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Introduction générale

En statistiques, en économétrie et en apprentissage automatique, un modèle de régression

linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable,

dite expliquée, et une ou plusieurs variables, dites explicatives.

On parle aussi de modèle linéaire ou de modèle de régression linéaire.

Parmi les modèles de régression linéaire, le plus simple est l’ajustement affine. Celui-ci consiste à

rechercher la droite permettant d’expliquer le comportement d’une variable statistique Y comme

étant une fonction affine d’une autre variable statistique X.

En général, le modèle de régression linéaire désigne un modèle dans lequel l’espérance condi-

tionnelle de Y connaissant X est une fonction affine des paramètres. Cependant, on peut aussi

considèrer des modèles dans lesquels c’est la médiane conditionnelle de Y connaissant Y ou

n’importe quel quantile de la distribution de Y connaissant X qui est une fonction affine des

paramètres.

Le modèle de régression linéaire est souvent estimé par la méthode des moindres carrés mais il

existe aussi de nombreuses autres méthodes pour estimer ce modèle. On peut par exemple estimer

le modèle par maximum de vraisemblance ou encore par inférence bayésienne. Bien qu’ils soient

souvent présentés ensemble, le modèle linéaire et la méthode des moindres carrés ne désignent

pas la même chose. Le modèle linéaire désigne une classe de modèles qui peuvent être estimés

par un grand nombre de méthodes, et la méthode des moindres carrés désigne une méthode

d’estimation. Elle peut être utilisée pour estimer différents types de modèles.
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Historique

Ruder Josip Boskovic [5] est le premier scientifique à calculer les coefficients de régression

linéaire, en 1755-1757, quand il entreprit de mesurer la longueur de cinq méridiens terrestres en

minimisant la somme des valeurs absolues.

Pierre-Simon de Laplace [5] utilise cette méthode pour mesurer les méridiens dans ( Sur les de-

grés mesurés des méridiens et sur les longueurs observées sur pendule ) en 1789.

La première utilisation de la méthode des moindres carrés est attribuée à Adrien-Marie Le-

gendre[1] en 1805 ou à Carl Friedrich Gauss [5] qui dit l’avoir utilisée à partir de 1795.

Carl Friedrich Gauss démontre, en 1821, le théorème connu aujourd’hui sous le nom de théorème

de Gauss-Markov [6] qui exprime sous certaines conditions la qualité des estimateurs, Andrei

Markov [6] le redécouvre en 1900 .

C’est à Francis Galton [5] qu’est accordée la paternité de l’expression ( régression linéaire) en

1886 . Dans son article, Galton exprime la taille des fils en fonction de la taille des pères. Il

constate un phénomène de ( régression vers la moyenne ) .

Plus tard la colinéarité des variables explicatives est devenue un sujet de recherche important. En

1970, Arthur E. Hoerl [10] et Robert W. Kennard [10] proposent la régression pseudo-orthogonale

(Ridge Regression), une des méthodes d’estimation conçues pour pallier la présence de colinéarité

de certaines variables explicatives en imposant des contraintes sur les coefficients.

La méthode du lasso (Lasso Regression), ayant le même objectif en utilisant une technique ana-

logue, a été créée en 1996 par Robert Tibshirani [12].
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Organisation du mémoire

Dans le premier chapitre, on étudie le modèle de la régression linéaire simple et multiple, puis

on estime leures paramètres par la méthode des moindres carrés et on va donner des estimateurs

de quelques paramètres statistiques.

Dans le deuxième chapitre on va faire des tests sur les paramètres de la régression lineaire.

Et on termine par un exemple d’application .
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Chapitre 1

La régression linéaire simple et multiple

1.1 Le modèle de régression linéaire simple

1.1.1 Définition

Le modèle de régression linéaire simple est une variable endogène (dépendante) expliquée par

une seule variable exogène (indépendante) mise sous forme mathématique suivante :

Yt = aXt + b+ εt, t = 1...n

avec :

Yt : la variable endogène (dépendante, à expliquer) à la date t ;

Xt : la variable exogène (indépendante, explicative) à la date t ;

a, b : sont deux paramètres à estimer ;

εt : l’erreur aléatoire du modèle ;

n : nombre d’observations.

1.1.2 Hypothèses du modèle

Le modèle repose sur les hypothèses suivantes :

(H1) E(εt) = 0 , l’erreur centrée ;

8



1.1 Le modèle de régression linéaire simple 9

(H2) E(ε2t ) = σ2ε , la variance de l’erreur est constante ;

(H3) cov(εt, εt′) = 0, si εt 6= εt′ , les erreurs sont indépendantes ;

(H4) La normalité des erreurs, εt → N (0, σ2ε) ;

(H5) cov(xt, εt) = 0, l’erreur est indépendante de la variable exogène ;

(H6) La variable exogène Xt n’est pas aléatoire ;

(H7) Le modèle est linéaire en X par rapport aux paramètres.

1.1.3 Estimation des paramètres par la méthode des Moindres Carrés Ordi-

naires (MCO)

Soit le modèle suivant :

Yt = aXt + b+ εt

Le principe des moindres carrés consiste à rechercher les valeurs des paramètres qui minimisentla

somme des carrés des résidus :

min
(a,b)∈R2

n∑
t=1

ε2t = min
(a,b)∈R2

n∑
t=1

(
Yt − Ŷt

)2

= min
(a,b)∈R2

n∑
t=1

(
Yt − aXt − b

)2

= min
(a,b)∈R2

n∑
t=1

F 2

Pour que cette fonction ait un minimum, il faut que les dérivées par-rapport à a et b soient

nuls. 

∂F

∂a
= 0⇔ 2

n∑
t=1

(
Yt − aXt − b

)
(−Xt) = 0;

∂F

∂b
= 0⇔ 2

n∑
t=1

(
Yt − aXt − b

)
(−1) = 0.

D’aprés les deux équations, on obtient :

n∑
t=1

YtXt = a
n∑
t=1

X2
t + b

n∑
t=1

Xt (1.1)

n∑
t=1

Yt = a

n∑
t=1

Xt + nb (1.2)
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En notans â et b̂ les solutions des équations (1.1) et(1.2), d’après (1.2) on obtient :

b̂ =

n∑
t=1

Yt

n
− â

n∑
t=1

Xt

n

Donc

b̂ = Ȳ − âX̄

puisque

Ȳ =

n∑
i=1

Yt

n

 et

X̄ =

n∑
i=1

Xt

n

.

En remlaçant la valeur de b̂ dans l’équation (1.1),on obtient :

n∑
t=1

YtXt =

(
Ȳ − âX̄

) n∑
t=1

Xt + â
n∑
t=1

X2
t ⇔

n∑
t=1

YtXt = Ȳ
n∑
t=1

Xt − âX̄
n∑
t=1

Xt + â
n∑
t=1

X2
t

⇔
n∑
t=1

YtXt − Ȳ
n∑
t=1

Xt = â

( n∑
t=1

X2
t − X̄

n∑
t=1

Xt

)
D’où

â =

n∑
t=1

XtYt − Ȳ
n∑
t=1

Xt

n∑
t=1

X2
t − X̄

n∑
t=1

Xt

=

n∑
t=1

XtYt − nȲ


n∑
t=1

Xt

n


n∑
t=1

X2
t − nX̄


n∑
t=1

Xt

n


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=

n∑
t=1

XtYt − nX̄Ȳ

n∑
t=1

X2
t − nX̄2

=

1
n

n∑
t=1

(
Yt − Ȳ

)(
Xt − X̄

)
1
n

n∑
t=1

(
Xt − X̄

)2

=
cov(X,Y )

var(X)

Conclusion :

les estimateurs des MCO du modèle de régression linéaire simple

Yt = b+ aXt + εt sont :

â =

n∑
t=1

(Yt − Ȳ )(Xt − X̄)

n∑
t=1

(Xt − X̄)2
=
cov(X,Y )

var(X)

et b̂ = Ȳ − âX̄

Différentes écritures du modèle de régression linéaire simple :

Le modèle théorique ( modèle non ajusté) :

Yt = aXt + b+ εt

Le modèle estimé ( modèle ajusté) :

Yt = âXt + b̂+ et
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Avec :

Ŷt = âXt + b̂

et et = Yt − Ŷt = Yt − âXt − b̂

et :est le résidu du modèle.

