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Introduction

La géométrie spectrale des une spécialité qui se trouve au carrefour géo-
métrie différentielle, théorie spectrale et analyse mathématique. Cette disci-
pline trouve naissance au milieu des années soixante. A partir de son article
historique "Can we hear the form of a tambor", Mark Kack présente une
conjecture qui relie le spectre du laplacien d’une variété riemannienne au
invariants géométriques de cette variété. Cette question motive beaucoup de
mathématiciens qui cherchent autour des questions liées avec le spectre d’une
variété riemanniennes. Même si la réponse vient plus tard négativement par
un premier contre-exemple de Milnor, qui a construit deux variétés rieman-
niennes iso-spectrales non isométriques, les motivations de la question de M.
Kack donnent des résultats en matière de compréhension des phénomènes en
correspondance avec la première valeur propre du laplacien, l’estimation au
voisinage de l’infini des valeurs des spectres, le comportement asymptotiques
des fonctions propres, les ensembles nodaux,...etc. Dans notre mémoire on
tient part des questions classiques de la géométrie spectrale dans un cadre
spécifique restreint à la dimension deux, c’est le cas des surfaces compactes.
Le premier chapitre est consacré à la définition d’une surface et aux défini-
tions élémentaires des caractéristiques géométriques dont elle est liée. Dans
le deuxième chapitre on aborde la du laplacien comme un opérateur linéaire
non-borné, défini sur une variété riemannienne quelconque. En partant des
connaissances classiques de la théorie spectrale, on constate que dans le cas où
la variété riemannienne est compacte, cet opérateur est auto-adjoint, défini
positif, donc son spectre est une suite de réels positif qui tend vers l’infini.
Cette suite sera appelée dans la littérature "spectre de la variété rieman-
nienne" est beaucoup de questions seront par suite abordées à propos de ce
spectre.
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Le troisième chapitre est consacré à un cas particulier de résultats obtenus
pour les surfaces. La question principale évoquée à ce sujet est l’estimation
de la première valeur propre du laplacien sur la surface. Les résultats obte-
nus portent sur la minimisation ou la maximisation de cette première valeur
propre par rapport à des quantités géométriques de la surface.



Chapitre 1

Introduction aux surfaces
paramétrées

1.1 surface paramétrée

On remplace dans R3 espace affine euclidien orienté
−→
R3 l’espace vectoriel

associe
R = (o,Bo) un repère de R3avec o= origine de BO = {−→i ,−→j ,

−→
k } b.o.n

derecte de R3

e.v euclidien orienté par le choix de cette base.

Définition 1.1.1.
On appelle surface paramétrée de classe Ck,une application

ϕ : D ⊂ R2 → R3

(u, v) 7→ ϕ(u, v) de classe Ck

ϕ(u, v) = (x(u, v), y(u, v), z(u, v))

On notera S l’image de D par ϕ
S = ϕ(D) est la Surface engendrée par ϕ

Exemple 1.1.1.

1. Le graphe d’une fonction Soit f : D ⊂ R2 → R une fonction de classe
Ck.

9



10 1.1.1 Surface régulière :

On définit La surface S paramétrée par :

ϕ : D ⊂ R2 → R3

(x, y) 7→ (x, y, z = f(x, y))

2. D = {(x, y) ∈ R2 \ x2 + y2 ≤ 1}D :Disque unité

f : D → R
(x, y) 7→

√
1− x2 − y2

ϕ : D → R3

(x, y) 7→ (x, y,
√

1− x2 − y2)

1.1.1 Surface régulière :

Soit
ϕ : D ⊂ R2 → R3

(u, v) 7→ ϕ(u, v)

ϕ(u, v) = (x(u, v), y(u, v), z(u, v)) une surface paramétrée de classe Ck (k ≥
1)
On fixe un point (u0, v0) ∈ D

1. Pour u = u0, On obtient une application notée γu0 ,définie par :

γu0 : I ⊂ R → R3

t 7→ γu0(t) = ϕ(u0, t)

γu0 est donc une courbe paramétrée de classe Ck (k ≥ 1) tracée sur S

– Le vecteur tangent à γu0 au point de paramètre t = V0 est donne
par : γ′u0(t)|t0=V0

γ′u0(v0) = ∂ϕ
∂v

(u0, v = v0)

= ∂x
∂v

(u0, v0)
−→
i + ∂y

∂v
(u0, v0)

−→
j + ∂z

∂v
(u0, v0)

−→
k

Notons ce vecteur tangent a la courbe γu0 au point de paramètre v0

par :

−→
T v(u0, v0) = ∂ϕ

∂v
(u0, v0)

= ϕv(u0, v0)
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2. Pour v = v0,On obtient une application notée γv0 définie par :

γv0 : j ⊂ R → R3

t 7→ γv0(t) = ϕ(t, v0)

γv0 est donc une courbe paramétrée de classe Ck (k ≥ 1) tracée sur S

le vecteur tangent à γv0 au point de paramètre t = u0 est donne par :
γ′v0(t)|t = u0

γ′v0(u0) = ∂ϕ
∂u

(u = u0, v0)

= ∂x
∂v

(u0, v0)
−→
i + ∂y

∂v
(u0, v0)

−→
j + ∂z

∂v
(u0, v0)

−→
k

Notons ce vecteur tangent à γv0 au point de paramètre u0 par

−→
T u(u0, v0) = ∂ϕ

∂u
(u0, v0)

= ϕu(u0, v0)

Définition 1.1.2.
Soit

ϕ : D ⊂ R2 → R3

(u, v) 7→ ϕ(u, v)

Une surface paramétrée de classe Ck (k ≥ 1)

Soit (u0, v0) ∈ D ,On dit :
Que la paramétrisation est régulièr ou point P0 = ϕ(u0, v0) si les deux vecteurs
tangents

−→
Tu(u0, v0) = ϕu(u0, v0) et

−→
Tv(u0, v0) = ϕv(u0, v0)

Soit Linéairement indépendents (⇔ ϕu(u0, v0) ∩ ϕv(u0, v0) 6= 0−→
R3)

Sinon, On dit que le point P0 = ϕ(u0, v0) est un point singulier
La surface est dit régulièr si tous ses points sont reguliers.

ϕu(u, v) ∧ ϕv(u, v) 6= 0 ∀(u, v) ∈ D

Définition 1.1.3. (Plan tangent)
Soit :

ϕ : D ⊂ R2 → R3

(u, v) 7→ ϕ(u, v)

Une surface paramétrée de classe Ck(k ≥ 1) avec P0 = ϕ(u0, v0) un point
régulier de cette surface.



12 1.1.1 Surface régulière :

– On appelle Plan tangent à la surface au point P0 le plan affine passant
par
p0 = ϕ(u0, v0) et dirigé par les deux vecteurs ϕu(u0, v0) et ϕv(u0, v0)

Puisque
−→
N (−→u 0,

−→v 0) = ϕu(u0, v0) ∧ ϕv(u0, v0) est perpendiculaire au
plan tangent en ϕ(u0, v0),On en déduit :

P = ϕ(u0, v0) = (x0, y0, z0)

TpS =plan tangent à la surface au point P
S = ϕ(D)

M(x, y, z) ∈ TpS ⇔
−−→
PM.

−→
N (u0, v0)

⇔

 X − x0

Y − y0

Z − z0


 a

b

c

 = 0

a(X − x0) + b(Y − y0) + c(Z − z0) = 0

aX+bY +cZ−ax0−by0−cz0 = 0 un équation de TpS avec
−→
N (u0, v0) = a

b

c


les deux vecteur ϕu(u0, v0) et ϕv(u0, v0) forment une base de TpS en P.

Définition 1.1.4. Soit :
ϕ : D ⊂ R2 → R3 une Surface paramétrée de classe Ck(K ≥ 1),S = ϕ(D)

Soit :
P = ϕ(u0, v0) ∈ S un point régulier le vecteur

−→
W p = (ϕu∧ϕv)(u0,v0)

‖(ϕu∧ϕv)(u0,v0)‖ est appelé

vecteur unitaire à S en p = ϕ(u0, v0) et on a
−→
N p ⊥ TpS

Proposition 1.1.1. Soit :
ϕ : D ⊂ R2 → R3 une surface régulier de classe Ck,k ≥ 1,On définit

– E = ‖ϕu‖2 = ϕu.ϕu

– F = ϕu.ϕv

– G = ‖ϕv‖2 = ϕv.ϕv

Alors :‖ϕu ∧ ϕv‖ =
√
EG− F 2

S est reguliére ⇔ EG− F 2 6= 0
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1.1.2 Orientation d’une surface :

Soit : S une surface régulière de classe Ck(k ≥ 1)paramétrée par :

ϕ : D ⊂ R2 → R3

(u, v) 7→ ϕ(u, v)

(S = ϕ(D)) Soit p = ϕ(u, v) ∈ S

−→
N p =

ϕu ∧ ϕv
‖ ϕu ∧ ϕv ‖

−→
N p⊥TpS

(on a aussi −
−→
N p⊥TpS) une surface Orientée est une surface avec deux Côtés

dont on sait définir un coté comme le coté Interieure et l’autre coté comme le
coté extérieure
En chaque point Régulier de la surface, il ya deux normales unitaires

−→
N 1 et

−→
N 2 (

−→
N 2 = −

−→
N 1) la surface est Orientée si on peut associe à chacune de ces

normales un coté de la Surface

1.1.3 Flux d’un champ de vecteurs à travers une Surface

Soit S une surface orientée est soit :
−→
N un choix de normale unitaire .

