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Introduction

Les harmoniques sphériques sont la partie angulaire de la solution de l’équation

différentielle de Laplace ∆u = 0, ou, de manière équivalente, les solutions de l’équation

différentielle de Laplace sur la sphère unité.

Soient r, θ, φ les coordonnées sphériques : r est le rayon, θ la colatitude, φ la longitude.

Les harmoniques sphériques, notées Y m
l (θ, φ), sont des fonctions des deux coordonnées

angulaires données par

Y m
l (θ,Φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
eimΦPml (cos θ),

avec Pml désignant les fonctions Legendre associées :

Pml (x) = (1− x2)m/2
1

2ll!

dl+m

dxl+m
(x2 − 1)l.

L’indice l et l’exposant m sont deux entiers appelés le degré et l’ordre de l’harmonique

sphérique. Ils prennent les valeurs l = 0, 1, 2, ...,∞, et m = −l, ..., 0, ..., l.

La propriété la plus importante des harmoniques sphériques est que toute fonction dé-

finie sur la sphère peut se décomposer de façon unique sous la forme d’une somme

d’harmoniques sphériques. Les Y m
l forment ainsi une base orthonormée complète pour

les fonctions définies sur une sphère. Elles sont l’équivalent, sur la sphère, des séries de

Fourier sur le cercle.

Les harmoniques sphériques sont largement utilisées en physique atomique et molécu-

laire. En mécanique quantique, elles apparaissent comme des fonctions propres du mo-

ment angulaire orbital (carré). En outre, elles sont importantes dans la représentation

des champs gravitationnels et magnétiques des corps planétaires, la caractérisation du

rayonnement de fond des micro-ondes cosmiques, la description invariante de rotation

des formes 3D en infographie, la description des potentiels électriques dus aux distribu-

tions de charge, et dans certains types de mouvement fluide.

1
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Ce mémoire a pour but d’étudier les propriétés des harmoniques sphériques et de donner

quelques applications de quelques problèmes aux limites de la physique mathématique

qui peuvent être résolus par l’utilisation des harmoniques sphériques. Le plan de ce

mémoire est le suivant :

Dans le chapitre 1, nous présentons dans une première section quelques outils de l’ana-

lyse mathématiques qui nous seront utiles tout au long de ce chapitre tels que la conver-

gence des séries entières et l’existence des solutions d’équations différentielles dévelop-

pables en séries entières (solutions analytiques). Dans la seconde section nous utilisons

la méthode des séries entières pour résoudre l’équation différentielle de Legendre et dis-

cuter suivant les valeurs du paramètre de l’équation les solutions polynômiales (poly-

nômes de Legendre). Dans la section suivante nous donnons la définition des polynômes

de Legendre par la-dite formule de Rodrigues. Une autre définition des polynômes de

Legendre est donnée dans la quatrième section en utilisant la fonction génératrice.

Dans la cinquième section nous donnons la relation de symétrie, aussi nous présen-

tons quelques valeurs particulières des polynômes de Legendre ainsi de leurs dérivées.

Nous étudions l’orthogonalité des polynômes de Legendre dans la sixième section. Les

représentations intégrales et le développement en séries de polynômes de Legendre font

l’objet des sections 7 et 8. Dans la neuvième section nous démontrons quelques relations

de récurrence. La dixième section est consacrée à l’étude des zéros des polynômes de Le-

gendre {Pn(x)}, nous montrerons que tous les zéros de Pn(x) se trouvent à l’intérieur de

l’intervalle [−1, 1] et que les zéros de Pn(x) et ceux de Pn−1(x) sont entrelacés. . L’étude

des fonctions de Legendre associées et leurs propriétés fait l’objet des sections 11 et 12.

Finalement, les fonctions de Legendre du deuxième type sont étudiées en détails dans

la dernière section.

Le deuxième chapitre traite les harmoniques sphériques et leurs propriétés notam-

ment l’orthogonalité, le théorème d’addition,...

Le troisième chapitre est consacré à l’étude de certains problèmes aux limites de

la physique mathématique qui peuvent être résolus par l’utilisation des harmoniques

sphériques, notamment l’étude de l’équation du potentiel.



Chapitre 1
Fonctions de Legendre

Adrien-Marie Legendre a introduit, en 1784, les polynômes de Legendre, tout en

étudiant l’attraction des sphéroïdes et des ellipsoïdes. Ces polynômes sont les solu-

tions d’une équation différentielle ordinaire appelée équation différentielle de Legendre.

Cette équation est fréquemment rencontrée en physique et en ingénierie. En particulier,

cela se produit lors de la résolution de l’équation de Laplace, de Helmholtz en coordon-

nées sphériques.

Dans ce chapitre, nous nous intéressons à étudier la solution de l’équation différentielle

de Legendre et obtiendrons les polynômes de Legendre de deux manières différentes, en

résolvant l’équation différentielle et à partir de la fonction génératrice. Ensuite, nous

mentionnons les propriétés des polynômes de Legendre ; la plus remarquable d’entre

elles est la propriété d’orthogonalité.

Il est important d’étudier l’équation différentielle associée de Legendre et les différentes

propriétés des polynômes de Legendre associés. Nous terminons ce chapitre par étudier

les polynômes de Legendre (associés) du deuxième type.

1.1 Préliminaires

1.1.1 Série entière

Definition 1.1.1. Le rayon de convergence de la série entière
+∞∑
n=0

an (x− x0)n

est le plus grand nombre positif R tel que la série converge pour tout x dans le disque

|x− x0| < R.

3
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Théorème 1.1.1. Le rayon de convergence R de la série entière centrée en x0,

+∞∑
n=0

an (x− x0)n

est tel que
1

R
= lim

n→∞
sup |an|

1
n

On a aussi
1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
lorsque cette limite existe.

Definition 1.1.2. On dit que la fonction y est analytique dans le disque D(x0, R), de

centre x0 et de rayon R > 0, si elle admet un développement en série entière de centre x0,

y(x) =
+∞∑
n=0

an (x− x0)n

uniformément convergent dans tout disque fermé strictement contenu dans D(x0, R).

Le théorème suivant est une conséquence immédiate de la définition précédente.

Théorème 1.1.2. Une fonction y analytique dans D(x0, R) admet la représentation

y(x) =
+∞∑
n=0

y(n)(x0)

n!
(x− x0)n .

De plus y(x) est indéfiniment dérivable dans D(x0, R)

y(k)(x) =
+∞∑
n=0

y(n)(x0)

(n− k)!
(x− x0)n−k

k = 0, 1, 2, ....

1.1.2 Existence de solutions d’équations différentielles développables

en séries entières

Théorème 1.1.3. Soit l’équation différentielle

y′′ + p(x)y′ + q(x)y = r(x), (1.1)

où p, q et r sont des fonctions analytiques au voisinage de x0. Si R est le minimum des

rayons de convergence des développements en série entière, de centre x0, de p, q et r,

alors l’équation différentielle admet une solution analytique de centre x0 et de rayon de

convergence R.
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1.1.3 Formule de Leibniz

La formule de Leibniz est une formule permettant de calculer la dérivée d’ordre n

d’un produit de deux fonctions. Elle est analogue à la formule du binôme de Newton

pour calculer une puissance d’ordre n d’une somme de deux termes.

Proposition 1.1.1. (Formule de Leibniz) : Soient f, g : I ⊂ R → C deux fonctions n

fois dérivables sur I. Alors fg est n fois dérivable sur I et

(fg)(n) =

+∞∑
n=0

Cknf
(n−k)g(k)

où Ckn = n!
k!(n−k)! .

1.2 Equation de Legendre. Fonctions et polynômes de Le-

gendre

En mathématiques et en physique théorique, les polynômes de Legendre constituent

l’exemple le plus simple d’une suite de polynômes orthogonaux. Ce sont des solutions

polynomiales Pl(x) de l’équation différentielle de Legendre :

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0 (1.2)

dans le cas particulier où le paramètre l est un entier.

1.2.1 Solution par série entière

On cherche la solution générale de l’équation de Legendre :

(
1− x2

)
y′′ − 2xy′ + l(l + 1)y = 0, −1 < x < 1, (1.3)

sous forme de série entière centrée en x0 = 0. On récrit l’équation sous forme standard :

y′′ − 2x

(1− x2)
y′ +

l(l + 1)

(1− x2)
y = 0

Puisque

p(x) =
2x

(1− x2)
=

−2x

(1− x)(1 + x)
= −2x[1 + x2 + x4 + x6 + . . .],

q(x) =
l(l + 1)

(1− x2)
=

l(l + 1)

(1− x)(1 + x)
= l(l + 1)[1 + x2 + x4 + x6 + . . .],

r(x) = 0,
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on voit que p et q sont analytiques sur −1 < x < 1 et r est analytique partout. Par le

théorème (1.1.3), on sait que (1.3) admet deux solutions indépendantes et analytiques

sur −1 < x < 1.

Posons

y(x) =
+∞∑
n=0

anx
n

On peut dériver y terme à terme et en insère y, sa dérivée y′ et la dérivée seconde y′′

dans l’équation (1.3), on obtient

(1− x2)
+∞∑
n=0

n(n− 1)anx
n−2 − 2x

+∞∑
n=0

nanx
n−1 + l(l + 1)

+∞∑
n=0

anx
n = 0

+∞∑
n=0

n(n− 1)anx
n−2 −

+∞∑
n=0

n(n− 1)anx
n − 2

+∞∑
n=0

nanx
n + l(l + 1)

+∞∑
n=0

anx
n = 0

+∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

+∞∑
n=0

n(n− 1)anx
n − 2

+∞∑
n=0

nanx
n + l(l + 1)

+∞∑
n=0

anx
n = 0

On peut affirmer que y est solution de l’équation différentielle si, et seulement si,

+∞∑
n=0

{(n+ 1)(n+ 2)an+2 − [n(n+ 1)− l(l + 1)] an}xn = 0

Puisque nous avons une identité en x, chacun des coefficients de xn, n = 0, 1, 2, ... , est

nul, et puisque l’équation (1.3) est du second ordre, deux des an seront indéterminés. On

a donc,

2!a2 + l(l + 1)a0 = 0⇒ a2 = − l(l + 1)

2!
a0, a0 indéterminé,

(3× 2)a3 + (−2 + l(l + 1))a1 = 0⇒ a3 = −2− l(l + 1)

3!
a1, a1 indéterminé

(n+ 2)(n+ 1)an+2 − [n(n+ 1)− l(l + 1)] an = 0, ∀n ≥ 0

donc

an+2 =
n(n+ 1)− l(l + 1)

(n+ 2)(n+ 1)
an

= − (l − n) (l + n+ 1)

(n+ 2)(n+ 1)
an, ∀ n ≥ 0 (1.4)

d’où
a2 = − l(l+1)

2! a0, a3 = − (l−1)(l+2)
3! a1,

a4 = (l−2)l(l+1)(l+3)
4! a0, a5 = (l−3)(l−1)(l+2)(l+4)

5! a1.
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A partir des équations précédentes on peut déduire le terme général qui est donné

par

a2n = (−1)n
l(l − 2)(l − 4) . . . (l − 2n+ 2)(l + 1)(l + 3) . . . (l + 2n− 1)

(2n)!
a0

et

a2n+1 =
(−1)n(l − 1)(k − 3) . . . (l − 2n+ 1)(l + 2)(l + 4) . . . (l + 2n)

(2n+ 1)!
a1

On peut donc écrire la solution de la forme :

y(x) = a0y1(x) + a1y2(x) (1.5)

où

y1(x) = 1− l(l + 1)

2!
x2 +

(l − 2)l(l + 1)(l + 3)

4!
x4 −+· · · ,

=
∞∑
n=0

(−1)n
l(l − 2)(l − 4) . . . (l − 2n+ 2)(l + 1)(l + 3) . . . (l + 2n− 1)

(2n)!
x2n

et

y2(x) = x− (l − 1)(l + 2)

3!
x3 +

(l − 3)(l − 1)(l + 2)(l + 4)

5!
x5 −+· · ·

=

∞∑
n=0

(−1)n
(l − 1)(l − 3) . . . (l − 2n+ 1)(l + 2)(l + 4) . . . (l + 2n)

(2n+ 1)!
x2n+1.

Remarque 1.2.1. 1. On peut montrer en utilisant la règle de d’Alembert que les séries

définissant y1 et y2 convergent pour |x| < R = 1.

2. Puisque y1 est paire et y2 est impaire, il suit que

y1(x)

y2(x)
6= constante

Donc y1 et y2 sont deux solutions indépendantes car le Wronskian au point ordinaire

x = 0

W (y1(x), y2(x)) =

∣∣∣∣∣∣ y1(x) y2(x)

y′1(x) y′2(x)

∣∣∣∣∣∣
x=0

=

∣∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣∣
x=0

= 1 6= 0

est non nul donc (1.5) est la solution générale.

3. On peut montrer que les séries donnant y1, (resp. y2), divergent en x = ±1 si l 6=

0, 2, 4, ..., ( resp. l 6= 1, 3, 5, ...).

4. Le seul cas dans lequel l’équation de Legendre possède une solution bornée sur

[−1, 1] est lorsque le paramètre l est un entier. Dans ce cas ou bien y1 ou bien y2 est un

polynôme (la série se termine).

Lorsque nous considérons les valeurs entière de l, nous devons considérer uniquement les

valeurs positives de l, en effet si l était un entier négatif, nous pourrions écrirem = −(l+1)

et utiliser le fait que m(m+ 1) = l(l + 1).
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Corollaire 1.2.1. Pour l pair, y1(x) est un polynôme pair, et de même, pour l impair,

y2(x) est un polynôme impair donc la solution résultante de l’équation différentielle de

Legendre est appelée polynôme de Legendre désigné par

Pn(x) =
M∑
k=0

an−2kx
n−2k

=

M∑
k=0

(−1)k(2k − 2n)!

2nk!(n− k)!(n− 2k)!
xn−2k (1.6)

où M =
[
n
2

]
est la fonction de plafond (”ceiling function”) et elle définie par

[n
2

]
=

 n
2 si n est pair

n−1
2 si n est impair

et Pn(x) est le polynôme de Legendre de degré n, tel que Pn(1) = 1.

Démonstration. Comme cela a été souligné dans la remarque ci-dessus, si l ∈ N alors

l’équation différentielle de Legendre possède des solutions bornées. On revient à la

construction des solutions par les séries entières et regarder à nouveau les relations

de récurrence donnant les coefficients

an+2 =
n(n+ 1)− l(l + 1)

(n+ 2)(n+ 1)
an, n = 0, 1, 2, ...

On a alors

al+2 =
l(l + 1)− l(l + 1)

(l + 2)(l + 1)
al = 0,

al+4 =
(l + 2)(l + 3)− l(l + 1)

(l + 4)(l + 3)
al+2 = 0,

et de proche en proche on trouve que al+2k = 0, k = 1, 2, 3, ...

Cela signifie que :

• Si l = 2p (pair), la série pour y1 se termine en a2p et y1 est un polynôme de degré

2p.

• Si l = 2p+1 (impair), alors la série pour y2 se termine à a2p+1 et y2 est un polynôme

de degré 2p+ 1.

On peut réécrire la relation de récurrence pour une solution polynomiale en terme

de an. Nous avons

an =
(n+ 2)(n+ 1)

n(n+ 1)− l(l + 1)
an+2 = − (n+ 2)(n+ 1)

(l − n)(l + n+ 1)
an+2, n = 0, 1, 2, ...l − 2.
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ou encore de manière équivalente

al−2k = −(l − 2k + 2)(l − 2k + 1)

(2k)(2l − 2k + 1)
al−2k+2, k = 0, 1, 2, ...[l/2].

Ainsi par récurrence on peut montrer que

al−2k =
(−1)k

2kk!

l(l − 1)...(l − 2k + 1)

(2l − 1)(2l − 3)...(2l − 2k + 1)
al.

où al est une constante arbitraire. Le l-ième polynôme de Legendre Pl(x) est le ci-dessus

polynôme de degré l pour la valeur particulière de al

al =
(2l)!

2l(l!)2
.

Cette valeur particulière de al est choisie de telle sorte que Pl(1) = 1. On a alors (après

simplification)

Pl(x) =
1

2l

[l/2]∑
k=0

(−1)k(2l − 2k)!

k!(l − k)!(l − 2k)!
xl−2k.

avec

[l] =

 l
2 si l est pair
l−1
2 si l est impair.

Notons que si l est pair (resp. impair), alors les seules puissances de x dans Pl(x) sont

paires (resp. impaires) et donc Pl est pair (resp. impair).

Les six premiers polynômes de Legendre sont

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(3x4 − 30x2 + 3),

P5(x) =
1

8
(63x5 − 70x3 + 15x),

et ils sont représentés dans la Figure 1.1.
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FIGURE 1.1 – Polynômes de Legendre pour n = 0, 1, 2, 3, 4, 5.

1.3 Formule de Rodrigues

Les polynômes de Legendre peuvent être calculés itérativement l’un après l’autre à

l’aide d’une formule qui utilise des dérivés successives. Cette formule est connue sous

le nom de formule de Rodrigues. Cette formule peut être utilisée pour prouver de nom-

breuses propriétés des polynômes de Legendre (orthogonalité, par exemple). Il peut être

aussi utilisé pour identifier les fonctions propres du moment angulaire orbital.

Théorème 1.3.1. La formule de Rodrigues des polynômes de Legendre est exprimée par :

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
.

Démonstration. Considérons la fonction suivante

y = (x2 − 1)n.

