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Premiere partie

Présentation générale



Chapitre

Introduction

La théorie de l'estimation est 'une des branches les plus basiques de la statistique.
Cette théorie est habituellement divisée en deux composantes principales, a savoir, 1’esti-
mation paramétrique et I’estimation non paramétrique. Le probleme de ’estimation non
paramétrique consiste, dans la majeure partie des cas, a estimer, a partir des observa-
tions, une fonction inconnue, élément d’une certaine classe fonctionnelle. Rappelons qu’une
procédure non paramétrique est définie indépendamment de la distribution ou la loi de
I’échantillon d’observations. Plus particulierement, on parle de méthode d’estimation non
paramétrique lorsque celle-ci ne se ramene pas a ’estimation d’un nombre fini de para-

metres réels associés a la loi de 1’échantillon.

Un des probléemes centraux en statistique est celui de l’estimation des caractéristiques
fonctionnelles associées a la loi des observations, telles que, par exemple, la fonction de
densité, la fonction de répartition ou la fonction de régression. Ce dernier est I'un des
outils, les plus utilisés en statistique. Elle est trés pratique lorsqu’on s’intéresse a la rela-
tion entre une variable réponse Y et une covariable X qui peut étre réelle, vectorielle ou
fonctionnelle. La régression peut aussi étre utilisée pour prédire la valeur de la variable
réponse, a partir de valeurs connues d’une ou plusieurs covariables (ou variables explica-
tives). Les applications de la régression, couvrent la plupart des domaines.

Il y a plusieurs fagons pour expliquer cette relation. La modélisation la plus générale est
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basée sur la considération suivante :
Y=r(X)+e.

our(X)=IE(Y|X);r(X) est inconnu et il faut 'estimer a partir des observations (Xj, Y;).
Les termes d’erreur € sont aléatoires ; Ils indiquent qu’il n’existe pas de relation exacte entre

la variable réponse Y et la variable explicative X. On suppose, aussi, que E(¢|X = z) =0

et Var(e|X = z) = o%(z).

Le probléme consiste donc a déterminer (ou plutdt & estimer) pour chaque réalisation
x de la variable X, la valeur de la fonction r(z). Pour caractériser cette fonction, une
premiere approche consiste a utiliser un modele de régression paramétrique. On suppose
que cette fonction peut s’écrire comme une fonction explicite des valeurs de X. Cette

derniére peut étre linéaire, par exemple
r(z) = a+ pux;

et on cherche alors & déterminer les meilleures valeurs des parameétres « et 8 compte tenu
d’un critére, par exemple celui des moindres carrés. Nous nous ramenons alors a 1’estima-
tion d’un nombre fini de parametres. Dans certains cas nous pouvons disposer pour cette
estimation d’un échantillon {(X4;Y4);i = 1,...,n} de couples indépendants et ayant cha-
cun la méme loi que (X;Y). Souvent, l'utilisation d’'un modeéle paramétrique n’est pas
justifiée, il est alors possible de se suffire de la seule donnée de 1’échantillon pour réaliser
une estimation. Ce sera a ’aide d’un modele non paramétrique. Dans ce cas on ne dispose
d’aucune forme paramétrique pour r mais seulement d’hypothéses générales de régularité

comme la dérivabilité.

La méthode des moindres carrés pondérée est parmi les criteres utilisés dans 'estima-
tion statistique pour les modeles de régression, ce critére peut ne pas étre adapté a cer-
tains situations. En effet, I’étude de la régression par la méthode des erreurs quadratiques
moyennes se traduit par le principe que toutes les variables ayant un poids égal, donc la

présence de valeurs aberrantes peut conduire a un résultat non pertinent.

Dans ce travail on cherche & estimer l'opérateur r(x) avec un autre critére. L’estimateur
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construit est basé sur la minimisation de ’erreur quadratique moyenne relative, cette tech-
nique est utile dans ’analyse des données avec des réponses positives comme le cours des
actions ou la duré de vie, particuliéerement courantes dans les domaines économiques, fi-
nance, ou les études biomédicales. Elle est donc la plus appropriée comme mesure de la

performance que le critere des moindres carrées dans de nombreuses situations pratique.

1.1 Historique

1.1.1 La régression classique et relative

Dans le contexte non paramétrique, les premiers résultats ont été obtenus par Tukey
[28]. Tandis que l'estimation par la méthode du noyau a été utilisée pour la premiere fois
en 1964 séparément par Nadaraya et Watson. Cette méthode d’estimation a connu un dé-
veloppement continu. En effet, Devroye [7] a établi la convergence uniforme presque siire
de cet estimateur. Le taux de convergence optimal pour la régression non paramétrique
a été donné par Stone ([26], [27]). Collomb ([1] ,[5]) a apporté une contribution détermi-
nante sur ce modele. Ces travaux se sont focalisés sur I'utilisation de la régression dans la
prévision de séries chronologiques. Les premiers résultats asymptotiques sur ’estimation
non paramétrique de la fonction de régression sur les processus a-mélangeants ont été
élaborés par Gyorfi et al. [13]. Dans ce cadre a-mélangeant, Vieu [30] a donné les termes
asymptotiquement exacts de 'erreur quadratique de ’estimateur a noyau de la fonction
de régression. Nous renvoyons a Sarda et Vieu [25] pour un large éventail de références.
Les premiers résultats conséquents sur la notion de régression relative ont été obtenus
en 1989 par Campbell et al [2], ou la régression relative a été utilisée comme outil de
classification. En 1991 Ruiz Velasco [21] a évoqué Defficacité asymptotique de la régres-
sion relative logistique dans un contexte paramétrique, en particulier lorsque les variables
explicatives sont normalement distribuées. Park, Heungsun, et Stefanski [19] ont utilisé
des techniques de régression non paramétrique pour produire un estimateur basé sur 1’es-
pérance conditionnelle de la variable réponse inverse. Jones et al. [L7] ont construit un
estimateur consistant pour ce modele, en utilisant la méthode du noyau. Ils ont établi des
propriétés asymptotiques, notamment sa convergence en moyenne quadratique dans le cas

ou les observations sont indépendantes et identiquement distribuées. Dans un article publié
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en 2008 par Giorgi et al. [11], une approche portant sur I’estimation de la survie relative
des patients atteint d’un cancer colorectal, a permis d’obtenir une estimation flexible et

représentant une forme réaliste d’un point de vue épidémiologique.

1.1.2 Les données fonctionnelles

De trés nombreux travaux ont été dédis a I’étude de modeles impliquant des variables
aléatoires multivariées et c’est un domaine de la statistique toujours tres étudié. Cepen-
dant, les récentes innovations réalisées sur les appareils de mesure et les méthodes d’ac-
quisition ainsi que l'utilisation intensive de moyens informatiques permettent souvent de
récolter des données discrétisées sur des grilles de plus en plus fines, ce qui les rend intrin-

sequement fonctionnelles.

Les courbes de croissance, les enregistrements sonores, les images satellites, les séries chro-
nologiques, les courbes spectrométriques ne sont que quelques exemples illustrants le grand
nombre et la diversité des données de nature fonctionnelle auxquelles le statisticien peut
étre confronté. C’est une des raisons pour lesquelles un nouveau champ de la statistique,
dédié a I’étude de données fonctionnelles, a suscité un fort engouement au début des an-
nées quatre-vingt, sous I'impulsion, notamment, des travaux de Grenander [12] et Ramsay
[20]. I1 a été popularisé par Ramsay et Silverman [21], puis par les différents ouvrages de
Bosq [l], Ramsay et Silverman [22] et , [23] et Ferraty et Vieu [9]. De plus, méme si les
données dont dispose le statisticien ne sont pas de nature fonctionnelle, il peut étre amené

a étudier des variables fonctionnelles construites a partir de son échantillon initial.

Dans le contexte particulier de I’étude de séries temporelles, I’approche introduite par Bosq
[1] fait apparaitre une suite de données fonctionnelles dépendantes qui modélisent la série
chronologique observée. Elle consiste tout d’abord a voir le processus non plus au travers
de sa forme discrétisée mais comme un processus & temps continu puis & le découper en un
échantillon de courbes successives. Enfin, on trouve également dans la littérature de nom-
breux travaux portant sur des données dites longitudinales provenant de mesures répétées
d’un méme phénomene au cours du temps. Il s’agit en général de données discrétisées en
seulement quelques points et les méthodes utilisées different souvent de celles utilisées lors

de I’étude de variables aléatoires fonctionnelles. Cependant, certains outils de la statistique

10
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fonctionnelle peuvent s’adapter a ce type particulier de données fonctionnelles comme le

montrent notamment les articles de James et al. [16], Hall et al. [11].

Exemple sur les données fonctionnelles [3]

Etudes longitudinales : Il est courant de disposer des données concernant un méme

phénomene mesuré quantitativement a différents temps de mesure. On peut alors souvent

considérer que 'on dispose de courbes aléatoires dépendantes du temps (réalisation de

processus a temps continu indexés par le temps).

Temperature moyenne (deg C)

1. Courbe des températures relevées en un point donné, a différents instants, courbe

des cumuls mensuels de précipitations en un point donné. De nombreux exemples

sont disponibles dans les données CanadianWeather du package fda.

On représente a titre d’exemple a la Figure 7.1 1’évolution des températures au
cours d’une année (mesures moyennes journaliéres) dans 4 stations météorologiques

canadiennes, et au graphique 1.2 les précipitations journaliéres dans 3 autres stations.

20

10 —f

-10

-20

FIGURE 1.1 — Températures moyennes dans les 4 stations.
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log en base 10 des précipitations

Preécipitations au Canada

; Lt oA gk il
F [l

Jours (du 1er juillet au 30 juin)

FIGURE 1.2 — Les précipitations journalieres dans 3 stations

. Courbe de croissance d’un individu (ou d’une plante) au cours du temps. On peut

citer par exemple, Les données growth du package fda qui contiennent les tailles

de filles et de garcons, mesurées a 31 ages, entre 1 et 18 ans.

Les courbes associées pour 10 filles et 10 garcons de I’échantillon sont représentées

a la Figure 1.3.

12
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40
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100
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F1GURE 1.3 — Courbe de croissance des filles et des gargons.

1.2 Organisation du mémoire

Notre travail est scindé en trois parties :

Apreés une partie introductive (comprenant les deux premiers chapitres) dans laquelle
nous avons donné un bref historique sur la régression classique, la régression relative et les
données fonctionnelles. Nous y énoncons également les définitions et outils probabilistes
auxquels nous avons eu recours tout au long de ce mémoire.

Concernant la deuxiéme partie, nous ’avons consacrée au cadre réel, en s’intéressant uni-
quement au cas d’observations i.i.d. Dans ce contexte, cette deuxiéme partie est composée
également de deux chapitres. Nous commengons au geme chapitre a présenter un esti-
mateur a noyau de la régression classique, et nous établissons sa convergence presque
compléte. Dans le j4eme chapitre , nous passons a I’étude de I’erreur relative en établissant
la méme propriété asymptotique que le chapitre précédant.

La troisieme partie est consacré au cadre fonctionnel et est divisée en trois chapitres. Dans
le 5éme chapitre, nous nous intéressons au cas ou les observations sont indépendantes
et identiquement distribuées, la réponse est réelle et la covariable est fonctionnelle. Nous

établissons la convergence presque complete ponctuelle et uniforme, la convergence en

moyenne quadratique et la normalité asymptotique. Nous généralisons dans le Chapitre

13
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6, le résultat de la convergence presque compléte du chapitre précédant, au cas ou les
données sont aa—mélangeantes. Certains résultats théoriques obtenus au chapitre précé-
dent sont illustrés a travers une application sur des données simulées dans le septiéme
chapitre. Ce dernier est achevé par une conclusion générale. Une bibliographie abondante

est présentée dans la fin de ce mémoire.

