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Résumeé

Le maximum ou encore le point & haut risque d’une fonction de risque conditionnel
est un parameétre d'un grand intérét en statistique, notamment dans 1’analyse de
risque séismique, car il constitue le risque maximal de survenance d’un tremblement
de terre dans un intervalle de temps donné. Au moyen d’estimations non paramé-
triques basés sur les techniques de noyau de convolution de la premiére dérivée de
la fonction de hasard conditionnel, nous établissons le comportement asymptotique
d’un taux de hasard d’une variable explicative fonctionnelle ainsi que la normalité

asymptotique de la valeur maximale pour un processus mélangeant.



Abstract

The maximum of the conditional hazard function is a parameter of great importance
in statistics, in particular in seismicity studies, because it constitutes the maximum
risk of occurrence of an earthquake in a given interval of time. Using the kernel
nonparametric estimates based on convolution kernel techniques of the first derivative
of the conditional hazard function, we establish the asymptotic behavior of a hazard
rate in the presence of a functional explanatory variable and asymptotic normality

of the maximum value in the case of a strong mixing process.



Chapitre 1

Présentation générale

1.1 Introduction

La statistique fonctionnelle est un champ de recherches d’actualité qui a connu un
trés important développement ces derniéres années dans lequel viennent se méler et
se compléter plusieurs approches de la statistique qui paraissent éloignées a priori.
Cette voie de la statistique étudie des données issues de grands échantillons et les
fonctions sont collectées sur des grilles trés fines, qui peuvent étre assimilées a des
courbes ou a des surfaces, par exemple fonctions du temps ou de I’espace. Le besoin
de considérer ce type de données, maintenant couramment rencontré sous le nom de
données fonctionnelles dans la littérature, est avant tout un besoin pratique. Compte
nu des capacités actuelles des appareils de mesure et de stockage informatique, les
situations pouvant fournir de telles données sont multiples et issues de domaines
variés : on peut imaginer par exemple des courbes de croissance, de température, des
images observées par satellite ...

Les tous premiers travaux dans lesquels on retrouve cette idée de données fonction-
nelles sont finalement relativement anciens : Rao (1958) [28] et Tucker (1958) [30]
envisagent ainsi I’analyse en composantes principales et ’analyse factorielle pour des
données fonctionnelles et considérent méme explicitement les données fonctionnelles
comme un type particulier de données. Par la suite, on trouve les travaux de Deville
(1974) [10], Dauxois et Pousse (1976) [9],Besse et Ramsay (1986) [3]|. La terminologie
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faisant référence a des données fonctionnelles semble étre issue du travail de Ramsay,
en 1982, dans Psychometrika, sous le titre When the data are functions [24].

Cette dénomination semble rassembler un nombre important de statisticiens qui font
les statistiques de courbes, de lissage, de décompositions d’un espace de dimension
infinie en base de fonctions (en utilisant le théoréme de Riez pour les espaces de Hil-
bert et des théorémes un peu plus complexe pour construire une base de Schauder
pour certains espaces de Banach), de géométrie diférentielle, ... Pour plus de détails,
consulter les monographies de Ramsay et Silverman (2002 et 2005) [26], [27].

Ce mémoire est présenté en trois chapitres.

Le premier chapitre est consacré a une présentation générale du modéle fonction-
nelle, des déffinitions et des outils techniques que nous allons employer pour obtenir
et construire notre estimateur et les vitesses de convergence. En particulier, nous rap-
pelons la déffinition des modéles de survie, les problémes discutés, traités par la sta-
tistique fonctionnelle, les déffinitions de la fonction de survie, hasard et la fonction de
hasard conditionnelle, I'inégalité exponentielle de Bernstein et celle de Fuc-Nagaev...
Dans le deuxiéme chapitre on s’intéresse a un modéle non paramétrique pour des va-
riables aléatoires fonctionnelles. On construit un estimateur a noyau pour la fonction
de hasard conditionnelle avec des données complétes sous des conditions générales
moins restrictives, nous établissons la convergence presque compléte avec précision
dans le cas a-mélangeant. Ces propriétés asymptotiques sont étroitement liées au
phénoméne de concentration de la mesure de probabilité de la variable explicative sur
des petites boules.

Le troisiéme chapitre est consacré a I’étude de la convergence uniforme, les propriétés
et la normalité asymptotique d'une estimation du maximum de la fonction de hasard
conditionnelle dans le cadre de la dépendance (a-mélangeant), en utilisant les esti-
mations non paramétriques du noyau de la premiére dérivée de la fonction de hasard
conditionnellle.

En fin une courte bibliographie sur les ouvrages de base pour ce sujet.
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1.2 Problématique concréte en statistique pour va-

riables fonctionnelles

L’essor que connait la statistique fonctionnelle au travers de ses divers champs d’ap-
plication se retrouve au niveau des nombreuses approches théoriques développées pour
I’étude de variables aléatoires fonctionnelles, ’étude de ces divers modéles est moti-
vée au départ par des problémes pratiques. Dans ce paragraphe nous souhaitons citer
quelques domaines dans lesquels apparaissent les données fonctionnelles, pour donner
une idée du type de problémes que la statistique fonctionnelle permet de résoudre.
c’est une liste non exhaustive de situations oude telles données sont rencontrées n’est
pas envisageable, mais des exemples précis de données fonctionnelles seront abordés

dans ces domaines.

e En biologie, on trouve en premier lieu le travail précurseur de Rao (1958)[2%| concer-
nant une étude de courbes de croissance. Plus récemment, un autre exemple est
I’étude des variations de ’angle du genou durant la marche et les mouvements
du genou pendant l'effort sous contrainte ( Antoniadis et Sapatinas, 2007)[!].
Concernant la biologie animale, des études de la ponte de mouches méditerra-
néennes ont été faites par plusieurs auteurs ( Chiou et Miiller .et al(2007))[5].
Les données consistent en des courbes donnant pour chaque mouche la quantité

d’oeufs pondus en fonction du temps.

e La chimiométrie fait aussi partie des champs d’étude propices a l'utilisation de
méthodes de la statistique fonctionnelle. Plus récemment, Ferraty et Vieu
(2002)[16] se sont intéressés a I’étude de la contenance de graisse de morceaux
de viande (variable d’intérét) étant données les courbes d’absorbsions de

longueurs d’ondes infra-rouge de ces morceaux de viande (variable explicative).

e Des applications liées a l'environnement ont été étudiées par plusieur auteur qui
ont travaillé sur un probléme de prévision de pollution. Ces données consistent
en des mesures de pics de pollution par I'ozone chaque jour (variable d’intérét)
étant donné des courbes de polluants ainsi que de courbes météorologiques de

la veille (variables explicatives).
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e La climatologie est un domaine ot les données fonctionnelles apparaissent naturel-
lement. Une étude du phénomeéne El Nino (courant chaud de I'océan Pacifique)
a ainsi été réalisée par Besse, Cardot et Stephenson (2000)[]; Ramsay et Sil-
verman (2005)[27], Hall et Vial (2006)[17].

e En linguistique, des travaux ont été réalisés, notamment concernant la reconnais-
sance vocale. (Ferraty et Vieu (2002,2006)[15][16]). Ces travaux sont fortement
liés aux méthodes de classification lorsque la variable explicative est une courbe.
Briévement, les données sont des courbes correspondant a des enregistrements
de phonémes prononcées par différents individus. On associe un label a chaque
phonéme (variable d’intérét) et le but est d’établir une classification de ces

courbes en utilisant comme variable explicative la courbe enregistrée.

e Dans le domaine de la graphologie, I’apport des techniques de la statistique fonc-
tionnelle a 1a aussi trouvé une application. Ramsay(2000)|25] par exemple mo-
délise la position du stylo (abscisses et ordonnées en fonction du temps) a ’aide

d’équations différentielles.

e Les applications a I’économie sont aussi relativement nombreuses. Récemment les
études de Benko, Hérdle et Kneip (2006)[2], basés notamment sur une analyse
en composantes principales fonctionnelle. Cette méthode d’estimation sera ana-
lysée lorsqu’on l'utilisera, méme si on peut déja souligner que 'idée de base est,
lors de I’estimation de I'opérateur de covariance, d’estimer des produits scalaires

entre les courbes observées au lieu d’estimer des courbes elles-mémes.

Il existe d’autres domaines ou la statistique fonctionnelle a été employée comme
par exemple le traitement de signaux sonores ou enregistrés par un radar, les études
démographiques, la géologie (Manté et al (2007))[23],... et des applications dans des
domaines aussi variés que la criminologie (comment modéliser et comparer ’évolution
de la criminalité d’un individu au cours du temps?) La paléo pathologie (peut-on
dire si un individu souffrait d’arthrite a partir de la forme de son fémur 7) L’étude de

résultats a des tests scolaires,...

Enfin, on peut étre amené a étudier des variables aléatoires fonctionnelles méme si

I’on dispose de données initiales réelles ou multi variées indépendantes. C’est ainsi le
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cas lorsque 'on souhaite comparer ou étudier des fonctions que 1’on peut estimer a
partir des données. Parmi les exemples typiques de ce type de situation on peut évo-
quer la comparaison de différentes fonctions de densité, de fonctions de régressions,
I’étude de la fonction représentant la probabilité qu'un individu a de répondre cor-

rectement a un test en fonction de ses "qualités" (Ramsay et Silverman (2002)[26]....

