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Chapitre 1
Introduction

La théorie de l’estimation est l’une des branches les plus basiques de la statistique.

Cette théorie est habituellement divisée en deux composantes principales, à savoir, l’esti-

mation paramétrique et l’estimation non paramétrique. Le problème de l’estimation non

paramétrique consiste, dans la majeure partie des cas, à estimer, à partir des observa-

tions, une fonction inconnue, élément d’une certaine classe fonctionnelle. Rappelons qu’une

procédure non paramétrique est définie indépendamment de la distribution ou la loi de

l’échantillon d’observations. Plus particulièrement, on parle de méthode d’estimation non

paramétrique lorsque celle-ci ne se ramène pas à l’estimation d’un nombre fini de para-

mètres réels associés à la loi de l’échantillon.

Un des problèmes centraux en statistique est celui de l’estimation des caractéristiques

fonctionnelles associées à la loi des observations, telles que, par exemple, la fonction de

densité, la fonction de répartition ou la fonction de régression. Ce dernier est l’un des

outils, les plus utilisés en statistique. Elle est très pratique lorsqu’on s’intéresse à la rela-

tion entre une variable réponse Y et une covariable X qui peut être réelle, vectorielle ou

fonctionnelle. La régression peut aussi être utilisée pour prédire la valeur de la variable

réponse, à partir de valeurs connues d’une ou plusieurs covariables (ou variables explica-

tives). Les applications de la régression, couvrent la plupart des domaines.

Il y a plusieurs façons pour expliquer cette relation. La modélisation la plus générale est
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1. INTRODUCTION

basée sur la considération suivante :

Y = r(X) + ε.

où r(X) = IE(Y |X); r(X) est inconnu et il faut l’estimer à partir des observations (Xi, Yi).

Les termes d’erreur ε sont aléatoires ; Ils indiquent qu’il n’existe pas de relation exacte entre

la variable réponse Y et la variable explicative X. On suppose, aussi, que IE(ε|X = x) = 0

et Var(ε|X = x) = σ2(x).

Le problème consiste donc à déterminer (ou plutôt à estimer) pour chaque réalisation

x de la variable X, la valeur de la fonction r(x). Pour caractériser cette fonction, une

première approche consiste à utiliser un modèle de régression paramétrique. On suppose

que cette fonction peut s’écrire comme une fonction explicite des valeurs de X. Cette

dernière peut être linéaire, par exemple

r(x) = α+ βx;

et on cherche alors à déterminer les meilleures valeurs des paramètres α et β compte tenu

d’un critère, par exemple celui des moindres carrés. Nous nous ramenons alors à l’estima-

tion d’un nombre fini de paramètres. Dans certains cas nous pouvons disposer pour cette

estimation d’un échantillon {(Xi;Y i); i = 1, . . . , n} de couples indépendants et ayant cha-

cun la même loi que (X;Y ). Souvent, l’utilisation d’un modèle paramétrique n’est pas

justifiée, il est alors possible de se suffire de la seule donnée de l’échantillon pour réaliser

une estimation. Ce sera à l’aide d’un modèle non paramétrique. Dans ce cas on ne dispose

d’aucune forme paramétrique pour r mais seulement d’hypothèses générales de régularité

comme la dérivabilité.

La méthode des moindres carrés pondérée est parmi les critères utilisés dans l’estima-

tion statistique pour les modèles de régression, ce critère peut ne pas être adapté à cer-

tains situations. En effet, l’étude de la régression par la méthode des erreurs quadratiques

moyennes se traduit par le principe que toutes les variables ayant un poids égal, donc la

présence de valeurs aberrantes peut conduire à un résultat non pertinent.

Dans ce travail on cherche á estimer l’opérateur r(x) avec un autre critère. L’estimateur
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1. INTRODUCTION

construit est basé sur la minimisation de l’erreur quadratique moyenne relative, cette tech-

nique est utile dans l’analyse des données avec des réponses positives comme le cours des

actions ou la duré de vie, particulièrement courantes dans les domaines économiques, fi-

nance, ou les études biomédicales. Elle est donc la plus appropriée comme mesure de la

performance que le critère des moindres carrées dans de nombreuses situations pratique.

1.1 Historique

1.1.1 La régression classique et relative

Dans le contexte non paramétrique, les premiers résultats ont été obtenus par Tukey

[28]. Tandis que l’estimation par la méthode du noyau a été utilisée pour la première fois

en 1964 séparément par Nadaraya et Watson. Cette méthode d’estimation a connu un dé-

veloppement continu. En effet, Devroye [7] a établi la convergence uniforme presque sûre

de cet estimateur. Le taux de convergence optimal pour la régression non paramétrique

a été donné par Stone ([26], [27]). Collomb ([4] ,[5]) a apporté une contribution détermi-

nante sur ce modèle. Ces travaux se sont focalisés sur l’utilisation de la régression dans la

prévision de séries chronologiques. Les premiers résultats asymptotiques sur l’estimation

non paramétrique de la fonction de régression sur les processus α-mélangeants ont été

élaborés par Györfi et al. [13]. Dans ce cadre α-mélangeant, Vieu [30] a donné les termes

asymptotiquement exacts de l’erreur quadratique de l’estimateur à noyau de la fonction

de régression. Nous renvoyons à Sarda et Vieu [25] pour un large éventail de références.

Les premiers résultats conséquents sur la notion de régression relative ont été obtenus

en 1989 par Campbell et al [2], où la régression relative a été utilisée comme outil de

classification. En 1991 Ruiz Velasco [24] a évoqué l’efficacité asymptotique de la régres-

sion relative logistique dans un contexte paramétrique, en particulier lorsque les variables

explicatives sont normalement distribuées. Park, Heungsun, et Stefanski [19] ont utilisé

des techniques de régression non paramétrique pour produire un estimateur basé sur l’es-

pérance conditionnelle de la variable réponse inverse. Jones et al. [17] ont construit un

estimateur consistant pour ce modèle, en utilisant la méthode du noyau. Ils ont établi des

propriétés asymptotiques, notamment sa convergence en moyenne quadratique dans le cas

où les observations sont indépendantes et identiquement distribuées. Dans un article publié
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1. INTRODUCTION

en 2008 par Giorgi et al. [11], une approche portant sur l’estimation de la survie relative

des patients atteint d’un cancer colorectal, a permis d’obtenir une estimation flexible et

représentant une forme réaliste d’un point de vue épidémiologique.

1.1.2 Les données fonctionnelles

De très nombreux travaux ont été dédis à l’étude de modèles impliquant des variables

aléatoires multivariées et c’est un domaine de la statistique toujours très étudié. Cepen-

dant, les récentes innovations réalisées sur les appareils de mesure et les méthodes d’ac-

quisition ainsi que l’utilisation intensive de moyens informatiques permettent souvent de

récolter des données discrétisées sur des grilles de plus en plus fines, ce qui les rend intrin-

sèquement fonctionnelles.

Les courbes de croissance, les enregistrements sonores, les images satellites, les séries chro-

nologiques, les courbes spectrométriques ne sont que quelques exemples illustrants le grand

nombre et la diversité des données de nature fonctionnelle auxquelles le statisticien peut

être confronté. C’est une des raisons pour lesquelles un nouveau champ de la statistique,

dédié à l’étude de données fonctionnelles, a suscité un fort engouement au début des an-

nées quatre-vingt, sous l’impulsion, notamment, des travaux de Grenander [12] et Ramsay

[20]. Il a été popularisé par Ramsay et Silverman [21], puis par les différents ouvrages de

Bosq [1], Ramsay et Silverman [22] et , [23] et Ferraty et Vieu [9]. De plus, même si les

données dont dispose le statisticien ne sont pas de nature fonctionnelle, il peut être amené

à étudier des variables fonctionnelles construites à partir de son échantillon initial.

Dans le contexte particulier de l’étude de séries temporelles, l’approche introduite par Bosq

[1] fait apparaitre une suite de données fonctionnelles dépendantes qui modélisent la série

chronologique observée. Elle consiste tout d’abord à voir le processus non plus au travers

de sa forme discrétisée mais comme un processus à temps continu puis à le découper en un

échantillon de courbes successives. Enfin, on trouve également dans la littérature de nom-

breux travaux portant sur des données dites longitudinales provenant de mesures répétées

d’un même phénomène au cours du temps. Il s’agit en général de données discrétisées en

seulement quelques points et les méthodes utilisées diffèrent souvent de celles utilisées lors

de l’étude de variables aléatoires fonctionnelles. Cependant, certains outils de la statistique
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1. INTRODUCTION

fonctionnelle peuvent s’adapter à ce type particulier de données fonctionnelles comme le

montrent notamment les articles de James et al. [16], Hall et al. [14].

Exemple sur les données fonctionnelles [3]

Études longitudinales : Il est courant de disposer des données concernant un même

phénomène mesuré quantitativement à différents temps de mesure. On peut alors souvent

considérer que l’on dispose de courbes aléatoires dépendantes du temps (réalisation de

processus à temps continu indexés par le temps).

1. Courbe des températures relevées en un point donné, à différents instants, courbe

des cumuls mensuels de précipitations en un point donné. De nombreux exemples

sont disponibles dans les données CanadianWeather du package fda.

On représente à titre d’exemple à la Figure 7.1 l’évolution des températures au

cours d’une année (mesures moyennes journalières) dans 4 stations météorologiques

canadiennes, et au graphique 1.2 les précipitations journalières dans 3 autres stations.

Figure 1.1 – Températures moyennes dans les 4 stations.
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1. INTRODUCTION

Figure 1.2 – Les précipitations journalières dans 3 stations

2. Courbe de croissance d’un individu (ou d’une plante) au cours du temps. On peut

citer par exemple, Les données growth du package fda qui contiennent les tailles

de filles et de garçons, mesurées à 31 âges, entre 1 et 18 ans.

Les courbes associées pour 10 filles et 10 garçons de l’échantillon sont représentées

à la Figure 1.3.
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1. INTRODUCTION

Figure 1.3 – Courbe de croissance des filles et des garçons.

1.2 Organisation du mémoire

Notre travail est scindé en trois parties :

Après une partie introductive (comprenant les deux premiers chapitres) dans laquelle

nous avons donné un bref historique sur la régression classique, la régression relative et les

données fonctionnelles. Nous y énonçons également les définitions et outils probabilistes

auxquels nous avons eu recours tout au long de ce mémoire.

Concernant la deuxième partie, nous l’avons consacrée au cadre réel, en s’intéressant uni-

quement au cas d’observations i.i.d. Dans ce contexte, cette deuxième partie est composée

également de deux chapitres. Nous commençons au 3ème chapitre à présenter un esti-

mateur à noyau de la régression classique, et nous établissons sa convergence presque

complète. Dans le 4ème chapitre , nous passons à l’étude de l’erreur relative en établissant

la même propriété asymptotique que le chapitre précédant.

La troisième partie est consacré au cadre fonctionnel et est divisée en trois chapitres. Dans

le 5ème chapitre, nous nous intéressons au cas où les observations sont indépendantes

et identiquement distribuées, la réponse est réelle et la covariable est fonctionnelle. Nous

établissons la convergence presque complète ponctuelle et uniforme, la convergence en

moyenne quadratique et la normalité asymptotique. Nous généralisons dans le Chapitre

13



1. INTRODUCTION

6, le résultat de la convergence presque complète du chapitre précédant, au cas où les

données sont α−mélangeantes. Certains résultats théoriques obtenus au chapitre précé-

dent sont illustrés à travers une application sur des données simulées dans le septième

chapitre. Ce dernier est achevé par une conclusion générale. Une bibliographie abondante

est présentée dans la fin de ce mémoire.

14



Chapitre 2
Préliminaires

Ce chapitre est destinée à quelques définitions et outils statistiques nécessaires pour

l’élaboration des différents résultats présentés dans ce mémoire.

2.1 Définitions

2.1.1 Le noyau

L’étude de la relation entre deux variable aléatoires X et Y est un sujet très important

dans l’estimation non paramétrique. Les premiers travaux ont été étendus à la notion de

régression par la méthode du noyau K, tel que K est défini par :

Définition 2.1. [9] Une fonction K est définie de R dans R+ tel que
∫ +∞

−∞
K(u)du = 1

est dite Noyau :

i) De type 0 s’il est de support [0, 1] compact et pour tout u ∈ [0, 1], K(u) > 0.

ii) De type 1 s’il existe deux constantes réelles 0 < C1 < C2 <∞ tel que :

C111[0,1] < K < C211[0,1]
1.

iii) De type 2 si son support est [0, 1], de plus s’il est dérivable et sa dérivée existe sur

[0, 1] est satisfaite pour deux constantes réelles −∞ < C1 < C2 < 0 :

C2 < K ′ < C1.

1. 11(p) la fonction indicatrice qui vaut 1 lorsque p est vrai, 0 sinon.

15



2. PRÉLIMINAIRES

Exemples 2.1. Plusieurs types de noyaux sont couramment utilisés : rectangulaire, Uni-

forme, Triangulaire, Quadratique et Gaussien.

– Noyau rectangulaire est défini par :

K(u) = 1
211[1,−1](u).

– Noyau Uniforme est défini par :

K(u) = 1
211(|u|≤1).

– Noyau Triangulaire est défini par :

K(u) = (1− |u|)11(|u|≤1).

– Noyau Quadratique est défini par :

K(u) = 15
16(1− u2)211(|u|<1).

– Noyau Gaussien est défini par :

K(u) = 1√
2π

exp(−1
2u

2).

2.1.2 La convergence presque complète

Le concept de convergence presque complète a été introduit par Hsu et Robbins [15].

Elle implique la convergence presque sûre et se prête bien aux calculs faisant intervenir des

sommes de variables aléatoires. Malgré cela, elle ne commence à devenir populaire dans la

communauté statistique que dans les années 1980 après les travaux de Collomb ([4] ,[5]).

Elle est utilisée surtout en statistique non-paramétrique. Ce critère ainsi que sa vitesse de

convergence sont présentés dans les définitions suivantes :

Définition 2.2. [9] On dit que la suite de variables aléatoires réelles (Xn)n∈IN converge

presque complètement vers une variable aléatoire X lorsque n→∞ si et seulement si :

∀ε > 0
∑
n≥0

IP(|Xn −X| > ε) <∞,

et cette convergence est notée par :

lim
n→∞

(Xn)n = X, p.co.
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2. PRÉLIMINAIRES

Définition 2.3. [9] On dit que la vitesse de convergence presque complète de la suite de

variables aléatoires réelles (Xn)n∈N vers X est d’ordre un (un étant une suite numérique

déterministe) et on note Xn = Op.co.(un), si :

∃ε0 > 0,
∑
n∈N

IP[|Xn −X| > ε0un] <∞.

