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Introduction

La géométrie spectrale des une spécialité qui se trouve au carrefour géo-
métrie différentielle, théorie spectrale et analyse mathématique. Cette disci-
pline trouve naissance au milieu des années soixante. A partir de son article
historique "Can we hear the form of a tambor", Mark Kack présente une
conjecture qui relie le spectre du laplacien d’une variété riemannienne au
invariants géométriques de cette variété. Cette question motive beaucoup de
mathématiciens qui cherchent autour des questions liées avec le spectre d'une
variété riemanniennes. Méme si la réponse vient plus tard négativement par
un premier contre-exemple de Milnor, qui a construit deux variétés rieman-
niennes iso-spectrales non isométriques, les motivations de la question de M.
Kack donnent des résultats en matiére de compréhension des phénomeénes en
correspondance avec la premiére valeur propre du laplacien, I'estimation au
voisinage de 'infini des valeurs des spectres, le comportement asymptotiques
des fonctions propres, les ensembles nodaux,...etc. Dans notre mémoire on
tient part des questions classiques de la géométrie spectrale dans un cadre
spécifique restreint a la dimension deux, c’est le cas des surfaces compactes.
Le premier chapitre est consacré a la définition d’une surface et aux défini-
tions élémentaires des caractéristiques géométriques dont elle est liée. Dans
le deuxiéme chapitre on aborde la du laplacien comme un opérateur linéaire
non-borné, défini sur une variété riemannienne quelconque. En partant des
connaissances classiques de la théorie spectrale, on constate que dans le cas ou
la variété riemannienne est compacte, cet opérateur est auto-adjoint, défini
positif, donc son spectre est une suite de réels positif qui tend vers l'infini.
Cette suite sera appelée dans la littérature "spectre de la variété rieman-
nienne" est beaucoup de questions seront par suite abordées & propos de ce

spectre.
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Le troisiéme chapitre est consacré a un cas particulier de résultats obtenus
pour les surfaces. La question principale évoquée a ce sujet est I'estimation
de la premiére valeur propre du laplacien sur la surface. Les résultats obte-
nus portent sur la minimisation ou la maximisation de cette premiére valeur

propre par rapport & des quantités géométriques de la surface.



Chapitre 1

Introduction aux surfaces

parameétrées

1.1 surface paramétrée

On remplace dans R? espace affine euclidien orienté I@ I’espace vectoriel
associe
. 3 ) - —
R = (o0, B,) un repére de R’avec o= origine de Bop = {i, j, k} b.on

derecte de R?

e.v euclidien orienté par le choix de cette base.

Définition 1.1.1.

On appelle surface paramétrée de classe C*,une application
o: DCR* — R3
(u,v) = (u,v) de classe CF

p(u,v) = (x(u,v),y(u,v), 2(u,v))
On notera S l'image de D par ¢
S = (D) est la Surface engendrée par ¢

Exemple 1.1.1.

1. Le graphe d’une fonction Soit f : D C R? — R une fonction de classe
C*.
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On définit La surface S paramétrée par :
¢: DCR? — R3
(a:,y) = (:U,y,z:f(:v,y))

2. D={(z,y) € R?\ 2% + y? < 1} D :Disque unité

f: D = R
(x,y) — /1 —a%—y2
v: D = R3

(flf,y) = ($,y, V 1—1’2—@]2)

1.1.1 Surface réguliére :
Soit
¢: DcR*? —» R?
(u,v) = (u,v)

o(u,v) = (x(u,v),y(u,v), z(u,v)) une surface paramétrée de classe C* (k >

1)

On fixe un point (ug,vg) € D
1. Pour u = ug, On obtient une application notée +,,,définie par :
Yo : T CR — R3
t = %Lo(t) = 90<u0’ t)

Yo €st donc une courbe paramétrée de classe C* (k > 1) tracée sur S

— Le vecteur tangent a v,, au point de parametre ¢ = V est donne

pa‘r : /y’:l,() (t> |t0:V0

/ 0
’YUO (UO) = a_i(um v :_'I;O) _ .
_ 0 . dy E 0
= a—i(UO,Uo) 1+ %(Uo,vo)] +6_i(uO,U0) k
Notons ce vecteur tangent a la courbe ~,, au point de parameétre vy

par :

?v(u(% vg) = %5(“07 )

— QOU(U/(), /UO)
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2. Pour v = v3,0n obtient une application notée ,, définie par :

t = Wvo(t) = @(tﬂJO)

Yy €st donc une courbe paramétrée de classe C* (k > 1) tracée sur S

le vecteur tangent a -,, au point de parametre ¢ = uy est donne par :

Yoo (D] = 0

%O(UO) = ‘3—“§(u = Uo,_g)o) _ -
= %(Uowo) v+ %(UO,UO) J + %(Uoﬂlo) k

Notons ce vecteur tangent a -,, au point de parameétre uy par

?u(um Uo) = g—f(um Uo)

= SOu(UO, Uo)

Définition 1.1.2.

Soit
¢: DCR* - R3

(u,v) = @(u,v)

Une surface paramétrée de classe C* (k > 1)

Soit (ug,v9) € D ,0n dit :

Que la paramétrisation est réguliér ou point Py = p(ug, vo) si les deux vecteurs
— —

tangents T, (uo, vo) = puluo, vo) et Ty(ug, vo) = wu(uo, vo)

Soit Linéairement indépendents (< ou(uo, vo) N @y(to, vo) 7 035)

Sinon, On dit que le point Py = ¢(ug, vo) est un point singulier

La surface est dit réguliér si tous ses points sont reguliers.
Pulu, v) Apy(u,v) #0 V(u,v) €D

Définition 1.1.3. (Plan tangent)

Soit :
¢: DCR* —» R3

(u,v) = p(u,v)
Une surface paramétrée de classe C*(k > 1) avec Py = ¢(ug,vy) un point

réqulier de cette surface.
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~ On appelle Plan tangent a la surface au point Py le plan affine passant
par
po = p(ug, vo) et dirigé par les deuz vecteurs @, (ug, vo) et v, (ug, vo)
Puisque ﬁ(70,70) = u(ug,v0) N @y(ug,vo) est perpendiculaire au
plan tangent en p(ug, vo),On en déduit :

P = (,O(U(),UO) - (x()ay()?ZO)

T,S =plan tangent a la surface au point P
S = (D) R
M(z,y,2) € T,S & PM.ﬁ(uo,vo)

X —xg a
<1 Y-y b | =0
Z — 2 c

a(X —xo) +b(Y —yo) +c(Z —2) =0
aX +bY +cZ —axyg—byy—czy = 0 un équation de T,S avec ﬁ(ua, vy) =
a

b

c
les deux vecteur p,(ug,vo) et v, (ug, vo) forment une base de T,,S en P.

Définition 1.1.4. Soit :
0 : D C R? = R?® une Surface paramétrée de classe C*(K > 1),S = ¢(D)

Soit :
%
P = p(ug,vg) € S un point régulier le vecteur W, = %

vecteur unitaire a S en p = p(ug,vo) et on a ﬁp 1 T,S

est appelé

Proposition 1.1.1. Soit :

0 : D C R? — R? une surface régulier de classe C*,k > 1,0n définit
- B =leull® = pu-pu
- F=pupy
- G =leull” = pu00

Alors || A 0| = VEG — F2

S est requliére < EG — F? # 0
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1.1.2 Orientation d’une surface :
Soit : S une surface réguliére de classe C*(k > 1)paramétrée par :
¢: DCR* —» R3
(u,v) = (u,v)
(S = (D)) Soit p = ¢(u,v) €S

©u N Py
|l u A @y ||

b=
N,LT,8

(on a aussi —ﬁpJ_TpS) une surface Orientée est une surface avec deux Cotés
dont on sait définir un coté comme le coté Interieure et I’autre coté comme le
coté extérieure

En chaque point Régulier de la surface, il ya deux normales unitaires ﬁl et
ﬁg (ﬁg = —ﬁl) la surface est Orientée si on peut associe a chacune de ces

normales un coté de la Surface

1.1.3 Flux d’un champ de vecteurs a travers une Surface

Soit S une surface orientée est soit : ﬁ un choix de normale unitaire .