14



Chapitre

Préliminaires

Ce chapitre est destinée a quelques définitions et outils statistiques nécessaires pour

I’élaboration des différents résultats présentés dans ce mémoire.

2.1 Définitions

2.1.1 Le noyau

L’étude de la relation entre deux variable aléatoires X et Y est un sujet tres important
dans I'estimation non paramétrique. Les premiers travaux ont été étendus a la notion de
régression par la méthode du noyau K, tel que K est défini par :

400
Définition 2.1. [9] Une fonction K est définie de R dans RT tel que / K(u)du =1
est dite Noyau : -

i) De type 0 s'il est de support [0, 1] compact et pour tout u € [0,1], K(u) > 0.

ii) De type 1 s'il existe deux constantes réelles 0 < C; < Cy < oo tel que :
0111[0,1] <K< 02]1[071] L

iii) De type 2 si son support est [0, 1], de plus s’il est dérivable et sa dérivée existe sur

[0, 1] est satisfaite pour deux constantes réelles —oo < C1 < Cy < 0 :

CQ<K/<01.

1. 1, la fonction indicatrice qui vaut 1 lorsque p est vrai, O sinon.

15



2. PRELIMINAIRES

Exemples 2.1. Plusieurs types de noyaux sont couramment utilisés : rectangulaire, Uni-
forme, Triangulaire, Quadratique et Gaussien.
— Noyau rectangulaire est défini par :

K(u) = S0 o).

— Noyau Uniforme est défini par :

1
K(u) = 5 1(u<).

— Noyau Triangulaire est défini par :

K(u) = (1= |u)Ljui<)-

Noyau Quadratique est défini par :

15
K(u) =701~ u?)? 1 (juj<1)-

Noyau Gaussien est défini par :

1 1,
€ —=Uu ).
Nor xp( )

K(u) = ;

2.1.2 La convergence presque complete

Le concept de convergence presque complete a été introduit par Hsu et Robbins [15].
Elle implique la convergence presque siire et se préte bien aux calculs faisant intervenir des
sommes de variables aléatoires. Malgré cela, elle ne commence a devenir populaire dans la
communauté statistique que dans les années 1980 apres les travaux de Collomb ([1] ,[5]).
Elle est utilisée surtout en statistique non-paramétrique. Ce critére ainsi que sa vitesse de

convergence sont présentés dans les définitions suivantes :

Définition 2.2. [9] On dit que la suite de variables aléatoires réelles (X, )n,en converge
presque complétement vers une variable aléatoire X lorsque n — oo si et seulement si :
V6>021P(|Xn—X| > €) < 00,
n>0

et cette convergence est notée par :

lim (X,), =X, p.co.

n—o0

16
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Définition 2.3. [9] On dit que la vitesse de convergence presque compléte de la suite de
variables aléatoires réelles (X, )nen vers X est d’ordre w, (u, étant une suite numérique
déterministe) et on note X, = Op.co.(up), si :

dep > 0, Z P[| X, — X| > equy| < 0o.
neN

2.1.3 La notion de mélange

De nombreux propriétés statistiques fonctionnelles ont été établies en considérant des
échantillons indépendants. Cependant, il est parfois intéressant d’étudier des échantillons
dépendants afin de pouvoir répondre a des situations ou les données ne sont pas nécessaire-
ment indépendantes. Il y a plusieurs types de modélisation de la dépendance au sein d’un

échantillon. Nous nous intéresserons dans ce mémoire & des variables a—mélangeantes.

Définition 2.4. [9] Soit {&, }nez une famille de variables aléatoires définie sur I’espace de
probabilité (€2, A, P) a valeurs dans un espace probabilisable (Q/, .A/). On note pour —oco <
j <k < 400, par A? la o-algebre engendrée par les variables aléatoires (&s,j < s < k).
On défini le coeflicient o« de mélange fort par :
a(n) =sup sup sup |P(ANB)—-P(A)P(B).
k AeAr  BeBl™>

La suite (&,)nez est dite a-mélangeante (ou fortement mélangeante), si :

lim a(n) =0. (2.1)

n—oo
Parmi les différents types de décroissance des coeflicients de a-mélange on distinguera les
cas de décroissance arithmétique et géométrique. Nous nous concentrons dans ce mémoire

sur le premier type.

Définition 2.5. [9] La suite (§,)nen est dite arithmétiquement (algébriquement) a-mélangeante
si:

3C >0, a(n) < Cn™%, avec a > 0. (2.2)

2.1.4 Modélisation mathématique des variables fonctionnelles

Au cours des dernieres années, la branche de la statistique consacrée a 1’étude de va-

riables fonctionnelles a connu un réel essor tant en terme de développements, théoriques

17
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que de diversification des domaines d’application. Nous nous intéressons plus particulie-
rement dans la troisieme partie de ce mémoire a la régression relative dans laquelle la

variable réponse est réelle tandis que la variable explicative est fonctionnelle.

Définition 2.6. Une variable aléatoire est dite variable aléatoire fonctionnelle si elle prend
ses valeurs dans un espace vectoriel de dimension infinie. Typiquement, il s’agit donc d’une
application mesurable X : @ — F. Une donnée fonctionnelle est alors une réalisation de

la variable X.

2.1.5 La semi-métrique

Pour étudier des données on a souvent besoin d’avoir une notion de distance entre
celles-ci. Il est bien connu qu’en dimension finie toutes les métriques sont équivalentes. Ce
n’est plus le cas en dimension infinie, ¢’est pourquoi le choix de la métrique (et donc de la
topologie associée) est un élément encore plus crucial pour I’étude de variables aléatoires
fonctionnelles qu’il ne I'est en statistique multivariée. En plus des métriques disponibles il

est assez souvent intéressant de considérer des semi-métriques.

Définition 2.7. [9] d est une semi-métrique sur un espace F si elle vérifie les deux condi-

tions suivantes :
1. Ve e F d(z,x) =0,

2. V(z,y,2) e Fx FxF d(z,y) <d(z,z)+d(z,vy),

Les semi-métriques permettent un éventail plus large de topologies possibles que 'on

pourra choisir en fonction de la nature des données et du probleme considéré.

2.1.6 Probabilités de petites boules

Le probléeme du fléau de la dimension est un phénomeéne bien connu dans le cas du
modele non paramétrique de régression multivariée. Il provoque une décroissance expo-
nentielle des vitesses de convergences des estimateurs non paramétriques en fonction de la
dimension. Par conséquent, il est légitime de penser que les méthodes non paramétriques

dans des modeles de régression sur variable fonctionnelle risquent d’avoir une vitesse de

18
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convergence treés lente. Dans le cas ou la variable explicative est multivariée (c’est & dire,
a valeurs dans un espace de dimension finie d), les vitesses de convergence de 1'estimateur
A noyau sont exprimées en fonction d’un terme de la forme h?, provenant de la probabilité
que la variable explicative appartienne a la boule de centre x et de rayon h. Dans le cas
d’une variable explicative fonctionnelle, les résultats asymptotiques sont exprimés a partir

de quantités plus générales appelées probabilités de petites boules et définies par :

Définition 2.8. [3] Soit X une variable aléatoire fonctionnelle & valeurs dans un espace

de Banach F', on appelle probabilités de petites boules de X les quantités suivantes :
wz(h) =P(d(z,X) < h), x€F,h>0,

ou B(z,h) ={X € F, d(z,X) < h}, avec z est le centre de la boule B(x,h) et h son

rayon.

2.1.7 Pondération locale du noyau

Dans le cas des dimensions finies, les techniques de pondération locale sont tres appré-
ciées en estimation non paramétriques car elles sont tres bien adaptées aux modeles non
paramétriques. L'une des approches les plus courantes parmi ces méthodes est certaine-

ment celle du noyau.

Cas de variables aléatoires uni-dimensionnées

La pondération locale du noyau est basée sur une fonction de noyau K et une largeur
de fenétre h. Si x est un nombre réel fixé, la pondération locale du noyau transforme n

variable aléatoire réels X1, Xo,..., X, a wi,wo,...,wn, tel que :

1 Tr — Xl
w; =wi(z,h, K) = -K . 2.3
=il b, 1) = K (T (23)
L’idée principale de la pondération locale autour de x est d’attribuer a chaque variable
aléatoire X; un poids prenant en compte la distance entre x et X;, plus X; est éloigné de

x, plus la pondération est petite. Pour préciser la notion de pondération locale du noyau,

considérons le noyau rectangulaire et réécrivons les w; comme suit :

1
Wi = 3 e arn) (Xi)-
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Dans cette situation, la caractéristique locale de la pondération semble évidente puisque
les variables aléatoires réelles en dehors de 'intervalle [z — h, x+ h] sont ignorées. En outre,
la normalisation % est proportionnelle a la taille de 'ensemble [z — h, x + h] sur lequel les
X, sont prises en compte. Cette notion de pondération locale n’est pas seulement valable

pour le noyau rectangulaire, mais aussi pour tous les noyaux compacts.

Cas de variables aléatoires multi-dimensionnées

Dans des situations multivariées, on observe n vecteurs aléatoires X1, Xo,..., X, éva-
lués en R?. La pondération locale précédente du noyau peut étre facilement étendue a cette
situation. En effet, il suffit de considérer un noyau multivarié K*(u) qui sera une fonction
de R? dans R. Le premier moyen de le faire est de définir K*(u) comme un produit de p

fonctions de noyaux réels Ki, Ko, ..., K, :
Yu = (Ul,UQ, .. .,up)t € R?, K*(U) = Kl(ul) X KQ(UQ)X, RN pr(up).

Soit z un vecteur fixé de RP. La pondération locale du noyau multivarié consiste a

transformer les n vecteurs aléatoires X1, Xo,..., X, a wi,ws,...,wn, tel que :

1 x—X;
= —K* ‘).
YT ( h )

Si 'on considere les noyaux compatibles de maniere compacte, il apparait clairement que

les w; sont des transformations pondérées localement des variables X;, puisque w; = 0 tant

que le X; correspondant est en dehors de certains voisins de x.

Cas de variables aléatoires infini-dimensionnées

Soit X1, Xo, ..., X, n variables aléatoires fonctionnelles évaluées dans F, et soit x un
élément fixé de F. Une extension fonctionnelle des idées de la pondération locale du noyau

multivarié sera la transformation de ces n variables aux n quantités suivantes :

()

Ou d est une semi-métrique sur F, K est un noyau réel. Dans cette expression V (h) serait
le volume de :

B(z,h) = {2’ € F,d(z,2") < h}.
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2. PRELIMINAIRES

Qui est la boule par rapport & la topologie induite par d, centrée a x et au rayon h.
Cependant, cette approche demande de définir V' (h). Il faut avoir une mesure sur F.
C’est la principale différence avec les cas réels et multivariés pour lesquels la mesure de
Lebesgue est implicitement utilisée ce qui n’est pas le cas dans ’espace fonctionnel F. Par
conséquent, afin de se libérer d’un choix d’une mesure particuliere, nous construisons la
normalisation en utilisant directement la distribution de probabilité de la variable aléatoire

fonctionnelle, les variables pondérées locales du noyau fonctionnel sont alors définies par :

()
()

2.1.8 L’entropie de Kolmogorov

w; =

(2.4)

L’entropie de Kolmogorov? est un outil qui permet de mesurer la complexité des en-
sembles, dans le sens ou une grande entropie signifie qu'une quantité importante d’infor-

mations est nécessaire pour décrire ’ensemble.

Définition 2.9. Soit & un sous- ensemble de ’espace semi-métrique F, et soit € > 0,
un ensemble fini de pointe Xi, Xo,..., Xy dans F est appelé un e-net pour § si S C
L]j B(xg,€), la quantité ps(e) = log(Ne(S)), ot Ne(S) est le nombre minimal des boules
]g)flilertes en F de rayon € qui est nécessaire pour couvrir S, s’appelle 'entropie de Kolmo-

gorov de S.