1.3 Modéles de survie

On peut faire remonter ’analyse des données de survie a 1693 avec l'astronome
"Halley" qui aprés une étude des relevés d’état civil de Londres donna les premiéres
tables de mortalité et enseigna le moyen d’y lire la probabilité de survie d’un
individu. Ces analyses, trés générales, ne sont affinées qu’a partir du 19-éme siécle,
avec I'apparition de catégorisations suivant des "variables exogénes" (sexe, nationa-
lité, catégories socio-professionnelles, ...). Durant ce siécle, apparaissent également
les premiéres modélisations concernant la probabilité de mourir a un certain age,

probabilité qui sera par la suite désignée sous le terme de "fonction de risque".

Enfin, I’analyse des données de survie commence de déborder le cadre stricte de
la démographie pour investir, au 20-éme siécle, notamment dans les années qui ont
suivi la seconde guerre mondiale, on s’est intéressé a ’analyse des données de survie
plus pour des applications industrielles (avec 'apparition de la théorie de la fiabilité)
en utilisant des modéles paramétriques avec des lois exponentielles ou de Weibull. Ce
n’est que plus récemment, motivées par des applications médicales (pharmaceutique,
biomédicale), que sont apparues les méthodes non-paramétriques (Kaplan-Meier 1958
)[19], pour I'estimation non-paramétrique d’une fonction de survie. De I'estimateur
résultant, ils étudient ’espérance, la variance et les propriétés asymptotiques. L’aspect
semi-paramétrique a été initié par Cox en 1972 [6]. Ce dernier modéle comporte
des variables exoganes qui sont introduites, dans la fonction de risque, au moyen
d’une composante de régression paramétrique, le reste de cette fonction de risque,
non paramétrique, demeurant indéterminée.

Les modeles de survie forment une classe de méthodes statistiques qui ont pour
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but d’étudier le nombre et la répartition des temps d’apparition des événements.
On peut s’intéresser & des modeéles ot l'on ne considére que le temps d’apparition
des événements, mais on s’intéresse plus généralement a des modeéles ou le risque
d’apparition d’'un événement dépend de covariables. On retrouve ainsi 1’expression

d’un modéle de régression.

1.3.1 Analyse des données de survie

L’analyse des données de survie est 1’étude de la survenue, au cours du temps, d'un
événement précis pour un ou plusieurs groupes d’individus donnés. Cet événement,
souvent appelé déces, peut aussi bien étre la mort d’un individu que la survenue d’'une
maladie, la réponse a un traitement ou la panne d’une machine (c’est un changement
d’état en général.) Chaque observation est définie par :

Une date d’origine : Cela peut étre la date de naissance du sujet, si I'on étudie

I’age du sujet lorsque survient 1’événement ou la date de mise en contact avec un
agent infectieux, si 'on I'étudie la durée d’incubation d’une maladie infectieuse.
Chaque individu a une date d’origine différente sur le calendrier, mais la mesure qui
nous intéresse est le délai depuis cette date. La date d’origine définit pour chaque

individu le temps 0.

Pour permettre la comparaison des durées de survie entre les individus, une
définition précise de 1’événement d’intérét est nécessaire. S’il s’agit du décés
provoqué par une maladie, il faut s’assurer que chaque déces est effectivement da a

la maladie étudiée, et non a d’autre cause.

La durée de survie : Elle est définie comme le délai entre la date d’origine et la

survenue de ’événement d’intérét. Les durées de survie correspondent a des variables
aléatoires positives, de distribution le plus souvent dissymétrique, rendant difficile

leur description par les lois de distribution usuelles.

Les individus ou groupes d’individus sont susceptibles de différer pour un ou

plusieurs facteurs. Ces facteurs, dénommés variables explicatives ou covariables
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peuvent expliquer une différence importante de la durée de survie des sujets étudiés.
Leurs effets sont analysés par des modéles de régression. Il peut s’agir de facteurs
individuels (sexe, age, paramétres biologiques relatifs a4 une maladie, paramétres
génétiques..), ou liés & un essai thérapeutique (appartenance au groupe de traitement

ou au groupe placebo, dosage médicamenteux...).

L’analyse des données de survie s’attache alors a la description des temps de
survie et a voir dans quelle mesure ils dépendent de ces variables explicatives. Les
approches classiques en analyse des données de survie sont de type stochastique, le
temps d’apparition d’'un événement est supposé étre la réalisation d'un processus

aléatoire associé a une distribution particuliére.

De nombreux travaux sont consacrés a l’analyse des données de survie : Kalbeisch
et Prentice (1980) [18], Cox et Oakes (1984) 7], Klein et Moeschberger (1997) [20],

1.3.2 Fonctions associées aux distributions de survie

Soit T la variable aléatoire positive correspondant a la durée de survie. La loi de

probabilité de T peut étre caractérisée par plusieurs fonctions liées entre elles.

Définition 1.3.1. La fonction de densité de probabilité, notée f(t) :

o PE<T<t+ Al
f(t) = A}fl—r>%+ At

f(t)At 4+ o(At) est donc la probabilité de connaitre I’événement d’intérét entre ¢ et
t + At.

Définition 1.3.2. La fonction de répartition, notée F(t), vérifie :

Fit)=P(T <t) = /Otf(u)du



1.3 Modéles de survie 13

F(t) définit la probabilité de connaitre [’événement d’intérét entre [0,t], cette fonction

est monotone et l'on a
F0)=0 et lim F(t)=1.

t—o00

Définition 1.3.3. La fonction de survie, notée S(t) définie par :
St)=P(T >t)=1—F(t)

Cette fonction représente la probabilité de connaitre I’événement d’intérét au dela du
temps t. C’est une fonction monotone décroissante telle que

S(0)=1 et limS(t)=0.

t—o0
Elle caractérise également la loi de T

Définition 1.3.4. La fonction de risque, ou fonction de hasard, ou bien le risque
instantané de changement d’état notée h(t), (hazard function en englais, car hazard
veut dire risque en anglais), elle est définie comme étant la probabilité instantanée
qu’une durée T de "séjour” dans un état se termine a l'instant t + At sachant qu’on

y Etait a linstant t, i.e. :

P(t<T<t+AT >
W)= fim DUSTSETAUT 20
At—0+ At

On montre facilement que

ht) = &3

_ —dlog(s(t))
d(t)
donc h(t)At représente, quand At est petit, la probabilité "approchée" pour un indi-
vidu d’atteindre I’événement d’intérét avant ¢t + At, conditionnellement au fait qu’il
est encore dans 'état précédent juste avant t. Cette fonction est aussi appelée risque
instantané a 'instant t.

On constate aussi que la fonction de risque caractérise la loi de 7' (ou S(t).)
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Définition 1.3.5. La fonction de risque cumulé, notée H(t) définie par :

Par manipulation des définitions précédentes, on retrouve facilement les relations

suivantes :
e = -4
S(t) = exp(— [y h(u)du)
S(t) = exp(—H(t))
Ft) = h(t)exp(~ [y h(u)du)

Donc la fonction de risque cumulé caractérise la loi de T' (ou S(¢).)

Définition 1.3.6. La fonction de durée moyenne de survie, notée r(t) définie par :
r(t) =E(T —t/T >t)
On montre que
t 1
r(t) = 55 [ S(u)du et S(t) = Lol o ma
ce qui permet de dire aussi que la fonction de durée moyenne de survie caractérise la
loi de T (ou S(t).)

La distribution de la durée de survie T peut étre décrite par I'une des fonctions
définies ci-dessus. Toutefois I'une des plus intéressantes est la fonction de risque h(t)
car elle est une description probabiliste du futur immédiat du sujet "encore a risque" et
refléte des différences entre les modéles souvent moins visibles au travers des fonctions
de répartition ou de survie. En épidémiologie, elle peut dans certains cas s’interpréter
en termes d’incidence.

On constate que si h(t) est constante (on la note \), alors

f(t) = Xexp(=X)

F(t) = 1—exp(—X)

S(t) = exp(— [y h(u)du) = e
H) = X

t = 1/
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devient la queue d’une distribution de loi exponentielle.

1.4 Estimation de la fonction de hasard

L’estimation de la fonction de hasard & un grand intérét en statistique. En effet,
elle est utilisée dans ’analyse de risque ou pour I’étude des phénoménes de survie. Le
taux de hasard inconditionnel est défini comme étant la probabilité instantanée que
le changement d’état se fasse dans l'instant infinitésimal qui suit l'instant présent,

noté t. Plus précisément, le taux de hasard h(t) est défini par :

<T< >
h(t) = lim P(t—T—ZAt/T—w (t > 0)

At—0t

Il n’est pas difficile de voir que que le taux de hasard peut étre réécrit comme étant
le rapport de la densité f(.) dont elle est absolument continue par rapport a la mesure

de Lebesgue et la fonction de survie S(.) = 1 — F(.) de T' a 'instant ¢; autrement

dit :

nity = L0 (1.1)

ou la fonction de survie S(t) n’est autre que la fonction de répartition du complémen-
taire de ’événement considéré. En fait c’est la dérivée d’une probabilité que la durée
soit comprise entre t et At, sachant que 1'on ait atteint la période t. Plus pratique-
ment il s’agit d’un taux instantané de sortie de 1’état a la date ¢. La courbe de survie

prend une signification particuliére donnée par :

S(t) = exp(—/0 h(u)du)

Il existe une littérature étendue sur 'estimateur du taux hasard non paramétrique,
d’une maniére approximative et pour le cas non paramétrique, deux méthodes ont été

proposées pour estimer le taux du hasard.
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La premiére approche remplace f(t) et S(t) dans 'expression de h(t) par leurs es-

timateurs f (t) et S (t) respectivement, ce qui nous donne l'estimateur du taux de

hasard par :

h(t) = /() (1.2)

Nielsen et Linton (1995) appellent ce type d’estimateur par (estimateur externe).
L’estimateur & noyau externe du taux de hasard des données non censurées a été
introduit par Watson et Leadbetter (1964) et Munhy (1965).