1.1.4 Calcul des espérances mathématiques des estimateurs

I Calcul de l’espérance de â

Soit le modèle suivant : Yt = âXt + b̂+ et

D’aprés la méthode des MCO, on a :

â =

n∑
t=1

(
Yt − Ȳ

)(
Xt − X̄

)
n∑
t=1

(
Xt − X̄

)2

En posant

xt = Xt − X̄ et yt = Yt − Ȳ

Nous obtenons

â =

n∑
t=1

xtyt

n∑
t=1

x2t

(1.3)

On remplace la valeur yt dans (1.3), on obtient :

â =

n∑
t=1

xt

(
Yt − Ȳ

)
n∑
t=1

x2t

=

n∑
t=1

xtYt

n∑
t=1

x2t

− Ȳ

n∑
t=1

xt

n∑
t=1

x2t
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Comme
n∑
t=1

xt = 0

alors

â =

n∑
t=1

xtYt

n∑
t=1

x2t

(1.4)

car
n∑
t=1

xt =

n∑
t=1

(
Xt − X̄

)
=

n∑
t=1

Xt −
n∑
t=1

X̄

= n

( n∑
t=1

Xt

n

)
− nX̄

= nX̄ − nX̄ = 0

On remplace maintenant Yt = aXt + b+ εt dans l’equation (1.4), on aura :

â =

n∑
t=1

xt

(
aXt + b+ εt

)
n∑
t=1

x2t

=

b
n∑
t=1

xt + a
n∑
t=1

xtXt +
n∑
t=1

xtεt

n∑
t=1

x2t

=

a

n∑
t=1

xtXt +
n∑
t=1

xtεt

n∑
t=1

x2t
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=

a
n∑
t=1

xt

(
xt + X̄

)
n∑
t=1

x2t

+

n∑
t=1

xtεt

n∑
t=1

x2t

=

a

n∑
t=1

x2t

n∑
t=1

x2t

+

X̄a

n∑
t=1

xt

n∑
t=1

x2t

+

n∑
t=1

xtεt

n∑
t=1

x2t

car Xt = xt + X̄.

Comme
n∑
t=1

xt = 0 (on l’a déjà démontré), il résulte alors :

â = a+

n∑
t=1

xtεt

n∑
t=1

x2t

En passant à l’espérance mathématique, on trouve :

E(â) = E(a) + E


n∑
t=1

xtεt

n∑
t=1

x2t



= E(a) +


n∑
t=1

xtE(εt)

n∑
t=1

x2t


Or, d’aprés l’hypothèse(H1),

E(εt) = 0

Finalement :
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E(â) = a

a est un estimateur sans biais.

I Calcul de l’espérance de b̂

On a :

b̂ = Ȳ − âX̄

b̂ = Ȳ − X̄


n∑
t=1

xtyt

n∑
t=1

x2t



b̂ = Ȳ − X̄


n∑
t=1

xt

n∑
t=1

x2t

 (Yt − Ȳ )

b̂ = Ȳ − X̄


n∑
t=1

xtYt

n∑
t=1

x2t


D’où

b̂ =

n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

Yt (1.5)

Car

Ȳ =

n∑
t=1

Yt

n

.

Or que :

Yt = aXt + b+ εt
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donc :

b̂ =
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t


(
aXt + b+ εt

)

b̂ =
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 aXt +
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 b+
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt

b̂ = a


n∑
t=1

Xt

n

− aX̄


n∑
t=1

xtXt

n∑
t=1

x2t

+

n∑
t=1

b

n
− bX̄


n∑
t=1

xt

n∑
t=1

x2t

+
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt

b̂ = aX̄ − aX̄


n∑
t=1

xtXt

n∑
t=1

x2t

+ b+
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt

Comme Xt = xt + X̄, on déduit :

b̂ = aX̄ − aX̄


n∑
t=1

xt(xt + X̄)

n∑
t=1

x2t

+ b+
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt

b̂ = aX̄ − aX̄


n∑
t=1

x2t

n∑
t=1

x2t

− aX̄2


n∑
t=1

xt

n∑
t=1

x2t

+ b+

n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt
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On obtient alors :

b̂ = b+
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt

En passant à l’espérance mathématique, on trouve :

E(b̂) = E(b) + E




n∑
t=1

1

n
− X̄xt

n∑
t=1

x2t

 εt



E(b̂) = E(b)




n∑
t=1

1

n
− X̄xt

n∑
t=1

x2t

E(εt)



E(b̂) = E(b) car E(εt) = 0

Finalement E(b̂) = b

β0 est un estimateur sans biais.

I Calcul de la variance de â

Par définition, la variance de (â) est donnée par :

var(â) = E
[
â− E(â)

]2
Et E(â) = â.

d’un autre coté, on sait que :

â = a+

n∑
t=1

xtεt

n∑
t=1

x2t
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Ce qui implique :

â− a =

n∑
t=1

xtεt

n∑
t=1

x2t

Alors on déduit que :

var(â) = E(â− a)2 = E


n∑
t=1

xtεt

n∑
t=1

x2t


2

=
1(

n∑
t=1

x2t

)2E

(
n∑
t=1

xtεt

)2

=
1(

n∑
t=1

x2t

)2E
[
x21ε

2
1 + x22ε

2
2 + ...+ x2nε

2
n + 2x1x2ε1ε2 + ...+ 2xn−1xnεn−1εn

]

D’après les hypothèses (H1) ,(H2) et (H3) du modèle de régression simple, on obtient :

var(â) =
1(

n∑
t=1

x2t

)2

(
σ2εx

2
1 + σ2εx

2
2 + σ2εx

2
3 + ...+ σ2εx

2
n

)

D’où :

var(â) =

σ2ε

n∑
t=1

x2t(
n∑
t=1

x2t

)2

var(â) =
σ2ε
n∑
t=1

x2t

var(â) =
σ2ε

n∑
t=1

(
Xt − X̄

)2
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I Calcul de la variance de b̂

D’après les propriétés de l’estimateur b̂ on a :

b̂ = b+
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt ⇒ b̂− b =
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt

Par définition, la variance de b̂ est donnée par : var(b̂) = E
[
b̂− E(b̂)

]2
= E(b̂− b)2

Puisque E(b̂) = b nous obtenons :

var(b̂) = E
(
b̂− b

)2
Alors on déduit que :

var(b̂) = E


n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt


2

var(b̂) = E


n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt


2

+ 2E
n∑
t=1

 1

n
− X̄xn−1

n∑
t=1

x2n−1


 1

n
− X̄xn

n∑
t=1

x2n

 εn−1εn

var(b̂) = E


n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt


2

D’après les hypothèses (1),(2),et(3) du modèle de régression simple, on obtient :

var(b̂) = σ2ε

n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t


2
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Il résulte alors :

var(b̂) = σ2ε

n∑
t=1


1

n2
− 2X̄xt

n

n∑
t=1

x2t

+
X̄2x2t(
n∑
t=1

x2t

)2


Puisque

n∑
t=1

xt = 0 alors :

var(b̂) = σ2ε


1

n
+

X̄2
n∑
t=1

x2t(
n∑
t=1

x2t

)2

 (1.6)

var(b̂) = σ2ε


n∑
t=1

x2t + nX̄2

n

n∑
t=1

x2t

 (1.7)

Et comme Xt = xt + X̄ donc on déduit que :

var(b̂) = σ2ε


n∑
t=1

x2t +
n∑
t=1

X̄2

n
n∑
t=1

x2t



= σ2ε


n∑
t=1

(
x2t + X̄2

)
n

n∑
t=1

x2t



= σ2ε


n∑
t=1

X2
t

n

n∑
t=1

(Xt − X̄)2


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Conclusion

Les variances des paramètres â et b̂ du modèle Yt = aXt + b+ εt sont :

var(â) =
σ2ε

n∑
t=1

(
Xt − X̄

)2

et var(b̂) = σ2ε


n∑
t=1

X2
t

n

n∑
t=1

(
Xt − X̄

)2


I Calcul de la covariance de (â, b̂) :

Par définition, la covariance entre â et b̂ se calcule comme suit :

cov(â, b̂) = E
[(
â− E(â)

)(
b̂− E(b̂)

)]
= E

[
(â− a)(b̂− b)

]
Comme â et b̂ sont sans biais,

Alors :

cov(â, b̂) = E


n∑
t=1

xtεt

n∑
t=1

x2t

∗
n∑
t=1

 1

n
− X̄xt

n∑
t=1

x2t

 εt



cov(â, b̂) = E


n∑
t=1

εt

n∑
t=1

xtεt

n
n∑
t=1

x2t

−
X̄

n∑
t=1

xtεt

n∑
t=1

xtεt(
n∑
t=1

x2t

)2



cov(â, b̂) = E


n∑
t=1

εt

n∑
t=1

xtεt

n
n∑
t=1

x2t

− X̄E



(
n∑
t=1

xtεt

)2

(
n∑
t=1

x2t

)2


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D’aprés les hypothèses (H1) ,(H2) et (H3) du modèle de régression simple, il résulte que :

cov(â, b̂) = − X̄σ2ε
n∑
t=1

x2t

I La convergence du â et b̂

On a : var(â) =
σ2ε

n∑
t=1

(
Xt − X̄

)2

lorsque n→ +∞

alors
n∑
t=1

(
Xt − X̄

)2

→ +∞

et var(â)→ 0

On déduit que â est convergent.

