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Introduction générale

En statistiques, en économétrie et en apprentissage automatique, un modéle de régression
linéaire est un modéle de régression qui cherche a établir une relation linéaire entre une variable,
dite expliquée, et une ou plusieurs variables, dites explicatives.

On parle aussi de modéle linéaire ou de modéle de régression linéaire.

Parmi les modéles de régression linéaire, le plus simple est 'ajustement affine. Celui-ci consiste a
rechercher la droite permettant d’expliquer le comportement d’une variable statistique Y comme
étant une fonction affine d’une autre variable statistique X.

En général, le modéle de régression linéaire désigne un modéle dans lequel 'espérance condi-
tionnelle de Y connaissant X est une fonction affine des paramétres. Cependant, on peut aussi
considérer des modéles dans lesquels c’est la médiane conditionnelle de Y connaissant Y ou
n’importe quel quantile de la distribution de Y connaissant X qui est une fonction affine des
parametres.

Le modéle de régression linéaire est souvent estimé par la méthode des moindres carrés mais il
existe aussi de nombreuses autres méthodes pour estimer ce modéle. On peut par exemple estimer
le modéle par maximum de vraisemblance ou encore par inférence bayésienne. Bien qu’ils soient
souvent présentés ensemble, le modéle linéaire et la méthode des moindres carrés ne désignent
pas la méme chose. Le modéle linéaire désigne une classe de modéles qui peuvent étre estimés
par un grand nombre de méthodes, et la méthode des moindres carrés désigne une méthode

d’estimation. Elle peut étre utilisée pour estimer différents types de modéles.



Historique

Ruder Josip Boskovic |5] est le premier scientifique & calculer les coefficients de régression
linéaire, en 1755-1757, quand il entreprit de mesurer la longueur de cinq méridiens terrestres en
minimisant la somme des valeurs absolues.

Pierre-Simon de Laplace [5] utilise cette méthode pour mesurer les méridiens dans ( Sur les de-
grés mesurés des méridiens et sur les longueurs observées sur pendule ) en 1789.

La premiére utilisation de la méthode des moindres carrés est attribuée a Adrien-Marie Le-
gendre|!] en 1805 ou a Carl Friedrich Gauss [5] qui dit 'avoir utilisée & partir de 1795.

Carl Friedrich Gauss démontre, en 1821, le théoréme connu aujourd’hui sous le nom de théoréme
de Gauss-Markov [6] qui exprime sous certaines conditions la qualité des estimateurs, Andrei
Markov [6] le redécouvre en 1900 .

C’est & Francis Galton [5] qu’est accordée la paternité de l'expression ( régression linéaire) en
1886 . Dans son article, Galton exprime la taille des fils en fonction de la taille des péres. Il
constate un phénomeéne de ( régression vers la moyenne ) .

Plus tard la colinéarité des variables explicatives est devenue un sujet de recherche important. En
1970, Arthur E. Hoerl [10] et Robert W. Kennard [10] proposent la régression pseudo-orthogonale
(Ridge Regression), une des méthodes d’estimation congues pour pallier la présence de colinéarité
de certaines variables explicatives en imposant des contraintes sur les coefficients.

La méthode du lasso (Lasso Regression), ayant le méme objectif en utilisant une technique ana-

logue, a été créée en 1996 par Robert Tibshirani [12].



Organisation du mémoire

Dans le premier chapitre, on étudie le modéle de la régression linéaire simple et multiple, puis
on estime leures parameétres par la méthode des moindres carrés et on va donner des estimateurs
de quelques parameétres statistiques.

Dans le deuxiéme chapitre on va faire des tests sur les paramétres de la régression lineaire.

Et on termine par un exemple d’application .



Chapitre 1

La régression linéaire simple et multiple

1.1 Le modéle de régression linéaire simple

1.1.1 Définition

Le modéle de régression linéaire simple est une variable endogéne (dépendante) expliquée par

une seule variable exogéne (indépendante) mise sous forme mathématique suivante :
Y}Z(IXt—l-b—i—St, t=1.n

avec :
Y; : la variable endogéne (dépendante, & expliquer) a la date t;
X : la variable exogéne (indépendante, explicative) a la date t;
a,b: sont deux paramétres & estimer ;

g @ lerreur aléatoire du modéle;

n : nombre d’observations.

1.1.2 Hypothéses du modéle

Le modéle repose sur les hypothéses suivantes :

(H1) E(e¢) = 0, 'erreur centrée;



1.1 Le modéle de régression linéaire simple 9

(H2) E(¢?) = 02, la variance de P'erreur est constante;
(H3) cov(et,ep) =0, si e # ey, les erreurs sont indépendantes ;

(H4) La normalité des erreurs, ey — N(0,02);

(H5) cov(xy,et) = 0, lerreur est indépendante de la variable exogéne ;
(H6) La variable exogéne X; n’est pas aléatoire ;

(H7)

HT7) Le modéle est linéaire en X par rapport aux paramétres.

1.1.3 Estimation des paramétres par la méthode des Moindres Carrés Ordi-

naires (MCO)

Soit le modéle suivant :

Y;:ICLXt+b+€t

Le principe des moindres carrés consiste a rechercher les valeurs des paramétres qui minimisentla
somme des carrés des résidus :
n n 2 n 2 n
min2 5,52: min2 (Y}—Yt> = min2 (Yt—aXt—b> = min g F?
(a,b)eR P (a,b)ER P (a,b)eR —
Pour que cette fonction ait un minimum, il faut que les dérivées par-rapport a a et b soient

nuls.
(

OF -
%:0@22@—@&—1))(—&):0;

t=1

OF =
%:0@22@—@&—1))(—1):0.

t=1

D’aprés les deux équations, on obtient :

Y ViXp=a) X7+D) X, (1.1)
t=1 t=1 t=1

t=1 t=1
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En notans & et b les solutions des équations (1.1) et(1.2), d’apres (1.2) on obtient :

DY > X
j_ =1 4 1=1
n n
Donc
b=Y —aX
n n
DY > X
puisque | Y = =L et | X ==L
n n

En remlacant la valeur de b dans équation (1.1),0n obtient :

En:YtXt = <Y —dX) f:Xt +a§n:Xf & En:Y;Xt = an:Xt — a)’(f:xt +a§n:X3
t=1 t=1 t=1 t=1 t=1 t=1 t=1

& Zn:YtXt —an:Xt = a(i){f —in:Xt>
t=1 t=1 t=1 t=1
D’ou
n n
XY -Y Y X,
— t=1 t=1
n n
dXP-XY X
t=1 t=1

n

. > X
> XYy —nY =1

n
t=1

n

S

n
SO X2 | 2L
t=1 "
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n
Z XY, —nXY
=1

= =1 -
D X7 - nX?
t=1

el
;g;(Xt_X)Q

cov(X,Y)
var(X)

Conclusion :
les estimateurs des M C'O du modéle de régression linéaire simple

Y; = b+ aX; + ¢ sont :

(Y = Y)(X; — X)
; cov(X,Y)

d: =

i(Xt xp var(X)

t=1

etb=Y —aX

Différentes écritures du modéle de régression linéaire simple :

Le modéle théorique ( modéle non ajusté) :

Yt:aXt—Fb—i—st

Le modéle estimé ( modele ajusté) :

Vi=aX,+b+e
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Avec :
Vi =aX;+b
ete, =Y, -V, =Y, —aX, — b

e; :est le résidu du modéle.