On suppose que S est paramétre par :

o: DcR: & R? k> 1
(u,v) o(u,v)

—
On définit 'élément d’aire vectoriel ds = ﬁds(ds = (pu A @y)du A dv)
Soit 7/ un champ de Vecteurs continue définie sur S(ol un voisinage de S)

On appelle flux de o A travers S (o1 integrale de 7 sur S ) l'integrale notée

/ Vi
Fluzs(V) = /S Vs = /D VNVEG — Fedudv

Soit : (u,v) = p(u,v) (u,v) € R?
une représentation paramétrique de classe C¥(k > 1) de la surface S On
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v)

considéré deux application (u, ) de classe C* de u dans le
U, v

u,v) Kt P(
u,v) g
plan tel que le jacobien

8(P,q)_‘ % |7A0
O0(u,v) 9 9q

il est possible que I’application
(u,v) = (P(u,v), q(u,v)) ne sont pas bijective de u dans le plan (p, q)
En utilisant le théoréme des fonctions inverses ,pour chaque (ug,vy) € u C
R%il existe w un voisinage de ce point et w* un voisinage de (P, q) =
(P(ug,vo), q(ug,vp)) des le plan tel que (u,v) — (P(u,v),q(u,v)) est une bi-
jection de w — w* et sont inverse (P, q) + (u,v) et aussi de classe C*.
Considérons la composée des ces applications
¢*(P,q) = p(u(P,q),v(P, q)) c’est une applications ¢* (P, q) = p(u(P, q),v(P, q))
C’est une application de

w* —= S et ona:

90; A 902 = (puUp + 0o Vp) A (0uUg + 00 Vy)

S v dv . du. v
Oll Uy = F5,UP = 5pillg = 5,:Vq = 5,

= s N = (Pu N o)ty + (P A Pu)UgUyp
= Ou N Pu(Uptg — UgVyp)

O(u,v

-1
o= (424) " 41

si 1oy Ay 7 Ogs

Alors 05 Ay # Oz

Dot (P,q) — ¢*(P,q) le vecteur de représentation réguliére de classe C* de
la surfaces .

Définition 1.1.5.
Une coordonnée locale de classe C* sur une surface S dans R? est une appli-

cation ¢ = @(u,v) d’une owvert w du plan (u,v) dans S

v w = S
(u,v) = o(u,v)
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~ ¢ de classe C* sur w
= Y(u,v) €Ew on a o, Ay # 0gs
— p est un homéomorphisme locale .

le couple (w, ) est appelé carte locale

Soit :p : (u,v) C D
¢ : (u,v) — p(u, v) une représentation paramétrique Réguliére d'une Surface
S
Soit P le plan tangent passant par le point M et les vecteurs ¢, et ¢, dé-
finis par une coordonnée locale qui passant par M de Soit que les vecteurs

(Pus Pu, Pu A ©y) forment un Triédre direct

U/\’U
79090

= vecteur normale unitaire
”90u’90v||

Soit ¢*(P,q) une autre représentation paramétrique de la surface réguliére S

dont la carte contre le point M,

* * o(u,
A Py = e ou N P
—Ss PPy 1 A(u,v)
~ Mol = (3wl OP0) A P
_ 0(Pyg) 1 Ouw) -1
J - a(uvv) J - a(P,q) - J -

1
J

J
=

'l

T = sign < géﬁzg > K

1.2 Les formes fondamentales

1.2.1 la premiére forme fondamentale

Soit S une surface réguliere de classe C*,k > 1 sont ¢ = ¢(u,v) les

coordonnée locales
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On appelle la différentielle de ¢ note dy une application bijective du vecteur

(du, dv) dans le plan (u,v) qui associe le vecteur

dp = g—ﬁdqug—fdv

= @udu+ @,dv
dans le plan tangent .
= |lde|* =< dp, dp >=< p,du + p,dv, pdu + ,dv >

I = |lou|lPdu® + 2 < 0y, 0o > dudv + ||, ||*dv?
I = Edu?® + 2Fdudv + Gdv?

La forme quadratique.
I(du,dv) = Edu® 4+ 2Fdudv + Gdv*

E.F et G sont appelés les coefficients de la 1 ére forme fondamentale

Remarques :
E F d
1. I(du,dv) = (du, dv) "
F G dv
la matrice A = 7o Symétrique réel toujours diagonalisable

la 1 ére forme fondamental I(du,dv) est formée par la matrice A =
E F
F G

E = W2 >0 E F
on a : { HSO ” = La matrice A = o est une

detA = EG — F? F
matrice symétrique définie positive A € S5 T(R) toutes les valeurs
propres sont Strictement positives. I(du, dv) est une forme définie po-
sitive.
2. La forme I(du,dv) ne dépend pas de la coordonnée locale choisie :
Preuve : Soient (u, ) et (v,¢*) deux cartes local G = UNV # &

det( gg’gg ) #0ona:

p(u,v) = " (p(u,v),q(u,v)) € G
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I*(du,dv) = < ppdp + @y, ordp + pdg >
= lesdp + ¢;dg]|?
|05 (Pudu 4 Pydv) 4 3 (qudu + gudv)||*
= (@ Pu+ ©qu)du + (5 Py 4 ¢igu)dv]?
= HSOudu + @vdUH2
= lde||* = I(du, dv)
3. (E(u,v), F(u,v), G(u,v)) # (E*(p,q), F*(p, 9), G*(p, 7))
E(u,v) = [[oull?
= |05 Py + @it
< Py + ©pqus Py Pu + P3G >

= E*(p,q)Pu*+2F*(p,q)Puqu + G*(p, )4,
De méme :

F(ua U) = E*(pa Q)Pupv+F*(P7 Q)PuQv+F*(P7 Q)(PuQv+Pqu)+G*(P7 Q)QUQU
et
G(u,v) = E*(P,q)P? + 2F*(P,q)P,q, + G*(P, q)¢>

I

Exemple 1.2.1. Soit S la surface définie par :

o(u,v) = (u+wv)e; + (u—v)es + uves
= (u~+ v, u — v, uv)

1
ou(u,v) =11
v
1
op(u,v) = | —1
u

o E=pul* =2+

o ['=,.0, =uv

o G=lpl*=2+u

I(du, dv) = (2 + v?)du?® + 2uvdudv + (2 + u?)dv?

E >0, EG—F? = 2(2+u®+v?) > 0 On cosidére un changement de Paramétre
P=u+v,p=u—v

= —2#0
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c’est un changement admissible de paramétre

o(u,v) = (u+v)ey + (u —v)ey + uves

. 1
©*(P,q) = pe1 + qea + —(P2 —q2)€3

4
1 0
es(Pog)=1 0 |.¢;(Pg)=1] 1
P —q
2 2
P2
4
—Pyq
F*(P.q) = —1
(P,q) 1
q2

On prend :(u,v) = (1,1) = (P,q) = (2,0)
BE(1,1)=3,F(1,1) =1,G(1,1) = 3

E*(2,0) =2, F*(2,0) = 0,G*(2,0) = 1

les coefficients de la 1 ére forme fondamentales ne sont pas invariant par un

changement admissible de paramétre .