On suppose que S est paramètre par :

ϕ : D ⊂ R2 Ck→ R3 k ≥ 1

(u, v) 7→ ϕ(u, v)

On définit l’élément d’aire vectoriel
−→
ds =

−→
Nds(ds = (ϕu ∧ ϕv)du ∧ dv)

Soit −→v un champ de Vecteurs continue définie sur S(oû un voisinage de S)
On appelle flux de −→v à travers S (oû integrale de

−→
V sur S ) l’integrale notée∫

S

−→
V
−→
ds

F luxS(
−→
V ) =

∫
S

−→
V ds =

∫
D

−→
V
−→
N
√
EG− F 2dudv

Soit : (u, v) 7→ ϕ(u, v) (u, v) ∈ R2

une représentation paramétrique de classe Ck(k ≥ 1) de la surface S On



14 1.1.3 Flux d’un champ de vecteurs à travers une Surface

considéré deux application
(u, v)

P7→ P (u, v)

(u, v)
q7→ q(u, v)

de classe Ck de u dans le

plan tel que le jacobien

∂(P, q)

∂(u, v)
=

∣∣∣∣∣ ∂P
∂u

∂P
∂v

∂q
∂u

∂q
∂v

∣∣∣∣∣ 6= 0

il est possible que l’application
(u, v) 7→ (P (u, v), q(u, v)) ne sont pas bijective de u dans le plan (p, q)

En utilisant le théorème des fonctions inverses ,pour chaque (u0, v0) ∈ u ⊂
R2,il existe ω un voisinage de ce point et ω∗ un voisinage de (P0, q0) =

(P (u0, v0), q(u0, v0)) des le plan tel que (u, v) 7→ (P (u, v), q(u, v)) est une bi-
jection de ω → ω∗ et sont inverse (P, q) 7→ (u, v) et aussi de classe Ck.
Considérons la composée des ces applications
ϕ∗(P, q) = ϕ(u(P, q), v(P, q)) c’est une applications ϕ∗(P, q) = ϕ(u(P, q), v(P, q))

C’est une application de
ω∗ → S et on a :

ϕ∗p ∧ ϕ∗q = (ϕuUp + ϕvVp) ∧ (ϕuUq + ϕvVq)

oû up = ∂v
∂P

,vP = ∂v
∂P

,uq = ∂u
∂q
,vq = ∂v

∂q

⇒ ϕ∗p ∧ ϕ∗q = (ϕu ∧ ϕv)upvq + (ϕv ∧ ϕu)uqvp
= ϕu ∧ ϕv(upvq − uqvp)
= |∂(u,v)

∂(q,p)
|ϕu ∧ ϕv

∂(u,v)
∂(P,q)

=
(

∂(P,q)
∂(u,v)

)−1

6= 0

si :ϕu ∧ ϕv 6= 0−→R 3

Alors :ϕ∗p ∧ ϕ∗q 6= 0−→R 3

Doû (P, q) 7→ ϕ∗(P, q) le vecteur de représentation régulière de classe Ck de
la surfaces .

Définition 1.1.5.
Une coordonnée locale de classe Ck sur une surface S dans R3 est une appli-
cation ϕ = ϕ(u, v) d’une ouvert ω du plan (u,v) dans S

ϕ : ω → S

(u, v) 7→ ϕ(u, v)
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– ϕ de classe Ck sur ω
– ∀(u, v) ∈ ω on a :ϕu ∧ ϕv 6= 0−→R 3

– ϕ est un homéomorphisme locale .
le couple (ω, ϕ) est appelé carte locale

Soit :ϕ : (u, v) ⊂ D

ϕ : (u, v) 7→ ϕ(u, v) une représentation paramétrique Régulière d’une Surface
S

Soit P le plan tangent passant par le point M et les vecteurs ϕu et ϕv dé-
finis par une coordonnée locale qui passant par M de Soit que les vecteurs
(ϕu, ϕv, ϕu ∧ ϕv) forment un Trièdre direct

−→n =
ϕu ∧ ϕv
‖ϕu, ϕv‖

vecteur normale unitaire

Soit ϕ∗(P, q) une autre représentation paramétrique de la surface régulière S

dont la carte contre le point M,(
P : (u, v) 7→ P (u, v)

q : (u, v) 7→ q(u, v)

)

ϕ∗p ∧ ϕ∗q = ∂(u,v)
∂(p,q)

ϕu ∧ ϕv,
−→n ∗ =

ϕ∗
p∧ϕ∗

q

‖ϕ∗
p∧ϕ∗

q‖
= 1

| ∂(u,v)
∂(P,q)

|.‖ϕu.ϕv‖
. ∂(u,v)
∂(P,q)

ϕu ∧ ϕv

J = ∂(P,q)
∂(u,v)

J′ = ∂(u,v)
∂(P,q)

= J−1 = 1
J

−→n ∗ =
J

|J′|
−→n

−→n ∗ = sign
(

∂(u,v)
∂(P,q)

)−→n
1.2 Les formes fondamentales

1.2.1 la première forme fondamentale

Soit S une surface régulière de classe Ck, k ≥ 1 sont ϕ = ϕ(u, v) les
coordonnée locales
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On appelle la différentielle de ϕ note dϕ une application bijective du vecteur
(du, dv) dans le plan (u,v) qui associe le vecteur

dϕ = ∂ϕ
∂u
du+ ∂ϕ

∂v
dv

= ϕudu+ ϕvdv

dans le plan tangent .

I = ‖dϕ‖2 =< dϕ, dϕ >=< ϕudu+ ϕvdv, ϕudu+ ϕvdv >

I = ‖ϕu‖2du2 + 2 < ϕu, ϕv > dudv + ‖ϕv‖2dv2

I = Edu2 + 2Fdudv +Gdv2

La forme quadratique.

I(du, dv) = Edu2 + 2Fdudv +Gdv2

E,F et G sont appelés les coefficients de la 1 ère forme fondamentale

Remarques :

1. I(du, dv) = (du, dv)

(
E F

F G

)(
du

dv

)

la matrice A =

(
E F

F G

)
Symétrique réel toujours diagonalisable

la 1 ère forme fondamental I(du, dv) est formée par la matrice A =(
E F

F G

)

on à :

{
E = ‖ϕu‖2 > 0

detA = EG− F 2
⇒ La matrice A =

(
E F

F G

)
est une

matrice symétrique définie positive A ∈ S++
2 (R) toutes les valeurs

propres sont Strictement positives. I(du, dv) est une forme définie po-
sitive.

2. La forme I(du, dv) ne dépend pas de la coordonnée locale choisie :
Preuve : Soient (u, ϕ) et (v, ϕ∗) deux cartes local G = U ∩ V 6= ∅
det
(

∂(P,q)
∂(u,v)

)
6= 0 on a :

ϕ(u, v) = ϕ∗(p(u, v), q(u, v)) ∈ G
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I∗(du, dv) = < ϕ∗pdp+ ϕ∗q, ϕ
∗
pdp+ ϕ∗qdq >

= ‖ϕ∗pdp+ ϕ∗qdq‖2

= ‖ϕ∗p(Pudu+ Pvdv) + ϕ∗q(qudu+ qvdv)‖2

= ‖(ϕ∗pPu + ϕ∗qqu)du+ (ϕ∗pPv + ϕ∗qqv)dv‖2

= ‖ϕudu+ ϕvdv‖2

= ‖dϕ‖2 = I(du, dv)

3. (E(u, v), F (u, v), G(u, v)) 6= (E∗(p, q), F ∗(p, q), G∗(p, q))

E(u, v) = ‖ϕu‖2

= ‖ϕ∗pPu + ϕ∗qqu‖2

= < ϕ∗pPu + ϕ∗qqu, ϕ
∗
pPu + ϕ∗qqu >

= E∗(p, q)Pu2 + 2F ∗(p, q)Puqu +G∗(p, q)q2
u

De même :
F (u, v) = E∗(p, q)PuPv+F

∗(P, q)Puqv+F
∗(P, q)(Puqv+Pvqu)+G

∗(P, q)quqv

et
G(u, v) = E∗(P, q)P 2

v + 2F ∗(P, q)Pvqv +G∗(P, q)q2
v

Exemple 1.2.1. Soit S la surface définie par :

ϕ(u, v) = (u+ v)e1 + (u− v)e2 + uve3

= (u+ v, u− v, uv)

ϕu(u, v) =

 1

1

v


ϕv(u, v) =

 1

−1

u


• E = ‖ϕu‖2 = 2 + v2

• F = ϕu.ϕv = uv

• G = ‖ϕv‖2 = 2 + u2

I(du, dv) = (2 + v2)du2 + 2uvdudv + (2 + u2)dv2

E > 0, EG−F 2 = 2(2+u2+v2) > 0 On cosidére un changement de Paramétre
P = u+ v, ϕ = u− v ∣∣∣ ∂(P,q)

∂(u,v)

∣∣∣ =

∣∣∣∣∣ 1 1

1 −1

∣∣∣∣∣ = −2 6= 0
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c’est un changement admissible de paramétre

ϕ(u, v) = (u+ v)e1 + (u− v)e2 + uve3

ϕ∗(P, q) = pe1 + qe2 +
1

4
(P 2 − q2)e3

ϕ∗p(P, q) =

 1

0
p
2

 , ϕ∗q(P, q) =

 0

1
−q
2


E∗(P, q) = 1 +

P 2

4

F ∗(P, q) =
−Pq

4

G∗(P, q) = 1 +
q2

4

On prend :(u, v) = (1, 1)⇒ (P, q) = (2, 0)

E(1, 1) = 3, F (1, 1) = 1, G(1, 1) = 3

E∗(2, 0) = 2, F ∗(2, 0) = 0, G∗(2, 0) = 1

les coefficients de la 1 ére forme fondamentales ne sont pas invariant par un
changement admissible de paramétre .