De même, pour b̂

D’aprés l’équation (1.6), on a :

var(b̂) = σ2ε


1

n
+

X̄2
n∑
t=1

x2t(
n∑
t=1

x2t

)2


Et comme xt = Xt − X̄ alors :

var(b̂) = σ2ε

 1

n
+

X̄2

n∑
t=1

(
Xt − X̄

)2


lorsque n→ +∞

alors
n∑
t=1

(
Xt − X̄

)2

→ +∞

et var(b̂)→ 0

On déduit que b̂ est convergent.
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Théorème 1.1.1 (Gauss Markov)

Soit le modèle suivant : Yt = aXt + b+ εt

un estimateur de moindre carrée est un estimateur de Gauss Markov (blue) s’il est sans biais,

linéaire et possède une variance minimale.

Preuve du Théorème (1.1.1)

Pour démonter ce théorème, on définit un autre estimateur linéaire sans biais sous la forme

suivante :

α =
n∑
t=1

AtYt

Par la suite on compare la variance de α avec la variance de â et celui qui a une variance minimale

on dira qu’il est le meilleur estimateur.

Démontrons d’abord est ce que â est linéaire et sans biais.

I â est-il linéaire ?

D’aprés les propriétés du paramètre â on a :

â =

n∑
t=1

xtyt

n∑
t=1

x2t

â =

n∑
t=1

xt

(
Yt − Ȳ

)
n∑
t=1

x2t

â =

n∑
t=1

xtYt

n∑
t=1

x2t

− Ȳ

n∑
t=1

xt

n∑
t=1

x2t

Comme
n∑
t=1

xt = 0, on obtient :
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â =

n∑
t=1

xtYt

n∑
t=1

x2t

En posant

Vt =
xt
n∑
t=1

x2t

Alors â s’écrit sous la forme suivante :

n∑
t=1

AtYt =
n∑
t=1

VtYt

Ce qui fait que â est linéaire.

I â est-il sans biais ?

On a :

E(â) = E
[ n∑
t=1

VtYt

]

E(â) = E
[ n∑
t=1

Vt

(
aXt + b+ εt

)]

E(â) = aE
[ n∑
t=1

VtXt

]
+ bE

[ n∑
t=1

Vt

]
+ E

[ n∑
t=1

Vtεt

]

Connaissant que :
n∑
t=1

Vt = 0,
n∑
t=1

xt = 0 et E(εt) = 0

Alors :

E(â) = aE
[ n∑
t=1

VtXt

]

Sachant que :
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Vt =
xt
n∑
t=1

x2t

Ce qui fait :

E(â) = aE


n∑
t=1

xtXt

n∑
t=1

x2t

 (1.8)

Et comme xt = Xt − X̄ ⇒ Xt = xt + X̄

Nous remplaçons la valeur de Xt dans (1.8), nous obtenons :

E(â) = aE


n∑
t=1

xtXt

n∑
t=1

x2t



E(â) = aE


n∑
t=1

xt(xt + X̄)

n∑
t=1

x2t



E(â) = aE


n∑
t=1

x2t

n∑
t=1

x2t

+ aE


X̄

n∑
t=1

xt

n∑
t=1

x2t



Et puisque :
n∑
t=1

xt = 0

Finalement E(â) = a est un paramètre sans biais.

De ces deux démonstrations (linéaire et sans biais) on retient que :
n∑
t=1

Vt = 0 et
n∑
t=1

VtXt = 1
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I â possède t-il une variance minimale ?

On suppose qu’il existe un autre estimateur sans biais linéaire définit comme suit :

α =
n∑
t=1

AtYt

Avec : E(α) = a

Et At = Vt +Mt

On a Yt = aXt + b+ εt

En passant à l’espérance mathématique :

E(α) = E
[ n∑
t=1

AtYt

]

E(α) = E

[
n∑
t=1

At

(
aXt + b+ εt

)]

E(α) = aE

[
n∑
t=1

AtXt

]
+ bE

[
n∑
t=1

At

]

E(α) = a (1.9)

Car E

[
n∑
t=1

Atεt

]
= 0

pour que l’équation (1.9) soit vérifiée c’est-à-dire E(α) = a , il faut que E(α) = a il faut que :

n∑
t=1

AtXt = 1 (1.10)

et
n∑
t=1

At = 0 (1.11)
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⇔



n∑
t=1

AtXt = 1⇒
n∑
t=1

(Vt +Mt)Xt = 1⇒
n∑
t=1

VtXt +
n∑
t=1

MtXt = 1

n∑
t=1

At = 0⇒
n∑
t=1

(Vt +Mt) = 0⇒
n∑
t=1

Vt = 0 et
n∑
t=1

Mt = 0

Maintenant, nous calculons la var(α) :

Sous les conditions (1.10) et (1.11) et d’après la définition de la variance on a :

var(α) = E
[
α− E(α)

]2
= E

(
α− a

)2

D’un autre coté on a :

α =

n∑
t=1

AtYt =
n∑
t=1

At

(
aXt + b+ εt

)
= a

n∑
t=1

AtXt + b
n∑
t=1

At +
n∑
t=1

Atεt

Sous l’hypothèse, que les conditions (1.10) et (1.11) soient vérifiées :

α = a+
n∑
t=1

Atεt ⇒ α− a =
n∑
t=1

Atεt

Nous obtenons :

var(α) =E
( n∑
t=1

Atεt

)2

= E
(
A1ε1 +A2ε2 + ...Anεn

)2

= E
(
A2

1ε
2
1 +A2

2ε
2
2 + ...A2

nε
2
n + 2A1A2ε1ε2 + ...+ 2An−1Anεn−1εn

)
= E

( n∑
t=1

A2
t ε

2
t + 2

n∑
t=1

n∑
t′=1

AtAt′εtεt′

)

D’après les hypothèses du modèle de régression simple :

E(ε2t ) = σ2ε et E(εtεt′) = 0
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On déduit alors :

var(α) = σ2ε

n∑
t=1

A2
t

var(α) = σ2ε

n∑
t=1

(
VtMt

)2

var(α) = σ2ε

n∑
t=1

(
V 2
t +M2

t + 2VtMt

)
var(α) = σ2ε

n∑
t=1

V 2
t + σ2ε

n∑
t=1

M2
t + 2σ2ε

n∑
t=1

VtMt

Sachant que :
n∑
t=1

Vt = 0 alors
n∑
t=1

Mt +
n∑
t=1

Vt = 0⇒
n∑
t=1

Mt = 0

Et
n∑
t=1

VtXt = 1 alors
n∑
t=1

MtXt +
n∑
t=1

VtXt = 1⇒
n∑
t=1

MtXt = 0

On déduit :

n∑
t=1

VtMt =

n∑
t=1

xtMt

n∑
t=1

x2t

=

n∑
t=1

XtMt

n∑
t=1

x2t

− X̄

n∑
t=1

Mt∑
t=1

x2t
= 0

Ce qui résulte :

var(α) = σ2ε

n∑
t=1

V 2
t + σ2ε

n∑
t=1

M2
t car

( n∑
t=1

VtMt = 0

)
Nous remplaçons Vt par Vt =

xt
n∑
t=1

x2t

on trouve donc :

var(α) = σ2ε

n∑
t=1

 x2t
n∑
t=1

(
x2t

)2

+ σ2ε

n∑
t=1

M2
t
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var(α) =σ2ε

n∑
t=1

x2t
n∑
t=1

(
x2t

) + σ2ε

n∑
t=1

M2
t

var(α) =
σ2ε
n∑
t=1

x2t

+ σ2ε

n∑
t=1

M2
t

Or que :

var(â) =
σ2ε
n∑
t=1

x2t

Finalement :

var(α) = var(â) + σ2ε

n∑
t=1

M2
t

On remarque que var(α) > var(â) puisque σ2ε
n∑
t=1

M2
t > 0.