1.2.2 la deuxiéme forme fondamentale

Soit (u,v) — ¢(u,v) une représentation paramétrique D’une surface ré-
guliére S de classe C*, k > 2

N = W:%;\\:%H’ Notons : dN = N,du + N,dv

Ny = de(@u) N, = de(%})

ona:||N|?=1

=< N,N>=1=2<dN,N >=0

= N est orthogonal a dN,au point ¢(u,v) = en ce point ¢(u,v)
dN est dans le plan tangent T,S
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I1(du,dv) = —dp —dN
= — <dp,dN >
— < pudu + pydv, Nydu + Nydv >
= — <y, Ny >du— (< p,.N, >+ < @,.N, >)dudv— < @, N, > dv?
On :
- L=—<g,, N, >
- M =—-3(< u, Ny >+ < @, N, >)
- N=—<v,,N, >
I1(du, dv) est appelée la 2 éme forme fondamentale associée a p(u,v) L,M,N
sont appelés les coefficients de la 2 éme forme fondamentale (les Seconds
coefficients fondamentaux )

Or on a

o < W, N>=0<uu, N>+ <y, N, >=0
L =< oy, N > ou gpuu:&

ou

<Py, N> = 0

[ ]
<y, N> =

< Quvy, N >+ < oy, Ny > 0
< Pup, N>+ <y, Ny > = 0
:}M:<90uv7N> @uvz%

o < w,,N>=0
=< Ypp, N >+ < p,, N, >=0

82
N =< ¢UU7N> Spvv:a_yf

Remarque :
La 2 éme forme fondamentale est aussi invariante par un changement admis-
sible de paramétre .
Si *(P,q) est une autre représentation paramétrée que De la surface.
telque - @(u,v) = " (p(u, v), ¢(u, v))

Bt # 0

o L =L"P242M*P,q, + N*¢?

o M = L*PuQU + M*(PUQU ‘I’]%Qu) + N*quqv
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I1**(P,q) = I1(du, dv)

LN — M2 = | 2801+ N+ — (M+)?)
II(du,dv) =< d*p, N >

d>p = Yuudu® + 20, dudv + @, dv?
La fonction

1 1
5:§Humm0:§uﬂﬁ+2MmmM+Nm%

S’appelle paraboloide osculateur du point p et la nature de cette pa-
raboloide dépend du signe de LN — M? distingue quatre cas :
1. cas elliptique :
LN — M? > 0 un point est dit elliptique si
LN — M?*>0
en ce point la fonction ¢ gande un signe Constant dans un voisinage du
point p.
2. cas hyperbolique :
(LN — M?* < 0)un point est dit hyperbolique si

LN — M? <0

en ce point .

3. cas parabolique : (LN — M =0)
LN —M*=0

en ce point sans que tous les coefficient LM et N sont nuls

4. cas planaire : (LN — M? =0 etLl?+ M?+w?=0)
Dans ce cas on a
L=M-=N

Et la 2 éme forme fondamentale sera identiquement nulle.



Chapitre 2

Le laplacien

2.1 Le laplacien

2.1.1 Divergence d'un champ de vecteurs. Opérateur )

Sur la variété riemannienne (M,g) nous définissons une application linéaire

de X(M) dans C*(M) , Appelée Divergence, et définie comme suit :

Définition 2.1.1. :
La divergence d’un champ de vecteur & sur M est la fonction — divE  définie,

localement, par l’égalité :

d(§ w) = divE€.w

ol w désigne la forme volume correspondant a une Orientation Locale.

Note : Dans cette définition, &.iw  Désigne le produit contracté De
¢ etdelan-formew (n,dimension de la variété M), C'est-a-dire la (n—1)-

forme définie par :

(f_lbd)(Xl,...,Xn_1> :w(g,Xl,...,Xn_l) V(Xl,,Xn) S .'f(M) (21)

On vérifie immédiatement que div€é ne dépend pas de La forme locale
w  choisie; la divergence est donc définie globalement sur (M,g).

On vérifiera aisément la proposition Suivante :

21
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Proposition 2.1.1.

La divergence vérifie ’égalité :

Vf € (M)

div(f.€) = f.dive + df (€) Ve € X(M)

Par dualité, nous obtenons a partir de div un opérateur sur ’espace A'(M)

des l-formes, appelé & et défini comme suit :

Définition 2.1.2.
on appelle &  lUopérateur de  AY(M)  dans C>®(M)  défini par :

o = div(a™®) Ya € AY(M))

Note :L’espace des p-formes sera désormais not AP(M) au lieu de T(APT*M)
. Ainsi, ici,A*(M) au lieu de T(T*M) , et aussi A°(M) au lieu de C*°(M).

Si M est compacte, les espaces AP(M) sont munis d’une structure Préhil-
bertienne, définie a partir du produit scalaire (.|.) Sur l'espace euclidien
T(APT*M), et de la mesure canonique V; sur (M,g) ; le produit scalaire global
est noté < .,. >. On a donc, si «a et § sont deux-formes sur M ,leur produit

scalaire local est la fonction (X|Y)  définie par

Leur produit scalaire global est défini par .

<a,f>= /M(am).vg (2.2)

Nous nous proposons de montrer que les opérateurs d et o sont, par rapport
aux structures préhilbertiennes de A°(M) et A'(M), adjoins I'un de Pautre,
c’est-a-dire :

Proposition 2.1.2.

Vfe A (M)

<df,a >=< f,da >
ra>=<f,oa Va € AY(M)
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L’égalité 2.1.2 s’écrit encore :

/M(dfloz).vg:/Mf.aa.vg

et il nous suffit, pour la démontrer, de montrer que l’on a :

/M (dfla)w = /M Foow

ol w est n-forme volume définie localement au voisinage d’un point quel-
conque de la variété. Soit donc :

I:/M(df|a).w—/M(f5a).w

. A cause de 2.1.1 et 2.1.2, nous avons

I = /M [(df|a) + fdiva]w

Or, du fait de 2.1.1, nous avons :
fdiva® = div(fa®) — df (o)

et, par définition,
(df|a) = df (fa™)
si bien que :
I= [,div(fa#)w =...
= [ d(fo® w)
C’est-a-dire, a cause de Stokes :

ce qui démontre 2.1.2
De méme que d est défini, non seulement sur A°(M) , mais aussi sur AP(M)
, pour tout p , Popérateur ¢ est lui-méme défini sur A?(M) . Le couple

AP APHL(M)

1
%

d
—

Est encore adjoint.
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2.1.2  Calcul explicite de la divergence et de ¢

Calcul en coordonnées locales :

Nous nous donnons en m, une carte locale (X?) , a laquelle est atta-
chée une fonction réelle 6§ = \/det(g;;) , telle que, localement, la forme

volume associée s’exprime par :

w=0.dz" ... ANdx" (2.3)

si (X;) estle champ local de repére associé a la carte  (X?)

) NI E _ 9 .
(Cest-a-dire  X; = 3% )ona:

~

Ew(Xy,. . Xy X)) = wE X, X X)) =
(—1) w(Xps . 6y X)) =
= (-)hg

Ou, & désigne la i composante de &

On a donc :

Eaw =3 (~1)*0.L)dx'A, ... Adai A da" (2.4)

7

et, par conséquent

d€w) = (-1 g Adat A Nda AL da” =
— Z%a—)f:)dxl/\.../\dx”:... (2.5)
= o (X A

Si bien que

divg = 07" %}‘g)) (2.6)

i

Dans la méme carte, une l-forme «  s’exprime par :

a= Zoz,-dxi (2.7)
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et par conséquent :

o = (g7a;)X; (2.8)

2%
ol g% est I’élément générique de la matrice inverse de (g;;). il Suit alors de

2.1.2,que :

b = —071 ( > vt ) (2.9)

Z?J

Formulation géométrique :

La dérivée covariante d'une 1-forme «  est une 2-forme Da  qui

posséde une trace égale a :

trace Da = ZDO&(Xi, X;) (2.10)

ou {X;} est un champ de repéres orthonormés.

Comme on a L’égalité :
(Dx,0®|X;) = Da(X;, X;) (2.11)
on voit que la trace Do est égale a la trace de ’endomorphisme :
X = Dya™
Nous avons la proposition suivante :

Proposition 2.1.3.

Pour toute 1-forme o  définie sur la v.r. (M,g) :
dao = —trace Da

Notons d’abord que, si w  est une p-forme quelconque et &  un

champ de vecteur sur M , alors nous avons [’égalité :

Dx(éaw) = Dxéow+ €.Dxw VX € X(M)
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que l'on déduit par exemple de (2.1.3).  Comme, la dérivée covariante D,
d’une forme volume est nulle (invariance du volume par transport paralléle),

on a donc :
Dx(¢uw) = Dx€w VX, €€ X(M) (2.12)

D’autre part, si w est une p-forme alternée sur M , sa différentielle extérieure

dw est anti-symétrisée de sa dérivée covariante,

P
dw(Xo, X1,...,X,) =Y (~1)'Dxw(Xo, ..., X1,..., X)) (2.13)
=0

Soit maintenant, {X;};—1__, un repére orthonormé sur un voisinage U

d’un point m de M.
Considérons la (n-1)-forme &w ou & est un champ de vecteur et

w une forme volume sur U . On a :

o~

(—1)1'71DX1.(§J(,«))(X17 ey Xy 7Xn) =...

