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Symboles et notations

I
(M, M),
LP([a,b];RY)

MP([a,b]; RY)

presque surment.

complementaire de A (A° = Q — A).

I'emsemble vide.

U'ensemble de tous les nombres réels non négatifs.

Uespace euclidien de dimension d.

la famille de toute les fonctions V(x, t) a valeurs réelles définies sur D x R,
qui sont continuellement m fois différentiables sur x € D et n fois sur t € R,.
la famille des fonctions p continues et non-décroissantes telles que

p:R, = R, avec u(0)=0et p(r)>0sir>0

= {xeR?: |x| < h) pourh > 0.

la matrice identité.

la variation quadratique.

la famille des processus (f (1)) <i<p 4 valeurs dans R* Fi-adapté telles que

b
J |f (t)[Pdt < oo Ps.
la famille des processus (f (t)),<i<p dans LP([t, T;RY) telles que

b
E [f |f(t)|pdt] < o0.



Introduction générale

Dans le dictionnaire "Le Petit Robert”, I’adjective “stabilité” signifie le carac-
tére de ce qui tend a demeurer dans le méme état, I’état d’'une construction ca-
pable de demeurer dans un équilibre permanent, tendance a rester dans un état
défini.

En mathématiques, la théorie de la stabilité traite la stabilité des solutions
d’équations différentielles et des trajectoires des systémes dynamiques sous des
petites perturbations des conditions initiales ou on formalise la question sui-
vante : supposons qu’on initialise un systeme dynamique en un point voisin d'un
point d’équilibre x;, qu’a devient t-il pour la trajectoire de la solution?

Des définitions mathématiques exactes de la stabilité pour un systeme dy-
namique, ainsi que des théorémes généraux de stabilité pour les systémes non
linéaires, ont été formulées pour la premiére fois par des scientifiques russes a la
fin du XIXe siécle. Le scientifique russe N.E. Zhukovskii [18], a introduit en 1882
un concept fort de stabilité orbitale basé sur une reparamétrisation de la variable
temporelle.

En 1892, dix ans apreés les travaux de N. E. Zhoukovski, le scientifique russe
A.M. Lyapunov [9] a défini son doctorat sur : "Une tache générale sur la stabilité
du mouvement [35]" ou il a prouvé sa stabilité en utilisant deux méthodes. Dans
la premiere méthode; connue sous le nom de premieére méthode de Lyapunov ou
meéthode indirecte de Lyapunov, la stabilité d’un équilibre est étudiée par linéari-
sation. La deuxiéme méthode, également appelée méthode directe de Lyapunov,
est beaucoup plus générale. L'idée fondamentale derriere la méthode directe de
Lyapunov est le théoreme de stabilité de Lagrange-Dirichlet, qui est basé sur
I’énergie mécanique. La méthode directe de Lyapunov est capable de prouver la

stabilité des équilibres d’équations différentielles non linéaires en utilisant une
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notion généralisée de fonctions énergétiques. Dans la terminologie moderne, un
équilibre est défini comme étant Lyapunov-stable si tout mouvement d’un sys-
téme issu d’un voisinage suffisamment petit d'un point d’équilibre demeure au
voisinage de ce point, alors ce systeme est stable au sens de Lyapunov.

La notion de stabilité des solutions des EDS a été introduite par I. Kats et N.
N. Krasovskii [4]. Puis, avec les travaux de J. Kushner [7, 6, 8], R. Z. Has’'minski
[3], Kozin[5], W. M. Wonham [12], M. Zakai [16, 17], . I. Gikhman et A. V. Sko-
rokhod [2] et A. Friedman [1], plusieurs type de stabilité ont été définis pour les

EDS et une approche de type Lyapunov pour étudier ces stabilités a été élaborée.

Le but de ce travail est d’étudier la stabilité d’'une équation différentielle sto-
chastique, pour cela j’ai partagé mon memoire en trois chapitres. Dans le premier,
nous allons rappeler brievement les notations de base de la théorie des probabili-
tés et des processus stochastiques. Nous présentons ensuite la définition mathé-
matique de mouvement Brownien et ses propriétés importantes. En utilisant ces
propriétés, nous procédons a la définition de I'intégrale stochastique par rapport
au mouvement Brownien et établissons la formule bien connue d’Ito.

Le deuxieme chapitre diverse en deux sections, la premiére est pour présen-
ter les équations différentielles stochastiques non-linéaires ou nous allons étudier
I’existence et I'unicité des solutions [2.2.1], 'estimation dans LP [2.2.2] et D'esti-
mation asymptotique presque stire [2.10]. Dans la deuxieme section, nous allons
définir les équations différentielles stochastiques linéaire ou nous allons motion-
ner quelques formules (la formule de Liouville [2.3.1] et la formule de variation
de constante [2.3.2]), puis, nous donnons des exemples sur les équations diffé-
rentielles stochastiques linéaires.

Le dernier chapitre qui est le coeur de notre travail, est consacré a la stabilité
des équations différentielles stochastiques. Ce chapitre est divisé en trois sec-
tions. Dans la premiere, nous allons présenter des notions préliminaires néces-
saires pour établir nos principaux résultats, la deuxieme section se rapporte a la
stabilité au cas déterministe avec les deux méthodes (méthode classique et la mé-
thode de Lyapunov). Dans la troisieme section, nous allons étudier la stabilité au
cas aléatoire ou nous allons donner les différentes sorte de stabilité (la stabilité en
probabilité [3.4.1.1], la stabilité exponentielle presque sire [3.4.1.2], la stabilité
exponentielle des moments [3.4.1.3] et la stabilité assymptotique p.s.[3.4.1.4]). A
la fin de ce chapitre, nous spécifié une derniére section pour la stabilisation et la

déstabilisation des équations différentielles stochastiques par I’ajout d’un bruit.




Chapitre 1

Mouvement Brownien et intégrale

stochastique

1.1 Notes de base

La probabilité est une évaluation du caractére probable d’un événement et
la probabilité d’'un évenement est un nombre réel compris entre 0 et 1. Plus ce
nombre est grand, plus le risque (ou la chance, selon le point de vue) que évene-
ment se produise est grand. Les évenements élémentaires "possibles" w sont re-
groupés dans un ensemble Q. Les parties de () observable ou intéressante consti-
tuent une tribu F.

On définit donc un espace probabilisé (Q), F,P) avec
* ) est I'ensemble des événements,
e F est une tribu,
* P est la mesure de la probabilité sur F.

Définitions 1.1.
 Tribu(o-algebre) : Une tribu F sur () est une famille de parties de (2 si :
i) 0eF,
ii) Ac F=>Ae F,
iii) (A1 CF = | Jae 7.
i=1
» Espace probabilisé : Soient (€2, ) un espace mesurable et P une applica-

tion de F dans [0, 1] telle que
i) P(Q)=1;




1. MOUVEMENT BROWNIEN ET INTEGRALE STOCHASTIQUE

ii) pour toute suite d’événements {A;};>; disjointe deux a deux avec {A;};>1 C
F(le.AinAj=0sii=j),ona

Le triplet (Q), F,P) s’appelle un espace probabilisé ou espace de proba-
bilité.

Remarque 1.1. On dit que (Q), F,P) est complet si F = F avec

F={AcQ:3dB,Ce F telleque BC Ac C,P(B) =P(C)}

* Filtration : Une filtration #; est une famille croissante de sous tribus de F,
(i.e /s C F; C F pour tout 0 <t <s < o0).

e Fonction F-mesurable :

e une fonction X : Q — R est F-mesurable si
{w: X(w)<aleF VaekR,

La fonction X est également appelée variable aléatoire a valeurs réelles.
« une fonction X a valeurs dans R? (ie. X(w) = (Xy(@),..., Xz(w))T) est
F-mesurable si tous les éléments de X; sont F-mesurable.
* Processus stochastique : Un processus stochastique X est la donnée de {X;};¢;

est une famille de variables aléatoires a valeurs dans R? avec I est I’en-

semble des parametre I = R,.

» Temps d’arrét : une variable aléatoire 7 : O — [0, 0] est appelé F;-temps

d’arrét (simplement temps d’arrét) si
w:t(w)<tleF, VYt=>0.

Lemme 1.1. Soit {A}} une suite d’ensembles dans F. On définit la limite supé-

rieure des ensembles par

lim sup Ay = {w : w € Ay, pour une infinité de k} = m UAk.

o0
k
e i=1 k=i

10



1. MOUVEMENT BROWNIEN ET INTEGRALE STOCHASTIQUE

1 Si{A)CF et Z]P(Ak) < co, Alors
k=1

P(lim sup Ax) = 0.

k—o0

1 Si la suite {Ay} C F est indépendante et ZIP(Ak) = o0, Alors
k=1

IP(klim supAg) = 1.

Définition 1.1. Soit M = (M;);>( un processus adapté et intégrable (V¢ > 0, E(|M;|) <
o0), on dit que M est

1. Unemartingale si

Y0<s<t, IE(Mt/}"S):MS.
2. Une surmartingale si

Y0<s<t, ]E(Mt/}"s)SMS.
3. Une sousmartingale si

Y0<s<t, IE(Mt/]:S)ZMs.

Théoreme 1.2. {Loi forte des grands nombres}
Soit M = {M;};>o une martingale locale continue a valeur réelle avec M(t = 0) = 0.

Alors
M;

tli_)r(r}o(M,M)t =00 p.s. = tli)r?om =0p.s.
et aussi (M, M) M
lim sup L coops = lim Tt =0p.s.

1.2 Mouvement Brownien

D’apres le professeur Jean Pierre Kahane, le mouvement Brownien est un phé-
nomene naturel et un objet mathématique a la fois. Le phénomene naturel est le
mouvement désordonné de particules en suspension dans un liquide et ce der-
nier a été observé des le 18 eme siecle. L'objet mathématique est un processus

gaussien dont la variance des accroissements est égale au temps écoulé.

11



1. MOUVEMENT BROWNIEN ET INTEGRALE STOCHASTIQUE

Deéfinition 1.2. Soit (QQ, F,P) un espace de probabilité avec une filtration (F);so.
Un mouvement Brownien unidimensionnel (standard) (B;);>o est un processus
continue a valeur réelle et -adapté avec les propriétés suivantes :

i) Bo=0p.s,;

ii) pour tout 0 <s <t < oo, 'incrément B, — B, ~ N'(0,t —s);

iii) pour tout 0 <s <t < oo, l'incrément B, — B; 1L F.

Le mouvement Brownien a de nombreuses propriétés importantes et certaines

d’entre elles sont résumées ci-dessous :

Propriétés 1.3.
* (—B;) est un mouvement Brownien par rapport a la méme filtration (F;),
e Soit ¢ > 0. On définit X, par

B
X, =< pourt > t.

Ve
Alors (X;) est un mouvement Brownien par rapport a la filtration (F),
* (B;) est une martingale carré intégrable continue et sa variation quadra-
tique (B,B), =t, pourtoutt>0.
 La loi forte des grands nombres spécifie que

. B;
tll)r?o - = 0 p.s.

1.3 L’intégrale d’It6

Définition 1.3. {Processus simple}
un processus stochastique a valeur réel g = (g()),<;<p est dit un processus simple
s’il existe une partition a = ty) < t; <--- <t = b de [a,b] ,(&;)o<i<k—1 un variable

aléatoire borné tel que &; est 7, -mesurable et

k-1

g6 = ol ) (D + ) Dy p,, ) (DEs:

Définition 1.4. Soit f € M?([a,b];R). L'intégrale d’It6 de f par rapport a B, est
définie par
t t
Jf(t)dBt: limf g,(t)dB; surL*(Q;RR)

12



1. MOUVEMENT BROWNIEN ET INTEGRALE STOCHASTIQUE

ou g, est une suite de processus simples tels que

b
tim £ | /1) g, (s =o.

L’intégrale stochastique a de nombreuses propriétés intéressantes. Nous obser-

vons d’abord ce qui suit :

Théoreme 1.4. Soient f,g € Mz([a, b];R) et soient a, f deux nombres réels. Alors
b

i) L f(t)dB(t) est F,-mesurable;
b
i) EU- ftdBtl:O
jf t)dB(t —EU If(t |2dtl
vz)J [af(t)+ Bg(t)]dB(t) J; f/a’g t)dB(t

Théoréme 1.5. Si f € M?([0, T];R), alors I'intégrale indéfinie I(t) est une martin-
gale carré intégrable par rapport a la filtration (F;) avec

iii) E

T
= j f(s)dB(s) pourtout0<t<T
0

Jf )dB(s ]$4ELT|f(s)|2ds.