1.1.4 Calcul des espérances mathématiques des estimateurs

» Calcul de l’espérance de a
Soit le modéle suivant : Y; = aX; + b+ ey
D’aprés la méthode des MCO, on a :

En posant

:ct:Xt—Xet yt:thY

Nous obtenons

q="=L (1.3)

On remplace la valeur y; dans (1.3), on obtient :

zn:xt(yt—?) Yoae Y owm

A~ t=1 t=1 o t=1
a= = -Y

n

2 2 2
D i DD
t=1 =
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n
Comme th =0
t=1
alors
n
>_ai
a="= (1.4)
>t
t=1
car
n n
So =3 (x-x)

> X
:n<t; ) i

=nX -nX=0

On remplace maintenant Y; = aX; + b + ¢; dans l'equation (1.4), on aura :

ZIt (CLXt +b+ €t>

t=1

n n
a Z l‘tXt + Z TiE¢
_ . t=1 t=1
n
D ai
t=1
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n n n
a E x? Xa g Ty E TiE
t=1 t=1 t=1
= + +

n n n

2 2 2
2wt Qe Y a
=1 t=1 t=1

car X;=ax+ X.

n
Comme th =0 (on I'a déja démontré), il résulte alors :
t=1

Or, d’aprés ’hypothése(H1),
E(&g) =0

Finalement :
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E(a) =a
a est un estimateur sans biais.

» Calcul de I’espérance de b

Ona:
b= Y -aX
n
Zfﬂtyt
> > oo | t=1
b= v-x|=
>t
t=1
n
>
5 > o | t=1
b= Vv -X|E (v, = Y)
>t
t=1
n
> mYi
5 > o | =1
b= v-x|&
>t
t=1
D’ou
n
~ 1 X.T,'t
b= |- | ¥
t=1
n
>V
Car |V = =L
n
Or que :

Yi=aX; +b+¢

(1.5)
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donc :
n _
R 1 X
b= —_ — nxt (aXt—l—b—l-st)
B
t=1
n < n

(SN
I
SRS
|
s
8

> >
(;: a t=1 —(LX t=1
n n

| = 1 X
N5 = S

1 Xz
t=1 Z t
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On obtient alors :

. 11 X
b=b+Y |- - 22
t=1

€t
n L
>3
t=1
En passant & I'espérance mathématique, on trouve :
"1 Xz
5 ¢
E(b) = E(b)+E ZE‘ - £t
t=1 33‘?
t=1
"1 Xz
5 t
EG) = BO) | [ Y- | B
t=1

E(b) = E(b) car E(e;) =0
Finalement E(b) = b
By est un estimateur sans biais.

» Calcul de la variance de a

Par définition, la variance de (@) est donnée par :
2
var(a) =E [& - E(d)]

Et E(a) = a.

d’un autre coté, on sait que :
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Ce qui implique :

Alors on déduit que :

1
= ——E x%a? + x%sg + ...+ x%si + 2x1298169 + ... + 2T 1TnEn—1En

(%)

D’aprés les hypothéses (H1) ,(H2) et (H3) du modéle de régression simple, on obtient :

1
. 2.2 2.2 2.2 2 2
var(a) = ————s |\ oeri tozuy F oy £+ otay,
D ai
x
t
(t:l )
D’ou :
n
22 : 2
O¢ Ty
. t=1
var(a) = ————
(@) N2
2
2
t=1
2
o
AN €
var(a) = m
2
D i
t=1
2
. o
var(a) = =
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» Calcul de la variance de b

D’aprés les propriétés de ’estimateur bona:

. _ _

R 1 X A 1 X

b=b+> |- |a=b-b= ————
t=1 t=1

o ~ ~72 ~
Par définition, la variance de b est donnée par : var(b) = E [b - E(b)} =E(b—b)?

Puisque E(b) = b nous obtenons :
. . 2
var(b) =E (b - b)

Alors on déduit que :

2
n _
2 1 th
var(b) = E Z T w £t
t=1
2
- " 1 Xy - 1 Xxp_1 1 Xz,
Uar(b) = E E - Et + ZEZ 5 — E — | En—1&n
t=1 t=1 t=1
2

. 1 X
var(b) = E Z o Tt £t

n

=1 2
>
=1

D’aprés les hypothéses (1),(2),et(3) du modéle de régression simple, on obtient :
2

n _
R 1 X
var(b) = o2 g ] Tt

t=1 2
D7
t=1
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Il résulte alors :

n
. 1 2X X272
var(b):agz T +— : 5
T (s
t=1 t=1

n
Puisque Z x¢ = 0 alors :
t=1

« 1 _
2 t=1
Um‘(b) = 0'E ﬁ —+ ﬁ (16)
t=1
n
Z x7 +nX?
var(b) = o2 t:ln— (1.7)
03t
t=1
Et comme X; = z; + X donc on déduit que
n n

S>>
o
-

I
—
-+

I
—

var(b) = o

™
3

o N
-
Il
—
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Conclusion

Les variances des paramétres a et b du modéle Y, =aX;+ b+ e sont :

2
5

5

t=1

g

var(a) =

n

» Calcul de la covariance de (a,b) :

Par définition, la covariance entre a et b se calcule comme suit :

cov(a,b) =E [(a . E(d)) <z3 - IE(B))] —E [(a —a)(b— b)}

Comme a et b sont sans biais,

Alors :
n
TiEt

E " _

o2 t=1 1 X:l','t

cov(a,b) = E | = * E —— = £t
n

Sar F|T Y w
t=1 t=1

b)= E|Z

Q>

cov(

3
&)
-
3
8
o
1
VRS
(]
8
&
Q)
-
~
[\
1
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D’aprés les hypothéses (H1) ,(H2) et (H3) du modéle de régression simple, il résulte que :

. Xo?
cov(a,b) = %e

- T n
2
>

t=1

» La convergence du a et b

2
€

S

t=1

g

On a : var(a) =

lorsque n — +o00

n 2
alors Z <Xt — X> — 400
t=1

et var(a) — 0
On déduit que @ est convergent.
De méme, pour b

D’aprés I’équation (1.6), on a :

Et comme z; = X; — X alors :

- 1
var(b) = o2 . +

o | 1 X2
aﬁ—’—n

S (Xe - X)°

t=1

var(h) = o

lorsque n — 400

n 2
alors Z <Xt — X) — 400
t=1

~

et var(b) - 0

On déduit que b est convergent.
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Théoréme 1.1.1 (Gauss Markov)
Soit le modele suivant : Y; = aX; +b+ ¢
un estimateur de moindre carrée est un estimateur de Gauss Markov (blue) s’il est sans biais,

linéaire et posséde une variance minimale.