2.1.3 La notion de mélange

De nombreux propriétés statistiques fonctionnelles ont été établies en considérant des

échantillons indépendants. Cependant, il est parfois intéressant d’étudier des échantillons

dépendants afin de pouvoir répondre à des situations où les données ne sont pas nécessaire-

ment indépendantes. Il y a plusieurs types de modélisation de la dépendance au sein d’un

échantillon. Nous nous intéresserons dans ce mémoire à des variables α−mélangeantes.

Définition 2.4. [9] Soit {ξn}n∈Z une famille de variables aléatoires définie sur l’espace de

probabilité (Ω,A,P) à valeurs dans un espace probabilisable (Ω′ ,A′). On note pour −∞ ≤

j ≤ k ≤ +∞, par Akj la σ-algèbre engendrée par les variables aléatoires (ξs, j ≤ s ≤ k).

On défini le coefficient α de mélange fort par :

α(n) = sup
k

sup
A∈Ak−∞

sup
B∈B+∞

k

|P(A ∩B)− P(A)P(B)|.

La suite (ξn)n∈Z est dite α-mélangeante (ou fortement mélangeante), si :

lim
n→∞

α(n) = 0. (2.1)

Parmi les différents types de décroissance des coefficients de α-mélange on distinguera les

cas de décroissance arithmétique et géométrique. Nous nous concentrons dans ce mémoire

sur le premier type.

Définition 2.5. [9] La suite (ξn)n∈N est dite arithmétiquement (algébriquement) α-mélangeante

si :

∃C > 0, α(n) ≤ Cn−a, avec a > 0. (2.2)

2.1.4 Modélisation mathématique des variables fonctionnelles

Au cours des dernières années, la branche de la statistique consacrée à l’étude de va-

riables fonctionnelles a connu un réel essor tant en terme de développements, théoriques
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que de diversification des domaines d’application. Nous nous intéressons plus particuliè-

rement dans la troisième partie de ce mémoire à la régression relative dans laquelle la

variable réponse est réelle tandis que la variable explicative est fonctionnelle.

Définition 2.6. Une variable aléatoire est dite variable aléatoire fonctionnelle si elle prend

ses valeurs dans un espace vectoriel de dimension infinie. Typiquement, il s’agit donc d’une

application mesurable X : Ω → F . Une donnée fonctionnelle est alors une réalisation de

la variable X.

2.1.5 La semi-métrique

Pour étudier des données on a souvent besoin d’avoir une notion de distance entre

celles-ci. Il est bien connu qu’en dimension finie toutes les métriques sont équivalentes. Ce

n’est plus le cas en dimension infinie, c’est pourquoi le choix de la métrique (et donc de la

topologie associée) est un élément encore plus crucial pour l’étude de variables aléatoires

fonctionnelles qu’il ne l’est en statistique multivariée. En plus des métriques disponibles il

est assez souvent intéressant de considérer des semi-métriques.

Définition 2.7. [9] d est une semi-métrique sur un espace F si elle vérifie les deux condi-

tions suivantes :

1. ∀x ∈ F d(x, x) = 0,

2. ∀(x, y, z) ∈ F × F × F d(x, y) ≤ d(x, z) + d(z, y),

Les semi-métriques permettent un éventail plus large de topologies possibles que l’on

pourra choisir en fonction de la nature des données et du problème considéré.

2.1.6 Probabilités de petites boules

Le problème du fléau de la dimension est un phénomène bien connu dans le cas du

modèle non paramétrique de régression multivariée. Il provoque une décroissance expo-

nentielle des vitesses de convergences des estimateurs non paramétriques en fonction de la

dimension. Par conséquent, il est légitime de penser que les méthodes non paramétriques

dans des modèles de régression sur variable fonctionnelle risquent d’avoir une vitesse de
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convergence très lente. Dans le cas où la variable explicative est multivariée (c’est à dire,

à valeurs dans un espace de dimension finie d), les vitesses de convergence de l’estimateur

à noyau sont exprimées en fonction d’un terme de la forme hd, provenant de la probabilité

que la variable explicative appartienne à la boule de centre x et de rayon h. Dans le cas

d’une variable explicative fonctionnelle, les résultats asymptotiques sont exprimés à partir

de quantités plus générales appelées probabilités de petites boules et définies par :

Définition 2.8. [3] Soit X une variable aléatoire fonctionnelle à valeurs dans un espace

de Banach F , on appelle probabilités de petites boules de X les quantités suivantes :

ϕx(h) = IP(d(x,X) ≤ h), x ∈ F , h > 0,

où B(x, h) = {X ∈ F , d(x,X) ≤ h}, avec x est le centre de la boule B(x, h) et h son

rayon.

2.1.7 Pondération locale du noyau

Dans le cas des dimensions finies, les techniques de pondération locale sont très appré-

ciées en estimation non paramétriques car elles sont très bien adaptées aux modèles non

paramétriques. L’une des approches les plus courantes parmi ces méthodes est certaine-

ment celle du noyau.

Cas de variables aléatoires uni-dimensionnées

La pondération locale du noyau est basée sur une fonction de noyau K et une largeur

de fenêtre h. Si x est un nombre réel fixé, la pondération locale du noyau transforme n

variable aléatoire réels X1, X2, . . . , Xn à ω1, ω2, . . . , ωn, tel que :

ωi = ωi(x, h,K) = 1
h
K

(
x−Xi

h

)
. (2.3)

L’idée principale de la pondération locale autour de x est d’attribuer à chaque variable

aléatoire Xi un poids prenant en compte la distance entre x et Xi, plus Xi est éloigné de

x, plus la pondération est petite. Pour préciser la notion de pondération locale du noyau,

considérons le noyau rectangulaire et réécrivons les ωi comme suit :

ωi = 1
h

11[x−h,x+h](Xi).
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Dans cette situation, la caractéristique locale de la pondération semble évidente puisque

les variables aléatoires réelles en dehors de l’intervalle [x−h, x+h] sont ignorées. En outre,

la normalisation 1
h
est proportionnelle à la taille de l’ensemble [x− h, x+ h] sur lequel les

Xi sont prises en compte. Cette notion de pondération locale n’est pas seulement valable

pour le noyau rectangulaire, mais aussi pour tous les noyaux compacts.

Cas de variables aléatoires multi-dimensionnées

Dans des situations multivariées, on observe n vecteurs aléatoires X1, X2, . . . , Xn éva-

lués en Rp. La pondération locale précédente du noyau peut être facilement étendue à cette

situation. En effet, il suffit de considérer un noyau multivarié K∗(u) qui sera une fonction

de Rp dans R. Le premier moyen de le faire est de définir K∗(u) comme un produit de p

fonctions de noyaux réels K1,K2, . . . ,Kp :

∀u = (u1, u2, . . . , up)t ∈ Rp, K∗(u) = K1(u1)×K2(u2)×, . . . ,×Kp(up).

Soit x un vecteur fixé de Rp. La pondération locale du noyau multivarié consiste à

transformer les n vecteurs aléatoires X1, X2, . . . , Xn à ω1, ω2, . . . , ωn, tel que :

ωi = 1
hp
K∗
(
x−Xi

h

)
.

Si l’on considère les noyaux compatibles de manière compacte, il apparaît clairement que

les ωi sont des transformations pondérées localement des variables Xi, puisque ωi = 0 tant

que le Xi correspondant est en dehors de certains voisins de x.

Cas de variables aléatoires infini-dimensionnées

Soit X1, X2, . . . , Xn n variables aléatoires fonctionnelles évaluées dans F , et soit x un

élément fixé de F . Une extension fonctionnelle des idées de la pondération locale du noyau

multivarié sera la transformation de ces n variables aux n quantités suivantes :

1
V (h)K

(
d(x,Xi

h

)
.

Où d est une semi-métrique sur F , K est un noyau réel. Dans cette expression V (h) serait

le volume de :

B(x, h) = {x′ ∈ F , d(x, x′) ≤ h}.
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Qui est la boule par rapport à la topologie induite par d, centrée à x et au rayon h.

Cependant, cette approche demande de définir V (h). Il faut avoir une mesure sur F .

C’est la principale différence avec les cas réels et multivariés pour lesquels la mesure de

Lebesgue est implicitement utilisée ce qui n’est pas le cas dans l’espace fonctionnel F . Par

conséquent, afin de se libérer d’un choix d’une mesure particulière, nous construisons la

normalisation en utilisant directement la distribution de probabilité de la variable aléatoire

fonctionnelle, les variables pondérées locales du noyau fonctionnel sont alors définies par :

ωi =
K

(
d(x,Xi
h

)
E
(
K

(
d(x,Xi
h

)) . (2.4)

2.1.8 L’entropie de Kolmogorov

L’entropie de Kolmogorov 2 est un outil qui permet de mesurer la complexité des en-

sembles, dans le sens où une grande entropie signifie qu’une quantité importante d’infor-

mations est nécessaire pour décrire l’ensemble.

Définition 2.9. Soit S un sous- ensemble de l’espace semi-métrique F , et soit ε > 0,

un ensemble fini de pointe X1, X2, . . . , XN dans F est appelé un ε-net pour S si S ⊂
N⋃
k=1

B(xk, ε), la quantité ϕS(ε) = log(Nε(S)), où Nε(S) est le nombre minimal des boules

ouvertes en F de rayon ε qui est nécessaire pour couvrir S, s’appelle l’entropie de Kolmo-

gorov de S.

Cette notion représente la mesure de la complexité d’un ensemble dans le sens où

une entropie élevée signifie que beaucoup d’informations sont nécessaires pour d’écrire un

élément avec une précision ε. Par conséquent le choix de la structure topologique (d’autre

façon, le choix de la semi-métrique), joue un rôle crucial quand on regarde les résultats

asymptotiques uniformes sur certains sous-ensemble SF . Plus particulièrement, la semi-

métrique peut également augmenter la concentration de la mesure de probabilité de la

variable fonctionnelle X pour minimiser ε l’entropie de sous ensemble SF .

2. Ce concept a été introduit par Kolmogorov au milieu des années 1950.
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2.2 Outils

2.2.1 Inégalités exponentielles

L’outil que nous allons utiliser de manière déterminante dans les problèmes de conver-

gence presque-complète est l’inégalité exponentielle de Hoeffding ci-dessous :

Lemme 2.1. [8] Soit ∆1, . . . ,∆n des variables aléatoires centrés, indépendantes et de

même loi, telle qu’il existe deux réels positifs δ1 et δ2 vérifiant :

|∆1| ≤ δ1 et E|∆1|2| ≤ δ2

Alors, pour tout ε ∈]0, δ2/δ1[ on a :

P
[
n−1

∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−nε2

4δ2

)
(2.5)

Le lemme suivant donne L’inégalité de Fuk Nageav, cette inégalité est en fait une extension

au cadre de variables fortement mélangeantes de L’inégalité de Hoeffding :

Lemme 2.2. [8] Soit {∆i, i ∈ N} une famille de variables aléatoires à valeurs dans R qui

vérifient la condition de mélange forte (2.1) avec des coefficients à décroissance algébrique

tels que définis en (2.2). On pose

s2
n =

n∑
i=1

n∑
j=1
|Cov(∆i,∆j)| .

Si ‖∆‖∞ <∞, ∀i, alors on a pour tout ε > 0 et pour tout r > 1 :

P
[∣∣∣∣∣

n∑
k=1

∆k

∣∣∣∣∣ > 4ε
]
≤ 4

(
1 + ε2

rs2
n

)− r2
+ 2ncr−1

(2r
ε

)a+1
. (2.6)

Le lemme suivant présente une inégalité de covariance qui est très utile pour le calcul de

s2
n, définie dans le lemme précédent :

Lemme 2.3. [8]Inégalité de Dvydov-Rio : Soit {∆i, i ∈ N} une famille de variables aléa-

toires à valeurs dans R qui vérifient la condition de mélange forte (2.1), et telle que

‖∆‖∞ <∞, ∀i. On a pour tout i 6= j :

|Cov(∆i,∆j)| ≤ 4‖∆i‖∞‖∆j‖∞α|i−j|.
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Le corollaire suivant présente une inégalité exponentielle très utile dans le cas fonctionnel.

Corollaire 2.4. [9]

(i) Si ∀m ≥ 2, ∃Cm > 0, E(Zm1 ) ≤ Cma2(m−1), on a :

∀ε > 0, IP
(
|
n∑
i=1

Zi| > εn

)
≤ 2 exp

( −ε2n
2a2(1 + ε)

)
.

(i.i) Supposons que les variables dépendent de n (c’est à dire : Zi = Zi,n), si ∀m ≥ 2,

∃Cm > 0, E(Zm1 ) ≤ Cma
2(m−1) et si Un = n−1a2

n logn vérifie lim
n→∞

Un = 0, nous

obtenons :
1
n
Zi = Op.co.(

√
Un).

2.2.2 Théorème centrale limite de Lyapunov

Dans la littérature, il existe plusieurs versions du théorème central limite. Dans ce

travail, nous focalisons sur la version de Lyapunov.

Théorème 2.5. [29] Soit X1, X2, . . . , Xn des variables aléatoires indépendantes et iden-

tiquement distribuées de carré intégrables de moyenne µi et de variance σ2
i .

Soit S2
n =

n∑
i=1

σ2
i , la condition de Lyapunov suppose l’existence d’une valeur δ > 0 tel que :

lim
n→∞

1
S2+δ
n

n∑
i=1

E[|Xi − µi|2+δ] = 0.
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Deuxième partie

Cas réel
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Chapitre 3
Régression classique

L’un des modèles le plus fréquemment rencontré en statistique paramétrique ou non

paramétrique est le modèle de régression. Le principe de la régression non paramétrique

remonte au dix neuvième siècle. La régression non paramétrique est devenue une méthode

populaire pour analyser une relation entre une variable dépendante Y et une variable

indépendante X. Son objet, est d’estimer cette relation de dépendance sans faire d’hypo-

thèses paramétriques sur la forme de cette dépendance. Dans ce chapitre, nous présentons

le modèle et son estimateur à noyau dans la première section. Dans la deuxième section,

nous établissons sa convergence presque complète en précisant sa vitesse de convergence.

3.1 Modèle et son estimateur

Considérons n couples de variables aléatoires (i.i.d.) (Xi, Yi)1≤i≤n ayant la même loi

que le couple (X,Y ), où X et Y sont à valeurs dans IR. Comme il a été déjà mentionné

dans l’introduction, la méthode la plus communément utilisée pour étudier la relation

entre les deux variables aléatoire X et Y est la régression, qui suppose un modèle de la

forme :

Y = r(X) + εi, (3.1)

où les erreurs aléatoires εi sont non corrélées, de moyennes nulles et de variances σ2.