En particulier,

[ sup
0<t<T
1.3.1 Processus d’Ito

Définition 1.5. Un processus d’Itd unidimensionnel (x(t));>o est un processus

t t
+ J; f(s)ds+ J; 2(s)dB(s),

ou f € LY(R,;R) et ¢ € L>(R,;R). Nous dirons que x(t) a une formule différen-

continu adapté tel que

tielle stochastique donné par

dx(t)= f(t)dt+g(t)dB; avect>0.

13



1. MOUVEMENT BROWNIEN ET INTEGRALE STOCHASTIQUE

1.3.2 La formule d’It0

Théoréeme 1.6.

Soit x(t) un processus d’It6 sur t > 0 avec sa formule différentiel stochastique
dx(t) = f(t)dt+ g(t)dB; avect >0,

ot f € LY(R,;R) et g € L2(R,;R). Soit V € C*!(R x R,;R). Alors V(x(t),t) est a
nouveau un processus d’Ito avec la formule différentielle stochastique donné par

AV(x(t), 1) = [Vi(e(0) 1)+ Velx(t) O (1) + 5 Via((0), D2 (1)1
+Vy(x(t),t)g(t)dB; p.s.

1.4 Les inégalites

1.4.1 Inégalité du moment

Théoréme 1.7. Soient p > 2 et g € M?([0, T|; R¥™) tels que

T
E P
UO 5(s)Pds
g P> \: ., T
)S(zm—n) T EUO |g(5)|pdsl.

1.4.2 Inégalité de Gronwall

< 00.

Alors

E( sup Ltg(s)dB(s)

0<t<T

Théoreme 1.8. Soient T > 0 et ¢ > 0. Soit u(-) une fonction borélienne ,non-
négative et bornée sur [0, T] et soit v(-) une fonction intégrable non-négative sur
[0,T]. Si

t
u(t) < C+J v(s)u(s)ds VO<t<T,
0

Alors ;
u(t) < Cexp(J v(s)ds) YO<t<T
0

14



Chapitre 2

Equation différentielle stochastique

2.1 Introduction

L’'un des problemes importants dans de nombreuses branches de la science et
del'industrie, par example I'ingénierie, la gestion, la finance et la sciences sociale,
est la spécification du processus stochastique régissant le comportement d’une
quantité sous-jacente. Nous utilisons ici le terme quantité sous-jacente pour dé-
crire tout objet intéressé dont la valeur est connue actuellement mais elle est
susceptible de changer a ’avenir. Des exemples typiques sont

* nombre de cellules cancéreuses,
* nombre de personnes infectées par le VIH,
* prix de l'action dans une entreprise,

* prix de l'or,pétrole ou électricité.

2.2 EDS non-linéaire

Soit (Q), F,P) un espace de probabilité complet avec une filtration (F);>¢ sa-
tisfaisant aux conditions habituelles. Tout au long de ce chapitre, on pose B(t) =
(B1(t),..., B,(t))T, t > 0 un mouvement Brownien de dimension m définie sur les-
pace. Soit 0 <ty < T < o0. Soit xj une variable aléatoire dans R et JFi, —mesurable
telle que [E|xo|? < co. Soient f : R x[ty, T] — R? et g : R? x[ty, T] — R des fonc-
tions borélienne. Considérons I’équation différentielle stochastique de dimension
d au sens d’Ito

dx(t) = f(x(t), t)dt + g(x(t),)dB(t)  ty<t<T (2.1)

15



2. EQUATION DIFFERENTIELLE STOCHASTIQUE

cette équation est équivalente a I’équation suivante

=xo+ J f(x(s),s)ds + J‘tg(x(s),s)dB(s) tg<t<T (2.2)

avec x(ty) = xq.

Définition 2.1. Un processus stochastique (x(t));,<;< a valeur dans RY est ap-
pelé une solution de I’équation (2.1) s’il a les propriétés suivantes :

(i) x(t) est continu et F-adapté;

(ii) f(x(t),t) € L' ([to, T]; RY) et g(x(t),t) € L7([ty, T]; R™™);

(i17) I’équation (2.2) est satisfaite pour tout t € [t, T] avec probabilité 1.
Une solution x(t) est dite unique si toute autre solution %(t) est indistinguable de
x(t), c’est a dire

P{x(t) = x(t) Vg < t < T} = 1.

2.2.1 Existence et unicité des solution

Théoréme 2.1. Supposons qu'’il existe deux constantes positives K et K telles que
(i) (la condition de Liptchiz) Pour tout x,y € R? et t € [ty, T]

et = F@ 0P \/lgtx ) - g, I < Klx =3I (2.3)

ii) (la condition de croissance linéaire) pour tout (x,t) € R? x [t , T
p 0

fx,t |2\/|g x,t K(1+ |x|? ). (2.4)

Alors,il existe une unique solution x(t) a I’équation (2.1) et la solution appartient
a M?([to, T;RY).

Lemme 2.2. Supposons que la condition de croissance linéaire (2.4) soit vérifiée.
Si x(t) est une solution de I’équation (2.1), alors

E[ sup |x(t)|2) (1 + 3E|xo| ) 3K(T—t)(T—to+4)

to<t<T

En particulier, x(t) appartient a M*([t,, T];RY).

16



2. EQUATION DIFFERENTIELLE STOCHASTIQUE

Preuve: { Preuve du Théoreme (2.1)}

L’'unicité :

On considere deux solutions x(t) et x(¢) de I’équation (2.1) avec xy = X et par
le lemme (2.2), les deux solutions appartiennent a MZ([tO, T]; IRd). Pour toutn > 1,

on considere le temps d’arrét
1, =T ANinf{t € [tg, T]: |x(t)| = n}.

Clairement, 7, T T p.s. Posons x,(t) = x(t A T,) pour t € [ty, T]. Alors x,,() satisfait

I’équation suivante

t t
%) = %0 +£ £ (xn(), )11 1 p1(5)ds +f ¢ (ea(s), )L 11011 (5)dB(s);

to

Vu que X est aussi une solution, nous avons 1’équation analogue :

t t
X, (t) = X + t (&0 (8), )L [1y,7,11(5)ds + f 8(%,,(5), ) Lyty,,11(s)dB(5).

to

Par différence,

t t
Xp(t) = %, (t) = t [f(xn(s)fs)_f(xn(s)r5)]1[[t0,rn]](5)d5+j [8(x,(5),8) — &(%,,(5), )L [[1,,7,11(5)d B(5).

to

En utilisant I'inégalité élémentaire |a + b)* < 2(la? + |b)?), I'inégalité de Cauchy-

Jfg

2
Schwarz < J-lflz J |g|2 et la condition de Liptchiz (2.3), on peut montrer

que
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2. EQUATION DIFFERENTIELLE STOCHASTIQUE

%)= (1) szft:mxn(s),s) Fan(e) )|
+2 J:[gm(s),s) e(a(s) MBS
s2J:|f<xn<s>,s>—f(xn<s>,s>|2dsxjt:ll[[to,rnms)Pds
+2 J:[g<xn<s>,s) e (B

<2(t—to) | If (xu(s),5) = f(Zuls), ) *ds
to

t 2
t [8(x(5),5) — &(%(5), 8) L {(4,7,11(5)d B(s)
0 t
<2K(t—tg) | Ixu(s)—%u(s)I%ds
t LO 2

[8(x(5),5) = &(%(5), )1y, (5)dB(s)| -

to
Par conséquent, par le Théoreme (1.7) et la condition (2.3), on peut montrer en
outre que

(sup |, (s) )
to<s<t
R(T - t@E[sup( |xn<u>—xn<u>|2du)]
to<s<t \Jt,
S 2
+2E | sup f[g(xnw),u)—g(aen(u),u>mut0ﬁnn<u>d3<u>
to<s<t |Jt,

<2K(T - tO)j Elx,(s)— %,(s)]>ds

to
t

+8KE[

18



2. EQUATION DIFFERENTIELLE STOCHASTIQUE

par conséquent
B S
h(t) <2K(T —ty+ 4)J E( sup |x,(r) =%, (r)|* |dr.
to to<r<s
Si on pose C = K(T -ty +4), alors on a établi que h vérifie pour t € [t(, T]
t
h(t) < CJ h(s)ds.
to

En appliquant I'inégalité de Gronwall et nous obtient
h(t) <0.

c’est a dire
E sup |xn(5)_xn(5)|2 <0
i’()SSST

ainsi

IA

E( sup |x(s)—3€(5)|2) 0.

to<s<T,

Finalement, en faisant tendre n — oo et donc x(t) = X(t) p.s. pour tout t € [t, T].

L’existence :

On procede comme pour les équations différentielles avec une méthode d’ap-
proximation de Picard. Pour cela, on pose x(ty) = xo et pour n =1, 2,... on défini
les itérations de Picard

Xu(t) = xo + t f(xp-1(s),5)ds + f 8(xy-1(s),5)dB(s) (2.5)

to

avec t € [ty, T]. Evidemment, xo(t) € M?([to, T];IR?). De plus, x,,(t) € M?([to, T]; R?)
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2. EQUATION DIFFERENTIELLE STOCHASTIQUE

parce que nous avons de (2.5) que

t 2 t 2
Elx,(t)> <3|Elxol*+E f(xn_l(s),s)ds +E J- g(x,-1(s),5)dB(s) ]
to
<3 Elxo|2+(t—to [ |f (xp-1(s), I2ds]+El |g(xn—l(5);5)|2d5])
to
< 3|Elxo|* + (T — ty)E J(K+K|xn_1(s)|2)dsl+E t(K+K|xn_1(s)|2)ds])
to LS to

t
<3 E|x0|2+(T—t0+1)E[ (K+K|xn_1(s)|2)dsl

to

it
< 3 E|X0|2 + K(T - to)(T — tO + 1) + (T — to + 1)E l |Xn_1(S)|2dSl)

\Jto

t
< Cy+3K(T —to+ 1)f Elx,_;(s)|?ds,
to

(2.6)
ott C; = 3E|xo|> + 3K(T — to)(T — to + 1). Il découle également de (2.6) que pour
toutk>1
max Elx,(t)* <C;+3K(T -ty+1) J max Elxn L(s))Pds

1<n<k

<C;+3K(T-ty+ 1)J‘ (Elxo|* + max E|x,(s)*)ds
1<n<k

to
t
< Cy+3K(T -ty + 1)((T — to)Elxol + f max E|x,(s)*ds
tO 1S1’l§k
t
< Cy+3K(T—ty+1) | max Elx,(s)|°ds,

tO 1S7’l§k
ott Cy = Cy + 3K(T —to + 1)(T — to)E|xo|*. Alors I'inégalité de Gronwall implique

max El|x,(t)]? < C, + 3K (Tt 1)(T—to)
1<n<k

Puisque k est arbitraire, nous devons avoir
Elx,(£)]> < Cy + 3T+ )(T~t0)  poyr tout t € [ty, T],n> 1. (2.7)

Ensuite, nous notons que

1 (£) = xo(8)* = |xq (£) — xol? ,
f(xq,5) (x0,5)
o L
f xos)ds| +2 f ¢(x0,$)dB(s)

20



2. EQUATION DIFFERENTIELLE STOCHASTIQUE

En appliquant l'espérance et en utilisant (2.4), nous obtenons

t
Elxy (t) = xo(t)]> < 2(t—to)E lj |f (xo,5)|°ds

t
+ ZE[ |g(x0,s)|2d5]

to ;
< 2K(T - ty)E U (1+ |x0|2)dsl +2KE [ (1+ |x0|2)dsl

o fo (2.8)
<2K(T -ty+1)E j (1+|x0|2)ds]

to

<2K(T —ty+1)(T —to) [1+E|x0| ]

Nous affirmons maintenant que pour n > 0,

CIM(t—to)]"

Elxn+1(t)_xn(t)|2 < n!

th<t<T, (2.9)

ou M = 2K(T -ty + 1). Nous le montrerons par récurrence. Au vu de (2.8), nous
voyons que (2.9) est vrai lorsque n = 0. Sous I’hypothése de récurrence que (2.9)
est vrai pour certains n >, nous montrerons que (2.9) est toujours vérifiée pour
n+ 1. Notons que

2
2
1Xp12(t) = X041 ()]

t [f (xps1(5),8) = f(x,(5),5)]ds
t

[8(xn11(5),5) = &(xu(s), 5)]d B(s)

to

’ (2.10)
+2

En appliquant l'espérance et en utilisant (2.3) ainsi que I’hypothese de récur-
rence, nous obtenant cela

t

Elxnso(t) = X1 (1)) S2K(T—to+1)El Ixn+1(5)—xn(5)|2d51

to

<MJ Elxn+1 ) xn( )|2d5
<Mf Mds

CMO+)
m[(f—to)("m—(fo—fo)("+1)]
_ CIM(t = to)] ™D
(n+1)!