Preuve du Théoréme (1.1.1)
Pour démonter ce théoréme, on définit un autre estimateur linéaire sans biais sous la forme

suivante :
n
o = Z At}/t
t=1

Par la suite on compare la variance de a avec la variance de a et celui qui a une variance minimale
on dira qu’il est le meilleur estimateur.

Démontrons d’abord est ce que a est linéaire et sans biais.

» G est-il linéaire ?

D’aprés les propriétés du paramétre a on a :

A t=1
a= n
>t
t=1
n
~ t=1
a = n
>t
t=1
n n
E Yy E Tt
~ t=1  t=1
a= -Y

n
Comme Z x; = 0, on obtient :
t=1
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n
E Yy
t=1

a=—

2
>
t=1

En posant
Ty
Vi

= n
2
2
t=1

Alors a s’écrit sous la forme suivante :

Y AY =) VY,
t=1 t=1

Ce qui fait que a est linéaire.
» G est-il sans biais 7

On a:

E(a) = E[;w]

E(a) = E[i%(axt +b+5t>}

t=1

t=1 t=1 t=1
Connaissant que :

> Vi=0,) 2 =0etE(s) =0
t=1 t=1

Alors :

Sachant que :
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Lt
Vi=—
>t
t=1
Ce qui fait :

n
Z IEtXt
t=1
n
2
t=1

E(a) = aF

Et comme 2 = X; — X = X; =2, + X

Nous remplagons la valeur de X; dans (1.8), nous obtenons :

n
Et puisque : th =0
t=1

Finalement E(a) = a est un paramétre sans biais.

De ces deux démonstrations (linéaire et sans biais) on retient que :

i%zOetzn:Vtthl
t=1 t=1

(1.8)



26 La régression linéaire simple et multiple

» a posséde t-il une variance minimale ?

On suppose qu’il existe un autre estimateur sans biais linéaire définit comme suit :

o = i AtY;
t=1

Avec : E(a) =a
Et Ay =V, + M,
OnaY;=aX;+b+ e

En passant a ’espérance mathématique :

E(a) = E[tﬁ;Ath}

E(a)= E zn:At<aXt+b+et>

Lt=1

+ 0E

E(a): aE ZAtXt
Lt=1

DA
t=1

E(a)=a (1.9)

=0

Z AtEt

t=1

Car E

pour que I’équation (1.9) soit vérifiée c’est-a-dire E(a) = a , il faut que E(«) = a il faut que :

> AX =1 (1.10)
t=1

et

» A4=0 (1.11)
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n n n n
YAX=1=> Vit M)X;=1=> ViX;+ Y MX =1
t=1 t=1 t=1 t=1

t=1 t=1 t=1 t=1

Maintenant, nous calculons la var(«) :

Sous les conditions (1.10) et (1.11) et d’aprés la définition de la variance on a :

var(@) = E|a - B(o)] - B (- a>2

D’un autre coté on a :

o= ZlAth = ZlAt(aXt+b+et) :aZIAtXt+bZIAt+ZIAt€t
t= t= t= t= t=

Sous I'hypothése, que les conditions (1.10) et (1.11) soient vérifiées :

n n
a:a—i—ZAtatﬁa—a:ZAtet
t=1 t=1

Nous obtenons :

2
Aje1 + Ageg + ...An€n>

= E(A%af + A%E% + ...Aisi + 2A1Ase169 + ... + 2An_1An5n_15n>

= E ( i A?e’f? +2 i i AtAt’gtgt’>
t=1

t=1t'=1

D’apreés les hypothéses du modéle de régression simple :

E(e?) = 02 et E(gep) =0
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On déduit alors :
var(a) = o2 Z A?
t;l 9
var(a) = o2 Z <VtMt>
=1
var(a) = o? Z (Vt2 + M? + 2V}Mt)
t=1
var(a) = o2 Z VZ 4 o2 Z M? + 202 Z Vi My
t=1 t=1 t=1

Sachant que :

iW:Oalorsth+iW:0:>th:0
t=1 t=1 t=1 t=1

Et

n n n n
ZV;Xt =1 alors ZMtXt +thxt =1= ZMtXt =0
t=1 t=1 t=1 t=1
On déduit :

n n n

. dowMy Y XMy Y M

ZWMt:t:1 _ t=1 _ =l -0

n n 2
t=1 2 2 E Ty
X X
E t E t =1
t=1 t=1

Ce qui résulte :

n n n
var(a) = o2 Z V2 4 o? ZME car <Z Vil = O)
t=1 t=1 t=1

Nous remplagons V; par V; = on trouve donc :

n

2 ¢ 2 2
var(a) = oZ g 35| to: g M;
t=1 t=1



1.1 Le modéle de régression linéaire simple 29

var(«) :gg E —_— ¢ —{-O'gg Mf

t=1 2 : 2 t=1
t=1

n

2 t=1
>
t=1

2 n
)= Ly

Or que :
2
R o
var(a) = ——
>t
t=1
Finalement :

n
var(a) = var(a) + o2 Z M}
t=1

n
On remarque que var(a) > var(a) puisque o2 Z M} > 0.
t=1

On conclut que le paramétre (@) a une variance minimale, ce qui fait qu’il est le meilleur estima-
teur (estimateur blue).

Remarque

Meéme procédure pour le paramétre (13) :

n
1 _
On suppose § = ZBth avec By = W; 4+ Ny tel que Wy = — — XV,
n
t=1

1.1.5 Estimation de la variance des erreurs

Soit le modéle de régression simple : Y; = a Xy + b+ &
Sachant que le résidu est :
e =Y — Yt
Ona:Y,=aX;+b:
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et Y=aX+b+¢
Alors :
et =aXi+b+e—aX,—b

on remplace b par sa valeur, on obtient :
€ :aXt+b+5t—dXt—17+&X'
On remplace aussi Y par sa valeur, on obtient :

e = aXt—&—b—i—st—dXt—aX—b—E_—l—dX

et:<a—&)Xt— (a—d)X—l—st—E_
e = (a—d><Xt—X>+€t—g
e = <a—&>xt+€t—€

car z; = (X; — X)

D’ou
n n 2
= 3|t
t=1 t=1

Ze?: Z<Et—f£) +<a—d> th—l—Q(a—&) $t<€t—5>
t=1 t=1 t=1 t=1
n
On passant & I'espérance E(Z e?) on obtient :
t=1

n
n«:(Zeg)  (n—1)02 + 02 — 202 = (1 — 2)o?

t=1
On déduit :
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fmalement :

62 est un estimateur sans biais.