Cette notion représente la mesure de la complexité d’un ensemble dans le sens ou
une entropie élevée signifie que beaucoup d’informations sont nécessaires pour d’écrire un
élément avec une précision €. Par conséquent le choix de la structure topologique (d’autre
fagon, le choix de la semi-métrique), joue un roéle crucial quand on regarde les résultats
asymptotiques uniformes sur certains sous-ensemble Sz . Plus particuliérement, la semi-
métrique peut également augmenter la concentration de la mesure de probabilité de la

variable fonctionnelle X pour minimiser € I’entropie de sous ensemble Sr.

2. Ce concept a été introduit par Kolmogorov au milieu des années 1950.
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2.2 Outils

2.2.1 Inégalités exponentielles

L’outil que nous allons utiliser de maniere déterminante dans les problemes de conver-

gence presque-compléte est 'inégalité exponentielle de Hoeffding ci-dessous :

Lemme 2.1. [8] Soit Ay,...,A, des variables aléatoires centrés, indépendantes et de

méme loi, telle qu’il existe deux réels positifs 61 et do vérifiant :
‘Al‘ <41 et E‘A1‘2’ < 99

Alors, pour tout € €]0,02/61] on a :

n

>

=1

P [nl

2
—ne
>¢e| <2e 2.5
Le lemme suivant donne L’inégalité de Fuk Nageav, cette inégalité est en fait une extension

au cadre de variables fortement mélangeantes de L’inégalité de Hoeffding :

Lemme 2.2. [5] Soit {A;,i € N} une famille de variables aléatoires a valeurs dans R qui
vérifient la condition de mélange forte (2.1) avec des coefficients a décroissance algébrique

tels que définis en (2.2). On pose

sizzn:zn: Cov(As, Aj)|.

Si [|Allee < 00, Vi, alors on a pour tout € > 0 et pour tout r > 1 :

2\ 2 97\ a1
>4del <41 —|— + 2ner™! (5) . (2.6)

n
Le lemme suivant présente une inégalité de covariance qui est tres utile pour le calcul de

3>

k=1

si, définie dans le lemme précédent :

Lemme 2.3. [S/Inégalité de Dvydov-Rio : Soit {A;,i € N} une famille de variables aléa-
toires a valeurs dans R qui vérifient la condition de mélange forte (2.1), et telle que

|Al|co < 00, Vi. On a pour tout i # j :

|Cov(Ai, Aj)| < 4| Aol Al cocr)i—ji-
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Le corollaire suivant présente une inégalité exponentielle tres utile dans le cas fonctionnel.

Corollaire 2.4. [9]
(i) SiVm >2,3C,, >0, E(Z7") < Cpa®™ Y, on a
= —en
Ve > O,IP<|;ZZ-| > en) < 2exp (%2(1_’_60
(i.i) Supposons que les variables dépendent de n (c’est & dire : Z; = Z; ), si Ym > 2,
3C, > 0, E(Z]") < Cpa®™ Y et si U, = n"'a?logn vérifie nh_)ngo U, = 0, nous

obtenons :

1
EZZ - Op.co.(\/ Un)

2.2.2 Théoréme centrale limite de Lyapunov

Dans la littérature, il existe plusieurs versions du théoréme central limite. Dans ce

travail, nous focalisons sur la version de Lyapunov.

Théoréme 2.5. [29] Soit X1, Xo,...,X,, des variables aléatoires indépendantes et iden-
tiquement distribuées de carré intégrables de moyenne p; et de variance UZ-Q.

n
Soit SZ = Z 01-2, la condition de Lyapunov suppose I’existence d’une valeur 6 > 0 tel que :
i=1

n—o00 Sn

. 1 Zn
hm TM ]EHXl — 'LLi|2+6] =0.
=1
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Deuxieme partie

Cas réel
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Chapitre

Régression classique

L’un des modeles le plus fréquemment rencontré en statistique paramétrique ou non
paramétrique est le modele de régression. Le principe de la régression non paramétrique
remonte au dix neuvieme siecle. La régression non paramétrique est devenue une méthode
populaire pour analyser une relation entre une variable dépendante Y et une variable
indépendante X. Son objet, est d’estimer cette relation de dépendance sans faire d’hypo-
theses paramétriques sur la forme de cette dépendance. Dans ce chapitre, nous présentons
le modele et son estimateur a noyau dans la premiere section. Dans la deuxiéme section,

nous établissons sa convergence presque complete en précisant sa vitesse de convergence.

3.1 Modéle et son estimateur

Considérons n couples de variables aléatoires (i.i.d.) (Xj,Y;)i<i<n ayant la méme loi
que le couple (X,Y), ou X et Y sont a valeurs dans IR. Comme il a été déja mentionné
dans l'introduction, la méthode la plus communément utilisée pour étudier la relation
entre les deux variables aléatoire X et Y est la régression, qui suppose un modele de la

forme :

Y =r(X)+e, (3.1)

ot les erreurs aléatoires ¢; sont non corrélées, de moyennes nulles et de variances o.
On cherchera, dans une famille fixée de fonctions quelle est celle pour laquelle les Y sont les

plus proches de r(X). Cette proximité se mesure en général par un risque utilisant I’erreur
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3. REGRESSION CLASSIQUE

quadratique moyenne (MSE en anglais), et on essayera alors de déterminer la fonction

7(X) qui rendra cette erreur la plus petite possible, c’est a dire :

E[(Y —7(X))?] = minE[(Y — (X))

r

Il est connu que ce minimum est donne par I’espérance conditionnelle :
r(X) =E[Y/X =4,

La preuve de cette égalité est trouvée en différenciant I'espérance E[(Y — r(X))?] par

rapport a r(X), en égalant le résultat a 0, et finalement en isolant 7(X), on obtient :

0
or(X)

E[(Y - r(X))?/X] =2E[Y —r(X)/X]
= 2E[Y/X] — 27(X)
=0,

= r(X) = E[Y/X].

L’estimateur de Nadaraya- Watson (1964) de la régression est donnée par :

r(x) = @, (3.2)
(z)
tel que
~ 1 “ T — Xz . 1 "
i(x) = nh;m( ) - i
et

-~ N'K S .
/(@) nhZ ( h ) n;w“
ot K est le noyau, w; est la pondération locale définie par la formule (2.3) et f(z) est
I’estimateur & noyau de la fonction de densité de x .
3.2 La convergence presque complete

Notre but dans cette section est ’établissement de la convergence presque compléte de

I'estimateur (3.2).
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3. REGRESSION CLASSIQUE

3.2.1 Hypotheses et notations

Dans toute la suite, C' désignera une constante générique positive qui prendra diffé-
rentes valeurs selon le contexte, mais ne dépendra pas de n. D’autre part, toutes les limites

sont obtenues pour n — oo ; sauf indication.

Nous introduisons les hypothéses suivantes :
(H.1) Les fonctions f(z) et g(z) sont k-fois continument dérivables et bornées respec-
tivement par M, M.
(H.2) La densité f(x) est positive.
(H.3) Le noyau K est borné, intégrable et a support compact, de plus, il est supposé

d’ordre k c’est a dire :

. 0 si j<k
/ |Z) K (z)dz =
R C i j =k ou C est une constante

(H.4) Le parametre de lissage h vérifie :

lim h =0,

n—o00

et

. logn
lim

n—oo nh

=0.

3.2.2 Résultat asymptotique

Théoréme 3.1. Supposons que les hypothéses précédentes soient réalisées alors on a :

P(x) —r(z) = O(h*) + Op.co. (\/%>

3.2.3 Démonstration

La preuve du résultat précédent est basée sur la décomposition suivante :

(0 Jw
_ @) —g@) |, f)r(@) - fla)r)
(x) f(@)
i) o) | f) - )
Fw) F@)

Par conséquent, le résultat énoncé dans le Théoreme 3.1 découle des lemmes suivants :
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3. REGRESSION CLASSIQUE

Lemme 3.2. Sous les hypothéses du Théoréme 3.1, on a :
(i) E[f(2)] — f(x) = O(h¥),
(ii) E[g(z)] - g(x) = O(hF).

Lemme 3.3. Sous les hypothéses du Théoréme 3.1, on a :

() f(a) - Elf@)] = Opeo (W}

(i) §(2) ~ E[G()] = Opes. (\/ﬁ)

Lemme 3.4. Sous les hypothéses précédentes, on a :

35 > 0, zn:]P[Lf(x)l < 5] < .
=1

Preuve du Lemme 3.2

— Commencons par la partie (i)

Comme les X; sont équidistribuées, on a;
1 n

(55

Ef@)] —E|--

=1

on obtient :

E[f(z)] = /R K(2)f(z — h)dz,

puisque f est k fois est dérivable, on utilise le développement de Taylor suivant :

k=1, 1\j 5 i ik . i
flo—he) = f(z) + 3 (Uj'(mfg(x) N (1)];’1)
=1 : !

FH(82),

ou 0, est entre x et x — hz. D’autre part, en utilisant la deuxieme partie de I’hypothese

(H.3), nous obtenons :

Elf()] = (@) + (-1t [ RS

R

f*(6a)

dz,
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3. REGRESSION CLASSIQUE

puisque f* est continue, alors lorsque h — 0 on a : f¥(6,) — f*(z),

on obtient donc :

~ hE
E[f(2)] - f(2)] < H!fk(x)l /IR |2*|K (2)d2
< C1hF,
.C ) , .
avec C1 = ——, ce qui donne le résultat de la partie (i). [ |

k!
— Pour ce qui concerne la partie (ii), on a :

sla) = B[ > v (5]
:iE{YK(xhXﬂ

= }L/RYK(QU ; u)f(u)du

En conditionnant par rapport & X = x, on obtient :

Blga)] = [ BY/X = ok (") fuda
1 T—U
== /Rr(x)K< . )f(u)du.
D’autre part, on a r(z) = f”ifc; = g(x) = r(z)f(x), ce qui conduit a :

r—Uu

Blge)) = 1 [ (55 )gturd

En effectuant le méme changement de variable (3.3), et la symétrie du noyau K nous

permet de déduire :
Elgla)) = [ K(2)g(e - h2)dz.

Puisque g est k fois différentiable, on utilise le développement de Taylor comme précédem-

ment. Ainsi, nous obtenons :

k
Elg(a)] = g(o) + (-1 [ K()? (6.)

A X dz,
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3. REGRESSION CLASSIQUE

puisque ¢* est continue, alors lorsque h — 0 on a : ¢*(8,) — ¢*(z).

On obtient donc :

)~ o] < Mlo | [ 1K)

< CQhka
!
avec Cy = i et le résultat de la partie (ii) est donc achevé. ]

Preuve du Lemme 3.3

La preuve du Lemme 3.3 nécessite 1'utilisation de I'inégalité exponentielle.
— Commencons par la partie (i)

on a :

Foy -l = 3o (F5E) e[ k()]

s (5

s () -2l (5|

Pour appliquer L’inégalité (2.5), il faut d’abord vérifier les deux conditions suivantes :

.
—_

on pose :

1. ‘A2| < 61,
2. E[A?] < (52.

Pour la condition 1. et puisque K est borné, on a :
1 z—X; r— X;
Al <k N+ e x )m
A w57 [+ el (5

= 01.

<

= Q
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3. REGRESSION CLASSIQUE

Pour la condition 2. on a :

< th/RKQ(x;u)f(u)du

Par un changement de variable, nous obtenons :

E[A7) < | K2~ he)az,

K est de carré intégrable et de plus lorsque h — 0, f(z — hz) — f(z), nous obtenons
donc :
M

E[A?] < — = §,.
[z]—h 52

Puisque les deux conditions sont vérifiées, on peut appliquer I'inégalité exponentielle

(2.5) :
1 , —ne’?
<
]P(n >e> _2exp< 105 )
2

—€
< 2n4]b1,
/ logn R N
avec € = e/ ——, c’est a dire :
nh

ZIP(:JZAJ > e’) < 0.
=1

=1

n

DA

=1

Ce qui prouve la partie (i). [

— Concernant la partie (ii), on a :

§(z) ~Elgx)] = nlh;”f(x =) - EMZYK(QU )]

B -]

)
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3. REGRESSION CLASSIQUE

On pose :

A= g nE (S —E v (S5

D’une maniére analogue a la partie (i), il faut d’abord vérifier les deux conditions précé-
dentes.

