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Symboles et notations

p.s. presque surment.
Ac complementaire de A (Ac = Ω−A).
∅ l’emsemble vide.
R+ l’ensemble de tous les nombres réels non négatifs.
R
d l’espace euclidien de dimension d.

Cm,n(D ×R+;R) la famille de toute les fonctions V(x, t) à valeurs réelles définies sur D ×R+

qui sont continuellement m fois différentiables sur x ∈D et n fois sur t ∈R+.

K la famille des fonctions µ continues et non-décroissantes telles que
µ : R+→R+ avec µ(0) = 0 et µ(r) > 0 si r>0

Sh = {x ∈Rd : |x| < h} pour h > 0.
I la matrice identité.
〈M,M〉t la variation quadratique.
Lp([a,b];Rd) la famille des processus (f (t))a≤t≤b à valeurs dans Rd Ft-adapté telles que∫ b

a
|f (t)|pdt <∞ P.s.

Mp([a,b];Rd) la famille des processus (f (t))a≤t≤b dans Lp([t0,T ];Rd) telles que

E

[∫ b

a
|f (t)|pdt

]
<∞.
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Introduction générale

Dans le dictionnaire "Le Petit Robert”, l’adjective “stabilité” signifie le carac-
tère de ce qui tend à demeurer dans le même état, l’état d’une construction ca-
pable de demeurer dans un équilibre permanent, tendance à rester dans un état
défini.

En mathématiques, la théorie de la stabilité traite la stabilité des solutions
d’équations différentielles et des trajectoires des systèmes dynamiques sous des
petites perturbations des conditions initiales où on formalise la question sui-
vante : supposons qu’on initialise un système dynamique en un point voisin d’un
point d’équilibre x0, qu’a devient t-il pour la trajectoire de la solution?

Des définitions mathématiques exactes de la stabilité pour un système dy-
namique, ainsi que des théorèmes généraux de stabilité pour les systèmes non
linéaires, ont été formulées pour la première fois par des scientifiques russes à la
fin du XIXe siècle. Le scientifique russe N.E. Zhukovskii [18], a introduit en 1882
un concept fort de stabilité orbitale basé sur une reparamétrisation de la variable
temporelle.

En 1892, dix ans après les travaux de N. E. Zhoukovski, le scientifique russe
A.M. Lyapunov [9] a défini son doctorat sur : "Une tache générale sur la stabilité
du mouvement [35]" où il a prouvé sa stabilité en utilisant deux méthodes. Dans
la première méthode ; connue sous le nom de première méthode de Lyapunov ou
méthode indirecte de Lyapunov, la stabilité d’un équilibre est étudiée par linéari-
sation. La deuxième méthode, également appelée méthode directe de Lyapunov,
est beaucoup plus générale. L’idée fondamentale derrière la méthode directe de
Lyapunov est le théorème de stabilité de Lagrange–Dirichlet, qui est basé sur
l’énergie mécanique. La méthode directe de Lyapunov est capable de prouver la
stabilité des équilibres d’équations différentielles non linéaires en utilisant une
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TABLE DES MATIÈRES

notion généralisée de fonctions énergétiques. Dans la terminologie moderne, un
équilibre est défini comme étant Lyapunov-stable si tout mouvement d’un sys-
tème issu d’un voisinage suffisamment petit d’un point d’équilibre demeure au
voisinage de ce point, alors ce système est stable au sens de Lyapunov.

La notion de stabilité des solutions des EDS a été introduite par I. Kats et N.
N. Krasovskii [4]. Puis, avec les travaux de J. Kushner [7, 6, 8], R. Z. Has’minski
[3], Kozin[5], W. M. Wonham [12], M. Zakai [16, 17], I. I. Gikhman et A. V. Sko-
rokhod [2] et A. Friedman [1], plusieurs type de stabilité ont été définis pour les
EDS et une approche de type Lyapunov pour étudier ces stabilités a été élaborée.

Le but de ce travail est d’étudier la stabilité d’une équation différentielle sto-
chastique, pour cela j’ai partagé mon memoire en trois chapitres. Dans le premier,
nous allons rappeler brièvement les notations de base de la théorie des probabili-
tés et des processus stochastiques. Nous présentons ensuite la définition mathé-
matique de mouvement Brownien et ses propriétés importantes. En utilisant ces
propriétés, nous procédons à la définition de l’intégrale stochastique par rapport
au mouvement Brownien et établissons la formule bien connue d’Itô.

Le deuxième chapitre diverse en deux sections, la première est pour présen-
ter les équations différentielles stochastiques non-linéaires où nous allons étudier
l’existence et l’unicité des solutions [2.2.1], l’estimation dans Lp [2.2.2] et l’esti-
mation asymptotique presque sûre [2.10]. Dans la deuxième section, nous allons
définir les équations différentielles stochastiques linéaire où nous allons motion-
ner quelques formules (la formule de Liouville [2.3.1] et la formule de variation
de constante [2.3.2]), puis, nous donnons des exemples sur les équations diffé-
rentielles stochastiques linéaires.

Le dernier chapitre qui est le cœur de notre travail, est consacré à la stabilité
des équations différentielles stochastiques. Ce chapitre est divisé en trois sec-
tions. Dans la première, nous allons présenter des notions préliminaires néces-
saires pour établir nos principaux résultats, la deuxième section se rapporte à la
stabilité au cas déterministe avec les deux méthodes (méthode classique et la mé-
thode de Lyapunov). Dans la troisième section, nous allons étudier la stabilité au
cas aléatoire où nous allons donner les différentes sorte de stabilité (la stabilité en
probabilité [3.4.1.1], la stabilité exponentielle presque sûre [3.4.1.2], la stabilité
exponentielle des moments [3.4.1.3] et la stabilité assymptotique p.s.[3.4.1.4]). A
la fin de ce chapitre, nous spécifié une dernière section pour la stabilisation et la
déstabilisation des équations différentielles stochastiques par l’ajout d’un bruit.
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Chapitre 1
Mouvement Brownien et intégrale
stochastique

1.1 Notes de base

La probabilité est une évaluation du caractère probable d’un évènement et
la probabilité d’un évènement est un nombre réel compris entre 0 et 1. Plus ce
nombre est grand, plus le risque (ou la chance, selon le point de vue) que évène-
ment se produise est grand. Les évènements élémentaires "possibles" ω sont re-
groupés dans un ensemble Ω. Les parties de Ω observable ou intéressante consti-
tuent une tribu F .
On définit donc un espace probabilisé (Ω,F ,P) avec

• Ω est l’ensemble des événements,
• F est une tribu,
• P est la mesure de la probabilité sur F .

Définitions 1.1.
• Tribu(σ -algèbre) : Une tribu F sur Ω est une famille de parties de Ω si :

i) ∅ ∈ F ,
ii) A ∈ F ⇒ Ac ∈ F ,

iii) {Ai}i≥1 ⊂ F ⇒
∞⋃
i=1

Ai ∈ F .

• Espace probabilisé : Soient (Ω,F ) un espace mesurable et P une applica-
tion de F dans [0,1] telle que
i) P(Ω) = 1 ;

9



1. MOUVEMENT BROWNIEN ET INTÉGRALE STOCHASTIQUE

ii) pour toute suite d’événements {Ai}i≥1 disjointe deux à deux avec {Ai}i≥1 ⊂
F (i.e. Ai ∩Aj = ∅ si i , j), on a

P

 ∞⋃
i=1

Ai

 =
∞∑
i=1

P(Ai).

Le triplet (Ω,F ,P) s’appelle un espace probabilisé ou espace de proba-
bilité.

Remarque 1.1. On dit que (Ω,F ,P) est complet si F̄ = F avec

F̄ = {A ⊂Ω : ∃B,C ∈ F telle que B ⊂ A ⊂ C,P(B) = P(C)}

• Filtration : Une filtration Ft est une famille croissante de sous tribus de F ,
(i.e Ft ⊂ Fs ⊂ F pour tout 0 ≤ t < s <∞).

• Fonction F -mesurable :
• une fonction X : Ω 7−→R est F -mesurable si

{ω : X(ω) ≤ a} ∈ F ∀a ∈R,

La fonctionX est également appelée variable aléatoire à valeurs réelles.
• une fonction X à valeurs dans R

d (i.e. X(ω) = (X1(ω), . . . ,Xd(ω))T ) est
F -mesurable si tous les éléments de Xi sont F -mesurable.

• Processus stochastique : Un processus stochastiqueX est la donnée de {Xt}t∈I
est une famille de variables aléatoires à valeurs dans R

d avec I est l’en-
semble des paramètre I = R+.

• Temps d’arrêt : une variable aléatoire τ : Ω → [0,∞] est appelé Ft-temps
d’arrêt (simplement temps d’arrêt) si

{ω : τ(ω) ≤ t} ∈ Ft, ∀ t ≥ 0.

Lemme 1.1. Soit {Ak} une suite d’ensembles dans F . On définit la limite supé-
rieure des ensembles par

lim
k→∞

supAk = {ω :ω ∈ Ak , pour une infinité de k} =
∞⋂
i=1

∞⋃
k=i

Ak .

10



1. MOUVEMENT BROWNIEN ET INTÉGRALE STOCHASTIQUE

1 Si {Ak} ⊂ F et
∞∑
k=1

P(Ak) <∞, Alors

P( lim
k→∞

supAk) = 0.

1 Si la suite {Ak} ⊂ F est indépendante et
∞∑
k=1

P(Ak) =∞, Alors

P( lim
k→∞

supAk) = 1.

Définition 1.1. Soit M = (Mt)t≥0 un processus adapté et intégrable (∀t ≥ 0, E(|Mt |) <
∞), on dit que M est

1. Unemartingale si

∀ 0 ≤ s ≤ t, E

(
Mt/Fs

)
= Ms.

2. Une surmartingale si

∀ 0 ≤ s ≤ t, E

(
Mt/Fs

)
≤Ms.

3. Une sousmartingale si

∀ 0 ≤ s ≤ t, E

(
Mt/Fs

)
≥Ms.

Théorème 1.2. {Loi forte des grands nombres}
SoitM = {Mt}t≥0 une martingale locale continue à valeur réelle avecM(t = 0) = 0.
Alors

lim
t→∞
〈M,M〉t =∞ p.s.⇒ lim

t→∞

Mt

〈M,M〉t
= 0 p.s.

et aussi
lim
t→∞

sup
〈M,M〉t

t
<∞ p.s.⇒ lim

t→∞

Mt

t
= 0 p.s.

1.2 Mouvement Brownien

D’après le professeur Jean Pierre Kahane, le mouvement Brownien est un phé-
nomène naturel et un objet mathématique à la fois. Le phénomène naturel est le
mouvement désordonné de particules en suspension dans un liquide et ce der-
nier a été observé dès le 18 ème siècle. L’objet mathématique est un processus
gaussien dont la variance des accroissements est égale au temps écoulé.

11



1. MOUVEMENT BROWNIEN ET INTÉGRALE STOCHASTIQUE

Définition 1.2. Soit (Ω,F ,P) un espace de probabilité avec une filtration (Ft)t≥0.
Un mouvement Brownien unidimensionnel (standard) (Bt)t≥0 est un processus
continue à valeur réelle et Ft-adapté avec les propriétés suivantes :

i) B0 = 0 p.s.;
ii) pour tout 0 ≤ s < t <∞, l’incrément Bt −Bs ∼N (0, t − s) ;
iii) pour tout 0 ≤ s < t <∞, l’incrément Bt −Bs⊥⊥Fs.

Le mouvement Brownien a de nombreuses propriétés importantes et certaines
d’entre elles sont résumées ci-dessous :

Propriétés 1.3.
• (−Bt) est un mouvement Brownien par rapport à la même filtration (Ft),
• Soit c > 0. On définit Xt par

Xt =
Bct√
c

pour t ≥ t0.

Alors (Xt) est un mouvement Brownien par rapport à la filtration (Fct),
• (Bt) est une martingale carré intégrable continue et sa variation quadra-

tique 〈B,B〉t = t, pour tout t ≥ 0.
• La loi forte des grands nombres spécifie que

lim
t→∞

Bt
t

= 0 p.s.

1.3 L’intégrale d’Itô

Définition 1.3. {Processus simple}
un processus stochastique a valeur réel g = (g(t))a≤t≤b est dit un processus simple
s’il existe une partition a = t0 < t1 < · · · < tk = b de [a,b] ,(ξi)0≤i≤k−1 un variable
aléatoire borné tel que ξi est Fti -mesurable et

g(t) = ξ01[t0,t1](t) +
k−1∑
i=1

1(ti ,ti+1](t)ξi .

Définition 1.4. Soit f ∈ M2([a,b];R). L’intégrale d’Itô de f par rapport à Bt est
définie par ∫ t

a
f (t)dBt = lim

n→∞

∫ t

a
gn(t)dBt sur L2(Ω;R)

12



1. MOUVEMENT BROWNIEN ET INTÉGRALE STOCHASTIQUE

où gn est une suite de processus simples tels que

lim
n→∞

E

∫ b

a
|f (t)− gn(t)|2dt = 0.

L’intégrale stochastique a de nombreuses propriétés intéressantes. Nous obser-
vons d’abord ce qui suit :

Théorème 1.4. Soient f ,g ∈M2([a,b];R) et soient α,β deux nombres réels. Alors

i)
∫ b

a
f (t)dB(t) est Fb-mesurable ;

ii) E
[∫ b

a
f (t)dB(t)

]
= 0 ;

iii) E

∣∣∣∣∣∣
∫ b

a
f (t)dB(t)

∣∣∣∣∣∣
2

= E
[∫ b

a
|f (t)|2dt

]
;

vi)
∫ b

a
[αf (t) + βg(t)]dB(t) =

∫ b

a
αf (t)dB(t) +

∫ b

a
βg(t)dB(t).

Théorème 1.5. Si f ∈M2([0,T ];R), alors l’intégrale indéfinie I(t) est une martin-
gale carré intégrable par rapport à la filtration (Ft) avec

I(t) =
∫ T

0
f (s)dB(s) pour tout 0 ≤ t ≤ T

En particulier,

E

 sup
0≤t≤T

∣∣∣∣∣∣
∫ t

0
f (s)dB(s)

∣∣∣∣∣∣2
 ≤ 4E

∫ T

0
|f (s)|2ds.