Donc la dérivée par rapport à x donne

dy

dx
= 2nx(x2 − 1)n−1 (1.7)

Multiplions les deux membres de l’équation (1.7) par (x2 − 1) on trouve

(x2 − 1)
dy

dx
= 2nx(x2 − 1)n = 2nxy
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Par le théorème de Leibnitz (pour f = (x2 − 1) et g =

dy

dx
)

(x2 − 1)
dn+2y

dxn+2
+ C1

n+1 (2x)
dn+1y

dxn+1
+ C2

n+1 (2)
dny

dxn
= 2n

[
x
dn+1y

dxn+1
+ C2

n+1 (1)
dny

dxn

]
(x2 − 1)

dn+2y

dxn+2
+ 2 (n+ 1)x

dn+1y

dxn+1
+

2 (n+ 1)n

2

dny

dxn
= 2n

[
x
dn+1y

dxn+1
+ (n+ 1)

dny

dxn

]
donc

(x2 − 1)
dn+2y

dxn+2
+ [(2nx+ 2x)− 2nx]

dn+1y

dxn+1
+ n (n+ 1)− 2n (n+ 1)

dny

dxn
= 0

(x2 − 1)
dn+2y

dxn+2
+ 2x

dn+1y

dxn+1
− n (n+ 1)

dny

dxn
= 0

ce qui équivalent à dire

(1− x2)
dn+2y

dxn+2
− 2x

dn+1y

dxn+1
+ n (n+ 1)

dny

dxn
= 0

Posant Rn = dny
dxn alors l’équation ci-dessus devient

(1− x2)
d2Rn
dx2

+ 2x
dRn
dx

+ +n (n+ 1)Rn = 0

Ce n’est rien d’autre que l’équation de Legendre. Ainsi Rn satisfait l’équation de Le-

gendre.

Notons que

Rn =
dny

dxn
=

dn

dxn
[
(x2 − 1)n

]
est un polynôme de degré n.

Nous savons que l’équation de Legendre n’a qu’une solution polynomiale distincte,

qui est Pn(x).

Ainsi, Pn(x) doit être écrit comme un multiple à une constante près de Rn. C’est-à-

dire,

Pn(x) = KRn (x) = K
dn

dxn
[
(x2 − 1)n

]
(1.8)

Nous n’avons qu’à déterminer cette constanteK. Notant que Pn(1) = 1, nous pouvons

déterminer K en évaluant dn

dxnRn
∣∣
x=1

.

En appliquant la règle de Leibniz, nous avons

dn

dxn
Rn =

dn

dxn
[(x+ 1)n(x− 1)n]

=
n∑

m=0

Cnm
dn−m

dxn−m
(x+ 1)n

dm

dxm
(x− 1)n

= (x− 1)n
dn

dxn
(x+ 1)n + nC1

n(x− 1)n−1 d
n−1

dxn−1
(x+ 1)n + ...

+Cnn−1(x+ 1)n−1 d
n−1

dxn−1
(x− 1)n + Cnn (x+ 1)n

dn

dxn
(x− 1)n.
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En mettant x = 1 des deux côtés de l’équation ci-dessus

dn

dxn
Rn

∣∣∣∣
x=1

= Cnn (x+ 1)nn!|x=1 = 2nn!

En substituant x = 1 dans l’équation (1.8), nous voyons que

Pn(1) = KRn (x)|x=1 = K
dn

dxn
[
(x2 − 1)n

]∣∣∣∣
x=1

= K 2nn!

Puisque nous savons que pour tout n, lorsque x = 1, le polynôme de Legendre Pn(1) = 1,

donc la valeur de la constante K est

K =
Pn(1)

2nn!
=

1

2nn!

En remplaçant K dans l’équation (1.8), nous obtenons

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
.

1.4 Fonction génératrice des polynômes de Legendre

De nombreux calculs sur les fonctions de Legendre peuvent être prouvés en utili-

sant sa fonction génératrice. Ici, nous voulons déterminer la fonction génératrice des

polynômes de Legendre.

Definition 1.4.1. La fonction

G(t, x) =
1√

1− 2tx+ t2

est appelée fonction génératrice des polynômes de Legendre Pn(x). Si nous étendons

G(t, x) comme série de Taylor en t alors le coefficient de tn est le polynôme Pn(x).

Proposition 1.4.1. Si |t| < 1 et |x| ≤ 1 on a :

1√
1− 2tx+ t2

=
∞∑
k=0

tkPk(x) (1.9)

Démonstration. On sait qu’on a pour certaines valeurs |v| < 1 la formule binomial est

donnée par

(1 + v)α =
∞∑
k=0

α(α− 1)...(α− k + 1)

k!
vk,
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alors

1√
1− 2tx+ t2

= [1− t(2x− t)]−
1
2

= 1 +
1

2
t(2x− t) +

(1
2)(3

2)

2!
t2(2x− t)2 + ...+

(1
2).(1

3) . . . (n− 1
2)

n!
tn(2x− t)n + ...

=
∞∑
k=0

1.3.5 . . . (2k − 1)

2kk!
tk(2x− t)k,

=
∞∑
k=0

(2k)!

22k(k!)2
tk(2x− t)k.

D’aprés la formule du binôme de Newton, on a

(2x− t)k =

k∑
s=0

k!

s!(k − s)!
(2x)k−s(−t)s

En remplaçant dans l’équation précédente, on trouve

1√
1− 2tx+ t2

=
∞∑
k=0

(2k)!

22k(k!)2

k∑
s=0

(−1)s
k!

s!(k − s)!
(2x)k−stk+s.

Si on pose n = k + s, on a n qui varie entre 0 et∞, et puisque s varie entre 0 et k, donc

k varie entre [n/2] et n, alors

1√
1− 2tx+ t2

=
∞∑
n=0

n∑
k=[n/2]

tn(−1)n−k
(2k)!

2nk!(n− k)!(2k − n)!
x2k−n.

En faisant le changement de variable r = n− k, on obtient finalement

1√
1− 2tx+ t2

=

∞∑
n=0

tn
[n/2]∑
k=0

(−1)r
(2n− 2r)!

2nr!(n− r)!(n− 2r)!
xn−2r,

ainsi
1√

1− 2tx+ t2
=

∞∑
n=0

tnPn(x).

1.5 Propriétés des polynômes de Legendre

Proposition 1.5.1. Les polynômes de Legendre vérifient la relation de symétrie sui-

vante :

Pn(−x) = (−1)nPn(x).
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Démonstration. On a montré que

(
1− 2tx+ t2

)− 1
2 =

∞∑
n=0

Pn(x)tn, (1.10)

alors en remplaçant x par −x dans (1.10) on obtient

(
1 + 2tx+ t2

)− 1
2 =

∞∑
n=0

Pn(−x)tn,

puis t par −t dans (1.10) on trouve

(
1 + 2tx+ t2

)− 1
2 =

∞∑
n=0

Pn(x) (−t)n ,

donc
∞∑
n=0

Pn(−x)tn =

∞∑
n=0

(−1)n Pn(x)tn,

ce qui implique

Pn(−x) = (−1)n Pn(x).

Proposition 1.5.2. On a

i) Pn(1) = 1.

ii) Pn(−1) = (−1)n.

iii) P ′n(1) = 1
2n(n+ 1).

iv) P ′n(−1) = (−1)n−1 1
2n(n+ 1).

v) P2n(0) = (−1)n (2n)!
22n(n!)2

.

vi) P2n+1(0) = 0.

Démonstration. i) Posons x = 1 dans la fonction génératrice des polynômes de Legendre

nous obtenons (
1− 2t+ t2

)− 1
2 =

∞∑
n=0

Pn(1)tn,

qui est
1

1− t
=

∞∑
n=0

Pn(1)tn,

mais
1

1− t
=
∞∑
n=0

tn.

Ainsi, on a
∞∑
n=0

tn =

∞∑
n=0

Pn(1)tn.
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Pour que cela soit vrai pour toutes les valeurs de t dans un certain intervalle (dans ce cas

−1 < t < 1), nous devons avoir l’égalité des coefficients correspondants aux puissances

de t, c’est-à-dire Pn(1) = 1.

ii) Exactement similaire à i) mais en posant x = −1 dans la fonction génératrice.

iii) Pn(x) satisfait l’équation de Legendre, donc on a

(1− x2)P ′′n (x)− 2xP ′n(x) + n(n+ 1)Pn(x) = 0. (1.11)

En posant x = 1 dans cette équation nous obtenons

−2P ′n(1) + n(n+ 1)Pn(1) = 0,

ce qui réduit, en utilisant de la partie i) ci-dessus, à

P ′n(1) =
1

2
n(n+ 1).

iv) Exactement similaire à iii) en posant x = −1 dans l’équation (1.11) et l’utilisation

de la partie ii) ci-dessus.

v) et vi) Posons x = 0 dans la fonction génératrice des polynômes de Legendre, on a

(1 + t2)−
1
2 =

∞∑
n=0

Pn(0)tn.

En développant le premier membre de cette équation nous obtenons

(1 + t2)−
1
2 = 1 +

(
−1

2

)
t2 +

(
−1

2

)(
−3

2

)
t4 + . . .+

(
−1

2

) (
−3

2

)
. . .
(
−2n−1

2

)
n!

t2n + . . .

=

∞∑
n=0

(−1)n
1.3.5 . . . (2n− 1)

2nn!
t2n,

=

∞∑
n=0

(−1)n
1.2.3.4.5 . . . (2n− 2)(2n− 1)2n

2nn!2.4.6 . . . (2n− 2)2n
t2n,

=

∞∑
n=0

(−1)n
(2n)!

22n(n!)2
t2n.

Alors on a
∞∑
n=0

(−1)n
(2n)!

22n(n!)2
t2n =

∞∑
n=0

Pn(0)tn.

En identifiant les coefficients correspondants aux puissances de t des deux cotés on

trouve

P2n(0) = (−1)n
(2n)!

22n(n!)2
et P2n+1(0) = 0.
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1.6 Orthogonalité des polynômes de Legendre

Théorème 1.6.1. Les polynômes de Legendre Pn(x) satisfont la relation d’orthogonalité

suivante :

∫ 1

−1
Pk(x)Pm(x)dx =

 0 si k 6= m

2
2k+1 si k = m

Démonstration. La première partie (c’est-à-dire pour m 6= k) découle de l’équation de

Legendre

(1− x2)y′′ − 2xy′ + k (k + 1) y = 0,

récrite sous la forme :

Lny :=
[
(1− x2)y′

]′
+ k (k + 1) y = 0.

Puisque Pm et Pk sont respectivement solutions de Lmy = 0 et Lky = 0, on a

Pk(x)Lm (Pm) = 0 et Pm(x)Lk (Pk) = 0.

On intègre ces deux expressions de −1 à 1 :∫ 1

−1

[
Pk (x) (1− x2)P ′m (x)

]′
dx+m(m+ 1)

∫ 1

−1
Pk (x)Pm (x) dx = 0,∫ 1

−1
[Pm (x)

[
(1− x2)P ′k (x)

]′
dx+ k(k + 1)

∫ 1

−1
Pm (x)Pk (x) dx = 0,

et l’on intègre le 1er terme de chacune de ces expressions par parties :

(1− x2)Pk (x)P ′m (x)
∣∣1
−1
−
∫ 1

−1
(1− x2)P ′k (x)P ′m (x) dx+m(m+ 1)

∫ 1

−1
Pk (x)Pm (x) dx = 0,

(1− x2)Pm (x)P ′k (x)
∣∣1
−1
−
∫ 1

−1
(1− x2)P ′m (x)P ′k (x) dx+ k(k + 1)

∫ 1

−1
Pm (x)Pk (x) dx = 0.

Les deux termes intégrés sont nuls et le terme suivant de chacune des équations est

identique. Donc, par soustraction on obtient l’orthogonalité des Pn

[m(m+ 1)− k(k + 1)]

∫ 1

−1
Pm (x)Pk (x) dx = 0,

ce qui montre que si k 6= m, on devrait avoir∫ 1

−1
Pk(x)Pm(x)dx = 0.
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La 2eme partie, m = n : Pour montrer que ‖Pk‖2 =

∫ 1
−1(Pk)

2dx = 2
(2k+1) , on utilise la

fonction génératrice de Pk(x) :

1√
1− 2xt+ t2

=

∞∑
k=0

tkPk(x).

Elevons au carré chacun des deux membres :( ∞∑
k=0

Pk(x)tk

)2

=

∞∑
k=0

P 2
k (x)t2k +

∞∑
m6=k

Pk(x)Pm(x)tk+m =
1

1− 2xt+ t2
,

et intégrons par rapport à x de −1 à 1 :

∞∑
k=0

(∫ 1

−1
P 2
k (x)dx

)
t2k +

∞∑
m 6=k

(∫ 1

−1
Pk(x)Pm(x)dx

)
tk+m =

∫ 1

−1

1

1− 2xt+ t2
dx

Comme Pm et Pk sont orthogonaux pour m 6= k, le 2eme terme du 1er membre est nul et

nous obtenons après intégration du 2eme membre

∞∑
k=0

(∫ 1

−1
P 2
k (x)dx

)
t2k =

[
− 1

2t
ln(1 + t2 − 2xt)

]1

−1

,

=

∫ 1

−1

1

1 + t2 − 2xt
dx,

=

[
− 1

2t
ln(1 + t2 − 2xt)

]1

−1

,

= − 1

2t

[
ln(1 + t2 − 2t)− ln(1 + t2 + 2t)

]
,

= − 1

2t

[
ln((1− t)2)− ln((1 + t)2)

]
,

= −1

t
[ln(1− t)− ln(1 + t)] .

On multiplie par t :
∞∑
k=0

‖Pk‖2 t2k+1 = ln(1 + t)− ln(1− t)

et l’on dérive par rapport à t

∞∑
k=0

(2k + 1) ‖Pk‖2 t2k =
1

1− t
+

1

1 + t
,

=
2

1− t2
= 2

(
1 + t2 + t4 + t6 + ...

)
pour tout t, |t| < 1.

= 2

∞∑
k=0

t2k.

Puisque nous avons une identité en t, on peut donc identifier les coefficients de t2k :

(2k + 1) ‖Pk‖2 = 2⇒ ‖Pk‖2 =
2

(2k + 1)
.
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Par conséquent ∫ 1

−1
[Pk(x)]2dx =

2

2k + 1
.

1.7 Représentation intégrale de Laplace

Théorème 1.7.1.

Pk(x) =
1

π

∫ π

0
(x+

√
x2 − 1 cos θ)kdθ. (1.12)

Démonstration. On peut montrer par des méthodes élémentaires (par exemple au moyen

du changement de variable universel t = tan(θ/2)) que∫ π

0

dθ

1 + λ cos θ
=

π√
1− λ2

. (1.13)

Posons λ =
−u
√
x2 − 1

(1− ux)
, En développant les deux côtés de 1’équation (1.13) par rap-

port à u, nous obtenons d’une part

1

1 + λ cos θ
=

1

1 +
u
√
x2 − 1

1− ux
cos θ

= (1− ux)[1− u(x+
√
x2 − 1 cos θ)]−1.

Supposons que |u(x+
√
x2 − 1 cos θ)| < 1, donc

1

1 + λ cos θ
= (1− ux)

∞∑
l=0

uk(x+
√
x2 − 1 cos θ)k,

où on a utilisé le fait que (1− a)−1 =
∑∞

n=0 a
n, avec a = u(x+

√
x2 − 1 cos θ).

Et d’autre part

1√
1− λ2

=
1√

1− u2(x2 − 1)

(1− ux)2

,

=
1− ux√

(1− ux)2 − u2(x2 − 1)
,

=
1− ux√

1− 2ux+ u2
.

La substitution dans 1’équation (1.13) donne∫ π

0

∞∑
l=0

uk(x+
√
x2 − 1 cos θ)kdθ =

π√
1− 2ux+ u2

.
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Remplaçons la formule de la fonction génératrice (1.9) dans l’équation précédente, nous

obtenons
+∞∑
k=0

uk
∫ π

0
(x+

√
x2 − 1 cos θ)kdθ = π

+∞∑
k=0

ukPk(x).

Par identification des coefficients de uk on obtient

πPk(x) =

∫ π

0
(x+

√
x2 − 1 cos θ)kdθ.

Dans le cas où |u(x +
√
x2 − 1 cos θ)| > 1, on refait le même calcul mais en développant

suivant les puissances de 1
u ce qui donne

Pk(x) = ± 1

π

∫ π

0

1

(x+
√
x2 − 1 cos θ)k+1

dθ,

les signes + et − correspondant aux cas où Re(x) est positive où négative.

Remarque 1.7.1. A partir de (1.12), nous pouvons déduire une inégalité importante

satisfaite par les polynômes de Legendre. Soit x un nombre réel tel que −1 ≤ x ≤ 1. Alors

|(x+
√
x2 − 1 cos θ)| =

√
x2 + (1− x2) cos2 θ ≤ 1,

et donc

|Pn(x)| ≤ 1, −1 ≤ x ≤ 1. (1.14)

Une autre représentation intégrale importante des polynômes de Legendre peut être

déduit de (1.12) en supposant que x est un nombre réel tel que −1 < x < 1. Dans ce cas,

en posant

x = cos θ, 0 < φ < π,

on peut écrire (1.12) sous la forme

Pk(cosφ) =
1

π

∫ π

0
(cosφ+ i sinφ cos θ)kdθ. (1.15)

Puis en posant t = cosφ+ i sinφ cos θ, on obtient

Pk(cosφ) =
1

πi

∫ eiφ

e−iφ

tk√
1− 2t cosφ+ t2

dt.

Soient A et B les point d’affixes eiφ et e−iφ, l’intégration se fait le long du segment [AB] ou

de la corde (AB) dans le sens positif ; la racine choisie est telle que sa valeur en t = cosφ

soit sinφ. Posons maintenant t = eiψ, on obtient alors

Pk(cosφ) =
1

πi

∫ φ

−φ

ei(k+ 1
2

)ψ

√
2 cosψ − 2 cosφ

dψ,

dont la partie réelle donne

Pk(cosφ) =
2

πi

∫ φ

0

cos(k + 1
2)ψ

√
2 cosψ − 2 cosφ

dψ, 0 < φ < π, k = 0, 1, 2, ...
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(Intégrale de Mehler-Dirichlet).