Autrement dit, (2.9) est satisfaite pour n+ 1. Donc, par récurrence, (2.9) est satis-
faite pour tout n > 0. De plus, en remplacant n dans (2.10) par n— 1, nous voyons

21



2. EQUATION DIFFERENTIELLE STOCHASTIQUE

que
_ T
sup_[x,,e1(#) = x,(t)? S2K(T—to) Ixn() X1 ()P ds
to<t<T ,
+2 sup f [8(x(5),5) = 8(x-1(5),5))dB(s)
to<t<T

En appliquant l'espérance et en utilisant le théoréeme (1.7) et (3.8), nous consta-

tons que

T
E sup |xn+1(t)_xn(t)|2] SZK(T_tO)E(J |xn() Xn— 1( )||2d5)

to<t<T

2
+2E sup J [g xn xn 1 )’5)]dB(S) ]
to<t<T
SzK(T—to)£ Ela(s) = xp_1 (5)|ds

T
+8KJ Elx,(s) — x,_1 (s)|*ds
to

T
<2R(T —to+4>f Ela(s) — xp1 (5)]2ds

—tg) n-1
< 4MJ Mi(s 0 ds
4C[M - to ]”
N (n)! '
Par conséquent
1)  4C[M(T - ty)]"
P! sup |x,.q(t | > — .
{tostspT i1 (£) = %, (£) 2”} ()]
. [~ 4C[M " .
Puisque Z < 00, le lemme de Borel-Cantelli (1.1) donne que pour
n=

presque w € Q 11 existe un entier positif ny = ng(w) tel que

sup |xp41(f) —x,(£)] > on Vi 2 ny.
to<t<T

I1 s’ensuit que, avec la probabilité 1, les sommes partielles suivants

n—1

xo+ ) [Xien ()= xi(1)] = x, (1)

=1

-~
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convergent uniformément dans ¢ € [0, T]. Notons la limite par x(t). Clairement,
x(t) est continu et adapté a F;.. De l'autre c6té, on voit a partir de (2.9) que pour
tout t, (x,(t)),>1 est également une suite de Cauchy. Par conséquent, nous avons
également x,,(t) — x(t) en L?. Quand 1 — oo dans (2.7) on obtient

Elx(t)]> < Cy + 3Tt D(T~h) pour tout t € [ty, T],n>1.

Ce qui prouve que x(t) € M?([to, T]; R?). Reste 4 montrer que x(t) satisfait 'équa-
tion (2.2). Notez que

2

[f (xn(5),5) = f (x(s),5)]ds

to

t
f [9(xa(s), ) — g (x(s),9)]dB(s)

to

Elx,(t)—x(t)]*> <2E

2

<K(T —ty+ 1)JtE|xn(s) —x(s)|*ds

t
r

sK(T—t0+1)—[ E( sup |xn(s)—x(s)|2)ds—>0 quand n — oo.
t

o \to<t<T

On peut donc faire tendre n — oo dans I’équation (2.5) pour obtenir la formule

suivante

x(t) = xg+ tf(x(s),s)ds + th(x(s),s)dB(s) pourt e [ty, T].
to

to

Le théoreme suivant donne une estimation de la vitesse de la convergence.

Théoreme 2.3. On suppose que les hypothéses du théoréme (2.1) soit vérifiée.
Soient x(t) la solution unique de I’équation (2.2) et x,,(t) les itérations de Picard
définies par (2.5).

< 8C[M(tl— fo)l" sm(r—t,)
n:

s

E [ sup_|x,(s) - X(S)IZ)

to<t<T

pour toutn > 1, ou C et M sont les mémes que ceux définis dans la démonstration
du théoreme (2.1).

Théoreme 2.4.
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2. EQUATION DIFFERENTIELLE STOCHASTIQUE

(i) (la condition de Liptchiz locale) Yn > 1 3K,, > 0 tel que pour tout t € [ty, T]
etx,y e R? avec |x| v ly| <n

f )= F @02\ lgx ) - g, )P < Ky lx -yl (2.11)
(ii) (la condition de monotonie) 3K > 0 tele que pour tout (x,t) € R x [t, T]
xTf(x, t)+%|g(x,t)|2 <K(1+x]?). (2.12)
Alors,il existe une solution unique x(t) a I’équation (2.1) et la solution appartient
a M?([to, TFRY).
On considere ’équation différentielle stochastique suivante
dx(t) = f(x(t), t)dt + g(x(t),t)dB(t) t € [ty,o0] (2.13)

On discute maintenant plus généralement sur l'existence et I'unicité de la solu-

tion quand t € [t(, o]

Théoreme 2.5. Supposons que pour tout T >ty et n > 1 qu’il existe un un constant
positif K1 ,, tel que pour tout t € [ty, T] et tout x,y € R? avec x| V [y < n,

feet) - f@, 0P \/ 186t - g, O < Kg -yl (2.14)
Supposons aussi que pour tout T > t, il existe un constant positif K1 tel que pour
tout (x,t) € R? x [t,, T,
1
x f(x )+ Slg(x ) < Kp(1+xf?), (2.15)

Donc il existe une solution globale unique x(t) de I’équation (2.13) et que cette
solution appartient & M?([ty,co]; R?)

2.2.2 Lapproximation en L?

Dans cette sous-section, nous supposons que pour tout typ <t < T x(t) est la
solution unique de 1’équation (2.1) avec x(fy) = x, et nous étudierons le p-éme

moment de la solution.

Théoréme 2.6. Soient p > 2 et xy € LY (Q; RY). Supposons qu’il existe une constante
a > 0, telle que pour tout (x,t) € RY x [to, T],

xTf(x, t)+%|g(x,t)|2 < a(l+|xP). (2.16)

Alors
p-2
e

Elx(t)]” <277 (1 + E|xo|P)eP* (1) pour tout t € [ty, T]. (2.17)
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Preuve: :
Par la formule d’Ito, I'inégalité élémentaire (|a +b]P < 2P Y (|afP + |b|p)) et la condi-
tion (2.16), nous pouvons déduire que pour ¢ € [t(, T]

t )
=[1+ |x0|2]% +p | [1+ |x(s)|2]pTxT(s)f(x(s),s)ds

to

t
N f[1+|x< 15 2T (s)g (x(s),5)Pds
Pe-2) f{l 215 T (5)g (x(s) )P

NS

[1+1x(1)]

[1+|x 1% < (s)g(x(s), s)dBs)

2 2

T+ o] +th[1 +x(s)) T (2.18)
( )+ P lg(ats) o) ) s
P f [1+Ix(s))7 %7 (5)g(x(s), 5)d B(s)

I\JO

[1+|x0|p]+paj [1+|x(s)? ]2ds

+pJ[l+|x ] T ),s)dB(s).
Pour tout entier n > 1, on définit le temps d’arrét par
1, =T ANinf{t € [tg, T]: |x(t)| = n}.

Clairement, t,, T T p.s. De plus, il résulte de (2.18) et de la propriété d’intégrale
d’It6 que

[Slas1

- [ PINAT,
477

[1+ E|xol?] + paE 1+ |x(s)|2]5dsl

| J tO

E[1+|x(tAT,))?]? <2

ali
<2"7[1+ElxolP] + paE [1+|x(smn)|2]’5dsl.

| Jto

l\)

L’inégalité de Gronwall donne

4
2

B2 t—t
E[1+|x(tAT,))?]2 <27 [1+ E|x0|p]epa( ~tg).

En faisant tendre n — oo, on obtient

P
2

E[1+|x(t)2]> < 2% [1 + E|xg|P]ePet-10),

et I'inégalité demandée (2.17) obtenue.
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Corollaire 2.7. Soient p > 2 et xg € LP(Q;IRd). Supposons que la condition de
croissance linéaire (2.4) soit vérifiée. Alors I'inégalité (2.17) est satisfaite pour
a=VK+K(p-1)/2.

Théoréme 2.8. Soient p > 2 et x, € L' (Q;R?). Supposons que la condition de

croissance linéaire (2.4) soit vérifiée. Alors

E( sup |x(t)|p) < (143771 4 E|xy|P)eblit0) (2.19)

to<s<t

pour tout t € [ty, T], ou

p
2

(7S]

(T —t0)7 [(T -ty

1 P3 %
p = (18K) +(2p_1) } (2.20)

Tournons-nous maintenant vers le cas 0 < p < 2.0n note que 'inégalité de Holder

implique
Elx(t)” < [Elx(t)]]".

En d’autres termes, I’estimation pour E|x(t)|” peut se faire via I’estimation pour

le moment d’ordre 2.Par exemple, nous avons les corollaires suivants.

Corollaire 2.9. Soient 0 < p < 2 et x, € L>(Q;R?Y). Supposons qu’il existe une
constante a > 0, telle que pour tout (x,t) € R? x [t,, T],

1
xTf(x,t)+ E|g(x, 12 < a(l +|x|?). (2.21)
Alors

Elx(t)|P < (1 + E|xo?)ZePa(t—10) pour tout t € [ty, T). (2.22)

2.2.3 L’approximation asymptotique presque surement
On considére maintenant I’équation différentiel stochastique de dimension d
d(x(t)) = f(x(t), t)dt + g(x(t), t)dB(t) pour t € [ty,o0) (2.23)

avec x(ty) = xo € LY (Q;R?). Supposons que ’équation (2.23) a une unique solu-
tion globale x(t) sur [t, o).
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Dans cette sous-section, nous établirons ’estimation asymptotique de la solu-

tion presque strement. Plus précisément, nous allons estimer
. 1
lim sup —log|x(t)|. (2.24)
t—o00 t
presque stirement, qui est appelé ’exposant de Lyapunov.

Théoreme 2.10. Soit 0 < p < 2. Supposons qu’il existe une constante « > 0, telle
que ,pour tout (x,t) € R x [t;, o0],

xTf(x,t)+ %lg(x,t)lZ <a(l+|x?). (2.25)
Alors .
lim sup n log|x(t)| < a. (2.26)
t—o0
Preuve:

log[1 +|x(t)]?] <log[l + |xo|*]
t

+J ;P(Zfo(x(s),S)+|g(x(5),5)|2)ds
t

0 1+ |x(s)
L (T sx(s) )P (2.27)

e -M0

to

2
<log[1 + |xo|*] + 2a(t — to) — 2 |

HxTg(x(s), 5)
r [1+1x(s)P]?

t T
o - [ L)

1+ |x(s)[?

+ M(t)

ou

D’un autre coté, pour toute entier n > t;, en utilisant 1’'inégalité exponentielle de
martingale ( le théoréeme (1.7)), on voit que

[ Tes) )P
[1+Ix(s)1?]?

P{ sup [M(t) >210gn}£%.

to<t<n to

Une application du lemme de Borel-Cantelli (1.1)donne alors que pour presque
tout w € ) il y a un entier aléatoire ny = ng(w) > ty tel que

T g(x(s),5)P
Sup lM(”‘z J [T+ )P

27
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Alors,

xTg(x(s),s)

pour tout t) <t <n, n>ng p.s. La substitution de (2.28) en (2.27) en déduit
que
log[1 + |x(£)]*] < log[1 + |xo|*] + 2a(t — t) + 2logn
pour tout t) <t <n, n > ngy p.s. Par conséquent, pour presque tous les w € Q, si
n>ng,n—1<t<n

1
n-—1

1
?log[l +x(8)?] < [log[l +|x0|°] + 2a(t — tg) + 2log n].
Cela implique

1 1
tlim sup ?log Ix(t)] < tlim sup log[1 + |x(t)|?]