1.3.1 Processus d’Itô

Définition 1.5. Un processus d’Itô unidimensionnel (x(t))t≥0 est un processus
continu adapté tel que

x(t) = x(0) +
∫ t

0
f (s)ds+

∫ t

0
g(s)dB(s),

où f ∈ L1(R+;R) et g ∈ L2(R+;R). Nous dirons que x(t) a une formule différen-
tielle stochastique donné par

dx(t) = f (t)dt + g(t)dBt avec t ≥ 0.

13



1. MOUVEMENT BROWNIEN ET INTÉGRALE STOCHASTIQUE

1.3.2 La formule d’Itô

Théorème 1.6.
Soit x(t) un processus d’Itô sur t ≥ 0 avec sa formule différentiel stochastique

dx(t) = f (t)dt + g(t)dBt avec t ≥ 0,

où f ∈ L1(R+;R) et g ∈ L2(R+;R). Soit V ∈ C2,1(R ×R+;R). Alors V (x(t), t) est à
nouveau un processus d’Itô avec la formule différentielle stochastique donné par

dV (x(t), t) = [Vt(x(t), t) +Vx(x(t), t)f (t) +
1
2
Vxx(x(t), t)g2(t)]dt

+Vx(x(t), t)g(t)dBt p.s.

1.4 Les inégalités

1.4.1 Inégalité du moment

Théorème 1.7. Soient p ≥ 2 et g ∈M2([0,T ];Rd×m) tels que

E

[∫ T

0
|g(s)|pds

]
<∞.

Alors

E

(
sup

0≤t≤T

∣∣∣∣∣∣
∫ t

0
g(s)dB(s)

∣∣∣∣∣∣p
)
≤

(
P 3

2(p − 1)

) p
2

T
P−2

2 E

[∫ T

0
|g(s)|pds

]
.

1.4.2 Inégalité de Gronwall

Théorème 1.8. Soient T > 0 et c ≥ 0. Soit u(·) une fonction borélienne ,non-
négative et bornée sur [0,T ] et soit v(·) une fonction intégrable non-négative sur
[0,T ]. Si

u(t) ≤ c+
∫ t

0
v(s)u(s)ds ∀0 ≤ t ≤ T ,

Alors

u(t) ≤ cexp
(∫ t

0
v(s)ds

)
∀0 ≤ t ≤ T

14



Chapitre 2
Équation différentielle stochastique

2.1 Introduction

L’un des problèmes importants dans de nombreuses branches de la science et
de l’industrie, par example l’ingénierie, la gestion, la finance et la sciences sociale,
est la spécification du processus stochastique régissant le comportement d’une
quantité sous-jacente. Nous utilisons ici le terme quantité sous-jacente pour dé-
crire tout objet intéressé dont la valeur est connue actuellement mais elle est
susceptible de changer à l’avenir. Des exemples typiques sont

• nombre de cellules cancéreuses,
• nombre de personnes infectées par le VIH,
• prix de l’action dans une entreprise,
• prix de l’or,pétrole ou électricité.

2.2 EDS non-linéaire

Soit (Ω,F ,P) un espace de probabilité complet avec une filtration (Ft)t≥0 sa-
tisfaisant aux conditions habituelles. Tout au long de ce chapitre, on pose B(t) =
(B1(t), ...,Bm(t))T , t ≥ 0 un mouvement Brownien de dimension m définie sur l’es-
pace. Soit 0 ≤ t0 < T <∞. Soit x0 une variable aléatoire dans Rd et Ft0 −mesurable
telle que E|x0|2 <∞. Soient f : Rd×[t0,T ]→R

d et g : Rd×[t0,T ]→R
d×m des fonc-

tions borélienne. Considérons l’équation différentielle stochastique de dimension
d au sens d’Itô

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) t0 ≤ t ≤ T (2.1)
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cette équation est équivalente à l’équation suivante

x(t) = x0 +
∫ t

t0

f (x(s), s)ds+
∫ t

t0

g(x(s), s)dB(s) t0 ≤ t ≤ T (2.2)

avec x(t0) = x0.

Définition 2.1. Un processus stochastique (x(t))t0≤t≤T a valeur dans R
d est ap-

pelé une solution de l’équation (2.1) s’il a les propriétés suivantes :
(i) x(t) est continu et Ft-adapté ;
(ii) f (x(t), t) ∈ L1([t0,T ]; Rd) et g(x(t), t) ∈ L2([t0,T ]; Rd×m) ;
(iii) l’équation (2.2) est satisfaite pour tout t ∈ [t0,T ] avec probabilité 1.

Une solution x(t) est dite unique si toute autre solution x̄(t) est indistinguable de
x(t), c’est à dire

P{x(t) = x̄(t) ∀t0 ≤ t ≤ T } = 1.

2.2.1 Existence et unicité des solution

Théorème 2.1. Supposons qu’il existe deux constantes positives K et K̄ telles que
(i) (la condition de Liptchiz) Pour tout x,y ∈Rd et t ∈ [t0,T ]

|f (x, t)− f (y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ K̄ |x − y|2; (2.3)

(ii) (la condition de croissance linéaire) pour tout (x, t) ∈Rd × [t0,T ]

|f (x, t)|2
∨
|g(x, t)|2 ≤ K(1 + |x|2). (2.4)

Alors,il existe une unique solution x(t) à l’équation (2.1) et la solution appartient
àM2([t0,T ];Rd).

Lemme 2.2. Supposons que la condition de croissance linéaire (2.4) soit vérifiée.
Si x(t) est une solution de l’équation (2.1), alors

E

 sup
t0≤t≤T

|x(t)|2
 ≤ (

1 + 3E|x0|2
)
e3K(T−t0)(T−t0+4).

En particulier, x(t) appartient àM2([t0,T ];Rd).
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Preuve: { Preuve du Théorème (2.1)}

L’unicité :

On considère deux solutions x(t) et x̄(t) de l’équation (2.1) avec x0 = x̄0 et par
le lemme (2.2), les deux solutions appartiennent àM2([t0,T ];Rd). Pour tout n ≥ 1,
on considère le temps d’arrêt

τn = T ∧ inf{t ∈ [t0,T ] : |x(t)| ≥ n}.

Clairement, τn ↑ T p.s. Posons xn(t) = x(t∧ τn) pour t ∈ [t0,T ]. Alors xn(t) satisfait
l’équation suivante

xn(t) = x0 +
∫ t

t0

f (xn(s), s)1[[t0,τn]](s)ds+
∫ t

t0

g(xn(s), s)1[[t0,τn]](s)dB(s);

Vu que x̄ est aussi une solution, nous avons l’équation analogue :

x̄n(t) = x̄0 +
∫ t

t0

f (x̄n(s), s)1[[t0,τn]](s)ds+
∫ t

t0

g(x̄n(s), s)1[[t0,τn]](s)dB(s).

Par différence,

xn(t)− x̄n(t) =
∫ t

t0

[f (xn(s), s)− f (x̄n(s), s)1[[t0,τn]](s)ds+
∫ t

t0

[g(xn(s), s)− g(x̄n(s), s)]1[[t0,τn]](s)dB(s).

En utilisant l’inégalité élémentaire |a + b|2 ≤ 2(|a|2 + |b|2), l’inégalité de Cauchy-

Schwarz
∣∣∣∣∣∫ f g

∣∣∣∣∣2 ≤ ∫
|f |2

∫
|g |2 et la condition de Liptchiz (2.3), on peut montrer

que
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|xn(t)− x̄n(t)|2 ≤ 2

∣∣∣∣∣∣
∫ t

t0

[f (xn(s), s)− f (x̄n(s), s)]1[[t0,τn]](s)ds

∣∣∣∣∣∣2
+2

∣∣∣∣∣∣
∫ t

t0

[g(xn(s), s)− g(x̄n(s), s)]1[[t0,τn]](s)dB(s)

∣∣∣∣∣∣2
≤ 2

∫ t

t0

|f (xn(s), s)− f (x̄n(s), s)|2ds ×
∫ t

t0

|1[[t0,τn]](s)|2ds

+2

∣∣∣∣∣∣
∫ t

t0

[g(xn(s), s)− g(x̄n(s), s)]1[[t0,τn]](s)dB(s)

∣∣∣∣∣∣2
≤ 2(t − t0)

∫ t

t0

|f (xn(s), s)− f (x̄n(s), s)|2ds

+2

∣∣∣∣∣∣
∫ t

t0

[g(xn(s), s)− g(x̄n(s), s)]1[[t0,τn]](s)dB(s)

∣∣∣∣∣∣2
≤ 2K̄(t − t0)

∫ t

t0

|xn(s)− x̄n(s)|2ds

+2

∣∣∣∣∣∣
∫ t

t0

[g(xn(s), s)− g(x̄n(s), s)]1[[t0,τn]](s)dB(s)

∣∣∣∣∣∣2 .
Par conséquent, par le Théorème (1.7) et la condition (2.3), on peut montrer en
outre que

h(t) = E
(

sup
t0≤s≤t

|xn(s)− x̄n(s)|2
)

≤ 2K̄(T − t0)E
[

sup
t0≤s≤t

(∫ s

t0

|xn(u)− x̄n(u)|2du
)]

+2E

 sup
t0≤s≤t

∣∣∣∣∣∣
∫ s

t0

[g(xn(u),u)− g(x̄n(u),u)]1[[t0,τn]](u)dB(u)

∣∣∣∣∣∣2


≤ 2K̄(T − t0)
∫ t

t0

E|xn(s)− x̄n(s)|2ds

+8E
[∫ t

t0

|g(xn(s), s)− g(x̄n(s), s)|21[[t0,τn]](s)ds
]

≤ 2K̄(T − t0)
∫ t

t0

E|xn(s)− x̄n(s)|2ds

+8K̄E
[∫ t

t0

|xn(s)− x̄n(s)|21[[t0,τn]](s)ds)
]

≤ 2K̄(T − t0 + 4)
∫ t

t0

E|xn(s)− x̄n(s)|2ds.
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par conséquent

h(t) ≤ 2K̄(T − t0 + 4)
∫ s

t0

E

(
sup
t0≤r≤s

|xn(r)− x̄n(r)|2
)
dr.

Si on pose C = K̄(T − t0 + 4), alors on a établi que h vérifie pour t ∈ [t0,T ]

h(t) ≤ C
∫ t

t0

h(s)ds.

En appliquant l’inégalité de Gronwall et nous obtient

h(t) ≤ 0.

c’est à dire

E

 sup
t0≤s≤T

|xn(s)− x̄n(s)|2
 ≤ 0

ainsi

E

(
sup

t0≤s≤τn
|x(s)− x̄(s)|2

)
≤ 0.

Finalement, en faisant tendre n→∞ et donc x(t) = x̄(t) p.s. pour tout t ∈ [t0,T ].

L’existence :

On procède comme pour les équations différentielles avec une méthode d’ap-
proximation de Picard. Pour cela, on pose x(t0) ≡ x0 et pour n = 1,2, ... on défini
les itérations de Picard

xn(t) = x0 +
∫ t

t0

f (xn−1(s), s)ds+
∫ t

t0

g(xn−1(s), s)dB(s) (2.5)

avec t ∈ [t0,T ]. Évidemment, x0(t) ∈M2([t0,T ];Rd). De plus, xn(t) ∈M2([t0,T ];Rd)
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parce que nous avons de (2.5) que

E|xn(t)|2 ≤ 3

E|x0|2 +E

∣∣∣∣∣∣
∫ t

t0

f (xn−1(s), s)ds

∣∣∣∣∣∣2 +E

∣∣∣∣∣∣
∫ t

t0

g(xn−1(s), s)dB(s)

∣∣∣∣∣∣2


≤ 3
(
E|x0|2 + (t − t0)E

[∫ t

t0

|f (xn−1(s), s)|2ds
]

+E
[∫ t

t0

|g(xn−1(s), s)|2ds
])

≤ 3
(
E|x0|2 + (T − t0)E

[∫ t

t0

(K +K |xn−1(s)|2)ds
]

+E
[∫ t

t0

(K +K |xn−1(s)|2)ds
])

≤ 3
(
E|x0|2 + (T − t0 + 1)E

[∫ t

t0

(K +K |xn−1(s)|2)ds
])

≤ 3
(
E|x0|2 +K(T − t0)(T − t0 + 1) + (T − t0 + 1)E

[∫ t

t0

|xn−1(s)|2ds
])

≤ C1 + 3K(T − t0 + 1)
∫ t

t0

E|xn−1(s)|2ds,

(2.6)
où C1 = 3E|x0|2 + 3K(T − t0)(T − t0 + 1). Il découle également de (2.6) que pour

tout k ≥ 1

max
1≤n≤k

E|xn(t)|2 ≤ C1 + 3K(T − t0 + 1)
∫ t

t0

max
1≤n≤k

E|xn−1(s)|2ds

≤ C1 + 3K(T − t0 + 1)
∫ t

t0

(E|x0|2 + max
1≤n≤k

E|xn(s)|2)ds

≤ C1 + 3K(T − t0 + 1)
(
(T − t0)E|x0|2 +

∫ t

t0

max
1≤n≤k

E|xn(s)|2ds
)

≤ C2 + 3K(T − t0 + 1)
∫ t

t0

max
1≤n≤k

E|xn(s)|2ds,

où C2 = C1 + 3K(T − t0 + 1)(T − t0)E|x0|2. Alors l’inégalité de Gronwall implique

max
1≤n≤k

E|xn(t)|2 ≤ C2 + e3K(T−t0+1)(T−t0).

