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Introduction générale

Les équations différentielles stochastiques jouent un rdle important dans les appli-
cations mathématiques, principalement,dans la modélisation des phénomenes réels phy-

siques, biologiques,... dont laspect aléatoire est un élément essentiel dirigeant.

Le concept d’équation différentielle stochastique généralise celui d’équation différen-
tielle ordinaire aux processus stochastiques. La formalisation théorique de ce probléeme a
posé probléme aux mathématiciens et il a fallu attendre les années 1940 et les travaux du
mathématicien japonais Ito Kiyoshi pour la défnition de l’intégrale stochastique. Il s’agit
d’étendre la notion d’intégrale de Lebesque aux processus stochastiques relativement un
mouvement brownien. A partir de la théorie de l'intégration, on construit la théorie des
EDS.

On marque que, la plupart de ces équations qui suivent la forme d’équation stochastique

sont non linéaire.

La méthode de linéarisation statistique nous ameéne a imposer une approche qui nous
résout la complizité du aux limitations trouver dans l’étude des équations différentielle sto-
chastique . La méthode si-dessous n’est qu’une transformation de [’équation non linéaire

par une équation lincaire.

On commence le premier chapitre par un bref rappel sur les principales notions utili-
sées tout le long de ce travail, On donnera les propriétés du mouvement brownien ainsi que
celles des martingales qui seront utiles pour cela. Aprés avoir présenter quelques résultats
importants relatifs a ’intégrale stochastique, on verra comment il peut étre mise en oeuvre

pour la résolution des équations différentielles stochastiques.

Dans le second chapitre consiste a une introduction a la théorie des équations diffé-
rentielles stochastiques. On étudie comment résoudre non linéaires la méthode de linéarité

statistique .
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Et pour terminer, on recherche des coeffcient d’EDS linaire et on résoudre quelque

exemple d’équations différentielle stochastique non linéaire et ces solutions.



Chapitre 1

Calcul stochastique

Dans ce chapitre, on commence par des rappels fondamentales liées aux Calcul

stochastique et nous commencons par les définir.

1.1 Processus stochastiques

Un processus stochastique est un modéle mathématique pour décrire létat d’un phé-
nomeéne aléatoire évoluant dans le temps.

Processus stochastique, fonction aléatoire ou signal aléatoire en sont des synonymes.

Définition 1.1.0.1. Soit (2, F,IP) un espace de probabilités .

On désigne par T l’ensemble des temps. On appelle processus stochastiques toute applica-
tion de T' x Q0 dans E :

(t,w) e T x Q — Xy(w) € E.

On note X ou (X;,t € T) cette application.

Définition 1.1.0.2. Généralement X, représente l’état du processus stochastique au

temps t :
1- Si T est un intervalle [a,b] on dit que ’étude se fait en temps continu.

2- Si T est formé d’une suite d’observations to =0 < t; <ty < ... < t, <. , on dit que
I’étude se fait en temps discret.
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Remarque 1.1.0.1. On peut voir un processus comme une fonction qui a w € §2 associe

une fonction de [0,T) dans R;t — Xy(w) appelée trajectoire du processus.

1.1.1  Filtrations

— Une Filtration est une famille croissante de sous tribus de F c’est-a-dire telle
que F; C F, pour tout t < s.

— Si (Fi)i=0 est une filtration de (Q, F, (F;)i=0, P) alors (Q, F, (Fi)i=0, P) est appelé
espace de probabilité filtré.

— La tribu F; représente 'information dont on dispose a l'instant ¢. On dit qu’un
processus (X;)i>o est adapté a (F;)i>o , si pour chaque ¢,X; est F;-mesurable.

— les ensembles négligeables sont contenus dans Fj.

— La filtration est continue a droite au sens ouF; = Ny Fs.

1.1.2  Martingale

Définition 1.1.2.1. [17] Soit (2, F, (Fi)ter,P) un espace probabilisé filtrée . Une mar-

tingale par rapport a une filtration (Fi)er est un processus stochastique (My)er tels

que :
1. (M) est Fy— mesurable pour tout t.
2. E(|My]) < oo.
3. E(M|Fs) = M pour tout s <t.

1.2 Mouvement Brownien

Le mouvement brownien, ou processus de Wiener, est une description mathématique
du mouvement aléatoire d’une particule immergée dans un fluide

Un Mouvement Brownien est généralement noté B pour Brown ou W pour Wiener.

1.2.1 Les accroissements du mouvement brownien

Définition 1.2.1.1. /18] Une famille B = (By,t > 0) de variables alétoires réelles est un

mouvement brownien Si :

1. la fonction t — By(w) est continue sur Ry p.s.
2. V0 <s<t, la variable aléatoire By — B, est indépendante de F;.

3. ¥V 0<s<tB;— By est de loi N(0,0%(t — s)).
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Remarque 1.2.1.1. Un mouvement brownien est dit standard si :

By=0, o=1 p.s.

Définition 1.2.1.2. Lorsque (Fi)i>o est la filtration naturelle de (Bi)i>o on dit que B

est un mouvement brownien naturel.

1.2.2  Quelques propriétés du mouvement brownien

Proposition 1.2.2.1. [10] (Processus gaussien) Le processus B est un processus gaussien,

sa loi est caractérisée par son espérance nulle E(x) = 0 et sa covariance Cov(By, By) =
sAT.

Proposition 1.2.2.2. [7/
Si B est un mouvement brownien .Les processus suivants sont aussi des mouvements

browniens.
i) X, = —B; (symétrie).
By, ,
1) Soit ¢ > 0 fizé , Xy = 7t pour t >0 (Scaling).
c
113) Xy =tBy, Yt >0 et Xog =0 (inversion du temps).
w) Soit r >0 fizé ,X; = B, — B,_4, t € [0,7](retournement du temps).