1.8 Séries de Legendre

Théorème 1.8.1. Si f(x) est un polynôme de degré n, alors il peut être écrit sous la forme

f(x) =

n∑
r=0

crPr(x) (1.16)

avec les coefficients cr donnés par

cr =

(
r +

1

2

)∫ 1

−1
f(x)Pr(x)dx.

Démonstration. Si f(x) est un polynôme de degré n, on peut écrire

f(x) = bnx
n + bn−1x

n−1 + . . .+ b1x+ b0.

D’après (1.6), le polynôme de Legendre s’écrit sous la forme

Pn(x) = anx
n + an−2x

n−2 + . . .

Si on multiplie la dernière expression par bn
an

et en le soustrayant de f(x), on trouve que

la différence est un polynôme de degré (n− 1)

f(x)− cnPn(x) = gn−1(x),

où cn = bn
an

et gn−1(x) est un polynôme de degré n − 1. En faisant la même chose pour

gn−1(x), on peut démontrer facilement que gn−1(x) peut s’écrire sous la forme

gn−1(x) = cn−1Pn−1(x) + gn−2(x),

donc

f(x) = cnPn(x) + cn−1Pn−1(x) + gn−2(x).

On fait la même chose pour gn−2(x) et ainsi de suite, on obtient le résultat désiré

f(x) = cnPn(x) + cn−1Pn−1(x) + cn−2Pn−2(x) + . . .+ c0P0(x)

=
n∑
r=0

crPr(x).

Les coefficients cn peuvent être calculer de la manière suivante∫ 1

−1
f(x)Pk(x)dx =

n∑
r=0

∫ 1

−1
crPr(x)Pk(x)dx,

=
2ck

2k + 1
.
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donc

ck = (k +
1

2
)

∫ 1

−1
f(x)Pk(x)dx. (1.17)

Remarque 1.8.1. Dans le cas ou f(x) est un polynôme, il n’est pas nécessaire de calculer

les intégrales (1.17), car le les coefficients ck peuvent être facilement trouvés en résolvant

le système d’équations linéaires obtenu lorsque les expressions explicites des polynômes

de Legendre sont substituées dans l’équation (1.16) et les coefficients de puissances iden-

tiques de x des deux côtés de l’équation sont mis en égalité. Ainsi, par exemple

x2 = c0P0(x) + c1P1(x) + c2P2(x) = c0 + c1x+
1

2
c2(3x2 − 1),

donc

c2 =
2

3
, c1 = 0, c0 =

1

3
.

Ainsi

x2 =
1

3
P0(x) +

2

3
P2(x),

une expansion qui est valable pour tout x.

Corollaire 1.8.1. Si f(x) est un polynôme de degré inférieur à k, alors∫ 1

−1
f(x)Pk(x)dx = 0.

Démonstration. Si f(x) est de degré n tel que n < k, d’aprés la relation d’orthogonalité

on a

ck = (k +
1

2
)

∫ 1

−1
f(x)Pk(x)dx,

= (k +
1

2
)

n∑
r=0

cr

∫ 1

−1
Pr(x)Pk(x)dx,

= 0,

par le Théorème 1.6.1, puisque r ≤ n < k, de sorte que r n’est jamais égal à l.

Les résultats du théorème ci-dessus peuvent être étendus à des fonctions qui ne sont

pas des polynômes. nous ne prouverons pas cette extension, mais citerons simplement

le résultat suivant (la preuve n’est pas difficile, mais est assez longue).

Théorème 1.8.2. Soit f une fonction vérifiant sur l’intervalle [−1, 1] les conditions sui-

vantes :
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(i) f et continue sauf en un nombre fini de points finis (continue par morceaux).

(ii) f possède un nombre fini d’extrémums.

Alors la série
∞∑
n=0

cnPn(x) (1.18)

où

cn =

(
n+

1

2

)∫ 1

−1
f(x)Pn(x)dx, (1.19)

converge vers f(x) si x est un point de continuité de f , et vers

f(x+) + f(x−)

2
,

si x est un point de discontinuité.

De plus, aux points x = ±1, la série converge vers f(1−) et f(−1+) respectivement.

Cette série s’appelle la série de Legendre de f .

Exemple 1.8.1. Considérons la fonction

f(x) =

√
1− x

2
.

Cette fonction satisfait aux conditions du Théorème 1.8.2, et peut donc être développée

en une série de la forme (1.18). Les coefficients cn peuvent être calculés par la méthode

suivante, qui est souvent utile : On multiplie la fonction génératrice (1.27) par f(x) et

intégrer sur l’intervalle [−1, 1]. Après quelques calculs élémentaires, on obtient

1

2t

[
1 + t− (1− t)2

2
√
t

ln

(
1 +
√
t

1−
√
t

)]
=

∞∑
n=0

tn
∫ 1

−1

√
1− x

2
Pn(x)dx, |t| < 1, (1.20)

où l’intégration terme par terme est justifiée par la convergence uniforme de la série (1.9)

dans l’intervalle [−1, 1], qui découle de l’estimation (1.14). En développant le côté gauche

de (1.20) en puissances de t, nous trouvons que

4

3
− 4

∞∑
n=0

tn

(4n2 − 1)(2n+ 3)
=

∞∑
n=0

tn
∫ 1

−1

√
1− x

2
Pn(x)dx, |t| < 1, (1.21)

ce qui implique ∫ 1

−1

√
1− x

2
P0(x)dx =

4

3
,∫ 1

−1

√
1− x

2
Pn(x)dx = − 4

(4n2 − 1)(2n+ 3)
.

Nous utilisons maintenant (1.19) pour écrire la série de Legendre requise sous la forme√
1− x

2
=

2

3
P0(x)− 2

∞∑
n=1

Pn(x)

(2n− 1)(2n+ 3)
, −1 < x < 1. (1.22)
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1.9 Relations (formules) de récurrence pour les polynômes

de Legendre

Proposition 1.9.1. Les polynômes de Legendre satisfont les relations suivantes

i) P ′n(x) =

[ 1
2

(n−1)]∑
r=0

(2n− 4r − 1)Pn−2r−1(x).

ii) xPn(x) =
n+ 1

2n+ 1
Pn+1(x) +

n

2n+ 1
Pn−1(x).

Démonstration. i) On sait que Pn(x) est un polynôme de degré n, qui contient seulement

les puissance paires de x si n est paire, et seulement les puissances impaires de x si n et

impair. Donc P ′n(x) est un polynôme de degré n − 1 contenant des puissances impaires

ou paires de x selon que n est pair ou impair. Donc en utilisant le Théorème 1.8.1 on a

P ′n(x) = cn−1Pn−1(x) + cn−3Pn−3(x) + . . .+ cn−2r−1Pn−2r−1(x) + . . .

 c1P1(x) (n pair)

c0P0(x) (n impair)

avec

cs =

(
s+

1

2

)∫ 1

−1
P ′n(x)Ps(x)dx

=

(
s+

1

2

){
[Pn(x)Ps(x)]1−1 −

∫ 1

−1
Pn(x)P ′s(x)dx

}
=

(
s+

1

2

)
{Pn(1)Ps(1)− Pn(−1)Ps(−1)− 0}

où l’intégrale s’annule par le corollaire du Théorème 1.8.1, puisque P ′s(x) est un poly-

nôme de degré s− 1, et s− 1 est toujours inférieur à n. Ainsi par la Proposition 1.5.2 (i)

et (ii), on a

cs =

(
s+

1

2

){
1− (−1)s+n

}
.

Mais s prend les valeurs n− 1, n− 3,..., donc s+ l prend les valeurs 2n− 1, 2n− 3,..., qui

est toujours impair, pour tout l et m. Ainsi (−1)s+n = −1 et on a

cs =

(
s+

1

2

)
(1− (−1)) = 2s+ 1

Alors

cn−2r−1 = 2(n− 2r − 1) + 1 = 2n− 4r − 1
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et par suite on a

P ′n(x) = (2n− 1)Pn−1(x) + (2n− 5)Pn−3(x) + . . .+ (2r − 1)Pn−2r−1(x) + . . .+

 3P1(x) (n pair)

P0(x) (n impair)

=

[ 1
2

(n−1)]∑
r=0

(2n− 4r − 1)Pn−2r−1(x).

ii) xPn(x) est un polynôme de degré n+ 1, impair si n est pair et pair si n est impair.

Alors par le Théorème 1.8.1 on a

xPn(x) = cn+1Pn+1(x) + cn−1Pn−1(x) + . . .+

 c1P1(x) (n impair)

c0P0(x) (n pair)

avec

cr =

(
r +

1

2

)∫ 1

−1
xPn(x)Pr(x)dx

=

(
r +

1

2

)∫ 1

−1
Pn(x){xPr(x)}dx.

Or par la corollaire du Théorème 1.8.1 cette intégrale est nulle si r + 1 < n (puisque

xPn(x) est un polynôme de degré inférieur à n), i.e., si r < l − 1.

Donc on a

xPn(x) = cn+1Pn+1(x) + cn−1Pn−1(x). (1.23)

Pour déterminer cn+1 et cn−1 on pose x = 1 dans l’équation (1.23) et dans sa dérivée

par rapport à x, notamment

Pn(x) + xP ′n(x) = cn+1P
′
n+1(x) + cn−1P

′
n−1(x). (1.24)

En posant (1.23) et (1.24) et utilisant la Proposition 1.5.2 nous obtenons

1 = cn+1 + cn−1 (1.25)

et

1 +
1

2
n(n+ 1) = cn+1

{
1

2
(n+ 1)(n+ 2)

}
+ cn−1

{
1

2
(n− 1)n

}
(1.26)

La résolution du système d’équations (1.25) et (1.26) en cn+1 et cn−1 donne

cn+1 =
n+ 1

2n+ 1
, cn−1 =

n

2n+ 1
.

finalement, on insère ces valeurs dans l’équation (1.23) on obtient

xPn(x) =
n+ 1

2n+ 1
Pn+1(x) +

n

2n+ 1
Pn−1(x).
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Proposition 1.9.2. Les polynômes de Legendre satisfont les relations suivantes

i) (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) pour n ≥ 1,

ii) nPn(x) = xP ′n(x)− P ′n−1(x),

iii) (2n+ 1)Pn(x) = P ′n+1(x)− P ′n−1(x),

iv) P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x),

v)
(
1− x2

)
P ′n(x) = n (Pn−1(x)− xPn(x)) ,

vi)
(
1− x2

)
P
′′
n (x)− 2xP ′n(x) = −n (n+ 1)Pn(x).

Démonstration. i) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), pour n ≥ 1

A partir de la fonction génératrice, nous avons

(
1− 2tx+ t2

)− 1
2 =

∞∑
n=0

Pn(x)tn. (1.27)

Dérivons les deux côtés de (1.27) par rapport à t nous obtenons

−1

2

(
1− 2tx+ t2

)− 3
2 (−2x+ 2t) =

∞∑
n=0

nPn(x)tn−1. (1.28)

Multiplions les deux côtés de (1.28) par
(
1− 2tx+ t2

)
nous obtenons

(x− t)
(
1− 2tx+ t2

)− 1
2 =

(
1− 2tx+ t2

) ∞∑
n=0

nPn(x)tn−1,

ou bien

(x− t)
∞∑
n=0

Pn(x)tn =
(
1− 2tx+ t2

) ∞∑
n=0

nPn(x)tn−1,

x

∞∑
n=0

Pn(x)tn − t
∞∑
n=0

Pn(x)tn =

∞∑
n=0

nPn(x)tn−1 − 2tx

∞∑
n=0

nPn(x)tn−1 + t2
∞∑
n=0

nPn(x)tn−1,

x
∞∑
n=0

Pn(x)tn −
∞∑
n=0

Pn(x)tn+1 =
∞∑
n=0

nPn(x)tn−1 − 2x
∞∑
n=0

nPn(x)tn +
∞∑
n=0

nPn(x)tn+1,

x
∞∑
n=0

Pn(x)tn −
∞∑
n=1

Pn−1(x)tn =
∞∑
n=0

(n+ 1)Pn+1(x)tn − 2x
∞∑
n=0

nPn(x)tn +
∞∑
n=1

(n− 1)Pn−1(x)tn.

En identifiant les coefficients de tn des deux côtés, on obtient

xPn(x)− Pn−1(x) = (n+ 1)Pn+1(x)− 2xnPn(x) + (n− 1)Pn−1(x),

ainsi

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ≥ 1. (1.29)

ii) nPn(x) = xP′n(x)−P′n−1(x)
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De même à partir de la fonction génératrice, nous avons

(
1− 2xt+ t2

)− 1
2 =

∞∑
n=0

Pn(x)tn, (1.30)

dérivons les deux côtés de (1.30) par rapport à t on obtient

−1

2

(
1− 2xt+ t2

)− 3
2 (−2x+ 2t) =

∞∑
n=0

nPn(x)tn−1, (1.31)

donc

(x− t)
(
1− 2xt+ t2

)− 3
2 =

∞∑
n=0

nPn(x)tn−1. (1.32)

Dérivons la fonction génératrice par rapport à x nous obtenons

−1

2

(
1− 2xt+ t2

)− 3
2 (−2t) =

∞∑
n=0

P ′n(x)tn,

donc

t
(
1− 2xt+ t2

)− 3
2 =

∞∑
n=0

P ′n(x)tn, (1.33)

divisons (1.32) par (1.33) on obtient

x− t
t

=

∑∞
n=0 nPn(x)tn−1∑∞
n=0 P

′
n(x)tn

,

ce qui implique

(x− t)
∞∑
n=0

P ′n(x)tn = t
∞∑
n=0

nPn(x)tn−1.

Identifiant les coefficients de tn nous obtenons

nPn(x) = xP ′n(x)− P ′n−1(x).

iii) (2n + 1)Pn(x) = P′n+1(x)−P′n−1(x).

Dérivons (1.29) par rapport à x

d

dx
[(n+ 1)Pn+1(x) ] =

d

dx
[(2n+ 1)xPn(x)− nPn−1(x)] ,

(n+ 1)P ′n+1(x) = (2n+ 1)Pn(x) + (2n+ 1)xP ′n(x)− nP ′n−1(x),

puisque xP ′n(x) = nPn(x) + P ′n−1(x) alors,

(n+ 1)P ′n+1(x) = (2n+ 1)Pn(x) + (2n+ 1)
[
nPn(x) + P ′n−1(x)

]
− nP ′n−1(x),

= (2n+ 1) (n+ 1)Pn(x) + (n+ 1)P ′n−1(x),

donc

P ′n+1(x) = (2n+ 1)Pn(x) + P ′n−1(x).
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Par conséquent

(2n+ 1)Pn(x) = P ′n+1(x)− P ′n−1(x).

iv) P′n+1(x)− xP′n(x) = (n + 1)Pn(x)

On a

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) + nPn−1(x),

dérivons par rapport à x on obtient

(n+ 1)P ′n+1(x) = (2n+ 1)xP ′n(x) + (2n+ 1)Pn(x)− nP ′n−1(x),

= (2n+ 1)Pn(x) + (2n+ 1)xP ′n(x)− nP ′n−1(x),

= (2n+ 1)Pn(x) + (n+ n+ 1)xP ′n(x)− nP ′n−1(x),

= (2n+ 1)Pn(x) + (n+ 1)xP ′n(x) + nxP ′n(x)− nP ′n−1(x),

or

xP ′n(x)− P ′n−1(x) = nPn(x),

alors

(n+ 1)P ′n+1(x) = (2n+ 1)Pn(x) + (n+ 1)xP ′n(x) + n [nPn(x)] ,

=
(
2n+ 1 + n2

)
Pn(x) + (n+ 1)xP ′n(x),

= (n+ 1)2 Pn(x) + (n+ 1)xP ′n(x),

donc

P ′n+1(x) = (n+ 1)Pn(x) + xP ′n(x),

par conséquent

P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x).

v)
(
1− x2

)
P′n(x) = n (Pn−1(x)− xPn(x)

Considérons la relation (ii)

xP ′n(x)− P ′n−1(x) = nPn(x). (1.34)

En effectuant le changement d’indice n→ n− 1 la relation (iv) devient,

P ′n(x)− xP ′n−1(x) = nPn−1(x). (1.35)

Multiplions la relation (1.34) par x, puis soustrayons-la de la relation (1.35). Nous

obtenons (
1− x2

)
P ′n(x) = n [Pn−1(x)− xPn(x)] .
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vi)

(
1− x2

)
P
′′
n(x)− 2xP′n(x) = −n (n + 1)Pn(x)

En dérivant les deux côtés de (v) par rapport à x on obtient

(
1− x2

)
P
′′
n (x)− 2xP ′n(x) = n

[
P ′n−1(x)− xP ′n(x)− Pn(x)

]
,

or d’après (ii)

P ′n−1(x)− xP ′n(x) = −nPn(x),

donc

(
1− x2

)
P
′′
n (x)− 2xP ′n(x) = n [−nPn(x)− Pn(x)] ,

= −n (n+ 1)Pn(x),

ainsi (
1− x2

)
P
′′
n (x)− 2xP ′n(x) = −n (n+ 1)Pn(x).

1.10 Zéros des polynômes de Legendre

Tous les n zéros de Pn(x) sont simples (c’est-à-dire d’ordre 1) et se trouvent entiè-

rement à l’intérieur de l’intervalle [−1, 1], et donc, tous étant réels. Aussi, les zéros de

Pn(x) et Pn−1(x) sont entrelacés, c’est-à-dire qu’entre deux zéros consécutifs de Pn(x), il

doit y avoir un et un seul zéro de Pn−1(x) et vice versa. Ces propriétés des zéros sont

communes à tous les polynômes orthogonaux en général [cf. par exemple, Szego, Ortho-

gonal Polynomials, Sec. 33, p. 43]. Pour Pn(x), cependant, nous pouvons le montrer en

employant la formule de Rodrigues et les relations récurrentes de la Sec. 1.9.

