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Introduction

Les harmoniques sphériques sont la partie angulaire de la solution de I'’équation
différentielle de Laplace Au = 0, ou, de maniere équivalente, les solutions de ’équation
différentielle de Laplace sur la sphére unité.

Soient r, 0, ¢ les coordonnées sphériques : r est le rayon, 6 la colatitude, ¢ la longitude.
Les harmoniques sphériques, notées Y, (6, ¢), sont des fonctions des deux coordonnées

angulaires données par

Y, (0,®) = (-1)" 214—; ! M€im¢ﬂm(cos 0),

avec P/ désignant les fonctions Legendre associées :

1 dl+m
m/2 [
P o g @ =)

P (x) = (1-2%)

L'indice [ et 'exposant m sont deux entiers appelés le degré et I'ordre de ’harmonique
sphérique. Ils prennent les valeurs / =0, 1,2, ...,00, et m = —[,...,0, ..., l.

La propriété la plus importante des harmoniques sphériques est que toute fonction dé-
finie sur la sphére peut se décomposer de facon unique sous la forme d’'une somme
d’harmoniques sphériques. Les Y, forment ainsi une base orthonormée compléte pour
les fonctions définies sur une spheére. Elles sont ’équivalent, sur la sphére, des séries de
Fourier sur le cercle.

Les harmoniques sphériques sont largement utilisées en physique atomique et molécu-
laire. En mécanique quantique, elles apparaissent comme des fonctions propres du mo-
ment angulaire orbital (carré). En outre, elles sont importantes dans la représentation
des champs gravitationnels et magnétiques des corps planétaires, la caractérisation du
rayonnement de fond des micro-ondes cosmiques, la description invariante de rotation
des formes 3D en infographie, la description des potentiels électriques dus aux distribu-

tions de charge, et dans certains types de mouvement fluide.
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Ce mémoire a pour but d’étudier les propriétés des harmoniques sphériques et de donner

quelques applications de quelques problemes aux limites de la physique mathématique
qui peuvent étre résolus par l'utilisation des harmoniques sphériques. Le plan de ce
mémoire est le suivant :
Dans le chapitre 1, nous présentons dans une premiére section quelques outils de I'ana-
lyse mathématiques qui nous seront utiles tout au long de ce chapitre tels que la conver-
gence des séries entiéres et I'existence des solutions d’équations différentielles dévelop-
pables en séries entieres (solutions analytiques). Dans la seconde section nous utilisons
la méthode des séries entieres pour résoudre I'équation différentielle de Legendre et dis-
cuter suivant les valeurs du parametre de I'équation les solutions polynémiales (poly-
nomes de Legendre). Dans la section suivante nous donnons la définition des polynomes
de Legendre par la-dite formule de Rodrigues. Une autre définition des polynémes de
Legendre est donnée dans la quatrieme section en utilisant la fonction génératrice.
Dans la cinquiéme section nous donnons la relation de symétrie, aussi nous présen-
tons quelques valeurs particulieres des polynémes de Legendre ainsi de leurs dérivées.
Nous étudions l'orthogonalité des polynéomes de Legendre dans la sixiéme section. Les
représentations intégrales et le développement en séries de polyndémes de Legendre font
I'objet des sections 7 et 8. Dans la neuviéme section nous démontrons quelques relations
de récurrence. La dixiéme section est consacrée a I'étude des zéros des polyndomes de Le-
gendre { P, (x)}, nous montrerons que tous les zéros de P,(z) se trouvent a I'intérieur de
I'intervalle [—1, 1] et que les zéros de P, (x) et ceux de P,_1(z) sont entrelacés. . Létude
des fonctions de Legendre associées et leurs propriétés fait I’'objet des sections 11 et 12.
Finalement, les fonctions de Legendre du deuxiéme type sont étudiées en détails dans
la derniére section.

Le deuxieme chapitre traite les harmoniques sphériques et leurs propriétés notam-
ment 'orthogonalité, le théoréme d’addition,...

Le troisieme chapitre est consacré a I'’étude de certains problémes aux limites de
la physique mathématique qui peuvent étre résolus par l'utilisation des harmoniques

sphériques, notamment I’étude de I’équation du potentiel.



Chapitre

Fonctions de Legendre

Adrien-Marie Legendre a introduit, en 1784, les polynémes de Legendre, tout en
étudiant lattraction des sphéroides et des ellipsoides. Ces polynémes sont les solu-
tions d’'une équation différentielle ordinaire appelée équation différentielle de Legendre.
Cette équation est fréquemment rencontrée en physique et en ingénierie. En particulier,
cela se produit lors de la résolution de '’équation de Laplace, de Helmholtz en coordon-
nées sphériques.

Dans ce chapitre, nous nous intéressons a étudier la solution de ’équation différentielle
de Legendre et obtiendrons les polyndomes de Legendre de deux manieres différentes, en
résolvant I’équation différentielle et a partir de la fonction génératrice. Ensuite, nous
mentionnons les propriétés des polynomes de Legendre; la plus remarquable d’entre
elles est la propriété d’orthogonalité.

Il est important d’étudier I’équation différentielle associée de Legendre et les différentes
propriétés des polynémes de Legendre associés. Nous terminons ce chapitre par étudier

les polynomes de Legendre (associés) du deuxiéme type.

1.1 Préliminaires

1.1.1 Série entiére

Definition 1.1.1. Le rayon de convergence de la série entiére

“+oo
Z an (x — z0)"
n=0

est le plus grand nombre positif R tel que la série converge pour tout x dans le disque

|z — xo| < R.
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Théoreme 1.1.1. Le rayon de convergence R de la série entiére centrée en x,

+oo
Z an (x — z0)"
n=0

est tel que
1 I 1
7 = Jim sup|ay|
On a aussit
1 I Gn+1
— = lim
R nooo| ay

lorsque cette limite existe.

Definition 1.1.2. On dit que la fonction y est analytique dans le disque D(xo, R), de

centre xq et de rayon R > 0, si elle admet un développement en série entiere de centre x,

+oo
y(@) =Y an (z — z0)"
n=0
uniformément convergent dans tout disque fermé strictement contenu dans D(zg, R).

Le théoréeme suivant est une conséquence immédiate de la définition précédente.

Théoreme 1.1.2. Une fonction y analytique dans D(xy, R) admet la représentation
I ) (g
y(z) = Z ¥ (z0) (z — 20)".

De plus y(x) est indéfiniment dérivable dans D(xg, R)

+00 () (1
) = 3 iy o™

k=0,1,2,..
1.1.2 Existence de solutions d’équations différentielles développables
en séries entieres

Théoréeme 1.1.3. Soit I’équation différentielle
y' +p(@)y +q(2)y = r(z), (1.1)

ot p, q et r sont des fonctions analytiques au voisinage de xg. Si R est le minimum des
rayons de convergence des développements en série entiére, de centre xy, de p, q et r,
alors léquation différentielle admet une solution analytique de centre x( et de rayon de

convergence R.



1.1.3 Formule de Leibniz

La formule de Leibniz est une formule permettant de calculer la dérivée d’ordre n
d’'un produit de deux fonctions. Elle est analogue a la formule du binéme de Newton

pour calculer une puissance d’ordre n d'une somme de deux termes.

Proposition 1.1.1. (Formule de Leibniz) : Soient f,g : I C R — C deux fonctions n

fois dérivables sur I. Alors fg est n fois dérivable sur I et

+o0o
(F9)™ =) Crf g
n=0

N k _ n!
ot Cp = mm—mn-

1.2 Equation de Legendre. Fonctions et polynomes de Le-

gendre

En mathématiques et en physique théorique, les polynomes de Legendre constituent
I’exemple le plus simple d'une suite de polynémes orthogonaux. Ce sont des solutions

polynomiales P;(x) de '’équation différentielle de Legendre :

(1—a22)y" =22y +11+1)y=0 (1.2)

dans le cas particulier ou le parameétre [ est un entier.

1.2.1 Solution par série entiere

On cherche la solution générale de I'équation de Legendre :
(1—2%)y" — 22y +1(1+ 1)y =0, —l<z<l, (1.3)

sous forme de série entiére centrée en xy = 0. On récrit I’équation sous forme standard :

2z I(1+1)
1 /
_ =0
YT Taeae)
Puisque
2 )
pla) = —— = = i+ttt a4,

(1 —22) (1—2)1+4+=z)
i+ I(1+1) _ 224t 4
q(z) = (l—fL‘Z)_(l—x)(1+x)_l(l+1)[1+ +at+ax”+.. ],

r(x) = 0,
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on voit que p et ¢ sont analytiques sur —1 < z < 1 et r est analytique partout. Par le

théoreme (1.1.3), on sait que (1.3) admet deux solutions indépendantes et analytiques
sur -1 <z < 1.

Posons

s e < . N P s o, "
On peut dériver y terme a terme et en insére y, sa dérivée v’ et la dérivée seconde y

dans ’équation (1.3), on obtient

+oo +oo
(l—xz)Zn(n—l Yapx" —QxZnanx" 14 l(l+1)Zan$" =0
n=0
+oo +o0
Z n(n —1apz™ % — Z (n—1)apx" — 2 Z napx” + (1 Zan:r =0
n=0 n=0
+oo +oo
Z(n +2)(n+ 1Dapyox" — Z n(n —1)apz™ — 2 Z napz™ + 11+ 1) Z apz™ = 0
n=0 n=0 n=0 n=0

On peut affirmer que y est solution de 'équation différentielle si, et seulement si,

+oo
Z {(n+1)(n+2)apnt2 — [n(n+1) =11+ 1)]a,}a" =
n=0
Puisque nous avons une identité en xz, chacun des coefficients de 2", n = 0,1, 2, ... , est

nul, et puisque 'équation (1.3) est du second ordre, deux des a,, seront indéterminés. On

a donc,
(l+1
2Mag +1(l+1)ag = 0=>as=— ( ; )ao, ag indéterminé,
2 — 1
Bx 2)az+ (—2+1l(l+1)a; = 0=a3= —l(gl'_‘_)al, aj indéterminé
(n+2)(n+ Datnys — [n(n + 1) — [+ 1)) an = 0, ¥ > 0
donc
u B n(n+1)—l(l+1)a
T T+ 2)(n+1) "
— 1
_ _U=n)lantD) sy (1.4)
(n+2)(n+1)
d’ou
0y = _1(1;1)%7 as = _(5—1%(!l+2)a1’

aq = D@D - (80000
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A partir des équations précédentes on peut déduire le terme général qui est donné

par
B 1nl(l—2)(l—4)...(l—2n+2)(l+1)(l+3)...(l+2n—1)
az = (=1) (2n)! a0
et
(DM -1k =3).. (I —2n+ 1) +2)(I+4)...(I+2n)
a2nt1 = 2n +1)! ai
On peut donc écrire la solution de la forme :
y(z) = aoy1(z) + aryz(x) (1.5)
ou
niz) = l_l(lgl)m%_(l—2)l(lz!1)(l+3)x4_+.“7
o, W=2)1=4). (=2 +2)(+1)(+3)...(I+2n-1) ,,
= nz:%( 2 (2n)!
et
(@) = z- (l—l?))(!l+2)x3+(l—3)(l—1)5(!l+2)(l+4)m5_+.‘.
B > 2= =3)...(0-2n+1)[{+2)(1+4)...(I+2n) o,
- 1;(_1) 2n+1)! L

Remarque 1.2.1. 1. On peut montrer en utilisant la régle de d’Alembert que les séries
définissant y; et yo convergent pour |z| < R = 1.
2. Puisque vy, est paire et yy est impaire, il suit que

y1(z)
Yy2(z)

Donc 1y, et yo sont deux solutions indépendantes car le Wronskian au point ordinaire

= constante

x=0
Wn(@), () =| @ 2O L0
@) we) | |01

- =
est non nul donc (1.5) est la solution générale. : 0

3. On peut montrer que les séries donnant y1, (resp. ys2), divergent en x = +1si |l #
0,2,4,.., (resp. I #1,3,5,...).

4. Le seul cas dans lequel l'équation de Legendre possede une solution bornée sur
[—1,1] est lorsque le parametre | est un entier. Dans ce cas ou bien y; ou bien ys est un
polynéme (la série se termine).

Lorsque nous considérons les valeurs entiére de l, nous devons considérer uniquement les

valeurs positives de [, en effet si | était un entier négatif, nous pourrions écrire m = —(l+1)

et utiliser le fait que m(m + 1) =1(1 + 1).
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Corollaire 1.2.1. Pour [ pair, yi(x) est un polynéme pair, et de méme, pour | impair,

ya2(z) est un polynéme impair donc la solution résultante de l’équation différentielle de

Legendre est appelée polynéme de Legendre désigné par

M
P,(z) = Zan,gkac"_%
k=0
M
- (=DF@2k —2n)! |
- E:wmm—kmn—%mw (1.6)

k=0
o M = [%} est la fonction de plafond ("ceiling function”) et elle définie par
[n} 5 si n est pair
”Tfl st n est impair

et P,(z) est le polynéme de Legendre de degré n, tel que P, (1) = 1.

Démonstration. Comme cela a été souligné dans la remarque ci-dessus, si [ € N alors
I’équation différentielle de Legendre posséde des solutions bornées. On revient a la
construction des solutions par les séries entiéres et regarder a nouveau les relations

de récurrence donnant les coefficients

nn+1)—-1(1+1)

Apt2 = n+2)(n+1) an, n=0,1,2,...
On a alors
(l+1)—11+1
aj42 = ((;—)2)@1—1#) )al:O7
Ges = (l+2)(1+3) -1+ 1)al+2 o,

(I+4)(1+3)
et de proche en proche on trouve que a; 10, =0, k =1,2,3, ...
Cela signifie que :

e Si | = 2p (pair), la série pour y; se termine en ay, et y; est un polynéme de degré
2p.

e Si/ = 2p+1 (impair), alors la série pour y, se termine a a1 et y2 est un polynéme

de degré 2p + 1.

On peut réécrire la relation de récurrence pour une solution polynomiale en terme

de a,,. Nous avons

 (n+2)(n+1) ~ (n+2)(n+1)
o ) 0+ )™ T Tl +tnt )"

n=0,1,2..01—2.



ou encore de manieére équivalente

(1— 2k +2)(1 — 2k + 1)
(2k) (20 — 2k + 1)

a2k = — A]—2k+2, k=0,1,2, [1/2]

Ainsi par récurrence on peut montrer que

CCDE - 1)e(l— 2%+ 1)
-2k = SR (2= 1)(2l - 3). (2l — 2k + 1) ™

ou q; est une constante arbitraire. Le [-iéme polynéme de Legendre P)(z) est le ci-dessus

polynoéme de degré [ pour la valeur particuliere de q;

(20)!
2L(1)2

a; =

Cette valeur particuliére de a; est choisie de telle sorte que F;(1) = 1. On a alors (apres

simplification)

[1/2]
1 2l —2k) ok
~ ol Z —2r)"
avec
silest pair

DO~

1] =

~

51 silest impair.
Notons que si [ est pair (resp. impair), alors les seules puissances de = dans P;(z) sont

paires (resp. impaires) et donc P, est pair (resp. impair).