1.2.2 la deuxième forme fondamentale

Soit (u, v) 7→ ϕ(u, v) une représentation paramétrique D’une surface ré-
gulière S de classe Ck, k ≥ 2

N = ϕu∧ϕv
‖ϕu∧ϕv‖ , Notons : dN = Nudu+Nvdv

Nu = dNp(ϕu) Nv = dNp(ϕv)

on a :‖N‖2 = 1

⇒< N,N >= 1⇒ 2 < dN,N >= 0

⇒ N est orthogonal à dN,au point ϕ(u, v) ⇒ en ce point ϕ(u, v)

dN est dans le plan tangent TpS
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II(du, dv) = −dϕ− dN
= − < dϕ, dN >

= − < ϕudu+ ϕvdv,Nudu+Nvdv >

= − < ϕu, Nu > du− (< ϕu.Nv > + < ϕv.Nu >)dudv− < ϕv, Nv > dv2

Oû :
– L = − < ϕu, Nu >

– M = −1
2
(< ϕu, Nv > + < ϕv, Nu >)

– N = − < ϕv, Nv >

II(du, dv) est appelée la 2 éme forme fondamentale associée à ϕ(u, v) L,M,N
sont appelés les coefficients de la 2 éme forme fondamentale (les Seconds
coefficients fondamentaux )
Or on a

• < ϕu, N >= 0 < ϕuu, N > + < ϕu, Nu >= 0

L =< ϕuu, N > ou ϕuu = ∂2ϕ
∂u

•

{
< ϕu, N > = 0

< ϕv, N > = 0{
< ϕuv, N > + < ϕu, Nv > = 0

< ϕuv, N > + < ϕv, Nu > = 0

⇒M =< ϕuv, N > ϕuv = ∂2ϕ
∂u∂v

• < ϕv, N >= 0

⇒< ϕvv, N > + < ϕv, Nv >= 0

N =< ϕvv, N > ϕvv = ∂2ϕ
∂v2

Remarque :
La 2 éme forme fondamentale est aussi invariante par un changement admis-
sible de paramètre .
Si ϕ∗(P, q) est une autre représentation paramétrée que De la surface.
telque : ϕ(u, v) = ϕ∗(p(u, v), q(u, v))

|∂(P,q)
∂(u,v)

| 6= 0

• L = L∗P 2
u + 2M∗Puqu +N∗q2

u

• M = L∗Puqv +M∗(Puqv + pvqu) +N∗quqv

• N = L∗P 2
v + 2M∗Pvqv +N∗q2

v
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II∗∗(P, q) = II(du, dv)

LN −M2 = |∂(P,q)
∂(u,v)

|(L∗N∗ − (M∗)2)

II(du, dv) =< d2ϕ,N >

d2ϕ = ϕuudu
2 + 2ϕuvdudv + ϕvvdv

2

La fonction

δ =
1

2
II(du, dv) =

1

2
(Ldu2 + 2Mdudv +Ndv2)

S’appelle paraboloïde osculateur du point p et la nature de cette pa-
raboloïde dépend du signe de LN −M2 distingue quatre cas :

1. cas elliptique :
LN −M2 > 0 un point est dit elliptique si

LN −M2 > 0

en ce point la fonction δ gande un signe Constant dans un voisinage du
point p.

2. cas hyperbolique :
(LN −M2 < 0)un point est dit hyperbolique si

LN −M2 < 0

en ce point .

3. cas parabolique : (LN −M = 0)

LN −M2 = 0

en ce point sans que tous les coefficient L,M et N sont nuls

4. cas planaire : (LN −M2 = 0 etL2 +M2 + ω2 = 0)

Dans ce cas on a
L = M = N

Et la 2 éme forme fondamentale sera identiquement nulle.



Chapitre 2

Le laplacien

2.1 Le laplacien

2.1.1 Divergence d’un champ de vecteurs. Opérateur δ

Sur la variété riemannienne (M,g) nous définissons une application linéaire
de X(M) dans C∞(M) , Appelée Divergence, et définie comme suit :

Définition 2.1.1. :
La divergence d’un champ de vecteur ξ sur M est la fonction divξ définie,
localement, par l’égalité :

d(ξyω) = divξ.ω

où ω désigne la forme volume correspondant à une Orientation Locale.

Note : Dans cette définition, ξyω Désigne le produit contracté De
ξ et de la n-forme ω (n, dimension de la variété M), C’est-à-dire la (n−1)-
forme définie par :

(ξyω)(X1, ..., Xn−1) = ω(ξ,X1, . . . , Xn−1) ∀(X1, ..., Xn) ∈ X(M) (2.1)

On vérifie immédiatement que divξ ne dépend pas de La forme locale
ω choisie ; la divergence est donc définie globalement sur (M,g).
On vérifiera aisément la proposition Suivante :

21
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Proposition 2.1.1.
La divergence vérifie l’égalité :

div(f.ξ) = f.divξ + df(ξ)
∀f ∈ C∞(M)

∀ξ ∈ X(M)

Par dualité, nous obtenons à partir de div un opérateur sur l’espace A1(M)

des l-formes, appelé δ et défini comme suit :

Définition 2.1.2.
on appelle δ l’opérateur de A1(M) dans C∞(M) défini par :

δα = div(α#) ∀α ∈ A1(M))

.

Note :L’espace des p-formes sera dèsormais notAp(M) au lieu de T(∧pT ∗M)

. Ainsi, ici,A1(M) au lieu de T(T ∗M) , et aussi A0(M) au lieu de C∞(M).

Si M est compacte, les espaces Ap(M) sont munis d’une structure Préhil-
bertienne, définie à partir du produit scalaire (.|.) Sur l’espace euclidien
T(∧pT ∗M)p et de la mesure canonique Vg sur (M,g) ; le produit scalaire global
est noté < ., . >. On a donc, si α et β sont deux-formes sur M ,leur produit
scalaire local est la fonction (X|Y ) définie par

(X|Y )(m) = (Xm|Ym) = gm(Xm, Ym)

Leur produit scalaire global est défini par .

< α, β >=

∫
M

(α|β).Vg (2.2)

Nous nous proposons de montrer que les opérateurs d et δ sont, par rapport
aux structures préhilbertiennes de A◦(M) et A1(M), adjoins l’un de l’autre,
c’est-à-dire :

Proposition 2.1.2.

< df, α >=< f, δα >
∀f ∈ A0(M)

∀α ∈ A1(M)
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L’égalité 2.1.2 s’écrit encore :∫
M

(df |α).Vg =

∫
M

f.δα.Vg

et il nous suffit, pour la démontrer, de montrer que l’on a :∫
M

(df |α).ω =

∫
M

fδα.ω

où ω est n-forme volume définie localement au voisinage d’un point quel-
conque de la variété. Soit donc :

I =

∫
M

(df |α).ω −
∫
M

(fδα).ω

. A cause de 2.1.1 et 2.1.2, nous avons

I =

∫
M

[(df |α) + fdivα].ω

.

Or, du fait de 2.1.1, nous avons :

fdivα# = div(fα#)− df(α#)

et, par définition,
(df |α) = df(fα#)

si bien que :
I =

∫
M
div(fα#).ω = . . .

=
∫
M
d(fα#yω)

C’est-à-dire, à cause de Stokes :

I = 0

ce qui démontre 2.1.2
De même que d est défini, non seulement sur A0(M) , mais aussi sur Ap(M)

, pour tout p , l’opérateur δ est lui-même défini sur Ap(M) . Le couple

Ap
δ←
d→

Ap+1(M)

Est encore adjoint.
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2.1.2 Calcul explicite de la divergence et de δ

Calcul en coordonnées locales :

Nous nous donnons en m, une carte locale (X i) , à laquelle est atta-
chée une fonction réelle θ =

√
det(gij) , telle que, localement, la forme

volume associée s’exprime par :

ω = θ.dx1 ∧ . . . ∧ dxn (2.3)

si (Xi) est le champ local de repére associé à la carte (X i) .
(c’est-à-dire Xi = δ

∂Xi
),on a :

ξyω(X1, . . . , X̂i, . . . , Xn) = ω(ξ,X1, . . . , X̂i, . . . , Xn) = ...

= (−1)i−1ω(X1, . . . , ξ, . . . , Xn) = . . .

= (−1)i−1θ .ξi

Où, ξi désigne la iéme composante de ξ .
On a donc :

ξyω =
∑
i

(−1)i+1(θ.ξi)dxi∧, . . . ,∧d̂xi ∧ . . . dxn (2.4)

et, par conséquent

d(ξyω) =
∑
i

(−1)i+1 ∂(θ.ξi)
∂Xi dx

i ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . dxn = . . .

=
∑
i

∂(θ.ξi)
∂Xi dx

1 ∧ . . . ∧ dxn = . . .

= θ−1(
∑
i

∂(θ.ξi)
∂Xi ).ω

(2.5)

Si bien que

divξ = θ−1
∑
i

∂(θ.ξi)

∂X i
) (2.6)

Dans la même carte, une l-forme α s’exprime par :

α =
∑
i

αidx
i (2.7)
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et par conséquent :
α# =

∑
i,j

(gijαj)Xi (2.8)

où gij est l’élément générique de la matrice inverse de (gij). il Suit alors de
2.1.2,que :

δα = −θ−1

( ∑
i,j

∂(θgijαj)

∂xi

)
(2.9)

Formulation géométrique :

La dérivée covariante d’une 1-forme α est une 2-forme Dα qui
possède une trace égale à :

trace Dα =
∑
i

Dα(Xi, Xi) (2.10)

où {Xi} est un champ de repères orthonormés.
Comme on a L’égalité :

(DXiα
#|Xi) = Dα(Xi, Xi) (2.11)

on voit que la trace Dα est égale à la trace de l’endomorphisme :

X → DXα
#

Nous avons la proposition suivante :

Proposition 2.1.3.
Pour toute 1-forme α définie sur la v.r. (M,g) :

δα = −trace Dα

Notons d’abord que, si ω est une p-forme quelconque et ξ un
champ de vecteur sur M , alors nous avons l’égalité :

DX(ξyω) = DXξyω + ξyDXω ∀X ∈ X(M)



26 2.1.2 Calcul explicite de la divergence et de δ

que l’on déduit par exemple de ( 2.1.3). Comme, la dérivée covariante Dω

d’une forme volume est nulle (invariance du volume par transport parallèle),
on a donc :

DX(ξyω) = DXξyω ∀X, ξ ∈ X(M) (2.12)

D’autre part, si ω est une p-forme alternée sur M , sa différentielle extérieure
dω est l’anti-symétrisée de sa dérivée covariante,

dω(X0, X1, . . . , Xp) =
P∑
i=0

(−1)iDXiω(X0, . . . , X̂1, . . . , Xp) (2.13)

Soit maintenant, {Xi}i=1,...,m un repère orthonormé sur un voisinage U
d’un point m de M.
Considérons la (n-1)-forme ξyω où ξ est un champ de vecteur et
ω une forme volume sur U . On a :

d(ξyω)(X1, . . . , Xn) =
n∑
i=1

(−1)i−1DXi(ξyω)(X1, . . . , X̂i, . . . , Xn) = . . .