Pour la condition 1. et puisque K est borné, on a :

1 x—X; r—X;
. < = . .
Al _h{YlK( h >‘+‘E{YK< h )m
C
< — = 01.
< 01

Pour la condition 2. on a :

miat) = ][ (2522wl (2529 ]

h2 h

1 x— X;
< —E|YV2K?[—
~ h? { ( h ﬂ

gééﬁﬁ@;ﬂmww

Ainsi, apreés un changement de variable, nous aurons :
1
E[A}] < SYPK?(2)f(x — hz)dz,

K étant de carré intégrable et de plus, lorsque h — 0, f(x — hz) — f(z) nous obtenons

donc :
M
E[A?] < — = 6.
h
On peut maintenant appliquer I'inégalité exponentielle (2.5) :
1 —ne’?
P|- ") <2
(n 2 >e> < exp<452>

=1
2

—€
< 2naMm ,

logn
nh

/ \ .
avec € = € , c’est a dire :
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[
Preuve de Lemme 3.4
Nous remarquons que :
~ x ~ X
Fan < 19 5\ fw) - pay) > 12,
d’ou :
~ € -~ X
P[ifl < 2] < e 1fw - sl > 12,
_ fl2) ,
Comme f(z) > 0, on prend § = 5+ ous obtenons :
le[yf(x)y < 5} < 0.
i=1
Ce qui complete la preuve du Lemme 3.4. [ |
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Chapitre

Régression relative

Nous présentons dans ce chapitre, la régression relative qui est définie a partir d’une
minimisation de 'erreur quadratique moyenne relative. La présentation du modele ainsi
que son estimateur a noyau est explicitement donnée dans la premiére section. Dans la
deuxiéme section, nous établissons la vitesse de convergence presque complete de I'estima-

teur construit.

4.1 Modéle et son estimateur

On consideére {(X;,Y;),7 = 1,...,n} une suite de n—observations réelles indépendantes,
de méme loi que le couple (X,Y’). Nous nous concentrons sur ’étude du lien entre une
variable explicative X et une réponse Y. La modélisation la plus générale de cette relation

est basée sur la considération suivante :
Y =r(X)+e,
ou € est une variable aléatoire réelle centée et indépendantes de X , telle que :

E(e/X) = 0;
var(e/X) = 0% < .
Dans ce chapitre, on obtient 'estimateur de l'opérateur de régression r(x) par la minimi-

sation de 'erreur quadratique moyenne relative, c’est a dire :
vy _ 2
minEK}:(@) /X = ﬂ:}, pour Y >0. (4.1)
'
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4. REGRESSION RELATIVE

(4.1) est une mesure plus significative, lorsqu’on a des valeurs aberrantes. La solution
du probléme (4.1) peut étre explicitement exprimée par le rapport des deux premiers
moments inverses conditionnels de Y sachant X.

E[Y~!/X]

r(z) = E[Y—2/X]’ (4.2)

" eﬁeta Y —r(z)\? Y —r(z)
it () =] e () fx =]

=2E[Y /X =] - 27(2)E[Y ?/X =2] =0

p(=1)
n(=2)

On peut démontrer facilement, que (4.2) est le meilleur prédicteur de Y sachant X.

=r(z) =

En effet, soit R(x) un prédicateur quelconque de Y sachant X, alors :

(E) fre] (TR

Y

{7 x5 -

o0 =rlelre) “RE) ]

(Y e

+2E[(Y_YZ(:U))/X} (r(z) — R(x)).

Y

Remarquons que le troisiéme terme de (4.3) est nul car :

o A R

(A (K )’ o) )
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4. REGRESSION RELATIVE

Donc, on aura :

(5

) -

= E(Y !X =2)-r@EY /X =2)

B[(“5) =] (5 )/X—x}
[ /X—wFE[( ") fx=

1 —2E(Y " Yr(z)/X = 2) + E(Y %r(2)?/X = x)

+E(Y7?/X = 2)E((r(2) - R(x))*/X = z)

1= 2u(=1)r(z) + p(=2)r(2)* + p(=2)(r(z) - R(x))

1 2‘,1(<—12)) + ;;((_12)) +u(=2)(r(2) - R(x))’

E(Y2/X =2) -E(Y 1/X =2)?
n(=2)

+u(=2)(r(z) - R(2))

E(Y D)/ X =a2] -E(Y /X = 2)*

1(—2) +p(=2)(r(z) - R(x))?

Var(Y 1/ X)

— raoe) — X 2. .
) +pu(=2)(r(z) - R(x)) (4.4)

Le premier terme de (4.4) ne dépend pas de R(x) et le deusiéme terme est minimisé lorsque
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4. REGRESSION RELATIVE

R(z) = r(x) p.s, donc r(x) est le meilleur prédicteur de l'erreur quadratique moyenne
relative.

Le résultat (4.4) montre également que l'erreur de prédiction quadratique moyenne relative
Var(Y 71/ X)

n(—2)

Remarque 4.1. Le prédicteur r(x) peut-étre exprimer par :

de r(x) est donnée par

_ By
") VX T BTXR

Cette remarque suggere une méthode permettant d’estimer cette fonction. Donc, cela
motive 'utilisation des méthodes de modélisation de la moyenne et de la variance pour
ajuster les modeles & la moyenne et & la variance de Y ! en fonction de X.

L’une des méthodes les plus populaires permettant de construire un estimateur de la
fonction r(x) est la méthode a noyau. plus précisément, on peut construire des estimateurs

a noyau de E(Y ~¢|X) pour £ = 1, 2. Ainsi, Pestimateur de la fonction r(z) est donné par :

" 1 l’—X,L'
2% (5

Az) = = . (4.5)
En: YK (m - Xi)
— " h
=1
Cet estimateur peut étre exprimé par :
() = ) (4.6)

avec
1 & r—X; 1 &
~ _ = Y—lK hadtet 2 R Y—l ;
gl(‘r) nhlzzl i ( L ) nZ:ZI i Wi
et

n

~ ]. n _2 xr — XrL ]. n _2
92(37):%23? K\ —— ==Y 2w,
=1 =1

ol w; est définie dans la formule (2.3).

4.2 La convergence presque compléete

Pour étudié la convergence presque compléte de 'estimateur (4.5), on fixe un point

z € R et on introduit les hypotheses suivantes :
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4. REGRESSION RELATIVE

4.2.1 Hypotheses et notations

(H.1) La fonction r est deux fois continiment dérivable au voisinage de x.

(H.2) La densité f de la variable explicative et la fonction E(Y ~"2/X = x) sont stric-
tement positives au point x, de plus la variable Y est borné.

(H.3) Le noyau K est symétrique supposé borné, intégrable et & support compact.

(H.4) Le parametre de lissage h est tel que :

lim h = 0;
n—00

nh

1m
n—00 ]og n

4.2.2 Résultat asymptotique
Sous les hypothéses précédentes, on a le résultat suivant :

Théoréme 4.1. Sous les hypothéses (H.1)-(H.4), on a :

P(z) —r(z) = O(h*) + Op.C()(\/l(;g;). (4.7)

4.2.3 Démonstration

Pour démontrer ce théoréme, on pose r(z) = g Ex;, tel que :
g2(T
g1(x) = p(—=1);
92(z) = p(-2)

La démonstration de ce théoréeme est basée sur la décomposition suivante :

o) gy = @) a@)  al@)
M@= =0 T e e W

— 5 @10) ~ Ba(o) + By (1) ~ a (o) + gjfgj)

Ainsi, la preuve du Théoréme 4.7 est une conséquence directe des lemmes suivants :

(92(z) — Ega(z) + Ega(z) — ga(z)).
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4. REGRESSION RELATIVE

Lemme 4.2. Sous les hypothéses (H.1) — (H.3), on a :
(i) Egi(z) — g1(x) = O(h?).
(ii) Ega(z) — ga(x) = O(h?).

Lemme 4.3. Sous les hypothéses (H.1) — (H.4), on a :

(1) gi(z) — Egi(z) = 0(\/%).

(i1) g2(2) — Egi(a) = O(\/k;E )

Lemme 4.4. Sous les hypothéses du Lemme 4.3, on a :

36 >0, tel qued TP[|ga(x)| < d] < oco.
i=1

Démonstration du Lemme (4.2)

— Pour le premier résultat (i), on a
1

B o) =[Sy (2]

i=1

—_E {K(x _th)Yll}
— iE{K(fB _th)IE(Yll/X = Xl)}
_ % [ K o u)f(u)E(Yl_l/X = X1)du.

On remplace ¢ (z) = E(Y; /X = X1) f(z), alors :

r—u
On pose z = , on obtient donc :

E[gi(2)] = /R K(2)g1 (2 — h)d=. (4.8)

Puisque la fonction f est deux fois contintiment dérivable au voisinage de = (d’apres (H.1)),

on applique le développement de Taylor d’ordre 2 défini par :

> 2
01w~ h2) = g1(2) — hagf (@) + E2 g2 w) 1 0(n2)
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4. REGRESSION RELATIVE

sur ’équation (4.8), on obtient alors :

(N Wy (R ) 2
EGi(0)] = [ (K(2)gu(e) ~ hegf (@) + 50 (@) + O(h)
Et par la symétrie du noyau K, on peut écrire :
Bl (2)] = 1 (2) + 5 / (22K (2)g® (@))d= + O(h?).

D’ou, on conclut que :

— La preuve du deuxiéme résultat (i7) est analogue a la preuve de (i) :

En effet,

Ego(z) = E{nlh gYi?K<x —thﬂ

= el ()]

e

<x ) Y2/X = Xi)du

h/ (“’”‘“) 2(u)du.

—u
et on utilisant le développement

Puis, en considérant le changement de variables z =

de Taylor de go(x — hz) a l'ordre 2, on obtient :

E[g2(x)] — g2(z) = O(h%).

ce qui complete la preuve du lemme (4.2). [

Démonstration du Lemme (4.3)

— Commencons par la preuve du résultat (i), on a :
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4. REGRESSION RELATIVE

~ ~ 1 & _ l‘—Xi 1 & _ x—Xz-
91(z) — Egu (2) :%ZYZ‘ 1K< h >_E[nhZYi 1K< h ﬂ
=1

i=1

“s () el ()

Pour appliquer I'inégalité de Hoeffdding (voir le Lemme 2.6), on pose

s =B () ()
ron(52) -sn(52))

Donc on a :

IA
> =
VS

>

=
VRS
8
> |
I
~—

+

&=
@ﬁ

=
7 N

8
>

I
~—
~

IN
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4. REGRESSION RELATIVE

Ce résultat est obtenu par la bornitude du noyau K et Y 1. D’autre part et puisque :

B —E|(5 (v k(57 - E[Y_1K<x_fﬂ)>2}
e (7 () (5]
B )

=m0 () e ()

tel que v; = ;[E(Y;_1K<x — XZ)}

Alors :
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4. REGRESSION RELATIVE

Avec ¢(u) = E(Y; 2/ X; = u).

T —u
En utilisant le changement de variable Z = 5 on obtient donc :

E(v?) = flb/qﬁ(a: — h2)f(z — h2)K?*(2)dz

<

=l Q

= 09.

Ce dernier résultat est obtenue a cause de la bornitude de ¢, la continuité de f(z) et aussi
car le noyau K est a support compact.