La deuxieme méthode est basée sur la relation entre le hasard cumulé et le taux de

hasard ou le hasard cumulé est défini par :

H(t) = /O h(w)du (1.3)

Nielsen et Linton (1995) appellent ce type d’estimateurs par (estimateur interne).
La relation entre le hasard cumulé et le taux de hasard suggére que h(t) peut étre

obtenue en lissant H (t) en utilisant un noyau autrement dit :

h(t) = / Ku(t — u)dHu

ou h est une largeur de fenétre tel que h — 0 quand n — oo. L’estimateur interne
du taux de hasard pour les données censurées a été aussi introduit par Watson et
Leadbetter (1964). Ramlau-Hansen (1983), Yandell(1983), Tanner et Wong (1983,
1984), Blum et susarla (1980), Fotdes et Retjo (1981) et Lo, Mack et Wang (1989)
ont étudié des estimateurs similaires en présence des données censurées. De plus,
Tanner et Wang (1984) ainsi que Sarda et Vieu (1996) utilisent la sélection de la
largeur de fenétre pour ce type d’estimateurs. Jusqu’a maintenant, I'intérét porté sur

le taux de hasard va généralement dépendre de certaines covariances, par exemple, le
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temps de survie d’un patient va étre affecté par plusieurs caractéristiques tels I’age et

le genre. Le taux de hasard conditionnel de ¢ sachant X = z est définie par :

T < X =
}ﬂﬂ:£%f<_j+AZ?>u z)
m

Ainsi la fonction de hasard conditionnelle T sachant X = x est définie par :

() = 0
1— F=(t)

tel que F* (resp f*) est la distribution conditionnelle (resp. la densité conditionnelle)
de T sachant X = x qu’on suppose qu’elle est absolument continue par rapport a la
mesure de Lebesgue sur R.
Afin d’illustrer 'importance de la fonction de hasard conditionnelle on considére
I’exemple suivant.
Exemple : Supposons qu'un matériel de durée de vie Y soit en état de bon fonc-
tionnement a l'instant t et on veut calculer la probabilité conditionnelle, sachant
X = z, d’'une panne dans l'intervalle de temps (¢,t + At). Cette probabilité est bien
P*(Y € (t,t + At)/Y > t).
Or,

P*(Y € (t,t + At),Y > t)
Pr(Y > t)
_ PH(Y € (t,t+ At))
Pr(Y > t)
PRt 4 At) — FE(2)
1— F=(t) ’

PU(Y € (tt+ At))Y > t) =

il s’ensuit par passage a la limite

: 1 X _ xX
Alg—I}oKtP (Y e(t,t+At))Y >t)=h"(t)

Autrement dit, la quantité h”(t)A(t) est une approximation a la probabilité condi-

tionnelle "instantanée" de panne & 'instant t.
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1.5 OQOutils

Proposition 1.5.1. Soient (X,)nen, (Yn)nen deuz suites de wvariables aléatoires
réelles. Si X, converge presque compléte vers 0 et sl existe 30 > 0 tel que
Yo P{Y, < 0} < oo. Alors, la suite (X,/Y,)nen converge presque compléte vers
0.

Lemme 1.5.1. "Inégalité exponentielle de Bernstein”
Soit X1,...,X, des variables aléatoires réelles centrées, indépendantes et de méme
loi (i.i.d) définies sur l’espace de probabilité, telles qu’il existe deux réels positifs 6, et

022 vérifiant X, < 0, et EX? < 0y alors, pour tout ¢ €]0, %[ on a :

02
P(n! >e | <2exp —ne’
- - 46,

Lemme 1.5.2. "Inégalité de type Fuk-Nagaev sous mélange algébrique”

>

=1

Soit {A;,1 € N} une famille de variables aléatoires a valeur dans R fortement mélan-

geantes, de coefficient de mélange algébriquement décroissant. On pose

Sp = zn: Zn: |cov(Ai, A;)]|

i=1 j=1

Si Vi, || Ao < 00, alors pour tout € > 0 et pour tout r > 1, on a :

2\ 5 9 a+1
P ( > 45) <4 (1 + 5—2) + 2ner™! (l>
— rs2 £

n
24
=1
Lemme 1.5.3. "Inégalité de covariance pour variables bornées”

Soit {A;,i € N} une famille de variables aléatoires a valeur dans R fortement mélan-

geantes telle que i, || Al < 00, alors, pour tout i # j
|cov(Ai, Aj)] < 4| Aillos || Ajllsocx(li = )

Définition 1.5.1. la dépendance : Nous supposons que les données d’échantillon

(Xi, Zi)1<i<n sont dépendantes et satisfont la condition de mélange fort (a-mélange),
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introduite par Rosenblatt (1956)[29], définie comme :

Soit N* désigne l’ensemble des entiers positifs, et pour tout i et j dans N*Uoo, (i < j),

de ne F! comme une algebre étendue par les variables (2, x;)...(25, ;). On dit que la
séquence (Z;, X;) se a-mélange s’il eziste des coefficients de mélange a(k) tels que
IP(AN B) — P(A)P(B)| < a(k), pour tout ensemble A et B qui sont respectivement

Fr-mesurable Fye, -mesurable (k,m entiers positifs), et a(k) | 0.

C’est la condition la plus faible utilisée dans les études d’échantillons dépendants (par
exemple le processus ARMA généré par un bruit blanc continu le vérifie). Le lecteur
peut consulter Doukhan (1994)[5] pour une discussion plus compléte de la condition

de mélange fort.



Chapitre 2

Estimation non paramétrique de la

fonction de hasard conditionnelle

2.1 Introduction

L’objectif de ce chapitre est consacré au probléme de I'estimation de la fonction de
hasard conditionnelle, d’une variable aléatoire réelle Y sachant une variable aléatoire
X a valeurs dans un espace fonctionnel (espace probabilisé fonctionnel semi-métrique)
avec des données complétes, c’est & dire on observe tout I'événement. Comme dans
tout probléme d’estimation non-paramétrique, la dimension de ’espace F joue un
role important dans les propriétés de concentration de la variable X . L’estimation
est faite par la méthode du noyau.

Il est présenté en deux sections. La premiére section est consacrée & la présentation
du modéle et & la construction de l'estimateur de la fonction de hasard condition-
nelle. Dans la deuxiéme section, on s’intéresse a la convergence presque compléte de

I’estimateur construit dans le cas ot les observations a-mélangeantes.

2.2 Modéle non paramétrique

Soit (X,Y) un couple de variable aléatoire a valeur dans F X R ou F est un espace

semi-métrique muni d’une semi-métrique d(.;.). Ce chapitre est consacré au probléme
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général de I'estimation d’une fonction de hasard conditionnelle d’une variable aléatoire
réelle Y sachant une variable aléatoire X a valeurs dans un espace fonctionnel (espace
probabilisé fonctionnel semi-métrique,) ou X et Y sont définies sur un méme espace
probabilisé (€2, A, P). Par ailleurs, pour pouvoir étendre au cas dépendant les résultats
obtenus dans le cas indépendant. Nous allons adopter certaines hypothéses sur le

processus (X;;Y;)sen. Soient :

Yi: (QAP) — (R,Bg)
X (AP — (F,3%)

ol F est muni d'une semi-métrique d;;i € N, on se propose d’estimer la fonction de
hasard conditionnelle de Y sachant X = .

On désigne par F'* la fonction de répartition conditionnelle de Y sachant X = z,
on suppose que F? est absolument continue par rapport a la mesure de Lebesgue de
densité f*.