=
n∑
i=1

(−1)i−1(DXiξyω)(X1, . . . , X̂i, . . . , Xn) = . . .

=
n∑
i=1

ω(X1, . . . , DXiξ, . . . , Xn)

Comme {Xi} est orthonormé on a :

DXξ =
∑
i

(DX ξ|Xi)Xi

si bien que l’on a finalement :

d(ξyω)(X1, . . . , Xn) =
∑
i

(DXi ξ|Xi).ω(X1, . . . , Xn) = . . .

=
∑
i

(DXi ξ|Xi)

d’oû, finalement :

divξ = −
∑
i

(DXiξ|Xi)

et
δα = −traceDα

c’est à dire (2.1.3 )
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2.1.3 Le laplacien

Définition 2.1.3. :
Le laplacien, noté

a
, est l’opérateur de A0(M) dans A0(M) défini

par : i
f = δdf f ∈ A0(M).

Expression en coordonnes locales :

Elle est donnée par 2.9 où l’on remplace α par df , c’est-à-dire αj

par ∂f
∂Xj .

il vient :

∆f = −θ−1
∑
i,j

∂
(
θ × gij ∂f

∂Xj

)
∂X i

(2.14)

Le laplacien est donc un opérateur différentiel du second ordre ; sa partie
homogéne du second ordre s’écrit :

σ = −
∑
i,j

gij
∂2f

∂X i∂Xj
(2.15)

c’est une forme quadratique formelle, égale a l’opposé du carré de la norme.
Elle est donc non-dégénérée ; on dit alors que le laplacien est un opérateur
différentiel elliptique du second ordre ; sur les opérateurs différentiels ellip-
tiques.

Considérons, maintenant, autour de m , la carte exponentielle ; le développe-
ment limité du relèvement de g sur l’espace TmM ne contient pas de terme
du ler ordre .ce qui montre qu’en m les dérivées premières de g sont nulles ;
en outre, le repère
{ ∂
∂Xi}est orthonormé en m ce qui veut dire que l’on a, en m :

gij = 1

gij = 0 i 6= j

Nous avons donc, dans cette carte, une expression très simple du lapla-
cien, au point m :

∆ = −
∑
i

∂2f

∂X i2
(2.16)
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Application :
Considérons la fonction f.g , produit des deux fonctions réelles f et g
. Plaçons-nous encore au point m ; nous avons, dans une carte exponentielle :

∆(f.g) =
∑
i

∂2(f, g)

∂X i2

c’est-à-dire,

∆(f.g) = f ×
∑
i

∂2g

∂X i2
− 2

∑
i

∂f

∂X i
.
∂g

∂X i
− g ×

∑
i

∂2f

∂X i2

C’est à dire que les deux fonctions sur M , ∆(f×g) et f∆g −2(df |dg)+

g ∆f , ont même valeur en m , quel que soit m . On a donc :

Proposition 2.1.4.

∆(f.g) = f.∆g − 2(df |dg) + g.∆f ∀f, ∀g ∈ A◦(M)

Sur (Rn, g0) les gij sont constants, si bien que 2.14 s’écrit :

∆f =
∑
i

∂2f

∂xi2

c’est-a-dire l’opposé du Laplacien usuel. Prolongeant la notion connue sur
Rn , on dira qu’une fonction réelle définie sur une v.r. est harmonique si elle
vérifie l’égalité :

∆f = 0 (2.17)

Formulation géométique du laplacien :
De 2.1.3 on tire l’égalité suivante par le laplacien :

∆f = −trace(D df) (2.18)

c’est à dire
∆f = −trace(Hessf) (2.19)

Proposition 2.1.5. Pour X ∈ T ◦(TN),S ∈ T 1
s (TM),et f ∈ C1(N),



2.1.3 Le laplacien 29

i) L’application (X,S)→ DXS est R-bilinéare

ii) on DXfS = f.DXS,

iii) on a DXfS = fDXS + (X, f)s

Si N S→ M est une sous-variété paramétrée de M , si S est un champ de
vecteurs C1 le long de s , et si X ∈ TmN , on appel-lera dérivée covariante
de S le long de S en X , et on notera DXS , le vecteur V [TmS(x)] ∈ TS(m)M .
Remarquons que DXS est local en S , c’est-à-dire ne dépend que des valeurs
de S au voisinage de m .

Désignons par T ◦(TN) l’ensemble des champs de vecteurs continus sur N
, et par T 1

S(TM) l’ensemble des champs de vecteurs C1 le long de S . On
définit une application de
T ◦(TN)× T 1

S(TM) dans T ◦(TM) , espace des champs de vecteurs continus
le long de S , par (X,S)→ DXS avec (DXS)m = DXmS.

considérons, en m , un repére orthonormé {Xi} , chaque vecteur
xi définissant une géodésique γi ,D’aprés DxfS = f.DxS+(X.f)S

nous avons :

∆f = −
∑
i

d2(f ◦ γi)
dt2

(2.20)

Cette expression du laplacien nous sera, par la suite, de la plus grande
utilité.
La définition du laplacien ne fait intervenir que des invariants riemanniens ;
la laplacien lui-méme est donc un tel invariant.Plus précisment ,si l’on a le
diagramme :

(M, g)
ϕ−→ (N, h)

σ

↘
f

↙
R

et σ = f ◦ ϕ
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Où ϕ est une isométrie de (M,g) sur (N,h) , alors :

∆M(f ◦ ϕ) =
Ni
f ◦ ϕ

Proposition 2.1.6.
si p : (M, g) → (N, h) est une submersion riemannienne à fibres totalement
géodésique, alors, pour toute fonction f définie sur N ,on a :

Mi
(f ◦ p) =

Ni
f ◦ p (2.21)

On sait que l’espace tangent en un point m de (M,g) se scinde canoniquement
en deux sous-espaces orthogonaux dont le second, dit horizontal, se projette
isométriquement sur Tp(m)N ; soit, donc, {Xi, Yj}i,j une base de TmM , ou
Xi est une base du sous-espace i,j horizontal et Yj une base du sous-espace
vertical. Les géodésiques correspondantes sont notées Yi et δj respectivement.
D’aprés 2.20. on a :

∆M(f ◦ p) = −
∑
i

d2

dt2
(f ◦ p ◦ γi)−

∑
j

d2

dt2
(f ◦ p ◦ δj)

Comme p est une submersion riemannienne la projection de γi est la
géodésique attachée à la projection de xi
Le premier terme du second membre de 2.20 est donc égal à ∆nf ◦ p.
Le second terme est nul, car δj. est contenu, par hypothése, dans le fibre de
p en m ,donc f ◦ p ◦ δj est constante.
L’égalité 2.20 est donc vérifiée.

L’hypothèse de 2.1.6 est très restrictive. Un cas particulier important où
elle se trouve vérifiée est celui du produit (M × N, g × h) des deux variétés
riemanniennes (M,g) et (N,h).

(M ×N, g × h)
p

↙
q

↘
(M, g) (N, h)

a

↘
b

↙
R
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Dans ce diagramme ,p et q sont deux submersions riemanniennes a et b sont
deux fonctions réelles définies respectivement sur M et N .

nous nous proposons de calculer , à l’aide de 2.1.6, le laplacien de (a ◦
p)× (b ◦ q) définie sur M ×N .
On a, d’aprés 2.1.4 :

∆M×N [(a ◦ p)× (b ◦ q)] = (b ◦ q)×∆M×N(a ◦ p)− .........

........− 2(d(a ◦ p)|d(b ◦ q) + (a ◦ p)×∆M×N(b ◦ q)).

Le deuxième terme est nul comme produit scalaire de deux formes orthogo-
nales.

Le premier terme, d’après 2.1.4, vaut (b ◦ q)× [∆M(a) ◦ p].

Le troisième, de même (a ◦ p)× [∆N(b) ◦ q].

Finalement, il vient :

∆M×N [(a ◦ p)× (b ◦ q)] = (b ◦ q)× [∆M(a) ◦ p] + . . .

+(a ◦ p)[∆N(b) ◦ q].
(2.22)

Si a est une fonction propre de ∆M pour la valeur propre λ, et de même b
pour ∆N pour la valeur µ , il vient alors :

∆M×N [(a ◦ p)× (b ◦ q)] = (λ+ µ)[(a ◦ p)× (b ◦ q)]. (2.23)

c’est-a-dire, (a ◦ p)× (b ◦ q) est une fonction propre de ∆M×N pour la valeur
propre λ+ µ.

2.1.4 Le laplacien d’une variété compacte

comme les opérateurs d et δ sont adjoints sur la v.r. compacte
(M,g), on à les deux égalités :

< ∆f, g >=< f,∆g > (2.24)

< ∆f, f >= ‖df‖2 ∀f, ∀g ∈ A◦(M) (2.25)

D’où :
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Proposition 2.1.7.
Le laplacien d’une v.r. compacte (M,g) est un opérateur auto-adjoint et défini-
positif.

De 2.25 on déduit qu’une fonction harmonique est localement constante,
c’est-à-dire constante sur chaque composante connexe de M . Ceci n’est pas
vrai sur une variété non compacte.

Formule de Bochner-Lichnerowicz :
Pour tout f ∈ A◦(M),On a :

−1

2
∆(|df |2) = |Hessf |2 − |∆f |2 + ρ(df#, df#)

où ρ désigne la courbure de Ricci de la v.r (M,g)
Lemme :

Pour toute forme α ∈ A1(M) et tous X , Y ∈ X(M) , on a :

DXDY α−DYDXα−D[X,Y ]α = (R(X, Y )α#)b

Le lemme résulte immédiatement de la définition de la courbure,
puisque la dérivée covariante commute aux isomorphismes musicaux.

Démonstration :

Nous nous donnons, en m , une base orthonormée pour TmM :
{Xi} ; nous transportons cette base parallélement le long des géodésiques
Yi issues de m de façon à obtenir un champ de repères orthonormés {Xi} .
En particulier, nous avons ainsi

DXiXj(m) = 0m ∀i, j. (2.26)

En m , nous avons :
∆(|df |2) = −

∑
i

DXiDXi(|df |2) = . . .