Théoréme 1.2.1. [/] (Propriétés des trajectoires).
— Le M.B. n’est a variation finie sur aucun intervalle.
— Le M.B. n’est dérivable en aucun point.

— limsup,_, ., By = +o0 et liminf; o By = —00.

Proposition 1.2.2.3. (Propriétés de martingale)
— Tout mouvement brownien est une martingale relativement,
i.e : pour tout s < t,E(By|Fs) = Bs.
— Tout mouvement brownien est un processus a accroisement indépendants,
i.e : Pourtout s =ty < t; < ... <t,,lesvariables aléatoires By, —By, ,,(k=1,...,n)
sont indépendantes et indépendantes de la tribu Fs.

— Si B est un mouvement brownien , le processus (B — t)i>o est une Fy-martingale.
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1.3 Intégrale Stochastique

On veut généraliser 'intégrale de Wiener et définir fot d,dBs pour des processus sto-

chastiques .

1.3.1 Cas de processus étagés

On dit qu'un processus @ étagés (élémentaire) s’il existe une suite de réels ¢;,0 <
to < t1.. < t, et une suite de variables aléatoire ®; telles que : ®; soit F;; mesurable,
appartienne a £2(Q) et que &, = ®;

pour tout ¢ €]t;,t;41],s0it :

n—1
O (w) = Dj(w)lyy, 1,411(5)
7=0
t n—1
/ d.dB, = Z Q,;(B(Typa Nt) —B(Tj At))
0 j=0
On définit alors :
0o n—1
/ O,dB, = 3 ®;(Blt;11) - Blt;)
0 j=0

on a .

> IE(/ ®,dB;) =0
0

> var(/ ®,dB;) :E[(/ ®2ds]
0 0
t n—1
On obtient :/ b.dBs = Z Q;(B(tjy1 Nt) — B(t; At)) ce qui établit la continuité de
0 s

t
I’application ¢ —>/ O dB,.
0

n—1
SiT};,0 < Ty < Ti.. <T, est une suite croissante de temps d’arrét, et si &, = Z Q17,1500 (s)
j=0

ou ®; est une suite de variables aléatoires telles que ®; soit F;-mesurable, appartienne a

L£2(Q), on définit alors :
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1.3.2 Cas général

On peut prolonger la définition de l'intégrale de Wiener & une classe plus grande de
processus. On perd le caractére gaussien de 'intégrale, ce qui est déja le cas pour le cas
de processus étagé.On définit les processus caglad de carrée intégrable (appartenant a

L2(Q x RT) comme 'ensemble T' des processus ® adaptés continus a gauche limites a

E[/ @fdt} < o0
0

Les processus étagés appartiennent a I'.

droite, (F;)-adaptés tels que :

On dit que ®,, converge vers ® dans L2(Q2 x RT) si: || ® — &, [|>— 0 quand n — oo

L’application & —|| @ || définit une norme qui fait de I' un espace complet. On peut

définir / ®,dB, pour tous les processus ® de I' :on approche ® par des processus étageés,
0

soit ® = nli_r}noo ®,, ou ¢, = Z @;‘]l]tj,tjﬂ] ,avec CID;-‘ € Ji; la limite étant au sens de
j=1
L2(Q x RY).

L’intégrale / ®,dB, est alors la limite dans £2(€2) des sommes
0

k(n) _
CI)?(B(U-H) - B(tj))

J=1

dont ’espérence est 0 et la variance :
B[ ®2(tj1 —t;)]
J

On a alors :
> E(fooo d.dB;) =0
et
> E(fooo CI>Sst)2 = ]E(foOO @gst).

t o]
On note / d,dB, = / P 1j04(s)dB,. Si ® est étagé on a :
0

0
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t
| @B =3 @B~ B
0 i

Plus généralement, si 7 est un temps d’arrét, le processus 1jp,(t) est adapté et on
définit :

TAL t
/ (I)SdBS = / CI)S]I]O’T](S)dBS
0 0

1.3.3 Propriétés

t
On note A 'ensemble £ (Q2xR™) des processus ® adaptés caglad vérifiant : E(/ 2 (w)ds) <
0

oo, Vt

1.3.3.1 Linéarité

Soit a et b des constantes et(®’,i = 1,2) deux processus de A.

On a:
t t t
/ (a@i + bcbi) dB, = a/ dldB, + b/ d2dB,
0 0 0

1.3.3.2 Propriétés de martingale

Proposition 1.3.3.1. soit :
t
Mt :/ ®sd88
0

ot ® c A

1. Le processus M est une martingale a trajectoires continues.

n—oo

t 2 2
2. Soit N, = ( lim / @Sst) —/ @zds le processus (Nt,t > O) est une mar-
0 0
tingle.