-

~
I
-

d(ng>(X1, . ,Xn) =

—~

(1) Y (Dx ) (X, o Xpre o X)) = ...

s
Il
—

I

w(X1,...,Dx.&, ..., X)

s
Il
—_

I

Comme {X;} est orthonormé on a :
Dx{ =) (Dx &X)X;
si bien que I'on a finalement :

d(Eaw)(Xy,. .., X,) = Z(Dxi X)) w(Xy, ..., Xn) = ...
ZZ(D& £1X:)

d’oti, finalement :

divg = =) (Dx.¢

)

X;)

et
oo = —traceDa

c’est & dire (2.1.3 )
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2.1.3 Le laplacien
Définition 2.1.3. :

Le laplacien, noté ~ \ , est lopérateur de A°(M) dans A°(M) défini
par :

/\ f = adf fe A (M),

Expression en coordonnes locales :

Elle est donnée par 2.9 ot 'on remplace «  par df , c’est-a-dire  «;

of
0X1

il vient :

par

d( 0x g2
Af =613 ( Zjﬁ o ) (2.14)
b,J

Le laplacien est donc un opérateur différentiel du second ordre; sa partie

homogéne du second ordre s’écrit :
0?2
o= —Zg”# (2.15)

c’est une forme quadratique formelle, égale a 'opposé du carré de la norme.
Elle est donc non-dégénérée; on dit alors que le laplacien est un opérateur
différentiel elliptique du second ordre; sur les opérateurs différentiels ellip-

tiques.

Considérons, maintenant, autour de m , la carte exponentielle ; le développe-
ment limité du relévement de g sur l'espace T, M ne contient pas de terme
du ler ordre .ce qui montre qu’en m les dérivées premiéres de g sont nulles ;
en outre, le repére

{%}es‘c orthonormé en m ce qui veut dire que 'on a, en m :
g7 = 1
gi = 0 i#]
Nous avons donc, dans cette carte, une expression trés simple du lapla-

cien, au point m :

82
A=— Z aTJ; (2.16)
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Application :
Considérons la fonction f.g , produit des deux fonctions réelles f et g

. Plagons-nous encore au point m ; nous avons, dans une carte exponentielle :

9*(f.9)
=2 xe

c’est-a-dire,

of 0dg
‘fXE:axﬂ‘_ _ X OXT Ejaxﬂ

C’est a dire que les deux fonctionssur M,  A(fxg) et fAg —2(df|dg)+

g Af, ont méme valeur en m , quel que soit m . On a donc :

Proposition 2.1.4.

A(f.g) = f.Ag —2(df|dg) +g.Af Vf, Vg € A°(M)

Sur (R", go) les g;; sont constants, si bien que 2.14 s’écrit :

Af = Z W

c’est-a-dire 'opposé du Laplacien usuel. Prolongeant la notion connue sur

R" | on dira qu’une fonction réelle définie sur une v.r. est harmonique si elle

vérifie ’égalité :

Af=0 (2.17)

Formulation géométique du laplacien :

De 2.1.3  on tire 1’égalité suivante par le laplacien :
Af = —trace(D df) (2.18)

c’est a dire
Af = —trace(Hessf) (2.19)

Proposition 2.1.5. Pour X € T°(TN),S € THTM),et f € C}(N),
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i) L’application (X,S) — DxS est R-bilinéare
ii) on DxfS = f.DxS,
iii) on a DxfS = fDxS + (X, f)s

Si N 2 M est une sous-variété paramétrée de M | si S est un champ de
vecteurs C! le long de s , et si X € T;,N , on appel-lera dérivée covariante
de S le long de S en X , et on notera Dx S , le vecteur V[T,,,5(x)] € Tg(m)M.
Remarquons que Dy .S est local en S, ¢’est-a-dire ne dépend que des valeurs

de S au voisinage de m .

Désignons par 7°(T'N) l’ensemble des champs de vecteurs continus sur N
, et par T&(TM) T'ensemble des champs de vecteurs C* le long de S . On
définit une application de

T°(TN) x T&(TM) dans T°(T M) , espace des champs de vecteurs continus
le long de S, par (X,S) — DxS avec (DxS), = Dx,,S.

considérons, en m , un repére orthonormé {X;} , chaque vecteur
x; définissant une géodésique y; ,D’aprés D,fS = f.D,S+(X.f)S

nous avons :

d*(f o)
Af =— Z — (2.20)
(]
Cette expression du laplacien nous sera, par la suite, de la plus grande
utilité.
La définition du laplacien ne fait intervenir que des invariants riemanniens ;
la laplacien lui-méme est donc un tel invariant.Plus précisment ,si l'on a le

diagramme :

et o =fop
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Ou ¢ est une isométrie de (M,g) sur (N,h) , alors :

N
AM(fop)=/\fogp

Proposition 2.1.6.
sip:(M,g) — (N,h) est une submersion riemannienne & fibres totalement

géodésique, alors, pour toute fonction f définie sur N ,on a :

M

AGep)=Arop (2.21)

On sait que ’espace tangent en un point m de (M,g) se scinde canoniquement
en deux sous-espaces orthogonauzr dont le second, dit horizontal, se projette
isométriquement sur Tyonn ; soit, donc, {X;,Y;}i; une base de T,,M, ou
X; est une base du sous-espace i,j horizontal et Y; une base du sous-espace
vertical. Les géodésiques correspondantes sont notées Y; et 0; respectivement.

D’aprés 2.20. on a :
M d? d?
AM(fop) == —5(fopor) =D —5(fopod))
i J

Comme p est une submersion riemannienne la projection de ~y; est la
géodésique attachée a la projection de x;
Le premier terme du second membre de 2.20 est donc égal a A™f o p.
Le second terme est nul, car d;. est contenu, par hypothése, dans le fibre de
p en m ,donc fopod; est constante.
L’égalité 2.20 est donc vérifiée.

L’hypothése de 2.1.6 est trés restrictive. Un cas particulier important ou
elle se trouve vérifiée est celui du produit (M x N, g x h) des deux variétés

riemanniennes (M,g) et (N,h).

(M x N,g x h)
7 N
(M, g) (N, h)
a b
N\ e
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Dans ce diagramme ,p et q sont deux submersions riemanniennes a et b sont
deux fonctions réelles définies respectivement sur M et N .

nous nous proposons de calculer , & l'aide de 2.1.6, le laplacien de (a o
p) X (boq) définie sur M x N .
On a, d’aprés 2.1.4 :

AMN[(gop)x (boq)] = (boq) x AMN(gop) — ...

........ —2(d(aop)ld(boq)+ (aop) x AM*N(boq)).

Le deuxiéme terme est nul comme produit scalaire de deux formes orthogo-
nales.

Le premier terme, d’aprés 2.1.4, vaut (boq) x [AM(a) o p].
Le troisiéme, de méme (aop) x [AN(b) o q].
Finalement, il vient :

AMN[(aop) x (bog)] = (bog) x [AM(a)op+ ...

Haop)AV(b) o gl

Si a est une fonction propre de AM pour la valeur propre \, et de méme b

(2.22)

pour AY pour la valeur p , il vient alors :

AMN[(aop) x (bog)] = A+ pl(@op) x (bog).  (2.23)

AMXN

c’est-a~dire, (aop) x (boq) est une fonction propre de pour la valeur

propre \ + pu.

2.1.4 Le laplacien d’une variété compacte

comme les opérateurs d et 0 sont adjoints sur la v.r. compacte
(M,g), on a les deux égalités :

<Af,g>=< f,Ag > (2.24)

< Af, f >=|df|? Vf,Vg e A°(M) (2.25)

D’ou :
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Proposition 2.1.7.
Le laplacien d’une v.r. compacte (M,g) est un opérateur auto-adjoint et défini-

positif.

De 2.25 on déduit qu’une fonction harmonique est localement constante,
c’est-a-dire constante sur chaque composante connexe de M . Ceci n’est pas
vrai sur une variété non compacte.