= −2
∑
i

DXi(DXidf |df) = . . .

= −2
∑
i

(DXiDXidf |df)− 2
∑
i

(DXidf |DXidf).

Le laplacien, après division par -2 , se trouve donc être la somme de
deux termes dont le second n’est autre que le carré de la norme de Hessien
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de f.
Le premier terme s’écrit

∑
i

(DXiDXidf |df) ; C’est la somme sur i ,de

termes de la forme (DXiDXidf |df),que s’écrivent encore ,puisque {Xi} est
orthonormé :

(DXiDXidf |df) =
∑
j

[DXiDXidf ](Xj)× df(Xj)

calculons ,séparément ,le nombre [DXiDXidf ](Xj) ;il est égal ,par défini-
tion ,à

DXiDXidf(Xj) = Xi.[DXidf(Xj)]−DXidf(DXiXj)

= Xi.[Hess(Xi, Xj)]− 0
( cause de 2.1.4)

comme le hessien est symétrique on a finalement :

[DXiDXidf ](Xj) = [DXiDXjdf ](Xi), (2.27)

et donc :
(DXiDXidf |df) =

∑
i

[DXiDXjdf ](Xi)× df(Xj)

égal encore,à cause du lemme 2.1.4 ,à∑
j

[DXjDXidf ](Xi)× df(Xj) +
∑
j

(R(Xj, Xi)df
#|Xi)× df(Xj)

+
∑
j

D[Xi,Xj ]df(Xi)× df(Xj)

la dernier terme de cette somme est nul à cause de 2.26 .
Nous obtenons donc l’égalité :∑

i

(DXiDXidf |df) =
∑
i,j

[DXjDXidf ](Xi)× df(Xj) + . . .

+
∑
i,j

(R(Xj, Xi)df
#|Xi)× df(Xj)

(2.28)

à cause de 2.26, le premier terme de cette somme peut s’écrire :∑
i,j

DXj(DXidf(Xi))× df(Xj)
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Soit ∑
j

DXj(
∑
i

DXidf(Xi))× df(Xj).

c’est à dire :
−
∑
j

DXj(∆f)× df(Xj)

Soit,enfin :
−(d(∆f)|df) = −|∆(f)|2

comme {Xi}est orthonormé ,on a :

df# =
∑
j

df(Xj)Xj. (2.29)

si bien que la second terme de 2.28 s’écrit :∑
i

(R(df#, Xi)df
#|Xi)

c’est à dire exactement la courbure de Ricci appliquée au couple (df#, df#) :

ρ(df#, df#) ceci achève la démonstration de 2.1.4
Le laplacien est défini sur les Ap(M), pour tout p , par la formule :

∆α = dδ(α) + δd(α) ∀α ∈ Ap(M) (2.30)

Pour le laplacien, ainsi défini sur les p-formes, nous avons la formule de
Bochner-Lichnerowicz généralisée suivante :

−1

2
∆(|α|2) = |Dα|2 − (α|∆α) +WBL(R,α) ∀α ∈ Ap(M) (2.31)

Où WBL(R,α) est quadratique en α et linéaire en le tenseur de courbure R
.

2.2 Le spectre d’une variété riemannienne

Dorénavant, par v.r. nous entendrons toujours variété riemannienne connexe
et compacte.
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Définition 2.2.1. ( premieres propriétés)
Soit (M,g) une v.r A l’aide de la structure g , on a mis sur C∞(M) un
opérateur ∆ , qui est un opérateur différentiel elliptique autoadjoint défini
positif .

Définition 2.2.2. On appelle spectre de la v.r. (M,g), et on note Spec(M,g),
l’ensemble des λ ∈ R tels qu’il existe f ∈ C∞(M), f 6= 0, vérifiant ∆f = λf

soit C∞(M) l’espace des fonctions C∞ sur M à valeurs dans C, muni de la
structure préhilbertienne < f, h >C=

∫
M
fhvg .

Soit ∆C l’extension de ∆ à C∞C (M). C’est un opérateur réel autoad-
joint défini-positif.
Donc Spec(M,g) est aussi l’ensemble des λ ∈ C tels qu’il existe
f ∈ C∞C (M), f 6= 0, vérifiant ∆f = λf .
Toute f ∈ C∞(M) telle que ∆f = λf , avec λ ∈Spec(M,g) est dite
une fonction propre associée à λ . Le sous-espace de C∞(M) formé des
fonctions propres relatives à λ est appelé sous-espace propre relatives à λ
et se note ℘λ(M, g).
Enfin ℘(M, g) =

∑
λ∈spec(M,g)

℘λ(M, g) est appelé le sous-espace propre de (M,g)

. La somme est d’ailleurs directe et méme est une décomposition orthogo-
nale. Les propriétés de ∆ que nous avons rappelées ci-dessus entranent les
consequences suivantes :

Theorem 2.1.

S.1. Spec(M,g) forme une suite {0 = λ0 < λ1 < λ2 < . . .} discret, tendant
vers +∞.

S.2. Pour tout λ ∈ Spec(M, g) ,℘λ(M, g) est de dimension finie.
Pour i ∈ N, ℘λi(M, g) sera encore noté ℘i(M, g) . Sa dimension se
note mi et est appelée la multiplicit de λi

S.3. ℘(M, g) est dense dans C∞(M) au sens de la topologie de la convergence
uniforme, et a fortiori au sens de la topologie de la convergence en
moyenne quadratique .
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La multiplicité de 0 est 1 . En effet les fonctions propres relatives à 0 sont
les fonctions harmoniques donc, (M,g) étant compacte et connexe, les
constantes

(car < f,∆f >=< df, df >, donc ∆f = 0⇒ df = 0)

. notation. Spec(M, g) s’écrira

Spec(M, g) = {0 < λ1, . . . , λ1 < λ2, . . . , λ2 < . . .}

où λi sera écrit mi fois.

Définition 2.2.3.
On appelle fonction de partition de (M,g) et on note Z(M, g) la fonction
définie pour t > 0 par

Z(M, g; t) =
∞∑
i=0

mie
−λit

Nous démontrerons plus loin que cette fonction est bien définie pour
t > 0 . Admettant provisoirement cela, on voit alors que la série converge
uniformément sur [t0,+∞] pour tout t0 > 0 , de sorte que la fonction est
continue sur ]0,+∞[. Elle est décroissante, tend vers 1 pour t→ +∞ et vers
+∞ pour t→ 0+

2.3 Exemple de laplacien en coordonnés sphé-
riques

∆ =
−→
∇2 =

−→
∇ .
−→
∇

−→
∇ .
−→
∇ = (

∂

∂r
−→e r +

1

r

∂

∂θ
−→e θ +

1

r.sinθ

∂

∂ϕ
−→e ϕ )(

∂

∂r
−→e r+

1

r

∂

∂θ
−→e θ+

1

r.sinθ

∂

∂ϕ
−→e ϕ)


−→e r = (sin θ cosϕ)

−→
i + (sin θ sinϕ)

−→
j + (cosθ)

−→
k

−→e θ = (cos θ cosϕ)
−→
i + (cos θ sinϕ)

−→
j − sin θ

−→
k

−→e ϕ (− sinϕ)
−→
i + (cosϕ)

−→
j
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
∂−→e r
∂r

=
−→
0

∂−→e r
∂θ

= (cos θ cosϕ)
−→
i + (cos θ sinϕ)

−→
j − sin θ

−→
k = −→e θ

∂−→e r
∂ϕ

= (− sin θ sinϕ)
−→
i + (sin θ cosϕ)

−→
j = sin θ−→e ϕ




∂−→e θ
∂r

=
−→
0

∂−→e θ
∂θ

= − sin θ cosϕ
−→
i +− sin θ sinϕ

−→
j − cos θ

−→
k = −−→e r

∂−→e θ
∂ϕ

= − cos θ sinϕ
−→
i + cos θ cosϕ

−→
j = cos θ−→e ϕ




∂−→e ϕ
∂r

=
−→
0

∂−→e ϕ
∂θ

=
−→
0

∂−→e ϕ
∂ϕ

= − cosϕ
−→
i − sinϕ

−→
j




∂−→e r
∂r

=
−→
0

∂−→e r
∂θ

= −→e θ
∂−→e r
∂ϕ

= sin θ−→e ϕ




∂−→e θ
∂r

=
−→
0

∂−→e θ
∂θ

= −−→e r
∂−→e θ
∂ϕ

= cos θ−→e ϕ




∂−→e ϕ
∂r

=
−→
0

∂−→e ϕ
∂θ

=
−→
0

∂−→e ϕ
∂ϕ

= − cosϕ
−→
i − sinϕ

−→
j


∆ = (−→e r

∂

∂r
+−→e θ

1

r

∂

∂θ
+−→e ϕ

1

r.sinθ

∂

∂ϕ
)(−→e r

∂

∂r
+−→e θ

1

r

∂

∂θ
+−→e ϕ

1

r. sin θ

∂

∂ϕ
)

∆ = −→e r ∂∂r (
−→e r ∂∂r ) +−→e r ∂∂r (

−→e θ 1
r
∂
∂θ

) +−→e r ∂∂r (
−→e ϕ 1

r. sin θ
∂
∂ϕ

)

+ −→e θ 1
r
∂
∂θ

(−→e r ∂∂r ) +−→e θ 1
r
∂
∂θ

(−→e θ 1
r
∂
∂θ

) +−→e θ 1
r
∂
∂θ

(−→e ϕ 1
r. sin θ

∂
∂ϕ

)

+ −→e ϕ 1
r. sin θ

∂
∂ϕ

(−→e r ∂∂r ) +−→e ϕ 1
r. sin θ

∂
∂ϕ

(−→e θ 1
r
∂
∂θ

) +−→e ϕ 1
r. sin θ

∂
∂ϕ

(−→e ϕ 1
r. sin θ

∂
∂ϕ

)

