

ĥ′x(y) =
f̂ ′x(y)

1− F̂ x(y)
+ (ĥx(y))2 (3.3)

l’estimateur de la dérivée du densité conditionnelle est donné par la formule suivante :

f̂ ′
x
(y) =

h−2
H

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H ′′
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K d(x,Xi)

) ; ∀y ∈ R. (3.4)
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Plus tard, nous avons besoin d’hypothèses sur les paramètres de l’estimateur, c’est-
à-dire sur K, H, H ′, hK et hH qui soit un peu restrictif. En effet, d’une part, ils ne
sont pas spécifiques à l’estimation du problème de hx (mais à des problèmes inhérents
à l’estimation de F x, fx et f ′x), et d’autre part ils correspondent aux hypothèses
habituellement faites sous des variables fonctionnelles.

Remarque 3.3.1. Généralement, la fonction de risque a un maximum global dans
les intervalles de temps avec des valeurs les plus proches de zéro, correspondant aux
tremblements de terre de plus grande intensité (Vere-Jones (1970)[31]).
De plus, la fonction de risque peut avoir plusieurs maxima locaux, indiquant les mo-
ments où le risque est le plus élevé au cours d’une certaine période (voir les exemples
dans Estévez-Pérez et cie. (2002)[11]).
L’hypothèse d’unicité n’est établie que par souci de clarté. D’après nos preuves, s’il
existe plusieurs maxima estimés locaux, les résultats asymptotiques restent valables
pour chacun d’eux.

Nous établissons la convergence presque complète (avec les taux de convergence) de
l’estimation maximale par les résultats suivants :

Théorème 3.3.1. Sous les hypothèses (H1),(H2),(H3),(H5),(H’1),(H’2),(H’4),(H’5)

et (H’6) nous avons

θ̂ − θ → 0 p.co.

Preuve de Théorème (3.3.1) :

Parce que h′x est continu, nous avons, pour tout ε > 0.∃η(ε) > 0 tel que

| t− θ |> ε⇒| h′x(t)− h′x(θ) |> η(ε).

Par conséquent,

P{| θ̂ − θ |> ε} ≤ P{| h′x(θ̂)− h′x(θ) |≥ η(ε)}

Nous avons également

| h′x(θ̂)−h′x(θ) |≤| h′x(θ̂)− ĥ′x(θ̂) | + | ĥ′x(θ̂)−h′x(θ) |≤ sup
y∈S
| ĥ′x(y)−h′x(y) | (3.5)
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car ĥ′x(θ̂) = h′x(θ) = 0.

Ensuite, la convergence uniforme de h′x sur S impliquera la convergence uniforme de

θ̂. C’est pourquoi, nous avons le lemme suivant.

Lemme 3.3.1. Sous les hypothèses du Théorème (3.3.1), nous avons

sup
y∈S
| ĥ′x(y)− h′x(y) |→ 0 p.co. (3.6)

�

Théorème 3.3.2. Sous les hypothèses du Théorème (3.3.1) et (H’8c), nous avons

sup
y∈S
| θ̂ − θ |= O(hb1n ) +Op.co.

(√
log n

nh3
nφx(hn)

)
(3.7)

Preuve de Théorème (3.3.2) :

En utilisant le développement de Taylor de la fonction h′x au point θ̂, nous obtenons

h′x(θ̂) = h′x(θ) + (θ̂ − θ)h′′x(θ∗n) (3.8)

avec θ∗ un point entre θ et θ̂.

Maintenant, parce que h′x(θ) = ĥ′x(θ̂)

| θ̂ − θ |≤ 1

h′′x(θ∗n)
sup
y∈S
| ĥ′x(y)− h′x(y) | (3.9)

La preuve du théorème sera complétée en montrant le lemme suivant.

Lemme 3.3.2. Selon les hypothèses du Théorème (3.3.2) , nous avons
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sup
y∈S
| ĥ′x(y)− h′x(y) |= O(hb1n ) +Op.co.