Dongc, en appliquant I'inégalité de Hoeffding, on aura :

n

A,

i=1

logn
En prenant ¢ = ¢ ih’ on obtient
\/ n

N N logn —ne2hlogn
P{\Egl(@ —g1(x)| > e ng } <2 exp (Og>

1 —ne?
< . .
>6:|_2€Xp<462 > (4.9)

P|

h AnhC
—etlogn
<9 _ 075"
<2 exp ( 07 )
2
<2nc,

Ce dernier résultat conduit & :

n

~ . logn
> [IE9i () 51 (@)] > oy E"| < .
1=1

2
.. . €
Sous la condition suffisante suivante —% > 1.

4C
Ce qui prouve le résultat (i) du Lemme (4.3). [ ]
— La preuve du résultat (ii) est similaire.

En effet :

1 r— X 1 2 r—X;
~ _Fo = Y 2K )R] — Y-_2K( 1)}
G2(z) — Ega(z) nh 2=t ( h ) [nh ; ! h




4. REGRESSION RELATIVE

Nous appliquons 'inégalité de précédente ( voir Lemme 2.6), avec :

s = () s (%))

Puis, nous suivrons les mémes étapes précedentes, nous obtenons donc :

° N - logn
IP[]Egg(ac) — @) > € g} < 00

i=1 nh

Démonstration du Lemme (4.4)

Commencons par la remarque suivante :

92(z)
2

g2(z) < = g2(x) — g2(2)| >

Alors, on peut écrire

- 2 -2
Donc
& N x & N x
> P < 2] = 3 lga(e) - ga(o)] 2 2] < o
=1 =1
11 suffit de prend § = 9253). [
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Troisieme partie

Régression relative cas fonctionnel
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Chapitre

Cas d’échantillons indépendants et

identiquement distribués

L’étude des modeles de régression adaptés a des données fonctionnelles est un domaine
important de la statistique fonctionnelle. On y retrouve des situations tres différentes sui-
vant que la variable explicative, la variable réponse ou les deux variables sont de nature
fonctionnelle.

Les résultats que nous énoncons dans ce chapitre, sont liés aux propriétés asymptotiques
de I'estimateur a noyau de la régression relative au cas d’une variable explicative fonction-
nelle. Nous supposons que 1’échantillon que nous étudions est constitué de variables indé-
pendantes et identiquement distribuées. Apres la présentation du modele et son estimateur
dans la premiére section, nous établissons la convergence presque compleéte (ponctuelle et
uniforme) dans la deuxiéme et la troisieme section. La quatrieme section est consacrée a
Ierreur quadratique moyenne. Nous achevons ce chapitre par un résultat sur la normalité

asymptotique.

5.1 Modeéle et son estimateur

Soit F un espace fonctionnel semi-métrique menu de la métrique d. Nous considérons
{(X;,Y:),i = 1,...,n} une suite de n—observations indépendantes, de méme loi que le

couple (X,Y), a valeurs dans F x R. La relation entre X et Y est exprimé par le modele
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5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

suivant :
Y =7r(X) +e,
ot les erreurs aléatoires ¢; sont non corrélées, de moyennes nulles et de variances o.

Comme au chapitre précédent, r(X) est la solution du probléme de minimisation suivant

minEKY_}/M)Q/X:x}, pour Y >0. (5.1)

L’estimateur & noyau K de r(X), ou X est une variable aléatoire a valeurs dans F et

Y € R est donné par :
ZY 'K(htd(z, X;))
= (5.2)

(X)) =2 :
ZY K(hYd(z, X;))

Cet estimateur peut étre exprimé par

avec

gj(m):nE[ K(h- 1dxX ZYJK (e, X)),

C’est a dire :

1

1 & ;
—ZY Jwi,  pour j=1,2,
n

=

ol w; est définie dans la formule (2.4).

5.2 La convergence presque compléte ponctuelle

Pour étudier la convergence presque compléte, on fixe un point x € F tel que N, soit

un voisinage de ce point, et on introduit les hypotheses suivantes :
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5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

5.2.1 Hypotheses et notations

(H.1) IP(X € B(z,h)) = pz(h) > 0 pour tout h > 0; ou B(z, h) est la boule fermée,
centrée en x et de rayon h, et
lim ¢4 (h) =0,
nz(h)

lim
n—+oco logn

+00.
(H.2) Pour tout (z1,22) € N2, on a :
l9j(x1) = gj(2)| < CdM(z1,20) j=1,2.
(H.3) Le noyau K est de type 1.
(H4) EY7/X] < C < 400, Vj>2.
5.2.2 Résultat asymptotique

Théoréme 5.1. Sous les hypothéses précédentes, on a :

N _ ey ke logn
(@) = r(@)] = OH*) + O() + 0o (12 2555 ).

5.2.3 Démonstration

La démonstration du Théoréeme (5.1) est basée sur la décomposition suivante :

)o@ e
@ =@ =20 &e @ @

92(x) 92()
= §219€) (91(z) — Egy () + Egi(z) — g1(x)) + ;2((9;)) (92(x) — Ega(x) + Ega(z) — G2(x)).

(5.3)

Et donc la preuve est une conséquence des lemmes suivants :

Lemme 5.2. Sous les hypothéses (H.1)-(H.4), on a :

[Eg;(z) — g;(z)| = O(hK), j=1,2.
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5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

Lemme 5.3. Sous les hypothéses précédentes, on a :

. . logn )
gi(z) — Eg;(z :(’),Co( ), j=12.
iy (x) ~ Bay @) = Opes |25

Lemme 5.4. Sous les hypothéses du Théoréme 5.1, on a :

n

;lp(gz(x) < 925”)) < .

Preuve du Lemme 5.2

Puisque (X1, Y1), (X2,Y2), ..., (X,, Y,) sont indépendants et identiquement distribués,

on peut écrire :

@] - @) = B i ZYJK e X)) - g5(a)

1 —J — “14(z —ailx
S‘E[K(h—ld(x,Xl))]E[E(Y /X1 =2)K(h™ d(z, X1)) = g;( )H

1
< W[E[Kl(w)\gj()ﬁ) = gj(2)]]-

Sous les hypotheses (H.1) et (H.2), nous obtenons :

[E[g;(x)] = g;(x)| < E[(K1(2)) U p(2,m)|9;(X1) — gj()]]

E[K]

< Chki,

donc :

[E[g; (2)] - g;(x)] = O(R").
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5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

Preuve du Lemme 5.3

On a
gj(z) —E(g(z)) = B[R (h- ldx o) ZY TK(h'd(z, X))
_ J -1
EnE[ K- 1d:cX ZY K(h d:pX))]
_ 1 S 1 i | )]
T nE[K(hYd(z, X;)) ;[ d(z, Xi)) — E<Yi K(h™'d(z, X)) ) |.
En posant :
1 , A
Aij = oo [IGY, 7 — B[K;Y] j=1,2
1,] E[Kl][ 159 [ 7 ]]7 pour 7 ) 4y
on aura :

> Ay =Gi(z) — E[g;(x)].

=1

La preuve du Lemme 5.3 est basée sur ’application du Corollaire 2.4. Pour ce faire, nous
nous concentrons sur les moments absolus de la variable aléatoire A; ;.
En utilisant le binéme de Newton et pour £ < m, nous avons d’un coté :

AT = K.Y, —E[KY, 7™
] E[Kl]m[ K3 [ 1 H

c’est a dire :

1 pooy (,,i) C,]E“Yl_jKl(x)HZE(KlYl_j)m—E’

~
Il
o

I
N
IS

AN m!
U \m) T 2(m —0)!
et d’autre part, on a :
(Y, 7K{l] = E[K{E[Y;|/X1]
— CE[K]]
< Cps(h),

ce qui implique :

e BV Kl = Ol *+1),
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5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

et :
1 iy
mﬂﬁﬂ K] < C.
Alors : . .
E[lA75]] < C;) WI&:HY{”K{Z(@H

< C max ¢, (h)

£=0,...,m z
< Cp, ™ (h)
c’est & dire :

E[JAT]] = O(ez ™ ().

xT

En appliquant 'inégalité du Corollaire 2.4, on obtient :

2 logn

e logn Uil
]P(TL 1‘2Ai,j|>77 ) SQeXp ((’;z)
=1 npe(h) S(;Zgh)

ce qui donne :

. o8 o
P((G:(z) — E[G:(2)]] > ] —2— ) < ¢"nC",
(1st0) — B ) > my 205 ) <

avec a® = @ (h) "L

Pour j =1, 2, nous choisissons 7 de tel sorte que :

- G(2) — Bl (x logn -
S ()~ B @) > m s ) < o

Preuve du Lemme 5.4

Afin de prouver le Lemme (5.4), on commence par remarquer que :

N g2(x N g2 (x
g2(z) < 22 ) o 192(x) — g2(x)| = 2§ ),
Alors, on peut écrire
g2(x) g2(z)




5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

Donc
LA Y g92(x) S 92()
2P |5() < == = ) P|[Ga(z) — ga(2)| = 77| < +oo.
i=1 i=1
ce qui compléte la preuve de ce lemme. [ |

5.3 La convergence presque complete uniforme

On s’intéresse dans cette section a la version globale de la convergence précédente.
Pour cela, on fixe un sous-ensemble Sz de F et on note par 1s,(.) la fonction e-entropie

de S]:.

5.3.1 Hypotheses et notations

Nous introduisons les hypotheses suivantes :

(U.1) Pour tout z € Sret h>0:
0 < Cpa(h) <P(X € B(x,h)) < C'pa(h) < 0.
(U.2) 1l existe n > 0, tel que :
Vo, o' € ST, |gi(x) — gi(2)| < Cd¥(z, "),

tel que ST ={z € F:32' € Sr, d(z,2") <n}.
(U.3) Le noyau K est borné et lipschitzien de support [0, 1].
(U.4) Les fonctions ¢, et 15, sont :
(U.d.a) Il existe g > 0 tel que pour tout n < oy, ¢.(n) < C, ou ¢, est la premiere
dérivée de la fonction ;.
(U.4.b) Pour un entier assez grand n, on a :
(logn)? _ o, <logn> _ nepa(h)
noz(h) logn
(U.4.c) La fonction e-entropie de kolmogorov satisfaite :

gexp{(l - ﬁ)¢$;<logn>} < o0, pour 8> 1.

n

(U.5) Pour j > 2,

E(Y7/|/X =2) < C < 400 Va € Sret 1Er}Sf g2(z) > C" > 0.
TESF
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5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

5.3.2 Résultat asymptotique

Théoréme 5.5. Sous les hypothéses (U.1)-(U.5), on a :

sup [7(a) — r(w)] = O(H*) + O(H) + Open

z€SFE
5.3.3 Démonstration

La preuve du Théoréme 5.5 est basée sur la décomposition (5.3) et les lemmes suivants :

Lemme 5.6. Sous les hypothéses (U.1) et (U.3)-(U.5), on a :

sup |Eg;j(z) — gj(z)| = O(h*), j=1,2.
zE€ESFE

Lemme 5.7. Sous les hypothéses (U.1)-(U.4), on a :

sup [§5(2) ~ B3j(0)] = Ope

TESF

Lemme 5.8. Sous les hypothéses du Lemme 5.7, nous obtenons :

30 > 0, ZIP( mf g2(x <5)<oo.