∆ = −→e r ∂∂r (
−→e r ∂∂r ) +−→e r ∂∂r (

−→e θ 1
r
∂
∂θ

) +−→e r 1
sin θ

∂
∂r

(−→e ϕ 1
r
∂
∂ϕ

) ∗

+ −→e θ 1
r
∂
∂θ

(−→e r ∂∂r ) +−→e θ 1
r2

∂
∂θ

(−→e θ ∂∂θ ) +−→e θ 1
r2

∂
∂θ

(−→e ϕ 1
sin θ

∂
∂ϕ

) ∗∗

+ −→e ϕ 1
r. sin θ

∂
∂ϕ

(−→e r ∂∂r ) +−→e ϕ 1
r2. sin θ

∂
∂ϕ

(−→e θ ∂∂θ ) +−→e ϕ 1
r2. sin2 θ

∂
∂ϕ

(−→e ϕ ∂
∂ϕ

) ∗ ∗ ∗

∗ = −→e r ∂∂r (
−→e r ∂∂r ) +−→e r ∂∂r (

−→e θ 1
r
∂
∂θ

) +−→e r 1
sin θ

∂
∂r

(−→e ϕ 1
r
∂
∂ϕ

)

= −→e r ∂
−→e r
∂r

∂
∂r

+−→e r.−→e r ∂
2

∂2r
+−→e r ∂

−→e θ
∂r

1
r
∂
∂θ

+−→e r
∂( 1
r

)

∂r
−→e θ ∂∂θ +−→e r.−→e θ 1

r
∂2

∂r∂θ

+−→e r 1
sin θ

∂−→e ϕ
∂r

1
r
∂
∂ϕ

+−→e r 1
sin θ

∂(1/r)
∂r
−→e ϕ ∂

∂ϕ
+−→e r 1

sin θ
−→e ϕ 1

r
∂2

∂r∂ϕ

∗ = ∂2

∂2r

∗∗ = −→e θ 1
r
∂
∂θ

(−→e r ∂∂r ) +−→e θ 1
r2

∂
∂θ

(−→e θ ∂∂θ ) +−→e θ 1
r2

∂
∂θ

(−→e ϕ 1
sin θ

∂
∂ϕ

)

= −→e θ 1
r
∂−→e r
∂θ

∂
∂r

+−→e θ 1
r
−→e r ∂2

∂θ∂r
+−→e θ 1

r2
∂−→e θ
∂θ

∂
∂θ

+−→e θ 1
r2
−→e θ ∂

2

∂2θ

+−→e θ 1
r2
∂−→e ϕ
∂θ

1
sin θ

∂
∂ϕ

+−→e θ 1
r2
∂(1/ sin θ)

∂θ
−→e ϕ ∂

∂ϕ
+−→e θ 1

r2
−→e ϕ 1

sin θ
∂2

∂θ∂ϕ

∗∗ = 1
r
∂
∂r

+ 1
r2

∂2

∂2θ

∗ ∗ ∗ = −→e ϕ 1
r. sin θ

∂
∂ϕ

(−→e r ∂∂r ) +−→e ϕ 1
r2. sin θ

∂
∂ϕ

(−→e θ ∂∂θ ) +−→e ϕ 1
r2. sin2 θ

∂
∂ϕ

(−→e ϕ ∂
∂ϕ

)
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= −→e ϕ 1
r. sin θ

∂−→e r
∂ϕ

∂
∂r

+−→e ϕ 1
r. sin θ

−→e r ∂2

∂ϕ∂r
+−→e ϕ 1

r2. sin θ
∂−→e θ
∂ϕ

∂
∂θ

+−→e ϕ 1
r2. sin θ

−→e θ ∂2

∂ϕ∂θ

+−→e ϕ 1
r2. sin2 θ

∂−→e ϕ
∂ϕ

∂
∂ϕ

+−→e ϕ 1
r2. sin2 θ

−→e ϕ ∂2

∂2ϕ

∗ ∗ ∗ = 1
r
∂
∂r

+ cos θ
r2. sin θ

∂
∂θ

+ 1
r2. sin θ

∂2

∂2ϕ

(
−→e ϕ ∂

−→e ϕ
∂ϕ

= (− sinϕ
−→
i + cosϕ

−→
j )(− cosϕ

−→
i − sinϕ

−→
j ) = 0

)
(∗) + (∗∗) + (∗ ∗ ∗)⇔

∆ =
∂2

∂2r
+

1

r

∂

∂r
+

1

r2

∂2

∂2θ
+

1

r

∂

∂r
+

cosθ

r2 sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂2ϕ

∆ =
∂2

∂2r
+

2

r

∂

∂r
+

1

r2

∂2

∂2θ
+

cos θ

r2 sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂2ϕ



Chapitre 3

Problème de valeurs propres sur
les surfaces

3.1 introduction

Soit M une variété riemannienne n-dimensionnelle complète de bordes
∂M(∂M peut être vide ). En termes de coordonnées locales (x1, . . . , xn), la
mètrique peut être exprimè en ds2 =

∑
gijdx

idxj, et l’opérateur laplaçien
est défini par :

∆ =
1
√
g

∑ ∂

∂xi
(
√
g.gij

∂

∂xj
)

où (gij) = (gij)
−1, g = det(gij).

ici, nous pouvons remarquer que l’opèrateur de laplace ne dépend que de la
métrique riemannienne donnée. si

F : (M, g)→ (N, h)

est une isométrie , alors (M,g) et (N,h) ont le mème spectre (on dit qu’ils
sont isospectraux et on note Spec(M, g) = spec(N, h)).
nous pouvons ainsi divisés les problémes concernant la relation entre les va-
leurs propes du laplaçien et la géométrie d’une variété riemannienne (la géo-
métrie spectrale ) en deux catégories :

1. Problémes directs :
calcul des spectres, méthode explicites et numérique de détermina-

39
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tion des valeurs propres , bornes supérieure et inferieure sur les va-
leus propres, Inégalités isopérimétriques et universelles pour les valeurs
propres .
En général, le spectre ne peut pas être calculé explicitement . les très
rares exceptions sont les variétés comme les sphères rondes , les tores
plats , les billes (voir 1 et 5 pour quelques exemples classiques où le
spectre est connu ).
Cependant , il n’est possible d’obtenir qu’une estimations du spectre,
et ces estimations sont liées à la gèométrie du variété .
Asymptotique, nous savons comment le spectre se comporte . c’est la
formule de Weyl’s

λk(M, g) ∼ (2π)2

ω
2/n
n

(
k

V ol(M, g)
)2/n ainsi k →∞

où ωn est le volume de la boule unitaire de Rn. donc le volume est en
effet déterminé par le spectre .
la formule de Weyl’s est le premier exemple de la relation entre les
propiétés analytiques et géométriques de la variété riemannienne. en
même temps , les valeurs propres et leurs fonctions propre résultent de
l’idéalisation mathématique de problèmes physiques (l’équation d’onde
, l’équation de chaleur ....)

2. Problemes inverses
Ce que nous pouvons savoir sur la géométrie d’une variété riemannienne
à partir de la connaissance des valeurs propres de son opérateur laplce-
Beltrami ?
l’une des quesstions importantes en géométrie spectrale a été formulée
par M.
Kac en 1966 avec un titre impressionnont "Peut-on entendre la forme
d’un tambour ?"
ou bien deux variétés rimanniennes isospectrales sont-elles isométriques ?
. Ici, notre discussion ne porte que sur le probléme direct.
avant d’étudier le spectre de l’opérateur de laplace , rappelons quelques
faits bien connus. Étant donné ϕ ∈ C∞(M), soit : ‖ϕ‖2 =

∫
M
ϕ2 +∫

M
|∇ϕ|2. l’achèvement de C∞(M) par rapport à la norme ci-dessus est
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l’espace bien connu de sobolev dénoté par L2
1(M), et l’achèvement de

C∞0 (M) est dénoté par L2
0,1(M).

D’après la théorie fondamentale des espaces de sobolev, nous pouvons
voir que si M est complet, alors L2

1(M) = L2
0,1(M) et ϕ ∈ L2

1(M)⇔ ϕ

agénéralisé des dérivées de premier ordre dans L2(M).
Si ∂M = ∅ et M est compact (problème de valeur propre fermée), alors
∆ est un opérateur elliptique auto-adjoint sur L2

1(M)(voir pour preuve
Berger-Gauduchon-Mazet).
Par la théorie spectrale des opérateurs auto-adjoints , nous savons que
∆ a une valeur propre discret :0 = λ0 < λ1 < · · · < λn → ∞. et les
fonctions propres correspondantes {φi} satisfaisant :

∆φi = −λiφi;φi ∈ C∞(M) ∩ L2
1(M)

peut être choisi de sorte que {φi} forme une base orthonormale de
L2

1(M).
quand ∂M 6= ∅ nous devons spécifier des conditions aux limites pour
que ∆ soit auto-adjoint . généralement , nous avons deux des conditions
aux limites :

(A) conditions aux limites de Dirichlet :
Dans ce cas , Dom(∆) = L2

0,1(M) et ses valeurs propres et les fonctions
propres correspondantes sont 0 < λ1 < λ2 ≤ . . . (remarquez que λ1 a
une multiplicité 1 ), et {φi} :

∆φi = −λiφi;φi|∂M = 0;φi ∈ C∞(M)

{φi} à partir d’une base orthonormée de L2
0,1(M).