(√
log n

nh3
nφx(hn)

)
(3.10)

�

Preuves de lemmes (3.3.1) et (3.3.2) :

Soit

ĥ′x(y) =
f̂ ′x(y)

1− F̂ x(y)
+ (ĥx(y))2 (3.11)

avec

ĥ′x(y)− h′x(y) =

{(
ĥx(y)

)2

−
(
hx(y)

)2}
︸ ︷︷ ︸

Γ1

+

{
f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)

}
︸ ︷︷ ︸

Γ2

(3.12)

pour le premier terme de (3.12) on peut écrire

∣∣∣∣(ĥx(y)

)2

−
(
hx(y)

)2∣∣∣∣ ≤ ∣∣∣∣ĥx(y)− hx(y)

∣∣∣∣.∣∣∣∣ĥx(y)− hx(y)

∣∣∣∣ (3.13)

parce que l’estimateur ĥx(.) converge p.co. à hx(.) nous avons

sup
y∈S

∣∣∣∣(ĥx(y)

)2

−
(
hx(y)

)2∣∣∣∣ ≤ 2

∣∣∣∣hx(θ)∣∣∣∣ sup
y∈S

∣∣∣∣ĥx(y)− hx(y)

∣∣∣∣ (3.14)
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pour le second terme de (3.12) nous avons

f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)
=

1

(1− F̂ x(y))(1− F x(y))

{
f̂ ′x(y)− f ′x(y)

}

+
1

(1− F̂ x(y))(1− F x(y))

{
f ′x(y)

(
F̂ x(y)− F x(y)

)}

− 1

(1− F̂ x(y))(1− F x(y))

{
F x(y)

(
f̂ ′x(y)− f ′x(y)

)}

Valable pour tous les y ∈ S. Pour une constante C <∞ ; Cela conduit

sup
y∈S

∣∣∣∣ f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)

∣∣∣∣ ≤ C

{
supy∈S |f̂ ′x(y)− f ′x(y)|+ supy∈S |F̂ x(y)− F x(y)|

}
infy∈S |1− F̂ x(y)|

Par conséquent, la conclusion du lemme découle des résultats suivants :

sup
y∈S
| F̂ x(y)− F x(y) |= O(hb1n ) +Op.co.

(√
log n

nφx(hn)

)
(3.15)

sup
y∈S
| f̂ ′x(y)− f ′x(y) |= O(hb1n ) +Op.co.

(√
log n

nh3
nφx(hn)

)
(3.16)

sup
y∈S
| ĥx(y)− hx(y) |= O(hb1n ) +Op.co.

(√
log n

nφx(hn)

)
(3.17)

∃δ > 0 tel que
∞∑
1

P
{

inf
z∈S
| 1− F̂ x(y) |< δ

}
<∞ (3.18)
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On trouve les preuves de (3.15) et (3.17) et (3.18) dans le deuxième chapitre. �

Preuve de (3.16) : Ce résultat est basé sur le même type de décomposition que (2.7).

On remplace F̂ x(y) par f̂ ′x(y) et F x(y) par f ′x(y) et utilisez les mêmes notations.

f̂ ′x(y)− f ′x(y) =
1

F̂ x
D

{(
f̂ ′xN (y)− Ef̂ ′xN (y)

)
−
(
f ′x(y)− Ef̂ ′xN (y)

)}
+
f ′x(y)

F̂ x
D

{
EF̂ x

D − F̂ x
D

}
où

f̂ ′xN (y) =
1

nh2
HEK1

n∑
i=1

K(h−1
K d(x,Xi))H

′′(h−1
H (y − Yi)).

Ensuite, la preuve peut être déduit des deux lemmes suivants, ainsi que du lemme
(2.3.1) et du corollaire (2.3.1). �

Lemme 3.3.3. Sous les hypothèses (H1)-(H6), on a :

1

F̂ x
D

sup
y∈S
|f ′x(y)− Ef̂ ′xN (y)| = O(hb1K) +O(hb2H) (3.19)

Preuve :

Soit H ′′i = H ′′(h−1
H (y − Yi)), et notons que nous avons

Ef̂ ′xN (y)− f ′x(y) =
1

h2
HEK1

E
(
K1

[
E(H ′′1 (y)/X)− h2

Hf
′x(y)

])
(3.20)

En outre,
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E(H ′′1 (y)/X) =

∫
R

H ′′(h−1
H (y − z))fXdz

= −hH
[
H ′(h−1

H (y − z))fXdz

]+∞

−∞

+ hH

∫
R

H ′(h−1
H (y − z))(h−1

H (y − z)).

(3.21)

La condition (H4) nous permet d’annuler le premier terme du côté droit de (3.21) et
nous pouvons écrire :

∣∣∣∣E(H ′′1 (y)/X)− h2
Hf
′x(y)

∣∣∣∣ ≤ h2
H

∫
R

H ′(t)

∣∣∣∣f ′X(y − hHt)− f ′x(y)

∣∣∣∣dt.
Enfin, (H3) permet d’écrire

∣∣∣∣E(H ′′1 (y)/X)− h2
Hf
′x(y)

∣∣∣∣ ≤ Cxh
2
H

∫
R

H ′(t)(hb1K + |t|b2hb2H)dt.