Les six premiers polyndomes de Legendre sont

Py(z) =1,

Pi(z) =z,

Py(r) = (3%~ 1),

Py(z) = %(59; — 31),

Py(z) = %(3354 — 302” + 3),

Ps(z) = §(63x5 — 702® + 15z),

et ils sont représentés dans la Figure 1.1.
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0,5

~od
i
— PO(x) P1(x) P2(x) P3(x)
— P4(x) P5(x)

FIGURE 1.1 — Polynémes de Legendre pour n = 0,1, 2, 3,4, 5.
1.3 Formule de Rodrigues

Les polynomes de Legendre peuvent étre calculés itérativement 'un apres 'autre a
l'aide d'une formule qui utilise des dérivés successives. Cette formule est connue sous
le nom de formule de Rodrigues. Cette formule peut étre utilisée pour prouver de nom-
breuses propriétés des polyndmes de Legendre (orthogonalité, par exemple). Il peut étre

aussi utilisé pour identifier les fonctions propres du moment angulaire orbital.

Théoréme 1.3.1. La formule de Rodrigues des polynémes de Legendre est exprimée par :

1 dr

Pa(@) = g [(@® = 1)"].

Démonstration. Considérons la fonction suivante
y=(a®—1)"
Donc la dérivée par rapport a + donne
dy 2 1
—Z =29 — 1" 1.7
T nx(x ) (1.7)

Multiplions les deux membres de I'équation (1.7) par (x> — 1) on trouve

d
(2% — 1)% = 2nz(x? — 1)" = 2nay
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d
Par le théoréme de Leibnitz (pour f = (22 — 1) et g = %
dn+2y dn+1y dny dn+1y dny
2 1 2 2
(x - l)dx”+2 + Cn+1 (2'%.) d:l:”'H + Cn-i—l (2) d:l:” = 2n [$dx”+1 + Cn+1 (1) da}”}
dn+2y dn+1y 2) (n + 1) n dny dn+1y d”y
2 _
(x _1)dx”+2+2(n+1)xdx”+1 5 T 2n [ajdm”“ +(n+1) dx”]
donc
@ - )TV | (na 4 22) — 2] T s 1) — 2 1) T~ g
x T2 nx + 2z na] g tn(n n(n T =
dn+2y dn+1y dny
2 _
(z° — 1)d$nJr2 +2xdwn+1 —n(n+1) T = 0
ce qui équivalent a dire
dn+2y dn+1y dny
— 2 —_ —_—
(1—-=z )dx”+2 2$d:€”+1 +n(n+1) Jan 0

n 7 . . .
Posant R,, = fm—f{ alors I'équation ci-dessus devient

d*R,, dR,
+ 2%

2
(1 jj)dfn2 dx

++n(n+1)R, =0

Ce n’est rien d’autre que I'équation de Legendre. Ainsi R, satisfait I’équation de Le-
gendre.
Notons que

_d% _ d 2 qyn
Rn_d:c" ~ dan [(x 1)}

est un polynoéme de degré n.

Nous savons que I'équation de Legendre n’a qu'une solution polynomiale distincte,
qui est P,(z).

Ainsi, P,(z) doit étre écrit comme un multiple a une constante pres de R,,. C’est-a-
dire,

Py(z) = KR, (z) = K— [(2* = 1)"] (1.8)

Nous n’avons qu’a déterminer cette constante K. Notant que P,(1) = 1, nous pouvons

P . , mn
déterminer K en évaluant %Rn‘le .

En appliquant la regle de Leibniz, nous avons
d” dar
Ry = (1)@= 1))

n—m m

- d d
D O g (4 ) e = 1)

dm dn—l
= (z—-1)"— 1" Lz —1)n ! D™+ ...
(0= 1)@+ 1) nCh(a = )" @ )
n n—1 dn_l n n n d" n
+Cy_(z+1) (z—=1D)"+Cl(x+1) (x —1)"

dzn

dxnfl



12
En mettant z = 1 des deux c6tés de I’équation ci-dessus

—R, =Cl(x+1)"nl|,_; =2"n!
=1

En substituant x = 1 dans I'équation (1.8), nous voyons que

P = KRy (@)]cy = K [0 17]) =K 2'n

Puisque nous savons que pour tout n, lorsque = = 1, le polynéme de Legendre P, (1) = 1,

donc la valeur de la constante K est

2nn)! 2nn)!
En remplacant K dans ’équation (1.8), nous obtenons

1 47
2nn! dgn

P, (z) =

(22— 1)7].

1.4 Fonction génératrice des polynomes de Legendre

De nombreux calculs sur les fonctions de Legendre peuvent étre prouvés en utili-
sant sa fonction génératrice. Ici, nous voulons déterminer la fonction génératrice des

polynomes de Legendre.

Definition 1.4.1. La fonction

1
V1 —2tx + t2

est appelée fonction génératrice des polyndémes de Legendre P,(z). Si nous étendons

G(t,x) =

G(t,x) comme série de Taylor en t alors le coefficient de t"™ est le polynéme P, (z).

Proposition 1.4.1. Si |[t| < let|z|<lona:

tk Py (z 1.9)
\/1—2tx+t Z (@

Démonstration. On sait qu'on a pour certaines valeurs |v| < 1 la formule binomial est

donnée par

(1+0)" = Z ala— 1)]{5'a —k+ 1)vk,
=0
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alors

1_21tw+t2 = [1—tz—1)]"2
= 1+ %t(% —t) + G;(!g)ﬁ@x — 1)+ ..+ (35 n, (n - %)t (2 — )" +
_ i 1.3.5..2.kgjk - 1)tk(2$ _y

k=0
= (2Kk)!

= Z 22(k(k)!)2tk(2x — 1)k
k=0

D’aprés la formule du bindéme de Newton, on a
k ol

Qr — k _ . ) k—s(_1\s

(2= 1) = 30 2 ()

Ss=

En remplacant dans I’équation précédente, on trouve

1 :i <2k) i(_l)s k! (21’)k stk—I—s
Vi—stwr 2 22 Sk s)!

Si on pose n = k + s, on a n qui varie entre 0 et oo, et puisque s varie entre 0 et &, donc

k varie entre [n/2] et n, alors

n(_qynk (2k)! n
\/W Z Z A ST Ty L

n=0 k=[n/2]

En faisant le changement de variable » = n — k, on obtient finalement

[n/2]
1 - (2n —2r)! s
N tn _1 s n I8
V1 =2tz + 12 nZ:o kzzo( ) 2“7“!(n—7“)!(n—2r)!$ ’

ainsi

TL
P.(
\/1—2tx+t2 Z

1.5 Propriétés des polynomes de Legendre

Proposition 1.5.1. Les polynémes de Legendre vérifient la relation de symétrie sui-

vante :

Po(—z) = (=1)"Py(x).
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Démonstration. On a montré que

(1-2tz+12) 72 = Pu(a)t, (1.10)

n=0

alors en remplacant = par —z dans (1.10) on obtient
I R
142tz +42) 72 =) Py(—a)t",
n=0

puis ¢ par —t dans (1.10) on trouve

(14 2tz +t2) 3o i P,(z) (—t)",
n=0

donc . .
> Pu(—a)t" = (=1)" Py(a)t",
n=0 n=0

ce qui implique

Proposition 1.5.2. On a
i) P,(1) =1
it) P,(—1) = (—1)™
it) Pi(1) = in(n+1).
) Pl (—1) = (-1)" 1In(n+1).
0) Pou(0) = (—1)" s
vi) Poy41(0) = 0.

Démonstration. i) Posons x = 1 dans la fonction génératrice des polynémes de Legendre

nous obtenons

o.9]
(1—2t+ t2)‘% = P.(1)t",
n=0

qui est
1 o0
=2 b,
n=0
mais
1 oo
_ n
=2t
n=0
Ainsi, on a
[o.¢] o
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Pour que cela soit vrai pour toutes les valeurs de ¢t dans un certain intervalle (dans ce cas

—1 < t < 1), nous devons avoir I’égalité des coefficients correspondants aux puissances
de t, c’est-a-dire P, (1) = 1.
ii) Exactement similaire a i) mais en posant x = —1 dans la fonction génératrice.

iii) P, (z) satisfait I’équation de Legendre, donc on a
(1 — 2P (x) — 22P! (x) 4+ n(n+ 1)P,(z) = 0. (1.11)
En posant z = 1 dans cette équation nous obtenons
—2P/ (1) +n(n+1)P,(1) =0,
ce qui réduit, en utilisant de la partie i) ci-dessus, a
, 1
P (1) = §n(n +1).

iv) Exactement similaire a iii) en posant z = —1 dans I’équation (1.11) et 'utilisation
de la partie ii) ci-dessus.

v) et vi) Posons z = 0 dans la fonction génératrice des polynémes de Legendre, on a
1 (o]
1+8%)72 =) P (0)t".
n=0

En développant le premier membre de cette équation nous obtenons

(1+13)72 = 1+<—1>t2+<—1> <—3> +...+(_%) (_%)"'(_2n51)t2"+...

2 2 2 n!
_ i(_l)n1.3.5 - (2n—1)
— 2nn)! ’

o0

Sy l234. (20— 2)(2n — 1)2n o,
2mnl2.4.6...(2n —2)2n ’

n=0
= nz:o(_l)n 22(383!!)2 t2n'
Alors on a o .
7;)(_1)”22(32!!)2#“ =3 ror

En identifiant les coefficients correspondants aux puissances de ¢ des deux cotés on
trouve

Py (0) = (1) 21" et Payy1(0) = 0.

22n(n!)
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1.6 Orthogonalité des polynomes de Legendre

Théoreme 1.6.1. Les polynémes de Legendre P, (z) satisfont la relation d’orthogonalité

suivante :

Py(2) P (z)dr =

2 :
1
hr1 si k m

/1 0 sik#m

Démonstration. La premiere partie (c’est-a-dire pour m # k) découle de I'’équation de

Legendre

(1—2%)y" =22y + k(k+1)y =0,

récrite sous la forme :
2\ 11/
Loy :=[1—2*)y] +k(k+1)y=0.

Puisque P, et P, sont respectivement solutions de L,,y = 0et L,y =0, 0n a

Pu(2)Lu (Pw) = 0 et Py(2)Ly (Py) = 0.

On intégre ces deux expressionsde —1a 1:

1

1
/ [Py (z) (1 —2%)P, (m)]/dx—l—m(m—i— 1)/ Py (z) Py, (z)dx = 0,
-1 -1
1 1
/_I[Pm (@) [(1 - )P (x)]/d:v—i—k(k:—i—l)/_le (@) Py () dz = O,

et I'on integre le 1¢” terme de chacune de ces expressions par parties :

1 1

(1—22)P. () P, () dx+m(m+1)/_1Pk () Py (2) do =
1
(1—2®)P (z) P} (x)dx + k(k +1) /1 P () Py, (z)dz =

(1— )Py () Pl ()], - /

-1

(1 - )Py (2) PL(x)] ", /

-1

1

Les deux termes intégrés sont nuls et le terme suivant de chacune des équations est
identique. Donc, par soustraction on obtient ’orthogonalité des P,
1
im(m + 1) — k(k 4+ 1)] / Py (2) Py () da: = 0,
-1
ce qui montre que si k # m, on devrait avoir

1
/ Py(x)Pp(z)dx = 0.

-1
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La 2¢"¢ partie, m = n : Pour montrer que |P;|* = fil(Pk)de on utilise la

- (2k+1)
fonction génératrice de Py (x) :

S ne
2xt + t2 0

Elevons au carré chacun des deux membres :

o0
1
P.(z)tF x)tk 4 Pi( ohtm = — —
(S niow) = Sriees 35 e

m#£k

et intégrons par rapport ax de —1a1l:

0 1 1 1
P2(x)da | £2* / d tk+m:/ 1
S (f prtmr) o 52 ([ msiper) o7 = [

Comme P, et P, sont orthogonaux pour m # k, le 2°¢ terme du 1°" membre est nul et

nous obtenons apres intégration du 2°¢ membre

o0

> </_11 P,f(x)dx) = [;tln(l +12 — 2:1:7&)] 1_1 ,

k=0
1
1
= / —dux,
-1 1 + t2 — 2t

1 1
= |——1In(1+— 2t
2]

1
= -5 [In(1+#* —2t) — In(1 +¢* + 2¢)]

= 5 (=) = (@ +5?)]

- _% (1 — ¢) — In(1 +1)].

On multiplie par ¢ :
D 1Pl =In(1 4+ t) — In(1 — )

et 'on dérive par rapport a ¢

[e.9]

>k + IR = 1+
k=0

Puisque nous avons une identité en ¢, on peut donc identifier les coefficients de ¢2* :

2

2k +D|PIP=2= PP = —2—.
(2k + 1) || Pl | Pyl 2k 1)
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Par conséquent

O
1.7 Représentation intégrale de Laplace
Théoreme 1.7.1.
Pi(x) = 71r/ (z 4+ Va2 — 1cos0)*do. (1.12)
0

Démonstration. On peut montrer par des méthodes élémentaires (par exemple au moyen

du changement de variable universel ¢t = tan(6/2)) que

g do T
= . 1.13
/0 14+ Acos@ /1= )2 ( )

—uvz? -1

Posons A\ = ﬁ, En développant les deux cotés de 1’équation (1.13) par rap-
— Uuxr

port a u, nous obtenons d’une part

1 1
1+ Acos w2 — 1
1+17C089
—ux

= (1 —wuz)[l —u(z+ Va2 —1cosh) L.

Supposons que |u(z + Va2 — 1cosf)| < 1, donc

1

— k 2 k
1+)\cos9(l_ux)lzgu (x + Va? —1cos)”,

ou on a utilisé le fait que (1 —a)~! = Y"°° 1 a", avec a = u(x + Va2 — Lcosf).
Et d’autre part

1 1
VIi-a2 o 1 u?(x? — 1) 7
(1 —ux)?
1—uz
VI —ux)? —u2(2? - 1)
1—ux

V1—2uz +u2

La substitution dans 1’équation (1.13) donne

s

/Zuk(:c—k 22 — 1cos0)fdf = ——.
0o = V1= 2ux + u?
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Remplacons la formule de la fonction génératrice (1.9) dans ’équation précédente, nous

obtenons

400 T 400
Zuk/ (x4 Va2 —1cosf)*do = WZukPk(x).
k=0 0

k=0
Par identification des coefficients de u* on obtient

mPy(x) = / (x4 Va2 — 1cos6)*dh.
0

Dans le cas ou |u(z + V22 — 1cos )| > 1, on refait le méme calcul mais en développant

suivant les puissances de 1 ce qui donne

u

1 [7 1
P(x) = +— / do,
k(@) T Jo (x4 Va2 —1cosf)ktl
les signes + et — correspondant aux cas ou Re(z) est positive ou négative. O

Remarque 1.7.1. A partir de (1.12), nous pouvons déduire une inégalité importante

satisfaite par les polynémes de Legendre. Soit x un nombre réel tel que —1 < x < 1. Alors

I(z + Va2 — 1cosh)| = /22 + (1 — 22) cos2 6 < 1,
et donc
|Po(x)] <1, =1 <z <1. (1.14)

Une autre représentation intégrale importante des polynémes de Legendre peut étre
déduit de (1.12) en supposant que x est un nombre réel tel que —1 < x < 1. Dans ce cas,
en posant

r=-cosl, 0<o<m,

on peut écrire (1.12) sous la forme

1 s
Py(cos ¢) = / (cos ¢ + i sin ¢ cos 8)*d. (1.15)
T Jo
Puis en posant t = cos ¢ + isin ¢ cos 0, on obtient
el k
1 t
Py(cos¢p) = — dt.

i Je—io /1 — 2t cos ¢ + t2
Soient A et B les point d’affixes €'¢ et ¢~'?, l'intégration se fait le long du segment [AB] ou
de la corde (AB) dans le sens positif; la racine choisie est telle que sa valeur en t = cos ¢

soit sin ¢. Posons maintenant t = ¢'¥, on obtient alors

. 1 ¢ pik+3)0 p
k(cos§) = m’/¢ V2cos) —2cos @ i

dont la partie réelle donne

2 (¢ cos(k+ )
m'/o V2cos1) — 2cosd

Py(cos ¢) = dp, 0<op<m k=0,1,2,...
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(Intégrale de Mehler-Dirichlet).