On conclut que le paramètre (â) a une variance minimale, ce qui fait qu’il est le meilleur estima-

teur (estimateur blue).

Remarque

Même procédure pour le paramètre (b̂) :

On suppose β =
n∑
t=1

BtYt avec Bt = Wt +Nt tel que Wt =
1

n
− X̄Vt

1.1.5 Estimation de la variance des erreurs

Soit le modèle de régression simple : Yt = aXt + b+ εt

Sachant que le résidu est :

et = Yt − Ŷt

On a : Ŷt = âXt + b̂ ;
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et Ȳ = aX̄ + b+ ε̄

Alors :

et = aXt + b+ εt − âXt − b̂

on remplace b̂ par sa valeur, on obtient :

et = aXt + b+ εt − âXt − Ȳ + âX̄

On remplace aussi Ȳ par sa valeur, on obtient :

et = aXt + b+ εt − âXt − aX̄ − b− ε̄+ âX̄

et =

(
a− â

)
Xt −

(
a− â

)
X̄ + εt − ε̄

et =

(
a− â

)(
Xt − X̄

)
+ εt − ε̄

et =

(
a− â

)
xt + εt − ε̄

car xt = (Xt − X̄)

D’où
n∑
t=1

e2t =

n∑
t=1

[
(a− â)xt + (εt − ε̄)

]2

n∑
t=1

e2t =
n∑
t=1

(
εt − ε̄

)2

+

(
a− â

)2 n∑
t=1

xt + 2

(
a− â

) n∑
t=1

xt

(
εt − ε̄

)

On passant à l’espérance E
( n∑
t=1

e2t

)
on obtient :

E
( n∑
t=1

e2t

)
= (n− 1)σ2ε + σ2ε − 2σ2ε = (n− 2)σ2ε

On déduit :

σ2ε =

E
( n∑
t=1

e2t

)
n− 2
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fmalement :

σ̂2ε =

n∑
t=1

e2t

n− 2

σ̂2ε est un estimateur sans biais.

1.1.6 Analyse de la variance et le coefficient de détermination

Pour calculer le coefficient de détermination, nous démontrons d’abord les deux relations :

1.
n∑
t=1

et = 0, La somme des résidus est nulle (la droite de régression passe par le point moyen

cela est valable uniquement pour les modèles contenant le terme constant),

2.
n∑
t=1

Yt =
n∑
t=1

Ŷt, légalité entre la moyenne de la série à expliquer et la moyenne de la série

ajustée.

On démontre d’abord que :
n∑
t=1

et =
n∑
t=1

(Yt − Ŷ ) = 0

On sait que :

Yt = Ŷt + et = âXt + b̂+ et ⇔
n∑
t=1

Yt = â
n∑
t=1

Xt + nb̂+

n∑
t=1

et ⇒
n∑
t=1

et = nȲ − ânX̄ − nb̂

On remplace b̂ par sa valeur on obtient alors :

n∑
t=1

et = nȲ − ânX − n(Ȳ − âX̄)

D’où :
n∑
t=1

et = nȲ − ânX̄ − nȲ + ânX̄
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Donc :
n∑
t=1

et = 0

Puisque
n∑
t=1

et = 0 on déduit alors :

n∑
t=1

et =

n∑
t=1

(Yt − Ŷ ) = 0⇒
n∑
t=1

Yt −
n∑
t=1

Ŷ = 0

On conclue :
n∑
t=1

Yt =

n∑
t=1

Ŷt ⇒ Ȳ =
¯̂
Y

A partir de ces deux équations nous pourrons déduire la fonction fondamentale d’analyse de la

variance.

On a :

Yt − Ŷt = et ⇒ Yt = Ŷt + et

D’où :

Yt − Ȳ = Ŷt + et − Ȳ ⇒ (Yt − Ȳ )2 = (Ŷt − Ȳ )2 + e2t + 2(Ŷt − Ȳ )et

Passant aux sommes on trouve :

n∑
t=1

(
Yt − Ȳ

)2

=

n∑
t=1

(
Ŷt − Ȳ

)2

+

n∑
t=1

e2t + 2

n∑
t=1

(
Ŷt − Ȳ

)
et

Comme :
n∑
t=1

et = 0

et
n∑
t=1

Yt =

n∑
t=1

Ŷt

On déduit alors :
n∑
t=1

(Ŷt − Ȳ )et = 0

Il résulte :
n∑
t=1

(Yt − Ȳ )2 =

n∑
t=1

(Ŷt − Ȳ )2 +

n∑
t=1

e2t
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Qu’on peut écrire comme suit

n∑
t=1

(Yt − Ȳ )2 =

n∑
t=1

(Ŷt − Ȳ )2 +

n∑
t=1

e2t

⇒ SCT = SCE + SCR (1.12)

l’équation (1.12) :appelée l’équation d’analyse de la variance.

Avec :

SCT =
n∑
t=1

(Yt − Ȳ )2 : désigne la variabilité totale ;

SCE =
n∑
t=1

(Ŷt − Ȳ )2 : désigne la variabilité expliquée ;

SCR =
n∑
t=1

e2t =
n∑
t=1

(Yt − Ŷ )2 : désigne la variabilité des résidus.

Coefficient de détermination

De l’équation (1.12) on peut déduire le coefficient de détermination

(1.12)⇒ SCT

SCT
=
SCE

SCT
+
SCR

SCT

⇒ 1 =
SCE

SCT
+
SCR

SCT

D’ou

R2 = 1− SCR

SCT
=
SCE

SCT

0 ≤ R2 ≤ 1, plus la valeur de R2 est proche de 1, plus le modèle est plus significatif.
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1.2 Les modèles de régression linéaire multiple

1.2.1 Présentation

Le modèle multiple est une généralisation du modèle simple dans lequel figurent plusieurs

variables explicatives :

Yt = a0 + a1X1t + a2X2t + ...+ akXkt + εt, t = 1...n

Avec :

Yt : variable à expliquer à la date t ;

X1t : variable explicative 1 à la date t ;
...

Xkt : variable explicative k à la date t ;

a0, a1, ..., ak : les paramètres du modèle ;

εt : l’erreur aléatoire du modèle ;

n : nombre d’observations.

La forme matricielle

Pour faciliter l’écriture de certains résultats, on a habituellement recours aux notations ma-

tricielles en écrivant le modèle observation par observation, nous obtenons :

Y1 = a0 + a1x11 + a2x21 + ...+ akxk1 + ε1

Y2 = a0 + a1x12 + a2x22 + ...+ akxk2 + ε2
...

Yt = a0 + a1x1t + a2x2t + ...+ akxkt + εt

Yn = a0 + a1x1n + a2x2n + ...+ akxkn + εn

Soit sous la forme matricielle :

Y(n,1) = X(n,k+1)A(k+1,1) + ε(n,1)

Avec :
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Y(n,1) =



Y1

Y2

.

.

Yt

Yn


; A =



a0

a1

.

.

at

an


; X =



1 x11 x21 . . xk1

1 x12 x22 . . xk2

. . . . . .

1 x1t x2t . . xkt

. . . . . .

1 x1n x2n . . xkn


; ε =



ε1

ε2

.

.

εt

εn


Avant d’estimer le modèle, on cite d’abord les hypothèses sur lesquelles il se repose.

1.2.2 Hypothèses du modèle

Le modèle repose sur les hypothèses suivantes :

(H0) les valeurs xit sont observées sans erreurs ;

(H1) E(εt) = 0 , espérance nulle ;

(H2) E(ε2t ) = σ2ε , la variance de l’erreur est constante ∀t ;

(H3) E(εt, εt′) = 0 si t 6= t′ ,indépendance des erreurs ;

(H4) cov(xit, εt) = 0, l’erreur indépendant des xit ;

(H5) absence de colinéarité entre les variables explicatives⇒ (X ′X) régulière et (X ′X)−1 existe ;

(H6)

(
X ′X

n

)
tend vers une matrice finie non singulière ;

(H7) n > k + 1 nombre d’observations est supèrieur aux nombre des séries explicatives.