Définition 1.3.3.1. Toutes ces propriétés se démontrent pour des processus €tagés, puis

pour les processus de A par passage a la limite. La propriété de martingale s’écrit :

t t
E( / <I>udl’>’u/]-"s) - / O,dB,,Vt > s
0 0
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ol

t
E( / <I>ud8u/]-"s> ~0
0
t
IE(/ (PudBu) =0
0
La propriété 2) équivaut a

E[( / t @udB)Q/]-“S] = IEZ[ /O t Cbidu/]{g]

Si lon veut définir My pour t < T, il suffit de demander que ® € L*(Q x [0,T]), c’est a

et implique en particulier que :

T
dire E(/ @?dt) < oo et que P soit adapté. Sous cette condition My, t < T est encore
0

une martingale.

t
Corrollaire 1.3.1. L’espérance de M, est nulle et sa variance est égale a / E{®,}?ds
0

t t s
Soit W € A. / B, dB. / ,dB,) — E( / ,U,dB,) Si
0 0 0

t
M, (B) — / B, dB.
0

et

t
Mt(@) :/ psdBs
0

t
Le processus My(®)M(p) — / b pds est une martingale.
0

t
1
Proposition 1.3.3.2. Pour toutt on a : / BsdBs = 5(15’? — 1)
0

Définition 1.3.3.2.

t n

/ BsdB, = lim ZB” (B — Bt)
0 n—o0 "

L’égalité :

2 ZBQ (Bti+1 - Btz) - Z<Bt21+1 - Bt%) - (Bti+1 - Bti)2

i=0 1=0 =0

3
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montre que :

t 1 ‘ n 1
/0 B.dB, = 3B} — lim ;(Btm - B,)’] = 5(B; 1]

1.4 Calcul d’It6

La formule d’itd (ou formule de changement de variables) est un outil particuliérement

important dans I’étude des processus stochastiques. On a un M.B. d-dimensionnel.

1.4.1 Processus d’'Ito

Définition 1.4.1.1. [3/(Processus d’It0 ou semi-martingales).
Un processus X, a valeurs dans R™, est appelé semi-martingale s’il se décompose

de la maniére suivante :

t t
Xt—Xg—i—/ sts—i—/ HdB;
0 0

YVt < T p.s, avec Xo et K a valeurs dans R™,H & valeurs dans R™¢ H € H? et

t
E(/ K, |ds) < oo
0

Cette décomposition, si elle existe, est unique.

1.4.2 Propriétés d’Ito

Théoréme 1.4.1. [13] (Isométrie d’[t0).

Pour tout f € V(a,b) nous avons la relation suivante :

E[(/ab X,dB,)* = E(/abxfdt)
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1.4.3 Formule d’Ito

Théoréme 1.4.2. [11] Premiére formule.

Soit f une fonction de R dans R, de classe C? & dérivées bornées. Alors :

F(X0) = f(X0) + / PN, + ) / (X )o2ds

Théoréme 1.4.3. Deuzieme formule.
Soit (t,x) — f(t,x) une fonction réelle deux fois diférentiable en x et une fois diférentiable

ent et X un processus d’Ito :

f(tw%) = f(oaXO) +/(; f:]lc(saXs)dXs +/0 f;(saXs)dS + %/0 fg/clx(saXs)d<X7X>s-

Proposition 1.4.3.1. (Formule d’intégration par parties).

Si X et Y sont deux processus d’Ito, alors :

t t
XY, = XY + / X,dY, + / YodX, + (X,Y);
0 0

avec la convention que :

t
(X,Y); = / H,H'ds
0

Démonstration :

On a, d’apres la formule d’'It6 :

(X; +Y0)% = (Xo + Y0)2 + 2 [ (X, + Yo)d(X, + Y) + [o(H, + H.)ds.
X? = X3 +2 [} X,dX, + [, Hds.

Y2=YZ+2 [y YidY, + [ H?ds .

D’otu, en faisant la différence entre la premiére ligne et les deux suivantes :

¢ ¢ ¢
XY, = XoYp +/ XdY —I—/ Y,d X, —l—/ H,H.ds.
0 0 0



1.4.4 La formule d’It6 multidimensionnelle : 18

1.4.4 La formule d’It6 multidimensionnelle :

La formule d’It6 multidimensionnelle se généralise aux cas ot la fonction f dépend de
plusieurs processus d’Ito et lorsque ces processus d’Ité s’expriment en fonction de plusieurs

mouvements browniens.

Définition 1.4.4.1. On appelle F-mouvement brownien d-dimensionnel un processus a
valeurs dans RY, (By)i>o adapté a F;, avec By = (B}, ...,B%),01 les (B!);>0 sont des F-
mouvements browniens standards indépendants.

On généralise la notion de processus d’Ito.

Définition 1.4.4.2. On dit que (X;)o<i<T est un processus d’Ito si :

t d t
Xt:X0+/ sts—l—Z/ H'dB:.

o1
— K et les (H}) sont adaptés a (Fy).

— [T|K,|ds P p.s.
— fOT(H;')st < 400 P p.s.

Proposition 1.4.4.1. [1/] Soient (X}, ..., X}") n processus d’Ito :

t d t
X;‘:Xg+/ K;‘ds+2/ HY B,

Alors si f est une fonction deux fois différentiable en x et une fois différentiable en t, ces

dérivées étant continues en (t,z) :

of
0s

1 n 7
+ Z/ 5y (52 X XA,

t
f, X X" = f(o,Xg,...,Xg)+/ (s, X} ..., X")ds
0

- XY XMA(XE XY,
¢ 30 [ gt X XD X)

Z]_

ol
— X! = Kids + Y0_ HdB],
— d(Xi,Xj)S = %:1 Hgvag’mds.