Puisque k est arbitraire, nous devons avoir

E|xn(t)|2 ≤ C2 + e3K(T−t0+1)(T−t0) pour tout t ∈ [t0,T ] ,n ≥ 1. (2.7)

Ensuite, nous notons que

|x1(t)− x0(t)|2 = |x1(t)− x0|2

=

∣∣∣∣∣∣
∫ t

t0

f (x0, s)ds+
∫ t

t0

g(x0, s)dB(s)

∣∣∣∣∣∣2
≤ 2

∣∣∣∣∣∣
∫ t

t0

f (x0, s)ds

∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣
∫ t

t0

g(x0, s)dB(s)

∣∣∣∣∣∣2 .
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En appliquant l’espérance et en utilisant (2.4), nous obtenons

E|x1(t)− x0(t)|2 ≤ 2(t − t0)E
[∫ t

t0

|f (x0, s)|2ds
]

+ 2E
[∫ t

t0

|g(x0, s)|2ds
]

≤ 2K(T − t0)E
[∫ t

t0

(1 + |x0|2)ds
]

+ 2KE
[∫ t

t0

(1 + |x0|2)ds
]

≤ 2K(T − t0 + 1)E
[∫ t

t0

(1 + |x0|2)ds
]

≤ 2K(T − t0 + 1)(T − t0)
[
1 +E|x0|2

]
≤ C.

(2.8)

Nous affirmons maintenant que pour n ≥ 0,

E|xn+1(t)− xn(t)|2 ≤ C[M(t − t0)]n

n!
t0 ≤ t ≤ T , (2.9)

où M = 2K̄(T − t0 + 1). Nous le montrerons par récurrence. Au vu de (2.8), nous
voyons que (2.9) est vrai lorsque n = 0. Sous l’hypothèse de récurrence que (2.9)
est vrai pour certains n ≥, nous montrerons que (2.9) est toujours vérifiée pour
n+ 1. Notons que

|xn+2(t)− xn+1(t)|2 ≤ 2

∣∣∣∣∣∣
∫ t

t0

[f (xn+1(s), s)− f (xn(s), s)]ds

∣∣∣∣∣∣2
+2

∣∣∣∣∣∣
∫ t

t0

[g(xn+1(s), s)− g(xn(s), s)]dB(s)

∣∣∣∣∣∣2
(2.10)

En appliquant l’espérance et en utilisant (2.3) ainsi que l’hypothèse de récur-
rence, nous obtenant cela

E|xn+2(t)− xn+1(t)|2 ≤ 2K̄(T − t0 + 1)E
[∫ t

t0

|xn+1(s)− xn(s)|2ds
]

≤M
∫ t

t0

E|xn+1(s)− xn(s)|2ds

≤M
∫ t

t0

C[M(s − t0)]n

n!
ds

≤ CM
(n+1)

n!(n+ 1)
[(t − t0)(n+1) − (t0 − t0)(n+1)]

≤ C[M(t − t0)](n+1)

(n+ 1)!

Autrement dit, (2.9) est satisfaite pour n+ 1. Donc, par récurrence, (2.9) est satis-
faite pour tout n ≥ 0. De plus, en remplaçant n dans (2.10) par n−1, nous voyons
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que

sup
t0≤t≤T

|xn+1(t)− xn(t)|2 ≤ 2K̄(T − t0)
∫ T

t0

|xn(s)− xn−1(s)||2ds

+2 sup
t0≤t≤T

∣∣∣∣∣∣
∫ T

t0

[g(xn(s), s)− g(xn−1(s), s)]dB(s)

∣∣∣∣∣∣
2

.

En appliquant l’espérance et en utilisant le théorème (1.7) et (3.8), nous consta-
tons que

E

 sup
t0≤t≤T

|xn+1(t)− xn(t)|2
 ≤ 2K̄(T − t0)E

(∫ T

t0

|xn(s)− xn−1(s)||2ds
)

+2E

 sup
t0≤t≤T

∣∣∣∣∣∣
∫ T

t0

[g(xn(s), s)− g(xn−1(s), s)]dB(s)

∣∣∣∣∣∣
2

≤ 2K̄(T − t0)
∫ T

t0

E|xn(s)− xn−1(s)||2ds

+8K̄
∫ T

t0

E|xn(s)− xn−1(s)|2ds

≤ 2K̄(T − t0 + 4)
∫ T

t0

E|xn(s)− xn−1(s)||2ds

≤ 4M
∫ T

t0

C[M(s − t0)]n−1

(n− 1)!
ds

≤ 4C[M(T − t0)]n

(n)!
.

Par conséquent

P
 sup
t0≤t≤T

|xn+1(t)− xn(t)| > 1
2n

 ≤ 4C[M(T − t0)]n

(n)!
.

Puisque
∞∑
n=0

4C[M(T − t0)]n

(n)!
<∞, le lemme de Borel-Cantelli (1.1) donne que pour

presque ω ∈Ω il existe un entier positif n0 = n0(ω) tel que

sup
t0≤t≤T

|xn+1(t)− xn(t)| > 1
2n

∀n ≥ n0.

Il s’ensuit que, avec la probabilité 1, les sommes partielles suivants

x0 +
n−1∑
i=1

[xi+1(t)− xi(t)] = xn(t)
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convergent uniformément dans t ∈ [0,T ]. Notons la limite par x(t). Clairement,
x(t) est continu et adapté à Ft. De l’autre côté, on voit a partir de (2.9) que pour
tout t, (xn(t))n≥1 est également une suite de Cauchy. Par conséquent, nous avons
également xn(t)→ x(t) en L2. Quand n→∞ dans (2.7) on obtient

E|x(t)|2 ≤ C2 + e3K(T−t0+1)(T−t0) pour tout t ∈ [t0,T ] ,n ≥ 1.

Ce qui prouve que x(t) ∈M2([t0,T ];Rd). Reste à montrer que x(t) satisfait l’équa-
tion (2.2). Notez que

E|xn(t)− x(t)|2 ≤ 2E

∣∣∣∣∣∣
∫ t

t0

[f (xn(s), s)− f (x(s), s)]ds

∣∣∣∣∣∣2
+2E

∣∣∣∣∣∣
∫ t

t0

[g(xn(s), s)− g(x(s), s)]dB(s)

∣∣∣∣∣∣2
≤ K̄(T − t0 + 1)

∫ t

t0

E|xn(s)− x(s)|2ds

≤ K̄(T − t0 + 1)
∫ T

t0

E

 sup
t0≤t≤T

|xn(s)− x(s)|2
ds→ 0 quand n→∞.

On peut donc faire tendre n→∞ dans l’équation (2.5) pour obtenir la formule
suivante

x(t) = x0 +
∫ t

t0

f (x(s), s)ds+
∫ t

t0

g(x(s), s)dB(s) pour t ∈ [t0,T ].

�

Le théorème suivant donne une estimation de la vitesse de la convergence.

Théorème 2.3. On suppose que les hypothèses du théorème (2.1) soit vérifiée.
Soient x(t) la solution unique de l’équation (2.2) et xn(t) les itérations de Picard
définies par (2.5).

E

 sup
t0≤t≤T

|xn(s)− x(s)|2
 ≤ 8C[M(t − t0)]n

n!
e8M(T−t0),

pour tout n ≥ 1, où C etM sont les mêmes que ceux définis dans la démonstration
du théorème (2.1).

Théorème 2.4.
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(i) (la condition de Liptchiz locale) ∀n ≥ 1 ∃K̄n > 0 tel que pour tout t ∈ [t0,T ]
et x,y ∈Rd avec |x| ∨ |y| ≤ n

|f (x, t)− f (y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ K̄n|x − y|2; (2.11)

(ii) (la condition de monotonie) ∃K > 0 tele que pour tout (x, t) ∈Rd × [t0,T ]

xT f (x, t) +
1
2
|g(x, t)|2 ≤ K(1 + |x|2). (2.12)

Alors,il existe une solution unique x(t) à l’équation (2.1) et la solution appartient
àM2([t0,T ];Rd).

On considère l’équation différentielle stochastique suivante

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) t ∈ [t0,∞] (2.13)

On discute maintenant plus généralement sur l’existence et l’unicité de la solu-
tion quand t ∈ [t0,∞]

Théorème 2.5. Supposons que pour tout T > t0 et n ≥ 1 qu’il existe un un constant
positif KT ,n tel que pour tout t ∈ [t0,T ] et tout x,y ∈Rd avec |x| ∨ |y| ≤ n,

|f (x, t)− f (y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ KT ,n|x − y|2. (2.14)

Supposons aussi que pour tout T > t0, il existe un constant positif KT tel que pour
tout (x, t) ∈Rd × [t0,T ],

xT f (x, t) +
1
2
|g(x, t)|2 ≤ KT (1 + |x|2). (2.15)

Donc il existe une solution globale unique x(t) de l’équation (2.13) et que cette
solution appartient àM2([t0,∞];Rd)

2.2.2 L’approximation en Lp

Dans cette sous-section, nous supposons que pour tout t0 ≤ t ≤ T x(t) est la
solution unique de l’équation (2.1) avec x(t0) = x0, et nous étudierons le p-ème
moment de la solution.

Théorème 2.6. Soient p ≥ 2 et x0 ∈ LP (Ω;Rd). Supposons qu’il existe une constante
α > 0, telle que pour tout (x, t) ∈Rd × [t0,T ],

xT f (x, t) +
p − 1

2
|g(x, t)|2 ≤ α(1 + |x|2). (2.16)

Alors
E|x(t)|P ≤ 2

p−2
2 (1 +E|x0|p)epα(t−t0) pour tout t ∈ [t0,T ]. (2.17)

24



2. ÉQUATION DIFFÉRENTIELLE STOCHASTIQUE

Preuve: :
Par la formule d’Itô, l’inégalité élémentaire

(
|a+ b|p ≤ 2p−1(|a|p + |b|p)

)
et la condi-

tion (2.16), nous pouvons déduire que pour t ∈ [t0,T ]

[1 + |x(t)|2]
p
2 = [1 + |x0|2]

p
2 + p

∫ t

t0

[1 + |x(s)|2]
p−2

2 xT (s)f (x(s), s)ds

+
p

2

∫ t

t0

[1 + |x(s)|2]
p−2

2 xT (s)|g(x(s), s)|2ds

+
p(p − 2)

2

∫ t

t0

[1 + |x(s)|2]
p−4

2 |xT (s)g(x(s), s)|2ds

+p
∫ t

t0

[1 + |x(s)|2]
p−2

2 xT (s)g(x(s), s)dB(s)

≤ 2
p−2

2 [1 + |x0|p] + p
∫ t

t0

[1 + |x(s)|2]
p−2

2

×
(
xT (s)f (x(s), s) +

p − 1
2
|g(x(s), s)|2

)
ds

+p
∫ t

t0

[1 + |x(s)|2]
p−2

2 xT (s)g(x(s), s)dB(s)

≤ 2
p−2

2 [1 + |x0|p] + pα
∫ t

t0

[1 + |x(s)|2]
p
2ds

+p
∫ t

t0

[1 + |x(s)|2]
p−2

2 xT (s)g(x(s), s)dB(s).

(2.18)

Pour tout entier n > 1, on définit le temps d’arrêt par

τn = T ∧ inf{t ∈ [t0,T ] : |x(t)| ≥ n}.

Clairement, τn ↑ T p.s. De plus, il résulte de (2.18) et de la propriété d’intégrale
d’Itô que

E[1 + |x(t ∧ τn)|2]
p
2 ≤ 2

p−2
2 [1 +E|x0|p] + pαE

[∫ t∧τn

t0

[1 + |x(s)|2]
p
2ds

]

≤ 2
p−2

2 [1 +E|x0|p] + pαE
[∫ t

t0

[1 + |x(s∧ τn)|2]
p
2ds

]
.

L’inégalité de Gronwall donne

E[1 + |x(t ∧ τn)|2]
p
2 ≤ 2

p−2
2 [1 +E|x0|p]epα(t−t0).

En faisant tendre n→∞, on obtient

E[1 + |x(t)|2]
p
2 ≤ 2

p−2
2 [1 +E|x0|p]epα(t−t0),

et l’inégalité demandée (2.17) obtenue.
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�

Corollaire 2.7. Soient p ≥ 2 et x0 ∈ LP (Ω;Rd). Supposons que la condition de
croissance linéaire (2.4) soit vérifiée. Alors l’inégalité (2.17) est satisfaite pour
α =
√
K +K(p − 1)/2.

Théorème 2.8. Soient p ≥ 2 et x0 ∈ LP (Ω;Rd). Supposons que la condition de
croissance linéaire (2.4) soit vérifiée. Alors

E

(
sup
t0≤s≤t

|x(t)|p
)
≤ (1 + 3p−1 +E|x0|p)eβ(t−t0) (2.19)

pour tout t ∈ [t0,T ], où

β =
1
6

(18K)
p
2 (T − t0)

p−2
2

(T − t0)
p
2 +

(
P 3

2p − 1

) p
2
 . (2.20)

Tournons-nous maintenant vers le cas 0 < p < 2.On note que l’inégalité de Holder
implique

E|x(t)|P ≤ [E|x(t)|2]
p
2 .

En d’autres termes, l’estimation pour E|x(t)|P peut se faire via l’estimation pour
le moment d’ordre 2.Par exemple, nous avons les corollaires suivants.

Corollaire 2.9. Soient 0 < p < 2 et x0 ∈ L2(Ω;Rd). Supposons qu’il existe une
constante α > 0, telle que pour tout (x, t) ∈Rd × [t0,T ],

xT f (x, t) +
1
2
|g(x, t)|2 ≤ α(1 + |x|2). (2.21)

Alors
E|x(t)|P ≤ (1 +E|x0|2)

P
2 epα(t−t0) pour tout t ∈ [t0,T ]. (2.22)

2.2.3 L’approximation asymptotique presque surement

On considére maintenant l’équation différentiel stochastique de dimension d

d(x(t)) = f (x(t), t)dt + g(x(t), t)dB(t) pour t ∈ [t0,∞) (2.23)

avec x(t0) = x0 ∈ LP (Ω;Rd). Supposons que l’équation (2.23) a une unique solu-
tion globale x(t) sur [t0,∞).
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Dans cette sous-section, nous établirons l’estimation asymptotique de la solu-
tion presque sûrement. Plus précisément, nous allons estimer

lim
t→∞

sup
1
t
log |x(t)|. (2.24)

presque sûrement, qui est appelé l’exposant de Lyapunov.