1.1.6 Analyse de la variance et le coefficient de détermination

Pour calculer le coefficient de détermination, nous démontrons d’abord les deux relations :

n
1. Z e; = 0, La somme des résidus est nulle (la droite de régression passe par le point moyen
t=1
cela est valable uniquement pour les modeéles contenant le terme constant),
n n
2. Z Y, = Z Y:, légalité entre la moyenne de la série & expliquer et la moyenne de la série
t=1 t=1

ajustée.

n n
On démontre d’abord que : Z e = Z(Yt ~-Y)=0
t=1 t=1

On sait que :

n n n n
Yt:Yt-l-et:&Xt+lA)+et<:>ZYt:&ZXt+nl;+Zet:Zet:n}_f—fm)_(—ni)
t=1 t=1 t=1 t=1

On remplace b par sa valeur on obtient alors :
n
Zet =nY —anX —n(Y —aX)
t=1

D’ou :

n
Zet =nY —anX —nY +anX
t=1
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n

Donc : Zet =0

t=1
n
Puisque Z e: = 0 on déduit alors :
t=1

n

n n n
de=d M-V)=0=> Y -» V=0
t=1 t=1 t=1

t=1
On conclue :
n n _
DU S
t=1 t=1

A partir de ces deux équations nous pourrons déduire la fonction fondamentale d’analyse de la

variance.
On a:

Yi-Yi=e=Yi=Y+e
D’ou :

Vi—Y =Yi4e -V = -Y)?2= Y2+ +20Y;, - YV)e

Passant aux sommes on trouve :

fj(n—Y>2=i(ﬁ—Y)2+geg+zg<ﬁ—y>et

t=1 t=1

n
Comme : E e; =0
t=1

n n
ety Yi=) Y
t=1 t=1

On déduit alors :

Il résulte :
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Qu’on peut écrire comme suit
n B n B n
S0 VR = VY
t=1 t=1 t=1
= SCT =SCE+ SCR (1.12)

Péquation (1.12) :appelée 'équation d’analyse de la variance.

Avec :

n
SCT = Z(Yt —Y)?% : désigne la variabilité totale;
t=1
n
SCE = Z(Yt —Y)? : désigne la variabilité expliquée ;
t=1
n n
SCR = Z el = Z(Y} —Y)? : désigne la variabilité des résidus.
t=1 t=1

Coeflicient de détermination

De I’équation (1.12) on peut déduire le coefficient de détermination

SCT SCE  SCR

(L12) = <57 = So1 * so7
_,_SCE _SCR
~sor T ser
D’ou
w2 SCR_SCE
o SCT  SCT

0 < R% <1, plus la valeur de R? est proche de 1, plus le modéle est plus significatif.



34 La régression linéaire simple et multiple

1.2 Les modéles de régression linéaire multiple

1.2.1 Présentation

Le modéle multiple est une généralisation du modéle simple dans lequel figurent plusieurs

variables explicatives :
Yi=ag+ a1 X1t +asXot + ... + apXp +6¢, t=1...n

Avec :
Y, . wvariable a expliquer a la date t;

X1+ @ variable explicative 1 & la date t;

Xyt @ variable explicative k a la date t;
ap,ai, ...,ar : les paramétres du modéle;
gt : Verreur aléatoire du modéle;

n : nombre d’observations.

La forme matricielle

Pour faciliter I’écriture de certains résultats, on a habituellement recours aux notations ma-

tricielles en écrivant le modéle observation par observation, nous obtenons :

Yi= ao+aizrin +axo + ... +apxrp + €1
Yo = ao+aixiz 4+ asxas + ...+ apxie + 2
Y= ag+ a1z + asxor + ... + apTrs + &4
Y, = ao+ a1z, +agwo, + ...+ apTp, +ep

Soit sous la forme matricielle :

Yin) = Xonp+1)Agk+1,1) T Eny1)

Avec :
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Y ag 1 11 x21 . . Tl €1
Ys ay 1 w2 w2 . . o €2
}/(n,l)_ ;A: ,X: , €=
1z wor . . gy
Y;g Qg . . . NN . Et
Y, an, 1 zin 22 .« . Tin En

Avant d’estimer le modeéle, on cite d’abord les hypothéses sur lesquelles il se repose.

1.2.2 Hypothéses du modéle

Le modéle repose sur les hypothéses suivantes :
HO) les valeurs x;; sont observées sans erreurs;
H1
2

E(e:) = 0, espérance nulle;

o

E(e?) = 02, la variance de 'erreur est constante V¢ ;

a

3
H4

E(gt,ep) = 0sit #t' indépendance des erreurs;

cov(zxit,e¢) = 0, U'erreur indépendant des j; ;

(HO)
(H1)
(H2)
(H3)
(H4) co
(H5)

HS5) absence de colinéarité entre les variables explicatives= (X'X) réguliére et (X'X) ™! existe ;

X'X . . . N
(H6) | —— | tend vers une matrice finie non singuliére ;
n

(H7) n > k + 1 nombre d’observations est supérieur aux nombre des séries explicatives.

1.2.3 Estimation et propriétés des estimateurs

» Estimation des coefficients de régression :

Soit le modéle :

Y, = X, A+e (1.13)

Afin d’estimer le vecteur (A) composé des coefficients ag, a1, ..., ai nous appliquons la méthode

des moindres carrées ordinaire (M CO) qui consiste & minimiser la somme des carrées des erreurs,
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soit :

/
egzmm<Y—XA><Y—XA>: min  F (1.14)

Z ‘=, mi
ak ERk+l (CLO7 .a )GRk+1 (ao,..‘,ak)GRHl

(a07

Avec £’ : est le transposé du vecteur e.
Pour minimiser cette fonction par rapport au vecteur (A) nous différencions F' par rapport au

méme vecteur et on obtient :

F A .
gAz—MﬂwQXWAZO:AZQlexv
Avec (X’X) matrice de dimension (k + 1,k + 1) est inversible.

Le modéle estimé s’écrit :

Y =ao + a1z + Goxop + ... + apTrs + €4

Avec i e, = Y; — Y}

ol e; : résidu, est ’écart entre la valeur observée de la variable & expliquée et sa valeur estimée,
elle est connue.

Conclusion

Iestimateur de M C'O du modéle de régression linéaire multiple est :

A=X'X)"'XY

» Propriétés des estimateurs :

e Estimateur sans biais :

Soit le modeéle Y = XA + ¢

On peut s’écrire :

Y =XA+e

Y =XA
Nous obtenons :

A =X'X)"' XY
A =(X'X)1X'(XA+e¢)
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A =(X'X)IX'(XA) + (X' X)1Xe
A =A4+(X'X)1X'e
A—A=(X'X)"'Xe (1.15)
D’ou
E(A) = A+ (X'X)1X'E(e)
avec : E(g) =0
Finalement

E(A) = A = l'estimateur est sans biais.