Etant donné (X1,Y)),..., (X,;Y,) une suite des observations de méme loi que (X, Y)

I’éstimateur de la fonction de répartition conditionnelle £ par la méthode du noyau
(noté F*), défini par :
> K (hd(w, X:)) H (hig' (y = Y3))
Foly) = =2 _ Yy € R.
> K (hild(x, X;))
i=1

ou K est un noyau, H est une fonction de répartition et hx = hg,, (vesp. hy = hp,)

est une suite de réels positifs. On pose
Ki(z) = K(hy'd(z, X;)) et Hi(y) = H(hy'(y = Y3))

Ce qui nous permet d’exprimer F*(y) par :

~ ﬁﬁ Y
Fy) = 5
D

avec
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Fi(y) = e S KiHi(y) et Fp = 2= S K,
i=1 =1

A partir de cette estimateur, on déduit un estimateur pour la densité conditionnelle,

noté fm, défini par :

hg' Y K (hid(x, X)) H' (hyg' (y = V7))

Fly) = —— vy € R.
> K (higld(z, X))
=1
Ce qui s’écrit aussi
foly) = fNAiy)
D

ou

~

1 n
v(y) = ——— E K;H;
fN (y) nhH]EKl p % (y)
Le taux de hasard conditionnel de Y sachant X = z est défini par

N . PY<y+Ay/Y >y X=ux
) = i v |

y >0

A présent le taux de hasard peut étre écrit comme le taux de la densité conditionnelle
f7(.) et la fonction de survie S(.) =1 — F*(.) de y, c’est a dire :

f ()
h*(y) =
W= 5w
Ainsi la fonction de hasard conditionnelle Y sachant X = x est définie par :
f ()
VX e FYY eR h'(y) = ——— 2.1

L’objectif principal de ce chapitre est de donner la vitesse de convergence de notre

) 17 (y)
1-Fz(y) 1=F=(y)

estimateur qui est défini par : h%(y) = vers h*(y) = dans le cas ou les

observations sont indépendantes identiquement distribuées et le cas des observations

a-mélangeantes.
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2.3 Cas dépendant

L’objectif de cette section est d’é¢tudi¢ un modéle de hasard conditionnel dans
lequel la variable explicative X n’est pas nécessairement réelle ou multidimensionnelle
mais seulement supposée étre a valeurs dans un espace abstrait / muni d’une semi-
métrique d. Comme dans tout probléme d’estimation non-paramétrique, la dimension
de I’espace F joue un role important dans les propriétés de concentration de la variable
X. Ainsi, lorsque cette dimension n’est pas nécessairement finie, les fonctions de

probabilité de petites boules définies par :
¢(h) =P(X € B(x,h)) =P(X € {a' € F/d(x,2") < h})

interviennent de maniére directe dans le comportement asymptotique de tout estima-

teur non-paramétrique fonctionnel.

2.3.1 Notations générales et hypothéses

Tous le long de notre étude, quand aucune confusion ne sera possible, on note A
et/ou A’ une certaine constante générique de R** On fixe un point x dans F dont on
note IV, un voisinage de ce point et on pose B(x,h) = P(X € {2/ € F/d(x,2") < h}
la boule de centre x et de rayon h.

On introduit les hypotheéses suivantes :
(H1) Vo € F,Vh > 0,P(X € B(z,h)) = ¢.(h) >0
(H2) Yy e S, F*(y) < 1,V(y1,y2) € S x S, ¥(x1,22) € Ny X N,
|2 (y1) = F2 (y2)| < Au(d(zr,22)" + [y1 = 92[*), b1 > 0,05 > 0,
(H3) Y(y1,y2) € S x S,V(z1,22) € Ny X N,
[F7 () = f2 (y2)] < As(d(z1, 22)™ + |y — 32[*), b1 > 0,0y >0,
(H4) Y(y1,y2) € R* [HY (y1) — HD (y2)| < Alyr —
[t HO(#)dt < 1et Fv > 0,75 < j+1, ylgglo ly|" | HY) (y)| = 0 pour j = 0, 1

(H5) K un noyau a support compact (0,1) vérifiant 0 < A; < K(t) < Ay <1

l
(H6) lim hy =0 et lim — 2"
n—oo

e R
nhi¢e(hi)
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(H7) lim hy =0et lim n®hy =0, Va > 0.
n—oo n—oo

(H’1) Lasuite (X;;Y;)i=1...n est a-mélangeante dont le coefficient de mélange vérifie :

54+ V17 .
2

, c€R telgue a(n) <cn”

-----

da >

sup P((X;, X;) € B(z,h) x b(x, h))

(H72) i#J PX;cB(z,h) = O<<n_1¢$(h‘))1/a)

(H’3) 3> 0, Anert* < hyoo(hi) et ¢o(hx) < Ante.

2.3.2 Propriétés asymptotiques

Théoréme 2.3.1. Sous les hypothéses (H1)-(H7) et (H’1)-(H’3) on a :

~ log n
sup [h*(y) — h*(y)| = O(W}:) + O(hE) + O | | ———F— 2.2
pl°(0) — 1) = O(hg) + Oz + 0 ([ Es ) 22)
o ¢, (hg) est la concentration de la mesure de probabilité de la variable fonctionnelle
X dans la boule de centre z et de rayon hy.
Preuve :

On peut écrire ﬁx(y) — h*(y) sous la forme
; f*(v) /*(v)
h*(y) — h*(y) = = -

(y) —h*(y) ey 1o Fe()

_ W - FWF W) - 1) + W) (2.3)
(1= Fe(y)(1 - Fo(y))

1

=1 ) (f*y) = f*(y) + —— = (F"(y) = F*(y))

) 5 }
1—F=(y)

D’aprés la décomposition précédente, il suffit de montrer que :

sup [F2(y) — F*(y)| = O(h) + O(hlg) + O ( %) peo  (2.4)
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sup |F*(y) — f*(y)| = O(h%) + O(h%2) + O ( l’;”) pco  (2.5)

36 > 0 telque Z|{ir€1£|1—ﬁ“(y)| <5} < 00. (2.6)
y
=0

On remarque que

F) = F) = F{(Fe) -BRw) - (F0 -ERW)}
i {F‘g_Eﬁg} =0

P =) = (R0 -Efkw) - (Fo)-ERW)}
. {Fy-EF;} =

|

Ce qui nous permet de conclure que la preuve du théoréme est basée sur les résultats

ci-dessous.

Lemme 2.3.1. Sous les hypotheses du théoréme (2.3.1) on a :

~ ~ log n
FE—EFF =0 _— .CO 2.9
D D ( Wbm(hK)) p ( )

Preuve :

notre objectif est de démontrer ;

fo —Efp

o

logn
> €4 m) < o0 (2.10)

on a
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tel que A; = K; — EK; 1l suffit d’appliquer 'inégalité de Fuc-Nagaev. Pour cela, on

doit d’abord calculer asymptotiquement s? définie par :
2= 3 Jeov(Ai, A = s+ Y var(Ay) (2.11)
i=1 j=1 i1

telque

=33 feon(a )]

i=1 itj
ainsi pour tout ¢ # j on a
Donc Par définition on trouve

|cov(Aq, A)| AE(IB(2,hi)x Bahi) (X, X)) + AE(IB(a,ne) (Xi) JE(IB(@,hi) (X))

<
< AP((Xi, X;) € B(z,hk) x B(z,hg)) + AP(X; € B(z, hk))P(X; € B(z, hik))
< Agy(hy) ((”_1%(}1))1/“ + ¢x(hk))

(2.12)
En utilisant les techniques de Masry (1986)[28] et on définit les ensembles S1, 52,

S1=A(z,5) telque 1<j—i<m,};

S2 ={(i,j) telgue m,+1<j—i<n-—1}

ot (my,), est une suite arbitraire d’entier positive vérifiant m,, — oo. Donc pour n

assez grand on obtient
Sn = D leov(A Ap]+ D leov(Bs, Aj)|
S1 52
D’aprés la définition de S1 et (2.12) on déduit que

Z lcov(As, A))| < A'nmpde () (n ™ d,(h))V°

S1



2.3 Cas dépendant 27

Il résulte d’apres I'inégalité de covariance pour variable borné (Lemme 1.5.3) on ob-
tient :

Z lcov(Ay, A))| < An*a(m,) < A'n*m, "
2

1/a
On prend m,, = <%) , il résulte que

%2

sr = 0o, (hy)).
Dans un second temps, on a, pour tout ¢ =1,...,n

> var(Ay) =Y E(A]) - (E(A))*.
i=1 i=1
On montre par la méme méthode utiliser dans le calcul de la cov(A;, A;) que

cov(D;, Aj) < Ay (hy).

et par suite
> wvar(Ay) < Unéy(he)) (2.13)

i=1

Finalement, d’aprés ces résultat on trouve

5o = Angy(hy)) (2.14)

et on a achever a calculer asymptotiquement s2.

L’inégalité de Fuk-Nagaev sur la variable A; entraine pour € > 0 et r > 1,
2_A

>e) = P(M

—_r +1
2n2E2K, 2 —1 8r @
4 (1 + 16rs2 + 2ner enEK;

P ((ﬁg _EF:

> 67’LEK1>

IN
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Ainsi on arrive a

—r

D oz logn e n?E2 Ky ngz%:}() 2 -1 8r logn
P (‘FD —EFp| > ¢ n¢z(hK)) < 4(1+ 16752 + 2ner <enIEK1 née(hi
S
Anroe= @) (nlogn ney(hy)) =2
< Anl_(azﬂr“e*(““)(nlogn n¢x(hK))w+
e2logn =z
4 (1 + Tg>
< Ant e (log ) gy (i)'

Ae10g (14 “jn)

On peut toujours choisir r sous la forme r = C(logn)?, ou C est une constante.