Théorème 2.10. Soit 0 < p < 2. Supposons qu’il existe une constante α > 0, telle
que ,pour tout (x, t) ∈Rd × [t0,∞],

xT f (x, t) +
p − 1

2
|g(x, t)|2 ≤ α(1 + |x|2). (2.25)

Alors
lim sup

t→∞

1
t

log |x(t)| ≤ α. (2.26)

Preuve:

log[1 + |x(t)|2] ≤ log[1 + |x0|2]

+
∫ t

t0

1
1 + |x(s)|2

(
2xT f (x(s), s) + |g(x(s), s)|2

)
ds

−2
∫ t

t0

|xT g(x(s), s)|2

[1 + |x(s)|2]2 +M(t)

≤ log[1 + |x0|2] + 2α(t − t0)− 2
∫ t

t0

|xT g(x(s), s)|2

[1 + |x(s)|2]2 +M(t)

(2.27)

où

M(t) =
∫ t

t0

xT (s)g(x(s), s)
1 + |x(s)|2

.

D’un autre côté, pour toute entier n ≥ t0, en utilisant l’inégalité exponentielle de
martingale ( le théorème (1.7)), on voit que

P

{
sup
t0≤t≤n

[
M(t)− 2

∫ t

t0

|xT g(x(s), s)|2

[1 + |x(s)|2]2

]
> 2logn

}
≤ 1
n2 .

Une application du lemme de Borel-Cantelli (1.1)donne alors que pour presque
tout ω ∈Ω il y a un entier aléatoire n0 = n0(ω) ≥ t0 tel que

sup
t0≤t≤n

[
M(t)− 2

∫ t

t0

|xT g(x(s), s)|2

[1 + |x(s)|2]2

]
≤ 2logn si n ≥ n0.
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Alors,

M(t)− 2
∫ t

t0

|xT g(x(s), s)|2

[1 + |x(s)|2]2 ≤ 2logn (2.28)

pour tout t0 ≤ t ≤ n , n ≥ n0 p.s. La substitution de (2.28) en (2.27) en déduit
que

log[1 + |x(t)|2] ≤ log[1 + |x0|2] + 2α(t − t0) + 2logn

pour tout t0 ≤ t ≤ n , n ≥ n0 p.s. Par conséquent, pour presque tous les ω ∈Ω, si
n ≥ n0, n− 1 ≤ t ≤ n

1
t

log[1 + |x(t)|2] ≤ 1
n− 1

[
log[1 + |x0|2] + 2α(t − t0) + 2logn

]
.

Cela implique

lim
t→∞

sup
1
t

log |x(t)| ≤ lim
t→∞

sup
1
2t

log[1 + |x(t)|2]

≤ lim
t→∞

sup
1

2(n− 1)

[
log[1 + |x0|2] + 2α(t − t0) + 2logn

]
= α p.s.

�

Corollaire 2.11. Sous la condition de la croissance linéaire (2.4), la solution de
l’équation (2.23) a la propriété suivante :

lim sup
t→∞

1
t

log |x(t)| ≤
√
K +

K
2

2.3 EDS linéaire

Dans cette section, nous souhaitons, si possible, obtenir la solution explicite
de l’équation différentielle stochastique linéaire générale de d-dimension

dx(t) = (F(t)x(t) + f (t))dt +
m∑
k=1

(Gk(t)x(t) + gk(t))dBk(t) (2.29)

sur [t0,T ], où F(.),Gk(.) sont des fonctions à valeur matricielle (d × d) et f (.), gk(.)
sont des fonctions à valeur dans Rd , comme avant, B(t) = (B1(t), . . . ,Bm(t))T est un
mouvement Brownien de dimension m.
Tout au long de cette section, nous supposerons que F,f ,Gk , gk sont tous Bo-
rel mesurables et bornés sur [t0,T ]. Par conséquent, et par le théorème d’exis-
tence et d’unicité (2.3.1), l’équation linéaire (2.29) a une unique solution conti-
nue dansM2([t0,T ];Rd) pour tout x(t0) = x0, qui est Ft-mesurable et appartient à
L2(Ω;Rd).
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2.3.1 La formule stochastique de LIOUVILLE

Considérons l’équation différentiel stochastique linéaire

dx(t) = F(t)x(t)dt +
m∑
k=1

Gk(t)x(t)dBk(t) (2.30)

sur [t0,T ]. Soient φj(t) = (φ1j(t), . . . ,φdj(t))
T la solution de l’équation (2.30) avec

x(t0) = ej où ej est le vecteur colonne unitaire dans la direction de xj , i.e

ej = (0, . . . ,0,1︸    ︷︷    ︸
j

,0, . . . ,0)T pour j = 1, . . . ,d.

On définit la matrice fondamentale de l’équation (2.30) par

φ(t) = (φ1(t), . . . ,φd(t)) = (φij(t))d×d .

Il est utile de noter que φ(t0) = Id×d et

dφ(t) = F(t)φ(t)dt +
m∑
k=1

Gk(t)φ(t)dBk(t)

Théorème 2.12. Étant donné la valeur initiale x(t0) = x0, la solution unique de
l’équation (2.30) est

x(t) = φ(t)x0.

Lemme 2.13. Soient a(.),b(.) des fonctions borélienne a valeur réel et bornées sur
[t0,T ]. Alors

y(t) = y0exp

∫ t

t0

(a(s)− 1
2

m∑
k=1

b2bk(s))ds+
m∑
k=1

∫ t

t0

bk(s)dBk(s)


est la solution unique à l’équation différentielle stochastique linéaire scalaire

dy(t) = a(t)y(t)dt +
m∑
k=1

bk(t)y(t)dBk(t)

sur [t0,T ] avec yt0 = y0
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2.3.2 La formule de la variation des constantes

Considérons l’équation différentielle stochastique linéaire d-dimensionnelle
générale

dx(t) = (F(t)x(t) + f (t))dt +
m∑
k=1

(Gk(t)x(t) + gk(t))dBk(t) (2.31)

sur [t0,T ] avec x(t0) = x0. L’équation (2.30) est appelée l’équation homogène
du système (2.31). Dans cette section, nous établirons une formule utile, appelée
formule de variation des constantes, qui représente la solution unique de l’équa-
tion (2.31) en termes de la matrice fondamentale de l’équation homogène corres-
pondante (2.30).

Théorème 2.14. La solution unique de l’équation (2.31) peut être exprimée comme

x(t) = φ(t)

x0 +
∫ t

t0

φ−1(s)

f (s)−
m∑
k=1

Gk(s)gk(s)

ds+
m∑
k=1

∫ t

t0

φ−1(s)gk(s)dBk(s)

 ,
(2.32)

oùφ(t) est la matrice fondamentale de l’équation homogène correspondante (2.30).

Le théorème (2.14) nous dit que nous pouvons avoir la solution explicite de
l’équation linéaire (2.31) à condition de connaître la matrice fondamentale cor-
respondante φ(t). Bien que nous ne puissions pas obtenir la matrice fondamen-
tale explicite φ(t) pour chaque cas, nous pouvons le faire pour plusieurs cas im-
portants et passons à ces études de cas.

2.3.3 Les cas d’études

(i) Équations linéaires scalaires : Nous considérons d’abord l’équation différen-
tielle stochastique linéaire scalaire générale

dx(t) = (a(t)x(t) + ā(t))dt +
m∑
k=1

(bk(t)x(t) + b̄k(t))dBk(t) (2.33)

sur [t0,T ] avec x(t0) = x0. Ici x0 ∈ L2(Ω;R) est Ft0-mesurable, et a(t),
ā(t),b(t), b̄(t) sont des fonctions scalaire et Borélienne.L’équation linéaire
homogène correspondante est

dx(t) = a(t)x(t)dt +
m∑
k=1

bk(t)x(t)dBk(t). (2.34)
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Par le lemme (2.13), la solution fondamentale de l’équation (2.34) est don-
née par

φ(t) = exp

∫ t

t0

(a(s)− 1
2

m∑
k=1

b2
k (s))ds+

m∑
k=1

∫ t

t0

bk(s)dBk(s)

 .
En appliquant le théorème (2.14), nous obtenons ensuite la solution expli-
cite de l’équation (2.33)

x(t) = φ(t)

x0 +
∫ t

t0

φ−1(s)

ā(s)− m∑
k=1

bk(s)b̄k(s)

ds+
m∑
k=1

∫ t

t0

φ−1(s)b̄k(s)dBk(s)

 .
(2.35)

(ii) Équations linéaires au sens large : Nous considérons ensuite l’équation dif-
férentielle stochastique linéaire de dimension d au sens large

dx(t) = (F(t)x(t) + f (t))dt +
m∑
k=1

gk(t))dBk(t) (2.36)

sur [t0,T ] avec x(t0) = x0, où F,f ,gk sont les mêmes que définis dans la
sous-section précédente. L’équation linéaire homogène correspondante est
maintenant l’équation différentielle ordinaire

ẋ(t) = F(t)x(t). (2.37)

Encore une fois, soit φ(t) la matrice fondamentale de l’équation (2.37). La
solution de l’équation (2.36) a alors la forme

x(t) = φ(t)

x0 +
∫ t

t0

φ−1(s)f (s)ds+
m∑
k=1

∫ t

t0

φ−1(s)gk(s)dBk(s)

 . (2.38)

En particulier, lorsque F(t) = F est une matrice constante (d×d), la matrice
fondamentale φ(t) a la forme simple φ(t) = eF(t−t0) et sa matrice inverse
φ−1(t) = e−F(t−t0). Par conséquent, dans ce cas, l’équation (2.36) a la solution
explicite

x(t) = eF(t−t0)

x0 +
∫ t

t0

e−F(t−t0)f (s)ds+
m∑
k=1

∫ t

t0

e−F(t−t0)gk(s)dBk(s)


= x0e

F(t−t0)
∫ t

t0

eF(t−sf (s)ds+
m∑
k=1

∫ t

t0

eF(t−s)gk(s)dBk(s).

(2.39)
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(iii) Équations linéaires autonomes : Nous considérons maintenant l’équation
différentielle stochastique linéaire autonome d-dimensionnelle

dx(t) = (Fx(t) + f )dt +
m∑
k=1

(Gkx(t) + gk)dBk(t) (2.40)

sur [t0,T ] avec x(t0) = x0, où F,Gk ∈ Rd × d et f ,gk ∈ Rd . L’équation homo-
gène correspondante est

dx(t) = Fx(t)dt +
m∑
k=1

Gkx(t)dBk(t). (2.41)

En général, la matrice fondamentale φ(t) ne peut pas être donnée explici-
tement. Cependant, si les matrices F,G1, . . . ,Gm sont commutatives, c’est-
à-dire si

FGk = GkF, GkGj = GjGk pour tout 1 ≤ k, j ≤m, (2.42)

alors la matrice fondamentale de l’équation (2.41) a la forme explicite

φt = exp


F − 1

2

m∑
k=1

G2
k

 (t − t0) +
m∑
k=1

Gk(Bk(t)−Bk(t0))

 .
Enfin, nous appliquons le théorème (2.14) pour conclure que sous la condi-
tion (2.42), l’équation linéaire autonome (2.40) a la solution explicite

x(t) = φ(t)

x0 +
(∫ t

t0

φ−1(s)ds
)f − m∑

k=1

Gkgk

+
m∑
k=1

(∫ t

t0

φ−1(s)dBk(s)
)
gk

 .
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Chapitre 3
Stabilité des équations différentielles
stochastiques

3.1 Introduction

La stabilité signifie une insensibilité de l’état du système aux petits chan-
gements de l’état initial ou des paramètres du système. Pour un système

stable, les trajectoires qui sont "proches" les unes des autres à un instant donné
doivent donc rester proches les unes des autres à tous les instants suivants.
En 1892, Lyapunov a développé une méthode pour déterminer la stabilité sans
résoudre l’équation et cette méthode est maintenant connue sous le nom de mé-
thode directe ou la deuxième méthode de Lyapunov.
Dans ce chapitre, nous étudierons les différents types de stabilité des EDS d-
dimensionnelle de l’équation suivante :

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) ; pour tout t ≥ t0. (3.1)

3.2 Généralité

Définition 3.1. (Solution triviale )

Considérons l’équation (3.2) et on suppose que pour tout x(t0) = x0 ∈ R
d , il

existe une unique solution globale qui est notée x(t; t0,x0). Supposons en outre
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que
f (0, t) = 0 ; pour tout t ≥ t0.

Donc l’équation (3.2) a la solution x(t) ≡ 0 correspondant à la valeur initiale
x(t0) = 0. Cette solution est appelée solution triviale ou position d’équilibre.

Définition 3.2.
— Une fonction continue V (x, t) définie sur Sh×[t0,∞) est dite définie-positive

(au sens de Lyapunov) si V (0, t) ≡ 0 et, pour certains µ ∈ K,

V (x, t) ≥ µ(|x|) ; (x, t) ∈ Sh × [t0,∞).

— Une fonction V est dite définie-négative si (−V ) est définie-positive.
— Une fonction continue non négative V (x, t) est dite décrescente (i.e qu’elle

a une limite supérieure arbitrairement petite) si pour certains µ ∈ K,

V (x, t) ≤ µ(|x|) ; (x, t) ∈ Sh × [t0,∞).

— Une fonction V (x, t) définie sur Rd×[t0,∞) est dite radialement non-bornée
si

lim
|x|→∞

inf
t≥t0

V (x, t) =∞.

Définition 3.3. On définit l’opérateur différentielle L associé à l’équation (3.1)
par

L =
∂
∂t

+
d∑
i=1

fi(x, t)
∂
∂xi

+
1
2

d∑
i,j=1

[g(x, t)gT (x, t)]ij
∂

∂xi∂xj
.

Si L agit dans la fonction V ∈ C2,1(Sh ×R+;R+), alors

LV = Vt(x, t) +Vx(x, t)f (x, t) +
1
2
trace[gT (x, t)Vxx(x, t)g(x, t)].

Par la formule d’Îto, si x(t) ∈ Sh, alors

dV (x(t), t) = LV (x(t), t)dt +Vx(x(t), t)g(x(t), t)dB(t).
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3.3 Stabilité des équations différentielles ordinaires

3.3.1 Le concept de la stabilité

Définition 3.4.
— On dit que la solution triviale est stable si pour tout ε > 0, il existe δ =

δ(ε, t0) > 0 tel que

|x(t; t0,x0)| < ε ; pour tout t ≥ t0,

où |x0| < δ. Sinon, elle serait instable.
— On dit que la solution triviale est asymptotiquement stable si elle est stable

et qu’il existe δ0 = δ0(t0) > 0 tel que

lim
t→∞

x(t; t0,x0) = 0;

où |x0| < δ0.