Comme cette dernière inégalité est uniforme sur y, l’utilisation de (H4), (3.20) et du
corollaire (2.3.1) permet de prouver le lemme (3.3.3). �

Lemme 3.3.4. Sous les hypothèses (H1), (H3)-(H5) et (H7) on a :

1

F̂ x
D

sup
y∈S
|f̂ ′xN (y)− Ef̂ ′xN (y)| = O

(√
log n

nhHφx(hK)

)
p.co (3.22)

Preuve :
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On a

1

F̂xD
sup
y∈S
|f̂ ′xN (y)− Ef̂ ′xN (y)| ≤ 1

F̂ x
D

sup
y∈S
|f̂ ′xN (y)− f̂ ′xN (my)|︸ ︷︷ ︸

T1

+
1

F̂ x
D

sup
y∈S
|f̂ ′xN (my)− Ef̂ ′xN (my)|︸ ︷︷ ︸

T2

+

1

F̂ x
D

sup
y∈S
|Ef̂ ′xN (my)− Ef̂ ′xN (y)|︸ ︷︷ ︸

T3

(3.23)
• Concernant (T1) et (T3) : On remplace H par H ′′ et on appliquons la condition

de Lipschitz (H4). Cela nous permet d’obtenir :

1

F̂ x
D

sup
y∈S
|f̂ ′xN (y)− f̂ ′xN (my)| ≤ C

ln
h3
H

et sup
y∈S
|Ef̂ ′xN (y)− Ef̂ ′xN (my)| ≤ C

ln
h3
H

(3.24)

Prenons maintenant ln = n−
3α
2
− 1

2 et notons que (H7) implique

ln/h
3
H = O

(√
log n

nh3
Hφx(hK)

)
. (3.25)

• Concernant (T2) :

f̂ ′xN (my)− Ef̂ ′xN (my) =
1

n

n∑
i=1

{
H ′′i (my)Ki

h2
HEK1

− E(H ′′i (my)K1)

h2
HEK1

}
︸ ︷︷ ︸

Ai

On a clairement |Ai| ≤ Ch−2
H φx(hK)−1. Maintenant, nous montrons que

EA2
i = O(h−3

H φx(hK)−1) (3.26)

Premièrement, nous pouvons écrire

EA2
i ≤

E (H ′′i (my)
2K2

1)

(h2
HEK1)

2 et E
(
H ′′i (my)

2K2
1

)
= E

(
K2

1E
(
H ′′i (my)

2/X
))
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La condition (H’4) implique que
∫
R
H ′′2(y)dy < +∞. On a donc :

∣∣∣∣ 1

hH
E
(
H ′′1 (my)

2/X
)
− fX(m)

∫
R

H ′′2(y)dy

∣∣∣∣
=

∣∣∣∣ ∫
R

1

hH
H ′′2

(
u

hH

)(
fX(my − u)− fX(my)

)
du

∣∣∣∣
≤
∣∣∣∣ ∫
|u|≤A

1

hH
H ′′2

(
u

hH

)(
fX(my − u)− fX(my)

)
du

∣∣∣∣
+

∣∣∣∣ ∫
|u|>A

1

hH
H ′′2

(
u

hH

)(
fX(my − u)− fX(my)

)
du

∣∣∣∣
≤ C sup

|u|≤A
|fX(my − u)− fX(my)|︸ ︷︷ ︸

B1

+ sup
|y|>A/hH

H ′′2(y)︸ ︷︷ ︸
B2

+ fX(my)

∫
|y|>A/hH

H ′′2(y)dy︸ ︷︷ ︸
B3

Maintenant, nous déduisons de (H’4) que

∀ε > 0,∀A > 0, ∃nA,ε,∀n ≥ nA,ε, B2 +B3 < ε.

De plus, en raison de la continuité de fX , nous avons

∀ε > 0, ∃Aε,∀A ≤ Aε, B1 < ε.

Ainsi, nous obtenons que

lim
n→+∞

1

hH
E
(
H ′′1 (my)

2/X
)

= fX(m)

∫
R

H ′′2(y)dy.