Chapitre 2

Equation différentielle stochastique non

linéaire

2.1 Equation différentielle stochastique linéaire

Le but des équations différentielles stochastiques est de fournir un modéle mathéma-
tique pour une équation différentielle perturbée par un bruit aléatoire. Considérons une
équation différentielle ordinaire de la forme :

i(t) = b(t, z(t)). (2.1)

ot linconnue est une fonction x(t) qui doit vérifier une équation impliquant sa dérivée
xet elle méme. Les cas les plus simples sont les équations différentielles d’ordre 1 comme
n (2.1) (seule la dérivée 1ére est impliquée) avec b(t,x) = b+ cx indépendant de t et

affine par rapport a y. Symboliquement, ['équation (2.1) se récrit :

dz(t) = b(t, z(t))dt. (2.2)

Une telle équation est utilisée pour d’écrire ’évolution d’un syséme physique. Si [’on
prend en compte les perturbations aléatoires, on ajoute un terme de bruit, qui sera de la
forme odB,, ou B désigne un mouvement brownien et s est pour linstant une constante
qui correspond a l'intensité du bruit. On arrive a une équation différentielle "stochastique”

de la forme :

dXt == b(t, Xt)dt + O'(t, Xt)dBt (23)

19
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2.1.1 Définitions

En fait, 'écriture (2.3) est symbolique car dI5; n’a pas vraiment de sens (le mouvement

brownien n’est pas dérivable!). Il faudrait écrire (2.3) sous la forme :

t t
Xe=Xo+ / b(s, X,)ds +/ o(s, Xs)dBs. (2.4)
0 0

Définition 2.1.1.1. (EDS) On appelle équation différentielle stochastique (EDS) une

équation en le processus X (a valeurs dans R?) de la forme :

dX, = b(t, X,)dt + o(t, X,)dB,  (E(b,0))

ce qui, en terme intégrale, s’écrit :

t m t
XZ = Xé + / bi(S,Xs)dS -+ Z/ O'Z"j(S,Xs)ng, 1 S ) S d. (25)
0 j=1 0

Ou, pour m,d des entiers positifs,
— b(t,z) = (bi(t,x))1<i<a est un vecteur mesurable de R? défini sur
R, x R? appelé dérive ou drift de I’EDS,
— o(t,z) = (0,(t, ))1<i<a une matrice d x m mesurable définie sur
R, x RY appelé  coefficient de diffusion de I’EDS, et B = (B!,..,B™) est un
mouvement brownien standard en dimension m. La solution d’une EDS est une
fonction aléatoire. Il s’agit donc d’un processus qu’on note X = (X;)i>o. Plus
précisément, on a :
Définition 2.1.1.2. (Solution d’une EDS) On appelle solution de I’EDS E(o, s) la donnée
de :
— un espace de probabilité filtré (0, F, (Fi)i>0,P) satisfaisant les conditions habi-
tuelles.
— un (F;)=0-mouvement brownien B = (B, .., B™) dans R™ défini sur cet espace de
probabilité.
— un processus (Fy)iso-adapté continu X = (X1, .., X9) a valeurs dans R tel que
(2.4) soit vérifiée, c’est a dire, coordonnée par coordonnée, pour tout 1 < i < d :
(2.5).
Lorsque de plus Xo = x € R, on dira que le processus X est solution de E,(b, o).
On remarquera que lorsqu’on parle de solution de E(b,o), on ne fize pas a priori [’espace

de probabilité filtré ni le mouvement brownien B. Il existe plusieurs notions djexistence et

d’unicité pour les équations différentielles stochastiques
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2.1.2 Existence et Unicité

Définition 2.1.2.1. [9] (Existence, unicité des EDS) Pour 'équation E,(b,o) , on dit
quily a :
— Existence faible : si pour tout v € R?, il existe une solution de E,(b,c).
— Existence forte : si X est adapté par rapport a la filtration canonique de B.
— Unicité faibles : si de plus toutes les solutions de E.(b,c) ont méme loi.
—  Unicité trajectorielle : si, 'espace de probabilité filtré, (2, F, (Fi)io0, P) et le
mouvement brownien B étant fizés, deux solutions X et X! de E,(b, o) telles que
Xo = X, ps sont indistinguables .
Il y a unicité forte pour E,(b, o) si pour tout mouvement brownien B, deuz solutions

fortes associées a B sont indistinguables.

Théoréme 2.1.1. [(](Yamada- Watanabe).
FExistence faible et unicité trajectorielle impliquent unicité faible. De plus, dans ce cas, pour

tout espace de probabilité filtré (0, F, (Fi)i0,P) et tout(Fi)i>o -mouvement brownien B,

il existe pour chaque x € R une (unique) solution forte de E,(b,o).

Théoréme 2.1.2. [12] Si o et b sont des fonctions continues, telles qu’il existe K > 0 et

pour tout x,y € R? .
1) Condition de Lipschitz :

2) Condition de croissance :

o (£, )] + [b(t, 2)| < K(1+ |x]).

3) La condition initiale x est de carré intégrable i.e :

E(1Xo)?) < 0.

Alors E.(b,0) posséde une unique solution dans l'intervalle [0.T].De plus cette solution
X, vérifie :

E[sup | X, |!] < +oo.
0<t<T
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2.2 Equation différentielle stochastique non linéaire

On considére Y = (Y})¢cpo.r) un processus a valeur dans R alors considéré un system
d’équation non linéaire :

dY, = b(t,Y;)dt + o(t,Y,)dB,. (2.6)

ou b(t,Y;) et o(t,Y;) coefficients non linéaire.

2.2.1 Existence et Unicité

Théoréme 2.2.1. [1] Il existe C > 0,e > 0 et pour tout x,y € R? .
1) Condition de Lipschitz :

|o(t, ) = a(t,y)| + [b(t, ) = b(t,y)| < O]z —yl.

2) Condition de décroissance linéaire :

lo(t,2)| + [b(t,2)] < C(1+ /]z]).

3) léquation différentielle stochastique (2.6) admet une solution unique Y; a valeur
dans R continue presque surement et satisfait la condition initiale Yy = yo
["unicité est dans le sens que st X; et Yy sont deuxr solution continues presque
surement telle que Y; = X; alors :

Plsup | X;—Y;|>0]=0.