3.3.2 La méthode de Lyapunov

Soit x(t) est une solution de l’équation suivante

ẋ(t) = f (x(t), t) ; pour tout t ≥ t0, (3.2)

et V (x, t) ∈ C1,1(Sh × [t0,∞);R+). Alors v(t) = V (x(t), t) représente une fonction de
t avec la dérivée

v̇(t) = Vt(x(t), t) +Vx(x(t), t)f (x(t), t)

=
∂V
∂t

(x(t), t) +
d∑
i=1

∂V
∂xi

(x(t), t)fi(x(t), t).

• Si v̇(t) ≤ 0, alors v(t) ne croît pas, donc la distance entre x(t) et le point
d’équilibre qu’est mesuré par V (x(t), t) n’augmentera pas .

• Si v̇(t) < 0, alors v(t) décroît à zéro de sorte que la distance diminuera à
zéro ( i.e x(t)→ 0 ).

Théorème 3.1.

1. S’il existe une fonction V (x, t) définie-positive avec V (x, t) ∈ C1,1(Sh×[t0,∞); R+)
telle que

V̇ (x, t) = Vt(x(t), t) +Vx(x(t), t)f (x(t), t) ≤ 0 ; ∀(x, t) ∈ (Sh × [t0,∞)

alors la solution triviale de l’équation (3.2) est stable.
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2. S’il existe une fonction V (x, t) ∈ C1,1(Sh × [t0,∞);R+) décrescente et définie
positive telle que V̇ (x, t) est définie-négative, alors la solution triviale de
l’équation (3.2) est asymptotiquement stable.

Une fonction V (x, t) qui satisfait aux conditions de stabilité du théorème (3.1) est
appelée fonction de Lyapunov correspondant à l’équation différentielle ordinaire.

3.4 Stabilité des équations différentielles stochastiques

La stabilité stochastique a été l’un des domaines les plus actifs de l’analyse sto-
chastique et de nombreux mathématiciens y ont consacré leurs intérêts. Il s’avère
qu’il existe au moins trois types différents de stabilité stochastique : stabilité en
probabilité, stabilité du moment et stabilité presque sûre.

3.4.1 Les différents types de la stabilité des EDS

Soulignons que tout au long de ce chapitre, nous laisserons la valeur initiale
x0 être une constante (dans Rd) mais pas une variable aléatoire.

3.4.1.1 Stabilité en probabilité

Dans cette partie, nous discuterons la stabilité en probabilité.

Définition 3.5.

1. On dit que la solution triviale de l’équation (3.1) est stochastiquement
stable ou stable en probabilité si pour tout couple de ε ∈ (0,1) et r > 0,
il existe δ = δ(ε, r, t0) tel que

P{| x(t; t0,x0) |< r; ∀ t ≥ t0} ≥ 1− ε,

où |x0| < δ. Sinon, elle est stochastiquement instable.

2. On dit que la solution triviale est asymptotiquement stochastiquement
stable, si elle est stochastiquement stable. De plus, pour tout ε ∈ (0,1),
il existe δ0 = δ0(ε, t0) > 0 tel que

P{ lim
t→∞

x(t; t0,x0) = 0} ≥ 1− ε,

où |x0| < δ0.
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3. On dit que la solution triviale est stochastiquement asymptotiquement
stable en large si elle est stochastiquement stable, de plus, pour tout x0 ∈
R
d , tel que

P{ lim
t→∞

x(t; t0,x0) = 0} = 1.

Remarque 3.1. supposons que la valeur initiale x0 soit une v.a alors on remplace
”|x0| < δ” par ”|x0| < δ p.s.” . Cela semble plus général mais est en fait équivalent
à ce qui précède. Par exemple, on suppose que la condition (1) est satisfaite donc
pour tout x0 v.a avec |x0| < δ p.s, on a

P{| x(t; t0,x0) |< r, ∀t ≥ t0} =
∫
Sδ

P{| x(t; t0, y) |< r, ∀t ≥ t0}P{x0 ∈ dy};

≥
∫
Sδ

(1− ε)P{x0 ∈ dy};

= 1− ε.

Nous étendons maintenant le théorème de Lyapunov (3.1) au cas stochastique.

Théorème 3.2. S’il existe une fonction V (x, t) ∈ C2,1(Sh × [t0,∞),R+) définie posi-
tive tel que

LV (x, t) ≤ 0,

pour tout (x, t) ∈ Sh × [t0,∞), donc la solution triviale de l’équation (3.1) est sto-
chastiquement stable (i.e stable en probabilité).

Preuve: Par la définition d’une fonction V définie positive, nous savons que V (0, t) ≡
0 et il existe une fonction µ ∈ K telle que

V (x, t) ≥ µ(|x|) ; pour tout (x, t) ∈ Sh × [t0,∞). (3.3)

Soient ε ∈ (0,1) et un arbitraire r > 0. Sans perte de généralité, nous pouvons
supposer que r < h. Par la continuité de V (x, t) et le fait que V (0, t0) = 0, on peut
trouver δ = δ(ε, r, t0) > 0 tel que

1
ε

sup
x∈Sδ

V (x, t0) ≤ µ(r) (3.4)

c’est claire que δ < r, fixons maintenant x0 ∈ Sδ arbitrairement et on écrit simple-
ment x(t) = x(t, t0,x0). Soit le temps d’arrêt τ tel que

τ = inf{t ≥ t0 : xt < Sr}.
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Par la formule d’Itô on obtient, pour tout t ≥ t0,

V (x(τ ∧ t), τ ∧ t) = V (x0, t0) +
∫ τ∧t

t0

LV (x(s), s)ds+
∫ τ∧t

t0

Vx(x(s), s)g(x(s), s)dBs

en appliquant l’espérance et on obtient

E[V (x(τ ∧ t), τ ∧ t)] ≤ V (x0, t0). (3.5)

Notons |x(τ ∧ t)| = |x(τ)| = r si τ ≤ t. Donc par (3.3),

E[V (x(τ ∧ t), τ ∧ t)] ≥ E
[
I{τ≤t}V (x(τ), τ)

]
≥ µ(r)P{τ ≤ t}.

Ceci, combiné avec (3.5) et (3.4), implique

P{τ ≤ t} ≤ ε.

Quand t→∞, on obtient P{τ ≤∞} ≤ ε, alors

P{|x(t)| < r ; pour tout t ≥ 0} ≤ 1− ε.

�

Théorème 3.3. S’il existe une fonction V (x, t) ∈ C2,1(Sh× [t0,∞),R+) décresente et
définie-positive telle que LV (x, t) est définie-négative, alors la solution triviale de
l’équation (3.1) est asymptotique stable en probabilité.

Théorème 3.4. S’il existe une fonction V (x, t) ∈ C2,1(Rd × [t0,∞),R+) décresente
radialement non-bornée et définie positive telle que LV (x, t) est définie-négative,
alors la solution triviale de l’équation (3.1) est asymptotiquement stable en pro-
babilité en large.

Exemple 3.1. Considérons une équation différentielle stochastique de dimension
1

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) ; t ≥ t0, (3.6)

avec x(t0) = x0 ∈ R. Supposons que f : R ×R+ → R et g : R ×R+ → R
m avoir le

développement uniforme suivant

f (x, t) = a(t)x+ o(|x|) ; g(x, t) = (b1(t)x, . . . ,bm(t)x)T + o(|x|) ; t ≥ t0, (3.7)
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au voisinage de x = 0 où a(t) et bi(t) sont toutes des fonctions Borel mesurables
à valeur réelle. Posons une condition selon laquelle il existe un couple constant
positif θ et K tels que

−K ≤
∫ t

t0

a(s)− 1
2

m∑
i=1

b2
i (s) +θ

ds ≤ K t ≥ t0. (3.8)

Soit
0 < ε <

θ

sup
t≥t0

m∑
i=1

b2
i (t)

et on définie la fonction stochastique de Lyapunov

V (x, t) = |x|ε exp

−ε∫ t

t0

(a(s)− 1
2

m∑
i=1

b2
i (s) +θ)ds

 .
Par la condition (3.8),

|x|εe−εk ≤ V (x, t) ≤ |x|εeεk .

Par conséquent V (x, t) est définie-positive et décresente. D’autre part, par (3.7)

LV (x, t) = ε|x|ε exp[−ε
∫ t

t0

(a(s)− 1
2

m∑
i=1

b2
i (s) +θ)ds)×

ε2
m∑
i=1

b2
i (s)−θ) + o(|x|ε)


≤ −1

2
εθe−εk |x|ε + o(|x|ε).

On voit donc que LV (x, t) est définie-négative dans un voisinage suffisamment
petit de x = 0 pour t ≥ t0.
Par le Théorème(3.3), nous concluons donc que sous (3.7) et (3.9), la solution
triviale de l’équation (3.6) est asymptotiquement stable en probabilité.

3.4.1.2 Stabilité exponentielle presque sûre

Nous discuterons de la stabilité exponentielle presque sûre pour une équa-
tion différentielle stochastique d-dimensionnelle dirigée par un intégrateur non
linéaire. Nous donnons d’abord la définition formelle de la stabilité exponentielle
presque sûre.

Définition 3.6. On dit que l’équation (3.1) est exponentiellement stable presque
sûrement s’il existe α > 0 telle que

lim
t→∞

sup
1
t

log |x(t; t0,x0)| < −α < 0 p.s. (3.9)

39



3. STABILITÉ DES ÉQUATIONS DIFFÉRENTIELLES STOCHASTIQUES

pour tout x0 ∈ Rd , où lim
t→∞

sup
1
t

log |x(t; t0,x0)| est l’exposant de Lyapunov de la

solution x(t; t0,x0).

Remarque 3.2. Nous expliquons encore une fois pourquoi il suffit de discuter du
cas des valeurs initiales constantes. Pour une valeur initiale générale x0 (i.e x0 est
Ft0-mesurable et appartient à L2(Ω;R), il résulte de (3.9) que

P{ lim
t→∞

sup
1
t

log |x(t; t0,x0)| < 0} =
∫
R
d
P{ lim

t→∞
sup

1
t

log |x(t; t0, y)| < 0}P{x0 ∈ dy};

=
∫
R
d
P{x0 ∈ dy};

= 1.

Donc
lim
t→∞

sup
1
t

log |x(t; t0,x0)| < 0 p.s.

Pour établir les théorèmes sur la stabilité exponentielle presque sûre, nous de-
vons préparer les deux lemmes suivants.

Lemme 3.5. Supposons que pour tout θ > 0, il existe un Kθ > 0 tel que

|f (x, t)|2 + trace(g(x, t)gT (x, t)) ≤ Kθ |x|2 si |x| ≤ θ et t ≥ t0.

Alors,
P{ x(t; t0,x0) , 0; ∀ t ≥ t0} = 1,

pour tout x0 , 0 ∈ R
d . Autrement dit, presque tout le trajectoire d’échantillon-

nage de toute solution à partir d’un état non nul n’atteindra jamais l’origine.

Lemme 3.6. {L’inégalité exponentielle de la martingale} Soit g = (g1, ..., gm) ∈ L2(R+;R1×m)
et soit T ,α,β des nombres positifs. Alors

P

 sup
t0≤t≤T

[∫ t

t0

g(s)dB(s)− α
2

∫ t

t0

|g(s)ds|2ds
]
> β

 ≤ e−αβ . (3.10)

Théorème 3.7. Supposons qu’il existe une fonction V ∈ C2,1(Rd × [t0,∞);R+)
et les constants p > 0, c1 > 0, c2 ∈R, c3 ≥ 0, telle que pour tout x , 0 et t ≥ t0,

i) c1|x|p ≤ V (x, t),
ii) LV (x, t) ≤ c2V (x, t),
iii) |Vx(x, t)g(x, t)|2 ≥ c3V

2(x, t).
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Alors,

lim
t→∞

sup
1
t

log |x(t; t0,x0)| ≤ −c3 − 2c2

2p
p.s. (3.11)

pour tout x0 ∈Rd . En particulier, si c3 > 2c2 donc la solution triviale de l’équation
(3.1) est exponentiellement stable presque sûrement.

Preuve: De toute évidence, l’inégalité (3.11) est vérifiée pour x0 = 0 puisque
x(t; t0,0) ≡ 0. Fixons x0 , 0 et on écrit x(t) = x(t; t0,0). Par le lemme (3.5), x(t) , 0
pour tous t ≥ t0 presque sûrement. Ainsi, on peut appliquer la formule d’Itô et la
condition (ii) pour montrer que,

logV (x(t), t) ≤ logV (x0, t0) + c2(t − t0) +M(t)

−1
2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds,

où

M(t) =
∫ t

t0

Vx(x(s), s)g(x(s), s)
V (x(s), s)

dB(s)

est une martingale continue avecM0 = 0. Assignez arbitrairement ε ∈ (0,1) et soit
n = 1,2, .... Par l’inégalité exponentielle de la martingale (3.6),

P

{
sup

t0≤t≤t0+n

[∫ t

t0

M(t)− ε
2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds

]
>

2
ε

log(n)
}
≤ 1
n2 .

En appliquant le lemme de Borel-Cantelli(1.1), nous voyons que pour presque
tous ω ∈Ω, il y a un entier n0 = n0(ω) tel que si n ≥ n0,

M(t) ≤ ε
2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds+

2
ε

log(n)

soit vérifiée pour tous t0 ≤ t ≤ t0 +n. On remplace ceci en (3.4.1.2) puis utiliser la
condition (iii) nous obtenons que

logV (x(t), t) ≤ logV (x0, t0)− 1
2

[(1− ε)c3 − 2c2](t − t0) +
2
ε

log(n)

pour tout t0 ≤ t ≤ t0 +n, n ≥ n0 presque sûrement . Par conséquent, pour presque
tous ω ∈Ω, si t0 +n− 1 ≤ t ≤ t0 +n et n ≥ n0 ,

1
t

logV (x(t), t) ≤ −t − t0
2t

[(1− ε)c3 − 2c2] +
logV (x0, t0) + 2

ε log(n)
t0 +n− 1

.
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Cela implique

lim
t→∞

sup
1
t

logV (x(t), t) ≤ −1
2

[(1− ε)c3 − 2c2] p.s.