1.2.4 Estimateur de la variance de ’erreur et la matrice de variance cova-

riance des coefficients de régression
On a :

var(A) = E [(A ~A)(A - A)’] (1.16)

En remplacant (1.15) dans (1.16) on obtient :
var(A) = o? [(X'X) N X' X)(X'X)] = o2(X'X) 7!

o2 0 . . 0
0 o2 0
Avec o2 matrice diagonale =
0
0 0 o’

Et puisque a§ est inconnu donc on l’estime.
» Estimateur de la variance de l’erreur :
Soit le modéle : YV; = XA + ¢
Ona:e=Y-Y
Y = XA don
e=Y - XA (1.17)
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En remplacant A = (X'X)~'X'Y dans I'équation (1.17) on aura :
e=Y - X(X'X)' XY =[I-X(X'X)"' XY

On pose M matrice idempotente, M = I — X (X'X)"1X’

alors

n
Ze? =ce=e'M'Me =& Me
t=1
E(e'e) = o2I,[I — X(X'X)'X"|' = 62I,(n — k — 1)
On obtient alors :
9 de
2=

7 Cn—k-—1

Avec : var(A) = 62(X’X) ™! matrice variance-covariance.

1.2.5 Equation d’analyse de la variance et qualité d’un ajustement

Comme le modéle simple on a :

1. zn:n:zn:ﬁ:>)7:§/
i—1

=1

n
2. Z €t = 0
i=1
De ces deux relations nous déduisons I’équation fondamentale de ’analyse de la variance :

i(n—i>2:i<ﬁ—?>2+§;eg

t=1 t=1
SCT = SCE + SCR
Avec :

SCT : variabilité totale.
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SCE : variabilité expliquée.
SCR : variabilité résiduelle.
Cette équation permet de juger la qualité d’ajustement d’un modéle, en effet plus SCFE est
proche du SCT meilleur est 'ajustement globale du modéle. Cependant ces valeurs dépendant

des unités de mesure, c’est pourquoi on préfére utiliser le nombre sans dimensions :

> (Yi-v)? > e
t=1

=1 =1
> (v -Y)? > (v -Y)?
t=1 t=1

R? = Coefficient de détermination : mesure la proportion de la variance de Y expliquée par la
régression de Y sur X.
e Sin < k alors on calcule le coefficient de détermination corrigé.

n—1

RRoq__""1
n—k—1

(1-R?)

On a R? < R? et si n est grand R? = R?



Chapitre 2

Tests et intervalles de confiance

2.1 Cas de modéle linéaire simple

2.1.1 Test de nullité de a

Soit le modéle suivant :
Y;f = aXt +b+ Et

On sait que

) t=1
= 2.1
UE n — 2 ( )
Et e; — N(0,02)
De (2.1) on a :
n
-2 Y
t=1
n
S > e
n—24)0; t=1 2
— X
O_g O_g n—2

40
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D’un autre coté on a :

D’aprés la définition de la loi de Student qui est : le rapport d’une loi centrée réduite et la racine
carrée d’une loi de khideux divisée par le nombre de ses degrés de liberté.

On applique cette définition on obtient alors :

A
T. = =
(n-2)%
n—2
A
Tc = O-EA !
O¢
ro g
O¢ =
(2
t=1
a—a
Tc = 76&1 — t(n_27g) (22)

Hypothéses du test

A partir du résultats (2.2) on peut effectuer un test qui consiste a tester ’hypothése suivante :

H(]:CL:O
Hi:a#0
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La statistique du test

Sous 'hypothése Hy, on obtient la valeur critique (7¢) tel que :

—>Tt<n—2,9>
2

a—a

04

T. =

Avec :

T, : la valeur critique de la statistique (7') (dite calculée);

a : Vestimateur du paramétre a;

65 - lécart-type du parameétre a;

0 : Le seuil donné,en général 0 = 5% ;

n — 2 : degré de liberté;

T; : la valeur de la statistique Student (7') lue a partir de la table statistique.
Régle de décision

e Si |T,| < T3, on accepte I'hypothése Hp ;

e Si |T.| > Ti, on rejette ’hypothése Hy.

2.1.2 Test de nullité de b
>t
t=1
ny (X - X)?

t=1

Ona:b— N b, o2

D’ou on obtient la variable centrée réduite Zs :

Zy = —)N(O,l)
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On appliquant la définition de la loi de Student on obtient :
VA
T, = 2
(H*Z)ng
n—2
Tc _ JEAZ2
O¢
T, = ? B 0
O¢ n
DXt
062 n =1 2
. (Xt - X)
t=1
b—b

Hypothéses du test

A partir du résultats (2.3) on peut effectuer un test qui consiste a tester I’hypothése suivante :

H()Zb:()
Hl:b;'éO

La statistique du test

Sous I'hypothése Hy, on obtient la valeur critique (7¢) tel que :
0

T, : la valeur critique de la statistique (7') (dite calculée);

b—b

9%

T. =

Avec :

~

b : 'estimateur du paramétre b;

65 : Vécart-type du paramétre b;
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0 : Le seuil donné,en général 0 = 5% ;

n — 2 : degré de liberté;

T; : la valeur de la statistique Student (7°) lue a partir de la table statistique.
Régle de décision

e Si |T,| < T3, on accepte I'hypothése Hp ;

e Si |T.| > Ti, on rejette ’hypothese Hy.

Remarques

1. Lorsque on effectue les tests d’hypotheéses bilatéraux des deux paramétres a et b suivants :

Hoza:a H():b:ﬁ
et

Hi:a+# Hi:b#p
.0
On prend le seuil 5

2. Lorsque on effectue les tests unilatéraux des deux paramétres c’est-a-dire les tests d’hypo-
théses suivants :
Hy:a=a Ho:b=3
Hi:a>aa<a H :b>p8b<p

On prend le seuil 6.

Intervalles de confiances des paramétres a et b

Les intervalles de confiances des paramétres a et b et au seuil donné € (au niveau de confiance
(1 —0)) sont donnés par :

Intervalle de confiance de a :

Intervalle de confiance de b :
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Intervalles de confiances de o

On a
2 (n—2)s?
A2_TL:1 o 2 ’I’L—QS 2
_n_2_S = = =X 5
D’ou
2 2
P[ng(” 2>S gxg]:1—0
X2 1 X2
Pl— < <2 1_1_9
[(n—2)52_0 _(n—2)52]
On obtient :

(n—2)52 5 _ (n—2)52
Pl———< <X 77 =140
[ o o ST

2.1.3 Analyse de la variance et test de Fisher

On a déja définit SCR, SCE et SCT, ses sommes peuvent étre utilisées pour tester I’hypo-

thése suivante : pour a :

Hy:a=0Ab=0
Hi:a#0Ab#0
Sous 'hypothése : Hy:a=0Ab=0,
On a:
(SCT) = (n—1)c>
E(SCE) = (1)o?
(SCR) = (n —2)o?

Avec (n — 1), (1)et(n — 2) des degrés de libertés de SCT, SCE et SCR respectivement.

D’autre part, lorsque Hy est vérifiée on a :
SCT
n—1
SCR

n—2

2
— X1,
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SCE

et — X}

SCE  SCR

et
02 o2

Du moment que sont indépendants, on peut déduire donc valeur critique F'(Fisher)

qui se définit comme suit : C’est le rapport entre deux khi deux (X) indépendants et leurs degrés
de libertés ;

Alors on obtient :

SCE
7 9F  (n-2)SCE

F. = SCR — SCE — SCR — F(l,n—2,1—9)
nCLQ n—2

Avec :

F. : désigne la valeur critique de Fisher calculée.

F': désigne la valeur de Fisher lue a partir de la table statistique de Fisher aux degrés de libertés.
(1,n — 2) : se sont des degrés de libertés.