On cherchera, dans une famille fixée de fonctions quelle est celle pour laquelle les Y sont les

plus proches de r(X). Cette proximité se mesure en général par un risque utilisant l’erreur
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quadratique moyenne (MSE en anglais), et on essayera alors de déterminer la fonction

r̃(X) qui rendra cette erreur la plus petite possible, c’est a dire :

E[(Y − r̃(X))2] = min
r

E[(Y − r(X))2].

Il est connu que ce minimum est donne par l’espérance conditionnelle :

r(X) = E[Y/X = x],

La preuve de cette égalité est trouvée en différenciant l’espérance E[(Y − r(X))2] par

rapport à r(X), en égalant le résultat à 0, et finalement en isolant r(X), on obtient :

∂

∂r(X)E[(Y − r(X))2/X] = 2E[Y − r(X)/X]

= 2E[Y/X]− 2 r(X)

= 0,

⇒ r(X) = E[Y/X].

L’estimateur de Nadaraya-Watson (1964) de la régression est donnée par :

r̂(x) = ĝ(x)
f̂(x)

, (3.2)

tel que

ĝ(x) = 1
nh

n∑
i=1

YiK

(
x−Xi

h

)
= 1
n

n∑
i=1

Yiωi,

et

f̂(x) = 1
nh

n∑
i=1

K

(
x−Xi

h

)
= 1
n

n∑
i=1

ωi,

où K est le noyau, ωi est la pondération locale définie par la formule (2.3) et f̂(x) est

l’estimateur à noyau de la fonction de densité de x .

3.2 La convergence presque complète

Notre but dans cette section est l’établissement de la convergence presque complète de

l’estimateur (3.2).
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3.2.1 Hypothèses et notations

Dans toute la suite, C désignera une constante générique positive qui prendra diffé-

rentes valeurs selon le contexte, mais ne dépendra pas de n. D’autre part, toutes les limites

sont obtenues pour n→∞ ; sauf indication.

Nous introduisons les hypothèses suivantes :

(H.1) Les fonctions f(x) et g(x) sont k-fois continument dérivables et bornées respec-

tivement par M,M ′.

(H.2) La densité f(x) est positive.

(H.3) Le noyau K est borné, intégrable et à support compact, de plus, il est supposé

d’ordre k c’est à dire :

∫
R
|Z|jK(z)dz =

 0 si j < k

C si j = k où C est une constante

(H.4) Le paramètre de lissage h vérifie :
lim
n→∞

h = 0,

et

lim
n→∞

logn
nh

= 0.

3.2.2 Résultat asymptotique

Théorème 3.1. Supposons que les hypothèses précédentes soient réalisées alors on a :

r̂(x)− r(x) = O(hk) +Op.co.
(√ logn

nh

)
.

3.2.3 Démonstration

La preuve du résultat précédent est basée sur la décomposition suivante :

r̂(x)− r(x) = r̂(x)− g(x)
f̂(x)

+ g(x)
f̂(x)

+ r(x)

= ĝ(x)− g(x)
f̂(x)

+ f(x)r(x)− f̂(x)r(x)
f̂(x)

= ĝ(x)− g(x)
f̂(x)

+ f(x)− f̂(x)
f̂(x)

r(x).

Par conséquent, le résultat énoncé dans le Théorème 3.1 découle des lemmes suivants :
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Lemme 3.2. Sous les hypothèses du Théorème 3.1, on a :

(i) E[f̂(x)]− f(x) = O(hk),

(ii) E[ĝ(x)]− g(x) = O(hk).

Lemme 3.3. Sous les hypothèses du Théorème 3.1, on a :

(i) f̂(x)− E[f̂(x)] = Op.co.
(√ logn

nh

)
,

(ii) ĝ(x)− E[ĝ(x)] = Op.co.
(√ logn

nh

)
.

Lemme 3.4. Sous les hypothèses précédentes, on a :

∃δ > 0,
n∑
i=1

IP
[
|f̂(x)| ≤ δ

]
<∞.

Preuve du Lemme 3.2

– Commençons par la partie (i)

Comme les Xi sont équidistribuées, on a ;

E[f̂(x)] = E
[ 1
nh

n∑
i=1

K

(
x−Xi

h

)]

= 1
h
E
[
K

(
x−X
h

)]

= 1
h

∫
R
K

(
x− u
h

)
f(u)du.

En effectuant le changement de variable :

z = x− u
h
⇒

 u = x− hz

du = −hdz,
(3.3)

on obtient :

E[f̂(x)] =
∫
R
K(z)f(x− hz)dz,

puisque f est k fois est dérivable, on utilise le développement de Taylor suivant :

f(x− hz) = f(x) +
k−1∑
j=1

(−1)j(zh)j

j! f j(x) + (−1)k(zh)k

k! fk(θx),

où θx est entre x et x−hz. D’autre part, en utilisant la deuxième partie de l’hypothèse

(H.3), nous obtenons :

E[f̂(x)] = f(x) + (−1)khk
∫
R
zkK(z)f

k(θx)
k! dz,
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puisque fk est continue, alors lorsque h→ 0 on a : fk(θx)→ fk(x),

on obtient donc :

|E[f̂(x)]− f(x)| ≤ hk

k! |f
k(x)|

∫
R
|zk|K(z)dz

≤ C1h
k,

avec C1 = M.C

k! , ce qui donne le résultat de la partie (i).

– Pour ce qui concerne la partie (ii), on a :

E[ĝ(x)] = E
[ 1
nh

n∑
i=1

YiK

(
x−Xi

h

)]

= 1
h
E
[
Y K

(
x−X
h

)]

= 1
h

∫
R
Y K

(
x− u
h

)
f(u)du.

En conditionnant par rapport à X = x, on obtient :

E[ĝ(x)] = 1
h

∫
R
E[Y/X = x]K

(
x− u
h

)
f(u)du

= 1
h

∫
R
r(x)K

(
x− u
h

)
f(u)du.

D’autre part, on a r(x) = g(x)
f(x) ⇒ g(x) = r(x)f(x), ce qui conduit à :

E[ĝ(x)] = 1
h

∫
R
K

(
x− u
h

)
g(u)du.

En effectuant le même changement de variable (3.3), et la symétrie du noyau K nous

permet de déduire :

E[ĝ(x)] =
∫
R
K(z)g(x− hz)dz.

Puisque g est k fois différentiable, on utilise le développement de Taylor comme précédem-

ment. Ainsi, nous obtenons :

E[ĝ(x)] = g(x) + (−1)khk
∫
R
zkK(z)g

k(θx)
k! dz,
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puisque gk est continue, alors lorsque h→ 0 on a : gk(θx)→ gk(x).

On obtient donc :

|E[ĝ(x)]− g(x)| ≤ hk

k! |g
k(x)|

∫
R
|zk|K(z)dz

≤ C2h
k,

avec C2 = M ′.C

k! , et le résultat de la partie (ii) est donc achevé.

Preuve du Lemme 3.3

La preuve du Lemme 3.3 nécessite l’utilisation de l’inégalité exponentielle.

– Commençons par la partie (i)

on a :
f̂(x)− E[f̂(x)] = 1

nh

n∑
i=1

K

(
x−Xi

h

)
− E

[ 1
nh

n∑
i=1

K

(
x−Xi

h

)]

= 1
nh

n∑
i=1

[
K

(
x−Xi

h

)
− E

[
K

(
x−Xi

h

)]]
,

on pose :

∆i = 1
h

[
K

(
x−Xi

h

)
− E

[
K

(
x−Xi

h

)]]
.

Pour appliquer L’inégalité (2.5), il faut d’abord vérifier les deux conditions suivantes :

1. |∆i| < δ1,

2. E[∆2
i ] < δ2.

Pour la condition 1. et puisque K est borné, on a :

|∆i| ≤
1
h

[∣∣∣∣K(x−Xi

h

)∣∣∣∣+ ∣∣∣∣E[K(x−Xi

h

)]∣∣∣∣]

≤ C

h
= δ1.
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3. RÉGRESSION CLASSIQUE

Pour la condition 2. on a :

E[∆2
i ] = 1

h2E
[[
K

(
x−Xi

h

)
− E

[
K

(
x−Xi

h

)]]2]

= 1
h2Var

[
K

(
x−Xi

h

)]

≤ 1
h2E

[
K2
(
x−Xi

h

)]

≤ 1
h2

∫
R
K2
(
x− u
h

)
f(u)du.

Par un changement de variable, nous obtenons :

E[∆2
i ] ≤

1
h

∫
R
K2(z)f(x− hz)dz,

K est de carré intégrable et de plus lorsque h → 0, f(x − hz) → f(x), nous obtenons

donc :

E[∆2
i ] ≤

M

h
= δ2.

Puisque les deux conditions sont vérifiées, on peut appliquer l’inégalité exponentielle

(2.5) :

IP
( 1
n

∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > ε′
)
≤ 2 exp

(
−nε′2

4δ2

)
≤ 2n

−ε2
4M ,

avec ε′ = ε

√
logn
nh

, c’est à dire :

n∑
i=1

IP
( 1
n
|
n∑
i=1

∆i| > ε′
)
<∞.

Ce qui prouve la partie (i).

– Concernant la partie (ii), on a :

ĝ(x)− E[ĝ(x)] = 1
nh

n∑
i=1

YiK

(
x−Xi

h

)
− E

[ 1
nh

n∑
i=1

YiK

(
x−Xi

h

)]

= 1
nh

n∑
i=1

[
YiK

(
x−Xi

h

)
− E

[
YiK

(
x−Xi

h

)]]
.
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3. RÉGRESSION CLASSIQUE

On pose :

∆i = 1
h

[
YiK

(
x−Xi

h

)
− E

[
YiK

(
x−Xi

h

)]]
,

D’une manière analogue à la partie (i), il faut d’abord vérifier les deux conditions précé-

dentes.

Pour la condition 1. et puisque K est borné, on a :

|∆i| ≤
1
h

[∣∣∣∣YiK(x−Xi

h

)∣∣∣∣+ ∣∣∣∣E[YiK(x−Xi

h

)]∣∣∣∣]

≤ C

h
= δ1.

Pour la condition 2. on a :

E[∆2
i ] = 1

h2E
[[
YiK

(
x−Xi

h

)
− E

[
YiK

(
x−Xi

h

)]]2]

= 1
h2Var

[
YiK

(
x−Xi

h

)]

≤ 1
h2E

[
Y 2
i K

2
(
x−Xi

h

)]

≤ 1
h2

∫
R
Y 2
i K

2
(
x− u
h

)
f(u)du,

Ainsi, après un changement de variable, nous aurons :

E[∆2
i ] ≤

1
h
Y 2
i K

2(z)f(x− hz)dz,

K étant de carré intégrable et de plus, lorsque h → 0, f(x − hz) → f(x) nous obtenons

donc :

E[∆2
i ] ≤

M

h
= δ2.

On peut maintenant appliquer l’inégalité exponentielle (2.5) :

IP
( 1
n

∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > ε′
)
≤ 2 exp

(
−nε′2

4δ2

)
≤ 2n

−ε2
4M ,

avec ε′ = ε

√
logn
nh

, c’est à dire :

n∑
i=1

IP
( 1
n

∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > ε′
)
<∞.
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3. RÉGRESSION CLASSIQUE

Preuve de Lemme 3.4

Nous remarquons que :

|f̂(x)| ≤ f(x)
2 ⇒ |f̂(x)− f(x)| > f(x)

2 ,

d’où :

IP
[
|f̂(x)| ≤ f(x)

2

]
≤ IP

[
|f̂(x)− f(x)| > f(x)

2

]
.

Comme f(x) > 0, on prend δ = f(x)
2 , nous obtenons :

n∑
i=1

IP
[
|f̂(x)| ≤ δ

]
<∞.

Ce qui complète la preuve du Lemme 3.4.
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Chapitre 4
Régression relative

Nous présentons dans ce chapitre, la régression relative qui est définie à partir d’une

minimisation de l’erreur quadratique moyenne relative. La présentation du modèle ainsi

que son estimateur à noyau est explicitement donnée dans la première section. Dans la

deuxième section, nous établissons la vitesse de convergence presque complète de l’estima-

teur construit.

4.1 Modèle et son estimateur

On considère {(Xi, Yi), i = 1, . . . , n} une suite de n−observations réelles indépendantes,

de même loi que le couple (X,Y ). Nous nous concentrons sur l’étude du lien entre une

variable explicative X et une réponse Y . La modélisation la plus générale de cette relation

est basée sur la considération suivante :

Y = r(X) + ε,

où ε est une variable aléatoire réelle centée et indépendantes de X , telle que : E(ε/X) = 0;

var(ε/X) = σ2 <∞.

Dans ce chapitre, on obtient l’estimateur de l’opérateur de régression r(x) par la minimi-

sation de l’erreur quadratique moyenne relative, c’est à dire :

min
r

E
[(
Y − r(x)

Y

)2/
X = x

]
, pour Y > 0. (4.1)
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4. RÉGRESSION RELATIVE

(4.1) est une mesure plus significative, lorsqu’on a des valeurs aberrantes. La solution

du problème (4.1) peut être explicitement exprimée par le rapport des deux premiers

moments inverses conditionnels de Y sachant X.

r(x) = E[Y −1/X]
E[Y −2/X] , (4.2)

En effet

∂

∂r(x)E
[(
Y − r(x)

Y

)2/
X = x

]
= 2E

[(
Y − r(x)

Y 2

)/
X = x

]

= 2E[Y −1/X = x]− 2 r(x)E[Y −2/X = x] = 0

⇒ r(x) = µ(−1)
µ(−2) .

On peut démontrer facilement, que (4.2) est le meilleur prédicteur de Y sachant X.

En effet, soit R(x) un prédicateur quelconque de Y sachant X, alors :

E
[(
Y −R(x)

Y

)2/
X = x

]
= E

[(
Y + r(x)− r(x)−R(x)

Y

)2/
X = x

]

= E
[((

Y − r(x)
Y

)2
+
(
r(x)−R(x)

Y

)2
+ 2(Y − r(x))(r(x)−R(x))

Y 2

)/
X

]

= E
[(
Y − r(x)

Y

)2/
X = x

]
+ E

[(
r(x)−R(x)

Y

)2/
X = x

]

+2E
[(Y − r(x))(r(x)−R(x))

Y 2

/
X = x

]

= E
[(
Y − r(x)

Y

)2/
X = x

]
+ E

[(
r(x)−R(x)

Y

)2/
X = x

]

+2E
[(Y − r(x))

Y 2

/
X

]
(r(x)−R(x)).