0<t<T

Proposition 2.2.1.1. [?/(Stroock, Varadhan).Soit I’équation différentielle stochastique

sutvante :

dY; =V (t,Yy)dt + Y o™ (t,Y,)dB]. (2.7)
j=1
Tel que Yo = yo et i = (0,1,...,n).le coefficient b est mesurable et borné,le coefficient o

est continu et borné et pour tout t > 0,x € R™ alors il existe une constante (t,z) > 0 tel
que :

lo(t, )Ml = e(t, z)[|All (2.8)
A € R™ et qu’il existe une solution de I’équation qui est unique en loi , c’est a dire solution

faible.

Remarque 2.2.1.1. [15]
1- Pour la condition de Lipschitz soit satisfaite, il suffit que b(t, x) et o(t, z) admettent

des dérivées partielles continues et bornées pour tout t € [0.T].
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2- on peut remplace la condition de Lipschitz global par une condition local :

VN > 0.3Ky > 0 tel que Vt € [0.T]¥(z,y) € R%,|z| < N,|y| < N :
0(t,2) = o(t, )| + Ib(t, ) — b(t, )] < Kl — .

3- Dans le cas d’un équation différentielle stochastique autonome c’est a dire o(t,z) =
o(x) et b(t,z) = b(z) la condition de restriction sur la croissance est conséquence
de la condition Lipschitz.

4- Dans de nombreux cas le processus solution d’une équation différentielle stochas-
tique non linéaire est un processus de diffusion. Il est donc complétement défini
par sa famille de probabilités de transition qui peut étre construite explicitement en
résolvant une équation linéaire dite de Fokker-Planck (EFP) associée a l’équation

différentielle stochastique non linéaire.

2.3 La résolution des EDS non linéaires

2.3.1 la linéarisation statistique EDS non linéaires
Théoréme 2.3.1. [8] (Théoréme d’inverse local). Soit Q) est un ouverte de E et

f Q— FE.
Wi = f(w)

une fonction de classe (C"'continue et différentiable).
Soit wy € Qxg = f(wo).Supposons que df (xg) (c-a-d df (wo) # 0)alors, il existe un voisi-
nage U(wy) de xo et un voisinage V(o) de xq tel que la restriction de f alU(wy) soit une
bigection de U(wg) sur V(x).

En autre,la réciproque :
7 V(xg) — Uwo)
7Y est de classe C'(si f est de classe C* k € N*,alors f=1 est également de classe C*).
Proposition 2.3.1.1. [7] Soit I’équation EDS non linéaire suivante :
dY; = b(t,Y,)dt + o(t,Y;)dB;. (2.9)

On peut écrire l’équation (2.9) sous forme d’une EDS linéaire d’aprés la méthode de li-

néarisation et on trouve la forme suivante :

dX; = (bi(t) Xy + ba(t))dt + (01(t) Xy + 02(t))dBs.
(2.10)
X =u(t,Yy).
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b(t,Y;) = bi(t)u(t, Y;) + ba(t).
o(t,Y;) = o1 ()ult, V) + oa(t).

Si g—;(t, y;) # 0 d’apres le théoréeme d’inverse (2.3.1) il existe un inverse locale y = v(t, x)et
x =u(t,y) et la solutionY; est de la forme Y, = v(t,u(t, X)) .

On doit définir les condition de u(t,Y;) :
L’application de la formule d’It6 de wu(t,Y;) permet d’écrire :

dX, = du(tY)).

= Bu(t, Ya)dt + 54(t, Vi) dy + 5[5 (1, Vi) dtdt + 2225 (t, ;) dtdy + 54 (8, Y)dydy).

o2 otdy

Si Y; est un processus d’'Ito6 a valeur dans R, on peut définir une régle de calcul formelle
pour d < Y)Y >, par :

d<Y,Y >=dY,dY,.
dtdt = 0.
dBtdBt - dt

Alors :

d<Y,Y > =dY,dY,.
= o(t,Y;)dt.

En remplacent dY; par son expression (2.9) on trouve :

ou 1 0%u
a—y(t,Yt) - —02(15,}@)(9 :

> (&, Yodt + o(t, i) 2

0
X, = [a—?@, Y;) + b(t, Yy)

Alors X; = u(t, ;) est la solution approximative de I’équation (2.9) alors on identifie

I'équation (2.10) a I’équation dX; on obtient :

Bu(t,Y)) + b(t, V) 34(t,Ys) + 50%(8, V) S8(8, Y2) = b () X + ba(t).
(2.11)
o(t,Y:) 5a(t, i) = 01 (1) X + 0a(t).

ol

0 (1,Y,) + b(t, YI)24(1, ) + Ao2(, Vi) 281, Y7) = by(t)ult, Yi) + ba(0).
(2.12)
o(L V)21, Y5) = oy (t)ult, Vi) + o (2).
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2.3.2 Les conditions de réductibilité ’EDS non linéaire a un EDS
linéaire
Soient

(8, Y)) + b, V) 548 Y:) + 302(8, ) GE (1. Y:) = bi(D)u(t, Vo) + ba(D). (%)

o(t, ) Ga(t, V) = oa(t)u(t, Vi) + oa(t). (%)

(2.13)
On dérive équation (x) par rapport a y et on écrit :
2u (1Y) = 2 (ult, Vi) + bat) — b(E Y2 (Vi) — Lo?(t, V) 24 (1, Vo))
= bigy (1, Y2) = 5,(1, Y235 (8, ) — b(t, mg—u Vi)
—30°(LY) G5 (1Y) — oY) 52 (1. V) 33 (1. ).
Alors :
A0 = (nlt) = 56 )51, Y0) — (008, V) + o (8 Y55 YNGEEY) 51
Bu :
—302(t, Yy) 5,5 (1, Y2)

ou dérive aussi d’équation(*x) par rapport a t et on écrit :