1.8 Séries de Legendre

Théoreme 1.8.1. Si f(z) est un polynéme de degré n, alors il peut étre écrit sous la forme

n

f@) =) cPi(x) (1.16)

r=0

avec les coefficients ¢, donnés par

e = (7“ + ;) /_ 11 f(2) Py (2)da.

Démonstration. Si f(x) est un polynome de degré n, on peut écrire
f(z) = bpa™ + by_12" 4+ ...+ bz + bp.
D’apres (1.6), le polynéme de Legendre s’écrit sous la forme
P, (x) = apx™ + Apox™ 2 4+ ...

Si on multiplie la derniere expression par Z—Z et en le soustrayant de f(z), on trouve que

la différence est un polynéme de degré (n — 1)

f(@) = enPu(z) = gn—1(2),

ouc, = Z—Z et gn—1(x) est un polyndome de degré n — 1. En faisant la méme chose pour

gn—1(z), on peut démontrer facilement que g,,—1(z) peut s’écrire sous la forme

Gn—-1(2) = cno1Pp_1(x) + gn—2(2),

donc
f(z) = cnPr(x) + cno1Pr—1(x) + gn—2(x).

On fait la méme chose pour g,_2(z) et ainsi de suite, on obtient le résultat désiré

fx) = enPu(x) + cn_1Proo1(x) + cn—oPyr_a(z) + ... + coPo(x)
= > aP(x)
r=0

Les coefficients ¢, peuvent étre calculer de la maniére suivante

1 n 1
/ 1 f(@)Py(z)dx = Z:; / 1 ¢ Pr () Py(a)da,

2cp
2k +1°
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donc

1
o= (k + ;)/lf(x)Pk(x)da:. (1.17)

O]

Remarque 1.8.1. Dans le cas ou f(x) est un polynoéme, il n’est pas nécessaire de calculer
les intégrales (1.17), car le les coefficients c;, peuvent étre facilement trouvés en résolvant
le systeme d’équations linéaires obtenu lorsque les expressions explicites des polynémes
de Legendre sont substituées dans U’équation (1.16) et les coefficients de puissances iden-

tiques de x des deux cotés de I’équation sont mis en égalité. Ainsi, par exemple

1
22 = coPy(z) + c1 Py (x) + coPo(z) = co + crz + 502(3x2 - 1),

donc
2 1
szg, 01:0, C():g.
Ainsi
z? = 1Po(gv) + ng(:c)
3 3 ’

une expansion qui est valable pour tout x.

Corollaire 1.8.1. Si f(x) est un polynéme de degré inférieur a k, alors

1
/_ f@)Pila)do = 0.

Démonstration. Si f(x) est de degré n tel que n < k, d’aprés la relation d’orthogonalité

on a
1 1
c,. = (k+ 5) f(z) Py(z)d,
-1
1. !
= (k+ 5) Cr/ P, (z)Py(x)dx,
r=0 -1
= 0,
par le Théoréme 1.6.1, puisque r < n < k, de sorte que r n’est jamais égal a [. O

Les résultats du théoreme ci-dessus peuvent étre étendus a des fonctions qui ne sont
pas des polynémes. nous ne prouverons pas cette extension, mais citerons simplement

le résultat suivant (la preuve n’est pas difficile, mais est assez longue).

Théoréeme 1.8.2. Soit f une fonction vérifiant sur lintervalle [—1, 1] les conditions sui-

vantes :
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(i) f et continue sauf en un nombre fini de points finis (continue par morceaux).

(ii) [ possede un nombre fini d’extrémums.

Alors la série

n=0
ou
1 1
Cp = <n—|— 2) / f(z)P,(z)dx, (1.19)
-1

converge vers f(x) si x est un point de continuité de f, et vers

flat) + fla—)
5 :

si x est un point de discontinuité.
De plus, aux points x = +1, la série converge vers f(1—) et f(—1+) respectivement.

Cette série s’appelle la série de Legendre de f.

Exemple 1.8.1. Considérons la fonction

1—2z
fla) =75
Cette fonction satisfait aux conditions du Théoreme 1.8.2, et peut donc étre développée
en une série de la forme (1.18). Les coefficients c, peuvent étre calculés par la méthode
suivante, qui est souvent utile : On multiplie la fonction génératrice (1.27) par f(x) et

intégrer sur lintervalle [—1, 1]. Apres quelques calculs élémentaires, on obtient

R =

ot I'intégration terme par terme est justifiée par la convergence uniforme de la série (1.9)

dans Uintervalle [—1, 1], qui découle de lestimation (1.14). En développant le c6té gauche

de (1.20) en puissances de t, nous trouvons que

4
3—42(%2_1 o Z /1/ x)dz, |t| <1, (1.21)

ce qui implique

C(4n2-1)(2n+3)°

Nous utilisons maintenant (1.19) pour écrire la série de Legendre requise sous la forme

l—x 2 P, (x)
— ZPy(z) -2 1 1. 1.22
;- —3hl Z @n-_1)@2nt3) = ~F° (1.22)
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1.9 Relations (formules) de récurrence pour les polynomes

de Legendre

Proposition 1.9.1. Les polynémes de Legendre satisfont les relations suivantes

[3(n=1)]

i) Pl (z) = Z (2n —4r — 1)P,_op—1(x).
r=0
n+1 n

Démonstration. i) On sait que P, (z) est un polynéome de degré n, qui contient seulement
les puissance paires de z si n est paire, et seulement les puissances impaires de = si n et
impair. Donc P/ (z) est un polynoéme de degré n — 1 contenant des puissances impaires

ou paires de x selon que n est pair ou impair. Donc en utilisant le Théoréme 1.8.1 on a

, c1Pi(x) (n pair)
Pn(a:) = Cn—lpn—l(x) + Cn_gpn_g(x) + ...+ Cn—2r—1Pn—2r—1(SU) —+ ...
coPo(x) (n impair)

avec

cs = <s—|— )/ P)(x
= (8+2> [Pa(a /P }
_ ( ){P() (1) = Pu(~1)Py(~1) - 0}

ou l'intégrale s’annule par le corollaire du Théoréme 1.8.1, puisque P.(z) est un poly-

noéme de degré s — 1, et s — 1 est toujours inférieur a n. Ainsi par la Proposition 1.5.2 (i)

cs = (s + ;) {1-(-1)**"}.

Mais s prend les valeurs n — 1, n — 3,..., donc s + [ prend les valeurs 2n — 1, 2n — 3,..., qui

et (i1), on a

est toujours impair, pour tout / et m. Ainsi (—1)5t" = —1 et on a

Cs = <s+;> (1—(~1))=2s+1

Alors

Ch-or—1=2n—2r—1)+1=2n—4r —1
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et par suite on a

3P (x)
Po(z)

P! (z) (2n—1)P,_1(x)+ (2n —5)Pp—3(x) + ...+ (2r — ) Pp_gr—1(x) + ... +

[3(n—1)]

= Z (2n —4r — 1)Pn—27'—1($)'

r=0
ii) P, (z) est un polynéme de degré n + 1, impair si n est pair et pair si n est impair.

Alors par le Théoréeme 1.8.1 on a

aPi(z) (nimpair)
xPn(x) = Cn+1Pn+1(33) + Cnflpnfl(x) +...+
coPo(x) (n pair)
avec

o = <r+;> /1 2P, (2) Py (z)da

-1
1 1
_ <r + 2) / Po(2){ P, () Yo
-1
Or par la corollaire du Théoreme 1.8.1 cette intégrale est nulle si r + 1 < n (puisque
xP,(z) est un polyndéme de degré inférieur a n), i.e.,sir <! — 1.
Donc on a

2Py (x) = cpy1Ppt1(z) + cp—1Pr—1(x). (1.23)

Pour déterminer ¢, 11 et ¢,—1 on pose z = 1 dans I’équation (1.23) et dans sa dérivée

par rapport a z, notamment
Py (z) + 2P} (z) = cpi1 Py 1 (2) + cno1 Py (). (1.24)

En posant (1.23) et (1.24) et utilisant la Proposition 1.5.2 nous obtenons

I=cpt1+cn—1 (1.25)
et
1 1 1
1+ in(n +1)=cpt1 {2(71 +1)(n+ 2)} + Cp—1 {2(n - 1)n} (1.26)
La résolution du systéeme d’équations (1.25) et (1.26) en ¢,,11 et ¢, donne
_n+1 . _n
T TN

finalement, on insére ces valeurs dans ’équation (1.23) on obtient

n+1 n

_ntl P, (2).
m—+1 1)

(n pair)

(n impair)



Proposition 1.9.2. Les polynémes de Legendre satisfont les relations suivantes

i) (n+1) Papi(z) = (2n 4+ 1) 2Py(x) — nPa_r(z) pourn > 1,
i) nPu(x) = 2Py(x) — Py, (),

i) (2n+ 1) Pa(z) = Phyy(x) — Phy(2),

iv)  Phyy(@) — 2Ph(a) = (n+ 1) Pa(a),

v) (1-a%) P(2) = n(Paoi(x) — 2Pa(2)),

vi) (1—22) P, (z) —2zP)(z) = —n(n+ 1) Py().

Démonstration. i) (n+ 1)Ppy1(x) = (2n + 1)xPy(x) — nPy_1(x), pourn>1

A partir de la fonction génératrice, nous avons

(1—2tx+ t?)_l = Pu(a)t
n=0

Dérivons les deux cotés de (1.27) par rapport a ¢ nous obtenons

,é
2

1— 2tx + t2 —2x + 2t) nP z)tn L
(

Multiplions les deux cotés de (1.28) par (1 — 2tz + t2) nous obtenons

(x— ) (1—2tx +12) 72 = (1— 2t +£2) ZnP )L
n=0

ou bien

(@—1)> Pu(x)t" = (1—2tx+1%) ZnP et
n=0

n=0

xiPn(x)t”—tiPn(x)tn = ZnP i thZnP ) 1+tQZnP

25

(1.27)

(1.28)

tnl

xZP ZP t"+1 = ZnP )" 1 21:ZnP t”+ZnP t”+1

o

xZP ZP” 1 = Z(nJrl) o1 (z)t" foZnP Z (n—1) (x)t".

n=0

En identifiant les coefficients de " des deux cotés, on obtient
xPp(z) — Poi(x) = (n+1) Poyi(x) — 22nPp(z) + (n — 1) P (),

ainsi
(n+1)Poyi(z) = 2n+1)xP,(z) —nPp_1(x), n>1.

ii) nPy(x) = xPy(x) = P, (%)

(1.29)
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De méme a partir de la fonction génératrice, nous avons

(1— 22t +12) 77 = > Pu(a)t
n=0

dérivons les deux cotés de (1.30) par rapport a ¢ on obtient
L (1= 2ut tQ*% —2z + 2t) P ()",
3 ( — 2zt + ) T Z n

donc

(x—1t) (1 -2zt +t7) _E—ZnP L
n=0

Dérivons la fonction génératrice par rapport a x nous obtenons
3

—%(1—2xt+t2 T2 (= Zp/ :

donc
3

t(l—2xt+1%) 2= ZP’

divisons (1.32) par (1.33) on obtient

z—t 3 nPy(x)t" !
t Yl Pha)n

ce qui implique
o
(x—1)>  Pl(a)t —thP .
n=0

Identifiant les coefficients de " nous obtenons

nP,(z) = 2P (z) — P._,().

n—1

iii) 2n+1)Pu(x) = P;_H(x) - P (%)

Dérivons (1.29) par rapport a x

Lt D Paa@) ] = (@0t )aPaa) —nPa(@)],
(n+1)P, 1 (x) = (2n+1)Py(z)+ (2n+1)zP,(z) —nP,_(z),
puisque z P, (z) = nP,(z) + P, _,(x) alors,
(n+1) n+1( ) = (2n+1)Py(z)+ (2n+1) [nPn(x) + P,'L,l(a:)} —nP_(x),

= 2n+1)(n+1)Py(z)+ (n+1)P,_(x),

donc

w1 () = (2n+ 1) Po(x) + P (2).

(1.30)

(1.31)

(1.32)

(1.33)
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Par conséquent

(2n +1) Po(z) = Ppiq(2) — Py ().
iv) Pli1(x) —xPy(x) = (n+ 1) Py(x)
Ona

(n+1)Poyi(x) = 2n+ 1) xPy(z) + nPy_1(x),

dérivons par rapport a z on obtient

(n+1)Pp(x) = @2n+1)aP,(z)+ (2n+1) Po(x) — nb,_(2),

( )
(2n+1) Po(z) + (20 + 1) 2P () = nPy_y (2),
(2n+1) Po(2) + (n+n+ 1) 2Py (z) — nP_, (),
( )

2n+1) Py(x) + (n+ 1) 2Pl (z) + na P, (z) — nP,_(x),

or
2Py (x) = Py (z) = nPy (),
alors
(n+1)P, (x) = (2n+1)Py(z)+ (n+1) 2P, (z) + n[nP,(z)],
= (2n+1+n?) Py(z) + (n+ 1) 2Py (),
= (n+1)°Py(z) + (n+ 1) zP,(z),
donc

Pyi(x) = (n+1) Py(z) + 2Py (x),

par conséquent

Py (x) = 2Py (z) = (n+ 1) Py(x).

v) (1=x2)P,(x) =n(Pp_1(x) — xPy(x)

Considérons la relation (ii)
xP,(z) = P,y () = nPy(x). (1.34)
En effectuant le changement d’indice n — n — 1 la relation (iv) devient,
Pl (z) —zP,_{(z) = nP,_1(x). (1.35)

Multiplions la relation (1.34) par z, puis soustrayons-la de la relation (1.35). Nous
obtenons

(1 —2%) Pl(z) = n[Py_1(z) — 2Pa(2)] .
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vi) (1 —x2)P(x) —2xP}(x) = —n(n+ 1) Py(x)

En dérivant les deux c6tés de (v) par rapport & = on obtient

(1 —2%) P, (x) — 2zP)(z) = n [P._,(z) — 2P, () — Pu(z)],

n n—1

or d’apres (ii)

-1(2) = 2P (x) = —nPy(x),

n—1

donc

(1—2%) P, (z) — 22P)(z) = n[-nPy(z)— Pu(z)],

= —n(n+1)P,(x),

ainsi

(1—2%) P, (z) — 22P)(z) = —n(n + 1) P,().