0% : Le seuil donné.

Reégle de décision

® Si |Fe| > F(1 n—2,1-9) on rejette 'hypothese Hy : c’est-a-dire le modéle est globalement signifi-
catif.

e Si |F,| < F(1,n—2,1-9) on accepte 'hypothése Hy : c’est-a-dire le modele n’est pas globalement

significatif.
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47

Tableau d’analyse de la variance

Source de varia- Sommes des carrées Degré de liberté | Moyenne des carrées F calculé
tion
n
NN SCFE MC
Variabilité a ex- SCE=) (Y -Y)? k=1 —— =MC F.=—19
ariabilité & ex ;( ) 1 reg © = MO,
pliquer X
o - SCR
Variabilité — rési- | SCR = Z el = Z(Y —Y)? n—2 = MCles
t=1 t=1
duelle
n —
Variabilité totale SCE=) (;-Y)’ n—1

t=1

2.1.4 Prévision a ’aide d’un modéle de régression simple

Une fois les paramétres du modéle Y; = aX; + b + &4 ; sont estimés, le modeéle est validé, il

est possible d’effectuer les prévisions & I’horizon h.

Soit le modéle estimé sur la période t = 1,...,n alors :

Si la valeur X; est connue en (n+ h) alors la prévision de la valeur estimée Y; a ’horizon (n + h)

se calculera par I’équation suivante :

Yn-‘,—h = an—f—h + B

Comme on peut calculer I'intervalle de confiance de Y;,4p,.

Sachant bien str la valeur de la variance de I'erreur de prévision qui est :
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9 ~ 1 X h — X 2
Uar(en‘Fh) =var (Yn+h - Yn+h> = 0'52 E _|_ M

D’out l'intervalle de confiance de la variable Y;, ;5 au seuil (1 — ) est :

N (4 . 1 Xpan — X)2
Yn+h :Yn_t'_h:ttriiQ*O'E n_’_(TH‘)

n
> i
\ i=1

+1

Avec :
2]

[) 0

t}_o : désigne la valeur de ¢ Student lue & partir de la table statistique au seuil <2) et au degré
de liberté (n — 2).

0: : désigne 'écart-type de l'erreur en valeur connue.

Xy 4n ¢ désigne la valeur de la variable exogéne & ’horizon (n + h).

A

Y, 4n ¢ désigne la valeur de la variable endogéne estimée & ’horizon (n + h).

2.2 Cas de modéle linéaire multiple

2.2.1 Le test de student

Le test de student tester 'influence directe de la variable explicative sur la variable endogéne,
revient & tester son coefficient de régression s’il est égale ou différent de 0, pour un seuil choisi,
en général 0 = 5%.

Le test d’hypothése est le suivant : est appelé (test bilatéral)

Hoiai:();i:(),...,k‘
Hi:a;,#0;i=0,..k
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La statistique de student est la suivante :

Régle de décision

e Si |T;| < T on accepte 'hypothése Hy : la variable x; n’est pas contributive a I’explication de
Y.

Test unilatéral : ce test est utilisé lorsque H; : a; > 0, ou Hy : a; < 0, et d’aprés la Remarque
(2.1.2)

&i—ai

10 =

c

— t(n—k—1,0)

Oa;

2.2.2 Test de Fisher (test de signification globale du modéle de régression )

Pour tester si ’ensemble des variables explicatives ont une influence sur la variable & expliquée,

on fait le test d’hypothése suivant :

HoZCLl:CLQ:...:ak:O

Hy : il existe au moins,a; #0;1=1,..., k

A partir de I’équation de ’analyse de la variance on a :

znj(yt—?f— i(ﬁ—?)2+§;eg

o t=1
n ) 9 L

d’ou

n
2
> e
~2 t=1
0" = ————
n—k—1
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.,  SCR

- 2.4
? n—k—1 (2.4)

Et d’aprés la définition d’un khideux on a :

(n—k—1)52

o2 — Xr%—k—l (25)

De (2.4) et (2.5) on obtient

(n—k—-1)6*> (n—k—1)SCR SCR

— — X2

o? (n—k—1)0? g2 kel
De méme pour SCE :
B[S (1i=7) | = (o> 52— 5CF
t = (kK)o =
t=1

k62  k(SCE) 9
— =t = X
v 2 k(a?) k

Puisque X2, ;| et AZ sont indépendants alors :

Sous Hj :

=1 fare
_ k _ k
F, = . = -
2 n—k—1
Z €y n—k—1
t=1
n—k—1
R2
= N
1—R2 k,n—k—1,0%
n—k—1

Reégle de décision
Si |F,| > Fp on rejette Hy , et on accepte Hyp, le modéle est globalement significative.

La régression est jugée significative si la variabilité expliquée est significativement différent de 0.
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Tableau d’analyse de la variance

Source de Sommes des carrées Degré de liberté | Moyenne des carrées F calculé
variation
n
SN . _ SCFE MC,
_ 2 / 2 _ _ reg
T1py oo Tiot SOE_;(Y—Y) = AX'Y —nY k = =MCy | Fe= T
n
. SCR
Variabilité SCR=) =YY - AX'Y n—k—1 — 7 = MCres
n — —
résiduelle =
n
Variabilite | SCE =Y (V; -Y)?=Y'Y —nY n—1
totale =

2.2.3 La prévision dans le modéle de la régression multiple

Le probléme consiste a déterminer quelle valeur doit étre attribuée a la variable endogéne
lorsque nous connaissons les valeurs des variables exogénes.
Le modéle général estimé est le suivant :
Vi = ao + a2 + .. + appg + e
La prévision pour la date t 4+ h est la suivante :
Vieh = a0+ a12104h + - + QrThen + errn
L’erreur de prévision est donnée par :
errh = Yin — Yien = N(0,02,,)

L’intervalle au seuil de probabilité (1 — ) est donné par la formule suivante :

Yien = Yo £ b0 k1) * 5’5\/X£+h(X/X)71Xt+h +1

Considérant que les hypothéses du modéle linéaire général sont vérifiées, la prévision est sans

biais.



Chapitre 3

Application et conclusion

Dans ce chapitre, nous allons analyser la régression linéaire simple sur un exemple. Cette
présentation va nous permettre d’exposer la régression linéaire dans un cas simple afin de bien

comprendre les enjeux de cette méthode, les problémes posés et les réponses apportées.

3.1 Exemple d’application

Etude de la relation entre la tension artérielle et I'age d’un individu. Les données sont ex-
traites de Bouyer et al. (1995) Epidémiologie. Principes et méthodes quantitatives, Les éditions

INSERM.