< lim sup

2 - —
t—>00 2(n_1)[10g[1+|x0| ]+ 2af(t to)+210gn]_a p.s.

Corollaire 2.11. Sous la condition de la croissance linéaire (2.4), la solution de
I’équation (2.23) a la propriété suivante :

1 K
lim sup ?loglx(t)| <VK+=

t—o00 2

2.3 EDS linéaire

Dans cette section, nous souhaitons, si possible, obtenir la solution explicite

de I’équation différentielle stochastique linéaire générale de d-dimension

m
dx(t) = (F(t)x(t) + f (t))dt + Z(Gk(t)x(f) + 8k (£))dBi(t) (2.29)
k=1
sur [tg, T], ou F(.), Gi(.) sont des fonctions a valeur matricielle (d x d) et f(.), g(.)
sont des fonctions a valeur dans IR?, comme avant, B(t) = (By(t),..., By(t))T est un
mouvement Brownien de dimension m.
Tout au long de cette section, nous supposerons que F, f, Gy, g sont tous Bo-
rel mesurables et bornés sur [ty, T]. Par conséquent, et par le théoreme d’exis-
tence et d’unicité (2.3.1), ’équation linéaire (2.29) a une unique solution conti-
nue dans M?([ty, T];R%) pour tout x(ty) = xo, qui est F;-mesurable et appartient a
L2(Q;RY).
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2.3.1 Laformule stochastique de LIOUVILLE

Considérons 1’équation différentiel stochastique linéaire
dx(t) = F(t)x(t)dt + ZGk(t)x(t)dBk(t) (2.30)
k=1

sur [to, T]. Soient ¢;(t) = (qblj(t),...,(j)dj(t))T la solution de I’équation (2.30) avec

x(tg) = ej ou e; est le vecteur colonne unitaire dans la direction de x;, i.e

ei=(0,...,0,1,0,...,00)T  pourj=1,...,d.

On définit la matrice fondamentale de I’équation (2.30) par

(1) = (P1(t),-.., Pa(t)) = (dij () axa-

I1 est utile de noter que ¢(tg) =I5, et

d(t) = F()p(t)dt+ ) G(t)p(t)dBi(t)
k=1

Théoréme 2.12. Etant donné la valeur initiale x(ty) = x,, la solution unique de
I’équation (2.30) est

Lemme 2.13. Soient a(.), b(.) des fonctions borélienne a valeur réel et bornées sur
[to, T]. Alors

t 1 Mmoo~
y(t) = yoexp U )=3)_bNds+ Y | nisBs
to k=1 k=1%o

est la solution unique a I’équation différentielle stochastique linéaire scalaire

dy(t) = a(t)y(t)dt + ) bi(t)y(t)dBy(t)
k=1

sur [to, T] avec y;, = v
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2.3.2 La formule de la variation des constantes

Considérons 1’équation différentielle stochastique linéaire d-dimensionnelle

générale
m

dx(t) = (F(t)x(t) + f (t))dt + Z(Gk(t)X(f) + 8k (1))d By (t) (2.31)
k=1

sur [tg, T| avec x(tg) = xo. L’équation (2.30) est appelée I’équation homogene
du systeme (2.31). Dans cette section, nous établirons une formule utile, appelée
formule de variation des constantes, qui représente la solution unique de 1’équa-
tion (2.31) en termes de la matrice fondamentale de ’équation homogene corres-
pondante (2.30).

Théoreme 2.14. La solution unique de I’équation (2.31) peut étre exprimée comme

m

ZGk(S)gk(S)]d5+ Z t ¢_1(S)gk(5)d3k(5)]:
1 k=1 0

k=

X(t)=¢(t)[xO+ t ¢_1(5)[f(5)

(2.32)
ou ¢(t) est la matrice fondamentale de I'équation homogene correspondante (2.30).

Le théoreme (2.14) nous dit que nous pouvons avoir la solution explicite de
I’équation linéaire (2.31) a condition de connaitre la matrice fondamentale cor-
respondante ¢(t). Bien que nous ne puissions pas obtenir la matrice fondamen-
tale explicite ¢(t) pour chaque cas, nous pouvons le faire pour plusieurs cas im-

portants et passons a ces études de cas.

2.3.3 Les cas d’études

(i) Equations linéaires scalaires : Nous considérons d’abord 1’équation différen-

tielle stochastique linéaire scalaire générale

dx(t) = (a(t)x(t)+a(t))dt + Z(bk(t)x(t) + by (t))dBy(t) (2.33)
k=1

sur [to, T] avec x(to) = xo. Ici xg € L2(Q; R) est Ji,-mesurable, et a(t),

a(t),b(t),b(t) sont des fonctions scalaire et Borélienne.L’équation linéaire
homogene correspondante est

dx(t) = a(t)x(t)dt + ibk(t)x(t)dBk(t). (2.34)
k=1
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Par le lemme (2.13), la solution fondamentale de I’équation (2.34) est don-

née par

¢(t) =exp

J‘t(a(s) — % ibi(s))ds + iJ‘t bi(s)dBy(s)
to k=1 k=110

En appliquant le théoreme (2.14), nous obtenons ensuite la solution expli-

cite de I’équation (2.33)
x<t>=¢<>[xo+ ¢ ()[( -3 bk(s) }ds+Z ¢ (5)Bi(5)d By (s)

k=1
(2.35)
(ii) Equations linéaires au sens large : Nous considérons ensuite I’équation dif-

N —

férentielle stochastique linéaire de dimension d au sens large

m

dx(t) = (F(H)x(t) + f(1)dt+ ) ge(H)dB(t) (2.36)

k=1
sur [ty, T] avec x(ty) = xg, ou F, f, g sont les mémes que définis dans la
sous-section précédente. L’équation linéaire homogéne correspondante est

maintenant I’équation différentielle ordinaire
x(t) = F(t)x(t). (2.37)

Encore une fois, soit ¢(t) la matrice fondamentale de 1’équation (2.37). La
solution de I’équation (2.36) a alors la forme

x(t) = ¢(t)[x0 + s)ds + Z (s)dBy(s )) (2.38)

En particulier, lorsque F(t) = F est une matrice constante (d xd), la matrice

F(t=t0) ot sa matrice inverse

fondamentale ¢(t) a la forme simple ¢(t) = e
¢~ L(t) = e T Par conséquent, dans ce cas, I’équation (2.36) a la solution

explicite

t m t
x(t) :eP(t_tO)[x0+J e Flt=t) f(s)ds+ZJ e—F“—fo)gk(s)dBk(s))
t k=11

0
t m.
:xoeP(HO)J =S f(s)ds + J eF (=5 g1 (5)d By (s).
to k=1%o
(2.39)
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2. EQUATION DIFFERENTIELLE STOCHASTIQUE

(iii) Equations linéaires autonomes : Nous considérons maintenant l’équation

différentielle stochastique linéaire autonome d-dimensionnelle
m
dx(t) = (Fx(t)+ f)dt + Z(ka(t) + g1)dBy(t) (2.40)
k=1

sur [ty, T] avec x(tg) = xg, ou F,Gy € RY x d et f,qk € RY. L’équation homo-
gene correspondante est

dx(t) = Fx(t)dt + inx(t)dBk(t). (2.41)
k=1

En général, la matrice fondamentale ¢(f) ne peut pas étre donnée explici-
tement. Cependant, si les matrices F,Gy,...,G,, sont commutatives, c’est-

a-dire si
FGy = GiF, GkG] = G]Gk pour tout1 <k,j<m, (2.42)

alors la matrice fondamentale de 1’équation (2.41) a la forme explicite

[P—§;G£]<t—to>+ zGuBk(t)—Bk(to))].

k=1

¢y = exp

Enfin, nous appliquons le théoréme (2.14) pour conclure que sous la condi-

tion (2.42), ’équation linéaire autonome (2.40) a la solution explicite

t

m m ¢
t ¢_1(5)d5)(f—ZGkgk]+Z( t ¢_1(S)d3k(5))gk}-
0 k=1 0

k=1

x(t) = ¢<t>[xo+(
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Chapitre 3

Stabilité des équations différentielles

stochastiques

3.1 Introduction

stabilité signifie une insensibilité de I’état du systeme aux petits chan-
L gements de I’état initial ou des parametres du systeme. Pour un systeme
stable, les trajectoires qui sont "proches” les unes des autres a un instant donné
doivent donc rester proches les unes des autres a tous les instants suivants.
En 1892, Lyapunov a développé une méthode pour déterminer la stabilité sans
résoudre 1’équation et cette méthode est maintenant connue sous le nom de mé-
thode directe ou la deuxieme méthode de Lyapunov.
Dans ce chapitre, nous étudierons les différents types de stabilité des EDS d-

dimensionnelle de I’équation suivante :

dx(t) = f(x(t),t)dt+g(x(t),t)dB(t) ; pourtoutt>t,. (3.1)

3.2 Geéneralité

Deéfinition 3.1. (Solution triviale )

Considérons I’équation (3.2) et on suppose que pour tout x(fo) = x, € R?, il

existe une unique solution globale qui est notée x(t;ty, xy). Supposons en outre
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

que
f(0,t)=0 ; pour toutt > .

Donc I'équation (3.2) a la solution x(t) = 0 correspondant a la valeur initiale
x(tg) = 0. Cette solution est appelée solution triviale ou position d’équilibre.

Définition 3.2.
— Une fonction continue V(x, t) définie sur Sy, %[, 00) est dite définie-positive

(au sens de Lyapunov) si V(0,t) = 0 et, pour certains y € K,
Vix,t)>pu(lxl) 5 (xt) €Sy x[to,00).

— Une fonction V est dite définie-négative si (—V') est définie-positive.
— Une fonction continue non négative V(x, t) est dite décrescente (i.e qu’elle

a une limite supérieure arbitrairement petite) si pour certains p € C,
Vi(x,t) < p(lx]) ;0 (%, t) € Sy x[tg, 00).

— Une fonction V (x, t) définie sur R x [to, 00) est dite radialement non-bornée
si
lim inf V(x,t) = oo.
|x| =00 t2£g

Définition 3.3. On définit I'opérateur différentielle L associé a I’équation (3.1)

par

& J 1< 9
_ 7 i o= T oz
L - at + ;fz(x; t) axi + 2 ijZ:i[g(x, t)g (X, t)]l] axiax]_'

Si L agit dans la fonction V € C>1(S, xR,;R,), alors
1
LV =Vi(x, t)+ Vi(x, t) f(x, 1) + Etrace[gT(x, 1) Vie(x, £)g(x, 1)].

Par la formule d’fto, si x(t) € Sy, alors

AV (x(t),t) = LV(x(£), )dt + V(x(t), £)g(x(t), )dB(t).
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3.3 Stabilite des équations différentielles ordinaires

3.3.1 Le concept de la stabilité

Définition 3.4.
— On dit que la solution triviale est stable si pour tout ¢ > 0, il existe 6 =
o(g,tg) > 0 tel que

|x(t;tg, x0)| < € pour tout t > tg,

ou |xg| < . Sinon, elle serait instable.
— On dit que la solution triviale est asymptotiquement stable si elle est stable

et qu’il existe 0y = d¢(tg) > 0 tel que
tlim x(t;tg,x9) = 0;

ou |xg| < 0p.

3.3.2 Laméthode de Lyapunov
Soit x(t) est une solution de ’équation suivante
x(t) = f(x(t),t) ; pour tout t > t, (3.2)

et V(x,t) € CH (S, x [tg, o0);R,). Alors v(t) = V(x(t),t) représente une fonction de
t avec la dérivée

v(t) = Vi(x(t),t) + Vilx(t), £) f (x(2), £)

d
— %_Y(x(t)’t)Jr;%<X(t)’t)ﬁ(x(t)’t)-

e Si v(t) <0, alors v(t) ne croit pas, donc la distance entre x(t) et le point
d’équilibre qu’est mesuré par V(x(t),t) naugmentera pas .

* Siv(t) <0, alors v(t) décroit a zéro de sorte que la distance diminuera a
zéro (i.e x(t) > 0).

Théoreme 3.1.