1.10 Zéros des polynomes de Legendre

Tous les n zéros de P, (x) sont simples (c’est-a-dire d’ordre 1) et se trouvent entie-
rement a l'intérieur de l'intervalle [—1, 1], et donc, tous étant réels. Aussi, les zéros de
P,(z) et P,_1(z) sont entrelacés, c’est-a-dire qu’entre deux zéros consécutifs de P, (z), il
doit y avoir un et un seul zéro de P,_;(x) et vice versa. Ces propriétés des zéros sont
communes a tous les polynémes orthogonaux en général [cf. par exemple, Szego, Ortho-
gonal Polynomials, Sec. 33, p. 43]. Pour P,(x), cependant, nous pouvons le montrer en
employant la formule de Rodrigues et les relations récurrentes de la Sec. 1.9.
Premierement, P, (z) ne peut pas avoir des zéros multiples (zéros d’ordre supérieur a 1),
car il s’agit d’'une solution d’'une équation différentielle ordinaire du second ordre; si «
en est un zéro d’ordre m, m > 2, alors P,(«) = P, (a) =0, et P,(z) = 0.

Ensuite, nous montrerons que tous les zéros de P, () se trouvent a 'intérieur de 'inter-

valle [—1, 1]. Selon la formule de Rodrigues

1 d7L
- 2nn! dx™

P, () [(mQ — 1)"]

—1 et +1 sont deux zéros d’ordre n de (x> — 1)", puis, selon le théoréme de Rolle, la
d

premiére dérivée Z-[(z? — 1)"] a au moins un zéro compris entre —1 et +1. Sin =1, ce

n’est que le zéro de P;(x). Sin > 1, alors, en plus de ce zéro, +1 sont aussi des zéros de
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d —1)"], qui ne

dz

[(z2 —1)"], et donc, entre —1 et +1, il y a au moins deux zéros de j—;[(x?

coincident pas.

Suite & de tels arguments, nous sommes amenés & la conclusion que -L[(z? — 1)"], et
donc P,(x), a n et seulement n zéros non coincidents compris entre —1 et 1; +1 ne sont
plus des zéros ( P,(1) =1, P,(—1) = (—=1)™).

Enfin, nous montrerons que les zéros de P, (x) et P,,_1(x) sont entrelacés. De la relation

de récurrence

(1- 2?) Pl(z) = n (Po_1(z) — 2Py(2)), n>1, (1.36)

on voit que si P, («a) = 0, alors P,,_;(«) # 0; sinon, comme « # +1 (voir ci-dessus), nous
aurions P/ («) = 0, et donc « est un zéro multiple, ce qui est contradictoire avec le résul-
tat précédent. De plus, puisque —1 < « < +1 on voit d’apres (1.36) que P,,_i(«) et P/ («)
sont du méme signe.

Soient « et § deux zéros consécutifs de P,(z), alors P, («) et P, (/3) ne peuvent pas s’an-
nuler et sont de signes différents; sinon, « et 3 ne seraient pas contigus. Ainsi, P,_1(«)
et P,_1(0) sont de signes différents selon le précédent conclusion. Cependant, cela si-
gnifie qu’'entre a et 3, Il y a au moins un zéro de P,_;(x). Mais P,,_1(z) ne peut avoir que
n — 1 zéros. Par conséquent, entre deux zéros consécutifs des n zéros de P,(x), il doit y
avoir un et un seul zéro de P,_;(x). Ceci, bien str, montre que les zéros de P, (z) et ceux

de P,_1(x) sont entrelacés.

1.11 Fonctions de Legendre associées

Théoreme 1.11.1. Si z est une solution de l’équation de Legendre

d* dy
(1—x2)@—2x%+l(l+1)y:0

alors (1 — xz)m/ % (d™z/da™) est une solution de Iéquation
d> dy m?
p— 2 —_— —_— —_— p—y
(1 x)dzz 2xdx+{l(l+1) : }y 0

)

(connue sous le nom d’équation de Legendre associée).

Démonstration. Puisque z est une solution de I'’équation de Legendre, nous devons avoir

d*z dz
(1—3:2)@—21:%—1-104-1)2:0- (1.37)

Maintenant, dérivons I’équation (1.37) m fois par rapport a x :

dm am dz dmz

d?z
4+ 0 By )i s =
dx™ ( Tt ) de} d:vm{xdx}—’_ I+ )dzvm

0
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qui, lorsque 'on utilise le théoréeme de Leibniz pour la dérivé m ™ d'un produit, devient

dmt2y d o A2 m(m —1) d? o\ d™z
A Sy § R R
daxmt2 + i ( v ) daxmtl + 2 dxz? ( v ) dx™

dmtly d dm"z dmz
DD L LA S I}
{mdxm"‘l +mdﬂsxdxm}+ (t+ )dxm 0

(1-2?)

(puisque les dérivés supérieures de 1 —2? et 2 disparaissent). En rassemblant les termes
dm+2z dm+12’ dm

en dxm+2’ dpm+1 et dgm’ on obtient
dm+2Z dm+1 m,
2 —
(=) G — 2o 4 1) i, H U+ D) = mm = 1) = 2m} s =0,

. am , . .
Si on note par z; = dinz; , alors I’équation (1.11) devient
XL

i—2(m+1)x%+{l(l+l)—m(m—i—l)}zl:O- (1.38)

Si de plus on pose
d™z
— (] — 2Y/2, — (1 — p2)"?
29 = ( x?) ™z ( T ) g
I’équation (1.38) devient

5 d° 2\ —m/2 d 2\—m/2 2\ —m/2
(1—z )@{22 (1—a%) }—Z(m—l—l)x%{m(l—x ) ML+ 1)—m(m+ 1)}z (1—2) =0

(1.39)
Mais
i{z (1-— $2)—m/2} _ % (1 _ x2)*m/2 B @Z (1 B xg)f(m/Q)fl (—22)
dx V7?2 dr 5 #2
dz —m/ —(m/2)—1
= d—;(l— 2) —I—szx(l—mQ)
de sorte que
&? 2\ —m/2
a2 {22 (1 —x ) }
d2z —m/2 dZ m (m 21 B m/2)_1
=2 (1-a? / +o g (1) DU Cor) 4 m{ %20 (1 - a?)
oo (1=a?) " e (S 1) (1) T (c2m))
d?z —m/2 dz —(m/2)—1 dz —(m/2)—-1 (m/2)+1
:W;(l_ ) +(T;mm(1—x2) + T;x(1_$2) +mzo (1 —2?)
—(m/2)—2

donc I’équation (1.39) devient
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(f;? (1- :c2)_(m/2)+1 + 2ma (1 — xz)_m/2 % +mzy (1 — xz)_m/z +m(m+2)(1- a:z)_(mm_l 22z

“2(m {1 —a?) "B (1 2?) T 4 (104 1) = m(m ot D)z (1-2%) T =0
_m/2

en annulant le facteur commun de (1 — x2) et en rassemblent les termes similaires,

on obtient

d*z dz
_ g2 2 _ G=2
(1—a%) Tz T {2mx —2(m+1)z -

m(m+2) 5 2(m+1)ma?
+{m+ T2 LT o i) —m(m+ 1)z =0 (140)

dz

Le coefficient de 2 est —2z, tandis que le coefficient de z; est

(m2 +2m — 2m? — 2m) x?

I(1+1)+ T +m—m?—m
m2z?
= 1) — _
I(1+1) .2
2
m
= I(l+1) - ——
(I+1) 1— 22
Ainsi ’équation (1.40) se réduit a
d?zy dzo m?
1—2?) == —22——= 4+ {1(1+1)— =0.
( x)dxz $dx+{(—|—) 1_952}22 0

De sorte que z, satisfait 'équation de Legendre associée ce qui prouve le théoréeme. [

Corollary 1.11.1. Les fonctions de Legendre associées P/" (x) définies par

P (z) = (1—22)"? 4 b () (1.41)

dxz™

satisfont I’équation de Legendre associée.

Démonstration. Ce résultat découle immédiatement du théoréme, puisque P, (x) satis-
fait I’équation de Legendre.
En utilisant la formule de Rodrigues (théoréme 1.3.1), il est possible de réécrire la

définition (1.41) sous la forme

m 1 m/2 d+m l
) = b may L

La partie droite de cette expression est bien définie pour les valeurs négatives de m
telles que [ +m > 0, c’est-a-dire m > —I, alors que la définition originale (1.41) de P/" (x)
n’était valable que pour m > 0. Ainsi, nous pouvons utiliser cette nouvelle forme pour

définir P/" (x) pour des valeurs de m telles que m > —I.
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Il est facile de vérifier que si 'on considére m positif, la fonction P, (z) ainsi définie

est une solution de I'équation associée de Legendre ainsi que P/” (z). En effet, ce n’est

pas une solution indépendante; il peut é&tre montré que

P (z) = (—1)™ 8 . Z;iplm (z). (1.42)

1.12 Propriétés des fonctions de Legendre associées.

Théoréeme 1.12.1.
i) P (x) = P (z),
(it) P" () =0sim > L

Démonstration. (i) Ce résultat est immédiatement évident d’apres la définition (1.41).
(ii) Puisque P, () est un polynome de degré [, il se réduira a zéro lorsqu’il sera dérivé
c oA d™ . P
plus de [ fois. Ainsi d—mPl () = 0 pour m > [, et le résultat recherché découle alors de
x

la définition (1.41). O

Théoreme 1.12.2. (Relation d’orthogonalité)

o 2(I+m)!
/P’ @) B ( )dx_(Ql—l—l)(l—m)!é”/

Démonstration. On montre d’abord que si [ # I’

1
/ P (z) P* (x)dx = 0.

-1

Cette démonstration est analogue a celle de la premiere partie du théoréeme 1.6.1, nous
ne la répéterons donc pas ici.

Il ne reste plus qu’a prouver que

v o 2(l+m)!
/1{3 (2)Y*dz = @l +1) (1 —m)

Supposons d’abord que m > 0; alors de la définition (1.41) nous avons

[mere = [a-ar o Lnw)a
()l
—/_t{ﬂ&@)}i -
a

{
_ _/_11{;::71_113(@} 2 {(1—x2)md;na (:r)}d:v (1.43)
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Maintenant, a partir de I’équation (1.38) avec m remplacé par m — 1, nous avons que

dm+1 m dmfl

B(x)—2mLH(m)+{l(l+l)—m(m—l)}w

1 — o2
(1 —z7) T

s P (z) =0

multipliant par (1 — 22)™~!, on obtient

dm+1

m—1
m1 " p oy

P, (J:)—me(l—xz)m_lﬂljl (@)+(+m) (I —m+1) (1-2?) drm—1-1

1_2m
(1=27) dz™

dxm+1

et cette équation peut étre réécrite sous la forme

m m—1
Fla-arn@l = - @ema-mena - R @)

La substitution de ce résultat dans I’équation (1.43) donne

/ II{P;” @dr= [ 11 {j;na @)} e m) = m e+ 1) (1= a2 {j";Pz (@) d

1 dmfl

- ) e

1
— 4m)(—m+1) /1{le—1 (2)}2da-

- (l—l—m)(l—m+1)/

-1

L'application de ce résultat donne a nouveau

m—1 dmfl

% {(1 _xQ)mj;Pl(x)} —(tm) (- mt1) (122
[ @ra = @rm@-min@rm-na-m+2) [ e
= (l+m)(I+m—1)(1—m+1) (l—m—|—2)/_11 (P2 ()} du
répétons le processus m fois dans tout ce que nous obtenons
/11{13,7”(3;)}261;[ = (tm)4m—1) (I + 1)U =ma1)(—m+2)-- 1 {P (2))2da

_ (l+m)(l+m—1)---(l+1)l(l—1)~--(l—m+2)(l—m+1)2li_1

( en utilisant le théoréme 1.6.1)

_ (l+m)! 2
o (l-m)'2l+1
d’ou le résultat recherché. O

Supposons maintenant que m < 0, c’est-a-dire m = —n avec n > 0- Alors
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1

{P" ()} do = /1{131_”(x)}2dm

! W (l=m)® | 0 1o
[ e i @@
( par équation (1.42))

- {fm) Lorere= {25} e

( par le résultat qui vient d’étre prouvé, puisque n > 0)
(l—n)! 2
(I+n)20+1
((+m) 2
(l—m)l20+1

-1

qui est le résultat recherché.

Théoreme 1.12.3. (Relations de récurrence)

D) PP () = it () + 10 4+1) = m(m = D} B (@) = 0
() 2L+ 1) zP" (x) = (L+m) P2y () + (= m+1) Py (z) -

1
i) V(1= )R @) = g (R (@) = P @)

(iv) \/(1—502)]3[”(37):% (+m)l+m—-1)P " (@)= (—m+1)(1—m+2) P}

Démonstration. (i) 1l s’agit de la relation fondamentale reliant trois fonctions de Le-
gendre associées avec la méme valeur de [ et valeurs consécutives de m.

Notons Cj‘fv—mmﬂm (z) par Pl(m) (z) pour que la définition (1.41) puisse s’écrire sous la
forme

P (@) = (1=2)"" P (@)- (1.44)

Maintenant, dans 'équation (1.38) nous savons que nous pouvons prendre z = P, (z) et
donc z; = P/" (x) afin que nous obtenions

2
(1= 2%) PP () = 2(m 1) B @)+ {10+ 1) = m (m 4+ 1)} P () = 0

en utilisant la définition de P/" (x), cette équation devient
(1=2?) P (2) =2 (m+ 1) 2P (@) + {1 (1 +1) = m (m + 1)} P (z) = 0
ce qui, en multipliant par (1 — z?) 2 donne

(1 o x2)(m/2)+1 Pl(m+2) (z)—2(m+1)a (1 . x2)(m/2) Pl(mH) (z)
+{(I+1) —m@m+ 1)} (1 -2 P (z) =0
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Par conséquent, en utilisant 'équation (1.44), on a

1

(1_$2)Pz(m+1) @)+ {1(1+1) —m@m+1)}P"™ (2)=0

P () —2(m+ 1)@

qui, quand m est remplacé par m — 1, devient

2mx

R O

P () +{L(1+1) = (m = 1)m} F" ™! (z) = 0;

c’est le résultat recherché.
(i1) Il s’agit de la relation fondamentale entre les fonctions de Legendre associées a
avec la méme valeur de m et valeurs consécutives de .