Preuve du Lemme 5.6

La preuve du Lemme 5.6 est similaire a la preuve du Lemme 5.2, tel que :

ZY K (h~d(z X))) —g;(x)

E[g;(2)] — g;(=)| = E(m&[ K(h- 1d (z, X;)

1
E[K(h~td(z, X1))]

IN

BBy /X1 = ) (b d(e. X)) - g5(a)|

<

e o B @)l (X1) = (@]

Sous les hypotheses (U.1) et (U.2), Vo € Sr nous obtenons :

05,(@)] — 0y(0)] < g I (@) L)y (1) = g5(a)])
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ou C ne dépend pas de z, donc :

sup |E[g;(2)] — g;(2)] = O(h").

z€SE
|
Preuve du Lemme 5.7
Soit x1, xo,...,xn un ensemble fini de points de F tel que :
SrC CJB( ) logn
TE,€), avec €= ,
F k n

k=1

pour tout z € Sr, on note :

, d(z, X;)
(x) = arg k(12N (S2)} d(z,zp), et (=) < h >

La preuve de ce lemme est basée sur la décomposition suivante :

sup |gj(z) — E[g;(@)]| < sup [gj(z) — Gj(Tr())| + sup 19 (Tk(z)) — E[gj(zpa)]|
r€SF

zE€SFE zESFE
Fy Iy
+ sup |E[gj(zy())] — E[g;(@)]],
z€SE
F3

donc, il suffit de traiter chaque terme F; pour i =1,2,3 :

— Pour le terme F}, sous 'hypothese (U.1) et donc de la condition :
Cipr(h) < E[Ky(2)] < C'pa(h),

nous obtenons :

1 - 1 »
B (] O g e

Z‘ES}' n i=1

g .
= - Ki(z) — K; Y. 71 X;

puisque le noyau K est lipschitzien sur [0, 1] d’aprés 'hypothese (U.3) (c’est a dire,

le cas ou K (1) = 0), nous obtenons :

C n
=1
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avec

ey I 1 X,
h(Px(h) ISEU‘SI—)F B((z, h)UB(mk(l) h)( )

Appliquons I'inégalité exponentielle 2.4 (i.i) sur Q;.

Qi =

Nous calculons donc la quantité E[|Q;|™].

Sous I'hypothése (U.5) (E(]Y ™|/X = z) < C' < o0), nous écrivons :

Cem

EIQ"] < e

€

pour I’application de I'inégalité précédente, nous choisissons a? = hon(h)’
P

Nous obtenons donc :

D’autre part, le cas ot le noyau K est lipschitzien sur [0,1) (c’est a dire, le cas ou

K(1) > C > 0) il faut décomposer le terme F en trois termes comme suit :

Fy <C sup (Fi1 + Fia + Fi3),

z€SFE
avec
1
= (px (h) Z Ki(z) = Ki(aw) Y Up, RN (e ) (Xi)3
J - .
% h ZK )Y L mh)ﬂB(:pk(x),h)(Xz)7
Fig = %(h ZK (Tr(2))Y; B(;v R)NB(z(5),h) (Xq)-

ol A est le complémentaire de I’ensemble A.
Pour ce qui concerne le terme Fji, nous utilisons le faite que K est une fonction

lipschzienne sur [0, 1], et on a :

€ —J Ny I
Fpy < xseusf; — ;szy avec Z;; = hgox(h)Y’ ﬂB(z,h)ﬂB(xk(z),h) (X1>YZ .

Concernant les termes Fio et Fi3, comme K est borné, nous obtenons :

C 1 —j
Fp < — Z;W”’ avec Wi ; = @T(h)yz JﬂB(m,h)ﬁW(Xi)’
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et :
C & 1 —j
Fis< o X;Vi’j’ avee Vig = s%(h)yi LN B o ) (K1)
1=
donc, nous remplacgons A; dans I'inégalité exponentielle (voir le Corollaire 2.4) res-
pectivement par Z; ;, W; ; et V; ; avec a? = € , nous obtenons :
hex(h)
elogn
;=0 — |,
11 p.co.( nhgom(h))

€ elogn
I = RN co. — 7\ |»
2 O(wz(h))+0p' ( mpx(h)2>

D’autre part, d’apres les conditions (U.4.a) et (U.4.b), on a :

Ys(€)
Fl =0 .ca( - .

b nz(h)
En suivant la méme démarche, nous pouvons obtenir :
F3 = Op-CO. ( 1/}5]:(6) ) .

nz(h)

Pour le terme F5, on remarque que pour tout n > 0 :

Vs (€) ) ( . . Vs (€) )
P(F — P - — E[g;
( 2> o) e 195 (@w) — Blg (@)l > non(h)
_ _ Vs (€)
< N{ke%a}fm?(lgj(ﬂﬂk(m)) — E[g;(zr@)ll >n ngoz(h)>7
Appliquons maintenant, 'inégalité exponentielle du Corollaire 2.4, pour :
1 . .
Ajj= e (K@) Yy — E[K(2h) Y]l
e e
1
puisque E[|A; ;|]™ = O(p,(h)~™*), alors, on peut prendre a* = o)’ par suite,
pour tout n > 0 :
. N ws;(€)> (1 - Ys (6)>
P (|5 —E[g; = JE=D YNy z
(\gy(wk(x)) 195 (@r(@)Il > 71 non(h) - ; >N o

< 2 exp(—Cn*is, (€)),
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En utilisant le faite que 15, (¢) = log N, et en choisissant 1 de tel sorte que Cn? = B,

et d’apres 'hypothese (U.4.¢) nous obtenons :

N = max P(@j(xk(ag)) — E[gj(zr)ll > 1 ;ij;:((;))> < CN'"”.

Preuve du Lemme 5.8

Nous remarquons que :

inf < 92(x) =3dreSr telque ¢a(z) — ga(z) > ,
z€SFE 2 2

92(z)
2

qui implique aussi que sup |g2(z) — g2(x)| > , on déduit du Lemme 5.6 que :

TESF

P nt < 20) <P (s lnlo) — o) = 270),

donc :

S g < 2) <o

z€SF

5.4 La convergence en moyenne quadratique
On remplace (H.1), (H.3) et (H.4) respectivement par les hypotheses suivantes :

5.4.1 Hypotheses et notations

(M.1) La propriété de concentration (H.1) est satisfaite, de plus, il existe une fonction

X, (.) tel que :

. pa(sr)
Vs € [0, 1], }1_r>1(1) o) Xy(s).
(M.2) La fonction ¥;(.) = E|g;(X) — gj(x)/d(z,X) = .|, j = 1,2 est dérivable au

point 0.
(M.3) Le noyau K est de type 2.
(M.4) La probabilité de petite boule satisfaite :

npz(h) — oo.

(M.5) Les fonctions E[Y ™/ /X = x| sont continues au voisinage de z, pour j = 1,2, 3, 4.
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5.4.2 Résultat asymptotique

Théoréme 5.9. Sous les hypothéses (M.1)-(M.5), nous obtenons :

= 2 _ B2(p)}h2 o’ (z) o o 1
B ()~ r(@)]? = Bi@)h? + U 4 olh) + ol os),
| (e — (@2(2) = 2(@EY /X = a] 4 2(@E[Y /X = a])5,
93(x) Bt
et :

(W1(0) = r(=)¥5(0))Bo
Brg2(x)

(sK(s)) Xe(s)ds et B; = KI(1) — /()I(Kj)’(s)/l’x(s)ds pour

B,(x) = , (5.5)

1

avec : By = K(1) —/
0
j=1,2.

5.4.3 Démonstration

La preuve du Théoreme 5.9 se débute par écrire le biais et la variance sous les formules

suivantes :
. E@@) 1
B @) = ) T O<n%<h>)’
et :
N Varlgi(e)] - Elgi(2)] Coo@i (2), 2(x))
lf@) = E e Y EG@)P

(62 (2)] (B[ (2)))? 1
Em@)t 0<wx<h>)’

Donc, la démonstration est une conséquence des deux lemmes suivants :

_l’_

Lemme 5.10. Sous les hypothéses du Théoréme 5.9, on a :

E@-(x)]=gj<x>+w;-<o>§fh+o<h>, pour j =12

Lemme 5.11. Sous les hypothéses précédentes, on a pour j=1,2:

ﬁ%nii(h) * O(wi(h) )

Var{g;(«)] = E[Y % /X = a

et

P2

Cov(gy (), ga(z)) = E[Y /X = 2] Bnga(h) | 0<ngoi(h>>'
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Preuve de Lemme 5.10

D’apres ’équidistribution des observations, nous écrivons pour j = 1,2 :

E[gi(z)] =E %mldxX EZYHc “d(x, X))

1

_ mE[K1E[Y1_j/X1H'

D’autre part nous avons :

E[KIE[Y, 7 /X1]] = g;(2)E[K)] + E[K1E[g;(X1) — g;(x)/d(X1, z)]]
= gj(2)E[K1] + E[K1W;(d(X1, 2))],
d’ot, la définition de ¥;, nous permet d’écrire :

1

mE[Kl\I/](d(XI; x))],

Egj(z) = gj(z) +

car ¥(0) = 0, nous obtenons :

E[K1V;(d(X1,2))] = \Il;(O)IE[d(Xl,x)Kl] + o(Eld(X1,z)K1])
c’est a dire :

3)(x) = 0,(0) + e VOB 2K + o B0 (56)

D’autre part pour, j = 1,2 et sous ’hypothese (M.1) :

E(K]) = /01 Kj(s)dP‘d(ﬂcaX)lh’l(s)
= /01 |:K](1) — /Sl(Kj(s))/ds] dP|d(:c,X)|h71(8)

= K (1)ou(h) — [ (7 (5) i (sh)ds (5.7)

S

= [ 900) ~ [ (K9 () uls)ds | + ol ()

S

= Sox(h)/Bj + O(‘Pﬂ&(h))a
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et :

E[Kid(z, X1)] =h / 1 sK (s)dPld® X (g)
0
=h /0 1 [K(l) - / l(sK(s))’ds} dpld@ Xt (g
= [ Kgal) — [ (K palshias] (53)
1
— () [ K (1)~ [ (sK(5))Xu(5)ds]| + oltion(h)

= hepa(h)fo + o(hee ().
On remplace (5.7) pour j =1 et (5.8) dans (5.6), nous obtenons :
1
R 0)ea () | K(1) = [ (5K (5)) Xuls)ds]
T S
pul) | K(1) = [ (K(5)) 2e(o)is|

Egj(z) = g;(z) + * O(tif((h};) > ’

ainsi :

1
K(1) - / (5K (5))' Xy (5)ds
Eg;j(z) = gj(z) + h¥}(0) 0 + o(h).
K(1) - / K'(5) X, (5)ds
0
Ce qui compléte la preuve du Lemme 5.10. [ |

Preuve du Lemme 5.11

On apour j=1,2:

1 n

Varlg;(*)] = CEmRDR ;

Var|K;Y; ]

- e Vel
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On conditionne par rapport X, de plus sous ’hypothese (M.1) puis (M.4) nous obte-
nons :

E[K?Y, ¥] = E[Y ~%/X = 2]E(K7]),
d’apres (5.7), nous obtenons :
0 , 1
BIKRY, ™) = BY 2 /X = o) (K2(1) - [ (%) o(u)du) + o(1),
0
d’autre part et d’apres '’hypothese (M.5), on a :

E[K,Y; 7] =E[KE[Y; ]
< Cpy(h)
= O(‘Pw(h))a

Donc :
. . 1
VarlF1Y;) = BIY /X =] (K2(1) ~ [ (K2(s)) alu)du) + O3 (1),
0
nous pouvons écrire donc :

E[Y~-% /X = a <K2(1) _ /0 1(K2(s))’2\,’x(u)du)
Varlg;(z)] =

O(wi@))’

Nous faisons les mémes étapes pour le terme de covariance, c’est a dire :

nat) (K1) - | 1<K<s>>'xx<s>ds)2

Cov(g1(z), g2(x)) = n(B[KL])? Cov(K Yy 2, K1 Y1),

ou :

Cov( K1Yy %, K1 Y1) = BIK?Y ] — E[K, Y 2|E[K Y Y.