1. S’il existe une fonction V (x, t) définie-positive avec V (x, t) € C1'1(S,x[t, ); R,)

telle que
V(x,t) = Vi(x(t),) + Vo (x(£), 1) f (x(t),) < 0 V(x,t) € (S x [to, )

alors la solution triviale de I’équation (3.2) est stable.

35



3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

2. Sl existe une fonction V(x,t) € C11(S;, x [ty, 0); R, ) décrescente et définie
positive telle que V(x,t) est définie-négative, alors la solution triviale de
I’équation (3.2) est asymptotiquement stable.

Une fonction V(x,t) qui satisfait aux conditions de stabilité du théoréeme (3.1) est

appelée fonction de Lyapunov correspondant a I’équation différentielle ordinaire.

3.4 Stabilite des equations différentielles stochastiques

La stabilité stochastique a été 1’'un des domaines les plus actifs de I’analyse sto-
chastique et de nombreux mathématiciens y ont consacré leurs intéréts. Il s’avere
qu’il existe au moins trois types différents de stabilité stochastique : stabilité en
probabilité, stabilité du moment et stabilité presque sure.

3.4.1 Les différents types de la stabilité des EDS

Soulignons que tout au long de ce chapitre, nous laisserons la valeur initiale

X étre une constante (dans IRd) mais pas une variable aléatoire.

3.4.1.1 Stabilité en probabilite

Dans cette partie, nous discuterons la stabilité en probabilité.

Définition 3.5.

1. On dit que la solution triviale de 1’équation (3.1) est stochastiquement
stable ou stable en probabilité si pour tout couple de ¢ € (0,1) et r > 0,
il existe 6 = (e, 1, ty) tel que

Pf| x(t;tg,xg) |<7; VE> 1o} =1 —¢,

ou |xg| < 0. Sinon, elle est stochastiquement instable.

2. On dit que la solution triviale est asymptotiquement stochastiquement
stable, si elle est stochastiquement stable. De plus, pour tout ¢ € (0,1),
il existe 9 = d¢(¢, ty) > 0 tel que

P{lim x(t;tp,x9) =0} >1—¢,

t—o0

ou |X0| < 60.

36
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3. On dit que la solution triviale est stochastiquement asymptotiquement
stable en large si elle est stochastiquement stable, de plus, pour tout x, €
RY, tel que

P{lim x(t;t,x9) =0} = 1.

t—o00

Remarque 3.1. supposons que la valeur initiale x soit une v.a alors on remplace
"|xo| < 07 par ”|xg| < 6 p.s.” . Cela semble plus général mais est en fait équivalent
a ce qui précede. Par exemple, on suppose que la condition (1) est satisfaite donc
pour tout x v.a avec |xg| < 0 p.s, on a

~
P{| x(t;tg,x0) |< 1, VE >t} = | Pl x(t;tg,v) <7, YVt > to})P{xy € dy};
JSs

> | (1-¢)P{xyedy};
JSs
=1-¢.

Nous étendons maintenant le théoreme de Lyapunov (3.1) au cas stochastique.

Théoréme 3.2. S'il existe une fonction V(x,t) € C*!(S), x [ty,o0), R, ) définie posi-
tive tel que
LV(x,t) <0,

pour tout (x,t) € Sy, X [ty,00), donc la solution triviale de 1’équation (3.1) est sto-

chastiquement stable (i.e stable en probabilité).

Preuve: Par la définition d’une fonction V définie positive, nous savons que V (0, t)

0 et il existe une fonction y € K telle que
Vi(x, t) > u(|x]) ; pour tout (x,t) € Sy X [t(, o0). (3.3)

Soient ¢ € (0,1) et un arbitraire r > 0. Sans perte de généralité, nous pouvons
supposer que r < h. Par la continuité de V(x, t) et le fait que V(0,¢y) = 0, on peut
trouver 6 = (¢, 1, ty) > 0 tel que

1
—sup V(x,tg) < pu(r) (3.4)
€ XES(g

c’est claire que 6 < r, fixons maintenant x; € S5 arbitrairement et on écrit simple-

ment x(t) = x(t, tg, Xg). Soit le temps d’arrét 7 tel que

T=inf{t > ty:x; ¢ S,}.
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Par la formule d’Itd on obtient, pour tout t > t,,

V(x(t At),TAt)=V(xg, to)+ thLV(x(s),s)ds + fr/\t Vi(x(s),s)g(x(s),s)dBs

to

en appliquant l’espérance et on obtient
E[V(x(t At), T At)] < V(xg, tp). (3.5)

Notons |x(t A t)| = |x(t)| = r si T < t. Donc par (3.3),

E[V(x(tAt),TAt)]>E

I{Tst}V(x(T),T)] > u(r)P{t < t}.
Ceci, combiné avec (3.5) et (3.4), implique
Pi{r <t} <e.
Quand t — oo, on obtient IP{T < oo} < ¢, alors
P{|x(t)| <r; pourtoutt>0}<1-e.
|

Théoréme 3.3. S’il existe une fonction V(x,t) € C*1(S;, x[ty, ), R,) décresente et
définie-positive telle que LV (x, t) est définie-négative, alors la solution triviale de

I’équation (3.1) est asymptotique stable en probabilité.

Théoréme 3.4. S'il existe une fonction V(x,t) € C>'(R? x [ty, ), R,) décresente
radialement non-bornée et définie positive telle que LV (x, t) est définie-négative,
alors la solution triviale de I’équation (3.1) est asymptotiquement stable en pro-

babilité en large.

Exemple 3.1. Considérons une équation différentielle stochastique de dimension
1
dx(t) = f(x(t), t)dt + g(x(t),t)dB(t) ; t>to, (3.6)

avec x(fg) = xg € R. Supposons que f : RxR, > Ret ¢: RxR, —» R" avoir le

développement uniforme suivant

f(x,t)=a(t)x+o(|x]); g(x,t) = (bl(t)x,...,bm(t)x)T +o(lx]); t=>ty, (3.7)

38



3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

au voisinage de x = 0 ou a(t) et b;(t) sont toutes des fonctions Borel mesurables
a valeur réelle. Posons une condition selon laquelle il existe un couple constant

positif O et K tels que

—Ksﬁt[a(S)—%ibf(s)w

i=1

Soit
O<e<

sup sz

2

et on définie la fonction stochastique de Lyapunov

V(x,t) = |x|5exp [—g f(a(s) - % be(s) + G)ds] .
to i=1

Par la condition (3.8),
Ix|fe™eF < V(x, 1) < |x[Fetk.

Par conséquent V(x,t) est définie- positive et décresente. D’autre part, par (3.7)

LV (x,t) :elxlgexp[—ef sz s)+0)ds) x(—sz ) +o(|x|* )]

< ieee-fkw + o(|x[°).
On voit donc que LV (x,t) est définie-négative dans un voisinage suffisamment
petit de x = 0 pour t > .

Par le Théoreme(3.3), nous concluons donc que sous (3.7) et (3.9), la solution

triviale de I’équation (3.6) est asymptotiquement stable en probabilité.

3.4.1.2 Stabilité exponentielle presque sure

Nous discuterons de la stabilité exponentielle presque stre pour une équa-
tion différentielle stochastique d-dimensionnelle dirigée par un intégrateur non
linéaire. Nous donnons d’abord la définition formelle de la stabilité exponentielle
presque sure.

Définition 3.6. On dit que 1’équation (3.1) est exponentiellement stable presque

sirement s’il existe a > 0 telle que

1
tlim sup ?log|x(t; to, Xg)| < —a <0 p.s. (3.9)
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- 1 ,
pour tout xo € R?, out thm sup?loglx(t; to, xo)| est 'exposant de Lyapunov de la
—00

solution x(t; t, xq)-

Remarque 3.2. Nous expliquons encore une fois pourquoi il suffit de discuter du
cas des valeurs initiales constantes. Pour une valeur initiale générale x (i.e x est
F;,-mesurable et appartient a L*(Q;RR), il résulte de (3.9) que

t—o00

j Plxo € dy);
le

= 1.

1
IP{tlim sup ?log|x(t; to,x9)| <0} = J P{lim sup —loglx(t to, )| < 0}P{xq € dy};
—00 R4

Donc
lim sup —10g|x(t to,Xg)| <0 p.s.

t—o0

Pour établir les théoremes sur la stabilité exponentielle presque stire, nous de-

vons préparer les deux lemmes suivants.
Lemme 3.5. Supposons que pour tout 60 > 0, il existe un Ky > 0 tel que
If (x, £)|> + trace(g(x, t)g T (x, 1)) < Kglx|® si |x|<Oett >t

Alors,
IP{X(t}to,Xo)iO} VtZto}:l,

pour tout x, # 0 € R?. Autrement dit, presque tout le trajectoire d’échantillon-

nage de toute solution a partir d’un état non nul n’atteindra jamais I'origine.

Lemme 3.6. {L’inégalité exponentielle de la martingale} Soit g = (g1,..., §) € £*(R,; R*™)
et soit T, a,  des nombres positifs. Alors

{sup [j s)dB(s ——J |g(s)ds|?ds
to<t<T

Théoreme 3.7. Supposons qu’il existe une fonction V € C>1(RY x [t0,0);R,)

>ﬁ}<e ap, (3.10)

et les constants p>0,c; >0, c; € R, c3 > 0, telle que pour tout x =0 et t > t,
i) c1lxlP < V(x,t),
ii) LV (x,t) <, V(x,t),
iii) |Vy(x, £)g(x, t)]> > c5 V2 (x, 1).
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Alors,
C3 — 2C2

2p

pour tout x, € R?. En particulier, si c; > 2c, donc la solution triviale de I’équation

1
tlim sup?loglx(t; to, xo)| < — p.s. (3.11)

(3.1) est exponentiellement stable presque strement.

Preuve: De toute évidence, l'inégalité (3.11) est vérifiée pour xy = 0 puisque
x(t;t9,0) = 0. Fixons xy = 0 et on écrit x(t) = x(t;t(,0). Par le lemme (3.5), x(t) =0
pour tous t > t;, presque stirement. Ainsi, on peut appliquer la formule d’It6 et la

condition (ii) pour montrer que,
log V(x(t),t) <logV(xg,tg)+co(t—ty)+M(t)

1| Valx(s), 5)g (x(s), )P
V2(x(s),s)

(7 Vi(x(s),9)g(x(s), 9)
M(t)—J; Vx(5),5) dB(s)

ds,

ou

0
est une martingale continue avec M = 0. Assignez arbitrairement ¢ € (0, 1) et soit

n=1,2,... Par I'inégalité exponentielle de la martingale (3.6),

e [T Valx(s),5)g(x(s), )P
{t0<stlig+nlJ‘ M J V (XS,S) s

En appliquant le lemme de Borel-Cantelli(1.1), nous voyons que pour presque

2 1
> Elog(n)} <.

n

tous w € Q, il y a un entier ny = ng(w) tel que si n > ny,

e [ Valirts) s)glr(s) )P
MO=3 ) Vs

ds+ élog(n)

soit vérifiée pour tous ty <t < ty+n. On remplace ceci en (3.4.1.2) puis utiliser la

condition (iii) nous obtenons que
1 2
log V(x(t),t) <log V(xo, to) - 5[(1 —&)es — 26, |(t —to) + Elog(n)

pour tout ty <t < ty+n, n > ny presque sirement . Par conséquent, pour presque
tousweQ,sitg+n—-1<t<ty+netn>ngy,
2
t—tg log V(xq, tg) + £log(n)

1
_ < - — -
tlogV(x(t),t)_ T [(1—¢)ez —2¢o]+ to+n—1
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Cela implique

lim sup%log Vi(x(t),t) < —%[(1 —€)c3—20,] p-s.

t—o00
Enfin, en utilisant la condition (i), nous obtenons

(1 —E)C3 —2C2

2 p.s.

1
tlim sup — log|x(t)| < -
et I'inégalité demandée (3.11) obtenue, puisque € > 0 est arbitraire.

Corollaire 3.8. Supposons qu’il existe une fonction V € CZH(RY x [tg, 00); R, ) et
les constantes p, a, A soient positives telle que pour tout xy = 0,t > t;,

alxlP < V(x,t) et LV(x,t) < -AV(x,t).

Alors
: 1 A
tll)r?o sup — log |x(t; tg, )| < > p-s.

Ce corollaire découle immédiatement du théoréme précédent en posant ¢, = «,
cp=—Aetc3=0.