Par la proposition 1.9.2 (iii) nous avons
(I+1) Pt (2) — (2 + 1) 2Py (2) + 1Py () = 0

ce qui donne en dérivant m fois (en utilisant le théoréme de Leibniz pour le second

terme)

(+ 1) P (@) = @+ 1) {aP™ @)+ mPr ! (@)} + 1B (@) = 0. (1.45)

De méme par la proposition 1.9.2 (iii) on a

Py (@) = P, (2) = (2 +1) Py ()

I+1

qui, lorsqu’il est différencié m — 1 fois, donne

B () = P () = @20+ 1) PV (). (1.46)

Lutilisation de I'équation (1.46) et la substitution de Pl(m_l) (z) dans I'équation (1.45)

donne

1+ D) P (@) = @+ 1) 2™ (@) = m { P (@) = BT (@)} + 1P (2) = 0-

362) (m/2)

Multipliant cette équation par (1 — et en utilisant I'équation (1.44) nous obte-

nons
(1+ 1) By (@) — (21 + 1) aB" (2) — mP (2) + mPy (2) + LB (2) = 0.
collecter comme des termes donne
(L +m = V)P (2) — (20 + DB (&) + (1 +m) P (2) = 0

qui, une fois réarrangé, est le résultat requis .
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(iii) Multipliant 'équation (1.46) par (1 — x2)m/ ? nous obtenons

(1 — $2)m/2 Pl(i”i) (l‘) (1 _ x2)m/2 Pl(fml) (l‘) (2l + 1) (1 . xg)m/2 Pl(m_l) (l‘)

qui devient en utilisant I’équation (1.44)

Pty (2) = P (2) = 2L+ 1) /(1 = 22) " (@) (1.47)

Remplacons m par m + 1 nous trouvons

P @) = P (@) = 20+ 1) (L= 2?) B ()

qui, une fois divisé par 2/ + 1, est le résultat recherché .

(iv) Nous utilisons (ii), remplacons x P (x) dans (i) par

1

g:TW+mﬂ%ﬁ@+U—m+mﬂg@”

afin que nous obtenions

P () = s ey (L m) Py (2) + (L m = DR ()

—I-{l(l—l—l)—m(m—l)}le*l(m):0~

Si nous utilisons maintenant ’équation (1.47) pour le_l (x), on obtient

1 2m
(1—22)(20+1)

PO —m(m— 1)} L

¢afpym+n{ﬁﬁw

Pt (x) - {+m) Py (2) + (L +m - 1P (o)}

) =Py (x)} =0

par manipulation algébrique directe, cela se réduit a

\ﬁLﬂ@gwu@:%ila+mua+m+Uﬂzmwwbwma—m+DH&@H

qui, lorsque m est remplacé par m — 1, est juste le résultat recherché. O
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Les premiers polynomes associés de Legendre sont :

Pd(z) =1

Pl(z) ==

Pl(z) = —(1 — 2?)1/?
PY(z) = %(3302 - 1)

Pj(z) = —32(1 — 2?)'/?
Pi(x) = 3(1 — %)
PY(z) = %(5:153 — 37)

= —5(72% — 32)(1 — 2%)V/?

Les polyndmes associés de Legendre P/ (x) pour ! =5 et —I < m <[ sont représentés
dans la figure 1.2.
Une relation utile dans les applications est le théoreme d’addition pour les poly-

nbémes associés Legendre :

Théoréme 1.12.4 (Théoréme d’addition).

l

Py(cosv) = Py(cosb)P(cos ') + 2 Z (L —m)!

Tyt CosOF (cosf) cosmi(g =), (148)

ot 'angle v, illustré a la figure 1.3, est défini par

/

cosy = % = cosfcos + sinfsin @ cos(¢’ — ). (1.49)

1.13 Fonctions de Legendre du second type

Dans la premiere section de ce chapitre, nous avons obtenu deux solutions séries

indépendantes y; (z) et y2(x) de I'équation de Legendre. Nous avons obtenu des solutions
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=

9 4 — [ =5,

m| =0 — 1 =35|m| =2 — l=5]m|=41

{=5,lm|=1 — 1=5|m|=3 — 1=5,|m|=5

—-1.00 =075 =050 -=0.25 0.00 0.25 0.50 0.75 1.00

FIGURE 1.2 — Polynomes associés de Legendre P/"*(x) pour | =5 et |m| =0,1,2,3,4,5.

FIGURE 1.3 — L'angle v entre les vecteurs de position x et x’.

finies pour —1 < z < 1 (en effet, fini pour toutes les valeurs finies de x) pour des valeurs
entieres de [, alors pour [ pair y; (x) réduit a un polyndme, tandis que pour / impair ys(x)
réduit a un polyndéme. Dans ces deux cas, I'autre série reste infinie; on peut montrer
qu’elle est convergente pour |z| < 1 et divergente pour |z| > 1. Dans certaines situations
physiques, nous souhaitons deux solutions indépendantes valides pour la région |z| > 1;
I'une d’elles est bien str donnée par P;(z), tandis qu'une seconde solution est donnée par

le théoreme suivant (notons qu’elle est toujours infiniee pour x # +1).

Théoreme 1.13.1. La seconde solution indépendante de I’équation de Legendre est don-



39

née par
(5]
1 14z (21 — 4r — 1)
=-P(z)] — P 9. [>1
Qu(x) = 5P (@) ;mma—m o1 () (12 1)
1. 142
= =1
Qo (@) SR
avec
{5—1]: I’Tl si [ est impair
2 % si [ est pair

Qi (z) s‘appelle la fonction Legendre du second type.

Démonstration. Dans ’équation de Legendre, définissons y = zP,(x) de sorte que z soit

une nouvelle variable dépendante. On a

Y @) 2y
d N2 e Tz
d%y d?z 5 dz dP, d?P,

9 _p alied dealy et
dx? 1 () dx? + dx dx Tz dx?

et donc I’équation devient

(1-22) P(z) L5 121 —a?) 2B (1 - x)‘fi —22P (z) &
— 222 4 1 (14+1) 2P () =

En collectant les termes en z, dz/dx et d*z/dz?, nous obtenons

{(1-a%) 24

— 28 L 1(1+1) P (x )}+j§{2(1—m)dpl 2P (x )}
+(1*-73)Pl( )de_O

qui, en utilisant le fait que P, satisfait I’équation de Legendre, devient

22: z
(1-2%) P (z )32—1—37:{2(1—95)2?—2955( )}:0

Donc
d*z/dx? dP/dx 2z
dz/dx P(z) 1-—2?

=0,

et c’est équivalente a

d . (dz d d
—1 2—InP(z)+—1In (1 —2?) =
da:n<da:>+ gp M@+ g (L= a7) =0,

qui, une fois intégrée, donne

d
In dj +In{P, (:1:)}2 + In (1 - mQ) = constante-
Xz
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donc

Z—Z {P; (2)} (1 — 2?) = constante = A,
X

c’est-a-dire
dz A

dr (P (2)) (1-2?)

et donc

dx
z=A
/ {P ()} (1 —2?)

cela signifie que nous avons une solution de 'équation de Legendre donnée par

Qi (z) = P () / 7 (x)}‘ix( — (1.50)

il faut maintenant montrer qu’elle est de la forme énoncée dans le théoreme. On consi-

dére d’abord lecas{ =0:

%@ = A [ {Po<x>fl2x<1—x2>
- /1%22
- /;(1ix+1ix>dx
llnl—i—x_

2 1—-=x

Si maintenant [ # 0, on sait que P, (z) est un polynéme de degré /, donc on peut lécrire
sous la forme

Px)=k(z—-—a)(z—az) - (x—qp).

Donc
1 _ 1
(1—22){P(2)}* (1-2)A+2)k(x—a)’(x—a)’ - (z—aq)
. ag b() ! Cr dr
_1—w+1+$+;{($—ar)+(:1:—047«)2} (1.51)

( décomposition en éléments simples). Nous pouvons facilement déterminer aq , by et c,.

La multiplication des deux cotés de 'équation (1.51) par (1 — 2?) {P; (z)}” donne
1 = ao(1+2){P (@)} +b(1-2){F (@)} + (1 +2) {b()

! Cr d,
{Z(x—ar) * (a:—ar)Q}'

r=1

La substitution de = = 1 dans cette équation et sachant que P, (z) = 1 donne a¢ = %, et

la substitution de z = —1 et sachant que P, (—1) = (—1)" donne by = 1
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Nous montrons maintenant que

ci = [jx {(90 — i)’ (1 xz)l{Pl (z)} }L:a-

7

Pour le prouver, nous notons que

i{(m—ai)2f($)} = 2(x—qa;) f(x)+ (r —ay)

= 0qand z = «;, a condition que f(z) soit finie en x = ;.

2 df
dzx

Les seuls termes du c6té droit de I'équation (1.51) qui ne sont pas finis & z = «a; sont

c; d;
et .

(x—cv) {(m—ai)Q}

Par conséquent, nous avons

Ainsi, si nous écrivons P, () = (r — «;) L (x) alors on a

¢ = L;i (1— mQ)l{L (1‘)}2} -

(1.52)

[ 2z B 2L (x) }
1 —2){L(x)}* (QA—-2){L()}*] _,

_ 2zL (z) — 2 (1 —2?) L' (z)
- T@p |

2{a; L () — ( )L/( i)}
1—a?) {L ()} '

En substituant P,(z) = (x — ;) L (z;) dans 'équation de Legendre nous obtenons ’équa-

tion

2
(1= 2%) g (o — a0 L (20)} — 20 {(wr — 0) L ()} + 11+ 1) (2 — 0) L 7) = 0

qui peut s’écrire sous la forme

"

(1-2?) {(x —a) L () + L (xi)}—Qac {(m —a) L (z) + L(m)}—i—l (1+1)(x—a)L(z) =
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mettons r = «; dans cette équation on trouve

(1—a?)2L (a;) — 20, L (w;) = 0

de sorte qu’en remplagant dans I’équation (1.52) nous obtenons ¢; = 0.
Ainsi, a partir de ’équation (1.51), nous avons

l

1 1
(- (AP 20-2) 1+w +§::n—m

r= l
ou les d, sont des constantes dont les valeurs ne nous intéresseront pas.

Ainsi

1 1 1 L4
/(1—x2){Pl(:E)}2dx = —21n(1—x)+21n(1+x)—;($ar)

1+:c
T 2 1—.7: Zx—ar

donc a partir de I’équation (1.50) on a

1+=x !

Qi (z) = fPl JIn—— = "d,

1—2x

P (x

x—ar

—
mais pour tous les «,, (x — ;) est un facteur de P, (x), de sorte que % est un poly-

noéme en m de degré [ — 1.

Donc E d Ll l )) est un polynéme de degré | — 1; désignons-le par W,_;(x). Ensuite

nous avons

Qi (z) =P (z)In — Wi () (1.53)

2 11—z
Pour déterminer W;_;(z) on sait que @Q; () est une solution de 'équation de Legendre

de sorte que

d 9y dQ B
dx{(l—:r)dx}+l(l+1)Ql—0

qui, en utilisant 'équation (1.53), donne

2dx{(1—x)dez()l 1_I}+l(l+1).2Pl(x)lnl_x (1.54)
d dW;_q
da;{( z) dr } Ll+1) Wiy =0
mais
d 1+ 1+x 1 1
T l(:}:)nl_x l($)nl_x+ l(x){1+x+1—x}
1 2
— P/ (@)ln—2 4 P (a)

11—z 1— 22
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de sorte que

d {(1—952) (ZCPl(x)ln1+$}

dx T
d 2 / 1+
= U Al 2P,
dx{( ac) l(x)n1_$+ l(x)}
14z d ) ) )
= i T (=) B @)} + (1= 2?) B (&) 7 + 2P (2):

D’ou ’équation (1.54) devient

n
2 1—=x

11 142 [dci, (1_1,2) Pl’(x)} +l(l+1)Pz(€U)]+2PI’ (m)—% {(1 —x2) dV;/;_l}_l (+1)W;_1=0

qui se réduit a

d 2 AW _dPR
d${(1 z?) I }+l(l+1)Wl_1_2da¢ (1.55)
Maintenant, par la proposition 1.9.1 (i) on a
dp
T = (@2-D)Pa(@)+ @ -5) P (x)+ (1.56)

F(2—4r — 1) Py (x) + -

(1.57)
[30-1)]
= > (—4r—1)P_y_y(2)

r=0

Puisque W;_; () est un polyndéme de degré [ — 1, donc nous pouvons supposer qu’il

posséde une expression de la forme

Wi—i(z) = aoP—1(z)+a1P—3(x)+--- (1.58)
[30-1)]
= Z ar]leQr (x) 5
r=0

ainsi

HEN (3=
Yo a——{(1=2)) P, @)} +10+1) > aPiga(x) (159
r=0

dx
r=0

[30-1)]
=2 ) (2-4r—1)Py ()

r=0
En utilisant I'’équation de Legendre nous avons

d

- (1—2®) P _g_y(2)} + (1 —2r —1) (I — 2r) P_g,_1(z) = 0,
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ainsi I'’équation (1.59) devient

-]

> ap{-(—2r—1)(1=2r)+1(1+1)} Py (2)
r=0

[30-1)]
= ) 2@ -4r—1) Py (x)

r=0

le coefficient de chaque polynome doit étre le méme des deux cotés, ainsi on obtient
{-(l=2r=1D)(-2r)+1(+D}a, =220l —4r —1)- (1.60)
Mais

—(l=2r =1 (=21 +1(1+1) = —(—2r)2+1=2r)+1(1+1)
= Prdrl—4r?Fl-2r +12+1
= 4dr(l—r)2(r+1)

= 2(l—r)2r+1)
L'équation (1.60) se réduit donc a
20—r)2r+1a, =220 —4r —1)

qui donne
20 —4r — 1
= ———— 1.61
U=+ 1) (1.61)
et maintenant, en combinant les équations (1.61), (1.58) et (1.53), nous obtenons immé-
diatement le résultat du théoreme.

La solution de I'équation de Legendre ;(z) que nous avons obtenue est indépen-
1+
1—
nous savons que Fj(x) est fini pour ces valeurs de z.

dante de Pj(z) a cause du facteur In m, Qi(x) est infini aux deux = = +1, alors que
X

Nous pouvons utiliser ce théoréme pour écrire explicitement les premiéres fonctions

de Legendre du second type :

1. 1+=x
= -1
Qo (2) = 5ln—
rz, 1+=x
Ql(x):§ln1_x—1

14+

1-2z

142 5 45 2
——x

@s (@) = -2 27 73

Nous énongons maintenant sans preuve plusieurs théorémes concernant les fonctions

Q2 (z) = i (31‘2 — l) In - gl‘

(52° — 3z) In

N

de Legendre du second type. O
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Théoréme 1.13.2.

=> (2+1)P(z) Qi (y)

=0

siz>1let|y <1

Théoreme 1.13.3. (Formule de Neumann)
1 [P (2)
= ——d
@ (@) 2/1 r—yYy y
Théoreme 1.13.4. Les résultats contenus dans la proposition 1.9.1(ii) et la Proposition

1.9.2 restent vrais lorsque P)(x) est remplacé par Q;(x).