2 (a(t, V) 22(t, V) = (o(Dult, Ys) + 0a(t))
2 (1, V) 22(1, Y;) + 01, Y 2o (1, Y3) = o (Du(t, Vi) + 03(t) + 01 (1) 228, V7).

alors :

0%u ou oo ou

(1) gy (1¥0) = AL (Bult. Vi) + 03(0) + ()5 (1Y7) = GLEV) S0 YD), (215)

On dérive aussi I’équation (xx) par rapport a y et on écrit :

oy (0(t, V) Gu(t, V7)) = a( 1(Oult, Yy) + o2(1)).
921, Y1) 341, Ya) + o (, Vi) 54, Y1) = 01 (8) G2, Vo).

donc :

0%u ou ou

o6, Y0 55 (1. Y5) = ou(D 5 (1. Y0) = 5 (6 Y 5 (Y0, (216)
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On a d’aprés I’équation (*x*) on a :

ou 1
a—y(t,Yt') = m(al(t)u(f,m + 02(t)). (2.17)

On introduit I’équation (xx) dans I’équation (2.15) on trouve :

82 1

oo ou
[(o1(2) — @—y(ta Y;))é)_y(t’ Yi)l.
SHtY) = m[ww 9 (,Y,)) 34 (1, Y))]
U(let)[(al(t) (t Yt))g(t yt)( 1(D)u(t, Yy) + o2(2))].
Alors :

0%u 1 do
a—yg(’fayt) = m(al(t) - a—y(t,Yt))(al(t)u(t,}Q) + 02(1)). (2.18)

d’aprés I'équation (x)on a :

ou
ot

0*u

it y,) = b(t,mg—Z(t,m ¢

o2t Y;) S (1, YOy ()u(t, Yo)ba2). (2.19)

1
27
on introduit les équations (2.16) et (2.17) dans l’équation précédente équation et on

trouve :

G (Y = =b(t.Y) [y (or(t)ult, Yo) + 02(t)] = 30°(t Vo) [y (01 (1)
—22(t,Y,)) (or ()u(t, i) + oa(t))] + ba (B)u(t, Yi)ba(t).

Alors
Ju B b(t,Y;) 1 Jo
5 (Y0 = (@ (u(t,Y) + oalt))l= g = 5(o0(8) = G (L Y]+ bu(Oult, Y0+ o).

(2.21)
on introduit les équations (2.15),(2.17),(2.18)dans 1'équation (2.14) :

—10%(6, V) SH(LY)) = 2(8,Y0) + (84(8,Y7) — b () 22(1, V)
+(b(t, V7) + a(t,n>§—;<t,n>>82z< V).
= o (Bult, i) + o5(t) + o1 () 3 (L, V)
B (t,Ys) sy (o1 (H)ult, i) + 0a(t))]
+(2(t, n)—m())gm( <t>u<, Ys) + 0a(t) + (b(t, V)
+0(t, Y1) 22 (V) sy (01 (8) — 228, Y0) (01 (B)ult, Vi) + 0a(1)).
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En partant de I’équation (2.21),on a donc trouvé :

ALY sl 1 0ult, YD) + (0) + 5580 ¥)
+< y %—(t Yy) = bi(t) + 22(t, Y0)) sty (01 (Bu(t, i) + 0a(1))
(

<b(t’Yt) + o (t, V) 57 (6, Y0) (g (01 (8) — 55

2.3.3 les caractéristiques de X; = u(t, YY)
Les caractéristiques de X; = u(t,Y;) :
u:RT xR+—R

1- u est de classe C3(R).

2- u continue dérivable sur RT.

3- u vérifie les condition de Cauchy Schwartz u € C*(R).

2.3.3.1 La formule de u(t,Y;)

On suppose X; = u(t,Y;),l’équation (2.13) en ecrire sous forme :

Bu(t,Y)) + b(t, V) 54(t, Ys) + 50%(8, V) S8(8, Y2) = bi(t)ult, i) + ba(t)
(2.22)
a(t, Vi) §e(t, Yi) = ar(tu(t, V) + oa(t)

Dans ce cas on suppose que o(t,y) # 0 et o1 # 0 D’apres 'équation (%) (un equation

différentielle ordinaire) la solution de cette equation est :

u(t,Y;) = —C’ng;exp(al(t) /0 ’ ﬁdz) . Zi—g (2.23)



Chapitre 3

La recherche des coeffcient A’EDS

linaire

3.1 les caractéristiques de EDS linéaire

3.1.1 Proposition

1- PEDS est homogéne si by(t) = 0 et o5(t) = 0.
2- PEDS est autonome si by(t), ba(t),01(t) et oo(t) sont des constantes.
3- PEDS est un bruit additif si b;(¢) = 0 et a un bruit multiplicatif si by(t) =0 .

3.1.2 TI’EDS linéaire est autonome

- Si tout les coefficients by (t), ba(t),01(t) et o2(t) sont des constantes :

Be(t,Y;) + b(t, V) 92(8, Y2) + 307 (8, V) 4 (1, Y3) = bru(t, Yy) + bs. (%)
(3.1)
o(t, K)g—;‘(t, ;) = oqu(t,Yy) + 0. (xx)

En résoudre la solution générale d’équation (xx) prise en compte des condition sur les
coefficients, ensuite, nous allons compenser la valeur de u(t,Y;) dans 'équation (%) pour
trouve les coefficients b (t), ba(t) .