1.2.3 Estimation et propriétés des estimateurs

I Estimation des coefficients de régression :

Soit le modèle :

Yt = XtA+ εt (1.13)

Afin d’estimer le vecteur (A) composé des coefficients a0, a1, ..., ak nous appliquons la méthode

des moindres carrées ordinaire (MCO) qui consiste à minimiser la somme des carrées des erreurs,
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soit :

min
(a0,...,ak)∈Rk+1

n∑
t=1

ε2t = min
(a0,...,ak)∈Rk+1

ε′ε = min

(
Y −XÂ

)′(
Y −XÂ

)
= min

(a0,...,ak)∈Rk+1
F (1.14)

Avec ε′ : est le transposé du vecteur ε.

Pour minimiser cette fonction par rapport au vecteur (A) nous différencions F par rapport au

même vecteur et on obtient :
∂F

∂A
= −2X ′Y + 2X ′XÂ = 0⇒ Â = (X ′X)−1X ′Y

Avec (X’X) matrice de dimension (k + 1, k + 1) est inversible.

Le modèle estimé s’écrit :

Ŷ = â0 + â1x1t + â2x2t + ...+ âkxkt + et

Avec : et = Yt − Ŷt

où et : résidu, est l’écart entre la valeur observée de la variable à expliquée et sa valeur estimée,

elle est connue.

Conclusion

l’estimateur de MCO du modèle de régression linéaire multiple est :

Â = (X ′X)−1X ′Y

I Propriétés des estimateurs :

• Estimateur sans biais :

Soit le modèle Y = XA+ ε

On peut s’écrire :
Y = XÂ+ e

Ŷ = XÂ

⇒ e = Y − Ŷ

Nous obtenons :

Â = (X ′X)−1X ′Y

Â = (X ′X)−1X ′(XA+ ε)
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Â = (X ′X)−1X ′(XA) + (X ′X)−1X ′ε

Â = A+ (X ′X)−1X ′ε

Â−A = (X ′X)−1X ′ε (1.15)

D’où

E(Â) = A+ (X ′X)−1X ′E(ε)

avec : E(ε) = 0

Finalement

E(Â) = A⇒ l’estimateur est sans biais.

1.2.4 Estimateur de la variance de l’erreur et la matrice de variance cova-

riance des coefficients de régression

On a :

var(Â) = E
[
(Â−A)(Â−A)′

]
(1.16)

En remplaçant (1.15) dans (1.16) on obtient :

var(Â) = σ2ε
[
(X ′X)−1(X ′X)(X ′X)−1

]
= σ2ε(X

′X)−1

Avec σ2ε matrice diagonale =



σ2ε 0 . . 0

0 σ2ε 0 . .

. . . . .

. . . . 0

0 . . 0 σ2ε


Et puisque σ2ε est inconnu donc on l’estime.

I Estimateur de la variance de l’erreur :

Soit le modèle : Yt = XA+ εt

On a : e = Y − Ŷ

Ŷ = XÂ d’où

e = Y −XÂ (1.17)
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En remplaçant Â = (X ′X)−1X ′Y dans l’équation (1.17) on aura :

e = Y −X(X ′X)−1X ′Y = [I −X(X ′X)−1X ′]Y

On pose M matrice idempotente, M = I −X(X ′X)−1X ′

alors

n∑
t=1

e2t = e′e = ε′M ′Mε = ε′Mε

E(e′e) = σ2εIn[I −X(X ′X)−1X ′]t = σ2εIn(n− k − 1)

On obtient alors :

σ̂2ε =
e′e

n− k − 1

Avec : var(Â) = σ̂2ε(X
′X)−1 matrice variance-covariance.

1.2.5 Equation d’analyse de la variance et qualité d’un ajustement

Comme le modèle simple on a :

1.
n∑
i=1

Yt =

n∑
i=1

Ŷt ⇒ Ȳ =
¯̂
Y

2.
n∑
i=1

et = 0

De ces deux relations nous déduisons l’équation fondamentale de l’analyse de la variance :
n∑
t=1

(
Yt − Ȳ

)2

=
n∑
t=1

(
Ŷt − ¯̂

Y

)2

+
n∑
t=1

e2t

SCT = SCE + SCR

Avec :

SCT : variabilité totale.
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SCE : variabilité expliquée.

SCR : variabilité résiduelle.

Cette équation permet de juger la qualité d’ajustement d’un modèle, en effet plus SCE est

proche du SCT meilleur est l’ajustement globale du modèle. Cependant ces valeurs dépendant

des unités de mesure, c’est pourquoi on préfère utiliser le nombre sans dimensions :

R2 =

n∑
t=1

(Ŷt − Ȳ )2

n∑
t=1

(Yt − Ȳ )2
= 1−

n∑
t=1

e2t

n∑
t=1

(Yt − Ȳ )2

R2 = Coefficient de détermination : mesure la proportion de la variance de Y expliquée par la

régression de Y sur X.

• Si n < k alors on calcule le coefficient de détermination corrigé.

R̄2 = 1− n− 1

n− k − 1
(1−R2)

On a R̄2 ≤ R2 et si n est grand R̄2 ∼= R2



Chapitre 2

Tests et intervalles de confiance

2.1 Cas de modèle linéaire simple

2.1.1 Test de nullité de â

Soit le modèle suivant :

Yt = aXt + b+ εt

On sait que

σ̂2ε =

n∑
t=1

e2t

n− 2
(2.1)

Et εt → N (0, σ2ε)

De (2.1) on a :

(n− 2)σ̂2ε =
n∑
t=1

e2t

⇒ (n− 2)σ̂2ε
σ2ε

=

n∑
t=1

e2t

σ2ε
→ X 2

n−2

40
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D’un autre coté on a :

â→ N

a, σ2ε
n∑
t=1

x2t


D’où on obtient la variable centrée réduite Z1 :

Z1 =
â− a√√√√√ σ2

ε
n∑
t=1

x2t

→ N (0, 1)

D’aprés la définition de la loi de Student qui est : le rapport d’une loi centrée réduite et la racine

carrée d’une loi de khideux divisée par le nombre de ses degrés de liberté.

On applique cette définition on obtient alors :

Tc =
Z1√

(n−2) σ̂
2
ε
σ2ε

n−2

Tc =
σεZ1

σ̂ε

Tc =
σε
σ̂ε

â− a
σε√√√√√ n∑
t=1

x2t

Tc =
â− a
σ̂â

→ t(n−2, θ
2
) (2.2)

Hypothèses du test

A partir du résultats (2.2) on peut effectuer un test qui consiste à tester l’hypothèse suivante :

 H0 : a = 0

H1 : a 6= 0
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La statistique du test

Sous l’hypothèse H0, on obtient la valeur critique (Tc) tel que :

Tc =

∣∣∣∣ â− aσ̂â

∣∣∣∣→ Tt

(
n− 2,

θ

2

)

Avec :

Tc : la valeur critique de la statistique (T ) (dite calculée) ;

â : l’estimateur du paramètre a ;

σ̂â : l’écart-type du paramètre a ;

θ : Le seuil donné,en général θ = 5% ;

n− 2 : degré de liberté ;

Tt : la valeur de la statistique Student (T ) lue à partir de la table statistique.

Règle de décision

• Si |Tc| < Tt, on accepte l’hypothèse H0 ;

• Si |Tc| ≥ Tt, on rejette l’hypothèse H0.

2.1.2 Test de nullité de b̂

Ona : b̂→ N

b, σ2ε


n∑
t=1

x2t

n
n∑
t=1

(Xt − X̄)2




D’où on obtient la variable centrée réduite Z2 :

Z2 =
b̂− b√√√√√√√√√σ2ε


n∑
t=1

X2
t

n

n∑
t=1

(
Xt − X̄

)2


→ N (0, 1)
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On appliquant la définition de la loi de Student on obtient :

Tc =
Z2√

(n−2) σ̂
2
ε
σ2ε

n−2

Tc =
σεZ2

σ̂ε

Tc =
σε
σ̂ε

b̂− b√√√√√√√√√σ2ε


n∑
t=1

X2
t

n

n∑
t=1

(
Xt − X̄

)2



Tc =
b̂− b
σ̂b̂
→ t(n−2, θ

2
) (2.3)

Hypothèses du test

A partir du résultats (2.3) on peut effectuer un test qui consiste à tester l’hypothèse suivante :

 H0 : b = 0

H1 : b 6= 0

La statistique du test

Sous l’hypothèse H0, on obtient la valeur critique (Tc) tel que :

Tc =

∣∣∣∣∣ b̂− bσ̂b̂

∣∣∣∣∣→ Tt

(
n− 2,

θ

2

)

Avec :

Tc : la valeur critique de la statistique (T ) (dite calculée) ;

b̂ : l’estimateur du paramètre b ;

σ̂â : l’écart-type du paramètre b ;
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θ : Le seuil donné,en général θ = 5% ;

n− 2 : degré de liberté ;

Tt : la valeur de la statistique Student (T ) lue à partir de la table statistique.