Enfin, en utilisant la condition (i), nous obtenons

lim
t→∞

sup
1
t

log |x(t)| ≤ −(1− ε)c3 − 2c2

2p
p.s.

et l’inégalité demandée (3.11) obtenue, puisque ε > 0 est arbitraire.

�

Corollaire 3.8. Supposons qu’il existe une fonction V ∈ C2,1(Rd × [t0,∞);R+) et
les constantes p,α,λ soient positives telle que pour tout x0 , 0, t ≥ t0,

α|x|p ≤ V (x, t) et LV (x, t) ≤ −λV (x, t).

Alors
lim
t→∞

sup
1
t

log |x(t; t0,x0)| ≤ −λ
p

p.s.

Ce corollaire découle immédiatement du théorème précédent en posant c1 = α,
c2 = −λ et c3 = 0.

Théorème 3.9. Supposons qu’il existe une fonction V ∈ C2,1(Rd × [t0,∞);R+)
et les constants p > 0, c1 > 0, c2 ∈R, c3 ≥ 0, telle que pour tout x , 0 et t ≥ t0,

i) c1|x|p ≥ V (x, t) > 0,
ii) LV (x, t) ≥ c2V (x, t),
iii) |Vx(c, t)g(x, t)|2 ≤ c3V

2(x, t).
Alors,

lim
t→∞

inf
1
t

log |x(t; t0,x0)| ≥ 2c2 − c3

2p
p.s. (3.12)

pour tout x0 ∈Rd . En particulier, si 2c2 > c3 donc la solution triviale de l’équation
(3.1) est exponentiellement instable presque sûrement.

Preuve: Fixons x0 , 0 et on écrit x(t) = x(t; t0,0). Par la formule d’Itô, les condi-
tions (ii) et (iii), nous pouvons facilement montrer que pour t ≥ t0,

logV (x(t), t) ≥ V (x0, t0) +
1
2

(2c2 − c3)(t − t0) +M(t), (3.13)
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où

M(t) =
∫ t

t0

Vx(x(s), s)g(x(s), s)
V (x(s), s)

dB(s)

est une martingale continue avec la variation quadratique

〈M(t),M(t)〉 =
∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds ≤ c3(t − t0).

Par la loi forte des grands nombres (c’est-à-dire le théorème (1.2)), lim
t→∞

M(t)
t

= 0

p.s. Il résulte donc de (3.13) que

lim
t→∞

inf
1
t
logV (x(t), t) ≥ 1

2
(2c2 − c3) p.s.

Ce qui implique l’inégalité (3.12) demandé en utilisant la condition (i).

�

Exemple 3.2. On considéré l’équation différentielle stochastique de dimension 2
suivante

dx(t) = f (x(t))dt +Gx(t)dB(t) pourt ≥ t0 (3.14)

avec x(t0) = x0 ∈R2 où B(t) est unidimensionnelle,

f (x) =

 x2cosx1

2x1sinx2

 , G =

 3 −0.3
−0.3 3

 .
Soit V (x, t) = |x|2. On a

4.29|x|2 ≤ LV = 2x1x2cosx1 + 4x1x2sinx2 + |Gx|2 ≤ 13.89|x|2

et
29.16|x|2 ≤ |Vx(x, t)Gx|2 ≤ 43.56|x|4.

En appliquant le théorème (3.7) et le Théorème (3.9) et on obtient

−8.745 ≤ lim
t→∞

inf
1
t

log |x(t; t0,x0)| ≤ lim
t→∞

sup
1
t

log |x(t; t0,x0)| ≤ −0.345.

Par conséquent, la solution triviale de l’équation (3.14) est exponentiellement
stable presque sûrement.
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Figure 3.1 – Trajectoire de la solution de l’équation (3.14)
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3.4.1.3 Stabilité exponentielle au moment d’ordre p

Nous discuterons de la stabilité exponentielle du moment d’ordre p pour
l’équation (3.1) et nous laisserons toujours p > 0.

Définition 3.7. On dit que la solution triviale de l’équation (3.1) est exponentiel-
lement stable au moment d’ordre p s’il y a un couple de constantes positives λ et
C et pour tout x0 ∈Rd telles que

E|x(t; t0,x0)|p ≤ C|x0|pe−λ(t−t0) ; pour tout t ≥ t0, (3.15)

pour tout x0 ∈Rd . Lorsque p = 2, il est généralement dit exponentiellement stable
en moyenne quadratique. Il résulte également de (3.15) que

lim
t→∞

sup
1
t

logE|x(t; t0,x0)|p < 0. (3.16)

Remarque 3.3.
— Si l’on souhaite considérer la valeur initiale x0 ∈ L2(Ω;Rd) puis, par (3.15),

E|x(t; t0,x0)|p =
∫
R
d
E|x(t; t0, y)|pP{x0 ∈ dy};

≤
∫
R
d
C|y|pe−λ(t−t0)

P{x0 ∈ dy};

= CE|y|pe−λ(t−t0).

— Soit 0 < p̂ < p, alors

(E|x(t)|p̂)
1
p̂ ≤ (E|x(t)|p)

1
p .

Et par conséquent, la stabilité exponentielle au moment d’ordre p implique
la stabilité exponentielle au moment d’ordre p̂

Théorème 3.10. Supposons qu’il existe une fonction V ∈ C2,1(Rd × [t0,∞);R+) et
des constantes postives C1,C2,C3, telle que

c1|x|p ≤ V (x, t) ≤ c2|x|p et LV (x, t) ≤ −c3V (x, t) (3.17)

pour tout (x, t) ∈Rd × [t0,∞). Alors,

E|x(t; t0,x0)|p ≤ c2

c1
|x0|pe−c3(t−t0) ; t ≥ t0, (3.18)

pour tout x0 ∈Rd . Autrement dit, la solution triviale de l’équation (3.1) est expo-
nentiellement stable au moment d’ordre p.

45



3. STABILITÉ DES ÉQUATIONS DIFFÉRENTIELLES STOCHASTIQUES

Preuve: Fixons x0 ∈Rd et on note x(t) = x(t; t0,x0). Pour tout n ≥ |x0|, on définit le
temps d’arrêt

τn = inf {t ≥ t0 : |xt | ≥ n}

Évidemment, τn→∞ quand t→∞ presque sûrement. Par la formule d’Itô, nous
pouvons déduire que pour t ≥ t0,

E
[
ec3(t∧τn−t0)V (x(t ∧ τn), t ∧ τn)

]
= V (x0, t0)+E

[∫ t∧τn

t0

es−t0[c3,V (x(s), s) +LV (x(s), s)]ds
]
.

En utilisant la condition (3.17), nous obtenons alors que

c1e
c3(t∧τn−t0)E|x(t ∧ τn)|p ≤ E

[
ec3(t∧τn−t0)V (x(t ∧ τn), t ∧ τn)

]
≤ V (x0, t0) ≤ c2|x0|p.

quand n→∞, on obtient

c1e
c3(t−t0)E|x(t)|p ≤ c2|x0|p

ce qui implique l’assertion souhaitée (3.18).

�

De même, nous pouvons prouver le théorème suivant qui donne un critère suffi-
sant pour l’instabilité exponentielle du moment d’ordre P .

Théorème 3.11. Soit q > 0. Supposons qu’il existe une fonction V ∈ C2,1(Rd ×
[t0,∞);R+) et des constantes positives C1,C2,C3, telle que

c1|x|q ≤ V (x, t) ≤ c2|x|q et LV (x, t) ≥ c3V (x, t) (3.19)

pour tout (x, t) ∈Rd × [t0,∞). Alors,

E|x(t; t0,x0)|q ≤ c1

c2
|x0|qec3(t−t0) t ≥ t0 (3.20)

pour tout x0 ∈ Rd . Autrement dit, la solution triviale de l’équation (3.1)est expo-
nentiellement instable au moment d’ordre q.

Remarque 3.4. Soit q̂ > q. Alors

(E|x(t)|q̂)
1
p̂ ≥ (E|x(t)|q)

1
q .

Et par conséquent, l’instabilité exponentielle au moment d’ordre q implique l’in-
stabilité d’ordre q̂.
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Corollaire 3.12. Supposons qu’il existe une matriceQ d×d symétrique et définie-
positive, et les constantes α1,α2,α3, telles que pour tout (x, t) ∈Rd × [t0,∞),

xTQf (x, t) +
1
2
trace[gT (x, t)Qg(x, t)] ≤ α1x

TQx, (3.21)

et
α2x

TQx ≤ |xTQg(x, t)| ≤ α3x
TQx. (3.22)

— Si α1 < 0, alors la solution triviale de l’équation (3.1) est exponentiellement

stable au moment d’ordre p, à condition que p < 2 +
2|α1|
α2

3

.

— 0 ≤ α1 < α
2
2 , alors la solution triviale de l’équation (3.1) est exponentielle-

ment stable au moment d’ordre p, à condition que p < 2− 2α1

α2
2

.

Corollaire 3.13. Supposons qu’il existe une matriceQ d×d symétrique et définie-
positive, et les constantes β1,β2, telles que pour tout (x, t) ∈Rd × [t0,∞),

xTQf (x, t) +
1
2
trace[gT (x, t)Qg(x, t)] ≥ β1x

TQx, (3.23)

et
|xTQg(x, t)| ≤ β2x

TQx. (3.24)

Alors la solution triviale de l’équation (3.1) est exponentiellement instable au

moment d’ordre q, à condition que q > 0∨ (2−
2β1

β2
2

).

Exemple 3.3. Considérons l’EDS linéaire suivante

dx(t) = a(t)x(t)dt +
m∑
i=1

bi(s)x(s)dBi(s). (3.25)

Pour tout t ≥ t0 avec x(t0) = x0 ∈ Rd , oú a(t), bi(t) sont toutes des fonctions conti-
nues sur [t0,∞). Alors la solution explicite de l’équation (3.25) est la suivante

x(t) = x0exp

∫ t

t0

(a(s)− 1
2

m∑
i=1

b2
i (s))ds+

m∑
i=1

∫ t

t0

bi(s)dBi(s)

 .
Donc,

E|x(t)|p = |x0|pE

exp
p∫ t

t0

(a(s)− 1
2

m∑
i=1

b2
i (s))ds+ p

m∑
i=1

∫ t

t0

bi(s)dBi(s)


 .
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Mais on peut montrer que

E

exp
−p2

2

m∑
i=1

∫ t

t0

bi(s)
2ds+ p

m∑
i=1

∫ t

t0

bi(s)dBi(s)


 = 1.

Alors,

E|x(t)|p = |x0|pexp

p∫ t

t0

(a(s)−
1− p

2

m∑
i=1

b2
i (s))ds

 . (3.26)

On voit donc que la solution triviale de l’équation (3.25) est exponentiellement
stable au moment d’ordre p si et seulement si

lim
t→∞

sup
1
t

∫ t

t0

(a(s)−
1− p

2

m∑
i=1

b2
i (s))ds < 0; (3.27)

alors, qu’elle est exponentiellement instable au moment d’ordre q

lim
t→∞

inf
1
t

∫ t

t0

(a(s)−
1− q

2

m∑
i=1

b2
i (s))ds > 0. (3.28)

Si a(t) = a, bi(t) = bi sont toutes des constantes ,alors l’équation (3.27) est vérifiée
si

a−
1− p

2

m∑
i=1

b2
i < 0, i.e p < 1− a

1
2

m∑
i=1

b2
i

;

tandis que (3.28) est satisfaite si et seulement si

a−
1− q

2

m∑
i=1

b2
i > 0, i.e q > 1− a

1
2

m∑
i=1

b2
i

.

3.4.1.4 Stabilité asymptotique presque surement

Définition 3.8. Soit λ : R+ → (0,∞] une fonction continue non-croissante telle
que λ(t)→ 0 quand t→∞. On dit que la solution triviale de l’équation (3.1) est
asymptotiquement stable presque surement avec la fonction de taux λ(t) si

|x(t; t0,x0)| ≤ ξλ(t) pour tout t ≥ t0

presque surement, oú ξ est une variable aléatoire finie qui dépend de x0 et t0
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Théorème 3.14. Soient ρ > 0 et V ∈ C2,1(Rd × [t0,∞);R+). Soit γ : R+ → R+ une
fonction continue non-croissante telle que γ(t)→ 0 quand t→∞.

Soit η : R+→R+ fonction continue telle que
∫ ∞

0
η(t)dt <∞. Si

γ(t)|x|p ≤ V (x, t) et LV (x, t) ≤ η(t) (3.29)

pour tout (x, t) ∈ R
d × [t0,∞), donc la solution triviale de l’équation (3.1) est

asymptotiquement stable presque surement avec la fonction de taux λ(t) = (γ(t))−
1
p .

Exemple 3.4. Considérons l’équation différentielle stochastique linear scalaire

dx(t) = −
p

1 + t
x(t)dt + (1 + t)−pdB(t) pour tout t ≥ t0, (3.30)

avec x(t0) = x0 ∈ R, où p >
1
2

et B(t) est un mouvement Brownien scalaire, soit

0 < ε < p − 1
2

arbitraire et

V (x, t) = (t + 1)(2p−1−2ε)x2.

Calculant

LV (x, t) = (2p − 2− 2ε)(t + 1)(2p−1−2ε)x2 − 2p(t + 1)(2p−2−2ε)x2 + (t + 1)−(1+2ε)

≤ (t + 1)−(1+2ε)

et on note ∫ ∞
0

(t + 1)−(1+2ε)dt =
1
2ε
<∞.

Par le théorème (3.14) et avec p = 2 , γ(t) = (t + 1)(2p−1−2ε) et η(t) = (t + 1)−(1+2ε),
on voit que la solution triviale de l’équation (3.30) est asymptotiquement stable
presque surement avec la fonction de taux λ(t) = (t + 1)−(p− 1

2−ε).