(at1) “at)
n' =2 g (hi) "2 Grace

P ((ﬁg _EF:

> € logn <An737€22—|—A(]0 n)2“_(a;1)
née(hi) ) = &

a l'inégalité de gauche en (H’3)
(@) _ ()

2
> € nqii%:}{)) < An3z + A(logn)®* = n

(a+1) /3—a
— o) (3=a )

P((Fg—Eﬁg n

_2 (a+1) (a+1) _ (a+1) /3—a
< Ansz +An2a’ s nl~ 2o 2 (a+1+77)

-2 1— 41
< AnFr 4 Ap~l-(RHE)

pour € suffisamment grand et ¥ > 0 on aboutira,

PO 1
P (’Fg ~EFE| > e L”J < Apiv (2.15)
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finalement,
~ ~ logn =
P ‘FI _EFE s e [—2 ) < ST A < oo, 2.16
[ |

Corollaire 2.3.1. Sous les hypothéses du lemme (2.3.1), on a :

ZIP’(?; < 1/2) < 00
i=1

Preuve :

on a

{yﬁ;g| < 1/2} c {yﬁ;g 1< 1/2}

par suite

P{]ﬁ5\<1/2} < P yﬁ5—1|<1/2}

< P |ﬁg—Eﬁg|<1/2}

car EF % =1 on applique le résultat du lemme (2.3.1) on montre que

3P (ﬁg < 1/2) < 0
i=1

Lemme 2.3.2. Sous les hypothéses (H1)-(H6), on a :

1 ~
= sup |[F*(y) — EF(y)| = O(h3) + O(h)
Fﬁ yeS

—sup|*(y) — EFi )| = O(hf) + O(h)

FD yes

(2.17)

(2.18)



2.3 Cas dépendant 30

Preuve :

Nous obtenons successivement

EF§(y) — F*(y) :NMQEZE - )
- [IE‘:KlH1 (

2.19
(Kl) )Fl( )} ( )
= mE (K1 []E (Hl<hH (y — Y;)/X)) - F“”(y)])

E (H\(hg'(y — Y})/X)) = /]RH( i >fg”(>

- /H<1>( VE*(y — hyt)dt

par ailleurs on a

B (it - /X)) - P = | [ (V) Pt £

_ /RH“)( )F*(y — hat) — F*(y)dt

Ainsi, grace a 'hypothése (H2) on obtient
E (Hi(hg'(y — Y3)/X)) — F(y)| < A, /H<1> (Ao 4 |t h%2)at (2.20)

Cette inégalité est uniforme en y, en remplagant dans I’équation (2.19) et en simpli-

fiant le terme E(K7) on trouve

BFG )~ P < 4. (1 [ 100 < nly [ om0
R R

Finalement, ’hypothése (H4) et le corollaire (2.3.1) entrainent la preuve de I’équation
(2.17).

Il nous reste & montrer I’équation (2.18), en effet

Efyw) = @) = iy [BRHY (52) = harfr(y)]
= ;LH]E—(K)E (Kl [E <H(1)<h (y — Y)/X)> - thx(y)D
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de plus

E(H“)(h Ly — Y)/X)) - /H (y )f (w)du
~ hy / HO () £ (y — hyt)dt
Et par suite
B (1 (i (3= Y0/ X)) = b )] < bur | HOOLF (0= hurt) = ()
I'hypothése (H3) entraine que

E <H(1)(h (y — Y)/X)) — huf(y)| < Ashur /]R HW (! + [t 15 )dt

I'hypothése (H4) et le corollaire (2.3.1) entrainent la preuve de I'équation (2.18). Ce

qui achéve la preuve du lemme (2.3.2).

Lemme 2.3.3. Sous les hypothéses du théoreme (2.3.1) on a :

1 N l

7; () - EFS ) =0< %) p.co (221)
1 ~ B log n
7 Sylég\fzv( y) —EfN )l —O< —nhH%(hK)) p-co (2.22)

Preuve :
L’idée de la preuve est de recouvrir le compact S par des intervalles Si de longueurs
égales. Cependant, La compacité de S implique qu’on peut extraire de cet recouvre-

ment un recouvrement fini dont le nombre des intervalles sera noté S,,. Autrement
Shn,

dit, S C | J Sk ott S = (my, — Ly, my + 1)
k=1

Posons m,, = arg mln |y — my| en ajoutant et retranchant le terme

~

F%(my) — IEF]"”{*’,(my) et appliquant 'inégalité trigonométrique. On montre que :
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5 (y) ~EFR(y)] < |F%(y) = F(my)| + | F§y (my) = EFf (my)| + [EES (m,) —EF§ (y)|

Ainsi

B B 1 B R 1 o R
72 5up [N (y) —EFY ()| < —sup |[FR(y) — Fy(my)| + = sup|Fy(m,) — BFY(my)| +

J

Fp jes F} yes Fg yes
1 e bt
— sup [EF% (m,) — EFL(y)]
Fl% yeSs

g

T3

e Concernant (7)) L’hypothése (H4) entraine

— ~ 1
L FZ — F% < L H; — H; K;
Aly —m,| 1 <
1 y
. K;
D . nEK, 2
Aly — my| ~
< Lgsu v
B FB yGIS) hH b
< A,i—".
H

—a—1/2

En prenant [, =n et on montre que

[ log n

i =0 ( W) =0 <\/509 n(n¢z(hK))_1>

o b (o) 1 (o)
n—+oo R gy log n n—+oo hgn® log n

D’aprés 'hypothése (H7) on a :

lim ! s (hic) =0
n—+oo hgn® log n

En effet

et cela montre que

l, log n —
b, ( W) — 0 (Viog nlnd, ) )

(2.23)

(2.24)
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d’autre part on a

In (R
V>0, AN, >0 pour n > n’h_< n(?og§7f>>§n
"

donc pour

L, ng,(h
g, dNy, pour n > Ny, E( M)gg

et d’aprés le résultat (2.24) (< A}%) on déduit que :

1 ~ ~ n log n
—sup |Fy(y) — Fy(my)| < = | ————,
7 o FR () = Film)| < 3y |20
et il résulte que, pour n > Ny
P sup | Fa(y) — Bymy)| > 24— ) — o (2.25)
—=<— Sup Yy) — m — —_— = .
F[T’) yeS N N 3 n(bx(hK)

Ainsi, on peut écrire

- n log n Yo n log n
;P<T1>§ —n%(h[{)) < ;P<T1>§,/—n%(hm>

= n log n
PlT) > =y ————
DY L7 3\ e ()

n=Np+1

le premier terme du membre de droit est fini, et le second est nul d’aprés le résultat

(2.25). D’ou
> n log n
Pl{Ti> | —F— ]| < 2.26
2 ( 73 mzsx(hK)) (2:26)
e Concernant (73)
~ ~ € log n
P Fy —EFy >y —F— | <
(S;Elg! n(my) —BEy(m,)| 3\/71%(,”()) <
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ainssi que
Ax A{L‘ 1 -
Fii(my) —EF (my) = ——=> | Hi(m,)K: — E(H;(m,) K;)
L=t e
Laquelle nécessite le calcul de 52 oil
52 = Z Z [cov(A], A
i=1 j=1

En utilisant la méme méthode utilisé dans s? et en prenant m,, = on montre

1
¢x(hK) !
que

sn = Unde(hi)) + O(ngy(hi))

L’inégalité de Fuk-Nagaev sur la variable A} entraine pour e > 0 et r > 1

SoA

i=1

P <|ﬁf\“}(my) — EF&(m,)| > e> = P ( > enEK1>

=r +1
2n2E2K, 2 —1 8r @
< 4 (1 + 16rs2 + 2ner enEK;
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Ainsi on arrive a

—r

P(|F5 —EFE| > e, /—on 4 1+% T—l—anr_l 8r log n
D D néz(hi) = 16752 enEKL \/ ngs(hix
S 4<1+ Einoglgrz(;Sz(hK))T_'_
Anree= @t (nlogn ne,(hx)) =5
< Ant—H ae=(@t) (nlogn néz(hK))7(2+1)+
e2logn =z
11+ Seen)
< Ant e @ (log n)' = g, (hi)
e?logn
Aelog (1+T§>
On peut toujours choisir 7 sous la forme r = C(logn)?, ou C est une
~ ~ _2
constante. ce qui donne ]P’( N(my) —EFf(my)| > € m;z%&)) < An +
Alog n)**= T nt =3 6, (hye) (H'3)
o~ ~ 1 a a (at+1)
P()mey)—m(mw > e ﬁ:)) < A 4 Aflogn) 5t G
c\IVK

donc on a

~ ~ € log n _ - _1_(atD)
P | sup |[Fy(my) —EFN(my)| > 4| —F——— <Aln1(n32 +n7lm e ”)
<ye£3‘ F(m,) — EFg(m,)| > § mw) <

on applique le corollaire (2.3.1), sous un choix convenable de € on montre que

ZIP’ (sup FN(my) Eﬁff,(my) >§

yes

_logn < 400
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e Concernant (73) Nous avons

1 ~ 1 ~
——sup [EFS (my) — EF (y)| < = sup | F(m,) — F5 ()|
FD yes FD yes

et d’apres le résultat (2.24)(< A}%) on a:
1 - L
—sup|EFN(my) EFY(y)| < Ah_
FE yes H

on a

ce qui implique
et par suite

et finalement grace a (2.26) nous aurions alors

log n
Z]P <T3 n%(hK)) <00 (2.27)

Ce qui prouve I’équation (2.21) du lemme (2.3.3). Il nous reste, maintenant, I’équation

(3.22), remarquons que :

. 1 1 .
e SuP’fN() Efyw)| < _SUP‘fN() fN(my)H‘ﬁ SUP’fN(my) Efx(my)|+

D yesS FE yes D YES
R P
1 ~ ~
— sup[Ef§ (m,) — EF5(y)|
D yeS
P

(2.28)
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e Concernant [} et F3 On utilise les mémes arguments employés dans la démons-
tration de Ty et T3, en remplace H par HY on montre que
fx l s ln
77 SUp Fa(y) = fa(m,)] < A et L 7 SUp Ef%(my) — Ef5(y)| < A-g
D yeSs h D yeS hH