La solution générale d’équation (k) est :

y
u(t,Y:) = —Cg—ie:cp(al/o ;dz) S (3.2)

o(t.z) o1

28
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D’apres le calcule des dérive partielle par rapport a t et par apport a y on a :

du a.(v 1 v
= "Gyl /0 otz exp(on /0 i)
ou 09 v o1
oy _Ca(t,Y;) exp(01/0 a(t.z)dz)

0*u oy Oo vl 09 v
o C 2(1.Y,) By —(t,Yy)exp(o /0 J(t.z)dz) _C—UZ(t,Y})Ul exp(al/o a(t.z)dz)

Alors D’apreés 1'équation (x) trouve :

0 0 1 9%u
G (6D DY) 5 (0Y0) 50 (Y0 g (1Y) = b8, Vi) + s
v ol 1 b(t,Y,) 100 1 by
— - il - — 222 (tY, o — —
= e (”/ o(@z)dz} [at [/ a(t,z>dz]+o<t,m 2y TR TG,
b
= ——0y + ba.
01

On dérive cette equation par rapport a y (pour réduire le nombre de variable) :
tY; 25
_CO-QGXp g1 fO at dZ Oy(’)t fO atz d2—|— [ (( Yt))]_%g?(t’y;)

o a b(t,Yr) o1 10c o} b
+ tlYt ot fo a( tz)dz + 010—2(::,;/,5) - a(t,lYt)ia_(t Yt) + (tlYt) - a(tlYt)]] 0

0 (/y (1 dz)Jrag[b(t,Y;)] 10°0 (th)

dyot o(t, z) o(t,Y;) 20y
oo 0.V 1 b(t,Y:) op 10o 1 o? by
o B LY 4 - _ —
el sa gt e syt e s =

on écrire cette égalité sous forme :

ol A(t,y) + la%+B(t y) —bi] = 0.
Alty) =& | side] + 5535 - 12 (7).
B(t,y) = o (t,Y:) 505

dyot fO o
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On dérive cette équation par rapport & y on obtient alors :

Si %(t,y) #0ona:

donc :

— Sio(t) #0=ul(t,y,) = —C’ng exp (01(t) /Oy 1 dz> _ Oz(t)_

— Sio(t) =0=u(t,y) = os(t) (/Oy 1

o(2)

Alors la forme de constante b; d’apres I’équation (3.3) est :

dz) +C.

1
bl - UlA(ta y) + 50-% + B(ta y)

Nous allons obtenir la valeur de la seconde constante oy a partir de la premiére valeur
de la constante o; pour compense la premiére dans I’équation (3.1) et la correspondance.

De méme pour obtenir la valeur de la constante by
Exemple : On a 'EDS de la forme :

1
dY, = 5 €XP (—2Y};) dt + exp (—Y;) dB;

1- On faire un changement de variable de la forme X; = u (Y})

2- on calcule A(y) :

Cb(t,Y,) ldo,
(y) = cGY) §d—y(y) =

3-la formule de u est :

ww:axﬂ(42£5@>+c

oa(t) = C =1 et by(t) = by(t) = 0,

alors dX; = dB;, la solution de 'EDS non linéaire est :

Y; = In[B; + exp (Yp)]
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3.1.3 I’EDS linéaire est homogéne
Si bg(t) =0et Uz(t) = 0,
d’aprés les condition I'équation (3.1) écrire sous forme :
(6, Y,) + (1, Y) 3 (8, Y)) + 50°(6, Y) G (1. Y)) = bi(t)ult, Vi) - (+)
(3.4)

ot Y21, Y)) = o (Dult,Yy)  (+3)

On recherche la valeur de oy(t) et de by(f) de la méme maniére utilisé dans le cas
précédent :

La solution générale d’équation (k) est :

w(t,Y;) = Cexp <01(t) /O ’ @dz) |

En dérive le u (t,Y;) par rapport a t et y(pour réduire le nombre de variable) :

0

a_lz(t7}/;):C’eXp (al(t)/oy U(iz)dz) :ag [/Oy U(;Z)dz] +al(t)% on U(tl’z)dz”.

Z_Z (t,Y;) = Cexp (01(75) /Oy J(tl, Z)dz) :02,(%)} '

G (9= o (20 [ si5%) |G 3)) -5 ) v

Nous compenser ces valeur dans ’équation () nous obtenir :

ou Ou 1 P®u

Ce 1 fo U(tz dZ j;) atz dZ :1 68 fO a(tz dZ) 01<t) ((tﬁy/i)) %U%<t)
——10()E (t,Y2)] = by (t)Cexp( (t)/y L)
ETP\O z
! Y ! ! ! 0 O(t,Z)

(on a le terme : C'exp <01 fo 7 tlz) dz> >0 ) alors :
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i) [ s +og ([ sia) + o0y et

1 do
_§Jl<t>6_y (t,Y;) — bi(t) = 0.

en dérive par rapport a y (pour réduire le coefficient by(¢)) on va trouve :

0 [ st o0 [ ) 0 [ )]

o(t,z)

:iigg B _a% [foy : 1 dz} {85{91& </0y U(tl, Z)dz) i 8%/ B((i:};%)) - %Z_Z <t7Yt)1

On pose :

vt o [ )+ (3) L]

Alors :

o1(t) = Coxp (/OtK(t,Yt)),

est by (t) est un valeur de forme :

bi(t) = o [/Oy ﬁd ]m( )gt (/y ﬁw) al<t>%+%am)—%m(w% (1Y),

3.1.4 TI’EDS linéaire un bruit additif

Dans ce cas on pose que o1 = 0 et by = 0 alors en écrire le systéme sous forme :