Théoreme 3.9. Supposons qu’il existe une fonction V € Cz'l(IRd X [tg,0);IR,)
et les constants p >0, c; >0, ¢, € R, ¢3 >0, telle que pour tout x # 0 et t > t,
i) clxlP > V(x,t)>0,
i) LV(x,t) > c,V(x,t),
iii) |Vi(c,)g(x, t)|> < c5 V2 (x, ).

Alors,
2C2 —C3

1
lim inf —log|x(¢; tg, xo)| >

5. 3.12
Lim inf - 2 p-s (3.12)

pour tout xy € R?. En particulier, si 2¢c, > c¢5 donc la solution triviale de I’équation

(3.1) est exponentiellement instable presque stirement.

Preuve: Fixons x; # 0 et on écrit x(t) = x(¢;ty,0). Par la formule d’It0, les condi-

tions (ii) et (iii), nous pouvons facilement montrer que pour t > ¢,

log V (x(t),£) > V(xo, to) + %(2@ —e3)(t—to) + M(D), (3.13)
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ou

(! Vilx(s), s)g(x(5),5)
M(t)_ﬁo Vi) 20

est une martingale continue avec la variation quadratique

t 2
Vi (x(s), 5)g(x(s), sl
M(t), M(t)) = ds < c3(t—ty).
M) = | SEEEES st =to)
: s L . M(1)
Par la loi forte des grands nombres (c’est-a-dire le théoreme (1.2)), thm — = 0

p.s. Il résulte donc de (3.13) que

(2C2—C3) p-s.

N =

tlim inf%logV(x(t), t) >

Ce qui implique I'inégalité (3.12) demandé en utilisant la condition (i).
|

Exemple 3.2. On considéré I’équation différentielle stochastique de dimension 2
suivante
dx(t) = f(x(t))dt + Gx(t)dB(t) pourt>tg (3.14)

avec x(ty) = xo € R? ou B(t) est unidimensionnelle,

f(x):(xzcosxl ] G:( 3 —0.3)'

2x151nXxy -0.3 3
Soit V(x,t) =|x|>.On a
4.29]x]> < LV = 2x,x,c05x] + 4x1xp5inx, +|Gx|> < 13.89|x|?

et
29.16|x|* < |V,(x, t)Gx|* < 43.56]x|*.

En appliquant le théoréeme (3.7) et le Théoréme (3.9) et on obtient
1 1
-8.745 < tlim inf? log|x(t;tg, x0)| < tlim sup — log |x(t;tg, %) < —0.345.

Par conséquent, la solution triviale de I’équation (3.14) est exponentiellement

stable presque stirement.
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Ficure 3.1 — Trajectoire de la solution de 1’équation (3.14)
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3.4.1.3 Stabilité exponentielle au moment d’ordre p

Nous discuterons de la stabilité exponentielle du moment d’ordre p pour
I’équation (3.1) et nous laisserons toujours p > 0.

Définition 3.7. On dit que la solution triviale de I’équation (3.1) est exponentiel-
lement stable au moment d’ordre p s’il y a un couple de constantes positives A et
C et pour tout x, € R? telles que

E|x(t;t9, x0)]P < ClxolPe*710); pour tout t > tg, (3.15)

pour tout xo € R?. Lorsque p = 2, il est généralement dit exponentiellement stable
en moyenne quadratique. Il résulte également de (3.15) que

1
tlim sup?logElx(t; to, xo)P <O. (3.16)

Remarque 3.3.
— Si l'on souhaite considérer la valeur initiale x, € L?(Q;RY) puis, par (3.15),

it sl = | Eltito, P Plxo €yl
R

IA

de ClylPeM=10)P(x, € dy};

CE|y|Pe‘A(f‘t0),

— Soit 0 < p < p, alors
A 1 1
(Elx(t)IP)? < (Elx(t)[P)?.

Et par conséquent, la stabilité exponentielle au moment d’ordre p implique
la stabilité exponentielle au moment d’ordre p

Théoréme 3.10. Supposons qu'’il existe une fonction V € C*'(R? x [ty,00); R, ) et
des constantes postives Cy, C,, C3, telle que

cilxlP < V(x, t) < cp|x|P et LV (x,t) < —c3V(x,t) (3.17)
pour tout (x,t) € R x [tg, 00). Alors,

Cc
Elx(t;t, x0)IP < —2|xolPe 705 £ > 4, (3.18)
€1

pour tout x, € R?. Autrement dit, la solution triviale de I’équation (3.1) est expo-

nentiellement stable au moment d’ordre p.
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Preuve: Fixons x; € R; et on note x(t) = x(t; ty, x¢). Pour tout n > |x,|, on définit le
temps d’arrét
Ty = infle>ty: ) > n)

Evidemment, T,, — co quand t — co presque sirement. Par la formule d’It6, nous

pouvons déduire que pour t > ¢,

E [eC3(t/\rn—to)V(x(t ATy), t A Tn)] = V(xo,to)+E

J~t/\rn e [cs, V(x(s),s) + LV(x(s),s)]dsl .

to

En utilisant la condition (3.17), nous obtenons alors que

e E(F AT, )P < E [ec3(”"”‘t0)V(x(t AT, A Tn)]
< V(x0,tp) < calxolP.

quand n — oo, on obtient
c1 e < el
ce qui implique l'assertion souhaitée (3.18).
|

De méme, nous pouvons prouver le théoreme suivant qui donne un critere suffi-

sant pour l'instabilité exponentielle du moment d’ordre P.

Théoréme 3.11. Soit g > 0. Supposons qu’il existe une fonction V € C*'(R% x

[tg,0); R") et des constantes positives Cy, C,, C3, telle que
clx|? < V(x,t) < cylx|? et LV (x,t)=>c3V(x,t) (3.19)
pour tout (x,t) € R? x [ty, o). Alors,
Elx(t; to, xo)| < %|x0|qu3<f—f0> £> g (3.20)

pour tout x, € R?. Autrement dit, la solution triviale de I’équation (3.1 )est expo-

nentiellement instable au moment d’ordre q.

Remarque 3.4. Soit 4 > gq. Alors

1

(Elx(DI9)7 = (EJx(H)]7)7.

Et par conséquent, I'instabilité exponentielle au moment d’ordre g implique I'in-
stabilité d’ordre 4.
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Corollaire 3.12. Supposons qu’il existe une matrice Q dxd symétrique et définie-

positive, et les constantes a4, a,, a3, telles que pour tout (x,t) € R? x [t9,00),

1
xTQf(x, t)+ Etrace[gT(x, 1)Qg(x,t)] < a1 xT Qx, (3.21)
et
T T T
arx' Qx <|x" Qg(x,t)] < azx’ Qx. (3.22)
— Siay <0, alors la solution triviale de I’équation (3.1) est exponentiellement
2|a
stable au moment d’ordre p, a condition que p <2+ | 21|.
a
3
— 0 < &y < a3, alors la solution triviale de I’équation (3.1) est exponentielle-
’ \ .. 20(1
ment stable au moment d'ordre p, a condition que p <2 - —-.
a

2

Corollaire 3.13. Supposons qu’il existe une matrice Q dxd symétrique et définie-
positive, et les constantes f1, B, telles que pour tout (x,t) € RY x [to, 00),

xTQf(x,t) + %trace[gT(x,t)Qg(x, t)] > p1xT Qx, (3.23)

et
T Qg(x, 1) < Box” Qx. (3.24)
Alors la solution triviale de I’équation (3.1) est exponentiellement instable au

moment d’ordre q, a condition que q >0V (2 - —21)

2

Exemple 3.3. Considérons I’EDS linéaire suivante

m

dx(t) = a(t)x(t)dt + Zbi(s)x(s)dB,-(s). (3.25)

i=1

Pour tout t > t, avec x(ty) = xo € RY, o1 a(t), b;(t) sont toutes des fonctions conti-
nues sur [y, o). Alors la solution explicite de I’équation (3.25) est la suivante

t 1 & m t
x(t) = xpexp U (a(s) - Zb}(s))ds + ZJ b;(s)dB;(s)|.
to i=1 i=1 Yo

Donc,

t 1 & "Moot
ER(0 = ol E [exp H (o) =3 )_BENds+p)_ | bilsdBits
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]:1.

Elx(t)lP = xolf exp [pf X } (3.26)
t

0

Mais on peut montrer que

Ao $E oraenf o

Alors,

On voit donc que la solution triviale de 1’équation (3.25) est exponentiellement

stable au moment d’ordre p si et seulement si

1 t P - b2(s
lim sup — ; -— ))ds < 0; (3.27)

t—o00 l
i=1

alors, qu’elle est exponentiellement instable au moment d’ordre g

lim inf%J y_1-4 ))ds > 0. (3.28)

t—o0 2
i=1

Sia(t) =a, b;(t) = b; sont toutes des constantes ,alors I’équation (3.27) est vérifiée

m
;pri2<0, ie p<l-
i1

si

a
m )
1 2
7 2 b;
i=1

tandis que (3.28) est satisfaite si et seulement si

m
-q .
——2 Zf 0, ie g>1-

3.4.1.4 Stabilité asymptotique presque surement

Définition 3.8. Soit A : R, — (0,00] une fonction continue non-croissante telle
que A(t) — 0 quand t — oo. On dit que la solution triviale de I’équation (3.1) est

asymptotiquement stable presque surement avec la fonction de taux A(t) si
|x(t;t0, x0)| < EA(t) pour toutt >t

presque surement, ou & est une variable aléatoire finie qui dépend de x et £
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Théoréeme 3.14. Soientp >0etV € C>1(RY x [tg,);R,). Soit y : R, — R, une

fonction continue non-croissante telle que y(t) — 0 quand t — co.
[S0]

Soit 1 : R, — R, fonction continue telle que n(t)dt < oco. Si
0

y(t)xlP <V(x,t) et LV(x,t)<n(t) (3.29)

pour tout (x,t) € RY x [tg,o0), donc la solution triviale de 1’équation (3.1) est

asymptotiquement stable presque surement avec la fonction de taux A(t) = (y(t))_%.

Exemple 3.4. Considérons I’équation différentielle stochastique linear scalaire

dx(t) = —1L+tx(t)dt +(1+1t)"PdB(t) pourtoutt>t,, (3.30)

. 1 . : :
avec x(ty) = xg € R, ou p > 3 et B(t) est un mouvement Brownien scalaire, soit

r ..
O<e<p- 5 arbitraire et

V(x,t) = (t+1)2P7172€)x2,

Calculant

LV(x,t) = (2p—2-2€)(t+1)2P71726)0x2 _2p(t +1)2P7272€)x2 4 (4 1) (1+29)
< (t+1)—(1+2€)

et on note

J (t+1) 1294t = 1
0 2¢

Par le théoréme (3.14) et avec p = 2, p(t) = (t +1)2P7172¢) et n(t) = (t+ 1)~(+28),
on voit que la solution triviale de I’équation (3.30) est asymptotiquement stable

presque surement avec la fonction de taux A(t) = (t + 1)_(’7_%_5).

3.4.2 Le lien entre la stabilité exponentielle presque sur et la

stabilité exponentielle au moment d’ordre p

D’une maniere générale, la stabilité exponentielle du p-eme moment et la sta-
bilité exponentielle presque stre ne s'impliquent pas mutuellement et des condi-
tions supplémentaires sont nécessaires pour déduire I’'une de l'autre. Le théoréeme
suivant donne les conditions dans lesquelles la stabilité exponentielle du moment

p implique la stabilité exponentielle presque stre.
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Théoréme 3.15. Supposons qu’il existe un constant K positif tel que
xTf(x,t)VIg(x, t)]> < K|x|? pour tout (x,t) € R? x [t,, 00). (3.31)

Alors la stabilité exponentielle au moment d’ordre p de la solution triviale de

I’équation (3.1) implique la stabilité exponentielle presque sure.

Lemme 3.16. Soit g € £2(1R+;1Rdxm) . Définir, pour t > 0,

t t
x(t) :L g(s)dB(s) and A(t) :J; |g(s)%ds.

Alors pour tout p > 0, il existe des constantes positives universelles c,, C, (dépen-

dant uniquement de p), telles que

cpE|A(t)|§ < E( sup |x(s)|p) < CpE|A(t)|§.
0<s<t
En particulier, on peut prendre
P

Cp:(g)p , CI,:(%)2 si 0<p<2;

Cp = 1 , Cp =4 si p=2;

p p(p+1) 2 )

cp,=(2p)2 , CPZ[Wl si  p>2.