Formule de Bochner-Lichnerowicz :
Pour tout f € A°(M),On a :

S A(dFP) = |Hess P — A1+ p(dr*, i)

ou p désigne la courbure de Ricci de la v.r (M,g)
Lemme :
Pour toute forme « € AY(M) ettousX,Y € X(M) ,ona:

DxDya — DyDxa — Dixyja = (R(X,Y)a®)’

Le lemme résulte immédiatement de la définition de la courbure,

puisque la dérivée covariante commute aux isomorphismes musicaux.

Démonstration :

Nous nous donnons, en m , une base orthonormée pour T}, M :
{X;}; nous transportons cette base parallélement le long des géodésiques
Y; issues de m de fagon & obtenir un champ de repéres orthonormés  { X}

En particulier, nous avons ainsi
Dx,X;(m) =0, Vi, 7. (2.26)
En m , nous avons :
A(ldf|?) = =2 Dx.Dx( dff?) = ...
= =23 Dx,(Dx,df|df) = ...
= -2 i(DXiDXidﬂdf) — 2;(Dxidf|DXidf).

(]
Le laplacien, aprés division par -2 , se trouve donc étre la somme de

deux termes dont le second n’est autre que le carré de la norme de Hessien
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de f.
Le premier terme s’écrit Y (Dx, Dx,df|df) ; Clest la somme sur i ,de

termes de la forme (Dx,Dx,df|df),que s’écrivent encore ,puisque {X;} est

orthonormé :
(Dx, Dxdf|df) = 3 [Dx. Dx.df](X;) x df (X;)

calculons ,séparément ,le nombre [Dx,Dx,df|(X;) ;il est égal ,par défini-

tion ,a

Dx,Dx,df(X;) = Xi[Dx,df(X;)] — Dx,df (Dx,X;)

( cause de 2.1.4)
= Xi.[HGSS(XZ‘,Xj)] -0

comme le hessien est symétrique on a finalement :
[Dx, Dx,df|(X;) = [Dx, Dx, df}(X:), (2.27)

et donc :

(Dx, Dxdf|df) = Z[DXiDdef] (Xi) x df (X;)

égal encore,a cause du lemme 2.1.4 .4

> [Dx, Dx,df)(X;) x df (X Z X)df#1X;) x df (X))

J

-+ Z D[XZ,X]]df(Xz) X df(X])
J
la dernier terme de cette somme est nul a cause de 2.26 .

Nous obtenons donc 1'égalité :

Z(DXiDXidfo) = Z[DXjDXideXi)de(Xj)—l—
b S rHx cag O

a cause de 2.26, le premier terme de cette somme peut s’écrire :

ZDX (Dx,df (Xi)) x df (X;)
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Soit
Z Dy, (Z Dx,df (X;)) x df (X;).
c’est a dire :
=Y Dx(Af) x df (X))
J
Soit,enfin :

—(d(Af)ldf) = —|A(f)

comme {X;}est orthonormé ,on a :
dft =" df(X;)X;. (2.29)
J

si bien que la second terme de 2.28 s’écrit :

> (R(df*, X)df*|X;)

i

c’est & dire exactement la courbure de Ricci appliquée au couple (df#, df#) :
p(df#, df#) ceci achéve la démonstration de 2.1.4

Le laplacien est défini sur les AP(M), pour tout p , par la formule :
Aa = dj(a) + dd(a) Va € AP(M) (2.30)

Pour le laplacien, ainsi défini sur les p-formes, nous avons la formule de

Bochner-Lichnerowicz généralisée suivante :
1
—§A(|a|2) = |Dal* — (a|Aa) + WBL(R, @) Vae AP(M)  (2.31)

Ou WBL(R,«) est quadratique en « et linéaire en le tenseur de courbure R

2.2 Le spectre d'une variété riemannienne

Dorénavant, par v.r. nous entendrons toujours variété riemannienne connexe

et compacte.
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Définition 2.2.1. ( premieres propriétés)

Soit (M,g) une v.r A lUaide de la structure g , on a mis sur C°(M) un
opérateur A , qui est un opérateur différentiel elliptique autoadjoint défini
positif .

Définition 2.2.2. On appelle spectre de la v.r. (M,q), et on note Spec(M,g),
lensemble des \ € R tels qu’il existe f € C°(M), f # 0, vérifiant Af = \f

soit C*°(M) 'espace des fonctions C* sur M a valeurs dans C, muni de la
structure préhilbertienne < f,h >¢= [ Y fﬁvg .

Soit  A¢ lextensionde A & CgF(M). C'est un opérateur réel autoad-
joint défini-positif.

Donc  Spec(M,g) est aussi I'ensemble des X € C  tels qu'il existe
feCx(M), f#0, vérifiant Af = \f.

Toute f € C*(M) telle que Af = Af ,avec X €Spec(M,g) est dite
une fonction propre associée a A . Le sous-espace de C*(M) formé des
fonctions propres relatives a A est appelé sous-espace propre relatives a A
et se note py(M,g).

Enfin p(M,g9) = Y.  ©x(M,g) est appelé le sous-espace propre de (M,g)
Aespec(M,g)
. La somme est d’ailleurs directe et méme est une décomposition orthogo-

nale. Les propriétés de A que nous avons rappelées ci-dessus entranent les

consequences suivantes :

Theorem 2.1.

S.1. Spec(M,g) forme une suite {0 = Ao < A\ < Ao < ...} discret, tendant
vers +00.

S.2. Pour tout A € Spec(M, g) ,pA(M,g) est de dimension finie.
Pour i € N, g,,(M,g) sera encore noté p;(M,g) . Sa dimension se
note m; et est appelée la multiplicit de \;

S.3. (M, g) est dense dans C*°(M) au sens de la topologie de la convergence
uniforme, et a fortiori au sens de la topologie de la convergence en

moyenne quadratique .
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La multiplicité de 0 est 1 . En effet les fonctions propres relatives a 0 sont
les fonctions harmoniques donc, (M,g) étant compacte et connexe, les

constantes
(car < f,Af >=<df,df >, donc Af=0=df =0)
notation. Spec(M, g) s’écrira
Spec(M,g) ={0 < A1,..., A\ < Ag,..., Ay < ...}
ol \; seraécrit m,; fois.

Définition 2.2.3.
On appelle fonction de partition de (M,g) et on note Z(M,g) la fonction
définie pour t > 0 par

Z(M, g;t) =y me !
=0

Nous démontrerons plus loin que cette fonction est bien définie pour
t > 0 . Admettant provisoirement cela, on voit alors que la série converge
uniformément sur [to, +00] pour tout tg > 0 , de sorte que la fonction est
continue sur |0, +oo[. Elle est décroissante, tend vers 1 pourt — 400 et vers

+00 pourt — 04

2.3 Exemple de laplacien en coordonnés sphé-

riques

ar © T+T% ‘ 0+r.3m9% o

05 10 1 0, ,0_ 10_ 1 0
6'6_ (6T€T+T8960+r.3m08g&6¢)( )
» = (sinfcosp ?—i— sin # sin ¢ ?—i— cost ?
( — = =
9 = (cosfcosyp)i + (cosfsinp)j —sinfk
%