Enfin, puisque 0 < Cφx(hK) < EK1 et EK2
1 < C ′φx(hK), nous avons (3.26). Or,
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l’inégalité de Bernstein nous conduit à :

P
(
|f̂ ′xN (my)− Ef̂ ′xN (my)| > η

√
log n

nh3
Hφx(hK)

)

≤ 2 exp

{
−nC η2 log n

nh3
Hφx(hK)

h3
Hφx(hK)

}
≤ C ′n−Cη

2

.

Encore une fois, des arguments similaires à ceux invoqués pour prouver le lemme
(2.3.3) peuvent être utilisés, ce qui nous permet d’obtenir que :

P
(

sup
y∈S
|f̂ ′xN (my)− Ef̂ ′xN (my)| > η

√
log n

nh3
Hφx(hK)

)
≤ C ′

ln
n−Cη

2

.

En choisissant maintenant tel que Cη2 = 5α
3

+ 3
2
, on obtient

sup
y∈S
|f̂ ′xN (my)− Ef̂ ′xN (my)| = O

(√
log n

nh3
Hφx(hK)

)
(3.27)

Enfin, le lemme (3.22) est une conséquence de (3.24), (3.25), (3.27) et du corollaire
(2.3.1).

�

3.4 Normalité asymptotique

Pour obtenir la normalité asymptotique des estimations conditionnelles, nous devons
ajouter les hypothèses suivantes :

(H’4d)
∫
R
H ′2dt <∞.

(H’9) 0 = ĥ′x(θ̂) < |ĥ′x(y)|, ∀y ∈ S, y 6= θ̂.
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Le résultat suivant donne la normalité asymptotique du maximum de la fonction de
risque conditionnel. On pose

A = {(x, y) : (x, y) ∈ S ×R, ay2F x(y)(1− F x(y)) 6= 0}

Théorème 3.4.1. Dans les conditions (H1)-(H7) et (H’1)-(H’9) nous avons
(θ ∈ S/fx(θ), 1− F x(θ) > 0)

(nh3
nφx(hn))1/2

(
ĥ′x(θ)− h′x(θ)

)
D→ N(0, σ2

h(θ))

où D→ désigne la convergence de la distribution,

ayl = kl(1)−
∫ 1

0

(K l(u))′ζy0 (u)du pour l = 1, 2

et

σ2
h′(θ) =

ay2h
x(θ)

(ay1)2(1− F x(θ))

∫
H ′2dt.

Preuve :

On utilisant la décomposition (3.12), et on obtient

(1− F x(y))

(1− F̂ x(y))(1− F x(y))
→ 1

1− F x(y)

et

f̂ ′x(y)

(1− F̂ x(y))(1− F x(y))
→ f ′x(y)

(1− F x(y))2



3.4 Normalité asymptotique 53

La normalité asymptotique de (nh3
nφx(hn))1/2

(
ĥ′x(θ)− h′x(θ)

)
peut être déduite des

lemmes suivants, �

Lemme 3.4.1. Sous les hypothèses (H1)-(H4) et (H7) et (H’1)-(H’3), nous avons

(nφx(hn))1/2
(
F̂ x(y)− F x(y)

)
D→ N(0, σ2

Fx(y))

où

σ2
Fx(y) =

ay2F
x(y)(1− F x(y))

(ay1)2

Les preuves du lemme (3.4.1) peuvent être vues dans Laksaci et cie. (2011) [21].

Lemme 3.4.2. Sous les hypothèses (H1)-(H5) et (H7) et(H’1)-(H’4), nous avons

(nhnφx(hn))1/2
(
ĥx(y)− hx(y)

)
D→ N(0, σ2

h(y))

où

σ2
hx(y) =

ay2h
x(y)

(ay1)2(1− F x(y))

∫
H2(t)dt.

Preuve :

On peut écrire pour tout x ∈ S

ĥx(y)− hx(y) = f̂x(y)

1−F̂x(y)
− fx(y)

1−Fx(y)

= 1

D̂x(y)

{(
f̂x(y)− fx(y)

)
+ fx(y)

(
F̂ x(y)− F x(y)

)
− F x(y)

(
f̂x(y)− fx(y)

)}
= 1

D̂x(y)

{
(1− F x(y))

(
f̂x(y)− fx(y)

)
− fx(y)

(
F̂ x(y)− F x(y)

)}
(3.28)
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avec D̂x(y) = (1− F x(y))(1− F̂ x(y))

Conséquence directe du lemme (3.4.1), le résultat (3.29) (voir Ezzahrioui et Ould-Saïd,
2010 [12]) et l’expression (3.28), nous permettent d’obtenir la normalité asymptotique
pour l’estimateur du hasard conditionnel.