Preuve: (preuve du théoreme)
On fixe xo # 0 dans R et on note x(ty, t;x) = x(t). Par la définition de p® stabilité
exponentiel, il existe un couple de constantes positives A et C telles que

Elx(t)|P < ClxolPe 1) pour t > t. (3.32)

Prenons n = 1,2,.... Par la formule d’It6 et la condition (3.31), on peut montrer
que pour tgp+n—-1<t<ty+mn,
t

|x(t)[P :|x(t0+n—1)|p+J plx(s)|P=DxT(s) f (x(s),5)ds

m+n—1

t
e [ [ gtats) 9 + plp - 2Pl ()50, 7] s
2 %+n—1
+J p|x(s)|(p_2)xT(s)g(x(s),s)ds

%+n—1

t

< |x(t0+n—1)|p+clj |x(s)[Pds

t0+ﬂ—1

+ f PRI (5)g(x(s) 5)B(S)
t

0+n—l
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

K
ouc; =pK+p(l+|p- 2|)§ Par conséquent

to+n

E( sup |x(t)|p] < E|x(t0+n—1)|p+clf El|x(s)[Pds
t

tg+n—1<t<tp+n 0+Yl—1

+E[ sup Jt p|x(s)|(p_2>xT(s)g(x(s),s)dB(s)]. (3.33)
t

t0+7l—1§t§t0+71 o-H’Z—l

De l'autre coté, par I'inégalité de Burkholder-Davis-Gundy (3.16), nous avons que

E[ sup Jt PIX(S)I(”‘Z)xT(S)g(X(S),S)dB(S)]
t

t0+n—1StSt0+Vl o-H’Z—l

< 4\2E (J‘t0+” pz|x(s)|2(17—2)|xT(5)g(X(S),5)|2dS)2 ;
£

0+n—1

f()-H’Z %
sNzE( sup |x<s>|Pf p2K|x<s>|Pds];
t

to+n—1<s<tp+n o+n—1
to+n

< %E[ sup IX(S)I”] + 16P2KJ Elx(s)IPds,

to+ﬂ—1§5§t0+1’l t0+n_1

ou nous avons également utilisé I'inégalité élémentaire Vab < E(a +b). On rem-
place ceci dans (3.33) et on obtient

t0+n

E( sup |x(s)|p] <2E|x(tg+n-1)P + C2J E|x(s)[Pds,
t

to-H’l—lStSto-H’l ()-H’Z—l

ol ¢, = 2¢; +32p°K. En appliquant la condition (3.32) et on obtient que

E[ sup |x(t)|p] < cze M) (3.34)

to+n—1<t<tg+n

ou ¢3 = Cl|xp|P(2 + ¢,). Maintenant, soit ¢ € (0, A) arbitraire. Il résulte de (3.34) que

IP{ sup lx(t)|P > e_("_g)(”_l)}

t0+n—1£tst0+n

< e‘(A“g)(”‘l)E( sup ) < cze D),

to+n—1<t<to+n
Compte tenu du lemme de Borel-Cantelli(1.1), nous voyons que pour presque

tous les w € Q),
sup x(£)]P < e=A-8)n=1) (3.35)

to+n—1<t<to+n
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est vérifiée pour tous, mais pour un nombre fini de n. Ainsi, il existe un ng =
no(w), pour tous w € () a 'exclusion d’un ensemble P-nul, pour lequel (3.35) est
vérifiée pour tout n > ng. Par conséquent, pour presque tout w € (),

1 1 (A—e)(n-1)
— < — Py < _
Foglx(0)] < logllx()F) <~ E RS
sitg+n—1<t<ty+n,n=>ng. Alors,
tlim sup %loglx(t)l < —(A; ‘) p.s.

Puisque ¢ > 0 est arbitraire, nous devons obtient

1 1 A
i l il Py<_Z
lim sup —loglx(t)| < ot log(|x(t)IP) < , P
Par définition, la solution triviale de ’équation (3.1) est exponentielle stable presque

surement.
|

Bien que la condition (3.31) ne soit pas garantie par les hypotheses d’existence
et d’unicité Théoreme (2.5) qui sont supposés tout au long de ce chapitre, il est
satisfait dans de nombreux cas importants. Par exemple, si les coefficients f(x,t)
et g(x, t) sont uniformément Lipschitz continus, alors (3.31) est valide en gardant
toujours la supposition de f(0,¢) =0 et g(0,¢) = 0.

De plus, pour I’équation différentielle stochastique linéaire d-dimensionnelle

dx(t) = F(t)x(t)dt + ZGi(t)x(t)dBi(t) (3.36)

i=1

la condition (4.3) est vérifiée si F et G; sont toutes des fonctions a valeurs matri-

cielles d x d bornées. Par conséquent, nous obtenons un corollaire utile.

Corollaire 3.17. Soient F, G; des fonctions a valeurs matricielles d x d bornées.
Alors la stabilité exponentielle au moment d’ordre p de la solution triviale de
I’équation linéaire (3.36) implique la stabilité presque sure.

3.4.3 Stabilisation et déstabilisation stochastique avec le bruit

Il n’est pas surprenant que le bruit puisse déstabiliser un systéme stable.

52



3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

3.4.3.1 Exemples motivants

Exemple 3.5. (déstabilisation)
Considérons une EDO bidimensionnelle

y=-y(t) poutt>tyy(ty)=x € R

est perturbé par le bruit et ce systeme perturbé stochastiquement est décrit par
I’équation d’Itd

dx(t) = —x(t)dt + Gx(t)dB(t) poutt>ty, x(ty)=x, € R> (3.37)
Ici B(t) est un mouvement Brownien unidimensionnel
Go 0 -2
2 0
et il a été démontré que I’équation (3.37) a la solution explicite
1
x(t) = xoexp[(-I - EGZ)(t —to) + G(B(t) - B(to))]

x(t) = xgexp[I(t—to) + G(B(t) - B(to))],

ou I est la matrice carré d’identité. Par conséquent

1
lim —log|x(t)| =1 p.s.

t—oo |

C’est-a-dire que le systéme perturbé stochastiquement (3.37) devient exponen-

tiellement instable presque stirement.
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FiGure 3.2 — La déstabilisation de 1’équation (3.37)

D’autre part, il a également été observé que le bruit peut également avoir un
effet stabilisateur.

Exemple 3.6. (stabilisation)

Par exemple, considérons un systeme scalaire instable
v =y(t) poutt>tyy(ty) =x9€R (3.38)

Perturbons ce systéme par le bruit et supposons que le systeme perturbé a la
forme
dx(t) = x(t)dt+2x(t)dB(t) poutt>ty, x(ty)=x9€R. (3.39)

ou B(t) est a nouveau un Brownien unidimensionnel. L’équation (3.39) a la solu-
tion explicite
x(t) = exp[—(t - to) + 2(B(t) — B(to))],

ce qui donne immédiatement

tlim %log(lx(t)l) =-1 p.s.

54



3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES
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Ficure 3.3 - la stabilisation de I’équation (3.38)

C’est-a-dire que le systéme perturbé (3.39) devient stable. En d’autres termes, le
bruit a stabilisé le systeme instable (3.38).

3.4.3.2 Systemes non-linéaire

Stabilisation des EDO :

Supposons que le systeme donné soit décrit par une équation différentielle

ordinaire non linéaire

(1) = f(y(t),1)  pourt>ty, y(ty) = xo € R, (3.40)

Posons f : RY x R, — R? une fonction continue et localement Lipschitz et parti-

culiérement, pour certain k >0
|f (x,t)| < k|x| pour tout (x,t) € R x R,. (3.41)

Nous utilisons maintenant le mouvement Brownien B(t) = (Bl(t),...,Bm(t))T
m-dimensionnel comme source de bruit pour perturber le systéme donné. sup-
posons que le systéeme perturbé stochastiquement est décrit par I’équation d’Itd

semi-linéaire
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m
dx(t) = f(x,t)dt+ Y Gix(t)dB;(t)  t>tg,x(ty) =xo € RY, (3.42)
i=1
ou G;,1 <i<m, sont des matrices d x d.

Théoreme 3.18. Soit I’EDS (3.42) vérifiant la condition de Lipschitz (3.41). S’il
existe des constantes A > 0 et p > 0 telles que

m m
ZlGixlz <A et Z|xTGix|2 > plx|* (3.43)
i=1 i=1

pour tout x € R?. Alors

tlim sup%log(lx(t; to, xo)) < —(p—k - %) p.s. (3.44)

e 1 . .. )
pour tout x € R?. En particulier si p >k + <A, donc la solution triviale de I’équa-
tion (3.42) est exponentiellement stable presque surement.

Preuve: On fixe xy # 0 et notée x(t) = x(t;tg,xg). Le lemme (3.5) nous dit que

x(t) = 0 pour tout t > 0 presque sirement. Par la formule d’Ito,

log(Jx(t)|*) = log(lxol®) + M(t) + L e(s)| 72 2x(s)" f (x(s), 5)ds

" % ;Lt (I [Ix(s)P1Gix(s)” ~ 4lxT (5)Gix(s)1ds, (3.45)
ou
m. et
M(t)=2 leo (5 2x(5)T Gox(s)dBi ). (5.46)

qui est une martingale continue disparaissant a t = 0. En utilisant (3.41) et (3.43)

nous obtenons
log(|x(t)?) <log(|xol*) + M(t) + (2K + A — 2p)t. (3.47)

Notez que

<M(t)>=4 Zfot Ix(s)|"Hx(s)T Gx(s)|>ds < 4t Z||G,-||2.
i=1 i=1
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On sait que — 0p.s. quand t — oo. Par conséquent, il résulte de (3.47) que

M(t)
t

tlim sup % log(lx(t)?) <2K+A-2p p.s.,

1.e

. 1 1
lim sup ?log(|x(t)|) <—-(p-K- E/\) p.s.

t—o0

Théoreme 3.19. Tout systéme non linéaire (3.40) d-dimensionnel peut étre sta-
bilisé par un mouvement Brownien si la condition (3.41) est satisfaite. De plus,
on ne peut méme utiliser qu’'un mouvement brownien scalaire pour stabiliser le

systeme.

Exemple 3.7. On considere une equation différentiel ordinaire instable

v =f(y(t)1), (3.48)
ou
_ [ylcos(t) +y2sin(y1)]
Yosin(t) + yysin(y;)
On voit

f@t) <2l V(1) e R*xR,.

perturber cette EDO par un mouvement Brownien scalaire nous donne I’EDS

suivant

dx(t) = f(x(t),t)dt + o x(t)dB(t).

le théoréeme ci-dessus montre que cette équation stochastique est presque stre-

ment stable exponentiellement a condition

01>2.
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o 1 2 3 4 s o 1 2 3 4 5
t t
o =25
Ficure 3.4 — La stabilisation de I’équation (3.48)
Stabilisation des EDS :

Nous pouvons maintenant nous demander si nous pouvons également utiliser
la perturbation stochastique pour stabiliser un systeme stochastique. La réponse
est positive. Afin de dériver ce nouveau résultat, regardons un autre cas de I’équa-
tion (3.42) en fixant uniquement G,, = 0,,,I, c’est-a-dire en donnant I’équation

m—1
dx(t) = f(x,t)dt+ ) Gex(t)dBy + 0, x()dByy(t). (3.49)
i=1
Cela peut étre considéré comme le systeme perturbé stochastiquement d’un sys-
téme stochastique donné

m—1

dx(t) = f(x(t),t)dt + Zka(t)dBk. (3.50)

1=

Nous estimons maintenant

m m—1
2 2 2 2
Y 1GexP <| ) NGk + o |1
i:l 121
et

m

leTkalZ > 02 |x|*.

i=1
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

Par conséquent, selon le théoreme (3.18), la solution de I’équation (3.49) satisfait

-1
) 1 I, 1 2
- . <= _ R
tli)rrogsup ; log(|x(t;tg, x0)]) < 20m K > .Z{”Gk” p-s.
1=

Alors , ’équation (3.49) est stable exponentiellement presque surement a condi-
tion
m—1
o> 2K+ ) [IGeIP”.
i=1

Cela a prouvé le théoréme suivant.