Théoreme 1.13.5. Les fonctions de Legendre associées du second type définies par

m/2 dm
dx™

Q' (x) = (1—a*)""" —— Qi (2)

satisfont I’équation associée de Legendre.



Chapitre
Harmoniques sphériques

2.1 Harmoniques sphériques

Dans de nombreuses branches de la physique et de I'ingénierie, '’équation suivante

5g S0 HI(l+1)T =0 (2.1)

sin 6

L <8 sin98qj> + %827\1]
sin? 0 O¢?
a un grand intérét, ces solutions sont appelées harmoniques sphériques. Cette équation
apparait généralement dans la résolution de certaines équations aux dérivées partielles
telle que celle de Laplace ou de Schrodinger en termes de coordonnées sphériques r, 6,
¢, de sorte que 0 < 6 < 7, 0 < ¢ < 27, nous avons souvent besoin d’'une solution finie
et continue pour ces valeurs de sorte que la valeur de ¥ en ¢ = 27 soit la méme qu’en
¢ =0.
Une méthode pour trouver une solution de I'’équation (2.1) est la méthode de sépa-
ration des variables, nous recherchons une solution de la forme V¥ (0, ¢) = © (0) @ (¢).
Linsertion de cette expression dans I’équation (2.1) donne

2
zfj? {ja (gwé‘;) } + iffgfz; LII+1)6(0)® (9)

oll, en divisant partout par © () ® (¢) et en multipliant par sin? 6,

sinf d . dO 1 d?® . 9
— <sm0d9) +5@+Z(Z+1)81n =0

qui peut s’écrire

sind d (. ,dO L 1 d2®
o a0 <s1n0d9) +I(l+1)sin" 0 = _6?152

Maintenant, le c6té gauche de cette équation est une fonction uniquement de la variable

0, tandis que le co6té droit est une fonction uniquement de la variable ¢. Puisque ces
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deux variables sont indépendantes, il suit que le c6té gauche et le coté droit doivent étre

séparément une constante que nous désignerons par m?.

Ainsi, nous avons

sinf d de
© db

do

et
1d°0

dp2 "

L'équation (2.3) s’écrit sous la forme
d*® )
W = —m q),

tandis que I'équation (2.2) se simplifie en

L'équation (2.4) a la solution générale

O = Ae™®  Be i

ou, si la solution doit étre continue, nous avons besoin de ®(27)

doit étre un entier (que nous pouvons prendre conventionnellement positif).

sin9> +1(1 +1)sin®§ = m?

1 d do m?
4 (gna®=2 1) — =0.
sin 6 df <Sm9d0> +{l(l+ ) sinQH}@ 0

(2.2)

(2.3)

(2.4)

(2.5)

®(0), de sorte que m

Dans I'équation (2.5), nous utilisons le changement de variable cos# = x. Alors nous

avons — sin 8d0 = dz et donc
1 d d

sin 6 do - dx

et

.o . 9 d oy d
@ _ Yy - L
sin @ sin” 6( ) (1—a%) o

db dx

En conséquence, ’'équation (2.5) devient

d

M{(l—ﬁ)ii}—s—{l([—i—l)—171112}6:0

ce que nous reconnaissons comme l’équation associée de Legendre; il n’aura une

solution finie a 8 = 0 et 7 (x = +1 et —1) que si [/ est un entier. Dans ce cas, la solution

finie est donnée par © = P/"(x) : P/"(cos#).

Ainsi la solution générale qui est finie a la fois a # = 0 et 7 et est continue doit étre

U (6,9) = (Aeim‘b + Bequj) P/™ (cos )
que, a cause de I'équation (1.42), nous pouvons écrire sous la forme

U = A1e™PP™ (cos 0) + Aze™™MPP™ (cos 6)
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ou
A=A
et
B (I +m)!
Si maintenant nous dénotons
yi" (6,9) = ™ P™ (cos 6) (2.6)

on peut écrire la solution générale sous la forme

U= Ary]" (0, ¢) + Aoy, ™ (0, ) -

Bien sir, il s’agit d’'une solution de I'équation d’origine (2.1) pour toute valeur de m,

et puisque (2.1) est homogeéne, nous avons la solution

w= 3 LAy 0,0) + ALy (0,0) -

m=0
Pour de nombreuses raisons, il est plus utile de considérer un multiple de y;” (que nous
désignerons par Y;") comme la solution de base; un multiple choisi pour que les solu-

tions soient orthogonales et normalisées au sens ou

2T
/ dé / (V7 (0, )Y Y™ (0, 6) sin 0d0 = 6,06, @7

(ou le * désigne la conjugaison complexe).

Nous pouvons facilement prouver que cela est accompli en prenant

Y 0.0) = (—1)" @1 )'}yz“w,w (2.8)

V( 27r\/ l+m
(20+1)(

\/ﬁ\/ l+m

Definition 2.1.1. Les fonctions Y™ (0,¢), | =0,1,2,..., —l < m < sont appelées harmo-

m)! }eimmm (cos )

niques sphériques de degré | et d’ordre m.

2.2 Orthogonalité des harmoniques sphériques

Théoreme 2.2.1. Les harmoniques sphériques vérifient la relations d’orthonormalité

suivante

2 ™
/ dep / d6sin 0 {Y;™ (0,6)} Vi (6, 8) = 6186,
0 0
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Démonstration. Nous avons

21 T ,
/ do / d0sin 6 ;"™ (6, 6)}" Y (6, 6)
0 0

o pmene L RIED QU+ (= m)! (= m)!
= (™ 27r\/{ LU+ m) (0 +m) }

2r ™ /
/ G =g / P (cos 0) P (cos 0) sin 66
0 0

(en utilisant le fait que P/"(x) est réel),

o m m/i (2l+1) (2l,+1) (l_ ) (l// ) T
=™ 27r\/{ LA+ m) @+ m) }2 o

1
| @ @i

-1
(puisque la premiére intégrale s’annule & moins que m’ = m, auquel cas elle est égale

a 2w ; et dans la seconde intégrale nous avons fait la substitution = cos6)

' —m)! (I" —m/)! 1 /
_ (_1)2m\/{<m+1><m+1><z L >'}5m,m/lplm<xw @) dz

A+ m) (1" +m)

B {(2z+1)(2z’+1)(1— )(l”—m’)!}5 2(+m)t
B 4(L+m) (1" + ) U+ 1) (- m)

= (5”/ 55mm/

O]

Remarque 2.2.1. Le facteur (—1)™ dans la définition (2.8) de Y, (0, ¢), que nous pre-
nons comme l’harmonique sphérique de base n’était pas nécessaire pour la propriété d’or-
thonormalité; cependant, son introduction est conventionnelle (bien que le lecteur soit
averti que dans le domaine des harmoniques sphériques, différents auteurs peuvent em-

ployer des conventions différentes).
Théoréme 2.2.2.

Démonstration.

.oy = (1 e

! m)! }e_imd’le (cos )

V(2m \/
_ ( \/{ 2l—|— 1 ) }e—im(b (_1)fm Eii’g;:am (COS@)

2 +1) (I +m)!

o (
— )y Fﬂ i
0

}eim¢]3l_m (cosf)
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O

On peut utiliser les définitions de Y, (0, ¢) et P/ (cos #) pour obtenir les expressions

explicites suivantes pour les premiéres harmoniques sphériques :

2w
1 .
Yzil =— (—5> sin 6 cos 9™,
T
5
0 _ 20
Yy = 167T(3COS 6—1).

0
Yo

»

" Ut "

{C 4
o

) Yo

-2
Yy -1 vl 2
- ¥ W3 %2 U

'

FIGURE 2.1 — Harmoniques sphériques [ = 0,1,2 et -l <m <.

2.3 Théoreme d’addition

Nous avons vu dans le chapitre précédent le théoreme d’addition des fonctions de

Legendre associées du premier type, Théoréme 1.12.4. Cette relation peut étre écrite de
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maniére compacte en termes d’harmoniques sphériques comme suit

l
4 *
Peosy) = 5y > ¥ (0.9)) Y (0.9). (2.9)
m=—1

ou I'angle ~, illustré a la figure 1.3, est défini par

/

cosy = ;”:/| = cosfcos ) + sinfsin b cos(¢d — ¢). (2.10)

En particulier, si § = 0" et ¢ = ¢’, v = 0 et puisque F;(1) = 1, on a la "régle de sommation"
l 2+1

Y™ (6,9) > = 2.11

3 e = @.11)

valable quelles que soient les valeurs de 6 et ¢.
Le théoreme d’addition peut étre utiliser pour calculer un important développement

du potentiel en x due a une charge ponctuelle unitaire en x’ :

0o l
EPIPIE T O (0. 0,6) (2.12)
1—=0 m=——

L'équation (2.3) donne le potentiel dans une forme complétement factorisée en coordon-

nées x et x’.

2.4 séries d’harmoniques sphérique

Gréace a l'orthogonalité des harmoniques sphériques, on peut formellement associer
a une fonction f(0, ¢), définie pour 0 < 6 < 7 et 2r-périodique en ¢, la série

) l

0)=>. > A" (0.9

=0 m=-—I

T 2
AP = / sin@)do [ (Y™ (0,6)) £(0,6)do
0 0

L'étude de la convergence de la série de Laplace (2.4) peut étre réduite a celle de la
série de Legendre considérée a la section 1.8 en faisant un changement de variables
dans lequel le point (6, ¢) sur la sphére unité est pris comme un nouvel origine. Ce
point et celui qui lui est diamétralement opposé jouent un réle analogue a celui des
points x = +1 dans la théorie de la série de Legendre, avec des restrictions correspon-

dantes sur le comportement de f. Sans entrer dans les détails, on peut dire que, dans
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des conditions convenables sur f similaires a celles évoquées a propos de la série de

Legendre (et généralement rencontrées en pratique), la série converge vers f(6, ¢) aux
points de continuité, ou a 3[f1(0,¢) + f2(6, ¢)] si le point (6, $) est tel que, a travers lui,
passe une ligne de discontinuité avec une tangente continuellement tournante telle que
f1 et fo sont les limites de f en (0, ¢) pris des deux cotés de la ligne. Les conditions d’ap-
plicabilité de ce résultat sont satisfaites, en particulier, si f(6, ¢), exprimée en fonction
de I'angle ~ défini par (2.10) et illustré a la figure 1.3 et de ¢ = ¢ — ¢/, est de variation
bornée dans l'intervalle 0 < v < 7 pour chaque valeur de ¢, et telle que la variation to-
tale dans cet intervalle soit bornée pour toutes les valeurs de ¢. Dans des conditions qui
prolongent celles mentionnées a la section 1.8 pour la série de Legendre (en particulier,

continuité et variation bornée), la convergence de la série de Laplace est uniforme.



Chapitre

Application : équation du

potentiel

3.1 DL’équation du potentiel

Dans ce chapitre, nous allons étudier un exemple classique : I’équation de Laplace a
I'intérieur d’'une sphére. L'expression générale de la solution se fera au moyen des har-
moniques sphériques (en particulier les polynomes de Legendre). Souvent en physique

un champ de force

—

F(:Ev Y, Z) = (Fl(xa Y, Z)v F2(:r7 Y, Z)? F3($7 Y, Z))

est décrit comme le gradient Vu d’une fonction u = u(x, y, z2), i.e.,

—

F(xa Y, Z) = (Fl(l‘, Y, Z)v FQ(xu Y, Z)? Fg(ﬂ?, Y, Z))
Ou Ou Ou
- (&II’ @’ 82> - VU,

appelée le potentiel. Dans certains cas, ces champs de force sont tels que u satisfait
une équation aux dérivées partielles. Un tel exemple apparait en électrostatique. Si un
conducteur électrique de forme sphérique est chargé électriquement, qu'un équilibre
est atteint de facon a ce qu’il n’y ait pas de courant électrique sur la sphere et que la
distribution du potentiel électrique sur le conducteur est connue, pour déterminer la
force électrique sur une particule chargée située a I'intérieur de la sphére, il suffit alors
de déterminer le potentiel w.

Soient S = {(z, y, 2) € R32% + y? + 22 = R?}, la sphére de rayon R > 0 centrée

a lorigine et B = {(z, y, 2) € R32? + y? + 22 < R?}, la boule fermée de rayon R
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centrée a l'origine. Alors pour déterminer wu, il nous faut mathématiquement déterminer

la fonction u = u(z, y, z) telle que
0*u  0*u  O%u

—+—+—-—5=0 , Y, 2) €EB
3$2+3y2+822 pour (x, y, z)

avec la condition u(x, y, z) = ¢(z, y, z) pour (z, y, z) € S ou x(«, y, z) est une fonction
donnée définie sur la sphere S. Cette EDP est I'équation de Laplace.

Nous allons pas considérer ce probléme si général. Mais plutot un cas plus particu-
lier en imposant des conditions a la fonction y. Nous supposerons que cette fonction est
indépendante de la longitude du point sur la spheére et ne dépend que de sa latitude.

Pour étudier ce probleme, il est préférable d’utiliser les coordonnées sphériques.

Rappelons ce que sont les coordonnées sphériques. A un point P = (z, y, z) dans
R3, nous pouvons associer ses coordonnées sphériques (r, , 0, ¢). La coordonnée r est la
distance du point P a l'origine O = (0,0, 0), la coordonnée ¢ est la mesure de ’angle fait
par la demi-droite issue de l'origine et passant par la projection orthogonale du point P
sur le plan des x, y et la demi-droite des x positifs et finalement la coordonnée 6 est la
mesure de ’'angle fait par la demi-droite issue de l'origine et passant par le point P et
la demi-droite des z positifs. Ces valeurs satisfont les inégalités : 0 < r, 0 < ¢ < 27 et
0<o<m.

Les coordonnées sphériques sont données par les équations

x = rcos(¢)sin(f)
y = rsin(¢)sin(0)

z = rcos(f)

Proposition 3.1.1. Dans ces nouvelles coordonnées, I’équation de Laplace devient alors

10 [ 40u 1 o (. ou 1 Pu
r2or <r 87”) iz sin(f) 00 (Sm(e)%> * r2sin?(0) 9¢2 0 ©.D

Démonstration. En effet, par la régle de chaines et de la définition des coordonnées

sphériques ci-dessus, nous obtenons

ou _ COS(gb) sin(@) ou sin(¢) % + cos(¢) cos(9) du.

oz or rsin(0) r 00>
. . 5 sin (6
% = sin(¢) Sln(@)% + :g;r%)) % + 2 (qb)rwb( )%?9’;
ou _ du _ sin(9) du.