Premièrement, Pn(x) ne peut pas avoir des zéros multiples (zéros d’ordre supérieur à 1),

car il s’agit d’une solution d’une équation différentielle ordinaire du second ordre ; si α

en est un zéro d’ordre m, m > 2, alors Pn(α) = P ′n(α) = 0, et Pn(x) ≡ 0.

Ensuite, nous montrerons que tous les zéros de Pn(x) se trouvent à l’intérieur de l’inter-

valle [−1, 1]. Selon la formule de Rodrigues

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
−1 et +1 sont deux zéros d’ordre n de (x2 − 1)n, puis, selon le théorème de Rolle, la

première dérivée d
dx [(x2 − 1)n] a au moins un zéro compris entre −1 et +1. Si n = 1, ce

n’est que le zéro de P1(x). Si n > 1, alors, en plus de ce zéro, ±1 sont aussi des zéros de
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d
dx [(x2 − 1)n], et donc, entre −1 et +1, il y a au moins deux zéros de d2

dx2
[(x2 − 1)n], qui ne

coïncident pas.

Suite à de tels arguments, nous sommes amenés à la conclusion que d
dx [(x2 − 1)n], et

donc Pn(x), a n et seulement n zéros non coïncidents compris entre −1 et 1 ; ±1 ne sont

plus des zéros ( Pn(1) = 1, Pn(−1) = (−1)n).

Enfin, nous montrerons que les zéros de Pn(x) et Pn−1(x) sont entrelacés. De la relation

de récurrence (
1− x2

)
P ′n(x) = n (Pn−1(x)− xPn(x)) , n > 1, (1.36)

on voit que si Pn(α) = 0, alors Pn−1(α) 6= 0 ; sinon, comme α 6= ±1 (voir ci-dessus), nous

aurions P ′n(α) = 0, et donc α est un zéro multiple, ce qui est contradictoire avec le résul-

tat précédent. De plus, puisque −1 < α < +1 on voit d’après (1.36) que Pn−1(α) et P ′n(α)

sont du même signe.

Soient α et β deux zéros consécutifs de Pn(x), alors P ′n(α) et P ′n(β) ne peuvent pas s’an-

nuler et sont de signes différents ; sinon, α et β ne seraient pas contigus. Ainsi, Pn−1(α)

et Pn−1(β) sont de signes différents selon le précédent conclusion. Cependant, cela si-

gnifie qu’entre α et β, Il y a au moins un zéro de Pn−1(x). Mais Pn−1(x) ne peut avoir que

n − 1 zéros. Par conséquent, entre deux zéros consécutifs des n zéros de Pn(x), il doit y

avoir un et un seul zéro de Pn−1(x). Ceci, bien sûr, montre que les zéros de Pn(x) et ceux

de Pn−1(x) sont entrelacés.

1.11 Fonctions de Legendre associées

Théorème 1.11.1. Si z est une solution de l’équation de Legendre(
1− x2

) d2y

dx2
− 2x

dy

dx
+ l (l + 1) y = 0

alors
(
1− x2

)m/2
(dmz/dxm) est une solution de l’équation(

1− x2
) d2y

dx2
− 2x

dy

dx
+

{
l (l + 1)− m2

1− x2

}
y = 0

(connue sous le nom d’équation de Legendre associée).

Démonstration. Puisque z est une solution de l’équation de Legendre, nous devons avoir(
1− x2

) d2z

dx2
− 2x

dz

dx
+ l (l + 1) z = 0· (1.37)

Maintenant, dérivons l’équation (1.37) m fois par rapport à x :

dm

dxm
{
(
1 + x2

) d2z

dx2
} − 2

dm

dxm
{xdz
dx
}+ l(l + 1)

dmz

dxm
= 0
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qui, lorsque l’on utilise le théorème de Leibniz pour la dérivé mième d’un produit, devient

(1− x2)
dm+2z

dxm+2
+m

d

dx

(
1− x2

) dm+1z

dxm+1
+
m(m− 1)

2

d2

dx2

(
1− x2

) dmz
dxm

−2

{
x
dm+1z

dxm+1
+m

d

dx
x
dmz

dxm

}
+ l(l + 1)

dmz

dxm
= 0

(puisque les dérivés supérieures de 1−x2 et x disparaissent). En rassemblant les termes

en
dm+2z

dxm+2
,
dm+1z

dxm+1
et

dmz

dxm
, on obtient

(1− x2)
dm+2z

dxm+2
− 2x (m+ 1)

dm+1

dxm+1z
+ {l (l + 1)−m (m− 1)− 2m}d

mz

dxm
= 0,

Si on note par z1 =
dmz

dxm
, alors l’équation (1.11) devient

(
1− x2

) d2z1

dx2
− 2 (m+ 1)x

dz1

dx2
+ {l (l + 1)−m (m+ 1)}z1 = 0· (1.38)

Si de plus on pose

z2 = (1− x2)m/2z1 =
(
1− x2

)m/2 dmz
dxm

l’équation (1.38) devient

(1−x2)
d2

dx2
{z2

(
1− x2

)−m/2}−2(m+1)x
d

dx
{z2(1−x2)−m/2}+{l (l + 1)−m (m+ 1)}z2(1−x2)−m/2 = 0

(1.39)

Mais

d

dx
{z2(1− x2)−m/2} =

dz2

dx

(
1− x2

)−m/2 − m

2
z2

(
1− x2

)−(m/2)−1
(−2x)

=
dz2

dx

(
1− x2

)−m/2
+mz2x

(
1− x2

)−(m/2)−1

de sorte que

d2

dx2

{
z2

(
1− x2

)−m/2}
=
d2z2

dx2

(
1− x2

)−m/2
+
dz2

dx
· −m

2

(
1− x2

)−(m/2)−1 · (−2x) +m{dz2

dx
x
(
1− x2

)−(m/2)−1

+z2

(
1− x2

)−(m/2)−1
+ z2x

(
−m

2
− 1
) (

1− x2
)−(m/2)−2 · (−2x)}

=
d2z2

dx2

(
1− x2

)−m/2
+
dz2

dx
mx

(
1− x2

)−(m/2)−1
+m

dz2

dx
x
(
1− x2

)−(m/2)−1
+mz2

(
1− x2

)−(m/2)+1

+mz2x
2 (m+ 2)

(
1− x2

)−(m/2)−2 ·

donc l’équation (1.39) devient
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d2z2
dx2

(
1− x2

)−(m/2)+1
+ 2mx

(
1− x2

)−m/2 dz2
dx +mz2

(
1− x2

)−m/2
+m (m+ 2)

(
1− x2

)−(m/2)−1
x2z2

−2 (m+ 1)x{
(
1− x2

)−m/2 dz2
dx +mx

(
1− x2

)−(m/2)−1z2}+ {l(l + 1)−m(m+ 1)}z2

(
1− x2

)−m/2
= 0

en annulant le facteur commun de
(
1− x2

)_m/2 et en rassemblent les termes similaires,

on obtient

(
1− x2

) d2z2

dx2
+ {2mx− 2 (m+ 1)x}dz2

dx

+

{
m+

m (m+ 2)

1− x2
x2 − 2 (m+ 1)mx2

1− x2
+ l (l + 1)−m (m+ 1)

}
z2 = 0· (1.40)

Le coefficient de dz2
dx est −2x, tandis que le coefficient de z2 est

l (l + 1) +

(
m2 + 2m− 2m2 − 2m

)
x2

1− x2
+m−m2 −m

= l (l + 1)− m2x2

1− x2
−m2

= l (l + 1)− m2

1− x2

Ainsi l’équation (1.40) se réduit à

(
1− x2

) d2z2

dx2
− 2x

dz2

dx
+

{
l (l + 1)− m2

1− x2

}
z2 = 0.

De sorte que z2 satisfait l’équation de Legendre associée ce qui prouve le théorème.

Corollary 1.11.1. Les fonctions de Legendre associées Pml (x) définies par

Pml (x) =
(
1− x2

)m/2 dm

dxm
Pl (x) (1.41)

satisfont l’équation de Legendre associée.

Démonstration. Ce résultat découle immédiatement du théorème, puisque Pl (x) satis-

fait l’équation de Legendre.

En utilisant la formule de Rodrigues (théorème 1.3.1), il est possible de réécrire la

définition (1.41) sous la forme

Pml (x) =
1

2ll!

(
1− x2

)m/2 dl+m

dxl+m
(
x2 − 1

)l ·
La partie droite de cette expression est bien définie pour les valeurs négatives de m

telles que l+m ≥ 0, c’est-à-dire m ≥ −l, alors que la définition originale (1.41) de Pml (x)

n’était valable que pour m ≥ 0. Ainsi, nous pouvons utiliser cette nouvelle forme pour

définir Pml (x) pour des valeurs de m telles que m ≥ −l.
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Il est facile de vérifier que si l’on considère m positif, la fonction P−ml (x) ainsi définie

est une solution de l’équation associée de Legendre ainsi que Pml (x). En effet, ce n’est

pas une solution indépendante ; il peut être montré que

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x) . (1.42)

1.12 Propriétés des fonctions de Legendre associées.

Théorème 1.12.1.

(i) P 0
l (x) = Pl (x) ,

(ii) Pml (x) = 0 si m > l.

Démonstration. (i) Ce résultat est immédiatement évident d’après la définition (1.41).

(ii) Puisque Pl (x) est un polynôme de degré l, il se réduira à zéro lorsqu’il sera dérivé

plus de l fois. Ainsi
dm

dxm
Pl (x) = 0 pour m ≥ l, et le résultat recherché découle alors de

la définition (1.41).

Théorème 1.12.2. (Relation d’orthogonalité)∫ 1

−1
Pml (x)Pml′ (x) dx =

2 (l +m)!

(2l + 1) (l −m)!
δll′

Démonstration. On montre d’abord que si l 6= l′∫ 1

−1
Pml (x)Pml′ (x) dx = 0.

Cette démonstration est analogue à celle de la première partie du théorème 1.6.1, nous

ne la répéterons donc pas ici.

Il ne reste plus qu’à prouver que∫ 1

−1
{Pml (x)}2dx =

2 (l +m)!

(2l + 1) (l −m)!

Supposons d’abord que m > 0 ; alors de la définition (1.41) nous avons∫ 1

−1
{Pml (x)}2dx =

∫ 1

−1
(1− x2)m

{
dm

dxm
Pl (x)

}{
dm

dxm
Pl (x)

}
dx

=

[{
dm−1

dxm−1
Pl (x)

}
(1− x2)m

{
dm

dxm
Pl (x)

}]−1

−1

−
∫ 1

−1

{
dm−1

dxm−1
Pl (x)

}
d

dx

{
(1− x2)m

dm

dxm
Pl (x)

}
dx

= −
∫ 1

−1

{
dm−1

dxm−1
Pl (x)

}
d

dx

{
(1− x2)m

dm

dxm
Pl (x)

}
dx (1.43)
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Maintenant, à partir de l’équation (1.38) avec m remplacé par m− 1, nous avons que

(1− x2)
dm+1

dxm+1
Pl (x)− 2m

dm

dxm
Pl (x) + {l (l + 1)−m (m− 1)} d

m−1

dxm−1
Pl (x) = 0

multipliant par (1− x2)m−1, on obtient

(1−x2)m
dm+1

dxm+1
Pl (x)−2mx(1−x2)m−1 d

m

dxm
Pl (x)+(l +m) (l −m+ 1) (1−x2)m−1 d

m−1

dxm−1
Pl (x) = 0

et cette équation peut être réécrite sous la forme

d

dx

{
(1− x2)m

dm

dxm
Pl (x)

}
= − (l +m) (l −m+ 1) (1− x2)m−1 d

m−1

dxm−1
Pl (x)

La substitution de ce résultat dans l’équation (1.43) donne∫ 1

−1
{Pml (x)}2dx =

∫ 1

−1

{
dm−1

dxm−1
Pl (x)

}
(l +m) (l −m+ 1)

(
1− x2

)m−1
{
dm−1

dxm−1
Pl (x)

}
dx

= (l +m) (l −m+ 1)

∫ 1

−1

(
1− x2

)m−1
{
dm−1

dxm−1
Pl (x)

}2

dx ·

= (l +m) (l −m+ 1)

∫ 1

−1
{Pm−1

l (x)}2dx·

L’application de ce résultat donne à nouveau

d

dx

{
(1− x2)m

dm

dxm
Pl (x)

}
= (l +m) (l −m+ 1)

(
1− x2

)m−1 dm−1

dxm−1
Pl (x) ·

∫ 1

−1
{Pml (x)}2dx = (l +m) (l −m+ 1) (l +m− 1) (l −m+ 2)

∫ 1

−1
{Pm−2

l (x)}2dx

= (l +m) (l +m− 1) (l −m+ 1) (l −m+ 2)

∫ 1

−1

{
Pm−2
l (x)

}2
dx ,

répétons le processus m fois dans tout ce que nous obtenons∫ 1

−1
{Pml (x)}2dx = (l +m) (l +m− 1) · · · (l + 1) (l −m+ 1) (l −m+ 2) · · · l · {P 0

l (x)}2dx

= (l +m) (l +m− 1) · · · (l + 1) l (l − 1) · · · (l −m+ 2) (l −m+ 1)
2

2l + 1

( en utilisant le théorème 1.6.1)

=
(l +m)!

(l −m)!

2

2l + 1

d’où le résultat recherché.

Supposons maintenant que m < 0, c’est-à-dire m = −n avec n > 0· Alors
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∫ 1

−1
{Pml (x)}2 dx =

∫ 1

−1
{P−nl (x)}2dx

=

∫ 1

−1

{
(−1)n

(l −m)!

(l +m)!

}2

{Pnl (x)}2 dx

( par équation (1.42))

=

{
(l − n)!

(l + n)!

}2 ∫ 1

−1
{Pnl (x)}2dx =

{
(l − n)!

(l + n)!

}2 (l + n)!

(l − n)!

2

2l + 1

( par le résultat qui vient d’être prouvé, puisque n > 0)

=
(l − n)!

(l + n)!

2

2l + 1

=
(l +m)!

(l −m)!

2

2l + 1

qui est le résultat recherché.

Théorème 1.12.3. (Relations de récurrence)

(i) Pm+1
l (x)− 2mx√

(1−x2)
pml (x) + {l (l + 1)−m (m− 1)}Pm−1

l (x) = 0

(ii) (2l + 1)xPml (x) = (l +m)Pml−1 (x) + (l −m+ 1)Pml+1 (x) ·

(iii)
√

(1− x2)Pml (x) =
1

2l + 1
{Pm+1

l+1 (x)− Pm+1
l−1 (x)}·

(iv)
√

(1− x2)Pml (x) =
1

2l + 1

{
(l +m)(l +m− 1)Pm−1

l−1 (x)− (l −m+ 1) (l −m+ 2)Pm−1
l+1 x

}

Démonstration. (i) Il s’agit de la relation fondamentale reliant trois fonctions de Le-

gendre associées avec la même valeur de l et valeurs consécutives de m.

Notons dm

dxmP
m
l (x) par P (m)

l (x) pour que la définition (1.41) puisse s’écrire sous la

forme

Pml (x) =
(
1− x2

)m/2
P

(m)
l (x) · (1.44)

Maintenant, dans l’équation (1.38) nous savons que nous pouvons prendre z = Pl (x) et

donc z1 = Pml (x) afin que nous obtenions(
1− x2

) d2

dx2
Pml (x)− 2 (m+ 1)x

d

dx
Pml (x) + {l (l + 1)−m (m+ 1)}Pml (x) = 0·

en utilisant la définition de Pml (x) , cette équation devient(
1− x2

)
P

(m+2)
l (x)− 2 (m+ 1)xP

(m+1)
l (x) + {l (l + 1)−m (m+ 1)}Pml (x) = 0

ce qui, en multipliant par
(
1− x2

)m
2 , donne(

1− x2
)(m/2)+1

P
(m+2)
l (x)− 2 (m+ 1)x

(
1− x2

)(m/2)
P

(m+1)
l (x)

+ {l (l + 1)−m (m+ 1)}
(
1− x2

)(m/2)
P

(m)
l (x) = 0
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Par conséquent, en utilisant l’équation (1.44), on a

P
(m+2)
l (x)− 2 (m+ 1)x

1√
(1− x2)

P
(m+1)
l (x) + {l (l + 1)−m (m+ 1)}P (m)

l (x) = 0

qui, quand m est remplacé par m− 1, devient

Pm+1
l (x)− 2mx√

(1− x2)
Pml (x) + {l (l + 1)− (m− 1)m}Pm−1

l (x) = 0;

c’est le résultat recherché.

(ii) Il s’agit de la relation fondamentale entre les fonctions de Legendre associées à

avec la même valeur de m et valeurs consécutives de l.