(B) conditions aux limites de Newmann :
Dans ce cas , Dom(∆) = L2

1(M) et sa valeur propre et ses fonctions
propres sont 0 = λ0 < λ1 ≤ λ2 ≤ . . . , et {φi}à patir d’une base
orthonormée de L2

1(M), avec

∆φi = −λiφi;
∂φi
∂η
|∂M = 0;φi ∈ C∞(M)

oû η est la direction normale exterieure le long de ∂M .
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Dans la théorie spectrale de ∆, le principe Min-Max joue un rôle fonda-
mental il peut étre formulé comme suit pour simplifier , Soit H :

1. Si ∂M = ∅, H = {f ∈ L2
1(M)/

∫
M
f = 0};

2. si ∂M 6= ∅ et la condition de Dirichlet est posée, H = L2
0,1(M)

3. si ∂M 6= ∅ et la condition de Newmann est posée,H = {f ∈ L2
1/
∫
M
f =

0}
Alors ∆ est un opérateur élliptique auto-adjoint sur H, et nous pou-

vons trouver ortho-base normale {fi}, avec ∆fi = −λifi ;fi ∈ H ∩ C∞(M),
telle que

λ1 = inf

{∫
M
|∇f |2∫

M
|f |2

, f ∈ H
}

λi = inf

{∫
M
|∇f |2∫

M
|f |2

, f ∈ H,
∫
M

f.fj = 0, j = 1, 2, 3 . . . , i− 1

}
En particulier ,

∀c ∈ R, c ≤ λ1 ⇔
∫
M

|∇f |2 ≥ c

∫
M

|f |2,∀f ∈ H

ie : λ1 est la plus grande constante pour laquelle l’inegalité ci-dessus tient.
ce type d’inégalité est appelée "une inégalité de Poincaré " . c’est l’un des
plus fondamentaux l’inégalité totale dans la théorie de P.D.E. Aussi d’une
importance fondamentale est l’inegalité sobolev suivante.

1. Inégalité de sobolev :
Soit M une variété riemannienne compacte avec frontière , alors il existe
une constante c telle que :

c

(∫
M

f
n
n−1

)n−1
n

≤
∫
M

|∇f |,∀f ∈ H

oû H est définie comme (b) ou (c)ci-dessus .
Si M n’est pas compact , alors l’inégalité de sabolev ci-dessus peut ne
pas tenir. sa validité est équivalente de l’inégalité isopérimétrique .

2. Inégalité isoperimètrique :
Soit M une variété riemmannienne, Ω un domaine avec fermeture com-
pacte en M, alors il existe une constante c indépendante de Ω telque :

c(V ol(Ω))
n
n−1 ≤ V ol(∂Ω).
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En utilisant la formule co-Area, nous pouvons montrer que pour la
variété riemannienne générale l’inégalité sobolev est équivalente à l’in-
égalité isopéramétrique (5).
A fin d’étudier la signification géométrique de λ1(la première valeur
propre positive), J.Cheeger a introduit deux constantes isopérimétriques
et les a reliés à λ1.

Définition 3.1.1. (Cheeger)
Soit M une variété riemannienne compacte

1. Si ∂M 6= ∅ définisez hD(M) = inf{V ol(∂Ω)
V ol(Ω)

/Ω ⊂⊂M}

2. Si ∂M = ∅, définissez

hN(M) = inf

{
V ol(H)

min(V ol(M1), V ol(M2))

}
Oû H est une hypersurface en M, divisant M en M1,M2

avec ∂M1 = ∂M2 = H

Peut être , le résultat le plus important des limites inférieures de λ1 est peut
être le suivant

Theorem 3.1. (Cheeger)
Soit M une variété riemannienne compacte dans le cas de Dirchlet , λ1 ≥
1
4
h2
D(M) et dans le cas de Neumann, λ1 ≥ 1

4
h2
N(M)

Preuve : (voir 1 )
En utilisant la formule co-Area et L’inegalité isopérimétrique , nous pouvons
prouver la conjecture de Rayleigh suivante

Theorem 3.2. (Faber-krahn)
Soit Ω ⊆ Rn un domaine , B(R) une balle dans Rn de raduis R avec l’origine
comme centre tel que V ol(Ω) = V ol(B(R))

alors , nous avons L’inegalité :

λ1(Ω) ≥ λ1(B(R)).

Preuve : (voir 5)
nous pouvons voir plus loin que l’inégalité de Faber-Krahn est un cas parti-
culier affine du théoréme de comparaison des valeurs propres de cheng .
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3.2 Limites supérieures pour la premiére valeur
propre :

Soit M une variété riemannienne compacte qui peut avoir un borde
non vide ∂M .
Dans cette section, nous obtiendrons des limites supérieures pour λ1 dans
certaines conditions de courbure sur M.
le résultat de base est donné par S.Y.Cheng.
il a prouvé un théorème de comparaison pour la première valeur propre pour
les noyaux de chaleur il obtienne donc :

Theorem 3.3. (Cheng).
Soit M une variété riemannienne compacte, Ric(M) ≥ (n − 1)k, n =

dim(M), B(x0, r) la boule géodésique en M de rayon r au centre x0.
Soit V(k,r) être une boule de rayon r dans l’espace de courbure de forme k .
Ensuite en ce qui concerne les conditions aux limites de dirichlet .

λ1(B(x0, r)) ≤ λ1(V (k, r)).

Preuve :
Notons les noyaux de chaleur deB(x0, r), V (k, r) parH(x, y, t), ε(r(x, y), t)

respectivement,
Ensuit par le théoréme de comparaison H(x, x, t) ≥ ε(0, t).

Maintenant
H(x, x, t) =

∑
e−λitφ̃2

i (x),

ε(0, t) =
∑

e−λ̃itφ̃2
i (0)

où λi = λi(B(x0, r)), λ̃ = λi(V (k, r)) et φi, φ̃i, sont les fonctions
propres correspondants, donc

e−λ1t[φ2
1(x) + e−(λ2−λ1)tφ2

2(x) + . . .] ≥ e−λ̃1t[φ̃2
1(0) + e−(λ̃2−λ̃1)tφ̃2

2(0) + . . . ]

c’est à dire

φ2
1(x) + e−(λ2−λ1)tφ2

2(x) + · · · ≥ e−(λ1−λ̃1)t.[φ̃2
1(0) + e−(λ̃2−λ̃1)tφ̃2

2(0) + . . . ]
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Notez que de φ2
1(x) > 0, φ̃2

1(0) > 0 et λm > λ1, λ̃m > λ̃1 pour m ≥ 2.
Laissant t → ∞ dans l’inégalité ci-dessus , nous obtenons λ1 ≤ λ̃1, c’est à
dire

λ1(B(x0, r)) ≤ λ1(V (k, r)).

Corollaire 3.1. avec les même hypothèses que ci-dessus, λ1(M) ≤ λ1(V (k, d
2
))

où
d = diam(M).

Theorem 3.4. (Cheng)
Soit M une variété riemannienne compacte sans borde, Ric(M) ≥ (n− 1)k,
alors

λm(M) ≤ λ1(V (k,
d

2m
))

où d = diam(M)

Preuve :
Nous pouvons trouver x1, . . . , xm+1 ∈M tels que B(xi,

d
2m

)(i = 1, 2, . . . ,m+

1) sont disjoints deux à deux . Soit ϕi(i = 1, 2, . . . ,m + 1) les premières
fonctions propres sur B(xi,

d
2m

) avec des conditions aux limites de Dirichlet
. alors par le première théorème∫

B(xi,
d

2m
)
|∇ϕi |2 = λ1(B(xi,

d
2m

))
∫
B(xi,

d
2m

)
|ϕi|2

≤ λ1(V (k, d
2m

))
∫
B(xi,

d
2m

)
|ϕi|2

Soit {ψi} des fonctions propres sur lesquelles forment une base orthonormale
de L2(M).
Extendr {ψi} à Zéro à l’extérieurB(xi,

d
2m

), il existe des constantes a1, a2, . . . , am+1

telles que
m+1∑

1

aiϕi 6= 0 et

m+1∑
1

aiϕi⊥{ψ1, ψ2, . . . , ψm/∆ψi = −λiψi}

Par le principe Min-Max

λm(M)

∫
M

(m+1∑
1

aiϕi

)2

≤
∫
M

∣∣∣∣∣
m+1∑

1

ai∇ϕi

∣∣∣∣∣
2
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Aussi par orthogonalité et inégalité de Poincaré

≤
∫
M

m+1∑
1

a2
i |∇ϕi|2

≤ λ1(V (k, d
2m

))
∫
M

m+1∑
1

a2
i |ϕi|2

≤ λ1(V (k, d
2m

))
∫
M

(
m+1∑

1

aiϕi)
2

cela signifie que λm(M) ≤ λ1(V (k, d
2m

)) En estimant la première valeur
propre des boules géodésiques dans l’espace , S.Y.Cheng a obtenu les résultats
suivants 7 :

• si Ric(M) ≥ 0 alors λ1 ≤ Cn
d2

oû nous pouvons prendre Cn = 2n(n+ 4)

• si Ric(M) ≥ n− 1, λ1 ≤ nπ2

d2

• si Ric(M) ≥ −(n− 1)k, (k > 0), λ1 ≤ (n−1)2

4
k + Cn

d2

3.3 Limites inférieures pour la première valeur
propre

En général, il est beaucoup plus difficile de donner une borne inférieure
pour λ1 qu’une borne supérieure. Pour une variété riemannienne simple,
complète et non compacte, une question importante :
Dans quelles conditions λ1 = lim

R→∞
λ1(B(x0, R)) a-t-il une borne infé-

rieure positive ?
Notez que λ1(B(x0, R)) est décroissant en R et positif, donc la limite ci-dessus
existe toujours.
En utilisant le théorème de cheeger et le théorème de comparaison pour une
variété avec le curvature sectionnelle négative, nous pouvons avoir ce qui
suit :

Theorem 3.5. (Mckean)
Si M est une variété riemannienne complète, non compacte, simplement
connexe avec une courbure sectionnelle ≤ −C < 0, alors λ1 = lim

R→∞
λ1(B(x0, R))

existe et a une borne inférieure positive qui ne dépend que de C et n = dimM
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Preuve :
Par le théorème de cheeger ,

λ1(B(x0, R)) ≥ 1

4
h2
D(B(x0, R))

donc il faut donner une limite inférieure pour hD(B(x0, R)).
soit Ω ⊂⊂M, x0 ∈ Ω, r(x) = dist(x0, x). comme M est simplement relié
à une courbure négative, r(x) est differentiable , et

Aire(∂Ω) =

∫
∂Ω

1 ≥
∫
∂Ω

dr

dη
=

∫
Ω

∆r,

Oû nous avans utilisé le fait que |dr| = 1, dr
dη
≤ 1 et η est la normale exté-

rieure le long ∂Ω. puisque M is simplement connexe et sa courbure sectional
≤ −C, donc par le théoréme de comparaison

∆r ≥ n− 1

r
+ C ′

Où C ′ > 0 est une constante qui ne dépend que de C et n Par consé-
quent

Aire(∂Ω) ≥
∫

Ω

∆r ≥ C ′
∫

Ω

1 = C ′V ol(Ω).

i.e.hD(Ω) ≥ C ′.
Dans ce qui suit, nous étudions le cas des variétés riemanniennes compacts
. Pour les domaines délimités dans Rn, l’estimation de la première valeur
propre λ1 est un problème avec un longue histoire , entre autres, Faber-
krahn, Polya-Szegö, Payne, weinbergre avait contribué à ce probléme .
Pour les variétés compacts sans borde, la première estimation pour la limite
de λ1 sous les hypothéses sur les courbures est un important théorème de
Lichnerowicz en 1958.