3.4.2 Le lien entre la stabilité exponentielle presque sur et la
stabilité exponentielle au moment d’ordre p

D’une manière générale, la stabilité exponentielle du p-ème moment et la sta-
bilité exponentielle presque sûre ne s’impliquent pas mutuellement et des condi-
tions supplémentaires sont nécessaires pour déduire l’une de l’autre. Le théorème
suivant donne les conditions dans lesquelles la stabilité exponentielle du moment
p implique la stabilité exponentielle presque sûre.
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Théorème 3.15. Supposons qu’il existe un constant K positif tel que

xT f (x, t)∨ |g(x, t)|2 ≤ K |x|2 pour tout (x, t) ∈Rd × [t0,∞). (3.31)

Alors la stabilité exponentielle au moment d’ordre p de la solution triviale de
l’équation (3.1) implique la stabilité exponentielle presque sure.

Lemme 3.16. Soit g ∈ L2(R+;Rd×m) . Définir, pour t ≥ 0,

x(t) =
∫ t

0
g(s)dB(s) and A(t) =

∫ t

0
|g(s)|2ds.

Alors pour tout p > 0, il existe des constantes positives universelles cp,Cp (dépen-
dant uniquement de p), telles que

cpE|A(t)|
P
2 ≤ E

(
sup

0≤s≤t
|x(s)|p

)
≤ CpE|A(t)|

P
2 .

En particulier, on peut prendre

cp =
(P

2

)p
, Cp =

(32
P

) P
2

si 0 < p < 2 ;

cp = 1 , Cp = 4 si p=2 ;

cp = (2p)−
p
2 , Cp =

[
p(p+1)

2(p − 1)(p−1)

] p
2

si p > 2.

Preuve: (preuve du théorème)
On fixe x0 , 0 dans Rd et on note x(t0, t;x0) = x(t). Par la définition de péme stabilité
exponentiel, il existe un couple de constantes positives λ et C telles que

E|x(t)|p ≤ C|x0|pe−λ(t−t0) pour t ≥ t0. (3.32)

Prenons n = 1,2, .... Par la formule d’Itô et la condition (3.31), on peut montrer
que pour t0 +n− 1 ≤ t ≤ t0 +n,

|x(t)|p = |x(t0 +n− 1)|p +
∫ t

t0+n−1
p|x(s)|(p−2)xT (s)f (x(s), s)ds

+
1
2

∫ t

t0+n−1

[
p|x(s)|(p−2)|g(x(s), s)|2 + p(p − 2)|x|(p−4)|xT (s)g(x(s), s)|2

]
ds

+
∫ t

t0+n−1
p|x(s)|(p−2)xT (s)g(x(s), s)ds

≤ |x(t0 +n− 1)|p + c1

∫ t

t0+n−1
|x(s)|pds

+
∫ t

t0+n−1
p|x(s)|(p−2)xT (s)g(x(s), s)dB(s)
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où c1 = pK + p(1 + |p − 2|)K
2

. Par conséquent

E

 sup
t0+n−1≤t≤t0+n

|x(t)|p
 ≤ E|x(t0 +n− 1)|p + c1

∫ t0+n

t0+n−1
E|x(s)|pds

+E

 sup
t0+n−1≤t≤t0+n

∫ t

t0+n−1
p|x(s)|(p−2)xT (s)g(x(s), s)dB(s)

 . (3.33)

De l’autre côté, par l’inégalité de Burkholder-Davis-Gundy (3.16), nous avons que

E

 sup
t0+n−1≤t≤t0+n

∫ t

t0+n−1
p|x(s)|(p−2)xT (s)g(x(s), s)dB(s)


≤ 4
√

2E
(∫ t0+n

t0+n−1
p2|x(s)|2(p−2)|xT (s)g(x(s), s)|2ds

) 1
2

;

≤ 4
√

2E

 sup
t0+n−1≤s≤t0+n

|x(s)|p
∫ t0+n

t0+n−1
p2K |x(s)|pds


1
2

;

≤ 1
2
E

 sup
t0+n−1≤s≤t0+n

|x(s)|p
+ 16p2K

∫ t0+n

t0+n−1
E|x(s)|pds,

où nous avons également utilisé l’inégalité élémentaire
√
ab ≤ 1

2
(a + b). On rem-

place ceci dans (3.33) et on obtient

E

 sup
t0+n−1≤t≤t0+n

|x(s)|p
 ≤ 2E|x(t0 +n− 1)|p + c2

∫ t0+n

t0+n−1
E|x(s)|pds,

où c2 = 2c1 + 32p2K . En appliquant la condition (3.32) et on obtient que

E

 sup
t0+n−1≤t≤t0+n

|x(t)|p
 ≤ c3e

−λ(n−1), (3.34)

où c3 = C|x0|p(2 + c2). Maintenant, soit ε ∈ (0,λ) arbitraire. Il résulte de (3.34) que

P

 sup
t0+n−1≤t≤t0+n

|x(t)|p > e−(λ−ε)(n−1)


≤ e−(λ−ε)(n−1)E

 sup
t0+n−1≤t≤t0+n

 ≤ c3e
−ε(n−1).

Compte tenu du lemme de Borel-Cantelli(1.1), nous voyons que pour presque
tous les ω ∈Ω,

sup
t0+n−1≤t≤t0+n

|x(t)|p ≤ e−(λ−ε)(n−1) (3.35)
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est vérifiée pour tous, mais pour un nombre fini de n. Ainsi, il existe un n0 =
n0(ω), pour tous ω ∈Ω à l’exclusion d’un ensemble P-nul, pour lequel (3.35) est
vérifiée pour tout n ≥ n0. Par conséquent, pour presque tout ω ∈Ω,

1
t
log |x(t)| ≤ 1

pt
log(|x(t)|p) ≤ −(λ− ε)(n− 1)

p(t0 +n− 1)

si t0 +n− 1 ≤ t ≤ t0 +n, n ≥ n0. Alors,

lim
t→∞

sup
1
t
log |x(t)| ≤ −(λ− ε)

p
p.s.

Puisque ε > 0 est arbitraire, nous devons obtient

lim
t→∞

sup
1
t
log |x(t)| ≤ 1

pt
log(|x(t)|p) ≤ −λ

p
p.s.

Par définition, la solution triviale de l’équation (3.1) est exponentielle stable presque
sûrement.

�

Bien que la condition (3.31) ne soit pas garantie par les hypothèses d’existence
et d’unicité Théorème (2.5) qui sont supposés tout au long de ce chapitre, il est
satisfait dans de nombreux cas importants. Par exemple, si les coefficients f (x, t)
et g(x, t) sont uniformément Lipschitz continus, alors (3.31) est valide en gardant
toujours la supposition de f (0, t) ≡ 0 et g(0, t) ≡ 0.
De plus, pour l’équation différentielle stochastique linéaire d-dimensionnelle

dx(t) = F(t)x(t)dt +
m∑
i=1

Gi(t)x(t)dBi(t) (3.36)

la condition (4.3) est vérifiée si F et Gi sont toutes des fonctions à valeurs matri-
cielles d × d bornées. Par conséquent, nous obtenons un corollaire utile.

Corollaire 3.17. Soient F,Gi des fonctions à valeurs matricielles d × d bornées.
Alors la stabilité exponentielle au moment d’ordre p de la solution triviale de
l’équation linéaire (3.36) implique la stabilité presque sure.

3.4.3 Stabilisation et déstabilisation stochastique avec le bruit

Il n’est pas surprenant que le bruit puisse déstabiliser un système stable.
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3.4.3.1 Exemples motivants

Exemple 3.5. (déstabilisation)
Considérons une EDO bidimensionnelle

ẏ = −y(t) pout t ≥ t0, y(t0) = x0 ∈R2

est perturbé par le bruit et ce système perturbé stochastiquement est décrit par
l’équation d’Itô

dx(t) = −x(t)dt +Gx(t)dB(t) pout t ≥ t0, x(t0) = x0 ∈R2. (3.37)

Ici B(t) est un mouvement Brownien unidimensionnel

G =

0 −2
2 0


et il a été démontré que l’équation (3.37) a la solution explicite

x(t) = x0exp[(−I − 1
2
G2)(t − t0) +G(B(t)−B(t0))]

x(t) = x0exp[I(t − t0) +G(B(t)−B(t0))],

où I est la matrice carré d’identité. Par conséquent

lim
t→∞

1
t

log |x(t)| = 1 p.s.

C’est-à-dire que le système perturbé stochastiquement (3.37) devient exponen-
tiellement instable presque sûrement.
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Figure 3.2 – La déstabilisation de l’équation (3.37)

D’autre part, il a également été observé que le bruit peut également avoir un
effet stabilisateur.

Exemple 3.6. (stabilisation)
Par exemple, considérons un système scalaire instable

ẏ = y(t) pout t ≥ t0, y(t0) = x0 ∈R (3.38)

Perturbons ce système par le bruit et supposons que le système perturbé a la
forme

dx(t) = x(t)dt + 2x(t)dB(t) pout t ≥ t0, x(t0) = x0 ∈R. (3.39)

où B(t) est à nouveau un Brownien unidimensionnel. L’équation (3.39) a la solu-
tion explicite

x(t) = exp[−(t − t0) + 2(B(t)−B(t0))],

ce qui donne immédiatement

lim
t→∞

1
t

log(|x(t)|) = −1 p.s.
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Figure 3.3 – la stabilisation de l’équation (3.38)

C’est-à-dire que le système perturbé (3.39) devient stable. En d’autres termes, le
bruit a stabilisé le système instable (3.38).

3.4.3.2 Systèmes non-linéaire

Stabilisation des EDO :

Supposons que le système donné soit décrit par une équation différentielle
ordinaire non linéaire

ẏ(t) = f (y(t), t) pour t ≥ t0, y(t0) = x0 ∈Rd . (3.40)

Posons f : Rd ×R+→ R
d une fonction continue et localement Lipschitz et parti-

culièrement, pour certain k > 0

|f (x, t)| ≤ k|x| pour tout (x, t) ∈Rd ×R+. (3.41)

Nous utilisons maintenant le mouvement Brownien B(t) = (B1(t), ...,Bm(t))T

m-dimensionnel comme source de bruit pour perturber le système donné. sup-
posons que le système perturbé stochastiquement est décrit par l’équation d’Itô
semi-linéaire
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dx(t) = f (x, t)dt +
m∑
i=1

Gix(t)dBi(t) t ≥ t0,x(t0) = x0 ∈Rd , (3.42)

oú Gi ,1 ≤ i ≤m, sont des matrices d × d.

Théorème 3.18. Soit l’EDS (3.42) vérifiant la condition de Lipschitz (3.41). S’il
existe des constantes λ > 0 et ρ ≥ 0 telles que

m∑
i=1

|Gix|2 ≤ λ|x|2 et
m∑
i=1

|xTGix|2 ≥ ρ|x|4 (3.43)

pour tout x ∈Rd . Alors

lim
t→∞

sup
1
t

log(|x(t; t0,x0)|) ≤ −(ρ − k − λ
2

) p.s. (3.44)

pour tout x0 ∈Rd . En particulier si ρ > k +
1
2
λ, donc la solution triviale de l’équa-

tion (3.42) est exponentiellement stable presque surement.

Preuve: On fixe x0 , 0 et notée x(t) = x(t; t0,x0). Le lemme (3.5) nous dit que
x(t) , 0 pour tout t ≥ 0 presque sûrement. Par la formule d’Itô,

log(|x(t)|2) = log(|x0|2) +M(t) +
∫ t

0
|x(s)|−22x(s)T f (x(s), s)ds

+
1
2

m∑
i=1

∫ t

0
|x(s)|−4[|x(s)|2|Gix(s)|2 − 4|xT (s)Gix(s)|2]ds, (3.45)

où

M(t) = 2
m∑
i=1

∫ t

0
|x(s)|−2x(s)TGix(s)dBi(s). (3.46)

qui est une martingale continue disparaissant à t = 0. En utilisant (3.41) et (3.43)
nous obtenons

log(|x(t)2) ≤ log(|x0|2) +M(t) + (2K +λ− 2ρ)t. (3.47)

Notez que

<M(t) >= 4
m∑
i=1

∫ t

0
|x(s)|−4|x(s)TGix(s)|2ds ≤ 4t

m∑
i=1

||Gi ||2.
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On sait que
M(t)
t
→ 0 p.s. quand t→∞. Par conséquent, il résulte de (3.47) que

lim
t→∞

sup
1
t

log(|x(t)|2) ≤ 2K +λ− 2ρ p.s.,

i.e
lim
t→∞

sup
1
t

log(|x(t)|) ≤ −(ρ −K − 1
2
λ) p.s.

�

Théorème 3.19. Tout système non linéaire (3.40) d-dimensionnel peut être sta-
bilisé par un mouvement Brownien si la condition (3.41) est satisfaite. De plus,
on ne peut même utiliser qu’un mouvement brownien scalaire pour stabiliser le
système.

Exemple 3.7. On considère une equation différentiel ordinaire instable

ẏ = f (y(t), t), (3.48)

où

f =

y1cos(t) + y2sin(y1)
y2sin(t) + y1sin(y2)


On voit

f (y, t) ≤ 2|y| ∀(y, t) ∈R2 ×R+.

perturber cette EDO par un mouvement Brownien scalaire nous donne l’EDS
suivant

dx(t) = f (x(t), t)dt + σ1x(t)dB(t).

le théorème ci-dessus montre que cette équation stochastique est presque sûre-
ment stable exponentiellement à condition

σ1 > 2.
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Figure 3.4 – La stabilisation de l’équation (3.48)

Stabilisation des EDS :

Nous pouvons maintenant nous demander si nous pouvons également utiliser
la perturbation stochastique pour stabiliser un système stochastique. La réponse
est positive. Afin de dériver ce nouveau résultat, regardons un autre cas de l’équa-
tion (3.42) en fixant uniquement Gm = σmI , c’est-à-dire en donnant l’équation

dx(t) = f (x, t)dt +
m−1∑
i=1

Gkx(t)dBk + σmx(t)dBm(t). (3.49)

Cela peut être considéré comme le système perturbé stochastiquement d’un sys-
tème stochastique donné

dx(t) = f (x(t), t)dt +
m−1∑
i=1

Gkx(t)dBk . (3.50)

Nous estimons maintenant

m∑
i=1

|Gkx|2 ≤

m−1∑
i=1

||Gk ||2 + σ2
m

 |x|2
et

m∑
i=1

|xTGkx|2 ≥ σ2
m|x|4.
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3. STABILITÉ DES ÉQUATIONS DIFFÉRENTIELLES STOCHASTIQUES

Par conséquent, selon le théorème (3.18), la solution de l’équation (3.49) satisfait

lim
t→∞

sup
1
t

log(|x(t; t0,x0)|) ≤ −

1
2
σ2
m −K −

1
2

m−1∑
i=1

||Gk ||2
 p.s.