9z COS(G)W — r 00"
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donc
Pu 9 o, 0%u sin?(¢) 0%u  cos?(¢) cos?(0) O*u
W = COs (¢) Sin (e)ﬁ r2 sin2(9) W r2 w
2sin(¢)) cos(¢) 0%u 20052(d>) sin(6) cos(0) 9*u
B r 0¢por + T orof
2sin(¢)) cos(¢) cos(9) O%u sin?(¢)  cos?(¢) cos?(6), Ou
a 72 sin(6) 0¢00 o P r )E
sin(¢) cos(¢)  sin(¢) cos(¢)  sin(e) cos(¢) cos?(), du
+ 2 * r2 sin(#) * 72 sin?() )8TZ>
cos?(¢) sin(f) cos(d)  sin(¢) cos(d), du_
+(=2 r2 TR sin(6) )%’
Pu 9, 0%u  cos?(¢) 0%u  sin?(¢) cos?(6) 0%u
a2 sin“(¢) sin (G)W L R
sin(¢) cos(¢) 0%u sin?(¢) sin(0) cos() 9%u
+2 r 0¢pOr 2 r orof
sin(¢) cos(¢) cos() 0%u cos?(¢)  sin%(¢) cos?(6), Ou
2 r2 sin(6) 000 + r + r )E
sin(¢) cos(¢)  sin(¢)cos(¢)  sin(¢) cos(¢) cos®(f) du
~ 72 * r2 sin(#) * 2 sin?(6) ) 0o
sin?(¢) sin(f) cos(d)  cos?(¢) cos(d), du_
+(=2 r2 + r2sin(6) )ﬁ’
Pu 0%u  sin®(0) 6%u sin(6) cos(9) 0%u  sin?(6) du
92 = Ot e . mart - o
sin(#) cos(#) Ou

En substituant dans I’équation de Laplace, nous obtenons bien I’équation ( 3.1). Ainsi
le probleme que nous aimerions étudier est de déterminer une fonction u = u(r, ¢, 0)
avec 0 < r < R, 0< ¢ < met 0 < 0 < 7 qui satisfait ’équation ( 3.1) et telle que

u(R, ¢, 0) = (¢, 6) est une fonction donnée. O

3.2 Solution de ’équation de Laplace en coordonnées sphé-

riques

Si nous utilisons la méthode de séparation de variables, nous commencons par dé-

terminer des solutions de (3.1) de la forme

u(r,0,¢) = F(r)¥(0, ). 3.2)
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En substituant dans (3.1), nous obtenons

2
vd <r2dF) + F_o <Sin08q}) + L 0¥ 0 (3.3)

r2dr dr 2 sin 6 90 00 r2sin? § O¢?
qui, apres avoir divisé par %, réduit a
1d [ 4dF 1 9 (. 0¥ 1 0%
—=— — == |—= 0— _— 3.4
Fdr <T dr) [\Ilsinﬁﬁﬁ (sm 8(9) +\Ilsin2¢9 8(1)2} 8.0

Le terme de gauche de I’équation (3.4) est une fonction de r uniquement, alors que le
terme de droite est une fonction de 0 et ¢ uniquement. Pour que cette égalité soit vérifiée,

il faut que chacun des termes soit égal a une constante \ :
1 d [ ,dF
— (22 ) =
Fdr (7’ dr)

Usinga0 \> 00 ) T wsin20 062 -

De ce fait, nous obtenons le systéme des deux équations

et

d*F dF
27 - _— = =
T = + 2r o AF 0 (3.5)
) ov 1 v
1 S — \I] = . .
5in6 96 <Sm9 ae) T anZoog 0 (8.6)

Ainsi, la détermination des facteurs dans le produit (3.2) se réduit a un probleme relati-
vement simple : de la résolution de ’équation différentielle ordinaire (3.5), et '’équation
aux dérivées partielles (3.6) qui n’est autre que I’équation des harmoniques sphériques

deja étudiée dans la section 2.1 du chapitre précédent.

3.3 Le probleme de Dirichlet sur la sphere

Il est important d’étudier un cas particulier ou nous allons supposer que la fonction
x donnée est indépendante de ¢ et que nous cherchons a déterminer les solutions u qui
sont aussi indépendantes de ¢. Avec ces hypotheses, nous avons u = u(r, ) et g%f; =0
dans I’équation (3.1).

Nous allons étudier le probleme plus restreint qui est de déterminer une solution

u=u(r,0)avec0 <r < Ret0 <0 < r qui satisfait 'EDP

10 20 1 0 (3 ou\ _
r2 or (7" 87171“) + rZsin(0) 00 (Sln(e)?é) =0
u(r, ) est une fonction bornée, 3.7

u(r,0) = f(0)
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ou f est une fonction donnée définie sur l'intervalle [0, 7].

La symétrie azimutale du probléme correspond a poser ¥ (6, ¢) = G(6) dans (3.2) et

?;7‘12’ = 0 dans (3.6). ainsi le systéme des deux équations (3.5) et (3.6) s’écrit
d’F dF
27 _— =
T 72 + 2r o A 0 (3.8)
1 0 (. 0G
Sin@% (Sln 969) + )\G = 0. (3.9)

L'équation (3.8) est une équation bien connue, I'équation de Cauchy. Elle est aussi
connue sous le nom d’équation d’Euler. Il est possible en faisant un changement de
variables de transformer ’équation (3.8) en une équation a coefficient constant. En effet,

posons z = In(r), alors

dF  dFdz 1dF
T dedr T rde

d#?F  d 1dF,_ 1dF 1d ,dF _ 1dF 1d°F
7= H ol el o e Pl o G o e By Pl B

et, en substituant dans I'équation (3.8), nous obtenons

2 2
%—%+2%—AF:O = %+Z—Z—AF:0.
Il est alors possible d’analyser les solutions F' par rapport au parametre A en exprimant
celles-ci en fonction de z dans un premier temps et ensuite en fonction de r.
Si nous voulons décrire la solution générale de

d’F dF
@JFE—AF:() (3.10)

nous devons considérer les racines du polynéme en D suivant : D? + D — \I. Ces racines

sont

—14+ V144X ; —1—-v1+4X
e
2 2

Il y a donc trois cas a considérer : soit les deux racines sont complexes et non réelles,

soit la racine est réelle et double, soit les deux racines sont réelles et distinctes.
Dans le premier cas, si ces deux racines sont complexes et non réelles, i.e., (1+4)) =
—p? < 0 avec p > 0, alors ces racines sont égales a (% V_l) et la solution générale de

I’équation ( 3.10) est de la forme
Ae”2 cos(gz) + Be 2 sin(gz).
Conséquemment la solution générale de I'’équation (3.8) est

Ap~1/2 cos(g In(r)) + Br~1/2 sin(g In(r)),
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parce que z = In(r). Parce que la solution u(r, §) doit étre bornée, nous obtenons de cette

condition que la fonction F'(r) doit aussi étre bornée. Mais ici la fonction
Ar~1/2 cos(%9 In(r)) + Br~Y/2 Sin(g In(r))

n’est pas bornée lorsque (A, B) # (0,0). Il suffit de considérer le comportement de cette
fonction lorsque » — 0. Nous devons donc rejeter ce premier cas.
Dans le second cas, si la racine est réelle et double, i.e., (1 + 4\) = 0, alors la racine

est égale a —1/2 et la solution générale de '’équation ( 3.10) est de la forme
Ae #/? + Bze #/2.
Conséquemment la solution générale de I'équation (3.8) est
Ar~Y2 4 Br1/21n(r),

parce que z = In(r). Comme ci-dessus, nous devons rejeter ce second cas parce que la
fonction

Ar~2 + Brz In(r)

n’est pas bornée lorsque (A, B) # (0,0). Il suffit de considérer le comportement de cette
fonction lorsque r — 0.

Dans le troisieme cas, si les deux racines sont des nombres réels distincts, i.e., (1 +
4)\) = p? > 0 avec p > 0, alors ces racines sont égales a (—1 =+ p)/2 et la solution générale
de I’équation (3.10) est de la forme

—1+p
2

11—
pz).

A exp( 5

z) + Bexp(

Conséquemment la solution générale de I'’équation (3.8) est

ArC)/2 | pr(-1-p)/2,

parce que z = In(r). Comme ci-dessus, nous voulons que la fonction F(r) soit bornée,
alors nous devons rejeter les cas ou p < 1. Parce que si p < 1, alors les deux exposants
(—1+p)/2 et (—1 — p)/2 sont négatifs et, en considérant le comportement de la solution
générale pour (A, B) # (0,0) lorsque » — 0, nous voyons alors que la fonction F'(r) n’est

pas bornée. Donc (1 +4)) = p? > 1 et A > 0. Posons
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Alors [ est une des racines, 'autre racine est

- 1
b ;pjp:%+L

5 = —(l+1) parce que ! =
Comme p > 1, nous avons [ > 0 et —(I + 1) < —1. Nous pouvons aussi exprimer \ en
fonction de . En effet, nous obtenons

C—14p  —1+V1+4)
- 2

= —5 =20+1=VI+4A= 2+ 1) =1+4A= A =1(+1).

Si nous revenons a la solution F'(r) de '’équation (3.8), nous avons
F(r) = Art + Br= (1)

Comme [ > 0 et que nous voulons que F'(r) soit bornée, alors B = 0. Finalement si nous

résumons ce que nous avons obtenu ci-dessus,
A=1I(l+1)avecl>0et F(r) = Arl pour 0 <7 <R.

Il nous faut donc maintenant considérer I'équation différentielle ordinaire (3.9), qui

s’écrit sous la forme
d2G

d

do
Si nous considérons dans (3.11) le changement de variable w = cos(f) avec —1 < w < 1,

alors nous pouvons obtenir une équation différentielle équivalente. En effet,

G _dGdw G
o~ dwdsd T dw
et
d*G d : dG dG ) d dG d 5, d*G
o @(— sm(@)%) = —COS(G)% - sm(@)@(%) =—c 5(9)% + sin (Q)W

d*G dG  cos(0)
2 _ = 4+ )G =
sin”(0) T2 cos(Q)dw S0 (0) sin(6) A\G
alors
d*G e
2 < —
(1 — cos (9))dw2 —2cos(0) T +AG =0

Finalement comme w = cos(f) et A = [(I + 1), nous obtenons I’équation différentielle de

Legendre
d’G dG

(1—w%aﬁ—aw$;+mk+nG=o (3.12)



60
On a vu dans la section 1.2 que si | ¢ N alors toute solution non-triviale de ’équation

(3.12) n’est pas bornée sur l'intervalle [—1, 1].
Nous allons maintenant considérer I’équation (3.12) avec [ € N. Ainsi, la solution

générale de cette équation est
G(w) = AR(w) + BQi(w).

ou P;(z) et Q;(z) sont respectivement le polyndome de Legendre et la fonction de Legendre
du deuxiéme type de degré | € N. ( Fi(z) et Q;(z) sont deux solutions linéairement
indépendantes.)

Mais comme nous voulons que la fonction u(r, ) soit bornée, ceci a comme consé-
quence que la fonction G(w) doit aussi étre bornée sur l'intervalle [—1, 1]. Comme Q;(w)
n’est pas bornée sur [—1,1] et que P;(w) est bornée sur I'intervalle [—1, 1], alors B = 0.
Donc G = AP;(w) comme fonction de w ou encore G = AP;(cos()) comme fonction de 6.
Donc pour chaque | € N, nous obtenons une solution appropriée de ’équation de Laplace

a l'intérieur de la sphere donnée par
u(r,0) = a;r' Pi(cos(0))

Comme ce probléme est linéaire et homogeéne, nous pouvons utiliser le principe de su-
perposition.
Ainsi

u(r,0) =Y " apr' P(cos(6))
1=0
est une solution du probleme

(*) r%% (TQ%) + r? siln(e)% (Sln(@)%) =0

u(r, 0) est une fonction bornée,
Pour qu’une telle solution satisfasse le probléme de départ (3.7), a savoir le probléme

() avec en plus la condition a la frontiere u(r, ) = f(6), il faut alors que

u(R,0) =Y ajR'P(cos(0)) = f(6).

1=0
C’est a dire, il faut pouvoir écrire f en fonction des polynémes de Legendre.
De plus, on sait que les polynémes de Legendre forment un systéme orthogonal (voir
la section 1.6) alors nous avons maintenant ce qu’il faut pour exprimer le potentiel a

I'intérieur de la sphere.
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Proposition 3.3.1. La solution formelle du probleme

T%%(ﬂg—?)—l—m%(sin(ﬁ)%):O oi 0<r<R, 0<0<m
u(R,0) = f(0)

u(r, 0) est bornée
est

= ayr'P(cos(0))
=0

ol

2n+1 .
an = o / f(0)Py,(cos()) sin(0)de

_ (2;‘};1 /1f(w)P (w)duw

Ici J?(w) désigne la fonction f comme fonction de w = cos(f), i.e., f(w) = f(arccos(w)).

Démonstration. Nous avons vu que la solution formelle est de la forme

= Z a;rt Py(cos(6))
1=0

et qu’en plus

u(R,0) = ZalRlPl(cos(G)) = f(0).

=0

Si nous exprimons cette derniére égalité dans la variable w = cos(f), nous obtenons
> ~
S @R P(w) = fw).
1=0

D’apres le Théoreme 1.8.1 nous avons

9 Rk 1
sy = | FwPwe

Nous obtenons donc

2%k + 1 % +1 [T |
W= opk / f(w)P(w)dw = SRE /0 f(6)Px(cos()) sin(0)do. (3.13)

Cette derniere égalité est obtenue en substituant

w = cos(f) et dw = —sin(0)d6.
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Il est aussi possible de considérer le probléeme du potentiel a 'extérieur de la sphere.

En d’autres termes, de déterminer la solution v = u(r,#) du probléme aux limites

r%% (T2%) + 7"25i1n(6) (539 (Sln(e)gQ) =0 ot R< T, 0<f<m
uw(R,0) = f(#)  (condition a la frontiere) (3.14)
u(r,0) - 0sir — oo
La méthode de séparation de variables peut aussi étre utilisée.

Apres une analyse du méme type que ce que nous avons fait précédemment, nous obte-

nons

Proposition 3.3.2. La solution formelle du probléme (3.14) est

Zbl l+1 (cos(0))

ou
2 1
by = ”+ L g / F£(8) Py(cos(6)) sin(6)d6

2 1 ~
_ L; R /_ )Py

Ici f(w) désigne la fonction f comme fonction de w = cos(0), i.e., f(w) = f(arccos(w)).

Remarque 3.3.1. Si on considere le probleme plus général ot f = f(0, ¢) est une fonction

des deux coordonnées angulaires, c’est a dire le probléeme

19 20 1 0 o) 1 Py _
5 (r*SY) + 58y 90 (Sln(9)83)+r251n2(9) g¢ =000 0<r<R, 0<f<m

u(R7‘91¢) :f( a¢)

u(r, 0) est bornée,
(3.15)

Alors une solution particuliére du probléeme (3.15) dans le domaine r < R ( potentiel a
Uintérieur de la sphére) a la forme

u(r, 0, ¢) = ZZAmrlYl 0,9)

=0 m=—1

o Y, (0, ¢), est ’harmonique sphérique de degré l et d’ordre m et

ar o= o / sw(@)ad [ {7 0.0))" F(0.0)0

Il en est de méme si on considere le probléme du potentiel a Uextérieur de la sphére

(r > R) on obtient une solution de la forme

[e's) l

u(r,0,¢) => > By ,H ™ (9, ¢)

=0 m=-I
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ou

2

B = R /Oﬁsinw)de o 0.0 116,010

3.4 Exemples

Exemple 3.4.1. Déterminer la solution formelle u(r,0) du probléme de Dirichlet (3.7) si

f(0) est
a) f(0) = cos(36);
b) f(0) = sin(0) sin(30);
c) f(0) = cos(40);
d) £(8) = sin(0) sin(46) ;
¢, s10<6<m/2
e) f(0) = 0, sif=m/2 ; 0lL c est une constante.