Théoreme 3.20. Si(3.41) est satisfaite, alors I’équation différentielle stochastique
(3.50) peut étre stabilisée par le mouvement Brownien, et on peut méme utiliser

uniquement un mouvement Brownien scalaire pour le faire.

Considérons plus généralement une équation différentielle stochastique

dx(t) = f(x(t),t)dt + g(x, t)dw(t) + ZG,-x(t)dB,-(t) pour tout t >ty (3.51)
i=1

avec xg = X € R ot w(t) est un mouvement Brownien q-dimensionnel indépen-
dant de B(t) et g: R? x R, — R4 Cette équation peut étre considérée comme la

perturbation stochastique systeme d’un systeme stochastique donné
dx(t) = f(x, t)dt + g(x, t)dw(t). (3.52)

Théoréme 3.21. Soient f : R x R, — R? et ¢ : R x R, — R¥4 deux fonctions
continues et localement Lipschitz satisfaisant

If (x, )| < Kqlx| et trace(g(x,t)gT(x, t)) < Ky|x|? (3.53)

pour tout x( € R? et t >0, o K; >0 et K, > 0. Soit A > 0,0 > 0 et supposant que

le critére (3.43) soit satisfait. Alors la solution de I’équation (3.51) satisfait

1 1
lim sup ?108|X(t} to, Xo)l < —(p— Ky — §(K2 +A)) ps

1
pour tout xj € R“. En particulier si p > Ky + E(Kz + 1), donc I’équation (3.51) est

exponentiellement stable presque surement.
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

Preuve: De la méme maniere que pour la preuve du théoreme (3.18), nous pou-

vons montrer que
log(|x(t;to, x0)|*) < loglxol* — (2p — 2K = A)t + M(t) + N(t)

t
+% L xe(s)| 4 (2lx(s)P trace(g(x(s), 5)g(x(s),5)T) = 4lx(s) " g(x(s),)*)ds

<log(|xo|*) — (2p — 2K; =K, — A)t + M(t) + N (t)
(3.54)
pour tout t > ty, ou M(t) est le méme que celui défini dans la preuve du théoréeme
(3.18), et

N(t)=2 Lt 2)x(s)| "> x(s) T g(x(s), s)dw(s).

Notez que N(t)/t — 0 presque surement quant t — co pour la méme raison que
précédemment. Donc (3.54) implique

1
tlim sup ?log(|x(t; to, Xo)|*) < —(2p - 2K, =K, = 1) p.s.
|

Théoreme 3.22. Toute équation différentielle stochastique de la forme (3.52) peut

étre stabilisée par le mouvement Brownien a condition que (3.53) soit satisfaite.

Déstabilisation des EDO :

Théoréeme 3.23. Soit I’EDS (3.42) vérifiant la condition de Lipschitz (3.41). S’il

existe des constantes A > 0 et p > 0 telles que

m m
ZlGixlz > A2 et xTGx|? < plx|* (3.55)
i=1 ]

i=1
pour tout x € RY. Alors
S | A
thm 1nf?log(|x(t; to, xo)|) > (E -k-p) ps.

pour tout xy # 0. En particulier si A > 2(k + p), donc la solution triviale de I’équa-

tion (3.42) est exponentiellement instable presque surement.

Nous utilisons maintenant ce théoreme pour montrer comment on peut utili-

ser la perturbation stochastique pour déstabiliser le systéme donné.
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

cas 1:{d <3}

Choisissez la dimension du mouvement Brownien m = d et soit o une constante.
Pour chaque i =1, 2,...,d—1,définir une matrice G; = (g,,,,) de dimension d x d avec
o siu=ietv=i+l;

i
guv - .
0 sinon

De plus, définissez G, = (g7) avec

d o siu=detv=1;
Suv = .
0 sinon

Alors I’équation (3.42) devient

x,(t)d By (t)
dx(t) = f(x(t), t)dt + : . (3.56)
A= "\ xa(0)dB ()
X1 (t)dBy(t)
Calculez cela . .
Y 1Gix? =) (ox11) = oIl
i=1 i=1
et "

T2 2.2
ZIx Gix|* = Zx Xiq

ou nous utilisons x;,1 = x;3. Notant

nous avons

Par conséquent

m 02
) R Gil = Sl
i=1

D’apres le théoréeme (3.55), la solution de I’équation (3.58) a la propriété

2 0_2 0.2

o] o
tll)rgmf?log(lx(t, to, Xo)|) = (7 -K- ?) =z K p.s.

pour tout xy # 0. Si 6 > 6K, alors la solution triviale de I’équation (3.58) sera

exponentiellement instable presque stirement.
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

Exemple 3.8. Etant donné une ODE tridimensionnelle stable

y(t) = f(y(1), 1), (3.57)

ou
-2y +5in(y,)
f@,t)=| =2y, +sin(y3)
—2y3 +sin(y;)
On voit que
f@.DI=3 V(1) eR>xR,.

La perturbation de cette EDO par un mouvement Brownien tridimensionnel en-

traine une EDS
x(t)d By (1)

dx(t) = f(x(t), )dt+ 0| x3(t)dBy(t)
x1(t)dBs(t)

Cette EDS est presque stirement instable de maniére exponentielle a condition

o> V18.

>1(t) *2(t) x3(t)
—] vty —| v20t) - —  y3it)

Ficure 3.5 — La déstabilisation de 1’équation (3.57)
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

cas 2:{d =2K(K > 1)}

soit o une constante. Définir

0 o 0
-0 0
G, =
0 o
| 0 -0 0

mais on définit G; = 0 pour 2 <i < m. Alors I’équation (3.42) devient

x(t)
dx(t) = f(x(t),)dt + o : dB, (). (3.58)
xox (1)
| —Xox_1(t) |
Dans ce cas, nous avons
m m
Z’|Gix|2 = 02|x|2 Z’|XTG,'X|2 =0.
i=1 i=1

Par conséquent, selon Le théoréme (3.55), la solution de I’équation (3.58) a la

propriété que
1 o2
lim inf —log(|x(t; £, Xo)|) > - - K ps.

t—o0 t

pour tout xy # 0. Si 0% > 2K, alors la solution triviale de I’équation (3.58) sera
exponentiellement instable presque stirement.

Exemple 3.9. Etant donné une ODE 4 4 dimensions stable

y(t) = f(y(£) 1), (3.59)

ou

On voit que
f@. <4yl Y(pt)eR*xR,.
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La perturbation de cette EDO par un mouvement Brownien scalaire entraine I’

EDS
x(t)

dx(t) = f(x(t), t)dt + o dB,(t).

x3(t)
—x4(1)

Cette EDS est presque stirement exponentiellement instable a condition que

o > V6.

246

%
248

2468
2468

-2
-2

og=25

FiGure 3.6 — La déstabilisation de 1’équation (3.59)

cas 3:{d =1}

Considérons 1’équation linéaire scalaire

m
dx(t) = —ax(t) + Zbix(t)dBi(t) pourt >t (3.60)
i=1
avec x(ty) = xo. Cette équation est considérée comme une perturbation stochas-
tique d’un systeme exponentiellement stable
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

y(t) = —ay(t) (a>0).

Alors 'exposant de Lyapunov est de las solution est
1 1 v
. - . - 2
lim " log|x(t;tg, x9)| = —a 5 Z{bl <0 p.s.
1=

Autrement dit, le systeme perturbé (3.60) reste stable. En résumant ces résultats,

nous obtenons la conclusion suivante.

Théoreme 3.24. Tout systéme non linéaire (3.40) peut étre déstabilisé par un
mouvement Brownien si la condition (3.41) est satisfaite. De plus, on peut uti-

liser un mouvement Brownien scalaire pour le déstabiliser.

Déstabilisation des EDS

Nous allons maintenant discuter de la déstabilisation stochastique des sys-

temes stochastiques.

Théoréme 3.25. Soient f : R x R, — R? et ¢ : RY xR, — R4 deux fonctions

continues et localement Lipschitz satisfaisant
If(x,t)| < Kqlx| et trace(g(x,t)g?(x,t)) < Kylx|? (3.61)

pour tout x € RY et t > to, ou Ky > 0 et K, > 0. S’il existe des constantes
A>0,p > 0 et supposant que le critére (3.60) soit satisfaite.
Alors
(A-2p-2K;-K;) p.s.

| =

1
tlim inf?loglx(t,,xo)l >

pour tout xo # R?. En particulier si A > 2p + 2K, + K, donc I’équation (3.51) est

exponentiellement instable presque surement.

Théoreme 3.26. Toute équation différentielle stochastique peut étre déstabilisée
par le mouvement Brownien a condition que la dimension d > 2 et (3.61) soit
satisfaite.
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3. STABILITE DES EQUATIONS DIFFERENTIELLES STOCHASTIQUES

3.4.3.3 Systemes linéaire

Dans sous-section, nous utiliserons la théorie établie dans les sections pré-
cédentes pour étudier la stabilisation et la déstabilisation stochastiques pour un
systéme stochastique linéaire donné

=

dy(t) = Agy(B)dt+ Y Ai(Hp(HdWi(t)  poutt>0 (3.62)

=1

avec Y(tg) = yp € RY, ot W(t) = (W (1), ..., W, (1)) est un mouvement Brownien de
dimension q, A; : R, — R?%,1 <i < g sont tous bornées et nous définissons

[lAill = sup{[|A;(#)] : t > O}.

Nous perturbons maintenant ce systéme par un autre mouvement Brownien in-
dépendant de dimension m (w(¢),...,w,,(t)) et dire que le systeme perturbé est
décrit par

q m
dx(t):Ao(t)x(t)dt+ZAi(t)x(t)dW,-(tHZBk(t)x(t)dwk(t) poutt>0 (3.63)
k=1

=1

avec x(0) = xo. Evidemment, E(x(t)) = E(y(t)) pout tout t > 0.En appliquant les
théorémes (3.21) et (3.25) a I’équation (3.63) nous obtenons les corollaires sui-
vants.

Corollaire 3.27. Supposons que la condition (3.43) soit satisfaite pour certains
A>0etp>. Alors

q
1 1 1
lim sup —log|x(t,xo)| < ~(p =l oll = 51 - 5 ;nAiuz) ps
De plus, il est possible de choisir approprié By, 1 <k < m, tel que
1, 1¢
112
o> llAoll+5A+> ;nAln
1=
et donc I’équation (3.63) est presque stirement stable de facon exponentielle. En

d’autres termes, le systéme stochastique linéaire (3.62) peut étre stabilisé par le
mouvement Brownien sans changer la valeur moyenne de la solution.
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Corollaire 3.28. Supposons que la condition (3.43) soit satisfaite pour certains
A>0etp>. Alors

1 1 1 v

fim inf - 1og((x(tx0)) = =| 7A=p=llAoll =3 )_IAIP| ps

i=k

De plus, sid > 2, il est possible de choisir approprié B, 1 < k < m, tel que

q
A> 2P+||A0||+Z||Ai||2 et donc I’équation (3.63) est presque stirement instable
i=k
de fagon exponentielle. En d’autres termes, si d > 2, le systéeme stochastique li-

néaire (3.62) peut étre déstabilisé par le mouvement Brownien sans changer la
valeur moyenne de la solution.
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Conclusion

Le but de ce travail est d’étudier une propriété parmi les propriétés essen-
tielles dans 1’étude du comportement d’un systéme dynamique (l’existence et
I'unicité d’une solution, la stabilité, la controlabilité,...etc) dirigé par une équa-
tion différentielle stochastique ou nous avons s’intéresser si une petite perturba-
tion sur la valeur initiale nous conduit a un changement autour de son voisinage
ou un changement radicale sur les trajectoires du solution.

Le mémoire a été basé sur deux partie fondamentale. La premiere sert a défi-
nir la stabilité des EDS et ses différents types (la stabilité en probabilité, la stabi-
lité exponentielle presque sire, la stabilité exponentielle des moments et la sta-
bilité assymptotique p.s.). La deuxiéme partie est consacré pour la stabilisation et
la déstabilisation des équations différentielles stochastiques ou 1’idée principale
de cette partie est 'ajout d’une perturbation (bruit) sur le systeme dynamique
pour stabiliser ou déstabilisé I'EDS.
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