e
G
@, (—sing)d + (cosy)
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a?r_ﬁ
or
- — . — e
0 = (cosfcosp) i + (cosBsing) j —sinfk = Yy
- . . — . — .
aaf; — (—sinfsinp) i + (sinfcosg)j =sinfe,
a?g_ﬁ
or
e . — . . — -
‘98699 = —sinfcosp i + —sinfsinp j —cosb k =-7,
4 . — —
882“’ = —cosfsinp ¢ + cosfcosy j 20080?2,
a?w_ﬁ
e =
azﬂ_ﬁ
¢ 99 — —
€ . . E
8@“’:—cosg02 —siny j
e, _6) 8¢ ﬁ e, *ﬁ
or or 84 -
8?7~_€> 8?9__? aegp_ﬁ
?86_ 9_> 90 _7“> AR o0 N
o oo (969_ € o B . K
W—smeew W—cosﬁew 7, = —Cosp i —sing j
A <_>c9+_>18+_> 1 8)<_>8+_>18+_> 1 0
=(€,—+ €p—— + ¢ ——) (€, — + €y—-——+ ¢ ,————
"or r 06 7r.sinf Op "or r 06 Yr.sin O
— 7 9(F O\, g O(F, Lo\, (7 1 9
A= 6T8T(€T8r)+ 67"87“(697“80>+ €rar e‘nprsmﬁ&p)
— 10 (= 0 — 10> 10 — 19/~ 1 98
+ €ora5(€rar) T €orag(€orap) + €0396( € oimnaag)
- _1 8 (= 0 - _1 8 (=> 10 - _1 0( _1 9
+ e‘pr.sineago(eTar + eﬂor.sineaw(earaG)—i_ e‘Pr.sina&p(e@Dr.sin@agp)
_ 2 (P OV, 2 I (21O, > 1 9= 10
A= €rar 67"37‘)+ erar(69r69>+ ermnear(e‘pr&p) *
— 18> 8 — 198> 8 — 19/~ 1 9
+ Corps(€rgr) T €oragg(Cogg) T €orzgg(Commpn,)  **
- 1 9[> 9 - 1 9= 9 — 1 9 (= 0
+ e‘:”r.sin@%(er& + €piz sin0%<€9%)+ €¢r2.sin29%( cp%) S
P 9 oy, Oo(g oy, 7 1 0z 19
= €TBT(€T8r>+ 6T6r(6'9r89)+ eTsmO@r(e‘Pngo)
= 09,0 L= — 8 = 029108 L > D=> a9 | = — 18
= et Cr gyt s+ € Cogg t € Conggg
— 1 8¢,108 |, — 1 0Yyn— o = 1 — 1 8
+ ersine or ;%—i_ 6"’sinB or 6¢%+ 6"’smB 690;81'84,0
_ 02
*_TT
— g0z o0y g, Loz 0y, =z, 19z 1 9
= 607"89(67’87’)—}_ 0r28€(6086’)+ 667’239(6‘Psm08<p)
_ = 18€, 0 | — 1— 92 — 19€p0 | = 1— 92
= eir aeagr+ €o; er_a>ear ;tl/eegjje 80+_6>9r2_e>9 %
109, 1 0 10(1/sin ) 1= 1 9
t € T €055 Coag, T €072 € oingdeay
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2.3 Exemple de laplacien en coordonnés sphériques
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Chapitre 3

Probléme de valeurs propres sur

les surfaces

3.1 introduction

Soit M une variété riemannienne n-dimensionnelle compléte de bordes
OM (OM peut étre vide ). En termes de coordonnées locales (x!,... z"), la
meétrique peut étre exprimeé en ds® = Y g;;dx'dx?, et Vopérateur laplagien

est défini par :

1 ) 0
A=— (V7.97 ==
\/gzax%(\@g ).

ou (¢”) = (9i5)~", g = det(gi;)-
ici, nous pouvons remarquer que l'opérateur de laplace ne dépend que de la

métrique riemannienne donnée. si
F:(M,g) = (N,h)

est une isométrie , alors (M,g) et (N,h) ont le méme spectre (on dit qu’ils
sont isospectraux et on note Spec(M, g) = spec(N, h)).

nous pouvons ainsi divisés les problémes concernant la relation entre les va-
leurs propes du laplagien et la géométrie d’'une variété riemannienne (la géo-

meétrie spectrale ) en deux catégories :

1. Problémes directs :

calcul des spectres, méthode explicites et numérique de détermina-
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3.1 introduction

tion des valeurs propres , bornes supérieure et inferieure sur les va-
leus propres, Inégalités isopérimétriques et universelles pour les valeurs
propres .

En général, le spectre ne peut pas étre calculé explicitement . les trés
rares exceptions sont les variétés comme les spheéres rondes , les tores
plats , les billes (voir 1 et 5 pour quelques exemples classiques ot le
spectre est connu ).

Cependant , il n’est possible d’obtenir qu’une estimations du spectre,
et ces estimations sont liées a la géométrie du variété .

Asymptotique, nous savons comment le spectre se comporte . c’est la

formule de Weyl’s

(2#)2( k

M (M, g) ~ )Hm ainsi k — oo

oll w, est le volume de la boule unitaire de R". donc le volume est en
effet déterminé par le spectre .

la formule de Weyl’s est le premier exemple de la relation entre les
propiétés analytiques et géométriques de la variété riemannienne. en
méme temps , les valeurs propres et leurs fonctions propre résultent de
'idéalisation mathématique de problémes physiques (I’équation d’onde

, I'équation de chaleur ....)

. Problemes inverses

Ce que nous pouvons savoir sur la géométrie d'une variété riemannienne
a partir de la connaissance des valeurs propres de son opérateur laplce-
Beltrami ?

I'une des quesstions importantes en géométrie spectrale a été formulée
par M.

Kac en 1966 avec un titre impressionnont "Peut-on entendre la forme
d’un tambour ?"

ou bien deux variétés rimanniennes isospectrales sont-elles isométriques ?
. Ici, notre discussion ne porte que sur le probléme direct.

avant d’étudier le spectre de 'opérateur de laplace , rappelons quelques
faits bien connus. Etant donné ¢ € C*®(M), soit : |¢|? = [,, ¢* +

Jis IV|?. Pachévement de C*°(M) par rapport a la norme ci-dessus est
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I'espace bien connu de sobolev dénoté par L3(M), et Pachévement de
C3°(M) est dénoté par L, (M).

D’apres la théorie fondamentale des espaces de sobolev, nous pouvons
voir que si M est complet, alors L}(M) = Lg (M) et ¢ € L3(M) & ¢
agénéralisé des dérivées de premier ordre dans L*(M).

Si OM = () et M est compact (probléme de valeur propre fermée), alors
A est un opérateur elliptique auto-adjoint sur L?(M)(voir pour preuve
Berger-Gauduchon-Mazet).

Par la théorie spectrale des opérateurs auto-adjoints , nous savons que
A a une valeur propre discret :0 = \g < A} < --- < A, = 00. et les

fonctions propres correspondantes {¢;} satisfaisant :
Ag; = =i ¢ € C*(M) N Li(M)

peut étre choisi de sorte que {¢;} forme une base orthonormale de
quand OM # () nous devons spécifier des conditions aux limites pour
que A soit auto-adjoint . généralement , nous avons deux des conditions

aux limites :

(A) conditions aux limites de Dirichlet :
Dans ce cas , Dom(A) = L§ (M) et ses valeurs propres et les fonctions
propres correspondantes sont 0 < A\ < Ay < ... (remarquez que \; a
une multiplicité 1 ), et {¢;} :

Ap; = —=Xi¢i; dilons = 0; 0, € C(M)

{#:} a partir d’une base orthonormée de L§, (M).

(B) conditions aux limites de Newmann :
Dans ce cas , Dom(A) = L?(M) et sa valeur propre et ses fonctions
propres sont 0 = A\g < A} < Ay < ..., et {¢;}a patir d'une base
orthonormeée de L?(M), avec

99

Agi = —Nids; 8_77|6M =0; ¢, € C™(M)

ol 1 est la direction normale exterieure le long de OM.
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Dans la théorie spectrale de A, le principe Min-Max joue un role fonda-

mental il peut étre formulé comme suit pour simplifier , Soit H :
1. SioM =0,H ={f e L3(M)/ [,, f =0};
2. st M # () et la condition de Dirichlet est posée, H = L§ (M)

3. 81 OM # 0 et la condition de Newmann est posée, H = {f € L}/ [,, [ =
0}

Alors A est un opérateur élliptique auto-adjoint sur H, et nous pou-

vons trouver ortho-base normale {f;}, avec Af; = =\, fi;fi € HNC®(M),

telle que ,
. IV /]
)\1 = an{%,f S H}

V 2
Aisz{fﬂf'Tﬂ,feH,/Mf.fj:0,]':1,273...,@'—1}
M

En particulier ,

VCER,cg)\l(:)/ |ny22¢/ |fI>,VfeH
M M

ie : A\ est la plus grande constante pour laquelle 'inegalité ci-dessus tient.

" c’est I'un des

ce type d’inégalité est appelée "une inégalité de Poincaré
plus fondamentaux l'inégalité totale dans la théorie de P.D.E. Aussi d’une

importance fondamentale est 1'inegalité sobolev suivante.