(4.3)

Remarquons que le troisiéme terme de (4.3) est nul car :

E
[(
Y − r(x)

Y 2

)/
X = x

]
= E

[
Y

Y 2 /X = x

]
− E

[
r(x)
Y 2 /X = x

]
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4. RÉGRESSION RELATIVE

= E(Y −1/X = x)− r(x)E(Y −2/X = x)

= µ(−1)− µ(−1)
µ(−2)µ(−2)

= 0.

Donc, on aura :

E
[(
Y −R(x)

Y

)2/
X = x

]
= E

[(
Y − r(x)

Y

)2/
X = x

]
+ E

[(
r(x)−R(x)

Y

)2/
X = x

]

= E
[
Y 2 − 2Y r(x) + r(x)2

Y 2

/
X = x

]
+ E

[(
r(x)−R(x)

Y

)2/
X = x

]

= 1− 2E(Y −1r(x)/X = x) + E(Y −2r(x)2/X = x)

+E(Y −2/X = x)E((r(x)−R(x))2/X = x)

= 1− 2µ(−1)r(x) + µ(−2)r(x)2 + µ(−2)(r(x)−R(x))2

= 1− 2µ(−1)2

µ(−2) + µ(−1)2

µ(−2) + µ(−2)(r(x)−R(x))2

= 1− µ(−1)2

µ(−2) + µ(−2)(r(x)−R(x))2

= µ(−2)− µ(−1)2

µ(−2) + µ(−2)(r(x)−R(x))2

= E(Y −2/X = x)− E(Y −1/X = x)2

µ(−2) + µ(−2)(r(x)−R(x))2

= E[(Y −1)2/X = x]− E(Y −1/X = x)2

µ(−2) + µ(−2)(r(x)−R(x))2

= Var(Y −1/X)
µ(−2) + µ(−2)(r(x)−R(x))2. (4.4)

Le premier terme de (4.4) ne dépend pas de R(x) et le deusième terme est minimisé lorsque
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4. RÉGRESSION RELATIVE

R(x) = r(x) p.s, donc r(x) est le meilleur prédicteur de l’erreur quadratique moyenne

relative.

Le résultat (4.4) montre également que l’erreur de prédiction quadratique moyenne relative

de r(x) est donnée par Var(Y −1/X)
µ(−2) .

Remarque 4.1. Le prédicteur r(x) peut-être exprimer par :

r(x) = E(Y −1/X)
Var(Y −1/X) + (E(Y −1/X))2 .

Cette remarque suggère une méthode permettant d’estimer cette fonction. Donc, cela

motive l’utilisation des méthodes de modélisation de la moyenne et de la variance pour

ajuster les modèles à la moyenne et à la variance de Y −1 en fonction de X.

L’une des méthodes les plus populaires permettant de construire un estimateur de la

fonction r(x) est la méthode à noyau. plus précisément, on peut construire des estimateurs

à noyau de E(Y −`|X) pour ` = 1, 2. Ainsi, l’estimateur de la fonction r(x) est donné par :

r̂(x) =

n∑
i=1

Y −1
i K

(
x−Xi

h

)
n∑
i=1

Y −2
i K

(
x−Xi

h

) . (4.5)

Cet estimateur peut être exprimé par :

r̂(x) = ĝ1(x)
ĝ2(x) , (4.6)

avec

ĝ1(x) = 1
nh

n∑
i=1

Y −1
i K

(
x−Xi

h

)
= 1
n

n∑
i=1

Y −1
i ωi,

et

ĝ2(x) = 1
nh

n∑
i=1

Y −2
i K

(
x−Xi

h

)
= 1
n

n∑
i=1

Y −2
i ωi,

où ωi est définie dans la formule (2.3).

4.2 La convergence presque complète

Pour étudié la convergence presque complète de l’estimateur (4.5), on fixe un point

x ∈ R et on introduit les hypothèses suivantes :
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4. RÉGRESSION RELATIVE

4.2.1 Hypothèses et notations

(H.1) La fonction r est deux fois continûment dérivable au voisinage de x.

(H.2) La densité f de la variable explicative et la fonction E(Y −2/X = x) sont stric-

tement positives au point x, de plus la variable Y est borné.

(H.3) Le noyau K est symétrique supposé borné, intégrable et à support compact.

(H.4) Le paramètre de lissage h est tel que :
lim
n→∞

h = 0;

lim
n→∞

nh

logn =∞.

4.2.2 Résultat asymptotique

Sous les hypothèses précédentes, on a le résultat suivant :

Théorème 4.1. Sous les hypothèses (H.1)-(H.4), on a :

r̂(x)− r(x) = O(h2) +Op.co
(√ logn

nh

)
. (4.7)

4.2.3 Démonstration

Pour démontrer ce théorème, on pose r(x) = g1(x)
g2(x) , tel que :

 g1(x) = µ(−1);

g2(x) = µ(−2).

La démonstration de ce théorème est basée sur la décomposition suivante :

r̂(x)− r(x) = ĝ1(x)
ĝ2(x) −

g1(x)
ĝ2(x) + g1(x)

ĝ2(x) − r(x)

= ĝ1(x)
ĝ2(x) −

g1(x)
g2(x) + r(x)g2(x)

ĝ2(x) − r(x)ĝ2(x)
ĝ2(x)

= 1
ĝ2(x)(ĝ1(x)− g1(x)) + r(x)

ĝ2(x)(g2(x)− ĝ2(x))

= 1
ĝ2(x)(ĝ1(x)− Eĝ1(x) + Eĝ1(x)− g1(x)) + r(x)

ĝ2(x)(g2(x)− Eĝ2(x) + Eĝ2(x)− ĝ2(x)).

Ainsi, la preuve du Théorème 4.7 est une conséquence directe des lemmes suivants :
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4. RÉGRESSION RELATIVE

Lemme 4.2. Sous les hypothèses (H.1)− (H.3), on a :

(i) Eĝ1(x)− g1(x) = O(h2).

(ii) Eĝ2(x)− g2(x) = O(h2).

Lemme 4.3. Sous les hypothèses (H.1)− (H.4), on a :

(i) ĝ1(x)− Eĝ1(x) = O
(√ logn

nh

)
.

(ii) g2(x)− Eĝ2(x) = O
(√ logn

nh

)
.

Lemme 4.4. Sous les hypothèses du Lemme 4.3, on a :

∃δ > 0, tel que
n∑
i=1

IP[|ĝ2(x)| < δ] <∞.

Démonstration du Lemme (4.2)

– Pour le premier résultat (i), on a

Eĝ1(x) = E
[ 1
nh

n∑
i=1

Y −1
i K

(
x−Xi

h

)]

= 1
h
E
[
K

(
x−X1
h

)
Y −1

1

]

= 1
h
E
[
K

(
x−X1
h

)
E(Y −1

1 /X = X1)
]

= 1
h

∫
R
K

(
x− u
h

)
f(u)E(Y −1

1 /X = X1)du.

On remplace g1(x) = E(Y −1
1 /X = X1)f(x), alors :

E[ĝ1(x)] = 1
h

∫
R
K

(
x− u
h

)
g1(u)du.

On pose z = x− u
h

, on obtient donc :

E[ĝ1(x)] =
∫
R
K(z)g1(x− hz)dz. (4.8)

Puisque la fonction f est deux fois continûment dérivable au voisinage de x (d’après (H.1)),

on applique le développement de Taylor d’ordre 2 défini par :

g1(x− hz) = g1(x)− hzg(1)
1 (x) + (zh)2

2 g
(2)
1 (x) +O(h2)
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sur l’équation (4.8), on obtient alors :

E[ĝ1(x)] =
∫
R

(K(z)g1(x)− hzg(1)
1 (x) + (zh)2

2 g
(2)
1 (x) +O(h2))dz.

Et par la symétrie du noyau K, on peut écrire :

E[ĝ1(x)] = g1(x) + h2

2

∫
R

(z2K(z)g(2)(x))dz +O(h2).

D’où, on conclut que :

E[ĝ1(x)]− g1(x) = O(h2).

– La preuve du deuxième résultat (ii) est analogue à la preuve de (i) :

En effet,

Eĝ2(x) = E
[ 1
nh

n∑
i=1

Y −2
i K

(
x−Xi

h

)]

= 1
h
E
[
K

(
x−X1
h

)
Y −2

1

]

= 1
h
E
[
K

(
x−X1
h

)
E(Y −2

1 /X = X1)
]

= 1
h

∫
R
K

(
x− u
h

)
f(u)E(Y −2

1 /X = X1)du

= 1
h

∫
R
K

(
x− u
h

)
g2(u)du.

Puis, en considérant le changement de variables z = x− u
h

et on utilisant le développement

de Taylor de g2(x− hz) à l’ordre 2, on obtient :

E[ĝ2(x)]− g2(x) = O(h2).

ce qui complète la preuve du lemme (4.2).

Démonstration du Lemme (4.3)

– Commençons par la preuve du résultat (i), on a :
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4. RÉGRESSION RELATIVE

ĝ1(x)− Eĝ1(x) = 1
nh

n∑
i=1

Y −1
i K

(
x−Xi

h

)
− E

[ 1
nh

n∑
i=1

Y −1
i K

(
x−Xi

h

)]

= 1
n

n∑
i=1

1
h

(
Y −1
i K

(
x−Xi

h

)
− E

[
Y −1
i K

(
x−Xi

h

)])
Pour appliquer l’inégalité de Hoeffdding (voir le Lemme 2.6), on pose

∆i = 1
h

(
Y −1
i K

(
x−Xi

h

)
− E

[
Y −1
i K

(
x−Xi

h

)])
.

Donc on a :

|∆i| =
∣∣∣∣1h
(
Y −1
i K

(
x−Xi

h

)
− E

[
Y −1
i K

(
x−Xi

h

)])∣∣∣∣
≤ 1
h

∣∣∣∣(Y −1
i K

(
x−Xi

h

)∣∣∣∣+ ∣∣∣∣E[Y −1
i K

(
x−Xi

h

)])∣∣∣∣
≤ 1
h

(C1 + C2)

≤ C

h
.

41



4. RÉGRESSION RELATIVE

Ce résultat est obtenu par la bornitude du noyau K et Y −1. D’autre part et puisque :

E(∆2
i ) = E

[(1
h

(
Y −1
i K

(
x−Xi

h

)
− E

[
Y −1
i K

(
x−Xi

h

)]))2]

= 1
h2E

[(
Y −1
i K

(
x−Xi

h

)2
+ E2

[
Y −1
i K

(
x−Xi

h

)]

−2
(
Y −1
i K

(
x−Xi

h

)
E
[
Y −1
i K

(
x−Xi

h

)])]

= 1
h2

[
E
(
Y −1
i K

(
x−Xi

h

)2
+ E2

[
Y −1
i K

(
x−Xi

h

)]

−2 + E2
[
Y −1
i K

(
x−Xi

h

)]

= 1
h2

[
E
(
Y −1
i K

(
x−Xi

h

)2
− E2

[
Y −1
i K

(
x−Xi

h

)]

= Var(νi)

≤ E(ν2
i ),

tel que νi = 1
h

[
E
(
Y −1
i K

(
x−Xi

h

)]
.

Alors :
E(ν2

i ) = E
[ 1
h2

(
Y −2
i K2

(
x−Xi

h

)]

= E
[ 1
h2

(
E(Y −2

i /Xi)K2
(
x−Xi

h

)]

= 1
h2

∫
φ(u)f(u))K2

(
x− u
h

)
du.
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4. RÉGRESSION RELATIVE

Avec φ(u) = E(Y −2
i /Xi = u).

En utilisant le changement de variable Z = x− u
h

, on obtient donc :

E(ν2
i ) = 1

h

∫
φ(x− hz)f(x− hz)K2(z)dz

≤ C

h
= δ2.

Ce dernier résultat est obtenue à cause de la bornitude de φ, la continuité de f(x) et aussi

car le noyau K est à support compact.

Donc, en appliquant l’inégalité de Hoeffding, on aura :

IP
[ 1
n

∣∣∣∣ n∑
i=1

∆i

∣∣∣∣ > ε

]
≤ 2 exp

(−nε2
4δ2

)
. (4.9)

En prenant ε = ε0

√
logn
nh

, on obtient

IP
[
|Eĝ1(x)− ĝ1(x)| > ε0

√
logn
nh

]
≤ 2 exp

(−nε20h logn
4nhC

)

≤ 2 exp
(−ε20 logn

4C

)

≤ 2n
−ε20
4C .

Ce dernier résultat conduit à :
n∑
i=1

IP
[
|Eĝ1(x)− ĝ1(x)| > ε0

√
logn
nh

]
<∞,

Sous la condition suffisante suivante ε20
4C > 1.

Ce qui prouve le résultat (i) du Lemme (4.3).

– La preuve du résultat (ii) est similaire.

En effet :

ĝ2(x)− Eĝ2(x) = 1
nh

n∑
i=1

Y −2
i K

(
x−Xi

h

)
− E

[ 1
nh

n∑
i=1

Y −2
i K

(
x−Xi

h

)]

= 1
n

n∑
i=1

1
h

(
Y −2
i K

(
x−Xi

h

)
− E

[
Y −2
i K

(
x−Xi

h

)])
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Nous appliquons l’inégalité de précédente ( voir Lemme 2.6), avec :

∆i = 1
h

(
Y −2
i K

(
x−Xi

h

)
− E

[
Y −2
i K

(
x−Xi

h

)])
.

Puis, nous suivrons les mêmes étapes précèdentes, nous obtenons donc :

n∑
i=1

IP
[
|Eĝ2(x)− ĝ2(x)| > ε0

√
logn
nh

]
<∞.

Démonstration du Lemme (4.4)

Commençons par la remarque suivante :

ĝ2(x) ≤ g2(x)
2 ⇒ |ĝ2(x)− g2(x)| ≥ g2(x)

2 .

Alors, on peut écrire

IP
[
ĝ2(x) ≤ g2(x)

2

]
⇒ IP

[
|ĝ2(x)− g2(x)| ≥ g2(x)

2

]
.

Donc
n∑
i=1

IP
[
ĝ2(x) ≤ g2(x)

2

]
⇒

n∑
i=1

IP
[
|ĝ2(x)− g2(x)| ≥ g2(x)

2

]
<∞.

Il suffit de prend δ = g2(x)
2 .
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Troisième partie

Régression relative cas fonctionnel
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Chapitre 5
Cas d’échantillons indépendants et

identiquement distribués

L’étude des modèles de régression adaptés à des données fonctionnelles est un domaine

important de la statistique fonctionnelle. On y retrouve des situations très différentes sui-

vant que la variable explicative, la variable réponse ou les deux variables sont de nature

fonctionnelle.