% (1, Y;) + b(t, Y2 (1, Yi) + 202(6, YD) L2 (1, Y:) = balt) (%)

o(t, V) Gu(t,Ye) = oa(t)  (x%)
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En dérive I’équation (xx*) par rapport a t et y :

oy |7 (Y0 G (1. Y0)| = 5 [oa(t)] & &’(t Y) 54 (8, Y)) + oY) 55 (1Y) =0 (9)
2ot Y) 2 (Y| = Zloat)] & L (£Y) 3 (1Y) + 0 (1Y) Sk (1Y) =0 (@)

en dérive aussi I'équation (x) par rapport ay :

aia“y = YD e ) — b6 YD S (070 — 507 (YD 55 1Y)
(1Y) 92 (430 55 (1Y)
d’apres I'équation (&)
oh(t) = gt (t.Y) g;‘ (t.Y) + 0 (t,Y) 68; (t,Y)
o130 | s T V) S ) + S (1)
— o (13 |y g (Y0 e Y0 - () S ) b0 YD S %)
- 3O YD SR ) — o (1Y) 52 (1Y) 58 (1)
d’apres les deux équation (xx) et (©) on a :
40 =0 (03 |y 7 Do) = g i (D en) + TS (0, B .10
) G ) B ) — 5o 13 S 30|

2
_ 1 9o a | b(t,Y2) 1 do 102%(t,Y%) 93u
= oa(t)o (t, 1) [wa (1Y) — & | 955 ] + it (B () - 35508 (v

On a d’apres I’équation (©) on a :

6 80 (’9u 82
0o ou Oo 9%u u
:>a—y2(t7yt)a—y(t,yt)+28—y t,Y:) 5 B t,Y:) +otY:) 5 B (t,Y:) = 0.
u 0o ou oo 0*u
(1Y) 58 (110 = — 5.3 (YD) 5 (1.0 — 257 (1Y) 55 (1Y)
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Alors :

1 do > 102(t,Y)) OPu
— (Y] —-= ~ (LY.
o (t, Y;) (ay (ta t)) 2 O'g(t) 8y3 <t7 t)

_1lao(t,Y:) 0o du o (t,Y;) do 0?u 1 (80’ )) 2

_2 0_2<t) a_yg<t7y;f>a_y(t>n)+ 0_2(t> a_y(t’yt)a_y?(t’n)—i_a(t,ﬁ)

1 0% 1 Oo do ou 1 Jdo 2
=3 ) o 00 (g e gre) s (5) )

10%
“zop M
En remplace cette valeur a 1’équation :

O'é(t) = 0'2<t)0' (t,YD |:0_2 (i}/;)((;_(; (t’th) - % |:O' (uY;)

b(t,Y, 1 0?
o) * 2 0]

On suppose que :

1% = [ S vy -y o | K] ZOT Sy
Alors :
20—
(38 [
— oa(t) = Cleap (/{:V (5,Y2) ds) ,
donc :

g_z =o(0)7 (iYg) = ultY) = ot (/Oy o (tl, zﬁdz) '

On remplace u (¢,Y;) dans I’équation (%) est on trouve la valeur de by(t).
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3.2 Exemple

On définie une équation différentielle stochastique non linéaire :

1
dY; = (sin(2Y;) — §Sin(4Yt))dt + 2c0s*(Y;)dB;.
On linéarisé cette équation au forme :
dXt = (let + bz)dt + (0'1Xt + Ug)dBt.

(3.6)
X = u(Yy).

Telle que les coefficients by, by, 01 et 09 sont des constante.

D’apres les conditions ’EDS est autonome on a :
1- On calcule la valeur A (Y;) :

Indication : .

cos(2x) = cos?(x) — sin®(z).
= 2cos*(x) — 1.

- sin(2x) = 2 cos(z) sin(z).
b(Yy) 100

O e -1.0]
_ (sin (220;2%2;(4“)) 12 o)
= Seos 1) Leos 7~ aon (20509
= Seoolh) [ 7y 209
_ 2813022(3 1(Y> —2cos (Vi) + % T 2cos m)} |

- ; i’fifé?fm {2@/)] ‘

= 2tan (Y;).
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2- On calcule le valeur de oy :

alors :

9B(t,y)
— 9y
1= T Aty
Oy
On a dans ce cas %—? =0..
0A 5 2
B(Y,) = U(Yt)a—y (Y1) = 2cos™ (V) o (V) 4.
— o1 = 0.
- D’apres l'équation (3.1) :
09 = 1.

3- Valeurs b; et by d’apres I’équation (3.3) on a :

1
ol A(Y;) + 50% + B(Y;) — by = 0.

alors :
by = B(Y;) =4.

. et
by = 0.

Alors 'EDS linéaire a coefficients constantes est :

dXt == 4Xtdt —|— dBt

la solution de EDS est :

X, = exp(4t) {XO + /0 t exp(s)st] . (3.7)
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Ona:

u(Y:) = Xy <= X; = 2tan (Y;) . (solution approché ) .

1
= Y, = arctan (§Xt> . (solution exacte) .



Conclusion

En conclusion, nous avons pu voir clairement l'intérét énorme de la technique d’ap-
plication du calcul stochastique sur les équations différentielles stochastiques .Cet intérét

nous permet de créer des liens féconds entre processus stochastiques et EDP.
On a étudié une méthode de résolution d'une équation différentielle stochastique non
linéaire par les techniques de linéarisation statistique. Cette méthode a été utilisée pour

convertir I’équation non linéaire en une équation linéaire en utilisant la formule d’Ito

On termine ce travail avec la recherche des coeffcient d’EDS linaire et un exemple

d’équation différentielle stochastique non linéaire. .
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