1. Inégalité de sobolev :
Soit M une variété riemannienne compacte avec frontiére , alors il existe

une constante c telle que :

n—

c(/an"l)nlé/MWfoeﬂ

ot H est définie comme (b) ou (c)ci-dessus .
Si M n’est pas compact , alors I'inégalité de sabolev ci-dessus peut ne
pas tenir. sa validité est équivalente de I'inégalité isopérimétrique .
2. Inégalité isoperimétrique :
Soit M une variété riemmannienne, 2 un domaine avec fermeture com-

pacte en M, alors il existe une constante ¢ indépendante de €2 telque :

c(Vol(Q))n1 < Vol(09).
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En utilisant la formule co-Area, nous pouvons montrer que pour la
variété riemannienne générale 'inégalité sobolev est équivalente & 1'in-
égalité isopéramétrique (5).

A fin d’étudier la signification géométrique de A;(la premiére valeur
propre positive), J.Cheeger a introduit deux constantes isopérimétriques

et les a reliés a A;.

Définition 3.1.1. (Cheeger)

Soit M une variété riemannienne compacte
1. Si OM # 1§ définisez  hp(M) = inf{555}/Q CC M}
2. Si OM =0, définissez

(M) = inf { Vol(H) }

min(Vol(My), Vol(M,))

Ot H est une hypersurface en M, divisant M en My, M,
avec OM, = OMy = H
Peut étre , le résultat le plus important des limites inférieures de A; est peut

étre le suivant

Theorem 3.1. (Cheeger)
Soit M une variété riemannienne compacte dans le cas de Dirchlet , \y >
1h% (M) et dans le cas de Neumann, Ay > thi (M)

Preuve : (voir 1)
En utilisant la formule co-Area et L’inegalité isopérimétrique , nous pouvons

prouver la conjecture de Rayleigh suivante

Theorem 3.2. (Faber-krahn)
Soit Q@ C R™ un domaine , B(R) une balle dans R™ de raduis R avec l'origine
comme centre tel que Vol(€)) = Vol(B(R))

alors , nous avons L’inegalité :
M) > Ai(B(R)).

Preuve : (voir 5)
nous pouvons voir plus loin que l'inégalité de Faber-Krahn est un cas parti-

culier affine du théoréme de comparaison des valeurs propres de cheng .
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3.2 Limites supérieures pour la premiére valeur
propre :

Soit M une variété riemannienne compacte qui peut avoir un borde
non vide M.
Dans cette section, nous obtiendrons des limites supérieures pour A; dans
certaines conditions de courbure sur M.
le résultat de base est donné par S.Y.Cheng.
il a prouvé un théoréme de comparaison pour la premiére valeur propre pour

les noyaux de chaleur il obtienne donc :

Theorem 3.3. (Cheng).

Soit M une variété riemannienne compacte, Ric(M) > (n — 1)k, n =
dim(M), B(xo,r) la boule géodésique en M de rayon r au centre xy.

Soit V(k,r) étre une boule de rayon r dans ’espace de courbure de forme k .

Ensuite en ce qui concerne les conditions aux ltmites de dirichlet .
)\1(B<l’0, T’)) S )\1(V(l€, 7”))

Preuve :
Notons les noyaux de chaleur de B(xg,r), V(k,r)par H(z,y,t), €(r(x,y),t)
respectivement,

Ensuit par le théoréme de comparaison  H(x,z,t) > €(0,t).

H(z,x,t) Ze‘“qﬁQ

Maintenant

€(0,) = Y e MG2(0)
ol Ai = Ni(B(zo, 7)), A= NV (k,r)) et ¢, ¢ sont les fonctions

propres correspondants, donc

e M P2 (x) + e Qe () 4] > e GR(0) + e CeAIGR(0) . ]
c’est a dire

G (@) + e~ PG () o > =i [G2(0) e~ Cem G20y -]



3.2 Limites supérieures pour la premiére valeur propre : 45

Notez que de  ¢3(z) > 0,42(0) >0 et Ay > A, Ay > Ay pour m > 2.
Laissant ¢t — oo dans l'inégalité ci-dessus , nous obtenons A\; < :\1, c’est a
dire

M (B(zo, 7)) < M(V(k,r)).

Corollaire 3.1. avec les méme hypothéses que ci-dessus, \(M) < X\ (V (k, 2))
ou
d = diam(M).

Theorem 3.4. (Cheng)

Soit M une variété riemannienne compacte sans borde, Ric(M) > (n — 1)k,

alors p
A (M) < M\ (V(k, —
(M) < M (V (k)
ot d = diam(M)
Preuve :
Nous pouvons trouver xi, ..., Z,+1 € M tels que B(x;, %)(@ =12,....m+
1) sont disjoints deux a deux . Soit ¢;(i = 1,2,...,m + 1) les premiéres

fonctions propres sur B(z;, %) avec des conditions aux limites de Dirichlet

. alors par le premiére théoréme

fB(xi,%) |v% 2 = )‘1(B<xia %)) fB(xi,%) ’@i’Q

< MV 50) [pg,, ) leil?
Soit {1;} des fonctions propres sur lesquelles forment une base orthonormale
de L*(M).

Extendr {¢;} a Zéro a l'extérieur B(x;, %), il existe des constantes ay, as, . . . , Gyt
m—+1

telles que Z a;p; # 0 et
1

m+1

Z ai%‘l{%, o, ... a¢m/A¢i = —)\ﬂﬂi}
1

Par le principe Min-Max

o [ (Fon) <]

1

m+1

2
> aiV,
1
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Aussi par orthogonalité et inégalité de Poincaré

m+1
< fMZaglv@iF
! m+1
< A ’Qm fMZ 2’901
m+1

< ’2m fM Zal%

cela signifie que A, (M) < A (V(k,5%)) En estimant la premiére valeur
propre des boules géodésiques dans 'espace , S.Y.Cheng a obtenu les résultats
suivants 7 :

e si Ric(M)>0alors \; <% o nous pouvons prendre C,, = 2n(n+4)
esi Ric(M)>n—1,7< ”d%

osi  Ric(M)>—(n— 1k, (k>0),A\ < @Dk 4+ S

4 d?

3.3 Limites inférieures pour la premiére valeur
propre

En général, il est beaucoup plus difficile de donner une borne inférieure
pour A; qu’une borne supérieure. Pour une variété riemannienne simple,
compléte et non compacte, une question importante :

Dans quelles conditions A\ = P}glgo M(B(zg, R))  a-t-il une borne infé-
rieure positive ?
Notez que A\ (B(zo, R)) est décroissant en R et positif, donc la limite ci-dessus
existe toujours.
En utilisant le théoréme de cheeger et le théoréme de comparaison pour une
variété avec le curvature sectionnelle négative, nous pouvons avoir ce qui

suit :

Theorem 3.5. (Mckean)

St M est une variété riemannienne complete, non compacte, simplement

conneze avec une courbure sectionnelle < —C < 0, alors A} = I%im A (B(zo, R))
— 00

existe et a une borne inférieure positive qui ne dépend que de C et n = dimM
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Preuve :

Par le théoréeme de cheeger |,
1

donc il faut donner une limite inférieure pour hp(B(xg, R)).
soit Q CC M, x9€, r(z)=dist(xy,z). comme M est simplement relié

a une courbure négative, r(z) est differentiable , et

Az’re(@Q):/ 12/ ﬁ:/AT,
o0 a0 dn Q

Ot nous avans utilisé le fait que |dr| = 1, j—; < 1 et n est la normale exté-
rieure le long 0f2. puisque M is simplement connexe et sa courbure sectional

< —C, donc par le théoréme de comparaison

n—1

Ar > +C

r

Ou C' > 0 est une constante qui ne dépend quede C et n Par consé-

quent

Aire(9Q) > /

Ar > C'/ 1 =CVol(Q).

Q Q

ie.hp(§2) > C'.

Dans ce qui suit, nous étudions le cas des variétés riemanniennes compacts
. Pour les domaines délimités dans R”, I'estimation de la premiére valeur
propre A; est un probléme avec un longue histoire , entre autres, Faber-
krahn, Polya-Szego, Payne, weinbergre avait contribué a ce probléme .

Pour les variétés compacts sans borde, la premiére estimation pour la limite
de A; sous les hypothéses sur les courbures est un important théoréme de

Lichnerowicz en 1958.