D’apres (5.7), nous obtenons :

E[Y 3/X = a] <K2(1) - /0 I(KQ(S))’Xx(u)du>

Cov(g1 (), g2(7)) = 3
nu(h) (K(l) _ /0 1(K(s))’/’\,’x(s)ds>

Ce qui termine la preuve du Lemme 5.11. [ |
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5. CAS D’ECHANTILLONS INDEPENDANTS ET IDENTIQUEMENT DISTRIBUES

5.5 La normalité asymptotique

Les premiers travaux s’intéressant a la normalité asymptotique de 'estimateur a noyau
(5.2) sont dus & Masry [18]. Il a considere le cas d’un échantillon constitué de variables
a—mélangeantes mais il n’a pas donné pas I'expression des termes asymptotiquement do-

minants du biais et de la variance.

Parallelement, Ferraty et al. [10] ont obtenu 'expression explicite de la loi asymptotique
(c’est a dire des termes dominants du biais et de la variance) dans le cas d’un échantillon

de variables indépendantes.

Le fait d’avoir explicité les termes dominants du biais et de la variance de la loi asymp-
totique nous permet notamment de construire des intervalles de confiance asymptotiques

ponctuels et de donner ’expression de l'erreur quadratique moyenne.

5.5.1 Hypotheses et notations

On garde les mémes hypotheses de la convergence en moyenne quadratique.

5.5.2 Résultat asymptotique

Théoréme 5.12. Sous les hypothéses (M.1)-(M.5), pour tout x € F on a :

(%58) 6@) = @) = Bulo) = o) 2 N(0.1), quand 0 .

. D .
Ot —— est la convergence en distribution.
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5.5.3 Démonstration

La preuve du Résultat 5.12 est basée sur la décomposition relativement complexe

suivante suivante :

A(2) — r(a) —?( - A((”‘;)H ) £1ga(0)] ~ Galo)] + " (o) — Bl

o) B T o)) - )] + o alo) - Bl ()]
L E@@) (o g E[gi(z)]  ai(x)
S Bl ()~ BB + 22 - 2

Egi(#)]  gi(@)\~ _
(B — 25 ) oa(o) — Elaa)) + 2 25 -
Pour simplifier la preuve, on pose :

1

A = W[E@l (2)lg2(x) — E[ga(2)]g1(2)],
et :
o= | [0~ BB @) oele) + [EG(e)] - 320) ()|
Donc la décomposition précédente devient :
7(e) = 1(2) = = (D = An(@al) ~ ElGa(e)])] + 4.

Par suite, la démonstration du résultat précédent est une conséquence des lemmes

suivants :

Lemme 5.13. Sous les hypothéses du Théoréme 5.12, nous obtenons :

(g%?fijg()x)) > <[§1 (x) — E[g1 (x)]} g2(z) + {E[Z}E(:U)] — §2($)} g1 (g;)) EZEN N(0,1).
C’est a dire :
nep, 2o N 0.1)
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Lemme 5.14. Sous les hypothéses du Théoréme 5.12, nous obtenons :

~

G2(z) = ga(2),

et

npz(h) 3 R ~ -
<g%<w)02<x)) An(92(z) = E[g2(2)]) — 0.

Preuve du Lemme 5.13

Pour la preuve du Lemme 5.13, on a :

Gilz) - E@l(x)ﬂgm + [Emn - §2<x>}gl<x> = 01(@)5() - 0 (@EG()] - 02(2)d (x)

+ g2(2)E[g1 ()]
= 91(2)g2(x) — g2(2)g1(2) + g2(x)E[g1 (2)]
— g1(x)E[g2 ()],
d’une part, on a :
01(2)5(x) — g2 (@) (z) = nEmf(@(m o Y e X)
PV =1

g2(2) n
"~ nE[K (h—'d(z, X;)] 2 YV, K (b d(x, X;)

v g1() YK (h-ld(z. X,
;[”E[K(h_ld(x,Xi)] i K(hTd(z, X;)

g2(x) IR
" EE(h G X KO XD,
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et d’autre part :

W] - 0 EGRE)] = nE[ e S VR (e X0

1
~ 91 (@)E [nE[K(h—ld(x, X))

an Y, 2K (htd(a, Xz-)]
=1

2 [nE[mig—(@)(x, Y K X)

) nE[K(igf—(lfz)@,Xi)szK (™' d(@, X)),

On pose :

et

Sn = _(Li(z) — E[|L;i(2)]].
=1

Nous obtenons donc :

Vree(ho ™ (@) ~ Elga(@))or(x) — @(x) — B () ga(a) = 2

pour compléter la preuve de ce lemme, il suffit donc de montrer la normalité asympto-
tique de Sy,. Nous appliquons le théoréme de Lyaponov 2.5 sur L;(z). C’est a dire montrons

que pour 6 > 0 :

n

> EllLi(x) — E[| Li(2)]]**°]

=L — 0.

244

<Var< ':1 Li(:p)>> ’

(2
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on a :

n

Var( Y Li(w)) = mow(h) Var(gi (0)92(z) + Ga(w)gs (2

=1
= npy(h) (Varlgi ()62 (x) + Var(ga(2)]52(x)

+91(2)g2(2) Cov(g (), ga())

8,
= nolh) (B%n%«(h)

FR@)EY /X = a]) + (Wf(h)))

(g2(2)g1()E[Y /X = a

donc :
Var(izl Ll(ac)> =0+ o(1),

d’autre part nous appliquons les inégalités C,., pour obtenir :

n

S E[|Lifz) — E|Li(@) )] < O S EB|Li(@)PH] + ¢ Y [ELi(@)] P,

i=1 =1 i=1

Pour tout j > 0, E[K7] = O(p4(h)), donc sous I'hypothese (H.4), on a :

SOE(Li(@)] = n (oo () IEIK gy ()Y — gole) V2]
=1
<075 (pp(h) TTIR[K I 210 g ()2 HOR[ Y, 20 x|

+ 254 gy ()R] Y, /X))

< Clmpa ()3 (BIKT ), (1)) 0.

D’autre part et pour le deuxieme terme, on a :

5 —(246) 246

S EL@)P < nT (pa(h) ™S
=1

E[K1]g1(x)Y;? — g2(2)Y; ]

(248) 246

< Cn7 (pu(h) ">

E[K;

-9 1+6

< Cn2 (pg(h)) 2 —0.

Ce qui termine la preuve du Lemme 5.13. [ |
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Preuve du Lemme 5.14

D’apres les Lemmes 5.10 et 5.11, nous avons :

E[g2(z) — g2(z)] = 0,
et
Var{ga(z)] = 0,
donc :

32(z) — ga(z) — 0.

D’autre part :

91(x)%c

B [(W)QAn@m - E@(mm} -

Var = 0(A%) = 0(h?) =0,

n

JeE) A@a(o) — Elfa(a)

< nez(h) \ 2

ce qui montre que :

(m)un@@ ~ Elga(a)]) 2 0.
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Chapitre

Cas d’échantillon dépandent

Dans ce chapitre, on garde la structure fonctionnelle de la variable explicative et nous
généralisons le résultat de la convergence presque compléte du chapitre précédent pour des
données qui ne sont pas nécessairement indépendantes. Plus précisément, nous focalisons

sur le cas ou les observations sont a—mélangeantes.

6.1 Modéele et son estimateur

On garde le méme estimateur a noyau (5.2) défini au chapitre 5, la seule différence qui

apparue est le type de dépendante entre les variables.

6.2 la convergence presque complete

on garde les hypotheéses (H.1)-(H.4)du chapitre précédent et nous ajoutons les hypo-

theses suivantes :

6.2.1 Hypotheses et notations

(H.5) (Xi,Y:)1<i<n est une suite algébriquement a-mélangeante, dont le coefficient de
mélange vérifie :

3C,a € R, a(n) < Cn™“.

(H.6) 0 < sup(IP((X;,Y;) € B(x, h) x B(xz, h))) = (’)(%(h).

I
() Na

)ail
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5417

(H.7) 1l existe n > 0 tel que C’ni%lur" < pz(h) < C’nﬁ, avec a > 5

6.2.2 Résultat asymptotique

Théoréme 6.1. Sous les conditions (H.1)-(H.7), on a :

Pa) —r(z) = O(A*) + Oﬂ‘”( nlszggb))

6.2.3 Démonstration

La démonstration du théoreme précédent est basée sur la décomposition (5.3) et les

lemmes suivants :

Lemme 6.2. Sous les hypothéses du théoréme 6.1, on a :
(i) E[gi(2)] — g1(z) = O(h"),

(ii) E[g1(2)] = g1(2) = Op.co (\/E(nh))

Lemme 6.3. Sous les mémes hypothéses, on a :
(i) E[g2()] — g2(z) = O(h"),

(ii) E[ga(x)] = g2(2) = Op.co (\/E(nh))

Lemme 6.4. Sous les hypothéses précédentes, on a :

>0, telque Y IP[ga(z) < d] < oco.
i>1

Preuve du Lemme 6.2

Pour la preuve du Lemme 6.2, on a :
1 n
gi(x) == > ¥ lw,
iz

donc, on peut écrire :

E[Y; wi] — g1(x)
EE[Y; 'wi/X1]] - g1(x)

)

= E[g1(X1)w1 — g1()]

Egi(2) — g1(x)
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en utilisant la condition (H.2), on montre que :

Egi(z) —g1(z) <E|lg1(X1) — g1(2)|wn

< CLE[d*(z, X1)wi]

comme E[w;] =1, 0on a :

Egi(z) — g1(x) < C(hP),
ainsi :

Egi(z) — g1(z) = O(hk).

Ce qui démontre le résultat (i).

Pour le deuxiéme résultat (ii), on applique l'inégalité de Fuk-Nagaev 2.2 aux variables A;.

Avec :
. SV K (e, X)
Z Y;_IK(h_ld(x, X;))—E {Z:;E[K(h—ld(x, Xi))]
E[gi(z)] — gi(z) == nE[K (h~'d(z, X;))]
L Y RO, X9) B K (i, X))
“n|& E[K(h—'d(z, X;))] ’
on pose :

A; =Y K(hld(x, X;)) - B[Y;, T K (A d(x, X))
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COU(AZ‘, A])

Cette inégalité est basée sur le calcul de :

= i zn: ‘COU(AZ‘, A])’

i=1j=1

> Cov(Ai, Aj) + Cov(A;, Ai)}
i#j

x|

=1

|

[2": Cov(A;, Aj) + Var(Ai)} (6.1)
1biz

)

Il
i M:

Z ov(As, Aj) +2Va7’
1itj

=1

= S2* 1 n VarA,.

Ou :

E(A;.A;)

=E[(Y K, -EYVK,)(YVK; - EY 7V K;)]

=EYVKY VK, - Y IKEY TK; - Y IK;EY 7K, + EY VK;EY VK]
=EY 7K, YK;| - E[Y VK;JEY VK]

= Co(YVK;, YK,

sous les hypotheses (H.3) et (H.5), on a :

Pour le terme de S** de (6.1) on utilise les techniques de Masry [19] et on divise cette

somme comme suit :

=3 Con A+ 30Y Conlas ),

=1 Fp i=1 Fo

ou :

et

Er={(i,j) telque 1<li—j|<my},

Ey={(i,j) telque m,+1<|i—j| <n-—1},
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ou la suite m,, — +00 quand n — oo.

Pour la premiere somme, on a :

33 [Con(Aila), M)l < C 3 [EIK(2)K ()] + E*[Ky ()]
i=1 F1

i=1 B i (6.2)
ez(h)
< Cnmpz(h) — + @e(h) ).
Sur ’ensemble Es on utilise I'inégalité de Davydov-Rio’s 2.3, d’ou pour ¢ # j on a :
| Cov(Ki(z), Kj(z)| < Cafli —j|).
Donc : n "
SN 1Cov(Ki(x), Ki(z)] <Y |B[K;(2)Kj()]
i=1 By i=1 By
< Cna(my,) (6:3)
< Cn’m;“

D’apres (6.2) et (6.3) :

521 < Cnmeai)((Z2) o) + €,

) @
ainsi pour m, = (%:( )> , on aura :
n
. 1\ -a
52l < onf St o (1)

— = n;

n a a a
< Cnpg(h),

Donc :

52 = O(npg(h)).
Pour le terme de la variance, on montre que sous (H.1), on a :

Var(Ay(x)) < C(E(K1)? — (EK1)?) < (pa(h) + (p2(h))?).