Règle de décision

• Si |Tc| < Tt, on accepte l’hypothèse H0 ;

• Si |Tc| ≥ Tt, on rejette l’hypothèse H0.

Remarques

1. Lorsque on effectue les tests d’hypothèses bilatéraux des deux paramètres a et b suivants : H0 : a = α

H1 : a 6= α
et

 H0 : b = β

H1 : b 6= β

On prend le seuil
θ

2
.

2. Lorsque on effectue les tests unilatéraux des deux paramètres c’est-à-dire les tests d’hypo-

thèses suivants : H0 : a = α

H1 : a > α, a < α
et

 H0 : b = β

H1 : b > β, b < β

On prend le seuil θ.

Intervalles de confiances des paramètres a et b

Les intervalles de confiances des paramètres a et b et au seuil donné θ (au niveau de confiance

(1− θ)) sont donnés par :

Intervalle de confiance de a :

â± t θ
2
∗ σ̂â

Intervalle de confiance de b :

b̂± T θ
2
∗ σ̂b̂



2.1 Cas de modèle linéaire simple 45

Intervalles de confiances de σ2

On a :

σ̂2 =

n∑
n=1

e2t

n− 2
= S2 ⇒ (n− 2)S2

σ2
⇒ X 2

n−2

D’où

P

[
X 2
1 ≤

(n− 2)S2

σ2
≤ X 2

2

]
= 1− θ

P

[
X 2
1

(n− 2)S2
≤ 1

σ2
≤ X 2

2

(n− 2)S2

]
= 1− θ

On obtient :

P

[
(n− 2)S2

X 2
1

≤ σ2 ≤ (n− 2)S2

X 2
2

]
= 1− θ

2.1.3 Analyse de la variance et test de Fisher

On a déjà définit SCR, SCE et SCT , ses sommes peuvent être utilisées pour tester l’hypo-

thèse suivante : pour a : H0 : a = 0 ∧ b = 0

H1 : a 6= 0 ∧ b 6= 0

Sous l’hypothèse : H0 : a = 0 ∧ b = 0,

On a :

E(SCT ) = (n− 1)σ2

E(SCE) = (1)σ2

E(SCR) = (n− 2)σ2

Avec (n− 1), (1)et(n− 2) des degrés de libertés de SCT , SCE et SCR respectivement.

D’autre part, lorsque H0 est vérifiée on a :
SCT

n− 1
→ X 2

n−1,

SCR

n− 2
→ X 2

n−2,



46 Tests et intervalles de confiance

et
SCE

1
→ X 2

1

Du moment que
SCE

σ2
et
SCR

σ2
sont indépendants, on peut déduire donc valeur critique F (Fisher)

qui se définit comme suit : C’est le rapport entre deux khi deux (X ) indépendants et leurs degrés

de libertés ;

Alors on obtient :

Fc =

SCE
σ2

1
SCR
σ2

n−2

=
SCE
1

SCE
n−2

=
(n− 2)SCE

SCR
→ F(1,n−2,1−θ)

Avec :

Fc : désigne la valeur critique de Fisher calculée.

F : désigne la valeur de Fisher lue à partir de la table statistique de Fisher aux degrés de libertés.

(1, n− 2) : se sont des degrés de libertés.

θ% : Le seuil donné.

Règle de décision

• Si |Fc| ≥ F(1,n−2,1−θ) on rejette l’hypothèse H0 : c’est-à-dire le modèle est globalement signifi-

catif.

• Si |Fc| < F(1,n−2,1−θ) on accepte l’hypothèse H0 : c’est-à-dire le modèle n’est pas globalement

significatif.



2.1 Cas de modèle linéaire simple 47

Tableau d’analyse de la variance

Source de varia-

tion

Sommes des carrées Degré de liberté Moyenne des carrées F calculé

Variabilité à ex-

pliquer X

SCE =
n∑
t=1

(Ŷ − ˆ̄Y )2 k = 1
SCE

1
= MCreg Fc =

MCreg
MCres

Variabilité rési-

duelle

SCR =

n∑
t=1

e2t =

n∑
t=1

(Y − Ŷ )2 n− 2
SCR

n− 2
= MCres

Variabilité totale SCE =
n∑
t=1

(Yt − Ȳ )2 n− 1

2.1.4 Prévision à l’aide d’un modèle de régression simple

Une fois les paramètres du modèle Yt = aXt + b + εt ; sont estimés, le modèle est validé, il

est possible d’effectuer les prévisions à l’horizon h.

Soit le modèle estimé sur la période t = 1, ..., n alors :

Ŷn = âXn + b̂

Si la valeur Xt est connue en (n+h) alors la prévision de la valeur estimée Ŷt à l’horizon (n+h)

se calculera par l’équation suivante :

Ŷn+h = âXn+h + b̂

Comme on peut calculer l’intervalle de confiance de Yn+h.

Sachant bien sûr la valeur de la variance de l’erreur de prévision qui est :
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var(en+h) = var

(
Yn+h − Ŷn+h

)
= σ̂2ε

 1

n
+

(Xn+h − X̄)2

n∑
i=1

x2t

+ 1


D’où l’intervalle de confiance de la variable Yn+h au seuil (1− θ) est :

Yn+h = Ŷn+h ± t
θ
2
n−2 ∗ σ̂ε

√√√√√√√√√
 1

n
+

(Xn+h − X̄)2

n∑
i=1

x2t

+ 1


Avec :

t
θ
2
n−2 : désigne la valeur de t Student lue à partir de la table statistique au seuil

(
θ

2

)
et au degré

de liberté (n− 2).

σ̂ε : désigne l’écart-type de l’erreur en valeur connue.

Xn+h : désigne la valeur de la variable exogène à l’horizon (n+ h).

Ŷn+h : désigne la valeur de la variable endogène estimée à l’horizon (n+ h).

2.2 Cas de modèle linèaire multiple

2.2.1 Le test de student

Le test de student tester l’influence directe de la variable explicative sur la variable endogène,

revient à tester son coefficient de régression s’il est égale ou différent de 0, pour un seuil choisi,

en général θ = 5%.

Le test d’hypothèse est le suivant : est appelé (test bilatéral)

 H0 : ai = 0; i = 0, ..., k

H1 : ai 6= 0; i = 0, ..., k
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La statistique de student est la suivante :

tθc =

∣∣∣∣ âi − aiσâi

∣∣∣∣→ t(n−k−1, θ
2
)

Règle de décision

• Si |Tc| ≤ T on accepte l’hypothèse H0 : la variable xi n’est pas contributive à l’explication de

Y .

Test unilatéral : ce test est utilisé lorsque H1 : ai > 0 , ou H1 : ai < 0 , et d’aprés la Remarque

( 2.1.2)

tθc =

∣∣∣∣ âi − aiσâi

∣∣∣∣→ t(n−k−1,θ)

2.2.2 Test de Fisher (test de signification globale du modèle de régression )

Pour tester si l’ensemble des variables explicatives ont une influence sur la variable à expliquée,

on fait le test d’hypothèse suivant :

H0 : a1 = a2 = ... = ak = 0

H1 : il existe au moins, ai 6= 0; i = 1, ..., k

A partir de l’équation de l’analyse de la variance on a :

n∑
t=1

(
Yt − Ȳ

)2

=

n∑
t=1

(
Ŷt − Ȳ

)2

+

n∑
t=1

e2t

n∑
t=1

(
Yt − Ȳ

)2

= E
( n∑
t=1

e2t

)
= (n− k − 1)σ2

d’ou

σ̂2 =

n∑
t=1

e2t

n− k − 1



50 Tests et intervalles de confiance

σ̂2 =
SCR

n− k − 1
(2.4)

Et d’aprés la définition d’un khideux on a :

(n− k − 1)σ̂2

σ2
→ X 2

n−k−1 (2.5)

De (2.4) et (2.5) on obtient

(n− k − 1)σ̂2

σ2
=

(n− k − 1)SCR

(n− k − 1)σ2
=
SCR

σ2
→ X 2

n−k−1

De même pour SCE :

E

[
n∑
t=1

(
Ŷt − ¯̂

Y

)2
]

= (k)σ2 ⇒ σ̂2 =
SCE

k

⇒ kσ̂2

σ2
=
k(SCE)

k(σ2)
→ X 2

k

Puisque X 2
n−k−1 et X 2

k sont indépendants alors :

Sous H0 :

Fc =

n∑
t=1

(
Ŷt − ¯̂

Y

)2

k
n∑
t=1

e2t

n−k−1

=

X 2
k
k

X 2
n−k−1

n−k−1

=
R2

k
1−R2

n−k−1
→ Fk,n−k−1,θ%

Règle de décision

Si |Fc| ≥ Fθ on rejette H0 , et on accepte H1, le modèle est globalement significative.