—c, sim/2<60< .

Nous avons vu que la solution formelle dans ce cas est
o0
u(r,0) = apr" Py (cos(0))
n=0
ou

0 = Zntl /07r F(0) Py (cos(0)) sin(0)do

2R

n L.
_ (@ntl) /_lf(w)Pn(w)dw.

2R

Nous allons déterminer fen exprimant f comme une fonction de cos(f) et ensuite rem-
placer cos(6) par w.

a) Si f(#) = cos(30), alors

f(0) = cos(f)cos(26) — sin(#) sin(26) = cos()[2 cos®() — 1] — sin()[2sin(8) cos()]
= 2cos®(f) — cos(h) — 2sin?(#) cos(h) = 2cos>(#) — cos(8) — 2[1 — cos? ()] cos()

= 4cos®(6) — 3cos()

et ainsi f(w) = 4w? — 3w obtenu en substituant w a la place de cos(d). Nous pouvons
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maintenant calculer les coefficients a,,.

w = 3 [ - su)aw = 320 g

ap = % _11(411}3 — 3w)(w)dw = 2?;%(4?5 - 33w3]1_1 = %;
i = o [ 7 s aw =0

anp = 0sin>4.

Pour vérifier cette derniére équation, nous notons que

u(R,0) = > anR"Py(w)
n=0

= fw)=4w®—3w si cos(d) =w

alors, par développement on obtient

3 8 5w® — 3w > .
n=4
(4w3—3w)

= f(w) = 4w® - 3w

Donc » 7, a,R"P,(w) = 0 = a, = 0 pour tout n > 4 parce que les P, forment une

famille orthogonale sur [—1, 1]. Conséquemment la solution est

3r 8r3 (5cos3(6) — 3cos(h)) '

u(r,0) = “rR cos(f) + 5B 5

b) Si f(#) = sin(0) sin(36) alors

f(0) = sin(f)sin(36) = sin(8)[sin(#) cos(26) + cos(0) sin(20)]
= sin®()[2cos?(0) — 1] 4 2 cos?(0) sin?(#) = [1 — cos?(#)][2 cos?(6) — 1]
42 cos?(0)[1 — cos®(0)]

= —4cos’(0) + 5cos’(h) — 1

et ainsi f(w) = —4w*+5w?—1 obtenu en substituant w a la place de cos(#). Nous pouvons
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maintenant calculer les coefficients a,,.

1t 1, 4w’  5uwd 2
= - | (4! 2o DWdw = (——+ — —w])t, = —=
o = 5 [ (5wt = 1)(dw = =T+ 2l =~
3 1
a = 55 _1(—4w4 + 5w? — 1)(w)dw =0
5 1 4 9 3w? -1 5 1207 19w’ Sw? 1
= — [ (-4 -1 = - -
o 232/1( Wl + 5P — () = (e e —
22
- 21R?
7 1 4 9 5w3 — 3w
9 ! 35w — 30w? + 3
_ 7 At 2 _
ay SR _1( w” + Sw )( S )dw
9 140w® 295w’ 197w®  45w? L 32
— 4 (_ + - + - 3'[/.1]_1 = T orpd
16R 9 7 5} 3 35R
a, = 0 st n>35.
Pour vérifier cette derniére équation, nous notons que
o
u(R,0) = ZanR"Pn(w)
n=0
= f(w)=—4w* +5w? -1 si cos(d) =w
-2 22 3w? —1 32 35wt — 30w? + 3 s
5 tore ) ( 2 ) 35R* ( 8 > 2 anf Pa(w)

n=>5

(—4wt+5w2—-1)

Donc  ° . a,R"P,(w) = 0 = a, = 0 pour tout n > 5 parce que les P, forment une

famille orthogonale sur [—1, 1]. Conséquemment la solution est

2 2212 (3cos?(0) — 1)  32r* (35cost(6) — 30 cos?(6) + 3)

u(r,0) = =15 + 51 D " 35RA 8

¢) Si f(0) = cos(46), alors

f(0) = cos(46) = 2cos*(20) — 1 = 2[2cos?(0) — 1]* — 1 = 8cos? () — 8cos?(H) + 1

et ainsi f(w) = 8w? — 8w? + 1 obtenu en substituant w a la place de cos(§). Nous pouvons
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maintenant calculer les coefficients a,,.

Lty 9 1 8w’  8uwd 1 1
= = - N(D)dw = =(— — — =——
agp 2/1(811; 8w+ 1)(1)dw 2( E 3 w] 4 5
5 (8 8w + 1)(w)dw = 0
a = — =
1= gp ) Butosw
5 g A 5 3w? — 1 16
= — — 1 dw = — ———
as 572 /_1(811) 8w + 1)( 5 )dw R
7 L 4 9 5w3 — 3w
a3 = 5p3 _1(8w — 8w” + 1)( 5 Ydw =0
9 [t ) 35w — 30w? + 3 64
= — - 1 dw = ——
ay SR _1(8w 8w + 1)( S )dw SR
a, = 0 st n>3>.

Pour vérifier cette derniére équation, nous notons que

u(R,0) = ZanR"P
= f(w) =8uw! —8w? +1 si cos(d) =w
1 16 5 (3w?—1 64 35wt — 30w2 +3
_ WR" Py (w
5 P )( 2 )+ iR ( > Za

(8wt —8w2+1)

Donc ) ° . a,R"P,(w) = 0 = a, = 0 pour tout n > 5 parce que les P, forment une

famille orthogonale sur [—

1672 (3cos?(6) — 1)

1,1]. Conséquemment la solution est

ur ) = —15 ~ 31pe 2

d) Si f(0) = sin(#) sin(40), alors

£(0)
4[1 — cos*()] cos(6)[2 cos?(A) — 1] =

et ainsi f(w) = —8w® + 12w3 — 4w obtenu en

35R4

64r* (35cos*(0) — 30 cos?() + 3)
S :

sin(f) sin(40) = 2sin(0) sin(26) cos(260) = 2sin(8)[2sin() cos()][2 cos?(#) — 1]

—8cos + 12 cos* — 4 cos
°(6) °(6) (0)

substituant w a la place de cos(#). Nous



pouvons maintenant calculer les coefficients a,,.

1

1

ag = 2/ (=8w® + 12w — 4w)(1)dw = 0
-1
a; = 3 /1 (—8w® 4 12w® — 4w)(w)dw = _5
LY 3 ~  35R
1 2
-1

ag = 2}5%2/_1(—8105—}— 12u3 —4w)(3w2 Ydw =0

7 ! 5 5 5w? — 3w 56

9 ! 5 5 35wt — 30w? + 3

= — - 12w” — 4 =

ay SR /_1( 8w’ + 12w w)( S Ydw =0

1! 5 5 63w5 — 70w? + 15w 64
@ = oo 71(—8w + 12w’ — 4w)( 5 )dw:_63R5
a, = 0 st n>6.

Pour vérifier cette dernieére équation, nous notons que

u(R,0) = > anR"Py(w)
n=0
= f(w) = —8w® + 12w® — 4w si cos(d) = w
8 56 5w — 3w 64 63w5 — 7T0w3 + 15w
= ——R RS o RS
BRI T RS )< 2 ) 63R5 ( 8
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) + nzﬁ anR"P, (w)

(—8wdP+12wd —4w)

Donc } ° sa,R"P,(w) = 0 = a, = 0 pour tout n > 6 parce que les P, forment une

famille orthogonale sur [—1, 1]. Conséquemment la solution est

8r 5613 (5cos®(0) — 3cos(f)) 6475 (63 cos®(0) — 70 cos?(6) + 15 cos())
ur0) = =55 Ot 5 2 T 63R° 8 '
e) Si
¢, s10<6<7/2; c, si0<w<l;
O =5 0,  sig=n/2 aors fw)=4 0, siw=0;
—c, sim/2<6<m. —c, si —1<w<NO.
Donc
_ (2n+1) /1 =
ap = B ) f(w)Pp(w)dw
2 1 0 1
_ @t [ / (—¢) Py (w)dw + / (C)Pn(w)dw} .
2R -1 0

Notons que si n est pair, alors P,(w) est une fonction paire et

1
0

/ 0 Pa(w)dw = [ P (w)du



68
alors que si n est impair, alors P, (w) est une fonction impaire et

/01 Py (w)dw = — /01 Py (w)duw.

De cette remarque, nous avons

0, st n est pair;
Ay — 2 1
(nRt)c fol P, (w)dw, sin est impair.
Nous allons utiliser la formule de Rodrigues pour évaluer cette derniére intégrale :
1 d° 9
Fulw) = gt g @~ 17

De plus ici n > 1, parce que n est impair. Nous avons donc

1 1 1 A" 1 dnfl w=1
Pty = o [y = Gt |

Mais nous avons

w==+1
Il suffit alors d’évaluer

dnfl

W[(“’Q —1)"]

lorsque n est impaair.
w=0

Notons n = 2p+ 1 avec p € N. Nous pouvons développer (w? —1)" en utilisant la formule

du bindéme. Ainsi
n

2 n __ k n! 2(n—k)
- 1" = —1 .
(w”—1) kZ:O< ey
Nousavons2n —2k<(n —1)en<2k—-1<2p+1<2k—1<p+1<k.Donc

dnt 9 AR ronl (2n — 2k)! ok
_ 1 ny _ _1 n—2k+1
i ;;)( =B =2k 1]
ce qui implique que
dn—t 9 n!(2n — 2p — 2)!
—[(w? = 1)" = (=1t
duwn—1 [(w )] w=0 (=1) (p+1Dpln—2p—2+1)!
= (=1t n!(2p)!
(»+1D!(p)!
oun = 2p + 1. Conséquemment
! 1 n!(2p)! (2p)!
P, = — (=P = (L)
/0 (w)dw onp (0 ( ) (p + 1)'(]9)') ( ) 22p+1(p ¥ 1)‘]7'

La solution est

> 2(2p + 1) + 1)e(2p)lr2ptt
v = Z_;)(—Up( (25;1(;1 13!15!12%1 Popa(cos(f))
Z(* )p (4]9 + 3)6(2]9)!7"21”“ P2p+1(COS(9)).

22ptl(p 4+ 1)!Ip! R2P+1



69
Exemple 3.4.2. Montrer que la valeur de la solution formelle u du probleme du potentiel

a lUintérieur de la sphére (apparaissant a la proposition (3.3.2)) au centre de la sphere est

la valeur moyenne des valeurs de u sur la sphére.

Nous avons vu que la solution est

Zan P, (cos(0))

avec

1)
an = 2n + / f(0)Py,(cos(0)) sin(9)db
pour tout n € N. La valeur de u au centre de la sphere est
1 ™
u(0,0) = agPo(cos(0)) = ap = 2/ f(6)sin(8)d6.
0

Pour calculer 1a moyenne des valeurs de u(R, 6), il nous faut une paramétrisation de la
sphere, ensuite calculer I'élément de surface et finalement I'intégrale de surface. Une

paramétrisation est obtenue par

oul<op<2ret0<h <.

Pour calculer I’élément de surface, nous devons calculer la norme du produit vectoriel
oz 0Oy 0z dz Oy 0Oz
¢’ 9p’ 0 00" 90’ 96 )"
Ce produit vectoriel est égal a

(—Rsin(¢)sin(f), Rcos(¢)sin(f), 0))x(Rcos(¢)cos(d), Rsin(¢)cos(d), —Rsin(f)) = (—R? cos(¢) sin®(h),

Donc I'élément de surface est

\/(—R2 cos(¢) sin®(0))2 + (—R2sin(¢) sin?(0))2 + (—R2 sin(h) cos(6))2dpdf = R? sin(6)dpdh.

La moyenne des valeurs de u(R, #) est égale a

Jor ST F(O)R? sin(0)dodo 2w R? [ £(6) sin(6)do _ J f(O)sin(0)ds 1

Iy 27rR2sm (0)dodo B 21 R? [ sin(0)dg (cos(@)]z)T 2/ 1(0) sin(0)do.

Mais ceci est exactement «(0,0). Donc nous avons démontré le résultat.
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3.5 Le champ d’une charge ponctuelle a I'intérieur d’une

sphére conductrice creuse

En application des résultats de ce qui précéde, considérons le probleme de la dé-
termination du champ électrostatique di a une charge ponctuelle ¢ a 'intérieur d'une
sphére conductrice creuse de rayon R, maintenue a un potentiel nul. Choisissez 'origine
0 au centre de la spheére et laissons ’axe z passer par la position A de la charge, qui est
a la distance b de 0 (voir la figure 3.1). Pour éliminer la z-singularité en A, on écrit le
potentiel P du champ électrostatique comme une somme du potentiel de la source et du
potentiel v du champ secondaire d aux charges induites sur la surface interne de la

sphere, c’est a dire,

FIGURE 3.1 —

Y==+u (3.16)

p=AP = \/r2 + b2 — 2brcosf
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est la distance de A a un point variable P, avec les coordonnées r, 6. Puisque { doit

disparaitre a la surface de la sphére, la détermination de la fonction v = u(r, #) se réduit

a résoudre le probleme de Dirichlet (3.7) avec la condition aux limites

q
Up=p = — = f(0). 3.17)
Ir=r VR2 + b2 — 2bRcosf 1)

Le terme de droite de (3.17) peut facilement étre développé en une série de polynémes
de Legendre, et en fait il n’est pas nécessaire d’évaluer I'intégrale (3.13). Au lieu de cela,

nous utilisons la formule de la fonction génératrice (1.9) qui implique immédiatement

R R

n=0

P <b> Py(cos ). (3.18)

De plus, puisque b < R il résulte de ’estimation (1.14) que la série (3.18) est uniformé-
ment convergente dans l'intervalle [0, 7]. Par conséquent, selon Sec. 3.3, 1a fonction u est

donnée par la formule

q = [ br\"
- = — ) P, . 1
u > <R2> (cos ) (3.19)

En utilisant a nouveau (1.9), nous trouvons que la somme de la série (3.19) est

/

q 1 q
U=——= == (3.20)
R\/l—Q(%)COSG+(%)2 o

2
qd = —q%, b = %, p = V72 £ b2 — 27 cos b,

Ainsi, le potentiel 1 peut étre écrit comme une somme
q.,4q
b=-+-, (3.21)
p P
ou le premier terme est le potentiel de la charge ¢ en I'absence de la sphére conductrice,

et le second terme est le potentiel de la charge image ¢’ au point image A’, qui tient

compte de 'influence de la sphere.
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