Les résultats que nous énonçons dans ce chapitre, sont liés aux propriétés asymptotiques

de l’estimateur à noyau de la régression relative au cas d’une variable explicative fonction-

nelle. Nous supposons que l’échantillon que nous étudions est constitué de variables indé-

pendantes et identiquement distribuées. Après la présentation du modèle et son estimateur

dans la première section, nous établissons la convergence presque complète (ponctuelle et

uniforme) dans la deuxième et la troisième section. La quatrième section est consacrée à

l’erreur quadratique moyenne. Nous achevons ce chapitre par un résultat sur la normalité

asymptotique.

5.1 Modèle et son estimateur

Soit F un espace fonctionnel semi-métrique menu de la métrique d. Nous considérons

{(Xi, Yi), i = 1, . . . , n} une suite de n−observations indépendantes, de même loi que le

couple (X,Y ), a valeurs dans F × R. La relation entre X et Y est exprimé par le modèle
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suivant :

Y = r(X) + ε,

où les erreurs aléatoires εi sont non corrélées, de moyennes nulles et de variances σ2.

Comme au chapitre précédent, r(X) est la solution du problème de minimisation suivant :

min
r

E
[(
Y − r(x)

Y

)2/
X = x

]
, pour Y > 0. (5.1)

avec r(X) = µ(−1)
µ(−2) ,

où :µ(−j) = E(Y −j |X), pour j = 1, 2.

L’estimateur à noyau K de r(X), où X est une variable aléatoire à valeurs dans F et

Y ∈ R est donné par :

r̂(X) =

n∑
i=1

Y −1
i K(h−1d(x,Xi))

n∑
i=1

Y −2
i K(h−1d(x,Xi))

. (5.2)

Cet estimateur peut être exprimé par

r̂(x) = ĝ1(x)
ĝ2(x) ,

avec

ĝj(x) = 1
nE[K(h−1d(x,Xi)]

n∑
i=1

Y −ji K(h−1d(x,Xi)),

C’est à dire :

ĝj(x) = 1
n

n∑
i=1

Y −ji ωi, pour j = 1, 2,

où ωi est définie dans la formule (2.4).

5.2 La convergence presque complète ponctuelle

Pour étudier la convergence presque complète, on fixe un point x ∈ F tel que Nx soit

un voisinage de ce point, et on introduit les hypothèses suivantes :
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5.2.1 Hypothèses et notations

(H.1) IP(X ∈ B(x, h)) = ϕx(h) > 0 pour tout h > 0 ; où B(x, h) est la boule fermée,

centrée en x et de rayon h, et
lim
h→0

ϕx(h) = 0,

lim
n→+∞

nϕx(h)
logn = +∞.

(H.2) Pour tout (x1, x2) ∈ N 2
x , on a :

|gj(x1)− gj(x2)| ≤ Cdkj (x1, x2) j = 1, 2.

(H.3) Le noyau K est de type 1.

(H.4) E[Y −j/X] < C < +∞, ∀j ≥ 2.

5.2.2 Résultat asymptotique

Théorème 5.1. Sous les hypothèses précédentes, on a :

|r̂(x)− r(x)| = O(hk1) +O(hk2) +Op.co
(√ logn

nϕx(h)

)
.

5.2.3 Démonstration

La démonstration du Théorème (5.1) est basée sur la décomposition suivante :

r̂(x)− r(x) = ĝ1(x)
ĝ2(x) −

g1(x)
ĝ2(x) + g1(x)

ĝ2(x) − r(x)

= ĝ1(x)
ĝ2(x) −

g1(x)
g2(x) + r(x)g2(x)

ĝ2(x) − r(x)ĝ2(x)
ĝ2(x)

= 1
ĝ2(x)(ĝ1(x)− g1(x)) + r(x)

ĝ2(x)(g2(x)− ĝ2(x))

= 1
ĝ2(x)(ĝ1(x)− Eĝ1(x) + Eĝ1(x)− g1(x)) + r(x)

ĝ2(x)(g2(x)− Eĝ2(x) + Eĝ2(x)− ĝ2(x)).

(5.3)

Et donc la preuve est une conséquence des lemmes suivants :

Lemme 5.2. Sous les hypothèses (H.1)-(H.4), on a :

|Eĝj(x)− gj(x)| = O(hkj ), j = 1, 2.
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Lemme 5.3. Sous les hypothèses précédentes, on a :

|ĝj(x)− Eĝj(x)| = Op.co
(√ logn

nϕx(h)

)
, j = 1, 2.

Lemme 5.4. Sous les hypothèses du Théorème 5.1, on a :
n∑
i=1

IP
(
ĝ2(x) < g2(x)

2

)
<∞.

Preuve du Lemme 5.2

Puisque (X1, Y1), (X2, Y2), . . . , (Xn, Yn) sont indépendants et identiquement distribués,

on peut écrire :

|E[ĝj(x)]− gj(x)| =
∣∣∣∣E( 1

nE[K(h−1d(x,Xi))]

n∑
i=1

Y −jK(h−1d(x,Xi))
)
− gj(x)

∣∣∣∣
≤
∣∣∣∣ 1
E[K(h−1d(x,X1))]E

[
E(Y −j/X1 = x)K(h−1d(x,X1))− gj(x)

]∣∣∣∣
≤ 1

E[K1(x)] [E[K1(x)|gj(X1)− gj(x)|]].

Sous les hypothèses (H.1) et (H.2), nous obtenons :

|E[ĝj(x)]− gj(x)| ≤ 1
E[K1]E[(K1(x))11B(x,h))|gj(X1)− gj(x)|]

≤ Chkj ,

donc :

|E[ĝj(x)]− gj(x)| = O(hkj ).
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Preuve du Lemme 5.3

On a :

ĝj(x)− E(ĝj(x)) = 1
nE[K(h−1d(x,Xi))]

n∑
i=1

Y −ji K(h−1d(x,Xi))

−E
[ 1
nE[K(h−1d(x,Xi))]

n∑
i=1

Y −ji K(h−1d(x,Xi))
]

= 1
nE[K(h−1d(x,Xi))]

n∑
i=1

[
Y −ji K(h−1d(x,Xi))− E

(
Y −ji K(h−1d(x,Xi))

)]
.

En posant :

∆i,j = 1
E[K1] [KiY

−j
i − E[KiY

−j
i ]], pour j = 1, 2,

on aura :
n∑
i=1

∆i,j = ĝj(x)− E[ĝj(x)].

La preuve du Lemme 5.3 est basée sur l’application du Corollaire 2.4. Pour ce faire, nous

nous concentrons sur les moments absolus de la variable aléatoire ∆i,j .

En utilisant le binôme de Newton et pour ` ≤ m, nous avons d’un coté :

∆m
i,j = 1

E[K1]m [KiY
−j
i − E[KiY

−j
i ]]m,

c’est à dire :

E[|∆m
i,j |] =

m∑
`=0

1
E[K1]m

(
`

m

)
C ′E[|Y −j1 K1(x)|]`E(K1Y

−j
1 )m−`,

où
(
`

m

)
= m!
`!(m− `)!

et d’autre part, on a :

E[|Y −j`1 K`
1|] = E[K`

1E[|Y −j`1 |/X1]]

= CE[K`
1]

≤ Cϕx(h),

ce qui implique :
1

E`[K1]E[|Y −j`1 K`
1|] = O(ϕx(h)−`+1),
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et :
1

E[K1]E[|Y −j1 K1|] ≤ C.

Alors :
E[|∆m

i,j |] ≤ C
m∑
`=0

1
(E[K1])kE[|Y −j`1 K`

1(x)|]

≤ C max
`=0,...,m

ϕ−`+1
x (h)

≤ Cϕ−m+1
x (h)

c’est à dire :

E[|∆m
i,j |] = O(ϕ−m+1

x (h)).

En appliquant l’inégalité du Corollaire 2.4, on obtient :

IP
(
n−1|

n∑
i=1

∆i,j | > η

√
logn
nϕx(h)

)
≤ 2 exp

(−η2 logn
nϕx(h)n

2
ϕx(h)

)
≤ 2 exp(logn

−η2
2 )

≤ 2n
−η2

2 ,

ce qui donne :

IP
(
|ĝj(x)− E[ĝj(x)]| > η

√
logn
nϕx(h)

)
≤ C ′nCη2

,

avec a2 = ϕx(h)−1.

Pour j = 1, 2, nous choisissons η de tel sorte que :

n∑
i=1

IP
(
|ĝj(x)− E[ĝj(x)]| > η

√
logn
nϕx(h)

)
< +∞.

Preuve du Lemme 5.4

Afin de prouver le Lemme (5.4), on commence par remarquer que :

ĝ2(x) ≤ g2(x)
2 ⇒ |ĝ2(x)− g2(x)| ≥ g2(x)

2 .

Alors, on peut écrire

IP
[
ĝ2(x) ≤ g2(x)

2

]
⇒ IP

[
|ĝ2(x)− g2(x)| ≥ g2(x)

2

]
.
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Donc
n∑
i=1

IP
[
ĝ2(x) ≤ g2(x)

2

]
⇒

n∑
i=1

IP
[
|ĝ2(x)− g2(x)| ≥ g2(x)

2

]
< +∞.

ce qui complète la preuve de ce lemme.

5.3 La convergence presque complète uniforme

On s’intéresse dans cette section à la version globale de la convergence précédente.

Pour cela, on fixe un sous-ensemble SF de F et on note par ψSF (.) la fonction ε-entropie

de SF .

5.3.1 Hypothèses et notations

Nous introduisons les hypothèses suivantes :

(U.1) Pour tout x ∈ SF et h > 0 :

0 < Cϕx(h) ≤ IP(X ∈ B(x, h)) ≤ C ′ϕx(h) <∞.

(U.2) Il existe η > 0, tel que :

∀x, x′ ∈ SηF , |gj(x)− gj(x′)| ≤ Cdk(x, x′),

tel que SηF = {x ∈ F : ∃x′ ∈ SF , d(x, x′) ≤ η}.

(U.3) Le noyau K est borné et lipschitzien de support [0, 1].

(U.4) Les fonctions ϕx et ψSF sont :

(U.4.a) Il existe η0 > 0 tel que pour tout η < η0, ϕ′x(η) < C, où ϕ′x est la première

dérivée de la fonction ϕx.

(U.4.b) Pour un entier assez grand n, on a :

(logn)2

nϕx(h) < ψSF

( logn
n

)
<
nϕx(h)
logn .

(U.4.c) La fonction ε-entropie de kolmogorov satisfaite :
∞∑
n=1

exp
{

(1− β)ψSF
( logn

n

)}
<∞, pour β > 1.

(U.5) Pour j ≥ 2,

E(|Y −j |/X = x) < C < +∞ ∀x ∈ SFet inf
x∈SF

g2(x) ≥ C ′ > 0.
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5.3.2 Résultat asymptotique

Théorème 5.5. Sous les hypothèses (U.1)-(U.5), on a :

sup
x∈SF

|r̂(x)− r(x)| = O(hk1) +O(hk2) +Op.co
(
√√√√√√ψSF

(
logn
n

)
nϕx(h)

)
.

5.3.3 Démonstration

La preuve du Théorème 5.5 est basée sur la décomposition (5.3) et les lemmes suivants :

Lemme 5.6. Sous les hypothèses (U.1) et (U.3)-(U.5), on a :

sup
x∈SF

|Eĝj(x)− gj(x)| = O(hkj ), j = 1, 2.

Lemme 5.7. Sous les hypothèses (U.1)-(U.4), on a :

sup
x∈SF

|ĝj(x)− Eĝj(x)| = Op.co
(
√√√√√√ψSF

(
logn
n

)
nϕx(h)

)
, j = 1, 2.

Lemme 5.8. Sous les hypothèses du Lemme 5.7, nous obtenons :

∃δ > 0,
∞∑
n=1

IP
(

inf
x∈SF

ĝ2(x) < δ

)
<∞.

Preuve du Lemme 5.6

La preuve du Lemme 5.6 est similaire à la preuve du Lemme 5.2, tel que :

|E[ĝj(x)]− gj(x)| =
∣∣∣∣E( 1

nE[K(h−1d(x,Xi))]

n∑
i=1

Y −jK(h−1d(x,Xi))
)
− gj(x)

∣∣∣∣
≤
∣∣∣∣ 1
E[K(h−1d(x,X1))]E

[
E(Y −j/X1 = x)K(h−1d(x,X1))− gj(x)

]∣∣∣∣
≤ 1

E[K1(x)] [E[K1(x)|gj(X1)− gj(x)|]].

Sous les hypothèses (U.1) et (U.2), ∀x ∈ SF nous obtenons :

|E[ĝj(x)]− gj(x)| ≤ 1
E[K1]E[(K1(x))11B(x,h))|gj(X1)− gj(x)|]

≤ Chkj ,
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où C ne dépend pas de x, donc :

sup
x∈SF

|E[ĝj(x)]− gj(x)| = O(hkj ).

Preuve du Lemme 5.7

Soit x1, x2, . . . , xN un ensemble fini de points de F tel que :

SF ⊂
N⋃
k=1

B(xk, ε), avec ε = logn
n

,

pour tout x ∈ SF , on note :

K(x) = arg min
k∈{1,2...,Nε(SF )}

d(x, xk), et Ki(x) = K

(
d(x,Xi)

h

)
.

La preuve de ce lemme est basée sur la décomposition suivante :

sup
x∈SF

|ĝj(x)− E[ĝj(x)]| ≤ sup
x∈SF

|ĝj(x)− ĝj(xk(x))|︸ ︷︷ ︸
F1

+ sup
x∈SF

|ĝj(xk(x))− E[ĝj(xk(x))]|︸ ︷︷ ︸
F2

+ sup
x∈SF

|E[ĝj(xk(x))]− E[ĝj(x)]|︸ ︷︷ ︸
F3

,

donc, il suffit de traiter chaque terme Fi pour i = 1, 2, 3 :

– Pour le terme F1, sous l’hypothèse (U.1) et donc de la condition :

Cϕx(h) ≤ E[K1(x)] ≤ C ′ϕx(h),

nous obtenons :

F1 ≤ sup
x∈SF

1
n

n∑
i=1

∣∣∣∣ 1
E[K1(x)]Ki(x)Y −ji − 1

E[K1(x)]Ki(xk(x))Y
−j
i

∣∣∣∣
≤ C

ϕx(h) sup
x∈SF

1
n

n∑
i=1
|Ki(x)−Ki(xk(x))|Y

−j
i 11B((x,h)∪B(xk(x),h)(Xi)

puisque le noyau K est lipschitzien sur [0, 1] d’après l’hypothèse (U.3) (c’est à dire,

le cas où K(1) = 0), nous obtenons :

F1 ≤
C

n

n∑
i=1

Qi, (5.4)
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avec :

Qi = εY −j

hϕx(h) sup
x∈SF

11B((x,h)∪B(xk(x),h)(Xi).