La régression est jugée significative si la variabilité expliquée est significativement différent de 0.
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Tableau d’analyse de la variance

Source de

variation

Sommes des carrées Degré de liberté Moyenne des carrées F calculé

x1t, ..., xkt SCE =

n∑
t=1

(Ŷ − ˆ̄Y )2 = ÂX ′Y − nȲ 2 k
SCE

k
= MCreg Fc =

MCreg
MCres

Variabilité

résiduelle

SCR =

n∑
t=1

e2t = Y ′Y − Â′X ′Y n− k − 1
SCR

n− k − 1
= MCres

Variabilité

totale

SCE =
n∑
t=1

(Yt − Ȳ )2 = Y ′Y − nȲ n− 1

2.2.3 La prévision dans le modèle de la régression multiple

Le problème consiste à déterminer quelle valeur doit être attribuée à la variable endogène

lorsque nous connaissons les valeurs des variables exogènes.

Le modèle général estimé est le suivant :

Ŷt = â0 + â1x1t + ...+ âkxkt + et

La prévision pour la date t+ h est la suivante :

Ŷt+h = â0 + â1x1t+h + ...+ âkxkt+h + et+h

L’erreur de prévision est donnée par :

et+h = Yt+h − Ŷt+h → N (0, σ2t+h)

L’intervalle au seuil de probabilité (1− θ) est donné par la formule suivante :

Yt+h = Ŷt+h ± t( θ
2
,n−k−1) ∗ σ̂ε

√
X ′t+h(X ′X)−1Xt+h + 1

Considérant que les hypothèses du modèle linéaire général sont vérifiées, la prévision est sans

biais.



Chapitre 3

Application et conclusion

Dans ce chapitre, nous allons analyser la régression linéaire simple sur un exemple. Cette

présentation va nous permettre d’exposer la régression linéaire dans un cas simple afin de bien

comprendre les enjeux de cette méthode, les problèmes posés et les réponses apportées.

3.1 Exemple d’application

Etude de la relation entre la tension artérielle et l’âge d’un individu. Les données sont ex-

traites de Bouyer et al. (1995) Epidémiologie. Principes et méthodes quantitatives, Les éditions

INSERM.

1. Objectif

On souhaite savoir si, de façon générale, l’âge a une influence sur la tension artérielle et

sous quelle forme cette influence peut être exprimée.

Le but est d’expliquer au mieux comment la tension artérielle varie en fonction de l’âge et

éventuellement de prédire la tension à partir de l’âge.

2. Population et variables étudiées

Population générale d’individus.

Sur cette population, on défnit deux variables.

52
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• La variable Y : variable tension ; c’est la variable à expliquer, appelée encore variable à

régresser, variable réponse, variable dépendante (VD).

• La variable X : variable âge ; c’est la variable explicative, appelée également régresseur,

variable indépendante (VI).

3. Echantillon aléatoire d’individus

Pour l’étude, on doit faire des mesures sur n individus tirés au sort dans la population.

Données numériques : on observe deux échantillons appariés deX et Y de taille :

(x1, y1), ..., (xi, yi), ..., (xn, yn)

où xi et yi sont les valeurs de X et Y observées sur le ime individu tiré au sort.

4. Modèle exprimant la relation entre Y et X

On cherche à exprimer la relation entre la variable tension et la variable âge à l’aide d’une

fonction mathématique du type y = f(x). Graphiquement cela revient à représenter cette

relation à l’aide d’une courbe (graphe de la fonction).

5. Choix du modèle

Pour choisir le modèle de relation, on doit faire des observations sur un échantillon d’in-

dividus. Les données recueillies sur ces individus sont représentées graphiquement à l’aide

d’un nuage de points. Si le nuage a une forme particuliére s’apparentant à une courbe

mathématique, on choisira la fonction mathématique correspondant à cette courbe.

La forme étirée et croissante du nuage suggère une relation positive de type linéaire entre la

tension et l’âge.

Le coeffcient de corrélation linéaire observé sur l’échantillon est r = 0.7868.

Modèle de régression linéaire : modèle le plus simple qui exprime la relation entre Y et X à

l’aide une fonction linéaire. Graphiquement, la relation est représentée par une droite d’équation

y = ax+ b.

1)Ajustement du modèle aux données. Estimation des coeffcients de la droite par la

méthode des moindres carrés

Le modèle étant posé, il faut estimer numériquement les paramètres du modèle, c’est-à-dire cal-
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culer les valeurs numériques des coeffcients qui correspondent le mieux aux données. Cela revient

à déterminer la droite qui s’ajuste le mieux aux données, c’est-à-dire la droite qui est la plus

proche des points.

Selon quel critére et quelles sont les formules permettant d’obtenir des valeurs estimées des co-

effcients ?
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1. Formules de calcul des coeffcients estimés

â =
cov(x, y)

var(x)
= r(x, y)

√
var(y)

var(x)

b̂ = ȳ − âx̄

Sur l’exemple, on obtient :

x̄ = 53.85, ȳ = 145.32, r = 0.7868, s∗x = 7.18, s∗y = 14.39

La méthode des moindres carrés fournit les coeffcients estimés suivants sur l’exemple :

â = 1.5771

et

b̂ = 60.3928

la droite d’équation y = 1, 5771x+ 60, 3928 s’appelle la droite de régression estimée de Y

sur X.

2. droite de régression estimée ou droite des moindres carrés

3. Valeurs ajustées, résidus et somme des carrés des résidus

Une fois les coeffcients de la droite estimés, on calcule pour chaque individu :

• ŷi = âxi + b̂ s’appelle la valeur ajustée ou prédite de Y par le modèle.

• ei = yi − ŷi s’appelle le résidu de l’observation i. C’est l’écart entre la valeur de Y

observée sur l’individu nme et la valeur prédite. Le résidu ei est une approximation

du terme d’erreur εi

• la somme des carrés des résidus est SCR =
n∑
i=1

e2i . Elle mesure la distance de la droite

de régression aux points du nuage de points qui est minimale au sens des moindres

carrés.
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• La statistique σ̂2 =
SCR

n− 2
est un estimateur sans biais de σ2

Exemple numérique :

l’individu n◦4 a pour âge x4 = 44.

La tension observée est y4 = 144

La tension prédite (ou estimée) par le modèle est

ŷ4 = 60, 3928 + 1, 577144 = 129, 7852

.

Le résidu pour l’observation n◦4 est e4 = 14.2148. Le résidu est positif (point au
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dessus de la droite). SCR = 2605, 569

σ̂2 =
2605.569

32
= 81.424

4. Comment mesurer la qualité de l’ajustement

Pour le modèle choisi, Y peut varier en fonction :

- de X, selon la relation linéaire postulée.

- d’autres variables non prises en compte et synthétisées dans le terme d’erreur.

On va mesurer la part de chacune de ces deux sources de variation pour évaluer la qualité

de l’ajustement du modèle aux données.

Décomposition de la variation totale des observations

On peut tout d’abord écrire la décomposition suivante :
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yi − ȳ = (yi − ŷi) + (ŷi − ȳ)

On peut montrer la propriété suivante :

n∑
i=1

(
yi − ȳ

)2

=
n∑
i=1

(
yi − ŷi

)2

+
n∑
i=1

(
ŷi − ȳ

)2

peut être décomposée en deux parties :

SCT = SCR+ SCE

où SCE =
n∑
i=1

(
ŷi − ȳ

)2

représente la variance expliquée par la régression (mesure la

variation des valeurs ajustées autour de la moyenne ȳ) et SCR =

n∑
i=1

e2i représente la va-

riance résiduelle ou non expliquée (partie de la variation totale qui n’est pas expliquée par

le modèle de régression).