1. Objectif
On souhaite savoir si, de fagon générale, I’Age a une influence sur la tension artérielle et
sous quelle forme cette influence peut étre exprimeée.
Le but est d’expliquer au mieux comment la tension artérielle varie en fonction de I’age et

éventuellement de prédire la tension a partir de ’age.

2. Population et variables étudiées
Population générale d’individus.

Sur cette population, on défnit deux variables.

52
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e La variable Y : variable tension; c’est la variable & expliquer, appelée encore variable &
régresser, variable réponse, variable dépendante (VD).
e La variable X : variable 4ge; c’est la variable explicative, appelée également régresseur,

variable indépendante (VI).

3. Echantillon aléatoire d’individus
Pour I’étude, on doit faire des mesures sur n individus tirés au sort dans la population.
Données numériques : on observe deux échantillons appariés deX et Y de taille :

(xla yl)a ceey (xiayi)a ceey (JUmyn)

ol x; et y; sont les valeurs de X et Y observées sur le ¢"*¢ individu tiré au sort.

4. Modéle exprimant la relation entre Y et X
On cherche & exprimer la relation entre la variable tension et la variable age a I’aide d’une
fonction mathématique du type y = f(x). Graphiquement cela revient a représenter cette

relation a ’aide d’une courbe (graphe de la fonction).

5. Choix du modéle
Pour choisir le modéle de relation, on doit faire des observations sur un échantillon d’in-
dividus. Les données recueillies sur ces individus sont représentées graphiquement a ’aide
d’un nuage de points. Si le nuage a une forme particuliére s’apparentant & une courbe

mathématique, on choisira la fonction mathématique correspondant a cette courbe.

La forme étirée et croissante du nuage suggére une relation positive de type linéaire entre la
tension et I'age.

Le coeffcient de corrélation linéaire observé sur 1’échantillon est r = 0.7868.

Modéle de régression linéaire : modéle le plus simple qui exprime la relation entre Y et X a
I’aide une fonction linéaire. Graphiquement, la relation est représentée par une droite d’équation
y=azx+b.

1)Ajustement du modéle aux données. Estimation des coeffcients de la droite par la
méthode des moindres carrés

Le modéle étant posé, il faut estimer numériquement les paramétres du modeéle, c’est-a-dire cal-
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Tession srierelle an fonclion de Fige
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culer les valeurs numériques des coeffcients qui correspondent le mieux aux données. Cela revient

& déterminer la droite qui s’ajuste le mieux aux données, c’est-a-dire la droite qui est la plus

proche des points.

Selon quel critére et quelles sont les formules permettant d’obtenir des valeurs estimées des co-

effcients ?
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1. Formules de calcul des coeffcients estimés

. cov(z,y) . var(y)
“= var(z) (z,9) var(z)
b= §—az

Sur I’exemple, on obtient :
T = 53.85,y = 145.32,r = 0.7868, s = 7.18, SZ = 14.39

La méthode des moindres carrés fournit les coeffcients estimés suivants sur ’exemple :

= 1.5771

>

et
b = 60.3928

la droite d’équation y = 1,5771x + 60, 3928 s’appelle la droite de régression estimée de Y
sur X.

2. droite de régression estimée ou droite des moindres carrés

3. Valeurs ajustées, résidus et somme des carrés des résidus

Une fois les coeffcients de la droite estimés, on calcule pour chaque individu :

® y; =ax; + b s’appelle la valeur ajustée ou prédite de Y par le modéle.
e ¢; = y; — 9; s’appelle le résidu de l'observation i. C’est ’écart entre la valeur de Y
observée sur l'individu n™¢ et la valeur prédite. Le résidu e; est une approximation
du terme d’erreur g;
n
e la somme des carrés des résidus est SCR = Z e?. Elle mesure la distance de la droite

=1

de régression aux points du nuage de points qui est minimale au sens des moindres

carrés.
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Tension adénielle en fonckion de Fige
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e La statistique 6% =

2est un estimateur sans biais de o2

Exemple numeérique :

lindividu n°4 a pour age x4 = 44.
La tension observée est y4 = 144

La tension prédite (ou estimée) par le modéle est

9Ja = 60,3928 + 1,577144 = 129, 7852

Le résidu pour l'observation n°4 est eq = 14.2148. Le résidu est positif (point au
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tension = 60,3028+1 577 1%x

180 ) =]
valeur de Y observée résidu

160 |

droite v = 80,3928+1.5771 X

valeur de Y prédite

dessus de la droite). SCR = 2605, 569

o 2605.569
0" = ——F7

= 81.424
32

4. Comment mesurer la qualité de ’ajustement
Pour le modéle choisi, Y peut varier en fonction :
- de X, selon la relation linéaire postulée.
- d’autres variables non prises en compte et synthétisées dans le terme d’erreur.
On va mesurer la part de chacune de ces deux sources de variation pour évaluer la qualité
de 'ajustement du modéle aux données.
Décomposition de la variation totale des observations

On peut tout d’abord écrire la décomposition suivante :
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On peut montrer la propriété suivante :

zn:<yz'—§>2=zn:<yi—ﬁi>2+§:<§z’—§>2

i=1 =1

peut étre décomposée en deux parties :

SCT = SCR+ SCE

n 2
ou SCE = Z <g)z — y> représente la variance expliquée par la régression (mesure la
i=1

n
variation des valeurs ajustées autour de la moyenne ) et SCR = Z e? représente la va-
i=1
riance résiduelle ou non expliquée (partie de la variation totale qui n’est pas expliquée par
le modéle de régression).

Dans I’exemple, on obtient :

SCT = 6839.442, SCE = 4233.873, SCR = 2605.569

Le coeffcient de détermination R>
Afin d’avoir une idée globale de la qualité de Pajustement linéaire, on définit R? le coeff-

cient de détermination qui est le carré du coeffcient de corrélation R :

SCE
R*=——
SCT
Il mesure la part de la variation totale de Y expliquée par le modéle de régression sur X.
4233.873
Pour I’exemple, on a 72 = 0.619 = 6839.442 Le modele de régression explique 61,91% de

la variation totale.

2)Tests
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1. Test global de signifcativité de la régression
Il parait raisonnable de tester la signifcativité globale du modéle, c’est & dire tester si tous
les coeffcients sont supposés nuls, excepté la constante. Cela correspond dans le cas de la

régression linéaire simple & Hp : @ = 0 contre Hy : a # 0

La statistique du test : statistique F' de Fisher

On utilise la statistique, notée F' défnie par la formule :

R2 SCE

— _ 1
F=(n-2)7—75 = scr
n—2

Loi de F sous Hj

La statistique F' suit la loi de Fisher a (1,n — 2) ddL.

Région de rejet de Hy Sous Hy , on s’attend & observer une valeur de F' proche de 0.
Plus la valeur de F' est grande et plus elle est en faveur de Hj.

La région de rejet est située a 'extrémité droite du domaine .

Décision Reégle basée sur la p-valeur : si 0,5 < 0, on rejette Hy au risque d’erreur 6.

7‘2
Oops :PH()(F(LH—Q) > (n—2)1_r2>

Dans Statistica, les valeurs observées de F' sont données ainsi que la p-valeur.