On choisit maintenant I, sous la forme [, =n~% "2 et d’apres (H7), on déduit que :

l_n 0 log n
iy nhpds(hi)

e Concernant F,

~ € log n
P <2lelp|fN(my) Efy(my)| > 3 m) <

A ~ ~ € log n
2 P (|7 (m,) —Ef: S &9

On a ainssi que

—— N =B (my)K; — E(HY (m,) K,
nhh]EKl Z my) ( ( y) 2
]_"’F

7

fa(m,) —Efi(m,) =

Laquelle nécessite le calcul de 5?2 oil

52 = ZZ |cov (I}, T
i=1 j=1
En utilisant la méme méthode que dans s2 et en prenant m, = —--—, on montre
n hp o (hi)
que
si = O(nhié:(h))
L’inégalité de Fuk-Nagaev donne
—~ log n
P { sup |fx(m E m>——<A~|—A.
<y€g‘fN( y) fN( y)| nhh¢x<hK)> 1 2
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) et Ay = Anl= 3 pac—(at)) J(hglogn)' =2 ¢, (hg)'~ 2

avec A; = Ae+ log (1 + < llgf”
= C(logn)* et I, = n

On applique I'hypothése (H’3) et un choix de r

montre qu’il existe v > 0 pour 7 assez grand, on a

l(141 + Ag) S An_l_

ln

d’aprés le corollaire (2.3.1), on en déduit

yes

~ € log n
P —Efy >/ ——— | <A Y
Lemme 2.3.4. Sous les conditions du théoréme (2.5.1) on a

36 > 0, telque g P{ir€1£|1 — ﬁ”(y)| <0} <o
y
n=1

preuve
A partir des lemmes précédents on déduit que

Fo(y) 2% Fo(y)

Ce qui implique que

ZP{mler — F*(y)| > e} < o0

yeS

D’autre part, nous aurions par I’hypothése F* < 1
F(y)| = (1 —sup F*(y))/2

inf |1 — F*(y)| < (1 —sup F*(y))/2 = sup|F"(y) —
yes yeS yeS yeS
Ce qui implique
P{inf |1 — F"(y)| < 6} < P{sup |[F"(y) — F"(y)| > (1 —sup F"(y))/2} < oo
yeS yeS yeS

On prend 6 =1 —sup F*(y)/2

yes



Chapitre 3

Estimation non paramétrique du
maximum de la fonction de hasard

conditionnelle

3.1 Introduction

Ce chapitre présente certaines propriétés asymptotiques liées & l’estimation non
paramétrique du maximum de la fonction de risque conditionnel. Dans un paramétre
de données fonctionnelles, la variable de conditionnement prends ses valeurs dans un
espace semi-métrique. Dans ce cas, Ferraty et cie. (2007) définissent des estimateurs
non paramétriques de la densité conditionnelle et de la distribution conditionnelle.
I[Is donnent les taux de convergence (au sens presque complet) des fonctions
correspondantes dans un contexte de dépendance (a-mélangeant). Nous étendons
leurs résultats en calculant le maximum de la fonction de risque conditionnel de ces
estimations, et en établissant leur normalité asymptotique, en considérant un type
particulier de noyau pour la partie fonctionnelle des estimations. Etant donné que
I’estimateur de la fonction de risque est naturellement construit a I'aide de ces deux

derniers estimateurs.
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Ce chapitre est organisé comme suit : La section 2 décrit le cadre fonctionnel non pa-
ramétrique : la structure des données fonctionnelles et les conditions de mélange, les
opérateurs de densité conditionnelle, de distribution et de risque, et les estimateurs
de noyau non paramétriques correspondants. La section 3 présente la convergence
presque compléte (avec des taux de convergence) pour les estimations non paramé-
triques de la dérivée du risque conditionnel et du risque maximal. Dans la section 4,
nous calculons la variance des estimations conditionnelles de densité, de distribution
et de risque maximal, la normalité asymptotique des trois estimateurs considérés est

développée dans cette section

3.2 Notations générales et hypothéses

Soit (X;;Y;)iew un échantillon de n paires aléatoires, chacune distribuée comme
(X;Y), ou la variable X est de nature fonctionnelle et Y est de nature scalaire.
Formellement, nous considérerons que X est une variable aléatoire a valeurs dans
un espace fonctionnel semi-métrique F, notons par d la semi-métrique sous-jacente.
Pour z € F, notons h”* la fonction de risque conditionnelle de X; en prenant X; = .
Nous supposons que h* admet un maximum unique et son point de risque le plus

élevé dans le compact S est noté 6(y) := 6, qui est défini par

B(0(y)) = h*(9) = max ¥ (y) (3.1)
yeSs
Un estimateur du noyau de 6 est défini comme la variable aléatoire 6(y) := 0 qui

maximise un estimateur du noyau h”, c’est-a-dire,

oil h® et h® sont définis dans chapitre 2.
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Notons que 'estimation 6 est une note nécessairement unique et nos résultats sont
valables pour tout choix satisfaisant (3.2). Nous rappelons que nous pouvons préciser

notre choix en prenant

&y):nﬁ{tesgﬁ%w::nmx%%w}

yeS

Comme dans tout probléme de données fonctionnelles non paramétriques, le com-
portement des estimations est controlé par les propriétés de concentration ¢,(h) =
P(X € B(z,h)) de la variable fonctionnelle X = x.

ot B(z,h) est la boule de centre = et de rayon h, a savoir
B(x,h) = P(f € F,d(z, f) < h)

Pour plus de détails, voir Ferraty et Vieu, 2006 , Chapitre 6 [15].
Dans ce qui suit, x sera un point fixé dans F, N, désignera un voisinage fixe de
x, S sera un sous-ensemble compact fixe de R*. Nous allons besoin des hypothése

ci-dessous concernant la fonction de concentration ¢,.

(H’4) H est différentiable tel que

(H’4a)V(y1,y2) € R |H' (y1) — H(y2)| < Alyr — y2| pour j = 0,1 et
HY sont bornés pour j = 0,1

(FD4b) [ 2H2(t)dt < oo,
(F4c) [ [t|P H2(t)dt < oo .

(H'5) 3y < oo, f*(y) <7,¥(z,y) € F x 5.
(H’6) 37 >0, F*(y) <1—7,Y(z,y) € F x S.
(H’7) 1l existe une fonction (g telle que pour tout ¢ € [0, 1] limy, 0 7 d”“(th) = ().

(H’8) La largeur de bande h,, la probabilité de petite boule ¢, (h,) et le coeffcient

de a-mélange arithmétique avec un ordre a > 3 satisfaisant
(H’8a) 3C > 0, hZ ' ¢y (hy) > —75;, pourj = 0,1,

1/a
(H’Sb) (% (hn) ) + G(hn) = (o)

. . logn
(F’8¢) limy, o0 iy = 0, €t limypog 22"
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3.3 Propriétés asymptotiques

Supposons qu’il existe un compact S telque h* admet son maximum unique au point
0 sur S. Nous supposerons que h” est suffisamment différentiable (au moins de classe
C?) il vérifie que h'(0) = 0 et A"*(0) < O .

Nous pouvons écrire un estimateur de la premiére dérivée de la fonction de risque

conditionnelle en fonction de la premiére dérivée de lestimateur (2.1). Notre esti-

mation maximale est définie en supposant qu’il existe un ) unique sur S tel que
0="1(6) <| h(y) | pour tout y € S et y # 6 .

De plus, nous supposons que 6 € S°, ou S° désigne I'intérieur de S, et qu’il satisfait
la condition d’unicité, c’est-a-dire; pour tout € > 0 et u(x), il existe & > 0 tel que
[ 0() — ) |2 & implique que | h*(8(z)) — h*(u(x)) |2 €.

Nous pouvons écrire un estimateur de la premiére dérivée de la fonction de risque en

fonction la premiére dérivée de l'estimateur. Notre estimation maximale est définie

en supposant qu’il existe un ) unique sur S°.

Il est donc naturel d’essayer de construire un estimateur de la dérivée de la fonction h*
a 'aide de cette démarche. Pour estimer la fonction de distribution conditionnelle et
la fonction de densité conditionnelle en présence de la variable aléatoire conditionnelle
fonctionnelle X = z. L’estimateur du noyau de la dérivée de la fonction fonctionnelle

aléatoire conditionnelle peut donc étre construit comme suit :

~

SN () 2
W) = Fey) + (h*(y)) (3.3)

I’estimateur de la dérivée du densité conditionnelle est donné par la formule suivante :

hi? Y K (hild(z, X)) H' (hy'(y — 7))
Frly) = — 0 ;. Wy eR (3.4)
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Plus tard, nous avons besoin d’hypothéses sur les parameétres de 'estimateur, c’est-
a-dire sur K, H, H', hx et hy qui soit un peu restrictif. En effet, d’'une part, ils ne
sont pas spécifiques a I'estimation du probléme de h* (mais a des problémes inhérents
a lestimation de F*, f* et f'*), et d’autre part ils correspondent aux hypothéses

habituellement faites sous des variables fonctionnelles.

Remarque 3.3.1. Généralement, la fonction de risque a un mazximum global dans
les intervalles de temps avec des valeurs les plus proches de zéro, correspondant aux
tremblements de terre de plus grande intensité (Vere-Jones (1970)[71]).