Theorem 3.6. (Lichnerowicz)
Soit M une variété riemannienne compacte sans borde, telle que n = dimM .si

Ric(M) ≥ (n− 1)k > 0

λ1(M) ≥ nk
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Preuve :(voir 1)
Plus tard en 1962, Obàta a prouvé que si l’égalité λ1(M) = nk tient, alors
M est isométrique à Sn, avec une courbure constant k.
En 1970, cheeger a donnée quelques bornes inférieures pour la première va-
leur propre λ1 En termes de ses constantes isoperemétrique sur cette base ,
S.T.Yau donne quelques estimations en termes de quantités géométriques .
À partir de 1979, li et Yau ont développé la méthode pour obtenir des esti-
mations sur λ1 via l’estimation du gradient sur la premiére fonction propre .
En utilisant cette méthode , nous pouvons prouver les trois résultats suivantes
ci-dessous

Theorem 3.7. (Li-Yau)
Soit M une variété riemanniene compacte, ∂M = ∅, Ric(M) ≥ 0, alors

λ1 ≥
π2

2d2
,

Où d = diam(M). ici, Li et Yau utilisent le fait que si u est la première
fonction propre, de puis

0 =

∫
u = − 1

λ1

∫
∆u

On peut supposer

−1 ≤ −k = inf u < sup u = 1, 0 < k ≤ 1

Donc , si Ric(M) > 0, alors

|∇u|2 ≤ 2λ1

1 + k
(1− u)(k + u)

En utilisant une technique similaire , Zhong et Yang dans 12 ont amélioré le
résultat ci-dessus à

λ1 ≥
π2

d2

cette istimations est optimal prolongé l’hypothèse Ric(M) ≥ 0.

Dans le cas ∂M 6= ∅ et ∂M est convexe , en utilisant la même méthode dans
la première valeur propre normalisée, Li et Yau prouvent ce qui suit
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Theorem 3.8. (Li-Yau)
Soit M une variété riemannienne compacte à bordes , si ∂M est convexe et
Ric(M) ≥ 0, alors λ1 ≥ π2

2d2
est la première valeur propre confermement aû

problème de Newmann .

3.4 Problèmes de valeurs propres pour les sur-
faces

Dans cette section, nous nous concentrons sur les problèmes de valeures
propres sur les surfaces. et aussi les questions de base est de donner une
estimation par les limites supérieures et inférieures les valeurs propres en
termes de quantités géométriques, par exemple le volume, le diamètre et les
courbures. Daprés la conjecture de Polya’s, il semble que pour les domaines
en Rn, on de vrait avoir

λ1 ∼
C

(V ol(M))
n
2

donc, dans le cas des surfaces , λ1 ∼ C
Aire(M)

.
ce fut G.Szegö le premier qui a donné une réponse affirmative à cet égard-il a
prouvé que pour D ⊂ R2 un domaine borné simplement connecté, en ce qui
concerne la condition aux limites de Newmann, la première valeur propres
de λ1 satisfait

λ1 ≤
C

A(D)

Où C est une constante liée au premier Zéro d’une fonction de Bassel, et
d’une fonction de holds si D est le disque .
Dans le théoréme suivant, J.Hersch a généralisé les méthodes de Szegö au cas
de la surface compacte S2.

Theorem 3.9. (Hersch)
Pour toute métrique sur S2

λ1 ≤
8π

A(S2)

est l’aire par rapport à la métrique donnée .
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Preuve :
Pour toute métrique ds̃2 sur S2 , Soit ϕ : (S2, ds̃2) → (S2, ds2

0) être
une carte conforme. Où ds2

0 est la métrique standard. Un tel ϕ existe toujours
en raison du fait bien connu que S2 qu’une seule structure conforme .
Par le principe Min-Max

λ1 = inf∫
S2 f=0

∫
S2 | ∇f |2 dṽ∫

S2 f 2dṽ

Où dṽ est la forme volume de ds̃2.
Soit xi(i = 1, 2, 3) les fonctions de coordonnées de R3 induite sur S2 =

{x ∈ R3/|x| = 1} çe sont les premières fonctions propres sur (S2, ds2
0).

par rapport à la valeur propre λ1 = 2 Puisque ϕ est conforme, et l’intégrale
dirichlet est invariante conformément en dimension 2.∫

S2 |∇(xi ◦ ϕ)|2dṽ =
∫
S2 |∇xi|2dv

= −
∫
S2 x

i∆xi

= 2
∫
S2(xi)

2dv

= 8π
3

et nous avons Aire(S2) =
∫
S2 1.dṽ =

∑∫
S2(xi ◦ ϕ)2dṽ

Donc au moins pour un indice i, (1 ≤ i ≤ 3),∫
S2

(xi ◦ ϕ)2dṽ ≥ Aire(S2)

3

Ainsi, si nous pouvons choisir ϕ tels que
∫
S2(xi ◦ ϕ)dṽ = 0 alors

λ1 ≤

∫
S2

∣∣∣∇̃(xi ◦ ϕ)
∣∣∣2 dṽ∫

S2(xi ◦ ϕ)2dṽ
≤ 8π

A(S2)

La question réduit maintenant à trouver une carte conforme :

ϕ : (S2, ds̃2)→ (S2, ds2
0)

tel que ∫
S2

(xi ◦ ϕ)dṽ = 0; i = 1, 2, 3.
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Soit ϕ0 : S2 → S2, liasser G0 le sous groupe de transformation conforme
de S2, pour tout ga ∈ G0(a ∈ S2), ga ◦ ϕ0 : S2 → S2 est également conforme.
définir H : B3 → B3,

H(a) = − 1

A(S2)
(

∫
S2

xi ◦ ga ◦ ϕdṽ), i = 1, 2, 3

on a a ∈ S2, nous avons

ga(S
2 \ {a})→ −a, et

∫
S2

xi ◦ ga ◦ ϕdṽ → −ai

Par conséquent, H peut être etendu à B → B et sa restriction à S2 est
l’identité. de la topologie de base, H est surjectif, donc il existe un point
a ∈ B3 tel que H(a) = 0, i.e,∫

S2

xi ◦ ga ◦ ϕdṽ = 0 i = 1, 2, 3.

Pour la métrique standard sur S2, la zone A0(S2) = 4π et λ1 = 2

Donc H, le théorème de Hersch peut être exprimé comme

λ1A(S2) ≤ λ1(standard)A0(S2).

S2 est une surface riemannienne du genre 0, Plus généralement , pour les
surfaces riemanniennes compactes du genre g > 0 . le théorème cores-
pendant de Herschs est :

Theorem 3.10. (P.Yang,S,T.Yau).
Soit Σg une surface riemannienne compacte du genre g, alors nous avons
pour tout métrique sur Σg

λ1 ≤
8π(1 + g)

A(Σg)

la notion de base utilisée par Yang et Yau est le volume conforme. (M,ds2)

une surface riemannienne compacte, φ : M → Sn une carte conforme si ds2
0

est la métrique standard sur Sn, alors φ∗ds2
0 = α(x)ds2, oû α(x) est une

fonction positive sur M.
Soit G le groupe de transformation conforme de Sn, alors ∀g ∈ G, g ◦ φ :

M → Sn est toujours conforme. soit dVgla forme volume de (g ◦ φ)∗ds2
0 sur

M. Nous avons :
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Définition 3.4.1.
le volume conforme de M par rapport à φ est défini par

Vc(n, φ) = sup
g∈G

∫
M

dVg

et le volume conformes de M est défini par

Vc(n,M) = inf
φ
Vc(n, φ)

La proposition suivante montre que Vc(n,M) est étroitement lié à λ1, par
conséquent, la définition de Vc(n,M) est non triviale.

Proposition 3.4.1. (Li-Yau)
Soit M une surface riemannienne compacte, s’il existe une carte conforme
φ : M → Sn, alors λ1V ol(M) ≤ 2Vc(n,M). En outre, si M est un surface
minimale dans Sn, et l’immersion isométrique M → Sn est induite par les
première fonctions propres de Sn

Corollaire 3.2. Soit M une surface riemannienne compacte, s’il existe un
prolongement minimal isométrique φ : M → Sn, tel que (φ1, . . . , φn+1) est
donné par les première fonctions propres, alors Vc(n,M) = V ol(M).

Exemple 3.4.1. Vc(n, S
2) = 4π, Vc(n,RP2) = 6π

Revenons mantenant à la preuve du théoréme de Li-Yau

Preuve :
Par la proposition ci-dessus, nous avons

λ1A(Σg) ≤ 2Vc(2,Σg)

Prenez tout coverture ramifiée conforme :

φ : Σg → S2/ degφ ≤ 1 + g

l’existence d’un tel φ est gardée par le théorème de Riemann-Roch. nous
pouvons voir que si N →M est une coverture conforme de degré d, alors

Vc(2, N) ≤ dVc(2,M)

donc
λ1A(Σg) ≤ 2Vc(2,ΣG) ≤ 2Vc(2, S

2)(1 + g) = 8π(1 + g)
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3.4.1 Conclusion :

nous voyons dans cet mémoire qu’en étudiant les valeurs propres sur une
variété (et spécialement sur les surface) nous pouvons obtenir des informa-
tions sur la géométrie de cette variété. Plus d’information sont incluses dans le
processus de comparaison des inégalités des bornes superieures et des bornes
inférieures .
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