2. Tests sur les paramétres
Reprenons I'exemple de la tension en fonction de I’age. Nous avons modélisé la tension
Y par I'age X. Il parait raisonnable de se poser les questions suivantes : (a) est-ce-que le
coeffcient a est non nul, autrement dit la variable X a-t-elle réellement une influence sur
Y?
(b) est-ce-que le coeffcient b est non nul, autrement dit faut-il une constante dans le modéle ?

Rappelons que le modele utilisé est le suivant :

yi =ax; +b+¢;
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Nous pouvons expliciter les questions précédentes en terme de test d’hypothése :
(a)correspond & Hp : a = 0 contre Hy : a # 0

(b)correspond & Hy : b =0 contre Hy : b # 0

La statistique du test : statistique T de Student

On utilise la statistique, notée T :

a

pour le coeflicient a définie par : T = -
Ga

. o b

pour le coefficient a définie par : T = -
O’/\
b

loi de T sous Hj La statistique 7" suit la loi de Student a (n — 2) ddl.

Région de rejet de Hy Sous Hj , on s’attend a observer une valeur de T proche de 0.
Plus la valeur de |T'| est grande et plus elle est en faveur de Hj.

La région de rejet est située a l'extrémité droite et a 'extrémité gauche du domaine (test
bilatéral).

Décision Reégle basée sur la p-valeur : si 0,5 < 6, on rejette Hy au risque d’erreur 6

£)
)

Dans Statistica, les valeurs observées de T' sont données ainsi que la p-valeur.

pour le coefficient a : 05 = 2P, <T(n -2) >

~

pour le coefficient b : 055 = 2Pg, <T(n —-2)>
&5
b

Remarque :

On peut remarquer que dans le cas de la régression linéaire simple, il est équivalent de
tester la significativité globale du modéle ou bien de tester Hy : a = 0, contre Hg : a # 0.
Effectivement, on a T2 = F' . Au niveau des lois 'égalité est aussi valable bien évidemment

et nous avons que le carré d'un Student & (n — 2) ddl est une loi de Fisher a (1,n —2) ddl.

o
Bien entendu le quantile (1 — a) d’une loi de Fisher correspond au quantile (1 — 5) d’une

loi de Student.

Pour ’exemple, on obtient :
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Synthese de la Régression; Vanable Dép. : tension (donnees-bot
R= 78678955 R*= 61903780 R* Ajusté = 60713273
F(1,32)=51,998 p<,00000 Err-Type de IEstim_- 9,0235
Béta | Er-Type B Er-Type | t(32) | niveau p
N=34 de Béta de B
OrdOrig. 60,39282 11,87925 5,083893 0,000016

e 0786790 0,109110/ 1.57709 0.21871 7,210952 0,000000
! ! | ||

2605.569
32

(a) :Hp : a=0,contre Hy : a # 0
t2, = (7.211)% = 51998 = fops

obs

= 9.0235

o=

Oops = 0, on rejette donc Hy au risque 5%
(a) :Hp: b= 0, contreH; : b # 0

tops = 5.084

Oops = 0, on rejette donc Hy au risque 5%

3)Intervalles de confiance et intervalles de prévision

1. Intervalles de confiance
On supposera dans la suite que les €; en plus d’étre indépendants, de méme loi, centrées et
de méme variance, sont distribuées suivant une loi A'(0, o%)
La valeur ponctuelle d’'un estimateur est en général insuffisante et il est nécessaire de lui
adjoindre un intervalle de confiance.

(i) Un IC de a au niveau 1 — 6 est donné par :

[a — 64,4+ t&d]
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0
ol t représente le quantile de niveau (1 — 5) d’une loi de Student de (n — 2) ddL

(ii) Un IC de b au niveau 1 — 6 est donné par :
[13 — t6;,b + t&g]

ou t représente le quantile de niveau (1 — =) d’une loi de Student de (n — 2) ddl.

3)
Nous pouvons également donner un intervalle de confiance de la droite de régression.

Un IC de y; au niveau (1 — #)est donné par :

1 (z;—x)2" ~ 1 (z;—x)2" ~
0. — 6 | = B2 0 th = J L 5)2
. U\/n+ AR IR SRR

En calculant les IC pour tous les points de la droite, nous obtenons une hyperbole de

confiance. En effet, lorsque x; est proche de 7, le terme dominant de la variance est —,
n

mais dés que x; s’éloigne de T, le terme dominant est le terme au carré.

. Intervalles de prédiction Un des buts de la régression est de proposer des prédictions

pour la variable & expliquer Y . Soit x,+1 une nouvelle valeur de la variable X, nous vou-

lons prédire y,+1. Le modéle indique que :

Yntl = QTpy1 +b+Eng

Nous pouvons prédire la valeur correspondante grace au modéle estimé

PPy = a1 + b

En utilisant la notation ¢ 41 » nous souhaitons insister sur la notion de prévision : la valeur

pour laquelle nous effectuons la prévision ici la (n + 1) n’a pas servi dans le calcul des
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estimateurs. Remarquons que cette quantité serait différente de la valeur ajustée, notée
7i, qui elle fait intervenir la "¢ observation. Deux types d’erreurs vont entacher notre
prévision, la premiére due & la non connaissance de €,41 et 'autre due a ’estimation des
paramétres. La variance augmente lorsquez, 41 s’éloigne du centre de gravité du nuage.
Faire de la prévision lorsque 11 est loin de Z est donc périlleux, la variance de 'erreur
de prévision peut alors étre trés grande.

Un IC de yp+1 au niveau 1 — 6 est donné par :

(x; —2)*"

2i=1

(x; —2)*"

2i=1

gho o —to 1+%+ (i —2)%, 00, +to 1+%+ (x; — )2

Cette formule exprime que plus le point a prévoir est éloigné de Z, plus la variance de la
prévision et donc I'IC seront grands. Une approche intuitive consiste & remarquer que plus
une observation est éloignée du centre de gravité, moins nous avons d’information sur elle.
Lorsque la valeur a prévoir est al’intérieur de ’étendue des z; , le terme dominant de la
variance est la valeur 1 et donc la variance est relativement constante. Lorsque x,, 41 est en

dehors de I'étendue des z; , le terme dominant peut étre le terme au carré, et la forme de

I'intervalle sera & nouveau une hyperbole.
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3.2 Conclusion

Les différentes phases d’un régression peuvent se résumer par trois étapes successives.

1. La premiére est la modélisation : nous avons supposé que la variable Y est expliquée de

maniére linéaire par la variable X via le modéle de régression ¥ = aX + b+ €.

2. La seconde est I’étape d’estimation : nous avons ensuite estimé les paramétres grace aux
données récoltées. Les hypothéses sur le résidu € ont permis d’établir des propriétés statis-

tiques des estimateurs obtenus.

3. Enfin la troisiéme étape est celle de validation . aborderer le probléme de la validation des

hypothéses sur les résidus et la qualité de ’ajustement observation par observation.
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