De plus, la fonction de risque peut avoir plusieurs maxima locaux, indiquant les mo-
ments ot le risque est le plus élevé au cours d’une certaine période (voir les exemples
dans Estévez-Pérez et cie. (2002)[11]).

L’hypotheése d’unicité n’est établie que par souci de clarté. D’aprés nos preuves, s’il
existe plusieurs maxima estimés locaux, les résultats asymptotiques restent valables

pour chacun d’eu.

Nous établissons la convergence presque compléte (avec les taux de convergence) de

I’estimation maximale par les résultats suivants :

Théoréme 3.3.1. Sous les hypotheéses (H1),(H2),(H3),(H5),(H’1),(H’2),(H’4),(H’5)
et (H’6) nous avons

~

0—0—0 P.co.

Preuve de Théoréme (3.3.1) :

Parce que A" est continu, nous avons, pour tout € > 0.3n(e) > 0 tel que
|t —0|>e=]|h"t)—h"0)|> nle).
Par conséquent,
{166 |> e} <P{| 1) — h*(6) |2 n(e)}

Nous avons également

| W(0) —R(0) |<| B(0)— ' (0) | + | K(8) — k() |< sup | K(y)— " (y) | (3.5)

yes
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car h'(0) = h'"(9) = 0.
Ensuite, la convergence uniforme de h'* sur S impliquera la convergence uniforme de

0. C’est pourquoi, nous avons le lemme suivant.

Lemme 3.3.1. Sous les hypothéses du Théoréme (3.3.1), nous avons

sup | W (y) — b (y) |- 0 p.co. (3.6)

yes

Théoréme 3.3.2. Sous les hypothéses du Théoreme (3.53.1) et (H’8c), nous avons

~ log n
sup [0 — 0 |= O(R2) + Opep. | ] ——2 3.7

Preuve de Théoréme (3.3.2) :

En utilisant le développement de Taylor de la fonction A" au point 5, nous obtenons

W (0) = K (0) + (6 — 6)h"*(67) (3.8)

avec #* un point entre 6 et 0.

Maintenant, parce que h'(6) = ﬁ’x(é\)

L sup | () — W (y) | (3.9)

0—0|<
=01 g S

La preuve du théoréme sera complétée en montrant le lemme suivant.

Lemme 3.3.2. Selon les hypothéses du Théoreme (3.3.2) , nous avons
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~ log n
We(y) — W (y) |= Oh2) + Opeo. | \| 51— 3.10
sup | () = 17 (0) | = O(12) + 0, ( nh%mn)) (3.0
|
Preuves de lemmes (3.3.1) et (3.3.2) :
Soit
> f’x(y) 0 2
W (y) = ——=——+ (h"(y)) (3.11)
1= F(y)
avec

W -6 = { (Fo) - (rw) b {7 L fm;%zw} (312

pour le premier terme de (3.12) on peut écrire

<

) - )|

e (y) — hx<y>' (3.13)

\(%))2 - (fff(y))Q

parce que 'estimateur ﬁf() converge p.co. & h*(.) nous avons

(ﬁg”(y))2 - (ff”(y)>2

sup < 2|h*(0)

yeS

sup
yeSs

B - )| B
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pour le second terme de (3.12) nous avons

RO A 1 e\ g
1—Fe(y) 1=F(y)  (1-Fa(y)(1 - Fe(y)) {f W=7 <y)}
1 x Am _ T
+ 00 _Fw(y)){f (y) (F (y) = F (y))}

- ﬁx(y))l(l —— {Fo(Fo-ru)}

Valable pour tous les y € S. Pour une constante C' < oo ; Cela conduit

“up ]/c\/x(y) f/gc(y) { SupyeS |f/x(y) - f/x(y)| + SupyeS |Fm(y> - Fx(y)|}

<o

ves |1— Fe(y) 1—Fo(y) inf,cq |1 — Fo(y)|

Par conséquent, la conclusion du lemme découle des résultats suivants :

~ - B by log n

j‘gfg | F*(y) — F“(y) |= O(hy!) + Op.co. ( n%(hn)) (3.15)
e r N 1 by log n

ffég | () = [ (y) |[= Oh)) + Opco. ( —nhi%(hn)) (3.16)
~ - B by log n

21613 | h*(y) — h*(y) |= O(h,!) + Op.co. ( n%(hn)) (3.17)

36 >0 tel que E IP’{ ing 11— F*(y) |< 6} < 00 (3.18)
z€E
1
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On trouve les preuves de (3.15) et (3.17) et (3.18) dans le deuxiéme chapitre
Preuve de (3.16) : Ce résultat est basé sur le méme type de décomposition que (2.7)

On remplace F*(y) par ]?’I(y) et F*(y) par f™*(y) et utilisez les mémes notations

ou

A]/\?(y) nhzlEKl ZK 1d(ZE X; ))H//(h (y Y))

Ensuite, la preuve peut étre déduit des deux lemmes suivants, ainsi que du lemme
[ |

(2.3.1) et du corollaire (2.3.1).
Lemme 3.3.3. Sous les hypothéses (H1)-(H6), on a

1
—sup | (y) — Bf§ (y)| = O(h}t) + O(h}) (3.19)
FD yeS
Preuve :
Soit H!' = H"(hy(y — Yi)), et notons que nous avons
(3.20)

BR0) — 170) = gz B (K [EC0)/ ) — ()]

En outre,
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E(H(y)/X) = /R ' (i (y — ) f¥d=

= —hgy {H'(hl_{l(y —2))fNdz N (3.21)

—0o0

i /R H (bt (y — 2))(hik(y — 2)).

La condition (H4) nous permet d’annuler le premier terme du c6té droit de (3.21) et

nous pouvons écrire :

\E(H{’@)/X) - h?qf””(y)‘ < [ 10| = hut) = )

Enfin, (H3) permet d’écrire

\E<H1'<y>/x> - hzf'%w\ < cundy [ O+ 1)

Comme cette derniére inégalité est uniforme sur y, l'utilisation de (H4), (3.20) et du

corollaire (2.3.1) permet de prouver le lemme (3.3.3). |

Lemme 3.3.4. Sous les hypothéses (H1), (H3)-(H5) et (H7) on a :

1 o~ -~ log n
—sup |f¥(y) —Efy =0 _ .cO 3.22
Fz yeg |f¥ (v) Iy @)l ( nthﬁx(hK)) p ( )

Preuve :
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On a

N N 1 N ~ 1 ~ N
s [N () —EfN) < —suwlf¥(y) - ﬁ(my)HA—SHIS)!fﬁ(my)—Efﬁ(my)H

D yes D yes D VE
T T
1 -~ ~
= sup [Efy (my) — Efx ()|
FB yeS
T

(3.23)
e Concernant (7'1) et (7'3) : On remplace H par H” et on appliquons la condition
de Lipschitz (H4). Cela nous permet d’obtenir :

1 I Y ln Tl Tz ln
=—sup | [y (y) = [y (my)| < Cog et sup [Efy(y) —Efy(my)| < Cr5 (3.24)
Fp yes H yes H

w

eied
2

2 et notons que (H7) implique

L,/h2, = (9(1 /%). (3.25)

Prenons maintenant [,, = n

e Concernant (T2) :

- -~ 1 (H!'(m,)K; E(H!'(m,)K;)
Ix - E Iz —— 1 Y v 7 Yy

A;

On a clairement |4;| < Ch;?¢.(hx)~!. Maintenant, nous montrons que

EA? = O(hy*¢a(hi)™") (3.26)

Premiérement, nous pouvons écrire

E (Hj (my)*K7)

EA; < :
(WHEKY)

7

et B (H(m,)K7) =B (KTE (H] (m,)*/X))
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La condition (H'4) implique que [, H"*(y)dy < 4oc0. On a donc :

‘%E (H{(m,)*/X) —fX(m)/]RH”Z(y)dy‘

_ ‘ / iH@) (X (my — w) — X (m,)) du

< \ /MSA " (%) (F¥ (my —w) = f¥(m,)) du

< C sup |f¥(my —w) — fX(my)+ sup H?(y) + X (my) / H(y)dy
 Jul<a [ol>A/hn ) jul>A4/hn )

B1 Ba B3

Maintenant, nous déduisons de (H4) que

Ve > 0,VA > 0,3n4,,Yn > nae, By + By < e.

De plus, en raison de la continuité de f*, nous avons

Ve > 0,34, VA< A, B, < .

Ainsi, nous obtenons que

i 2 (H{(m,)*/X) = 1 (m) [ 1)y

n—-+4o0o H

Enfin, puisque 0 < C¢,(hyx) < EK; et EK? < C'¢.(hx), nous avons (3.26). Or,
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I'inégalité de Bernstein nous conduit & :

) ~ 1
P(Ifﬁ(my) —Efy(my)l >n %)

2
n-logn

< 2exp {—nC’—

nh3é.(hi)

< C'n~on*,

h?fq%(hK)}

Encore une fois, des arguments similaires a ceux invoqués pour prouver le lemme

(2.3.3) peuvent étre utilisés, ce qui nous permet d’obtenir que :

~ - logn c’ 2
P( sup |f¥(m,) —Ef¥(m,)| > —) < —n O,
(sup Ftmy) - BRm)| >y |20 ) < &

En choisissant maintenant tel que Cn? = %“ + %, on obtient

Dz Dz _ logn
sup P (m,) — B¢ m,)| = Oy i) (327

Enfin, le lemme (3.22) est une conséquence de (3.24), (3.25), (3.27) et du corollaire
(2.3.1).