Par la proposition 1.9.2 (iii) nous avons

(l + 1)Pl+1 (x)− (2l + 1)xPl (x) + lPl−1 (x) = 0

ce qui donne en dérivant m fois (en utilisant le théorème de Leibniz pour le second

terme)

(l + 1)P
(m)
l+1 (x)− (2l + 1)

{
xP

(m)
l (x) +mPm−1

l (x)
}

+ lP
(m)
l−1 (x) = 0· (1.45)

De même par la proposition 1.9.2 (iii) on a

P
(l)
l+1 (x)− P (l)

l−1 (x) = (2l + 1)Pl (x)

qui, lorsqu’il est différencié m− 1 fois, donne

P
(m)
l+1 (x)− P (m)

l−1 (x) = (2l + 1)P
(m−1)
l (x) . (1.46)

L’utilisation de l’équation (1.46) et la substitution de P (m−1)
l (x) dans l’équation (1.45)

donne

(l + 1)P
(m)
l+1 (x)− (2l + 1)xP

(m)
l (x)−m

{
P

(m)
l+1 (x)− Pm−1

l−1 (x)
}

+ lP
(m)
l−1 (x) = 0·

Multipliant cette équation par
(
1− x2

)(m/2)et en utilisant l’équation (1.44) nous obte-

nons

(l + 1)Pml+1 (x)− (2l + 1)xPml (x)−mPml+1 (x) +mPml−1 (x) + lPml−1 (x) = 0·

collecter comme des termes donne

(l +m− 1)Pml+1 (x)− (2l + 1)xPml (x) + (l +m)Pml−1 (x) = 0

qui, une fois réarrangé, est le résultat requis .
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(iii) Multipliant l’équation (1.46) par

(
1− x2

)m/2, nous obtenons

(
1− x2

)m/2
P

(m)
l+1 (x)

(
1− x2

)m/2
P

(m)
l−1 (x) (2l + 1)

(
1− x2

)m/2
P

(m−1)
l (x)

qui devient en utilisant l’équation (1.44)

Pml+1 (x)− Pml−1 (x) = (2l + 1)
√

(1− x2)Pm−1
l (x) · (1.47)

Remplaçons m par m+ 1 nous trouvons

Pm+1
l+1 (x)− Pm+1

l−1 (x) = (2l + 1)
√

(1− x2)Pml (x)

qui, une fois divisé par 2l + 1, est le résultat recherché .

(iv) Nous utilisons (ii), remplaçons xPml (x) dans (i) par

1

2l + 1

{
(l +m)Pml−1 (x) + (l −m+ 1)Pml+1 (x)

}

afin que nous obtenions

Pm+1
l (x)− 2m√

(1−x2)

1
(2l+1)

{
(l +m)Pml−1 (x) + (l +m− 1)Pml+1 (x)

}
+ {l (l + 1)−m (m− 1)}Pm−1

l (x) = 0·

Si nous utilisons maintenant l’équation (1.47) pour Pm−1
l (x) , on obtient

Pm+1
l (x)− 1√

(1− x2)

2m

(2l + 1)

{
(l +m)Pml−1 (x) + (l +m− 1)Pml+1 (x)

}
+ {l (l + 1)−m (m− 1)} 1√

(1− x2)

1

(2l + 1)

{
Pml+1 (x)− Pml−1 (x)

}
= 0

par manipulation algébrique directe, cela se réduit à

√
(1− x2)Pm+1

l (x) =
1

2l + 1
(l +m)

{
(l +m+ 1)Pml−1 (x)− (l −m) (l −m+ 1)Pml+1 (x)

}

qui, lorsque m est remplacé par m− 1, est juste le résultat recherché.
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Les premiers polynômes associés de Legendre sont :

P 0
0 (x) = 1

P 0
1 (x) = x

P 1
1 (x) = −(1− x2)1/2

P 0
2 (x) = 1

2
(3x2 − 1)

P 1
2 (x) = −3x(1− x2)1/2

P 2
2 (x) = 3(1− x2)

P 0
3 (x) = 1

2
(5x3 − 3x)

P 1
3 (x) = −3

2
(5x2 − 1)(1− x2)1/2

P 2
3 (x) = 15x(1− x2)

P 3
3 (x) = −15(1− x2)3/2

P 0
4 (x) = 1

8
(35x4 − 30x2 + 3)

P 1
4 (x) = −5

2
(7x3 − 3x)(1− x2)1/2

P 2
4 (x) = 15

2
(7x2 − 1)(1− x2)

P 3
4 (x) = −105x(1− x2)3/2

P 4
4 (x) = 105(1− x2)2

Les polynômes associés de Legendre Pml (x) pour l = 5 et −l ≤ m ≤ l sont représentés

dans la figure 1.2.

Une relation utile dans les applications est le théorème d’addition pour les poly-

nômes associés Legendre :

Théorème 1.12.4 (Théorème d’addition).

Pl(cos γ) = Pl(cos θ)Pl(cos θ′) + 2
l∑

m=1

(l −m)!

(l +m)!
Pml (cos θ)Pml (cos θ′) cosm(φ− φ′), (1.48)

où l’angle γ, illustré à la figure 1.3, est défini par

cos γ =
x · x′

|x||x′|
= cos θ cos θ′ + sin θ sin θ′ cos(φ′ − φ). (1.49)

1.13 Fonctions de Legendre du second type

Dans la première section de ce chapitre, nous avons obtenu deux solutions séries

indépendantes y1(x) et y2(x) de l’équation de Legendre. Nous avons obtenu des solutions
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FIGURE 1.2 – Polynômes associés de Legendre Pml (x) pour l = 5 et |m| = 0, 1, 2, 3, 4, 5.

FIGURE 1.3 – L’angle γ entre les vecteurs de position x et x’.

finies pour −1 ≤ x ≤ 1 (en effet, fini pour toutes les valeurs finies de x) pour des valeurs

entières de l, alors pour l pair y1(x) réduit à un polynôme, tandis que pour l impair y2(x)

réduit à un polynôme. Dans ces deux cas, l’autre série reste infinie ; on peut montrer

qu’elle est convergente pour |x| < 1 et divergente pour |x| > 1. Dans certaines situations

physiques, nous souhaitons deux solutions indépendantes valides pour la région |x| > 1 ;

l’une d’elles est bien sûr donnée par Pl(x), tandis qu’une seconde solution est donnée par

le théorème suivant (notons qu’elle est toujours infiniee pour x 6= ±1).

Théorème 1.13.1. La seconde solution indépendante de l’équation de Legendre est don-
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née par

Ql (x) =
1

2
Pl (x) ln

1 + x

1− x
−

[ l−1
2 ]∑

r=0

(2l − 4r − 1)

(2r + 1) (l − r)
Pl−2r−1 (x) (l ≥ 1)

Q0 (x) =
1

2
ln

1 + x

1− x

avec [
l − 1

2

]
=

 l−1
2 si l est impair
l−2
2 si l est pair

Ql(x) s’appelle la fonction Legendre du second type.

Démonstration. Dans l’équation de Legendre, définissons y = zPl(x) de sorte que z soit

une nouvelle variable dépendante. On a

dy

dx
= Pl (x)

dz

dx
+ z

dPl
dx

;

d2y

dx2
= Pl (x)

d2z

dx2
+ 2

dz

dx

dPl
dx

+ z
d2Pl
dx2

et donc l’équation devient(
1− x2

)
Pl (x) d

2z
dx2

+ 2
(
1− x2

)
dz
dx

dPl
dx +

(
1− x2

)
z d

2Pl
dx2
− 2xPl (x) dzdx

− 2xz dPldx + l (l + 1) zPl (x) = 0·

En collectant les termes en z, dz/dx et d2z/dx2, nous obtenons

z
{(

1− x2
)
d2Pl
dx2
− 2xdPldx + l (l + 1)Pl (x)

}
+ dz

dx

{
2
(
1− x2

)
dPl
dx − 2xPl (x)

}
+
(
1− x2

)
Pl (x) d

2z
dx2

= 0,

qui, en utilisant le fait que Pl satisfait l’équation de Legendre, devient

(
1− x2

)
Pl (x)

d2z

dx2
+
dz

dx

{
2
(
1− x2

) dPl
dx
− 2xPl (x)

}
= 0

Donc
d2z/dx2

dz/dx
+ 2

dPl/dx

Pl (x)
− 2x

1− x2
= 0,

et c’est équivalente à

d

dx
ln

(
dz

dx

)
+ 2

d

dx
lnPl (x) +

d

dx
ln
(
1− x2

)
= 0,

qui, une fois intégrée, donne

ln
dz

dx
+ ln {Pl (x)}2 + ln

(
1− x2

)
= constante·
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donc

dz

dx
{Pl (x)}2

(
1− x2

)
= constante = A,

c’est-à-dire
dz

dx
=

A

{Pl (x)}2 (1− x2)

et donc

z = A

∫
dx

{Pl (x)}2 (1− x2)

cela signifie que nous avons une solution de l’équation de Legendre donnée par

Ql (x) = Pl (x)

∫
dx

{Pl (x)}2 (1− x2)
(1.50)

il faut maintenant montrer qu’elle est de la forme énoncée dans le théorème. On consi-

dère d’abord le cas l = 0 :

Q0 (x) = P0 (x)

∫
dx

{P0 (x)}2 (1− x2)

=

∫
dx

1− x2

=

∫
1

2

(
1

1− x
+

1

1 + x

)
dx

=
1

2
ln

1 + x

1− x
·

Si maintenant l 6= 0, on sait que Pl (x) est un polynôme de degré l, donc on peut lécrire

sous la forme

Pl (x) = kl (x− α1) (x− α2) · · · (x− αl) .

Donc
1

(1− x2) {Pl (x)}2
=

1

(1− x) (1 + x) k2
l (x− α1)2 (x− α2)2 · · · (x− αl)2

=
a0

1− x
+

b0
1 + x

+
l∑

r=1

{
cr

(x− αr)
+

dr

(x− αr)2

}
(1.51)

( décomposition en éléments simples). Nous pouvons facilement déterminer a0 , b0 et cr.

La multiplication des deux côtés de l’équation (1.51) par
(
1− x2

)
{Pl (x)}2 donne

1 = a0 (1 + x) {Pl (x)}2 + b0 (1− x) {Pl (x)}2 + (1 + x)2 {Pl (x)}2{
l∑

r=1

cr
(x− αr)

+
dr

(x− αr)2

}
·

La substitution de x = 1 dans cette équation et sachant que Pl (x) = 1 donne a0 = 1
2 , et

la substitution de x = −1 et sachant que Pl (−1) = (−1)l donne b0 = 1
2 ·
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Nous montrons maintenant que

ci =

[
d

dx

{
(x− αi)2 1

(1− x2) {Pl (x)}2

}]
x=αi

Pour le prouver, nous notons que

d

dx

{
(x− αi)2 f (x)

}
= 2 (x− αi) f (x) + (x− αi)2 df

dx

= 0 qand x = αi, à condition que f(x) soit finie en x = αi.

Les seuls termes du côté droit de l’équation (1.51) qui ne sont pas finis à x = αi sont
ci

(x−αi) et di
{(x−αi)2}·

Par conséquent, nous avons[
d

dx
(x− αi)2 1

(1− x2) {Pl (x)}2

]
x=αi

=

[
d

dx
(x− αi)2

{
ci

(x− αi)
+

di/

(x− αi)2

}]
x=αi

=

[
d

dx
{ci (x− αi) + di}

]
x=αi

= [ci]x=αi

= ci·

Ainsi, si nous écrivons Pl (x) = (x− αi)L (x) alors on a

ci =

[
d

dx

1

(1− x2) {L (x)}2

]
x=αi

=

[
2x

(1− x2) {L (x)}2
− 2L′ (x)

(1− x2) {L (x)}3

]
x=αi

(1.52)

=

[
2xL (x)− 2

(
1− x2

)
L′ (x)

(1− x2) {L (x)}3

]
x=αi

=
2{αiL (αi)− 2

(
1− α2

i

)
L′ (αi)}(

1− α2
i

)
{L (αi)}3

.

En substituant Pl(x) = (x− αi)L (xi) dans l’équation de Legendre nous obtenons l’équa-

tion

(
1− x2

) d2

dx2
{(x− αi)L (xi)} − 2x

d

dx
{(x− αi)L (xi)}+ l (l + 1) (x− αi)L (xi) = 0

qui peut s’écrire sous la forme

(
1− x2

){
(x− αi)L

′′
(xi) + L

′
(xi)

}
−2x

{
(x− αi)L

′
(x) + L (x)

}
+l (l + 1) (x− αi)L (x) = 0,
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mettons x = αi dans cette équation on trouve

(
1− α2

i

)
2L
′
(αi)− 2αiL (xi) = 0

de sorte qu’en remplaçant dans l’équation (1.52) nous obtenons ci = 0.

Ainsi, à partir de l’équation (1.51), nous avons

1

(1− x2) {Pl (x)}2
=

1

2 (1− x)
+

1

2 (1 + x)
+

l∑
r=1

dr

(x− αr)2

où les dr sont des constantes dont les valeurs ne nous intéresseront pas.

Ainsi ∫
1

(1− x2) {Pl (x)}2
dx = −1

2
ln (1− x) +

1

2
ln (1 + x)−

l∑
r=1

dr
(x− αr)

=
1

2
ln

1 + x

1− x
−

l∑
r=1

dr
(x− αr)

,

donc à partir de l’équation (1.50) on a

Ql (x) =
1

2
Pl (x) ln

1 + x

1− x
−

l∑
r=1

dr
Pl (x)

x− αr
·

mais pour tous les αr, (x− αr) est un facteur de Pl (x), de sorte que Pl(x)
(x−αr) est un poly-

nôme en x de degré l − 1.

Donc
l∑

r=1
dr

Pl(x)
(x−αr) est un polynôme de degré l − 1 ; désignons-le par Wl−1(x). Ensuite

nous avons

Ql (x) =
1

2
Pl (x) ln

1 + x

1− x
−Wl−1 (x) (1.53)

Pour déterminer Wl−1(x) on sait que Ql (x) est une solution de l’équation de Legendre

de sorte que
d

dx

{(
1− x2

) dQl
dx

}
+ l (l + 1)Ql = 0

qui, en utilisant l’équation (1.53), donne

1

2

d

dx

{(
1− x2

) d

dx
Pl (x) ln

1 + x

1− x

}
+ l (l + 1) .

1

2
Pl (x) ln

1 + x

1− x
(1.54)

− d

dx

{(
1− x2

) dWl−1

dx

}
− l (l + 1)Wl−1 = 0

mais

d

dx
Pl (x) ln

1 + x

1− x
= P ′l (x) ln

1 + x

1− x
+ Pl (x)

{
1

1 + x
+

1

1− x

}
= P ′l (x) ln

1 + x

1− x
+ Pl (x)

2

1− x2
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de sorte que

d

dx

{(
1− x2

) d

dx
Pl (x) ln

1 + x

1− x

}
=

d

dx

{(
1− x2

)
P ′l (x) ln

1 + x

1− x
+ 2Pl (x)

}
= ln

1 + x

1− x
d

dx

{(
1− x2

)
P ′l (x)

}
+
(
1− x2

)
P ′l (x)

2

1− x2
+ 2P ′l (x) ·

D’où l’équation (1.54) devient

1

2
ln

1 + x

1− x

[
d

dx

{(
1− x2

)
P ′l (x)

}
+ l (l + 1)Pl(x)

]
+2P ′l (x)− d

dx

{(
1− x2

) dWl−1

dx

}
−l (l + 1)Wl−1 = 0

qui se réduit à
d

dx

{(
1− x2

) dWl−1

dx

}
+ l (l + 1)Wl−1 = 2

dPl
dx

(1.55)

Maintenant, par la proposition 1.9.1 (i) on a

dPl
dx

= (2l − 1)Pl−1 (x) + (2l − 5)Pl−3 (x) + · · · (1.56)

+ (2l − 4r − 1)Pl−2r−1 (x) + · · ·

(1.57)

=

[ 12 (l−1)]∑
r=0

(2l − 4r − 1)Pl−2r−1 (x)

Puisque Wl−1 (x) est un polynôme de degré l − 1, donc nous pouvons supposer qu’il

possède une expression de la forme

Wl−1 (x) = a0Pl−1 (x) + a1Pl−3 (x) + · · · (1.58)

=

[ 12 (l−1)]∑
r=0

arPl−2r (x) ,

ainsi

[ 12 (l−1)]∑
r=0

ar
d

dx

{(
1− x2

)
P ′l−2r−1(x)

}
+ l (l + 1)

[ 12 (l−1)]∑
r=0

arPl−2r−1(x) (1.59)

= 2

[ 12 (l−1)]∑
r=0

(2l − 4r − 1)Pl−2r−1 (x) ·

En utilisant l’équation de Legendre nous avons

d

dx

{(
1− x2

)
P ′l−2r−1(x)

}
+ (l − 2r − 1) (l − 2r)Pl−2r−1(x) = 0,
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ainsi l’équation (1.59) devient

[ 12 (l−1)]∑
r=0

ar {−(l − 2r − 1) (l − 2r) + l (l + 1)}Pl−2r−1 (x)

=

[ 12 (l−1)]∑
r=0

2 (2l − 4r − 1)Pl−2r−1 (x)

le coefficient de chaque polynôme doit être le même des deux côtés, ainsi on obtient

{−(l − 2r − 1) (l − 2r) + l (l + 1)} ar = 2 (2l − 4r − 1) · (1.60)

Mais

−(l − 2r − 1) (l − 2r) + l (l + 1) = − (l − 2r)2 + (l − 2r) + l (l + 1)

= −l2 + 4rl − 4r2 + l − 2r + l2 + l

= 4r(l − r)2(r + 1)

= 2(l − r)(2r + 1)·

L’équation (1.60) se réduit donc à

2(l − r)(2r + 1)ar = 2 (2l − 4r − 1)

qui donne

ar =
2l − 4r − 1

(l − r)(2r + 1)
(1.61)

et maintenant, en combinant les équations (1.61), (1.58) et (1.53), nous obtenons immé-

diatement le résultat du théorème.

La solution de l’équation de Legendre Ql(x) que nous avons obtenue est indépen-

dante de Pl(x) à cause du facteur ln
1 + x

1− x
, Ql(x) est infini aux deux x = ±1, alors que

nous savons que Pl(x) est fini pour ces valeurs de x.

Nous pouvons utiliser ce théorème pour écrire explicitement les premières fonctions

de Legendre du second type :

Q0 (x) =
1

2
ln

1 + x

1− x

Q1 (x) =
x

2
ln

1 + x

1− x
− 1

Q2 (x) =
1

4

(
3x2 − 1

)
ln

1 + x

1− x
− 3

2
x

Q3 (x) =
1

4

(
5x3 − 3x

)
ln

1 + x

1− x
− 5

2
x2 +

2

3

Nous énonçons maintenant sans preuve plusieurs théorèmes concernant les fonctions

de Legendre du second type.
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Théorème 1.13.2.