(nhnφx(hn))1/2
(
f̂x(y)− fx(y)

)
D→ N(0, σ2

fx(y)) (3.29)

où

σ2
fx(y) =

ay2f
x(y)

(ay1)2

∫
R

(H(t))2dt.

�

Lemme 3.4.3. Sous les hypothèses du théorème (3.4.1), nous avons

(nh3
nφx(hn))1/2

(
f̂ ′x(y)− f ′x(y)

)
D→ N(0, σ2

f ′x(y)) (3.30)

où

σ2
f ′x(y) =

ay2f
x(y)

(ay1)2

∫
R

H ′2dt.

Preuve :

Pour i = 1, ..., n, on considère les quantités Ki = K(h−1
n d(x,Xi)),

H ′i(x) = H ′(h−1
n (y − Yi)) et soit f̂ ′XN (y) (resp.F̂X

N ) être défini comme

f̂ ′xN (y) =
h−2
n

nEk1

n∑
i=1

KiH
′
i(y)

(
resp. F̂ x

N(y) =
1

nEk1

n∑
i=1

Ki

)
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Cette preuve est basée sur la décomposition suivante

f̂ ′x(y)− f ′x(y) =
1

F̂ x
D

{(
f̂ ′xN (y)− Ef̂ ′xN (y)

)
−
(
f ′x(y)− Ef̂ ′xN (y)

)}
+
f ′x(y)

F̂ x
D

{
EF̂ x

D − F̂ x
D

}
et sur les résultats intermédiaires suivants.

√
nh3

nφx(hn)
(
f̂ ′x(y)− Ef̂ ′x(y)

)
D→ N(0, σ2

f ′x(y)) (3.31)

où σ2
f ′x(y) est défini comme dans le lemme (3.4.3).

lim
n→∞

√
nh3

nφx(hn)
(
f̂ ′x(y)− Ef̂ ′x(y)

)
= 0 (3.32)

√
nh3

nφx(hn)
(
F̂ x
D(y)− 1

)
P→ 0, comme n→∞. (3.33)

Concernant (3.31). Par définition de f̂ ′xN (y), il s’ensuit que

√
nh3

nφx(hn)
(
f̂ ′x(y)− Ef̂ ′x(y)

)
=

n∑
i=1

√
φx(hn)√
nhnEK1

(KiH
′
i − EKiH

′
i) =

n∑
i=1

∆i,

ce qui mène à

n∑
i=1

E∆2
i =

φx(hn)

hnE2K1

(E2K1H
′
1)2 = Π1n − Π2n. (3.34)

Pour Π1n, par la propriété d’espérance conditionnelle, on obtient
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Π1n =
φx(hn)

E2K1

E
{
K2

1

∫
H ′2(t)(f ′x(y − thn)− f ′x(y) + f ′x(y))dt

}
.

Pendant ce temps, par (H1), (H4), (H’4) et (H’9), il s’en suit que :

φx(hn)E2K1

E2K1

−→
n→∞

ay2
(ay1)2

,

ce qui mène à

Π1n −→
n→∞

ay2f
x(y)

(ay1)2

∫
H ′2dt, (3.35)

Concernant Π2n, par (H1), (H4) et (H7), on obtient

Π2n −→
n→∞

0. (3.36)

Ce résultat, combiné avec (3.34) et (3.35), nous permet d’obtenir

lim
n→∞

n∑
i=1

E∆2
i = σ2

f ′x(y).

Deuxièmement, comme H ′ est bornée, nous avons

E(|∆i∆j|) ≤
Cφx(hn)

nE2K1

(KiKj + EKiKj)

≤ C

nhn

{(
φx(hn)

n

)1/a

+ φx(y)(hn)

}
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Puis, en prenant

δn = max
1≤i 6=j≤n

{E(|∆i∆j|)} =
C

nhn

{(
φx(hn)

n

)1/a

+ φx(y)(hn)

}
.