Appliquons l’inégalité exponentielle 2.4 (i.i) sur Qi.

Nous calculons donc la quantité E[|Qi|m].

Sous l’hypothèse (U.5) (E(|Y −jm|/X = x) < C <∞), nous écrivons :

E[|Qi|m] ≤ C εm

hmϕx(h)m−1 ,

pour l’application de l’inégalité précédente, nous choisissons a2 = ε

hϕx(h) .

Nous obtenons donc :

F1 = Op.co.
(
√√√√√√ψSF

(
logn
n

)
nϕx(h)

)
.

D’autre part, le cas où le noyau K est lipschitzien sur [0, 1) (c’est à dire, le cas où

K(1) > C > 0) il faut décomposer le terme F1 en trois termes comme suit :

F1 ≤ C sup
x∈SF

(F11 + F12 + F13),

avec : 

F11 = 1
ϕx(h)

n∑
i=1
|Ki(x)−Ki(xk(x))|Y

−j
i 11B(x,h)∩B(xk(x),h)(Xi);

F12 = 1
ϕx(h)

n∑
i=1

Ki(x)Y j
i 11

B(x,h)∩B(xk(x),h)(Xi);

F13 = 1
ϕx(h)

n∑
i=1

Ki(xk(x))Y
−j
i 11

B(x,h)∩B(xk(x),h)(Xi).

où A est le complémentaire de l’ensemble A.

Pour ce qui concerne le terme F11, nous utilisons le faite que K est une fonction

lipschzienne sur [0, 1], et on a :

F11 ≤ sup
x∈SF

C

n

n∑
i=1

Zi,j , avec Zi,j = ε

hϕx(h)Y
−j
i 11B(x,h)∩B(xk(x),h)(Xi)Y −ji .

Concernant les termes F12 et F13, comme K est borné, nous obtenons :

F12 ≤
C

n

n∑
i=1

Wi,j , avec Wi,j = 1
ϕx(h)Y

−j
i 11

B(x,h)∩B(xk(x),h)(Xi),
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et :

F13 ≤
C

n

n∑
i=1

Vi,j , avec Vi,j = 1
ϕx(h)Y

−j
i 11

B(x,h)∩B(xk(x),h)(Xi),

donc, nous remplaçons ∆i dans l’inégalité exponentielle (voir le Corollaire 2.4) res-

pectivement par Zi,j , Wi,j et Vi,j avec a2 = ε

hϕx(h) , nous obtenons :

F11 = Op.co.
(√

ε logn
nhϕx(h)

)
,

F12 = O
(

ε

ϕx(h)

)
+Op.co.

(√
ε logn
nϕx(h)2

)
,

et

F13 = O
(

ε

ϕx(h)

)
+Op.co.

(√
ε logn
nϕx(h)2

)
.

D’autre part, d’après les conditions (U.4.a) et (U.4.b), on a :

F1 = Op.co.
(√

ψSF (ε)
nϕx(h)

)
.

En suivant la même démarche, nous pouvons obtenir :

F3 = Op.co.
(√

ψSF (ε)
nϕx(h)

)
.

– Pour le terme F2, on remarque que pour tout η > 0 :

IP
(
F2 > η

√
ψSF (ε)
nϕx(h)

)
= IP

(
max

{k∈1,2,...,N}
|ĝj(xk(x))− E[ĝj(xk(x))]| > η

√
ψSF (ε)
nϕx(h)

)
≤ N max

{k∈1,2,...,N}
IP
(
|ĝj(xk(x))− E[ĝj(xk(x))]| > η

√
ψSF (ε)
nϕx(h)

)
,

Appliquons maintenant, l’inégalité exponentielle du Corollaire 2.4, pour :

∆i,j = 1
E[K1(xk(x))]

[Ki(xk(x))Y
−j
i − E[Ki(xk(x))Y

−j
i ]],

puisque E[|∆i,j |]m = O(ϕx(h)−m+1), alors, on peut prendre a2 = 1
ϕx(h) , par suite,

pour tout η > 0 :

IP
(
|ĝj(xk(x))− E[ĝj(xk(x))]| > η

√
ψSF (ε)
nϕx(h)

)
= IP

( 1
n

∣∣∣∣ n∑
i=1

∆i,j

∣∣∣∣ > η

√
ψSF (ε)
nϕx(h)

)
≤ 2 exp(−Cη2ψSF (ε)),
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En utilisant le faite que ψSF (ε) = logN , et en choisissant η de tel sorte que Cη2 = β,

et d’après l’hypothèse (U.4.c) nous obtenons :

N max
{k∈1,2,...,N}

IP
(
|ĝj(xk(x))− E[ĝj(xk(x))]| > η

√
ψSF (ε)
nϕx(h)

)
≤ CN1−β.

Preuve du Lemme 5.8

Nous remarquons que :

inf
x∈SF

≤ g2(x)
2 ⇒ ∃x ∈ SF tel que g2(x)− ĝ2(x) ≥ g2(x)

2 ,

qui implique aussi que sup
x∈SF

|g2(x)− ĝ2(x)| ≥ g2(x)
2 , on déduit du Lemme 5.6 que :

IP
(

inf
x∈SF

≤ g2(x)
2

)
≤ IP

(
sup
x∈SF

|g2(x)− ĝ2(x)| ≥ g2(x)
2

)
,

donc :
∞∑
i=1

IP
(

inf
x∈SF

≤ g2(x)
2

)
<∞.

5.4 La convergence en moyenne quadratique

On remplace (H.1), (H.3) et (H.4) respectivement par les hypothèses suivantes :

5.4.1 Hypothèses et notations

(M.1) La propriété de concentration (H.1) est satisfaite, de plus, il existe une fonction

Xx(.) tel que :

∀s ∈ [0, 1], lim
r→0

ϕx(sr)
ϕx(r) = Xx(s).

(M.2) La fonction Ψj(.) = E
[
gj(X) − gj(x)/d(x,X) = .

]
, j = 1, 2 est dérivable au

point 0.

(M.3) Le noyau K est de type 2.

(M.4) La probabilité de petite boule satisfaite :

nϕx(h)→∞.

(M.5) Les fonctions E[Y −j/X = x] sont continues au voisinage de x, pour j = 1, 2, 3, 4.
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5.4.2 Résultat asymptotique

Théorème 5.9. Sous les hypothèses (M.1)-(M.5), nous obtenons :

E[r̂(x)− r(x)]2 = B2
n(x)h2 + σ2(x)

nϕx(h) + o(h) + o( 1
nϕx(h)),

où :

σ2(x) = (g2(x)− 2r(x)E[Y −3/X = x] + r2(x)E[Y −4/X = x])β2
g2

2(x)β2
1

et :

Bn(x) = (Ψ′1(0)− r(x)Ψ′2(0))β0
β1g2(x) , (5.5)

avec : β0 = K(1) −
∫ 1

0
(sK(s))′Xx(s)ds et βj = Kj(1) −

∫ 1

0
(Kj)′(s)Xx(s)ds pour

j = 1, 2.

5.4.3 Démonstration

La preuve du Théorème 5.9 se débute par écrire le biais et la variance sous les formules

suivantes :

E[r̂(x)] = E[ĝ1(x)]
E[ĝ2(x)] +O

( 1
nϕx(h)

)
,

et :
Var[r̂(x)] = Var[ĝ1(x)]

(E[ĝ2(x)])2 − 2E[ĝ1(x)]Cov(ĝ1(x), ĝ2(x))
(E[ĝ2(x)])3

+ [ĝ2(x)](E[ĝ1(x)])2

(E[ĝ2(x)])4 + o

( 1
nϕx(h)

)
,

Donc, la démonstration est une conséquence des deux lemmes suivants :

Lemme 5.10. Sous les hypothèses du Théorème 5.9, on a :

E[ĝj(x)] = gj(x) + Ψ′j(0)β0
β1
h+ o(h), pour j = 1, 2.

Lemme 5.11. Sous les hypothèses précédentes, on a pour j = 1, 2 :

Var[ĝj(x)] = E[Y −2j/X = x] β2
β2

1nϕx(h)
+ o

( 1
nϕx(h)

)
,

et

Cov(ĝ1(x), ĝ2(x)) = E[Y −3/X = x] β2
β2

1nϕx(h)
+ o

( 1
nϕx(h)

)
.
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Preuve de Lemme 5.10

D’après l’équidistribution des observations, nous écrivons pour j = 1, 2 :

E[ĝj(x)] = E
[ 1
nE[k(h−1d(x,Xi))]

n∑
i=1

Y −ji k(h−1d(x,Xi))
]

= 1
E[K1]E[K1E[Y −j1 /X1]].

D’autre part nous avons :

E[K1E[Y −j1 /X1]] = gj(x)E[K1] + E[K1E[gj(X1)− gj(x)/d(X1, x)]]

= gj(x)E[K1] + E[K1Ψj(d(X1, x))],

d’où, la définition de Ψj , nous permet d’écrire :

Eĝj(x) = gj(x) + 1
E[K1]E[K1Ψj(d(X1, x))],

car Ψ(0) = 0, nous obtenons :

E[K1Ψj(d(X1, x))] = Ψ′j(0)E[d(X1, x)K1] + o(E[d(X1, x)K1])

c’est à dire :

Eĝj(x) = gj(x) + 1
E[K1]Ψ

′
j(0)E[d(X1, x)K1] + o(E[d(X1, x)K1]) (5.6)

D’autre part pour, j = 1, 2 et sous l’hypothèse (M.1) :

E(Kj
1) =

∫ 1

0
Kj(s)dP |d(x,X)|h−1(s)

=
∫ 1

0

[
Kj(1)−

∫ 1

s
(Kj(s))′ds

]
dP |d(x,X)|h−1(s)

= Kj(1)ϕx(h)−
∫ 1

s
(Kj(s))′ϕx(sh)ds

= ϕx(h)
[
Kj(1)−

∫ 1

s
(Kj(s))′Xx(s)ds

]
+ o(ϕx(h))

= ϕx(h)βj + o(ϕx(h)),

(5.7)
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et :

E[K1d(x,X1)] = h

∫ 1

0
sK(s)dP |d(x,X)|h−1(s)

= h

∫ 1

0

[
K(1)−

∫ 1

s
(sK(s))′ds

]
dP |d(x,X)|h−1(s)

= h

[
K(1)ϕx(h)−

∫ 1

s
(sK(s))′ϕx(sh)ds

]

= hϕx(h)
[
K(1)−

∫ 1

s
(sK(s))′Xx(s)ds

]
+ o(hϕx(h))

= hϕx(h)β0 + o(hϕx(h)).

(5.8)

On remplace (5.7) pour j = 1 et (5.8) dans (5.6), nous obtenons :

Eĝj(x) = gj(x) +
hΨ′j(0)ϕx(h)

[
K(1)−

∫ 1

s
(sK(s))′Xx(s)ds

]
ϕx(h)

[
K(1)−

∫ 1

s
(K(s))′Xx(s)ds

] + o

(
hϕx(h)
ϕx(h)

)
,

ainsi :

Eĝj(x) = gj(x) + hΨ′j(0)

K(1)−
∫ 1

0
(sK(s))′Xx(s)ds

K(1)−
∫ 1

0
K ′(s)Xx(s)ds

+ o(h).

Ce qui complète la preuve du Lemme 5.10.

Preuve du Lemme 5.11

On a pour j = 1, 2 :

Var[ĝj(x)] = 1
(nE[K1])2

n∑
i=1

Var[KiY
−j
i ]

= 1
n(E[K1])2Var[K1Y

−j
1 ]

= 1
n(E[K1])2

(
E(K2

1Y
−2j

1 )− E2(K1Y
−j

1 )
)
.
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On conditionne par rapport X, de plus sous l’hypothèse (M.1) puis (M.4) nous obte-

nons :

E[K2
1Y
−2j

1 ] = E[Y −2j/X = x]E(K2
1 ),

d’après (5.7), nous obtenons :

E[K2
1Y
−2j

1 ] = E[Y −2j/X = x]
(
K2(1)−

∫ 1

0
(K2(s))′Xx(u)du

)
+ o(1),

d’autre part et d’après l’hypothèse (M.5), on a :

E[K1Y
−j

1 ] = E[K1E[Y −j1 ]]

≤ Cϕx(h)

= O(ϕx(h)),

Donc :

Var[K1Y
−j

1 ] = E[Y −2j/X = x]
(
K2(1)−

∫ 1

0
(K2(s))′Xx(u)du

)
+O(ϕ2

x(h)),

nous pouvons écrire donc :

Var[ĝj(x)] =
E[Y −2j/X = x]

(
K2(1)−

∫ 1

0
(K2(s))′Xx(u)du

)
nϕx(h)

(
K(1)−

∫ 1

0
(K(s))′Xx(s)ds

)2 + o

( 1
nϕx(h)

)
.

Nous faisons les mêmes étapes pour le terme de covariance, c’est à dire :

Cov(ĝ1(x), ĝ2(x)) = 1
n(E[K1])2Cov(K1Y

−2
1 ,K1Y

−1
1 ),

où :

Cov(K1Y
−2

1 ,K1Y
−1

1 ) = E[K2
1Y
−3

1 ]− E[K1Y
−2

1 ]E[K1Y
−1

1 ].

D’après (5.7), nous obtenons :

Cov(ĝ1(x), ĝ2(x)) =
E[Y −3/X = x]

(
K2(1)−

∫ 1

0
(K2(s))′Xx(u)du

)
nϕx(h)

(
K(1)−

∫ 1

0
(K(s))′Xx(s)ds

)2 + o

( 1
nϕx(h)

)
.

Ce qui termine la preuve du Lemme 5.11.
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5.5 La normalité asymptotique

Les premiers travaux s’intéressant à la normalité asymptotique de l’estimateur à noyau

(5.2) sont dus à Masry [18]. Il a considère le cas d’un échantillon constitué de variables

α−mélangeantes mais il n’a pas donné pas l’expression des termes asymptotiquement do-

minants du biais et de la variance.

Parallèlement, Ferraty et al. [10] ont obtenu l’expression explicite de la loi asymptotique

(c’est à dire des termes dominants du biais et de la variance) dans le cas d’un échantillon

de variables indépendantes.