1

x− y
=
∞∑
l=0

(2l + 1)Pl (x)Ql (y)

si x > 1 et |y| ≤ 1.

Théorème 1.13.3. (Formule de Neumann)

Ql (x) =
1

2

∫ 1

−1

Pl (x)

x− y
dy·

Théorème 1.13.4. Les résultats contenus dans la proposition 1.9.1(ii) et la Proposition

1.9.2 restent vrais lorsque Pl(x) est remplacé par Ql(x).

Théorème 1.13.5. Les fonctions de Legendre associées du second type définies par

Qml (x) =
(
1− x2

)m/2 dm

dxm
Ql (x)

satisfont l’équation associée de Legendre.



Chapitre 2
Harmoniques sphériques

2.1 Harmoniques sphériques

Dans de nombreuses branches de la physique et de l’ingénierie, l’équation suivante

1

sin θ

(
∂

∂θ
sin θ

∂Ψ

∂θ

)
+

1

sin2 θ

∂2Ψ

∂φ2
+ l (l + 1) Ψ = 0 (2.1)

a un grand intérêt, ces solutions sont appelées harmoniques sphériques. Cette équation

apparaît généralement dans la résolution de certaines équations aux dérivées partielles

telle que celle de Laplace ou de Schrödinger en termes de coordonnées sphériques r, θ,

φ, de sorte que 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, nous avons souvent besoin d’une solution finie

et continue pour ces valeurs de sorte que la valeur de Ψ en φ = 2π soit la même qu’en

φ = 0.

Une méthode pour trouver une solution de l’équation (2.1) est la méthode de sépa-

ration des variables, nous recherchons une solution de la forme Ψ (θ, φ) = Θ (θ) Φ (φ).

L’insertion de cette expression dans l’équation (2.1) donne

Φ (φ)

sin θ

{
d

dθ

(
sin θ

dΦ

dθ

)}
+

Φ (θ)

sin2 θ

d2Φ

dφ2
+ l (l + 1) Θ (θ) Φ (φ)

où, en divisant partout par Θ (θ) Φ (φ) et en multipliant par sin2 θ,

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ

d2Φ

dφ2
+ l (l + 1) sin2 θ = 0

qui peut s’écrire
sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+ l (l + 1) sin2 θ = − 1

Φ

d2Φ

dφ2
·

Maintenant, le côté gauche de cette équation est une fonction uniquement de la variable

θ, tandis que le côté droit est une fonction uniquement de la variable φ. Puisque ces

46
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deux variables sont indépendantes, il suit que le côté gauche et le côté droit doivent être

séparément une constante que nous désignerons par m2.

Ainsi, nous avons
sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+ l (l + 1) sin2 θ = m2 (2.2)

et

− 1

Φ

d2Φ

dφ2
= m2· (2.3)

L’équation (2.3) s’écrit sous la forme

d2Φ

dφ2
= −m2Φ, (2.4)

tandis que l’équation (2.2) se simplifie en

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

{
l (l + 1)− m2

sin2 θ

}
Θ = 0. (2.5)

L’équation (2.4) a la solution générale

Φ = Aeimφ +Be−imφ

où, si la solution doit être continue, nous avons besoin de Φ(2π) = Φ(0), de sorte que m

doit être un entier (que nous pouvons prendre conventionnellement positif).

Dans l’équation (2.5), nous utilisons le changement de variable cos θ = x. Alors nous

avons − sin θdθ = dx et donc
1

sin θ

d

dθ
= − d

dx

et

sin θ
d

dθ
= sin2 θ(− d

dx
) = −

(
1− x2

) d

dx
.

En conséquence, l’équation (2.5) devient

d

dx

{(
1− x2

) dΘ

dx

}
+

{
l (l + 1)− m2

1− x2

}
Θ = 0

ce que nous reconnaissons comme l’équation associée de Legendre ; il n’aura une

solution finie à θ = 0 et π (x = +1 et −1) que si l est un entier. Dans ce cas, la solution

finie est donnée par Θ = Pml (x) : Pml (cos θ).

Ainsi la solution générale qui est finie à la fois à θ = 0 et π et est continue doit être

Ψ (θ, φ) =
(
Aeimφ +Be−

imφ
)
Pml (cos θ)

que, à cause de l’équation (1.42), nous pouvons écrire sous la forme

Ψ = A1e
imφPml (cos θ) +A2e

−imφP−ml (cos θ)
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où

A1 = A

et

A2 = (−1)m
(l +m)!

(l −m)!
B·

Si maintenant nous dénotons

yml (θ, φ) = eimφPml (cos θ) (2.6)

on peut écrire la solution générale sous la forme

Ψ = A1y
m
l (θ, φ) +A2y

−m
l (θ, φ) ·

Bien sûr, il s’agit d’une solution de l’équation d’origine (2.1) pour toute valeur de m,

et puisque (2.1) est homogène, nous avons la solution

Ψ =
l∑

m=0

{
A

(m)
1 yml (θ, φ) +A

(m)
2 y−ml (θ, φ)

}
·

Pour de nombreuses raisons, il est plus utile de considérer un multiple de yml (que nous

désignerons par Y m
l ) comme la solution de base ; un multiple choisi pour que les solu-

tions soient orthogonales et normalisées au sens où∫ 2π

0
dφ

∫ π

0
{Y m

l (θ, φ)}∗ Y m′
l′ (θ, φ) sin θdθ = δu′δmm′ (2.7)

(où le * désigne la conjugaison complexe).

Nous pouvons facilement prouver que cela est accompli en prenant

Y m
l (θ, φ) = (−1)m

1√
(2π)

√{
(2l + 1) (l −m)!

2 (l +m)!

}
yml (θ, φ) (2.8)

= (−1)m
1√
(2π)

√{
(2l + 1) (l −m)!

2 (l +m)!

}
eimφPml (cos θ)

Definition 2.1.1. Les fonctions Y m
l (θ, φ), l = 0, 1, 2, . . ., −l ≤ m ≤ l sont appelées harmo-

niques sphériques de degré l et d’ordre m.

2.2 Orthogonalité des harmoniques sphériques

Théorème 2.2.1. Les harmoniques sphériques vérifient la relations d’orthonormalité

suivante ∫ 2π

0
dφ

∫ π

0
dθ sin θ {Y m

l (θ, φ)}∗ Y m′
l′ (θ, φ) = δll′δδmm′ .
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Démonstration. Nous avons∫ 2π

0
dφ

∫ π

0
dθ sin θ {Y m

l (θ, φ)}∗ Y m′
l′ (θ, φ)

= (−1)m+m′ 1

2π

√{
(2l + 1) (2l′ + 1) (l −m)! (l′ −m′)!

4 (l +m)! (l′ +m′)

}
∫ 2π

0
ei(m

′−m)φdφ

∫ π

0
Pml (cos θ)Pm

′
l (cos θ) sin θdθ

(en utilisant le fait que Pml (x) est réel),

= (−1)m+m′ 1

2π

√{
(2l + 1) (2l′ + 1) (l −m)! (l′′ −m′)!

4 (l +m)! (l′′ +m′)

}
2πδm′m∫ 1

−1
Pml (x)Pm

′
l′ (x) dx

(puisque la première intégrale s’annule à moins quem′ = m, auquel cas elle est égale

à 2π ; et dans la seconde intégrale nous avons fait la substitution x = cos θ)

= (−1)2m

√{
(2l + 1) (2l′ + 1) (l −m)! (l′′ −m′)!

4 (l +m)! (l′′ +m′)

}
δm′m

∫ 1

−1
Pml (x)Pm

′
l′ (x) dx

=

√{
(2l + 1) (2l′ + 1) (l −m)! (l′′ −m′)!

4 (l +m)! (l′′ +m′)

}
δm′m

2 (l +m)!

(2l + 1) (l −m)!
δll′

= δll′δδmm′ .

Remarque 2.2.1. Le facteur (−1)m dans la définition (2.8) de Y m
l (θ, φ), que nous pre-

nons comme l’harmonique sphérique de base n’était pas nécessaire pour la propriété d’or-

thonormalité ; cependant, son introduction est conventionnelle (bien que le lecteur soit

averti que dans le domaine des harmoniques sphériques, différents auteurs peuvent em-

ployer des conventions différentes).

Théorème 2.2.2.

{Y m
l (θ, φ)}∗ = (−1)m Y −ml (θ, φ) ·

Démonstration.

{Y m
l (θ, φ)}∗ = (−1)m

1√
(2π)

√{
(2l + 1) (l −m)!

2 (l −m)!

}
e−imφPml (cos θ)

= (−1)m
1√
(2π)

√{
(2l + 1) (l −m)!

2 (l −m)!

}
e−imφ (−1)−m

(l +m)!

(l −m)!
P−ml (cos θ)

= (−1)m (−1)−m
1√
(2π)

√{
(2l + 1) (l +m)!

2 (l −m)!

}
e−imφP−ml (cos θ)

= (−1)m Y −ml (θ, φ)
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On peut utiliser les définitions de Y m
l (θ, φ) et Pml (cos θ) pour obtenir les expressions

explicites suivantes pour les premières harmoniques sphériques :

Y 0
0 =

√(
1

4π

)
,

Y ±1
1 = ±

√(
3

8π

)
sin θe±iφ,

Y 0
1 =

√
3

4π
cos θ,

Y ±2
2 =

√(
15

32π

)
sin2 θe±2iφ,

Y ±1
2 = −

√(
15

8π

)
sin θ cos θe±iφ,

Y 0
2 =

√
5

16π

(
3 cos2 θ − 1

)
.

FIGURE 2.1 – Harmoniques sphériques l = 0, 1, 2 et −l ≤ m ≤ l.

2.3 Théorème d’addition

Nous avons vu dans le chapitre précédent le théorème d’addition des fonctions de

Legendre associées du premier type, Théorème 1.12.4. Cette relation peut être écrite de
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manière compacte en termes d’harmoniques sphériques comme suit

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

{
Y m
l

(
θ′, φ′

)}∗
Y m
l (θ, φ) , (2.9)

où l’angle γ, illustré à la figure 1.3, est défini par

cos γ =
x · x′

|x||x′| = cos θ cos θ′ + sin θ sin θ′ cos(φ′ − φ). (2.10)

En particulier, si θ = θ′ et φ = φ′, γ = 0 et puisque Pl(1) = 1, on a la "règle de sommation"

l∑
m=−l

|Y m
l (θ, φ) |2 =

2l + 1

4π
(2.11)

valable quelles que soient les valeurs de θ et φ.

Le théorème d’addition peut être utiliser pour calculer un important développement

du potentiel en x due à une charge ponctuelle unitaire en x’ :

1

x− x’ = 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl <

rl+1 >
{Y m

l

(
θ′, φ′

)
}∗Y m

l (θ, φ) (2.12)

L’équation (2.3) donne le potentiel dans une forme complètement factorisée en coordon-

nées x et x’.

2.4 séries d’harmoniques sphérique

Grâce à l’orthogonalité des harmoniques sphériques, on peut formellement associer

à une fonction f(θ, φ), définie pour 0 ≤ θ ≤ π et 2π-périodique en φ, la série

f(θ, φ) =
∞∑
l=0

l∑
m=−l

Aml Y
m
l (θ, φ)

où

Aml =

∫ π

0
sin(θ)dθ

∫ 2π

0
{Y m

l (θ, φ)}∗ f(θ, φ)dφ.

L’étude de la convergence de la série de Laplace (2.4) peut être réduite à celle de la

série de Legendre considérée à la section 1.8 en faisant un changement de variables

dans lequel le point (θ, φ) sur la sphère unité est pris comme un nouvel origine. Ce

point et celui qui lui est diamétralement opposé jouent un rôle analogue à celui des

points x = ±1 dans la théorie de la série de Legendre, avec des restrictions correspon-

dantes sur le comportement de f . Sans entrer dans les détails, on peut dire que, dans
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des conditions convenables sur f similaires à celles évoquées à propos de la série de

Legendre (et généralement rencontrées en pratique), la série converge vers f(θ, φ) aux

points de continuité, ou à 1
2 [f1(θ, φ) + f2(θ, φ)] si le point (θ, φ) est tel que, à travers lui,

passe une ligne de discontinuité avec une tangente continuellement tournante telle que

f1 et f2 sont les limites de f en (θ, φ) pris des deux côtés de la ligne. Les conditions d’ap-

plicabilité de ce résultat sont satisfaites, en particulier, si f(θ, φ), exprimée en fonction

de l’angle γ défini par (2.10) et illustré à la figure 1.3 et de φ = φ − φ′, est de variation

bornée dans l’intervalle 0 ≤ γ ≤ π pour chaque valeur de φ, et telle que la variation to-

tale dans cet intervalle soit bornée pour toutes les valeurs de φ. Dans des conditions qui

prolongent celles mentionnées à la section 1.8 pour la série de Legendre (en particulier,

continuité et variation bornée), la convergence de la série de Laplace est uniforme.



Chapitre 3
Application : L’équation du

potentiel

3.1 L’équation du potentiel

Dans ce chapitre, nous allons étudier un exemple classique : l’équation de Laplace à

l’intérieur d’une sphère. L’expression générale de la solution se fera au moyen des har-

moniques sphériques (en particulier les polynômes de Legendre). Souvent en physique

un champ de force

~F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z))

est décrit comme le gradient ∇u d’une fonction u = u(x, y, z), i.e.,

~F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z))

=

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
= ∇u,

appelée le potentiel. Dans certains cas, ces champs de force sont tels que u satisfait

une équation aux dérivées partielles. Un tel exemple apparait en électrostatique. Si un

conducteur électrique de forme sphérique est chargé électriquement, qu’un équilibre

est atteint de façon à ce qu’il n’y ait pas de courant électrique sur la sphère et que la

distribution du potentiel électrique sur le conducteur est connue, pour déterminer la

force électrique sur une particule chargée située à l’intérieur de la sphère, il suffit alors

de déterminer le potentiel u.

Soient S = {(x, y, z) ∈ R3|x2 + y2 + z2 = R2}, la sphère de rayon R > 0 centrée

à l’origine et B = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ R2}, la boule fermée de rayon R

53
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centrée à l’origine. Alors pour déterminer u, il nous faut mathématiquement déterminer

la fonction u = u(x, y, z) telle que

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 pour (x, y, z) ∈ B

avec la condition u(x, y, z) = ψ(x, y, z) pour (x, y, z) ∈ S où χ(x, y, z) est une fonction

donnée définie sur la sphère S. Cette EDP est l’équation de Laplace.

Nous allons pas considérer ce problème si général. Mais plutôt un cas plus particu-

lier en imposant des conditions à la fonction χ. Nous supposerons que cette fonction est

indépendante de la longitude du point sur la sphère et ne dépend que de sa latitude.

Pour étudier ce problème, il est préférable d’utiliser les coordonnées sphériques.

Rappelons ce que sont les coordonnées sphériques. A un point P = (x, y, z) dans

R3, nous pouvons associer ses coordonnées sphériques (r, , θ, φ). La coordonnée r est la

distance du point P à l’origine O = (0, 0, 0), la coordonnée φ est la mesure de l’angle fait

par la demi-droite issue de l’origine et passant par la projection orthogonale du point P

sur le plan des x, y et la demi-droite des x positifs et finalement la coordonnée θ est la

mesure de l’angle fait par la demi-droite issue de l’origine et passant par le point P et

la demi-droite des z positifs. Ces valeurs satisfont les inégalités : 0 ≤ r, 0 ≤ φ < 2π et

0 ≤ θ ≤ π.

Les coordonnées sphériques sont données par les équations

x = r cos(φ) sin(θ)

y = r sin(φ) sin(θ)

z = r cos(θ)

Proposition 3.1.1. Dans ces nouvelles coordonnées, l’équation de Laplace devient alors

1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂u

∂θ

)
+

1

r2 sin2(θ)

∂2u

∂φ2
= 0 (3.1)

Démonstration. En effet, par la règle de chaines et de la définition des coordonnées

sphériques ci-dessus, nous obtenons
∂u
∂x = cos(φ) sin(θ)∂u∂r −

sin(φ)
r sin(θ)

∂u
∂φ + cos(φ) cos(θ)

r
∂u
∂θ ;

∂u
∂y = sin(φ) sin(θ)∂u∂r + cos(φ)

r sin(θ)
∂u
∂φ + sin(φ) cos(θ)

r
∂u
∂θ ;

∂u
∂z = cos(θ)∂u∂r −

sin(θ)
r

∂u
∂θ ;
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donc

∂2u

∂x2
= cos2(φ) sin2(θ)

∂2u

∂r2
+

sin2(φ)

r2 sin2(θ)

∂2u

∂φ2
+

cos2(φ) cos2(θ)

r2

∂2u

∂θ2

−2
sin(φ) cos(φ)

r

∂2u

∂φ∂r
+ 2

cos2(φ) sin(θ) cos(θ)

r

∂2u

∂r∂θ

−2
sin(φ) cos(φ) cos(θ)

r2 sin(θ)

∂2u

∂φ∂θ
+ (

sin2(φ)

r
+

cos2(φ) cos2(θ)

r
)
∂u

∂r

+(
sin(φ) cos(φ)

r2
+

sin(φ) cos(φ)

r2 sin2(θ)
+

sin(φ) cos(φ) cos2(θ)

r2 sin2(θ)
)
∂u

∂φ

+(−2
cos2(φ) sin(θ) cos(θ)

r2
+

sin2(φ) cos(θ)

r2 sin(θ)
)
∂u

∂θ
;

∂2u

∂y2
= sin2(φ) sin2(θ)

∂2u

∂r2
+

cos2(φ)

r2 sin2(θ)

∂2u

∂φ2
+

sin2(φ) cos2(θ)

r2

∂2u

∂θ2

+2
sin(φ) cos(φ)

r

∂2u

∂φ∂r
+ 2

sin2(φ) sin(θ) cos(θ)

r

∂2u

∂r∂θ

+2
sin(φ) cos(φ) cos(θ)

r2 sin(θ)

∂2u

∂φ∂θ
+ (

cos2(φ)

r
+

sin2(φ) cos2(θ)

r
)
∂u

∂r

−(
sin(φ) cos(φ)

r2
+

sin(φ) cos(φ)

r2 sin2(θ)
+

sin(φ) cos(φ) cos2(θ)

r2 sin2(θ)
)
∂u

∂φ

+(−2
sin2(φ) sin(θ) cos(θ)

r2
+

cos2(φ) cos(θ)

r2 sin(θ)
)
∂u

∂θ
;

∂2u

∂z2
= cos2(θ)

∂2u

∂r2
+

sin2(θ)

r2

∂2u

∂θ2
− 2

sin(θ) cos(θ)

r

∂2u

∂θ∂r
+

sin2(θ)

r

∂u

∂r

+2
sin(θ) cos(θ)

r2

∂u

∂θ
.