Conduit à

nmnδn =
Cmn

nhn

{(
φx(hn)

n

)1/a

+ φx(y)(hn)

}
. (3.37)

De même, le fait que de H ′ et K soient bornée permet de prendre Ci =

O
(

1√
nh3nφx(hn)

)
, ce qui implique que

(
∞∑

j=mn+1

α(j)

)
n∑
i=1

C2
i ≤

C

hnφx(hn)

∫
t≥mn

t−adt =
C

hnφx(hn)

m−a+1
n

a− 1
. (3.38)

Alors, la somme du côté droit de (3.37) et (3.38) est de type Amn + Bm−a+1
n , en

parlant

mn = (A/B)−1/a =

{
(a− 1)φx(hn)

((
φx(hn)

n

)1/a

+ φx(hn)

)}−1/a

→∞

il est clair que, dans les conditions (H10a) et (H10b), combiner (3.37) et (3.38) permet
d’obtenir

nmnδn = o(1), (3.39)

et
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(
∞∑

j=mn+1

α(j)

)
n∑
i=1

C2
i = o(1), (3.40)

respectivement. Enfin, en choisissant %n =
√

nh3nφx(hn)
logn

, sous (H10a) à nouveau et

a > 3, on a

%n√
n

= o(1) (3.41)

et

n

%n
α(ε%n) ≤ C

(log n)(a+1)/2

n(a−1)/2(h3
nφx(hn))(a+1)/2

≤ C
(log n)(a+1)/2

n(a−3)/2
→ 0 quand n→∞.

(3.42)

Par conséquent, combiner (3.36)-(3.42) avec le corollaire 2.2 dans Liebscher
(2001)[22], (3.31) est valide.

• Concernant (3.32). La preuve se fait selon les mêmes étapes que celle de Π1n. Nous
l’omettons ici.

• Concernant (3.33). L’idée est similaire à celle donnée par Ferraty et cie. (2007)[13].

Par définition de F̂ x
D(y), on a

√
nh3

nφx(hn)(F̂ x
D(y)− 1) = Ωn − EΩn,

où Ωn =

√
nh3nφx(hn)

∑n
i=1Ki

nEK1
. Afin de prouver (3.33), similaire à Ferraty et cie.

(2007)[13], il suffit de prouver Var Ωn → 0, comme n→∞. En fait, depuis
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Var Ωn =
nh3

nφx(hn)

nE2K1

(
nVar K1 +

∑
1≤i

∑
j≤n

cov(Ki, Kj)

)

≤ nh3
nφx(hn)

E2K1

EK2
1 +

nh3
nφx(hn)

nE2K1

∑
1≤|i

∑
−j|≤vn

cov(Ki, Kj)

+
nh3

nφx(hn)

nE2K1

∑
1≤|i

∑
−j|≥vn

cov(Ki, Kj)

= Ψ1 + Ψ2 + Ψ3,

alors, l’utilisation de la délimitation de la fonction K nous permet d’obtenir cela :

Ψ1 ≤ Ch3
nφx(hn)→ 0, comme n→∞.

Pendant ce temps, par (H1) et (H2), il s’ensuit que

Ψ2 ≤ vnh
3
n

{(
φx(hn)

n

)1/a

+ φx(hn)

}
. (3.43)

Enfin, l’utilisation de l’inégalité de Davydov Rio à Rio (2000) pour mélanger les
processus conduit à

|cov(Ki, Kj)| ≤ C(α|i− j|),

pour tout i 6= j. Ensuite nous avons

Ψ3 ≤
nh3

nφx(hn)

nE2K1

n2C(α|i− j|)

≤ C
nh3

nφx(hn)

nE2K1

n2v−a+1
n

≤ Ch3
nnv

−a+1
n .

(3.44)
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Puisque le côté droit de (3.43) et (3.44) est également de type Avn + Bv−a+1
n , en

choisissant vn =

[
n−1

((
φx(hn)
n

)1/a

+ φx(hn)

)]−1/a

→∞ et des calculs simples, nous

obtenons que Ψ2 → 0 et Ψ3 → 0 comme n→∞, respectivement. �

Par conséquent, la preuve de ce lemme est terminée. Enfin, par (3.30) et (3.8), le
théorème suivant suit :

Théorème 3.4.2. sous les conditions (H1)-(H7) et (H’1)-(H’9) nous avons
(θ ∈ S/fx(θ), 1− F x(θ) > 0)

(nh3
nφx(hn))1/2

(
θ̂ − θ

)
D→ N

(
0,

σ2
h′(θ)

(h′′x(θ))2

)

avec σ2
h′(θ) = hx(θ)(1− F x(θ))

∫
H ′2dt.



Conclusion

Nous nous sommes intéressés plus particulièrement dans ce travail à un modèle non
paramétrique qui traite le cas des variables fonctionnelles dans lesquels la variable
"réponse" est réelle tandis que la variable explicative est fonctionnelle. L’objectif
était l’estimation du dérivée de la fonction de hasard conditionnelle au moyen de la
fonction de répartition conditionnelle et sa dérivée par la méthode du noyau. Le cas
considéré traite des données complètes
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