Nous obtenons donc :

Sp = O(pa(h)).

Par suite, ’application de I'inégalité de Fuk-Nagaev entraine :
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1

P(EGi(2) — u(x)| > = 1P|

) 2N

g

A(enga(h)
| > denee)]

eQnQ@Q(h)) = Sr a+1
<414+ —= 2 2 L
- ( + ngpx(h)16r> +ener (engogc(h))

P [E31 (0) 31 0)] > eoy | -5 g4<1+€§§§’if$fféf>);+2ncr—1< 8r(niu(h))’? )

=1

eong(h)(logn)=

2 - a+1 .
< 4<1 + 90 logn> + 2ner? <8T )(ngox(h) logn) ¢ 31),
167 €0

prenons 7 = C(log(n))?. Nous obtenons alors :

2 5 2
Al:(H%log") gcexp%lﬂ
167r

d’autre part :

Ay < cef(aﬂ)nf(%l)ﬂmb(%(h))( i
sous la condition (H.7) sur la fonction ¢, (h), on déduit :
Ay < en~ 1§ l20400],
et avec un choix convenable de ¢g, on obtient :

n

~ . logn
> [E51) ~ 3101 > oy ] <o

Preuve du Lemme 6.3

Pour la preuve de la partie (i) du Lemme 6.3, on a :

. 1
92(:1;) = *ZK ZW’LH
n =1
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on peut écrire :

E[Y;_Qwﬂ — g2(x)
E[E[Y; w1 /X1]] — ga(x)

2

= E[g2(X1)w1 — g2(x)].

Egz(z) — g2(z)

De méme que la preuve du Lemme 6.2, la condition (H.2) nous permet d’écrire :

[Ega(z) — g2(2)| < Elga(X1) — g2(a)|wr

< Ch*.
Donc :

Eg(z) — g2(z) = O(RY).

Pour la partie (ii), on applique I'inégalité exponentielle (2.5) aux variables aléatoires Z; =

Y 2w, — E[Y*Qwi], on montre qu’il existe ey tel que :

1 1
E IP[ > € ng ” < 00
nEN* n nez(h)

n
DY i — BV, w)]
i=1

De méme, comme K et YZ»_2 sont bornés alors :

o < =
e px(h)
donc :
C/
Var(w?) <
i) pz(h)
ainsi :
N N logn —nedp.(h)log n)
IP|E — — <2
[Eda(a) ~ Ga(a)| > eoy |- 5| < 2exp (A
2
—€glogn
SQeXp <40)
2
< 2nac’
Donc :
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2
il suffit de choisir 4—3 > 1. Nous obtenons donc :

Ce qui complete la preuve du Lemme 6.3. [ |

Preuve du Lemme 6.4

La démonstration du Lemme 6.4 est similaire & la preuve du Lemme 5.4 du Chapitre

5. [ ]
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Chapitre

Application et conclusion

La derniere partie de ce mémoire est consacrée a une application sur des données simu-
lées dont ’objectif principal est la comparaison entre ’estimateur a noyau de la régression
relative et celui de la régression classique. Nous terminons cette partie par une conclusion

générale.

7.1 Application

Si les recherches théoriques des statisticiens se focalisent de plus en plus sur le trai-
tement des données fonctionnelles, c’est essentiellement parce que de plus en plus de do-
maines y ont recours. Dans cette application, nous présentons un exemple dans lequel nous
montrons la supériorité de I'estimateur a noyau de la régression relative (5.2) sur celui de

la régression classique défini par :

S VK (hd(r, X))
(o) = =&
> K(hd(x, X))
=1

; (7.1)

en testant la sensibilité de notre procédure avec la présence de valeurs aberrantes .

On considere les courbes explicatives suivantes :
Xi(t) =a;sin(4(b; —t)) + bj +miy, pour te[0,1] et ¢=1,2,...,300,

ot a; ~ N (5,2),b; ~ N(0,0.1) et n;:~ N(0,0.2).
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T T T T T T
oo o= o4 s a.a 1.0

FIGURE 7.1 — Les données fonctionnelles.

Les courbes X;(t) sont discrétisées sur la méme grille générées a partir de 100 mesures

équidistantes dans l'intervalle [0, 1[, on définit 'opérateur de régression par :

1 dt
=), T

Ainsi, la réponse scalaire Y est définie par :
Y=r(X)+e oue~N(0,1).

Pour réaliser notre objectif, nous comparons sur un échantillon fini, les comportements
de l'estimateur & noyau de la régression classique (7.1) avec celui de la régression relative

(5.2) dans les deux cas :
1. L’absence des valeurs aberrantes.
2. les données sont affectées par certaines valeurs aberrantes

Dans cet exemple d’application, nous utilusons la régle de MAD-Médian pour détecter
les valeurs aberrantes, c’est a dire on dit que Y; est une valeur aberrante si :
Y; — M|
— > (),
MAD % 0.6745
oll M est la médiane de ’échantillon, et le MAD est la médiane de I’écart absolu donné
par :

MAD = median(|Y; — M|,|Ys — M|,...,|Y, — M]),
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et C est considéré comme \/X?.- (La racine carré du quantile de la distribution (Chi-
deux) avec un degré le liberté).
L’application de la méthode de MAD-Médian sur cette exemple de données identifie 23

valeurs aberrantes. Pour la premiere comparaison, nous supprimons toutes les observa-

tions des valeurs aberrantes détectées a partir des données d’origine. Ainsi, notre premier
exemple est réalisé par des données ne contenant pas de valeurs aberrantes. De plus, nous
avons divisé au hasard ces données en deux sous échantillons de tel sorte que le premier
appelé échantillon d’apprentissage I; contenant les 200 premiéres observations, par contre
le second appelé échantillon de test I contenant 50 observations. Ensuite, la performance
des deux estimateurs est décrit par 'erreur quadratique moyenne, et 'erreur quadratique

moyenne relative suivantes :

_ . 2
i€l
et
1 .
RMSE = ——— Y (Y — 0(X,))?,
Var(Y) 162;2( (X:))

ou 0 signifie les deux estimateur étudiés (I'estimateur a noyau de la régression classique

(7.1) et relative (5.2)).

Méthode | MSE | RMSE
ERC 2.05 | 0.0263

ERR 2.09 | 0.0268

TABLE 7.1 — Les valeurs de MSE et RMSE pour les données simulées.

Ou ERC (estimateur de la régression classique) et ERR (estimateur de la régression
relative). Comme dans toutes les méthodes de lissage, le choix du parametre de lissage joue
un roéle crucial. Dans cette illustration, nous utilisons la procédure de validation croisée,

ou h est choisie selon le principe suivant :

hopt = arg mhin CV(h) = arg mhmjzl(Y] - Hfj(Xj)).

Ol 077 est Pestimateur de la régression classique (respectivement relative) privé de la

M€ observation.
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Le deuxieme parametre crucial dans cette étude est la semi-métrique dont son choix est
basé sur la forme des courbes Xj, et il est claire que la semi métrique induite par L’ACP
est bien adapté a cet ensemble de données. Enfin, pour les deux estimateurs (classique
(7.1), relative (5.2)) nous avons utilisé un noyau quadratique.

Les résultats obtenue sont présentés dans la figure 7.2, il est clair qu’il n’ y a pas de

différence significative entre les deux méthodes (classique, relative).

=]
= o
=
= [
L1 w
-4 a
= [=] Y o=
= = WD
e 5
= =
~a — E =
=3 [V E_ (T}
n i
@
u ] a —
= = 2 =
1= [=]
(=3 [=%
~a (=] - =]
o e [ap]
L1 w
4 I3}
[=" = =
od (=X

. . Les reponses observees
Les réponses ohservées v P ¥

FIGURE 7.2 — Les résultats de prédiction, a gauche par rapport a MSE et a droite par

rapport a RSME.

Dans la deuxiéme partie de cette application, nous nous concentrons sur la comparai-
son des deux modeles en présence de valeurs aberrantes. Pour cela, nous avons introduit
des valeurs aberrantes en multipliant certaines valeurs de Y dans ’échantillon d’appren-
tissage par 10. De plus, les deux estimateurs sont obtenus en gardant les mémes conditions
précédentes ( les choix de parameétre de lissage, semi métrique et noyau). Enfin, nous rap-
portons les résultats obtenue dans le tableau 7.2 (respectivement 7.3), ou nous calculons
les valeurs du MSE et RMSE respectivement en fonction du nombre des valeurs aberrantes

introduites.
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les statistiques 50 40 30 20 10 0
ERC 3412 | 2202.0 | 1178.0 | 557.9 | 138.8 | 3.047
ERR 5.035 | 4.62 4.086 | 3.945 | 3.549 | 3.56

TABLE 7.2 — Les valeurs de MSE en fonction du nombre de valeurs aberrantes introduites.

les statistiques 50 40 30 20 10 0
ERC 21.080 13.96 7.379 3.379 | 0.8862 | 0.0186
ERR 0.03104 | 0.02843 | 0.02559 | 0.0238 | 0.02265 | 0.02177

TABLE 7.3 — Les valeurs de RMSE en fonction du nombre de valeurs aberrantes introduites.

Rappelons que, dans le premier cas, les deux estimateurs sont équivalents. Cependant,
quand il y a des valeurs aberrantes ’estimateur a noyau de la régression relative est mieux
que celui de la régression classique. En effet, la méthode classique de noyau est tres sensible
a la présence de valeurs aberrantes. Les valeurs de MSE et RMSE dans la méthode du
noyau augmentent sensiblement par rapport au nombre de valeurs aberrants, alors que ces

erreurs restent tres faibles dans le cas d’estimation par la méthode de I'erreur relative.

7.2 Conclusion

L’idée générale de ce mémoire, est la modélisation de la co-variabilité entre une variable
explicative (réelle ou fonctionnelle) et une variable réponse scalaire par minimisation de
Ierreur moyenne quadratique relative. la principale caractéristique de cette fonction de
perte est qu’elle prend en compte la forme de poids de chaque observation, contrairement
a la fonction de perte de ’erreur moyenne quadratique ot tous les observation ont le méme

poids.

Dans un premier temps, nous avons considéré une suite d’observations réelles et nous avons
construit un estimateur a noyau pour la fonction de régression classique (cette estimation
a été faite a partir de 'erreur quadratique moyenne), puis, la fonction de régression relative
(estimation de l’erreur quadratique moyenne relative). Nous avons étudié la convergence

présque complete de ces deux estimateurs en précisent leurs vitesses de convergence. Nous
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nous somme concentré sur le cas ou les observations sont indépendantes et identiquement

distribuées.

Dans un second temps, nous avons généralisé les résultats précédents au cas des observa-
tions qui ne sont pas comme généralement en statistique, des réalisations de variables aléa-
toires réelles ou vectorielles (vecteurs aléatoires), mais des fonctions aléatoires : courbes,
images, etc... I s’agit de données de dimension infinie, c’est-a-dire rentrant dans le champ
de la "tres grande dimension". Par contre, la variable réponse est toujours réelle. Cette gé-
néralisation a été étudié dans les deux cas : des observations i.i.d., dans laquelle nous avons
étudié la convergence présque complete ponctuelle et uniforme, la convergence en moyenne
quadratique et la normalité asymptotique du méme estimateur considéré. Le deuxieéme cas
étudié était le cas dépendant avec un résultat de convergence présque complete.

D’un point de vue théorique, les résultats asymptotiques sont optimales tout comme le
cas de la méthode classique. Par contre, d’un point de vue pratique, la méthode de régres-
sion relative possede plus d’avantages que la méthode de régression classique. Nous avons

justifié cette supériorité a travers une application sur des données simulées.
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