En substituant dans l’équation de Laplace, nous obtenons bien l’équation ( 3.1). Ainsi

le problème que nous aimerions étudier est de déterminer une fonction u = u(r, φ, θ)

avec 0 ≤ r ≤ R, 0 ≤ φ < π et 0 ≤ θ ≤ π qui satisfait l’équation ( 3.1) et telle que

u(R, φ, θ) = ψ(φ, θ) est une fonction donnée.

3.2 Solution de l’équation de Laplace en coordonnées sphé-

riques

Si nous utilisons la méthode de séparation de variables, nous commençons par dé-

terminer des solutions de (3.1) de la forme

u(r, θ, φ) = F (r)Ψ(θ, φ). (3.2)
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En substituant dans (3.1), nous obtenons

Ψ

r2

d

dr

(
r2dF

dr

)
+

F

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂φ2
= 0 (3.3)

qui, après avoir divisé par FΨ
r2

, réduit à

1

F

d

dr

(
r2dF

dr

)
= −

[
1

Ψ sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

Ψ sin2 θ

∂2Ψ

∂φ2

]
(3.4)

Le terme de gauche de l’équation (3.4) est une fonction de r uniquement, alors que le

terme de droite est une fonction de θ et φ uniquement. Pour que cette égalité soit vérifiée,

il faut que chacun des termes soit égal à une constante λ :

1

F

d

dr

(
r2dF

dr

)
= λ

et
1

Ψ sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

Ψ sin2 θ

∂2Ψ

∂φ2
= −λ.

De ce fait, nous obtenons le système des deux équations

r2d
2F

dr2
+ 2r

dF

dr
− λF = 0 (3.5)

1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

sin2 θ

∂2Ψ

∂φ2
+ λΨ = 0. (3.6)

Ainsi, la détermination des facteurs dans le produit (3.2) se réduit à un problème relati-

vement simple : de la résolution de l’équation différentielle ordinaire (3.5), et l’équation

aux dérivées partielles (3.6) qui n’est autre que l’équation des harmoniques sphériques

deja étudiée dans la section 2.1 du chapitre précédent.

3.3 Le problème de Dirichlet sur la sphère

Il est important d’étudier un cas particulier où nous allons supposer que la fonction

χ donnée est indépendante de φ et que nous cherchons à déterminer les solutions u qui

sont aussi indépendantes de φ. Avec ces hypothèses, nous avons u = u(r, θ) et ∂2u
∂φ2

= 0

dans l’équation (3.1).

Nous allons étudier le problème plus restreint qui est de déterminer une solution

u = u(r, θ) avec 0 ≤ r ≤ R et 0 ≤ θ ≤ π qui satisfait l’EDP
1
r2

∂
∂r

(
r2 ∂u

∂r

)
+ 1

r2 sin(θ)
∂
∂θ

(
sin(θ)∂u∂θ

)
= 0

u(r, θ) est une fonction bornée,

u(r, θ) = f(θ)

(3.7)
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où f est une fonction donnée définie sur l’intervalle [0, π].

La symétrie azimutale du problème correspond à poser Ψ(θ, φ) = G(θ) dans (3.2) et
∂2Ψ
∂φ2

= 0 dans (3.6). ainsi le système des deux équations (3.5) et (3.6) s’écrit

r2d
2F

dr2
+ 2r

dF

dr
− λF = 0 (3.8)

1

sin θ

∂

∂θ

(
sin θ

∂G

∂θ

)
+ λG = 0. (3.9)

L’équation (3.8) est une équation bien connue, l’équation de Cauchy. Elle est aussi

connue sous le nom d’équation d’Euler. Il est possible en faisant un changement de

variables de transformer l’équation (3.8) en une équation à coefficient constant. En effet,

posons z = ln(r), alors

dF

dr
=

dF

dz

dz

dr
=

1

r

dF

dz
,

d2F

dr2
=

d

dr
(
1

r

dF

dz
) = − 1

r2

dF

dz
+

1

r

d

dr
(
dF

dz
) = − 1

r2

dF

dz
+

1

r2

d2F

dz2

et, en substituant dans l’équation (3.8), nous obtenons

d2F

dz2
− dF

dz
+ 2

dF

dz
− λF = 0 ⇒ d2F

dz2
+
dF

dz
− λF = 0.

Il est alors possible d’analyser les solutions F par rapport au paramètre λ en exprimant

celles-ci en fonction de z dans un premier temps et ensuite en fonction de r.

Si nous voulons décrire la solution générale de

d2F

dz2
+
dF

dz
− λF = 0 (3.10)

nous devons considérer les racines du polynôme en D suivant : D2 +D−λI. Ces racines

sont
−1 +

√
1 + 4λ

2
et
−1−

√
1 + 4λ

2

Il y a donc trois cas à considérer : soit les deux racines sont complexes et non réelles,

soit la racine est réelle et double, soit les deux racines sont réelles et distinctes.

Dans le premier cas, si ces deux racines sont complexes et non réelles, i.e., (1 + 4λ) =

−p2 < 0 avec p > 0, alors ces racines sont égales à
(
−1±p

√
−1

2

)
et la solution générale de

l’équation ( 3.10) est de la forme

Ae−
z
2 cos(

p

2
z) +Be−

z
2 sin(

p

2
z).

Conséquemment la solution générale de l’équation (3.8) est

Ar−1/2 cos(
p

2
ln(r)) +Br−1/2 sin(

p

2
ln(r)),
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parce que z = ln(r). Parce que la solution u(r, θ) doit être bornée, nous obtenons de cette

condition que la fonction F (r) doit aussi être bornée. Mais ici la fonction

Ar−1/2 cos(
p

2
ln(r)) +Br−1/2 sin(

p

2
ln(r))

n’est pas bornée lorsque (A, B) 6= (0, 0). Il suffit de considérer le comportement de cette

fonction lorsque r → 0. Nous devons donc rejeter ce premier cas.

Dans le second cas, si la racine est réelle et double, i.e., (1 + 4λ) = 0, alors la racine

est égale à −1/2 et la solution générale de l’équation ( 3.10) est de la forme

Ae−z/2 +Bze−z/2.

Conséquemment la solution générale de l’équation (3.8) est

Ar−1/2 +Br−1/2 ln(r),

parce que z = ln(r). Comme ci-dessus, nous devons rejeter ce second cas parce que la

fonction

Ar−
1
2 +Br−

1
2 ln(r)

n’est pas bornée lorsque (A, B) 6= (0, 0). Il suffit de considérer le comportement de cette

fonction lorsque r → 0.

Dans le troisième cas, si les deux racines sont des nombres réels distincts, i.e., (1 +

4λ) = p2 > 0 avec p > 0, alors ces racines sont égales à (−1± p)/2 et la solution générale

de l’équation (3.10) est de la forme

A exp(
−1 + p

2
z) +B exp(

−1− p
2

z).

Conséquemment la solution générale de l’équation (3.8) est

Ar(−1+p)/2 +Br(−1−p)/2,

parce que z = ln(r). Comme ci-dessus, nous voulons que la fonction F (r) soit bornée,

alors nous devons rejeter les cas où p < 1. Parce que si p < 1, alors les deux exposants

(−1 + p)/2 et (−1− p)/2 sont négatifs et, en considérant le comportement de la solution

générale pour (A, B) 6= (0, 0) lorsque r → 0, nous voyons alors que la fonction F (r) n’est

pas bornée. Donc (1 + 4λ) = p2 ≥ 1 et λ ≥ 0. Posons

l =
−1 + p

2
.
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Alors l est une des racines, l’autre racine est

−1− p
2

= −(l + 1) parce que l =
−1 + p

2
⇒ p = 2l + 1.

Comme p ≥ 1, nous avons l ≥ 0 et −(l + 1) ≤ −1. Nous pouvons aussi exprimer λ en

fonction de l. En effet, nous obtenons

l =
−1 + p

2
=
−1 +

√
1 + 4λ

2
⇒ 2l + 1 =

√
1 + 4λ⇒ (2l + 1)2 = 1 + 4λ⇒ λ = l(l + 1).

Si nous revenons à la solution F (r) de l’équation (3.8), nous avons

F (r) = Arl +Br−(l+1)

Comme l ≥ 0 et que nous voulons que F (r) soit bornée, alors B = 0. Finalement si nous

résumons ce que nous avons obtenu ci-dessus,

λ = l(l + 1) avec l ≥ 0 et F (r) = Arl pour 0 ≤ r ≤ R.

Il nous faut donc maintenant considérer l’équation différentielle ordinaire (3.9), qui

s’écrit sous la forme
d2G

dθ2
+ cot(θ)

dG

dθ
+ λG = 0. (3.11)

Si nous considérons dans (3.11) le changement de variable w = cos(θ) avec −1 ≤ w ≤ 1,

alors nous pouvons obtenir une équation différentielle équivalente. En effet,

dG

dθ
=
dG

dw

dw

dθ
= − sin(θ)

dG

dw

et

d2G

dθ2
=

d

dθ
(− sin(θ)

dG

dw
) = − cos(θ)

dG

dw
− sin(θ)

d

dθ
(
dG

dw
) = − cos(θ)

dG

dw
+ sin2(θ)

d2G

dw2
.

Ainsi après substitution, nous obtenons

sin2(θ)
d2G

dw2
− cos(θ)

dG

dw
− cos(θ)

sin(θ)
sin(θ)

dG

dw
+ λG = 0

alors

(1− cos2(θ))
d2G

dw2
− 2 cos(θ)

dG

dw
+ λG = 0.

Finalement comme w = cos(θ) et λ = l(l + 1), nous obtenons l’équation différentielle de

Legendre

(1− w2)
d2G

dw2
− 2w

dG

dw
+ l(l + 1)G = 0 (3.12)
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On a vu dans la section 1.2 que si l 6∈ N alors toute solution non-triviale de l’équation

(3.12) n’est pas bornée sur l’intervalle [−1, 1].

Nous allons maintenant considérer l’équation (3.12) avec l ∈ N. Ainsi, la solution

générale de cette équation est

G(w) = APl(w) +BQl(w).

où Pl(z) etQl(z) sont respectivement le polynôme de Legendre et la fonction de Legendre

du deuxième type de degré l ∈ N. ( Pl(z) et Ql(z) sont deux solutions linéairement

indépendantes.)

Mais comme nous voulons que la fonction u(r, θ) soit bornée, ceci a comme consé-

quence que la fonction G(w) doit aussi être bornée sur l’intervalle [−1, 1]. Comme Ql(w)

n’est pas bornée sur [−1, 1] et que Pl(w) est bornée sur l’intervalle [−1, 1], alors B = 0.

Donc G = APl(w) comme fonction de w ou encore G = APl(cos(θ)) comme fonction de θ.

Donc pour chaque l ∈ N, nous obtenons une solution appropriée de l’équation de Laplace

à l’intérieur de la sphère donnée par

u(r, θ) = alr
lPl(cos(θ))

Comme ce problème est linéaire et homogène, nous pouvons utiliser le principe de su-

perposition.

Ainsi

u(r, θ) =
∞∑
l=0

alr
lPl(cos(θ))

est une solution du problème

(∗)

 1
r2

∂
∂r

(
r2 ∂u

∂r

)
+ 1

r2 sin(θ)
∂
∂θ

(
sin(θ)∂u∂θ

)
= 0

u(r, θ) est une fonction bornée,

Pour qu’une telle solution satisfasse le problème de départ (3.7), à savoir le problème

(∗) avec en plus la condition à la frontière u(r, θ) = f(θ), il faut alors que

u(R, θ) =

∞∑
l=0

alR
lPl(cos(θ)) = f(θ).

C’est à dire, il faut pouvoir écrire f en fonction des polynômes de Legendre.

De plus, on sait que les polynômes de Legendre forment un système orthogonal (voir

la section 1.6) alors nous avons maintenant ce qu’il faut pour exprimer le potentiel à

l’intérieur de la sphère.
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Proposition 3.3.1. La solution formelle du problème

1
r2

∂
∂r

(
r2 ∂u

∂r

)
+ 1

r2 sin(θ)
∂
∂θ

(
sin(θ)∂u∂θ

)
= 0 oú 0 ≤ r ≤ R, 0 ≤ θ ≤ π

u(R, θ) = f(θ)

u(r, θ) est bornée

est

u(r, θ) =

∞∑
l=0

alr
lPl(cos(θ))

où

an =
2n+ 1

2Rn

∫ π

0
f(θ)Pn(cos(θ)) sin(θ)dθ

=
(2n+ 1)

2Rn

∫ 1

−1
f̃(w)Pn(w)dw.

Ici f̃(w) désigne la fonction f comme fonction de w = cos(θ), i.e., f̃(w) = f(arccos(w)).

Démonstration. Nous avons vu que la solution formelle est de la forme

u(r, θ) =

∞∑
l=0

alr
lPl(cos(θ))

et qu’en plus

u(R, θ) =

∞∑
l=0

alR
lPl(cos(θ)) = f(θ).

Si nous exprimons cette dernière égalité dans la variable w = cos(θ), nous obtenons

∞∑
l=0

alR
lPl(w) = f̃(w).

D’après le Théorème 1.8.1 nous avons

2akR
k

2k + 1
=

∫ 1

−1
f̃(w)Pk(w)dw

Nous obtenons donc

ak =
2k + 1

2Rk

∫ 1

−1
f(w)Pk(w)dw =

2k + 1

2Rk

∫ π

0
f(θ)Pk(cos(θ)) sin(θ)dθ. (3.13)

Cette dernière égalité est obtenue en substituant

w = cos(θ) et dw = − sin(θ)dθ.
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Il est aussi possible de considérer le problème du potentiel à l’extérieur de la sphère.

En d’autres termes, de déterminer la solution u = u(r, θ) du problème aux limites
1
r2

∂
∂r

(
r2 ∂u

∂r

)
+ 1

r2 sin(θ)
∂
∂θ

(
sin(θ)∂u∂θ

)
= 0 où R ≤ r, 0 ≤ θ ≤ π

u(R, θ) = f(θ) ( condition à la frontière)

u(r, θ)→ 0 si r →∞

(3.14)

La méthode de séparation de variables peut aussi être utilisée.

Après une analyse du même type que ce que nous avons fait précédemment, nous obte-

nons

Proposition 3.3.2. La solution formelle du problème (3.14) est

u(r, θ) =
∞∑
l=0

bl
1

rl+1
Pl(cos(θ))

où

bn =
2n+ 1

2
Rn+1

∫ π

0
f(θ)Pn(cos(θ)) sin(θ)dθ

=
2n+ 1

2
Rn+1

∫ 1

−1
f̃(w)Pn(w)dw.

Ici f̃(w) désigne la fonction f comme fonction de w = cos(θ), i.e., f̃(w) = f(arccos(w)).

Remarque 3.3.1. Si on considère le problème plus général où f = f(θ, φ) est une fonction

des deux coordonnées angulaires, c’est à dire le problème
1
r2

∂
∂r

(
r2 ∂u

∂r

)
+ 1

r2 sin(θ)
∂
∂θ

(
sin(θ)∂u∂θ

)
+ 1

r2 sin2(θ)
∂2u
∂φ2

= 0 oú 0 ≤ r ≤ R, 0 ≤ θ ≤ π

u(R, θ, φ) = f(θ, φ)

u(r, θ) est bornée,
(3.15)

Alors une solution particulière du problème (3.15) dans le domaine r < R ( potentiel à

l’intérieur de la sphère) a la forme

u(r, θ, φ) =
∞∑
l=0

l∑
m=−l

Aml r
lY m
l (θ, φ)

où Y m
l (θ, φ), est l’harmonique sphérique de degré l et d’ordre m et

Aml =
1

Rn

∫ π

0
sin(θ)dθ

∫ 2π

0
{Y m

l (θ, φ)}∗ f(θ, φ)dφ.

Il en est de même si on considère le problème du potentiel à l’extérieur de la sphère

(r > R) on obtient une solution de la forme

u(r, θ, φ) =
∞∑
l=0

l∑
m=−l

Bm
l

1

rl+1
Y m
l (θ, φ)



63
où

Bm
l = Rn+1

∫ π

0
sin(θ)dθ

∫ 2π

0
{Y m

l (θ, φ)}∗ f(θ, φ)dφ.

3.4 Exemples

Exemple 3.4.1. Déterminer la solution formelle u(r, θ) du problème de Dirichlet (3.7) si

f(θ) est

a) f(θ) = cos(3θ) ;

b) f(θ) = sin(θ) sin(3θ) ;

c) f(θ) = cos(4θ) ;

d) f(θ) = sin(θ) sin(4θ) ;

e) f(θ) =


c, si 0 ≤ θ < π/2;

0, si θ = π/2

−c, si π/2 < θ ≤ π.

; où c est une constante.