3.4 Normalité asymptotique

Pour obtenir la normalité asymptotique des estimations conditionnelles, nous devons

ajouter les hypothéses suivantes :

(H4d) [, H?dt < co.

(H'9) 0=h"(8) < [h"(y)|, ¥y € S,y # 0.
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Le résultat suivant donne la normalité asymptotique du maximum de la fonction de

risque conditionnel. On pose

A={(z,y): (r,y) € S x R, a5 F"(y)(1 — F"(y)) # 0}

Théoréme 3.4.1. Dans les conditions (H1)-(H7) et (H’1)-(H’9) nous avons
(0 €S/f7(0),1—F*(0) > 0)

(k30 ()2 (R(8) = 12(6)) B N (0, 02(0))

. D L. . . .
ou — désigne la convergence de la distribution,

al = k'(1) — /0 (K'w))'¢(u)du — pour 1=1,2

et

2 . aghw(e) 2
”““‘wwu—ww»/H“'

Preuve :

On utilisant la décomposition (3.12), et on obtient

(- F(y) L1
(1—Fo(y)(1—-Fo(y) 1-F@)

et

f(y) . ()
(1—Fe(y))(1 - Fe(y)) (1= F=(y))?
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La normalité asymptotique de (nh3 ¢, (h,))"/? </f;’x(0) - h’x(9)> peut étre déduite des

lemmes suivants, [ |

Lemme 3.4.1. Sous les hypotheses (H1)-(H4) et (H7) et (H’1)-(H’3), nous avons

(na (b)) (F*(y) = F*(y)) B N(0,0%.(y))

ol

Les preuves du lemme (3.4.1) peuvent étre vues dans Laksaci et cie. (2011) [21].

Lemme 3.4.2. Sous les hypothéses (H1)-(H5) et (H7) et(H’1)-(H’4), nous avons

(b ()2 (R () = 1)) B N (0, 03(1)

ou

) = (it s | HEO

Preuve :

On peut écrire pour tout z € S

:E

h*(y) — h*( yy - Fw

fr fw0+ﬁxwﬁ<>F%D—w@wf
f( — [y > (ﬁz(y)—F”‘“(y))}
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avec D*(y) = (1 - F*(y))(1 — F*(y))

Conséquence directe du lemme (3.4.1), le résultat (3.29) (voir Ezzahrioui et Ould-Said,

2010 [12]) et I'expression (3.28), nous permettent d’obtenir la normalité asymptotique

pour l'estimateur du hasard conditionnel.

(b ()2 (F(9) = £(9)) B N(0, 0% (1))

ou

Lemme 3.4.3. Sous les hypothéses du théoréeme (3.4.1), nous avons

(nhig.(ha) " (P2() = () B N(0. 0% (9)

ol

o7 (y) = a/"(y) /R H"™dt.

(a1)?

Preuve :

Pour i = 1, ...,n, on considére les quantités K; = K(h,'d(z, X;)),
Hl(z) = H'(h; (y — Y;)) et soit fiX(y) (resp.F) étre défini comme

—~ h2 &
Ic — n
N () nEk,

i=

- 1
K;Hj(y) (resp- Fi(y) = Y K
1

(3.29)

(3.30)
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Cette preuve est basée sur la décomposition suivante

Prt) = 1) = = { () - BT W) - (r0) - Fs0)) } + H2 (P - i)

A$
Fp D

et sur les résultats intermédiaires suivants.

Wk o) (F2(5) = EF*(y)) B N(0, 0% (1)) (3.31)

olt 07 (y) est défini comme dans le lemme (3.4.3).

Tim /36, (h) () = EF*(y)) = 0 (3.32)
nh3 o (hy) (ﬁg(y) - 1> 50, comme n— oc. (3.33)

Concernant (3.31). Par définition de f(y), il s'ensuit que

Tz /x - (bx(hn) / N __ -
nhio. () (F7(y) — EF"(y)) = 2 i (GH —EKH) = YA,

ce qui meéne a

ZEA2 ‘I]TE 2;()1 (B2K H})? =114, — Iy, (3.34)

Pour IIy,,, par la propriété d’espérance conditionnelle, on obtient
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t, = 20 Lt [ 10— th) - 760 + 5 )at )

Pendant ce temps, par (H1), (H4), (H4) et (H'9), il s’en suit que :

¢x(hn)E2K1 . ag
E2K, n—oo (af)?’

ce qui meéne a

Y rx
m, —s 2/ / H™dt, (3.35)

n—oo  (a¥)?

Concernant Ily,, par (H1), (H4) et (H7), on obtient

Iy, —> 0. (3.36)

n—oo

Ce résultat, combiné avec (3.34) et (3.35), nous permet d’obtenir

: 2 _ 2
nh—g}o;EAl =07 (y).

Deuxiémement, comme H' est bornée, nous avons

Coy(hy)
E(]AA]) < W(Kin +EK;Kj)

<o { (20" ¢x<y><hn>}
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Puis, en prenant

1/a
G = (BAA)} = {(%f“)) + ¢x<y><hn>} .

Conduit a

m 1/a

De méme, le fait que de H’' et K soient bornée permet de prendre C; =

1 .. .
O (—nh%%(hn)), ce qui implique que

- , - C o C  m,t
( 2 O‘O))ZQ‘Q < o] o B T %)

j=mn+1 =1

Alors, la somme du coté droit de (3.37) et (3.38) est de type Am,, + Bm, ™ en

parlant

1/a —1/a
ma = (/B = {(a — 1)ulh) ((@) n qsx(hn))} - 00

il est clair que, dans les conditions (H10a) et (H10b), combiner (3.37) et (3.38) permet

d’obtenir

nm,o0, = o(1), (3.39)

et
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<Z<MQZ@:wx (3.40)

Jj=mn+1

. . h3 ¢ (h R
respectivement. Enfin, en choisissant o, = %’“i"), sous (H10a) & nouveau et

a>3,ona

On _ o(1) (3.41)

et

n (log n)(a+1)/2
—a(eo,) <C
N n@=D72(p3 (R, ))a+D)/2
1 (a+1)/2
<C%—>O quand n — oo.

= na—3)/2

Par conséquent, combiner (3.36)-(3.42) avec le corollaire 2.2 dans Liebscher
(2001)[22], (3.31) est valide.

e Concernant (3.32). La preuve se fait selon les mémes étapes que celle de II;,,. Nous

Pomettons ici.

e Concernant (3.33). L’idée est similaire & celle donnée par Ferraty et cie. (2007)[13].

Par définition de ﬁg(y), on a

Vb3 6, (ha) (F3(y) — 1) = Q, — EQ,,
_ Ak (h) S K

nkEK

ou €, . Afin de prouver (3.33), similaire & Ferraty et cie.

(2007)[13], il suffit de prouver Var €, — 0, comme n — co. En fait, depuis
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Var Qn = MT[(I nVar Kl + Z ZCOV(KZ‘, KJ)

1<i j<n

nh o (hn) 2 4 nh?’gbz
< Ve BRI S 3 ol K

1<]i —j|<vn
nh nhy ¢z (hn)
O S S i 1)
nk Kl 1<)i —j|>vn
=W + Uy + s,

alors, I'utilisation de la délimitation de la fonction K nous permet d’obtenir cela :

U, < Ch3¢y(hy,) — 0, comme 1 — 00.

Pendant ce temps, par (H1) et (H2), il s’ensuit que

1/a
Uy < v,h { (@) + qu(hn)} . (3.43)

Enfin, l'utilisation de l'inégalité de Davydov Rio a Rio (2000) pour mélanger les

processus conduit a

|cov (K5, K;)| < Clali — j),
pour tout ¢ # j. Ensuite nous avons
nh3 ¢, (hy,

W, < ) w2C(ali - j)

- nE2K1

nhdd.(hy) o5 3.44
< nrx\''n a+1 ( . )
< C—nE2K1 n-v,

< Ch3nv,*t.
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Puisque le coté droit de (3.43) et (3.44) est également de type Av, + Bv,*" en

1/CL 71/CL
choisissant v,, = {nl ((%}L”U + ¢x(hn)>:| — 00 et des calculs simples, nous

obtenons que ¥y — 0 et W3 — 0 comme n — 00, respectivement. [
Par conséquent, la preuve de ce lemme est terminée. Enfin, par (3.30) et (3.8), le

théoréme suivant suit :

Théoréme 3.4.2. sous les conditions (H1)-(H7) et (H’1)-(H’9) nous avons
(0. S/(0),1— F*(6) > 0)

(nh3 ¢y (hn))'/? (5— 9) 3N (0’ %)

avec a3, (0) = h*(0)(1 — F=(0)) [ H"™dt.



Conclusion

Nous nous sommes intéressés plus particuliérement dans ce travail & un modéle non
paramétrique qui traite le cas des variables fonctionnelles dans lesquels la variable
"réponse" est réelle tandis que la variable explicative est fonctionnelle. L’objectif
était I'estimation du dérivée de la fonction de hasard conditionnelle au moyen de la
fonction de répartition conditionnelle et sa dérivée par la méthode du noyau. Le cas

considéré traite des données complétes
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