Dans l’exemple, on obtient :

SCT = 6839.442, SCE = 4233.873, SCR = 2605.569

Le coeffcient de détermination R2

Afin d’avoir une idée globale de la qualité de l’ajustement linéaire, on définit R2 le coeff-

cient de détermination qui est le carré du coeffcient de corrélation R :

R2 =
SCE

SCT

Il mesure la part de la variation totale de Y expliquée par le modèle de régression sur X.

Pour l’exemple, on a r2 = 0.619 =
4233.873

6839.442
. Le modèle de régression explique 61, 91% de

la variation totale.

2)Tests
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1. Test global de signifcativité de la régression

Il paraît raisonnable de tester la signifcativité globale du modèle, c’est à dire tester si tous

les coeffcients sont supposés nuls, excepté la constante. Cela correspond dans le cas de la

régression linéaire simple à H0 : a = 0 contre H1 : a 6= 0

La statistique du test : statistique F de Fisher

On utilise la statistique, notée F défnie par la formule :

F = (n− 2)
R2

1−R2
=

SCE
1

SCR
n−2

Loi de F sous H0

La statistique F suit la loi de Fisher à (1, n− 2) ddl.

Région de rejet de H0 Sous H0 , on s’attend à observer une valeur de F proche de 0.

Plus la valeur de F est grande et plus elle est en faveur de H1.

La région de rejet est située à l’extrémité droite du domaine .

Décision Règle basée sur la p-valeur : si θobs ≤ θ, on rejette H0 au risque d’erreur θ.

θobs = PH0

(
F (1, n− 2) > (n− 2)

r2

1− r2

)
Dans Statistica, les valeurs observées de F sont données ainsi que la p-valeur.

2. Tests sur les paramètres

Reprenons l’exemple de la tension en fonction de l’âge. Nous avons modélisé la tension

Y par l’âge X. Il paraît raisonnable de se poser les questions suivantes : (a) est-ce-que le

coeffcient a est non nul, autrement dit la variable X a-t-elle réellement une influence sur

Y ?

(b) est-ce-que le coeffcient b est non nul, autrement dit faut-il une constante dans le modèle ?

Rappelons que le modèle utilisè est le suivant :

yi = axi + b+ εi
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Nous pouvons expliciter les questions précédentes en terme de test d’hypothèse :

(a)correspond à H0 : a = 0 contre H1 : a 6= 0

(b)correspond à H0 : b = 0 contre H1 : b 6= 0

La statistique du test : statistique T de Student

On utilise la statistique, notée T :

pour le coefficient a définie par : T =
â

σ̂â

pour le coefficient a définie par : T =
b̂

σ̂b̂

loi de T sous H0 La statistique T suit la loi de Student à (n− 2) ddl.

Région de rejet de H0 Sous H0 , on s’attend à observer une valeur de T proche de 0.

Plus la valeur de |T | est grande et plus elle est en faveur de H1.

La région de rejet est située à l’extrémité droite et à l’extrémité gauche du domaine (test

bilatéral).

Décision Règle basée sur la p-valeur : si θobs ≤ θ , on rejette H0 au risque d’erreur θ

pour le coefficient a : θobs = 2PH0

(
T (n− 2) >

∣∣∣∣ âσ̂â
∣∣∣∣)

pour le coefficient b : θobs = 2PH0

(
T (n− 2) >

∣∣∣∣ b̂σ̂b̂
∣∣∣∣)

Dans Statistica, les valeurs observées de T sont données ainsi que la p-valeur.

Remarque :

On peut remarquer que dans le cas de la régression linéaire simple, il est équivalent de

tester la significativité globale du modèle ou bien de tester H0 : a = 0, contre H0 : a 6= 0.

Effectivement, on a T 2 = F . Au niveau des lois l’égalité est aussi valable bien évidemment

et nous avons que le carré d’un Student à (n− 2) ddl est une loi de Fisher à (1, n− 2) ddl.

Bien entendu le quantile (1− a) d’une loi de Fisher correspond au quantile (1− θ

2
) d’une

loi de Student.

Pour l’exemple, on obtient :
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σ̂ =

√
2605.569

32
= 9.0235

(a) :H0 : a = 0,contre H1 : a 6= 0

t2obs = (7.211)2 = 51998 = fobs

θobs = 0, on rejette donc H0 au risque 5%

(a) :H0 : b = 0, contreH1 : b 6= 0

tobs = 5.084

θobs ≈ 0, on rejette donc H0 au risque 5%

3)Intervalles de confiance et intervalles de prévision

1. Intervalles de confiance

On supposera dans la suite que les εi en plus d’être indépendants, de même loi, centrées et

de même variance, sont distribuées suivant une loi N (0, σ2)

La valeur ponctuelle d’un estimateur est en général insuffisante et il est nécessaire de lui

adjoindre un intervalle de confiance.

(i) Un IC de a au niveau 1− θ est donné par :

[
â− tσ̂â, â+ tσ̂â

]
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où t représente le quantile de niveau (1− θ

2
) d’une loi de Student de (n− 2) ddl.

(ii) Un IC de b au niveau 1− θ est donné par :

[
b̂− tσ̂b̂, b̂+ tσ̂b̂

]

où t représente le quantile de niveau (1− θ

2
) d’une loi de Student de (n− 2) ddl.

Nous pouvons également donner un intervalle de confiance de la droite de régression.

Un IC de yi au niveau (1− θ)est donné par :

ŷj − tσ̂

√
1

n
+

(xj − x̄)2∑
i=1

n

(xi − x̄)2, ŷj + tσ̂

√
1

n
+

(xj − x̄)2∑
i=1

n

(xi − x̄)2

En calculant les IC pour tous les points de la droite, nous obtenons une hyperbole de

confiance. En effet, lorsque xj est proche de x̄, le terme dominant de la variance est
1

n
,

mais dés que xj s’éloigne de x̄, le terme dominant est le terme au carré.

2. Intervalles de prédiction Un des buts de la régression est de proposer des prédictions

pour la variable à expliquer Y . Soit xn+1 une nouvelle valeur de la variable X, nous vou-

lons prédire yn+1. Le modèle indique que :

yn+1 = axn+1 + b+ εn+1

Nous pouvons prédire la valeur correspondante gràce au modèle estimé

ŷpn+1 = âxn+1 + b̂

En utilisant la notation ŷpn+1 , nous souhaitons insister sur la notion de prévision : la valeur

pour laquelle nous effectuons la prévision ici la (n + 1)me n’a pas servi dans le calcul des



3.1 Exemple d’application 63

estimateurs. Remarquons que cette quantité serait différente de la valeur ajustée, notée

ŷi, qui elle fait intervenir la ime observation. Deux types d’erreurs vont entacher notre

prévision, la première due à la non connaissance de εn+1 et l’autre due à l’estimation des

paramètres. La variance augmente lorsquexn+1 s’éloigne du centre de gravité du nuage.

Faire de la prévision lorsque xn+1 est loin de x̄ est donc périlleux, la variance de l’erreur

de prévision peut alors être trés grande.

Un IC de yn+1 au niveau 1− θ est donné par :

ŷpn+1 − tσ̂

√
1 +

1

n
+

(xj − x̄)2∑
i=1

n

(xi − x̄)2, ŷpn+1 + tσ̂

√
1 +

1

n
+

(xj − x̄)2∑
i=1

n

(xi − x̄)2

Cette formule exprime que plus le point à prévoir est éloigné de x̄, plus la variance de la

prévision et donc l’IC seront grands. Une approche intuitive consiste à remarquer que plus

une observation est éloignée du centre de gravité, moins nous avons d’information sur elle.

Lorsque la valeur à prévoir est àl’intérieur de l’étendue des xi , le terme dominant de la

variance est la valeur 1 et donc la variance est relativement constante. Lorsque xn+1 est en

dehors de l’étendue des xi , le terme dominant peut être le terme au carré, et la forme de

l’intervalle sera à nouveau une hyperbole.
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3.2 Conclusion

Les différentes phases d’un régression peuvent se résumer par trois étapes successives.

1. La première est la modélisation : nous avons supposé que la variable Y est expliquée de

manière linéaire par la variable X via le modèle de régression Y = aX + b+ ε.

2. La seconde est l’étape d’estimation : nous avons ensuite estimé les paramètres grâce aux

données récoltées. Les hypothèses sur le résidu ε ont permis d’établir des propriétés statis-

tiques des estimateurs obtenus.

3. Enfin la troisième étape est celle de validation . aborderer le problème de la validation des

hypothèses sur les résidus et la qualité de l’ajustement observation par observation.
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