Le fait d’avoir explicité les termes dominants du biais et de la variance de la loi asymp-

totique nous permet notamment de construire des intervalles de confiance asymptotiques

ponctuels et de donner l’expression de l’erreur quadratique moyenne.

5.5.1 Hypothèses et notations

On garde les mêmes hypothèses de la convergence en moyenne quadratique.

5.5.2 Résultat asymptotique

Théorème 5.12. Sous les hypothèses (M.1)-(M.5), pour tout x ∈ F on a :

(
nϕx(h)
σ2(x)

) 1
2
(r̂(x)− r(x)−Bn(x)− o(h)) D−−−→ N (0, 1), quand n→∞.

Où D−−−→ est la convergence en distribution.
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5.5.3 Démonstration

La preuve du Résultat 5.12 est basée sur la décomposition relativement complexe

suivante suivante :

r̂(x)− r(x) = ĝ1(x)
ĝ2(x) −

E[ĝ1(x)]
ĝ2(x) + r(x)

ĝ2
[E[ĝ2(x)]− ĝ2(x)] + r(x)

ĝ2
[ĝ2(x)− E[ĝ2(x)]]

−E[ĝ1(x)]
E[ĝ2(x)] + E[ĝ1(x)]

E[ĝ2(x)] + E[ĝ1(x)]
ĝ2(x) − g1(x)

g2(x)

= ĝ1(x)
ĝ2(x) −

E[ĝ1(x)]
ĝ2(x) + r(x)

ĝ2
[E[ĝ2(x)]− ĝ2(x)] + r(x)

ĝ2
[ĝ2(x)− E[ĝ2(x)]]

− 1
ĝ2(x)

E[ĝ1(x)]
E[ĝ2(x)]

(
ĝ2(x)− E[ĝ2(x)]

)
+ E[ĝ1(x)]

Eĝ2(x) −
g1(x)
g2(x)

= 1
ĝ2(x)

(
ĝ1(x)− E[ĝ1(x)] +

(
E[ĝ2(x)]− ĝ2(x)

)
g1(x)
g2(x)

−
(E[ĝ1(x)]
E[ĝ2(x)] −

g1(x)
g2(x)

)
[ĝ2(x)− E[ĝ2(x)]]

)
+ E[ĝ1(x)]

Eĝ2(x) −
g1(x)
g2(x) .

Pour simplifier la preuve, on pose :

An = 1
E[ĝ2(x)]g2(x) [E[ĝ1(x)]g2(x)− E[ĝ2(x)]g1(x)],

et :

Dn = 1
g2(x)

[[
ĝ1(x)− E[ĝ1(x)]

]
g2(x) +

[
E[ĝ2(x)]− ĝ2(x)

]
g1(x)

]
.

Donc la décomposition précédente devient :

r̂(x)− r(x) = 1
ĝ2(x) [Dn −An(ĝ2(x)− E[ĝ2(x)])] +An.

Par suite, la démonstration du résultat précédent est une conséquence des lemmes

suivants :

Lemme 5.13. Sous les hypothèses du Théorème 5.12, nous obtenons :(
nϕx(h)

g2
2(x)σ2(x)

) 1
2
([
ĝ1(x)− E[ĝ1(x)]

]
g2(x) +

[
E[ĝ2(x)]− ĝ2(x)

]
g1(x)

)
D−−−→ N (0, 1).

C’est à dire : √
nϕx(h)
σ(x) Dn

D−−−→ N (0, 1).

63



5. CAS D’ÉCHANTILLONS INDÉPENDANTS ET IDENTIQUEMENT DISTRIBUÉS

Lemme 5.14. Sous les hypothèses du Théorème 5.12, nous obtenons :

ĝ2(x) P−−−→ g2(x),

et

(
nϕx(h)

g2
2(x)σ2(x)

) 1
2
An(ĝ2(x)− E[ĝ2(x)]) P−−−→ 0.

Preuve du Lemme 5.13

Pour la preuve du Lemme 5.13, on a :[
ĝ1(x)− E[ĝ1(x)]

]
g2(x) +

[
E[ĝ2(x)]− ĝ2(x)

]
g1(x) = g1(x)ĝ2(x)− g1(x)E[ĝ2(x)]− g2(x)ĝ1(x)

+ g2(x)E[ĝ1(x)]

= g1(x)ĝ2(x)− g2(x)ĝ1(x) + g2(x)E[ĝ1(x)]

− g1(x)E[ĝ2(x)],

d’une part, on a :

g1(x)ĝ2(x)− g2(x)ĝ1(x) = g1(x)
nE[K(h−1d(x,Xi)]

n∑
i=1

Y −2
i K(h−1d(x,Xi)

− g2(x)
nE[K(h−1d(x,Xi)]

n∑
i=1

Y −1
i K(h−1d(x,Xi)

=
n∑
i=1

[
g1(x)

nE[K(h−1d(x,Xi)]
Y −2
i K(h−1d(x,Xi)

− g2(x)
nE[K(h−1d(x,Xi)]

Y −1
i K(h−1d(x,Xi)

]
,
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et d’autre part :

g2(x)E[ĝ1(x)]− g1(x)E[ĝ2(x)] = g2(x)E
[ 1
nE[K(h−1d(x,Xi)]

n∑
i=1

Y −1
i K(h−1d(x,Xi)

]

− g1(x)E
[ 1
nE[K(h−1d(x,Xi)]

n∑
i=1

Y −2
i K(h−1d(x,Xi)

]

=
n∑
i=1

E
[

g2(x)
nE[K(h−1d(x,Xi)]

Y −1
i K(h−1d(x,Xi)

− g1(x)
nE[K(h−1d(x,Xi)]

Y −2
i K(h−1d(x,Xi))

]
,

On pose :

Li(x) =
√
nϕx(h)
nE[K1] Ki(g1(x)Y −2

i − g2(x)Y −1
i ),

et

Sn =
n∑
i=1

(Li(x)− E[|Li(x)|].

Nous obtenons donc :

√
nϕx(h)σ−1((ĝ2(x)− E[ĝ2(x)])g1(x)− (ĝ1(x)− E[ĝ1(x)])g2(x)) = Sn

σ
.

pour compléter la preuve de ce lemme, il suffit donc de montrer la normalité asympto-

tique de Sn. Nous appliquons le théorème de Lyaponov 2.5 sur Li(x). C’est à dire montrons

que pour δ > 0 :

n∑
i=1

E[|Li(x)− E[|Li(x)|]|2+δ]

(
Var

( n∑
i=1

Li(x)
)) 2+δ

2
→ 0.
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on a :

Var
( n∑
i=1

Li(x)
)

= nϕx(h)Var[ĝ1(x)g2(x) + ĝ2(x)g1(x)]

= nϕx(h)(Var[ĝ1(x)]g2
2(x) + Var[ĝ2(x)]ĝ2

1(x)

+ g1(x)g2(x)Cov(ĝ1(x), ĝ2(x))

= nϕx(h)
(

β2
β2

1nϕx(h)
(g2(x)g1(x)E[Y −3/X = x]

+g2
1(x)E[Y −4/X = x]) + o

( 1
nϕx(h)

))
,

donc :

Var
( n∑
i=1

Li(x)
)

= σ + o(1),

d’autre part nous appliquons les inégalités Cr, pour obtenir :
n∑
i=1

E[|Li(x)− E[|Li(x)|]|2+δ] ≤ C
n∑
i=1

E[|Li(x)|2+δ] + C ′
n∑
i=1
|E[Li(x)]|2+δ.

Pour tout j > 0, E[Kj
1 ] = O(ϕx(h)), donc sous l’hypothèse (H.4), on a :

n∑
i=1

E[|Li(x)|2+δ] = n−
δ
2 (ϕx(h))−1− δ2E[K2+δ

1 |g1(x)Y −2
i − g2(x)Y −1

i |
2+δ]

≤ n−
δ
2 (ϕx(h))−1− δ2E[K2+δ

1 [21+δg1(x)2+δE[|Y −2(δ+2)
i /X|]

+ 21+δg2(x)2+δE[|Y −(δ+2)
i /X|]]]

≤ C(nϕx(h))−
δ
2

(
E[K2+δ

1 ]ϕx(h))−1
)
→ 0.

D’autre part et pour le deuxième terme, on a :

n∑
i=1
|E[Li(x)]|2+δ ≤ n

−δ
2 (ϕx(h))

−(2+δ)
2

∣∣∣∣E[K1|g1(x)Y −2
i − g2(x)Y −1

i |]
∣∣∣∣2+δ

≤ Cn
−δ
2 (ϕx(h))

−(2+δ)
2

∣∣∣∣E[K1

∣∣∣∣2+δ

≤ Cn
−δ
2 (ϕx(h))

1+δ
2 → 0.

Ce qui termine la preuve du Lemme 5.13.
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Preuve du Lemme 5.14

D’après les Lemmes 5.10 et 5.11, nous avons :

E[ĝ2(x)− g2(x)]→ 0,

et

Var[ĝ2(x)]→ 0,

donc :

ĝ2(x)− g2(x) P−−−→ 0.

D’autre part :

E

( nϕx(h)
g1(x)2σ2

) 1
2
An(ĝ2(x)− E[ĝ2(x)])

 = 0

et

Var

( nϕx(h)
g1(x)2σ2

) 1
2
An(ĝ2(x)− E[ĝ2(x)])

 = O(A2
n) = O(h2)→ 0,

ce qui montre que :

(
nϕx(h)
g1(x)2σ2

) 1
2
An(ĝ2(x)− E[ĝ2(x)]) P−−−→ 0.
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Chapitre 6
Cas d’échantillon dépandent

Dans ce chapitre, on garde la structure fonctionnelle de la variable explicative et nous

généralisons le résultat de la convergence presque complète du chapitre précédent pour des

données qui ne sont pas nécessairement indépendantes. Plus précisément, nous focalisons

sur le cas où les observations sont α−mélangeantes.

6.1 Modèle et son estimateur

On garde le même estimateur à noyau (5.2) défini au chapitre 5, la seule différence qui

apparue est le type de dépendante entre les variables.

6.2 la convergence presque complète

on garde les hypothèses (H.1)-(H.4)du chapitre précédent et nous ajoutons les hypo-

thèses suivantes :

6.2.1 Hypothèses et notations

(H.5) (Xi, Yi)1≤i≤n est une suite algébriquement α-mélangeante, dont le coefficient de

mélange vérifie :

∃C, a ∈ R∗+, α(n) ≤ Cn−a.

(H.6) 0 < sup
i 6=j

(IP((Xi, Yj) ∈ B(x, h)×B(x, h))) = O
(
ϕx(h)

a+1
a

n
1
a

)
.
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(H.7) Il existe η > 0 tel que Cn
3−a
a+1 +η ≤ ϕx(h) ≤ C ′n

1
1−a , avec a >

5 +
√

17
2 .

6.2.2 Résultat asymptotique

Théorème 6.1. Sous les conditions (H.1)-(H.7), on a :

r̂(x)− r(x) = O(hk) +Op.co.
(√ logn

nϕx(h)

)
.

6.2.3 Démonstration

La démonstration du théorème précédent est basée sur la décomposition (5.3) et les

lemmes suivants :

Lemme 6.2. Sous les hypothèses du théorème 6.1, on a :

(i) E[ĝ1(x)]− g1(x) = O(hk),

(ii) E[ĝ1(x)]− ĝ1(x) = Op.co.
(√ logn

nϕx(h)

)
.

Lemme 6.3. Sous les mêmes hypothèses, on a :

(i) E[ĝ2(x)]− g2(x) = O(hk),

(ii) E[ĝ2(x)]− ĝ2(x) = Op.co.
(√ logn

nϕx(h)

)
.

Lemme 6.4. Sous les hypothèses précédentes, on a :

∃δ > 0, tel que
∑
i≥1

IP[ĝ2(x) < δ] <∞.

Preuve du Lemme 6.2

Pour la preuve du Lemme 6.2, on a :

ĝ1(x) = 1
n

n∑
i=1

Y −1
i ωi,

donc, on peut écrire :

Eĝ1(x)− g1(x) = E[Y −1
i ω1]− g1(x)

= E[E[Y −1
i ω1/X1]]− g1(x)

= E[g1(X1)ω1 − g1(x)]
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en utilisant la condition (H.2), on montre que :

Eĝ1(x)− g1(x) ≤ E|g1(X1)− g1(x)|ω1

≤ C1E[dk(x,X1)ω1]

comme E[ω1] = 1, on a :

Eĝ1(x)− g1(x) ≤ C(hk),

ainsi :

Eĝ1(x)− g1(x) = O(hk).

Ce qui démontre le résultat (i).

Pour le deuxième résultat (ii), on applique l’inégalité de Fuk-Nagaev 2.2 aux variables ∆i.

Avec :

E[ĝ1(x)]− ĝ1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

Y −1
i K(h−1d(x,Xi))− E

[ n∑
i=1

Y −1
i K(h−1d(x,Xi))

nE[K(h−1d(x,Xi))]

]
nE[K(h−1d(x,Xi))]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1
n

∣∣∣∣∣
n∑
i=1

Y −1
i K(h−1d(x,Xi))− E[Y −1

i K(h−1d(x,Xi))]
E[K(h−1d(x,Xi))]

,

∣∣∣∣∣
on pose :

∆i = Y −1
i K(h−1d(x,Xi))− E[Y −1

i K(h−1d(x,Xi))].
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Cette inégalité est basée sur le calcul de :

S2
n =

n∑
i=1

n∑
j=1
|Cov(∆i,∆j)|

=
n∑
i=1

[ n∑
i 6=j

Cov(∆i,∆j) + Cov(∆i,∆i)
]

=
n∑
i=1

[ n∑
i 6=j

Cov(∆i,∆j) + Var(∆i)
]

=
n∑
i=1

n∑
i 6=j

Cov(∆i,∆j) +
n∑
i=1

Var(∆i)

= S2∗
n + nVar∆i.

(6.1)

Où :

Cov(∆i,∆j) = E(∆i.∆j)

= E[(Y −jKi − EY −jKi)(Y −jKj − EY −jKj)]

= E[Y −jKiY
−jKj − Y −jKiEY −jKj − Y −jKjEY −jKi + EY −jKiEY −jKj ]

= E[Y −jKiY
−jKj ]− E[Y −jKi]EY −jKj ]

= Cov(Y −jKi, Y
−jKj),

sous les hypothèses (H.3) et (H.5), on a :

|Cov(∆i,∆j)| ≤ CE(Ki.Kj).