Alors , l’équation (3.49) est stable exponentiellement presque surement à condi-
tion

σ2
m > 2K +

m−1∑
i=1

||Gk ||2.

Cela a prouvé le théorème suivant.

Théorème 3.20. Si (3.41) est satisfaite, alors l’équation différentielle stochastique
(3.50) peut être stabilisée par le mouvement Brownien, et on peut même utiliser
uniquement un mouvement Brownien scalaire pour le faire.

Considérons plus généralement une équation différentielle stochastique

dx(t) = f (x(t), t)dt + g(x, t)dw(t) +
m∑
i=1

Gix(t)dBi(t) pour tout t ≥ t0 (3.51)

avec x0 = x0 ∈ Rd oú w(t) est un mouvement Brownien q-dimensionnel indépen-
dant de B(t) et g : Rd ×R+→ R

d×q Cette équation peut être considérée comme la
perturbation stochastique système d’un système stochastique donné

dx(t) = f (x, t)dt + g(x, t)dw(t). (3.52)

Théorème 3.21. Soient f : Rd ×R+ → R
d et g : Rd ×R+ → R

d×q deux fonctions
continues et localement Lipschitz satisfaisant

|f (x, t)| ≤ K1|x| et trace(g(x, t)gT (x, t)) ≤ K2|x|2 (3.53)

pour tout x0 ∈ Rd et t ≥ 0, où K1 > 0 et K2 > 0. Soit λ > 0,ρ ≥ 0 et supposant que
le critère (3.43) soit satisfait. Alors la solution de l’équation (3.51) satisfait

lim
t→∞

sup
1
t

log |x(t; t0,x0)| ≤ −(ρ −K1 −
1
2

(K2 +λ)) p.s

pour tout x0 ∈ Rd . En particulier si ρ > K1 +
1
2

(K2 +λ), donc l’équation (3.51) est
exponentiellement stable presque surement.
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Preuve: De la même manière que pour la preuve du théorème (3.18), nous pou-
vons montrer que

log(|x(t; t0,x0)|2) ≤ log |x0|2 − (2ρ − 2K1 −λ)t +M(t) +N (t)

+
1
2

∫ t

0
|x(s)|−4(2|x(s)|2trace(g(x(s), s)g(x(s), s)T )− 4|x(s)T g(x(s), s)|2)ds

≤ log(|x0|2)− (2ρ − 2K1 −K2 −λ)t +M(t) +N (t)
(3.54)

pour tout t ≥ t0, oùM(t) est le même que celui défini dans la preuve du théorème
(3.18), et

N (t) = 2
∫ t

0
2|x(s)|−2x(s)T g(x(s), s)dw(s).

Notez que N (t)/t → 0 presque surement quant t →∞ pour la même raison que
précédemment. Donc (3.54) implique

lim
t→∞

sup
1
t

log(|x(t; t0,x0)|2) ≤ −(2ρ − 2K1 −K2 −λ) p.s.

�

Théorème 3.22. Toute équation différentielle stochastique de la forme (3.52) peut
être stabilisée par le mouvement Brownien à condition que (3.53) soit satisfaite.

Déstabilisation des EDO :

Théorème 3.23. Soit l’EDS (3.42) vérifiant la condition de Lipschitz (3.41). S’il
existe des constantes λ > 0 et ρ > 0 telles que

m∑
i=1

|Gix|2 ≥ λ|x|2 et
m∑
i=1

|xTGix|2 ≤ ρ|x|4 (3.55)

pour tout x ∈Rd . Alors

lim
t→∞

inf
1
t

log(|x(t; t0,x0)|) ≥ (
λ
2
− k − ρ) p.s.

pour tout x0 , 0. En particulier si λ > 2(k + ρ), donc la solution triviale de l’équa-
tion (3.42) est exponentiellement instable presque surement.

Nous utilisons maintenant ce théorème pour montrer comment on peut utili-
ser la perturbation stochastique pour déstabiliser le système donné.
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cas 1 :{d ≤ 3}

Choisissez la dimension du mouvement Brownienm = d et soit σ une constante.
Pour chaque i = 1,2, ...,d−1,définir une matriceGi = (g iuv) de dimension d × d avec

g iuv =

 σ si u=i et v=i+1 ;
0 sinon

De plus, définissez Gd = (gduv) avec

gduv =

 σ si u=d et v=1 ;
0 sinon

Alors l’équation (3.42) devient

dx(t) = f (x(t), t)dt + σ


x2(t)dB1(t)

...

xd(t)dBd−1(t)
x1(t)dBd(t)

 . (3.56)

Calculez cela
m∑
i=1

|Gix|2 =
m∑
i=1

(σxi+1)2 = σ2|x|2

et
m∑
i=1

|xTGix|2 = σ2
m∑
i=1

x2
i x

2
i+1,

où nous utilisons xd+1 = x1. Notant
m∑
i=1

x2
i x

2
i+1 ≤

1
2

m∑
i=1

(x4
i + x4

i+1) =
m∑
i=1

x4
i ,

nous avons

3
m∑
i=1

x2
i x

2
i+1 ≤ 2

m∑
i=1

x2
i x

2
i+1 +

m∑
i=1

x4
i ≤ |x|

4.

Par conséquent
m∑
i=1

|xTGix|2 =
σ2

3
|x|4.

D’après le théorème (3.55), la solution de l’équation (3.58) a la propriété

lim
t→∞

inf
1
t

log(|x(t; t0,x0)|) ≥ (
σ2

2
−K − σ

2

3
) =

σ2

6
−K p.s.

pour tout x0 , 0. Si σ2 > 6K , alors la solution triviale de l’équation (3.58) sera
exponentiellement instable presque sûrement.
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Exemple 3.8. Étant donné une ODE tridimensionnelle stable

ẏ(t) = f (y(t), t), (3.57)

où

f (y, t) =


−2y1 + sin(y2)
−2y2 + sin(y3)
−2y3 + sin(y1)

 .
On voit que

|f (y, t)| = 3|y| ∀(y, t) ∈R3 ×R+.

La perturbation de cette EDO par un mouvement Brownien tridimensionnel en-
traîne une EDS

dx(t) = f (x(t), t)dt + σ


x2(t)dB1(t)
x3(t)dB2(t)
x1(t)dB3(t)

 .
Cette EDS est presque sûrement instable de manière exponentielle à condition

σ >
√

18.

Figure 3.5 – La déstabilisation de l’équation (3.57)
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cas 2 :{d = 2K(K ≥ 1)}

soit σ une constante. Définir

G1 =



0 σ 0
−σ 0

. . .

0 σ

0 −σ 0


mais on définit Gi = 0 pour 2 ≤ i ≤m. Alors l’équation (3.42) devient

dx(t) = f (x(t), t)dt + σ



x2(t)
−x1
...

x2K (t)
−x2K−1(t)


dB1(t). (3.58)

Dans ce cas, nous avons

m∑
i=1

|Gix|2 = σ2|x|2
m∑
i=1

|xTGix|2 = 0.

Par conséquent, selon Le théorème (3.55), la solution de l’équation (3.58) a la
propriété que

lim
t→∞

inf
1
t

log(|x(t; t0,x0)|) ≥ σ
2

2
−K p.s.

pour tout x0 , 0. Si σ2 > 2K , alors la solution triviale de l’équation (3.58) sera
exponentiellement instable presque sûrement.

Exemple 3.9. Étant donné une ODE à 4 dimensions stable

ẏ(t) = f (y(t), t), (3.59)

où

f (y, t) =


−2y1 + sin(y2)
−2y2 + sin(y3)
−2y3 + sin(y4)
−2y4 + sin(y1)

 .
On voit que

|f (y, t)| ≤ 4|y| ∀(y, t) ∈R4 ×R+.
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La perturbation de cette EDO par un mouvement Brownien scalaire entraîne l’
EDS

dx(t) = f (x(t), t)dt + σ


x2(t)
−x1

x3(t)
−x4(t)

dB1(t).

Cette EDS est presque sûrement exponentiellement instable à condition que

σ >
√

6.

Figure 3.6 – La déstabilisation de l’équation (3.59)

cas 3 :{d = 1}

Considérons l’équation linéaire scalaire

dx(t) = −ax(t) +
m∑
i=1

bix(t)dBi(t) pourt ≥ t0 (3.60)

avec x(t0) = x0. Cette équation est considérée comme une perturbation stochas-
tique d’un système exponentiellement stable
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ẏ(t) = −ay(t) (a > 0).

Alors l’exposant de Lyapunov est de las solution est

lim
1
t

log |x(t; t0,x0)| = −a− 1
2

m∑
i=1

b2
i < 0 p.s.

Autrement dit, le système perturbé (3.60) reste stable. En résumant ces résultats,
nous obtenons la conclusion suivante.

Théorème 3.24. Tout système non linéaire (3.40) peut être déstabilisé par un
mouvement Brownien si la condition (3.41) est satisfaite. De plus, on peut uti-
liser un mouvement Brownien scalaire pour le déstabiliser.

Déstabilisation des EDS

Nous allons maintenant discuter de la déstabilisation stochastique des sys-
tèmes stochastiques.

Théorème 3.25. Soient f : Rd ×R+ → R
d et g : Rd ×R+ → R

d×q deux fonctions
continues et localement Lipschitz satisfaisant

|f (x, t)| ≤ K1|x| et trace(g(x, t)gT (x, t)) ≤ K2|x|2 (3.61)

pour tout x ∈ R
d et t ≥ t0, oú K1 > 0 et K2 > 0. S’il existe des constantes

λ > 0,ρ ≥ 0 et supposant que le critère (3.60) soit satisfaite.
Alors

lim
t→∞

inf
1
t

log |x(t, ,x0)| ≥ 1
2

(λ− 2ρ − 2K1 −K2) p.s.

pour tout x0 , R
d . En particulier si λ > 2ρ + 2K1 +K2, donc l’équation (3.51) est

exponentiellement instable presque surement.

Théorème 3.26. Toute équation différentielle stochastique peut être déstabilisée
par le mouvement Brownien à condition que la dimension d ≥ 2 et (3.61) soit
satisfaite.
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3.4.3.3 Systèmes linéaire

Dans sous-section, nous utiliserons la théorie établie dans les sections pré-
cédentes pour étudier la stabilisation et la déstabilisation stochastiques pour un
système stochastique linéaire donné

dy(t) = A0y(t)dt +
q∑
i=1

Ai(t)y(t)dWi(t) pout t ≥ 0 (3.62)

avec y(t0) = y0 ∈ Rd , oú W (t) = (W1(t), ...,Wq(t)) est un mouvement Brownien de
dimension q, Ai : R+→R

d×d ,1 ≤ i ≤ q sont tous bornées et nous définissons

||Ai || = sup{||Ai(t)|| : t ≥ 0}.

Nous perturbons maintenant ce système par un autre mouvement Brownien in-
dépendant de dimension m (w1(t), ...,wm(t)) et dire que le système perturbé est
décrit par

dx(t) = A0(t)x(t)dt+
q∑
i=1

Ai(t)x(t)dWi(t)+
m∑
k=1

Bk(t)x(t)dwk(t) pout t ≥ 0 (3.63)

avec x(0) = x0. Évidemment, E(x(t)) = E(y(t)) pout tout t ≥ 0.En appliquant les
théorèmes (3.21) et (3.25) à l’équation (3.63) nous obtenons les corollaires sui-
vants.

Corollaire 3.27. Supposons que la condition (3.43) soit satisfaite pour certains
λ > 0 et ρ ≥. Alors

lim
t→∞

sup
1
t

log |x(t,x0)| ≤ −(ρ − ||A0|| −
1
2
λ− 1

2

q∑
i=1

||Ai ||2) p.s.

De plus, il est possible de choisir approprié Bk, 1 ≤ k ≤m, tel que

ρ > ||A0||+
1
2
λ+

1
2

q∑
i=1

||Ai ||2

et donc l’équation (3.63) est presque sûrement stable de façon exponentielle. En
d’autres termes, le système stochastique linéaire (3.62) peut être stabilisé par le
mouvement Brownien sans changer la valeur moyenne de la solution.
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Corollaire 3.28. Supposons que la condition (3.43) soit satisfaite pour certains
λ > 0 et ρ ≥. Alors

lim
t→∞

inf
1
t

log(|x(t,x0)|) ≥ −

1
2
λ− ρ − ||A0|| −

1
2

q∑
i=k

||Ai ||2
 p.s.

De plus, si d ≥ 2, il est possible de choisir approprié Bk, 1 ≤ k ≤m, tel que

λ > 2ρ+||A0||+
q∑
i=k

||Ai ||2 et donc l’équation (3.63) est presque sûrement instable

de façon exponentielle. En d’autres termes, si d ≥ 2, le système stochastique li-
néaire (3.62) peut être déstabilisé par le mouvement Brownien sans changer la
valeur moyenne de la solution.
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Conclusion

Le but de ce travail est d’étudier une propriété parmi les propriétés essen-
tielles dans l’étude du comportement d’un système dynamique (l’existence et
l’unicité d’une solution, la stabilité, la contrôlabilité,...etc) dirigé par une équa-
tion différentielle stochastique où nous avons s’intéresser si une petite perturba-
tion sur la valeur initiale nous conduit à un changement autour de son voisinage
ou un changement radicale sur les trajectoires du solution.

Le mémoire a été basé sur deux partie fondamentale. La première sert à défi-
nir la stabilité des EDS et ses différents types (la stabilité en probabilité, la stabi-
lité exponentielle presque sûre, la stabilité exponentielle des moments et la sta-
bilité assymptotique p.s.). La deuxième partie est consacré pour la stabilisation et
la déstabilisation des équations différentielles stochastiques où l’idée principale
de cette partie est l’ajout d’une perturbation (bruit) sur le système dynamique
pour stabiliser ou déstabilisé l’EDS.
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