Theorem 3.6. (Lichnerowicz)

Soit M une variété riemannienne compacte sans borde, telle que n = dimM .si
Ric(M) > (n—1)k>0
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Preuve :(voir 1)

Plus tard en 1962, Obata a prouvé que si 'égalité A\ (M) = nk tient, alors
M est isométrique & S™, avec une courbure constant k.

En 1970, cheeger a donnée quelques bornes inférieures pour la premiére va-
leur propre A\; En termes de ses constantes isoperemétrique sur cette base ,
S.T.Yau donne quelques estimations en termes de quantités géométriques .
A partir de 1979, li et Yau ont développé la méthode pour obtenir des esti-
mations sur A\; via 'estimation du gradient sur la premiére fonction propre .
En utilisant cette méthode , nous pouvons prouver les trois résultats suivantes

ci-dessous

Theorem 3.7. (Li-Yau)

Soit M une variété riemanniene compacte, OM =0, Ric(M) > 0, alors

7T2

>
A2 o

Ou d = diam(M). ici, Li et Yau utilisent le fait que si u est la premiére

1
Oz/u:—A—l/Au

—1<—-k= inf u <sup u =1, 0<k<1

fonction propre, de puis

On peut supposer

Donc , si Ric(M) > 0, alors

2\

2
<
Vel < %

(1 —u)(k+u)

En utilisant une technique similaire , Zhong et Yang dans 12 ont amélioré le

résultat ci-dessus a

7T2

12> yo)
cette istimations est optimal prolongé 'hypothése  Ric(M) > 0.

A

Dans le cas OM # () et OM est convexe , en utilisant la méme méthode dans

la premiére valeur propre normalisée, Li et Yau prouvent ce qui suit
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Theorem 3.8. (Li-Yau)
Soit M une variété riemannienne compacte & bordes , si OM est convexe et
Ric(M) > 0, alors Ay > % est la premiere valeur propre confermement ai

probléeme de Newmann .

3.4 Problémes de valeurs propres pour les sur-

faces

Dans cette section, nous nous concentrons sur les problémes de valeures
propres sur les surfaces. et aussi les questions de base est de donner une
estimation par les limites supérieures et inférieures les valeurs propres en
termes de quantités géométriques, par exemple le volume, le diamétre et les
courbures. Daprés la conjecture de Polya’s, il semble que pour les domaines

en R™, on de vrait avoir

C

" Wen)t

c
donc, dans le cas des surfaces , A\; ~ Tire (V)
ce fut G.Szegd le premier qui a donné une réponse affirmative a cet égard-il a
prouvé que pour D C R? un domaine borné simplement connecté, en ce qui
concerne la condition aux limites de Newmann, la premiére valeur propres

de A\, satisfait
C

A < (D)
Ou C est une constante liée au premier Zéro d’une fonction de Bassel, et
d’une fonction de holds si D est le disque .
Dans le théoréme suivant, J.Hersch a généralisé les méthodes de Szego au cas

de la surface compacte S2.

Theorem 3.9. (Hersch)

Pour toute métrique sur S®

8
<
M= A

est l’aire par rapport a la métrique donnée .
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Preuve :
Pour toute métrique  ds* sur  S? | Soit ¢ : (S%,ds*) — (S?,ds3) étre
une carte conforme. Ou ds? est la métrique standard. Un tel ¢ existe toujours
en raison du fait bien connu que S? qu’une seule structure conforme .

Par le principe Min-Max

VI |?do
M= i de VDA
[s2f=0  [g f2dD

Ou do est la forme volume de ds?.

Soit z'(i = 1,2,3) les fonctions de coordonnées de R? induite sur S? =
{z € R3/|z| = 1}  ¢e sont les premicres fonctions propres sur (5%, ds?).
par rapport a la valeur propre \; = 2 Puisque ¢ est conforme, et I'intégrale

dirichlet est invariante conformément en dimension 2.

fs2 V(2% o p)|?dv = fSQ (Vi |2dv

= _fs2x Az
= 2 [g()?dv

8
3

et nous avons  Aire(S?) = [o, 1.dv =3 [o (i 0 )?do
Donc au moins pour un indice 4, (1 < i < 3),

_ _ Aire(S?)
i 2do > ———=
[92(1: o p)do > 3

Ainsi, si nous pouvons choisir ¢ tels que [, (z; 0 ¢)do =0 alors

hfeweafa
f52 x’ogp)2dv — A(S?)

1 =

La question réduit maintenant a trouver une carte conforme :
@ : (8% ds%) — (5%, dsd)

tel que
/ (x;09)dv=0; i=1,2,3.
S2
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Soit g : §% — S2, liasser Gy le sous groupe de transformation conforme
de S?, pour tout g, € Go(a € S?), ga 0 o : S? — S? est également conforme.
définir H : B3 — B3,

1 Z. o
H(CL) :_A(SQ)(/SQ'I OgaO(’OdU>,Z:1,2,3

on a a € S%, nous avons
9a(5*\ {a}) = —a, et / 2’0 g, 0 pdt — —a'
SZ

Par conséquent, H peut étre etendu & B — B et sa restriction a S? est
I'identité. de la topologie de base, H est surjectif, donc il existe un point
a € B3 tel que H(a) = 0,1.e,

/atiogaogodf):O 1=1,2,3.
S2

Pour la métrique standard sur S?, la zone Ay(S?) =4met N\ =2

Donc H, le théoréme de Hersch peut étre exprimé comme

MA(S?) < i (standard) Ag(S?).

S? est une surface riemannienne du genre 0, Plus généralement , pour les
surfaces riemanniennes compactes du genre g > 0 . le théoréme cores-

pendant de Herschs est :
Theorem 3.10. (P.Yang,S,T.Yau,).

Soit ¥4 une surface riemannienne compacte du genre g, alors nous avons
pour tout métrique sur X,
A < 87(1+ g)
A(%)

la notion de base utilisée par Yang et Yau est le volume conforme. (M, ds?)
une surface riemannienne compacte, ¢ : M — S™ une carte conforme si ds?
est la métrique standard sur S™, alors ¢*dst = «a(z)ds?, o a(x) est une
fonction positive sur M.

Soit G le groupe de transformation conforme de S™, alors Vg € G,go ¢ :
M — 8™ est toujours conforme. soit dV,la forme volume de (g o ¢)*dsg sur

M. Nous avons :
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Définition 3.4.1.

le volume conforme de M par rapport a ¢ est défini par

wwpwém

geG

et le volume conformes de M est défini par
Veln, M) = inf Vi(n,0)
La proposition suivante montre que V.(n, M) est étroitement lié & \;, par
conséquent, la définition de V.(n, M) est non triviale.

Proposition 3.4.1. (Li-Yau)

Soit M une surface riemannienne compacte, s’il existe une carte conforme
¢ M — 8", alors \Vol(M) < 2V.(n,M). En outre, si M est un surface
minimale dans S™, et ['immersion isométriqgue M — S™ est induite par les

premiere fonctions propres de S™

Corollaire 3.2. Soit M une surface riemannienne compacte, s’il existe un
prolongement minimal isométrique ¢ : M — S™, tel que (¢, ..., ¢" ") est

donné par les premiére fonctions propres, alors Ve(n, M) = Vol(M).

Exemple 3.4.1.  V.(n, S?) = 4, V,(n,RP?) = 67

Revenons mantenant a la preuve du théoréme de Li- Yau

Preuve :

Par la proposition ci-dessus, nous avons
)‘IA(EQ) < 2‘/0(27 Z’g)
Prenez tout coverture ramifiée conforme :
¢:%, — S?* degp<1l+g

I’existence d'un tel ¢ est gardée par le théoreme de Riemann-Roch. nous

pouvons voir que si N — M est une coverture conforme de degré d, alors
Ve(2,N) < dVe(2, M)

donc
MA(E,) < 2Ve(2,%6) < 2Ve(2,5%)(1 + g) = 8n(1 +g)
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3.4.1 Conclusion :

nous voyons dans cet mémoire qu’en étudiant les valeurs propres sur une
variété (et spécialement sur les surface) nous pouvons obtenir des informa-
tions sur la géométrie de cette variété. Plus d’information sont incluses dans le
processus de comparaison des inégalités des bornes superieures et des bornes

inférieures .
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3.4.1 Conclusion :
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