Nous avons vu que la solution formelle dans ce cas est

u(r, θ) =
∞∑
n=0

anr
nPn(cos(θ))

où

an =
(2n+ 1)

2Rn

∫ π

0
f(θ)Pn(cos(θ)) sin(θ)dθ

=
(2n+ 1)

2Rn

∫ 1

−1
f̃(w)Pn(w)dw.

Nous allons déterminer f̃ en exprimant f comme une fonction de cos(θ) et ensuite rem-

placer cos(θ) par w.

a) Si f(θ) = cos(3θ), alors

f(θ) = cos(θ) cos(2θ)− sin(θ) sin(2θ) = cos(θ)[2 cos2(θ)− 1]− sin(θ)[2 sin(θ) cos(θ)]

= 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ) = 2 cos3(θ)− cos(θ)− 2[1− cos2(θ)] cos(θ)

= 4 cos3(θ)− 3 cos(θ)

et ainsi f̃(w) = 4w3 − 3w obtenu en substituant w à la place de cos(θ). Nous pouvons
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maintenant calculer les coefficients an.

a0 =
1

2

∫ 1

−1
(4w3 − 3w)(1)dw =

1

2
(
4w4

4
− 3w2

2
]1−1 = 0

a1 =
3

2R

∫ 1

−1
(4w3 − 3w)(w)dw =

3

2R
(
4w5

5
− 3w3

3
]1−1 =

−3

5R

a2 =
5

2R2

∫ 1

−1
(4w3 − 3w)(

3w2 − 1

2
)dw = 0

a3 =
7

2R3

∫ 1

−1
(4w3 − 3w)(

5w3 − 3w

2
)dw =

7

2R3
(
20w7

14
− 27w5

10
+

9w3

6
]1−1 =

8

5R3

an = 0 si n ≥ 4.

Pour vérifier cette dernière équation, nous notons que

u(R, θ) =
∞∑
n=0

anR
nPn(w)

= f̃(w) = 4w3 − 3w si cos(θ) = w

alors, par développement on obtient

u(R, θ) = − 3

5R
(Rw) +

8

5R3
(R3)

(
5w3 − 3w

2

)
︸ ︷︷ ︸

(4w3−3w)

+

∞∑
n=4

anR
nPn(w)

= f̃(w) = 4w3 − 3w

Donc
∑∞

n=4 anR
nPn(w) = 0 ⇒ an = 0 pour tout n ≥ 4 parce que les Pn forment une

famille orthogonale sur [−1, 1]. Conséquemment la solution est

u(r, θ) = − 3r

5R
cos(θ) +

8r3

5R3

(5 cos3(θ)− 3 cos(θ))

2
.

b) Si f(θ) = sin(θ) sin(3θ) alors

f(θ) = sin(θ) sin(3θ) = sin(θ)[sin(θ) cos(2θ) + cos(θ) sin(2θ)]

= sin2(θ)[2 cos2(θ)− 1] + 2 cos2(θ) sin2(θ) = [1− cos2(θ)][2 cos2(θ)− 1]

+2 cos2(θ)[1− cos2(θ)]

= −4 cos4(θ) + 5 cos2(θ)− 1

et ainsi f̃(w) = −4w4+5w2−1 obtenu en substituant w à la place de cos(θ). Nous pouvons
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maintenant calculer les coefficients an.

a0 =
1

2

∫ 1

−1
(−4w4 + 5w2 − 1)(1)dw =

1

2
(−4w5

5
+

5w3

3
− w]1−1 = − 2

15

a1 =
3

2R

∫ 1

−1
(−4w4 + 5w2 − 1)(w)dw = 0

a2 =
5

2R2

∫ 1

−1
(−4w4 + 5w2 − 1)(

3w2 − 1

2
) =

5

4R2
(−12w7

7
+

19w5

5
− 8w3

3
+ w]1−1

=
22

21R2

a3 =
7

2R3

∫ 1

−1
(−4w4 + 5w2 − 1)(

5w3 − 3w

2
)dw = 0

a4 =
9

2R4

∫ 1

−1
(−4w4 + 5w2 − 1)(

35w4 − 30w2 + 3

8
)dw

=
9

16R4
(−140w9

9
+

295w7

7
− 197w5

5
+

45w3

3
− 3w]1−1 = − 32

35R4

an = 0 si n ≥ 5.

Pour vérifier cette dernière équation, nous notons que

u(R, θ) =
∞∑
n=0

anR
nPn(w)

= f̃(w) = −4w4 + 5w2 − 1 si cos(θ) = w

=
−2

15
+

22

21R2

(
R2
)(3w2 − 1

2

)
− 32

35R4
R4

(
35w4 − 30w2 + 3

8

)
︸ ︷︷ ︸

(−4w4+5w2−1)

+
∞∑
n=5

anR
nPn(w)

Donc
∑∞

n=5 anR
nPn(w) = 0 ⇒ an = 0 pour tout n ≥ 5 parce que les Pn forment une

famille orthogonale sur [−1, 1]. Conséquemment la solution est

u(r, θ) = − 2

15
+

22r2

21R2

(3 cos2(θ)− 1)

2
− 32r4

35R4

(35 cos4(θ)− 30 cos2(θ) + 3)

8
.

c) Si f(θ) = cos(4θ), alors

f(θ) = cos(4θ) = 2 cos2(2θ)− 1 = 2[2 cos2(θ)− 1]2 − 1 = 8 cos4(θ)− 8 cos2(θ) + 1

et ainsi f̃(w) = 8w4−8w2 +1 obtenu en substituant w à la place de cos(θ). Nous pouvons
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maintenant calculer les coefficients an.

a0 =
1

2

∫ 1

−1
(8w4 − 8w2 + 1)(1)dw =

1

2
(
8w5

5
− 8w3

3
+ w]1−1 = − 1

15

a1 =
3

2R

∫ 1

−1
(8w4 − 8w2 + 1)(w)dw = 0

a2 =
5

2R2

∫ 1

−1
(8w4 − 8w2 + 1)(

3w2 − 1

2
)dw = − 16

21R2

a3 =
7

2R3

∫ 1

−1
(8w4 − 8w2 + 1)(

5w3 − 3w

2
)dw = 0

a4 =
9

2R4

∫ 1

−1
(8w4 − 8w2 + 1)(

35w4 − 30w2 + 3

8
)dw =

64

35R4

an = 0 si n ≥ 5.

Pour vérifier cette dernière équation, nous notons que

u(R, θ) =
∞∑
n=0

anR
nPn(w)

= f̃(w) = 8w4 − 8w2 + 1 si cos(θ) = w

= − 1

15
− 16

21R2
(R2)

(
3w2 − 1

2

)
+

64

35R4
R4

(
35w4 − 30w2 + 3

8

)
︸ ︷︷ ︸

(8w4−8w2+1)

+

∞∑
n=5

anR
nPn(w)

Donc
∑∞

n=5 anR
nPn(w) = 0 ⇒ an = 0 pour tout n ≥ 5 parce que les Pn forment une

famille orthogonale sur [−1, 1]. Conséquemment la solution est

u(r, θ) = − 1

15
− 16r2

21R2

(3 cos2(θ)− 1)

2
+

64r4

35R4

(35 cos4(θ)− 30 cos2(θ) + 3)

8
.

d) Si f(θ) = sin(θ) sin(4θ), alors

f(θ) = sin(θ) sin(4θ) = 2 sin(θ) sin(2θ) cos(2θ) = 2 sin(θ)[2 sin(θ) cos(θ)][2 cos2(θ)− 1]

= 4[1− cos2(θ)] cos(θ)[2 cos2(θ)− 1] = −8 cos5(θ) + 12 cos3(θ)− 4 cos(θ)

et ainsi f̃(w) = −8w5 + 12w3 − 4w obtenu en substituant w à la place de cos(θ). Nous
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pouvons maintenant calculer les coefficients an.

a0 =
1

2

∫ 1

−1
(−8w5 + 12w3 − 4w)(1)dw = 0

a1 =
3

2R

∫ 1

−1
(−8w5 + 12w3 − 4w)(w)dw = − 8

35R

a2 =
5

2R2

∫ 1

−1
(−8w5 + 12w3 − 4w)(

3w2 − 1

2
)dw = 0

a3 =
7

2R3

∫ 1

−1
(−8w5 + 12w3 − 4w)(

5w3 − 3w

2
)dw =

56

45R3

a4 =
9

2R4

∫ 1

−1
(−8w5 + 12w3 − 4w)(

35w4 − 30w2 + 3

8
)dw = 0

a5 =
11

2R5

∫ 1

−1
(−8w5 + 12w3 − 4w)(

63w5 − 70w3 + 15w

8
)dw = − 64

63R5

an = 0 si n ≥ 6.

Pour vérifier cette dernière équation, nous notons que

u(R, θ) =

∞∑
n=0

anR
nPn(w)

= f̃(w) = −8w5 + 12w3 − 4w si cos(θ) = w

= − 8

35R
Rw +

56

45R3
(R3)

(
5w3 − 3w

2

)
− 64

63R5
R5

(
63w5− 70w3 + 15w

8

)
︸ ︷︷ ︸

(−8w5+12w3−4w)

+
∞∑
n=6

anR
nPn(w)

Donc
∑∞

n=6 anR
nPn(w) = 0 ⇒ an = 0 pour tout n ≥ 6 parce que les Pn forment une

famille orthogonale sur [−1, 1]. Conséquemment la solution est

u(r, θ) = − 8r

35R
cos(θ)+

56r3

45R3

(5 cos3(θ)− 3 cos(θ))

2
− 64r5

63R5

(63 cos5(θ)− 70 cos3(θ) + 15 cos(θ))

8
.

e) Si

f(θ) =


c, si 0 ≤ θ < π/2;

0, si θ = π/2

−c, si π/2 < θ ≤ π.

alors f̃(w) =


c, si 0 < w ≤ 1;

0, si w = 0;

−c, si − 1 ≤ w < 0.

Donc

an =
(2n+ 1)

2Rn

∫ 1

−1
f̃(w)Pn(w)dw

=
(2n+ 1)

2Rn

[∫ 0

−1
(−c)Pn(w)dw +

∫ 1

0
(c)Pn(w)dw

]
.

Notons que si n est pair, alors Pn(w) est une fonction paire et∫ 0

−1
Pn(w)dw =

∫ 1

0
Pn(w)dw;
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alors que si n est impair, alors Pn(w) est une fonction impaire et∫ 0

−1
Pn(w)dw = −

∫ 1

0
Pn(w)dw.

De cette remarque, nous avons

an =

 0, si n est pair;

(2n+ 1)c

Rn
∫ 1

0 Pn(w)dw, si n est impair.

Nous allons utiliser la formule de Rodrigues pour évaluer cette dernière intégrale :

Pn(w) =
1

2nn!

dn

dwn
[(w2 − 1)n].

De plus ici n ≥ 1, parce que n est impair. Nous avons donc∫ 1

0
Pn(w)dw =

1

2nn!

∫ 1

0

dn

dwn
[(w2 − 1)n]dw =

1

2nn!
(
dn−1

dwn−1
[(w2 − 1)n]

]w=1

w=0

Mais nous avons
dn−1

dwn−1
[(w2 − 1)n]

∣∣∣∣
w=±1

= 0.

Il suffit alors d’évaluer

dn−1

dwn−1
[(w2 − 1)n]

∣∣∣∣
w=0

lorsque n est impair.

Notons n = 2p+ 1 avec p ∈ N. Nous pouvons développer (w2− 1)n en utilisant la formule

du binôme. Ainsi

(w2 − 1)n =

n∑
k=0

(−1)k
n!

k!(n− k)!
w2(n−k).

Nous avons 2n− 2k < (n − 1)⇔ n < 2k − 1⇔ 2p+ 1 < 2k − 1⇔ p+ 1 < k. Donc

dn−1

dwn−1
[(w2 − 1)n] =

p+1∑
k=0

(−1)k
n!

k!(n− k)!

(2n− 2k)!

(n− 2k + 1)!
wn−2k+1

ce qui implique que

dn−1

dwn−1
[(w2 − 1)n]

∣∣∣∣
w=0

= (−1)p+1 n!(2n− 2p− 2)!

(p+ 1)!p!(n− 2p− 2 + 1)!

= (−1)p+1 n!(2p)!

(p+ 1)!(p)!

où n = 2p+ 1. Conséquemment∫ 1

0
Pn(w)dw =

1

2nn!
(0− (−1)p+1 n!(2p)!

(p+ 1)!(p)!
) = (−1)p

(2p)!

22p+1(p+ 1)!p!
.

La solution est

u(r, θ) =

∞∑
p=0

(−1)p
(2(2p+ 1) + 1)c(2p)!r2p+1

22p+1(p+ 1)!p!R2p+1
P2p+1(cos(θ))

=
∞∑
p=0

(−1)p
(4p+ 3)c(2p)!r2p+1

22p+1(p+ 1)!p!R2p+1
P2p+1(cos(θ)).
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Exemple 3.4.2. Montrer que la valeur de la solution formelle u du problème du potentiel

à l’intérieur de la sphère (apparaissant à la proposition (3.3.2)) au centre de la sphère est

la valeur moyenne des valeurs de u sur la sphère.

Nous avons vu que la solution est

u(r, θ) =

∞∑
n=0

an
rn

Rn
Pn(cos(θ))

avec

an =
(2n+ 1)

2Rn

∫ π

0
f(θ)Pn(cos(θ)) sin(θ)dθ

pour tout n ∈ N. La valeur de u au centre de la sphère est

u(0, 0) = a0P0(cos(0)) = a0 =
1

2

∫ π

0
f(θ) sin(θ)dθ.

Pour calculer la moyenne des valeurs de u(R, θ), il nous faut une paramétrisation de la

sphère, ensuite calculer l’élément de surface et finalement l’intégrale de surface. Une

paramétrisation est obtenue par
x (φ, θ) = R cos(φ) sin(θ)

y (φ, θ) = R sin(φ) sin(θ)

z (φ, θ) = R cos(θ)


où 0 ≤ φ ≤ 2π et 0 ≤ θ ≤ π.

Pour calculer l’élément de surface, nous devons calculer la norme du produit vectoriel(
∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ

)
×
(
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ

)
.

Ce produit vectoriel est égal à

(−R sin(φ) sin(θ), R cos(φ) sin(θ), 0))×(R cos(φ) cos(θ), R sin(φ) cos(θ), −R sin(θ)) = (−R2 cos(φ) sin2(θ), −R2 sin(φ) sin2(θ), −R2 sin(θ) cos(θ)).

Donc l’élément de surface est√
(−R2 cos(φ) sin2(θ))2 + (−R2 sin(φ) sin2(θ))2 + (−R2 sin(θ) cos(θ))2dφdθ = R2 sin(θ)dφdθ.

La moyenne des valeurs de u(R, θ) est égale à∫ π
0

∫ 2π
0 f(θ)R2 sin(θ)dφdθ∫ π

0

∫ 2π
0 R2 sin(θ)dφdθ

=
2πR2

∫ π
0 f(θ) sin(θ)dθ

2πR2
∫ π

0 sin(θ)dθ
=

∫ π
0 f(θ) sin(θ)dθ

−(cos(θ)]π0
=

1

2

∫ π

0
f(θ) sin(θ)dθ.

Mais ceci est exactement u(0, 0). Donc nous avons démontré le résultat.
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3.5 Le champ d’une charge ponctuelle à l’intérieur d’une

sphère conductrice creuse

En application des résultats de ce qui précède, considérons le problème de la dé-

termination du champ électrostatique dû à une charge ponctuelle q à l’intérieur d’une

sphère conductrice creuse de rayon R, maintenue à un potentiel nul. Choisissez l’origine

0 au centre de la sphère et laissons l’axe z passer par la position A de la charge, qui est

à la distance b de 0 (voir la figure 3.1). Pour éliminer la z-singularité en A, on écrit le

potentiel ψ du champ électrostatique comme une somme du potentiel de la source et du

potentiel u du champ secondaire dû aux charges induites sur la surface interne de la

sphère, c’est à dire,

FIGURE 3.1 –

ψ =
q

ρ
+ u (3.16)

où

ρ = AP =
√
r2 + b2 − 2br cos θ
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est la distance de A à un point variable P , avec les coordonnées r, θ. Puisque ψ doit

disparaître à la surface de la sphère, la détermination de la fonction u = u(r, θ) se réduit

à résoudre le problème de Dirichlet (3.7) avec la condition aux limites

u|r=R = − q√
R2 + b2 − 2bR cos θ

= f(θ). (3.17)

Le terme de droite de (3.17) peut facilement être développé en une série de polynômes

de Legendre, et en fait il n’est pas nécessaire d’évaluer l’intégrale (3.13). Au lieu de cela,

nous utilisons la formule de la fonction génératrice (1.9) qui implique immédiatement

u|r=R = − q
R

∞∑
n=0

(
b

R

)n
Pn(cos θ). (3.18)

De plus, puisque b < R il résulte de l’estimation (1.14) que la série (3.18) est uniformé-

ment convergente dans l’intervalle [0, π]. Par conséquent, selon Sec. 3.3, la fonction u est

donnée par la formule

u = − q
R

∞∑
n=0

(
br

R2

)n
Pn(cos θ). (3.19)

En utilisant à nouveau (1.9), nous trouvons que la somme de la série (3.19) est

u = − q
R

1√
1− 2

(
br
R2

)
cos θ +

(
br
R2

)2 =
q′

ρ′
. (3.20)

où

q′ = −qR
b
, b′ =

R2

b
, ρ′ =

√
r2 + b′2 − 2b′r cos θ.

Ainsi, le potentiel ψ peut être écrit comme une somme

ψ =
q

ρ
+
q′

ρ′
, (3.21)

où le premier terme est le potentiel de la charge q en l’absence de la sphère conductrice,

et le second terme est le potentiel de la charge image q′ au point image A′, qui tient

compte de l’influence de la sphère.
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