Pour le terme de S2∗
n de (6.1) on utilise les techniques de Masry [18] et on divise cette

somme comme suit :

S2∗
n =

n∑
i=1

∑
E1

Cov(∆i,∆j) +
n∑
i=1

∑
E2

Cov(∆i,∆j),

où :

E1 = {(i, j) tel que 1 ≤ |i− j| ≤ mn},

et

E2 = {(i, j) tel que mn + 1 ≤ |i− j| ≤ n− 1},

71



6. CAS D’ÉCHANTILLON DÉPANDENT

où la suite mn → +∞ quand n→∞.

Pour la première somme, on a :
n∑
i=1

∑
E1

|Cov(∆i(x),∆j(x))| ≤ C
n∑
i=1

∑
E1

|E[Ki(x)Kj(x)] + E2[K1(x)]|

≤ C nmϕx(h)
((

ϕx(h)
n

) 1
a

+ ϕx(h)
)
.

(6.2)

Sur l’ensemble E2 on utilise l’inégalité de Davydov-Rio’s 2.3, d’où pour i 6= j on a :

|Cov(Ki(x),Kj(x)| ≤ Cα(|i− j|).

Donc :
n∑
i=1

∑
E2

|Cov(Ki(x),Kj(x)| ≤
n∑
i=1

∑
E2

|E[Ki(x)Kj(x)]

≤ C nα(mn)

≤ C n2m−αn .

(6.3)

D’après (6.2) et (6.3) :

|S2∗
n | ≤ C nmϕx(h)

((
ϕx(h)
n

) 1
a

+ ϕx(h)
)

+ C n2m−αn ,

ainsi pour mn =
(
ϕx(h)
n

) 1
a

, on aura :

|S2∗
n | ≤ Cn

ϕx(h)1− 1
a

+ 1
a

n
−1
a

+ 1
a

+ C n2
(
ϕx(h)

−1
a

n−1
a

)−a

≤ C nϕx(h),

Donc :

S2∗
n = O(nϕx(h)).

Pour le terme de la variance, on montre que sous (H.1), on a :

Var(∆1(x)) ≤ C(E(K1)2 − (EK1)2) ≤ (ϕx(h) + (ϕx(h))2).

Nous obtenons donc :

S2
n = O(ϕx(h)).

Par suite, l’application de l’inégalité de Fuk-Nagaev entraîne :
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IP[|Eĝ1(x)− ĝ1(x)| > ε] = IP
[∣∣∣∣ 1
nϕx(h)

n∑
i=1

∆i

∣∣∣∣ > ε

]

= IP
[∣∣∣∣ n∑
i=1

∆i

∣∣∣∣ > 4(εnϕx(h))
4

]

≤ 4
(

1 + ε2n2ϕ2
x(h))

nϕx(h)16r

)−r
2

+ 2ncr−1
( 8r
εnϕx(h)

)a+1

pour ε = ε0

√
logn
nϕx(h) , on a :

IP
[
|Eĝ1(x)− ĝ1(x)| > ε0

√
logn
nϕx(h)

]
≤ 4

(
1 + ε20(logn)n2ϕ2

x(h)
n2(ϕx(h))216r

)−r
2

+ 2ncr−1
( 8r(nϕx(h))

1
2

ε0nϕx(h)(logn)
−1
2

)

≤ 4
(

1 + ε20 logn
16r

)−r
2

+ 2ncr−1
(8ra+1

ε0

)
(nϕx(h) logn)−(a+1

2 ),

prenons r = C(log(n))2. Nous obtenons alors :

A1 =
(

1 + ε20 logn
16r

)−r
2
≤ c exp ε

2
0 logn

32 ,

d’autre part :

A2 ≤ cε−(a+1)n−(a+1
2 )+1+ab(ϕx(h))(a+1

2 ),

sous la condition (H.7) sur la fonction ϕx(h), on déduit :

A2 ≤ cn−1−a2 [−2b+pθ],

et avec un choix convenable de ε0, on obtient :

n∑
i=1

IP
[
|Eĝ1(x)− ĝ1(x)| > ε0

√
logn
nϕx(h)

]
<∞.

Preuve du Lemme 6.3

Pour la preuve de la partie (i) du Lemme 6.3, on a :

ĝ2(x) = 1
n

n∑
i=1

Y −2
i ωi,
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on peut écrire :

Eĝ2(x)− g2(x) = E[Y −2
i ω1]− g2(x)

= E[E[Y −2
i ω1/X1]]− g2(x)

= E[g2(X1)ω1 − g2(x)].

De même que la preuve du Lemme 6.2, la condition (H.2) nous permet d’écrire :

|Eĝ2(x)− g2(x)| ≤ E|g2(X1)− g2(x)|ω1

≤ Chk.

Donc :

Eĝ2(x)− g2(x) = O(hk).

Pour la partie (ii), on applique l’inégalité exponentielle (2.5) aux variables aléatoires Zi =

Y −2
i ωi − E[Y −2

i ωi], on montre qu’il existe ε0 tel que :

∑
n∈N∗

IP
[ 1
n

∣∣∣∣ n∑
i=1

Y −2
i ωi − E[Y −2

i ωi]
∣∣∣∣ > ε0

√
logn
nϕx(h)

]]
<∞.

De même, comme K et Y −2
i sont bornés alors :

|ωi| ≤
C

ϕx(h)
donc :

Var(ω2
i ) ≤

C ′

ϕx(h)
ainsi :

IP
[
|Eĝ2(x)− ĝ2(x)| > ε0

√
logn
nϕx(h)

]
≤ 2 exp

(−nε20ϕx(h) logn
4nC ′ϕx(h)

)

≤ 2 exp
(−ε20 logn

4C ′
)

≤ 2n
−ε20
4C′ .

Donc :
n∑
i=1

IP
[
|Eĝ2(x)− ĝ2(x)| > ε0

√
logn
nϕx(h)

]
≤

n∑
i

2n
−ε20
4C′ ,
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il suffit de choisir −ε
2
0

4C ′ > 1. Nous obtenons donc :

n∑
i=1

IP
[
|Eĝ2(x)− ĝ2(x)| > ε0

√
logn
nϕx(h)

]
<∞.

Ce qui complète la preuve du Lemme 6.3.

Preuve du Lemme 6.4

La démonstration du Lemme 6.4 est similaire à la preuve du Lemme 5.4 du Chapitre

5.
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Chapitre 7
Application et conclusion

La dernière partie de ce mémoire est consacrée à une application sur des données simu-

lées dont l’objectif principal est la comparaison entre l’estimateur à noyau de la régression

relative et celui de la régression classique. Nous terminons cette partie par une conclusion

générale.

7.1 Application

Si les recherches théoriques des statisticiens se focalisent de plus en plus sur le trai-

tement des données fonctionnelles, c’est essentiellement parce que de plus en plus de do-

maines y ont recours. Dans cette application, nous présentons un exemple dans lequel nous

montrons la supériorité de l’estimateur à noyau de la régression relative (5.2) sur celui de

la régression classique défini par :

r̃(x) =

n∑
i=1

YiK(h−1d(x,Xi))

n∑
i=1

K(h−1d(x,Xi))
, (7.1)

en testant la sensibilité de notre procédure avec la présence de valeurs aberrantes .

On considère les courbes explicatives suivantes :

Xi(t) = ai sin(4(bi − t)) + bi + ηi,t, pour t ∈ [0, 1[ et i = 1, 2, . . . , 300,

où ai ; N (5, 2), bi ; N (0, 0.1) et ηi,t ; N (0, 0.2).
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Figure 7.1 – Les données fonctionnelles.

Les courbes Xi(t) sont discrétisées sur la même grille générées à partir de 100 mesures

équidistantes dans l’intervalle [0, 1[, on définit l’opérateur de régression par :

r(x) =
∫ 1

0

dt

1 + |x(t)| .

Ainsi, la réponse scalaire Y est définie par :

Y = r(X) + ε, où ε; N (0, 1).

Pour réaliser notre objectif, nous comparons sur un échantillon fini, les comportements

de l’estimateur à noyau de la régression classique (7.1) avec celui de la régression relative

(5.2) dans les deux cas :

1. L’absence des valeurs aberrantes.

2. les données sont affectées par certaines valeurs aberrantes

Dans cet exemple d’application, nous utilusons la règle de MAD-Médian pour détecter

les valeurs aberrantes, c’est à dire on dit que Yi est une valeur aberrante si :

|Yi −M |
MAD ∗ 0.6745 > C,

où M est la médiane de l’échantillon, et le MAD est la médiane de l’écart absolu donné

par :

MAD = median(|Y1 −M |, |Y2 −M |, . . . , |Yn −M |),
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et C est considéré comme
√
X 2
.975 (La racine carré du quantile de la distribution (Chi-

deux) avec un degré le liberté).

L’application de la méthode de MAD-Médian sur cette exemple de données identifie 23

valeurs aberrantes. Pour la première comparaison, nous supprimons toutes les observa-

tions des valeurs aberrantes détectées à partir des données d’origine. Ainsi, notre premier

exemple est réalisé par des données ne contenant pas de valeurs aberrantes. De plus, nous

avons divisé au hasard ces données en deux sous échantillons de tel sorte que le premier

appelé échantillon d’apprentissage I1 contenant les 200 premières observations, par contre

le second appelé échantillon de test I2 contenant 50 observations. Ensuite, la performance

des deux estimateurs est décrit par l’erreur quadratique moyenne, et l’erreur quadratique

moyenne relative suivantes :

MSE = 1
50
∑
i∈I2

(Yi − θ̂(Xi))2,

et

RMSE = 1
Var(Y )

∑
i∈I2

(Yi − θ̂(Xi))2,

où θ̂ signifie les deux estimateur étudiés (l’estimateur à noyau de la régression classique

(7.1) et relative (5.2)).

Méthode MSE RMSE

ERC 2.05 0.0263

ERR 2.09 0.0268

Table 7.1 – Les valeurs de MSE et RMSE pour les données simulées.

Où ERC (estimateur de la régression classique) et ERR (estimateur de la régression

relative). Comme dans toutes les méthodes de lissage, le choix du paramètre de lissage joue

un rôle crucial. Dans cette illustration, nous utilisons la procédure de validation croisée,

où h est choisie selon le principe suivant :

hopt = arg min
h
CV (h) = arg min

h

n∑
j=1

(Yj − θ̂−j(Xj)).

Où θ−j est l’estimateur de la régression classique (respectivement relative) privé de la

jème observation.
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Le deuxième paramètre crucial dans cette étude est la semi-métrique dont son choix est

basé sur la forme des courbes Xi, et il est claire que la semi métrique induite par L’ACP

est bien adapté à cet ensemble de données. Enfin, pour les deux estimateurs (classique

(7.1), relative (5.2)) nous avons utilisé un noyau quadratique.

Les résultats obtenue sont présentés dans la figure 7.2, il est clair qu’il n’ y a pas de

différence significative entre les deux méthodes (classique, relative).

Figure 7.2 – Les résultats de prédiction, à gauche par rapport à MSE et à droite par

rapport à RSME.

Dans la deuxième partie de cette application, nous nous concentrons sur la comparai-

son des deux modèles en présence de valeurs aberrantes. Pour cela, nous avons introduit

des valeurs aberrantes en multipliant certaines valeurs de Y dans l’échantillon d’appren-

tissage par 10. De plus, les deux estimateurs sont obtenus en gardant les mêmes conditions

précédentes ( les choix de paramètre de lissage, semi métrique et noyau). Enfin, nous rap-

portons les résultats obtenue dans le tableau 7.2 (respectivement 7.3), où nous calculons

les valeurs du MSE et RMSE respectivement en fonction du nombre des valeurs aberrantes

introduites.
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les statistiques 50 40 30 20 10 0

ERC 3412 2202.0 1178.0 557.9 138.8 3.047

ERR 5.035 4.62 4.086 3.945 3.549 3.56

Table 7.2 – Les valeurs de MSE en fonction du nombre de valeurs aberrantes introduites.

les statistiques 50 40 30 20 10 0

ERC 21.080 13.96 7.379 3.379 0.8862 0.0186

ERR 0.03104 0.02843 0.02559 0.0238 0.02265 0.02177

Table 7.3 – Les valeurs de RMSE en fonction du nombre de valeurs aberrantes introduites.

Rappelons que, dans le premier cas, les deux estimateurs sont équivalents. Cependant,

quand il y a des valeurs aberrantes l’estimateur à noyau de la régression relative est mieux

que celui de la régression classique. En effet, la méthode classique de noyau est très sensible

à la présence de valeurs aberrantes. Les valeurs de MSE et RMSE dans la méthode du

noyau augmentent sensiblement par rapport au nombre de valeurs aberrants, alors que ces

erreurs restent très faibles dans le cas d’estimation par la méthode de l’erreur relative.

7.2 Conclusion

L’idée générale de ce mémoire, est la modélisation de la co-variabilité entre une variable

explicative (réelle ou fonctionnelle) et une variable réponse scalaire par minimisation de

l’erreur moyenne quadratique relative. la principale caractéristique de cette fonction de

perte est qu’elle prend en compte la forme de poids de chaque observation, contrairement

à la fonction de perte de l’erreur moyenne quadratique où tous les observation ont le même

poids.

Dans un premier temps, nous avons considéré une suite d’observations réelles et nous avons

construit un estimateur à noyau pour la fonction de régression classique (cette estimation

a été faite à partir de l’erreur quadratique moyenne), puis, la fonction de régression relative

(l’estimation de l’erreur quadratique moyenne relative). Nous avons étudié la convergence

prêsque complète de ces deux estimateurs en précisent leurs vitesses de convergence. Nous
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nous somme concentré sur le cas où les observations sont indépendantes et identiquement

distribuées.

Dans un second temps, nous avons généralisé les résultats précédents au cas des observa-

tions qui ne sont pas comme généralement en statistique, des réalisations de variables aléa-

toires réelles ou vectorielles (vecteurs aléatoires), mais des fonctions aléatoires : courbes,

images, etc... Il s’agit de données de dimension infinie, c’est-à-dire rentrant dans le champ

de la "très grande dimension". Par contre, la variable réponse est toujours réelle. Cette gé-

néralisation a été étudié dans les deux cas : des observations i.i.d., dans laquelle nous avons

étudié la convergence prêsque complète ponctuelle et uniforme, la convergence en moyenne

quadratique et la normalité asymptotique du même estimateur considéré. Le deuxième cas

étudié était le cas dépendant avec un résultat de convergence prêsque complète.

D’un point de vue théorique, les résultats asymptotiques sont optimales tout comme le

cas de la méthode classique. Par contre, d’un point de vue pratique, la méthode de régres-

sion relative possède plus d’avantages que la méthode de régression classique. Nous avons

justifié cette supériorité à travers une application sur des données simulées.
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