
N◦ Attribué par la bibliothèque

Année univ.: 2020/2021

République Algérienne Démocratique et Populaire
Ministère de l’enseignement supérieur et de la recherche scientifique

Etude des équations différentielles
stochastiques non linéaire

Mémoire présenté en vue de l’obtention du diplôme de

Master Académique

Université de Saida - Dr Moulay Tahar

Discipline : MATHEMATIQUES

Spécialité : ASSPA

par

Herbache Abdelkader 1

Sous la direction de

Dr . N Ait ouali

Soutenue le 14/07/2021 devant le jury composé de

Pr. S.Rahmani Université Dr Tahar Moulay - Saïda Président

Dr. N.Ait Ouali Université Dr Tahar Moulay - Saïda Encadreur
Dr. Mlle.F.Benziadi Université Dr Tahar Moulay - Saïda Examinatrice
Dr. S.Idrissi Université Dr Tahar Moulay - Saïda Examinatrice

1. e-mail : herbachekada1998@gmail.com



.



Table des matières

1 Calcul stochastique 9
1.1 Processus stochastiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Mouvement Brownien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Les accroissements du mouvement brownien . . . . . . . . . . . . . 10
1.2.2 Quelques propriétés du mouvement brownien . . . . . . . . . . . . 11

1.3 Intégrale Stochastique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Cas de processus étagés . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Calcul d’Itô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Processus d’Itô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Propriétés d’Itô . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 Formule d’Itô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.4 La formule d’Itô multidimensionnelle : . . . . . . . . . . . . . . . . 18
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Introduction générale

Les équations différentielles stochastiques jouent un rôle important dans les appli-
cations mathématiques, principalement,dans la modélisation des phénomènes réels phy-
siques, biologiques,... dont laspect aléatoire est un élément essentiel dirigeant.

Le concept d’équation différentielle stochastique généralise celui d’équation différen-
tielle ordinaire aux processus stochastiques. La formalisation théorique de ce problème a
posé problème aux mathématiciens et il a fallu attendre les années 1940 et les travaux du
mathématicien japonais Itô Kiyoshi pour la défnition de l’intégrale stochastique. Il s’agit
d’étendre la notion d’intégrale de Lebesgue aux processus stochastiques relativement un
mouvement brownien. A partir de la théorie de l’intégration, on construit la théorie des
EDS.

On marque que, la plupart de ces équations qui suivent la forme d’équation stochastique
sont non linéaire.

La méthode de linéarisation statistique nous amène à imposer une approche qui nous
résout la complixité du aux limitations trouver dans l’étude des équations différentielle sto-
chastique . La méthode si-dessous n’est qu’une transformation de l’équation non linéaire
par une équation linéaire.

On commence le premier chapitre par un bref rappel sur les principales notions utili-
sées tout le long de ce travail, On donnera les propriétés du mouvement brownien ainsi que
celles des martingales qui seront utiles pour cela. Aprés avoir présenter quelques résultats
importants relatifs à l’intégrale stochastique, on verra comment il peut ètre mise en oeuvre
pour la résolution des équations différentielles stochastiques.

Dans le second chapitre consiste à une introduction à la théorie des équations diffé-
rentielles stochastiques. On étudie comment résoudre non linéaires la méthode de linéarité
statistique .
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Et pour terminer, on recherche des coeffcient d’EDS linaire et on résoudre quelque
exemple d’équations différentielle stochastique non linéaire et ces solutions.



Chapitre 1

Calcul stochastique

Dans ce chapitre, on commence par des rappels fondamentales liées aux Calcul
stochastique et nous commençons par les définir.

1.1 Processus stochastiques

Un processus stochastique est un modèle mathématique pour décrire létat d’un phé-
nomène aléatoire évoluant dans le temps.
Processus stochastique, fonction aléatoire ou signal aléatoire en sont des synonymes.

Définition 1.1.0.1. Soit (Ω, F,P) un espace de probabilités .
On désigne par T l’ensemble des temps. On appelle processus stochastiques toute applica-
tion de T × Ω dans E :

(t, w) ∈ T × Ω −→ Xt(w) ∈ E.

On note X ou (Xt, t ∈ T ) cette application.

Définition 1.1.0.2. Généralement Xt représente l’état du processus stochastique au
temps t :

1- Si T est un intervalle [a, b] on dit que l’étude se fait en temps continu.

2- Si T est formé d’une suite d’observations t0 = 0 < t1 < t2 < ... < tn < .. , on dit que
l’étude se fait en temps discret.

9
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Remarque 1.1.0.1. On peut voir un processus comme une fonction qui à ω ∈ Ω associe
une fonction de [0, T ] dans R,t −→ Xt(w) appelée trajectoire du processus.

1.1.1 Filtrations

— Une Filtration est une famille croissante de sous tribus de F c’est-à-dire telle
que Ft ⊂ Fs pour tout t ≤ s.

— Si (Ft)t>0 est une filtration de (Ω,F , (Ft)t>0,P) alors (Ω,F , (Ft)t>0,P) est appelé
espace de probabilité filtré.

— La tribu Ft représente l’information dont on dispose à l’instant t. On dit qu’un
processus (Xt)t≥0 est adapté à (Ft)t≥0 , si pour chaque t,Xt est Ft-mesurable.

— les ensembles négligeables sont contenus dans F0.
— La filtration est continue à droite au sens oùFt = ∩s<tFs.

1.1.2 Martingale

Définition 1.1.2.1. [17] Soit (Ω,F , (Ft)t∈T ,P) un espace probabilisé filtrée . Une mar-

tingale par rapport à une filtration (Ft)t∈T est un processus stochastique (Mt)t∈T tels
que :

1. (Mt) est Ft− mesurable pour tout t.

2. E(|Mt|) <∞.

3. E(Mt|Fs) = Ms pour tout s ≤ t.

1.2 Mouvement Brownien

Le mouvement brownien, ou processus de Wiener, est une description mathématique
du mouvement aléatoire d’une particule immergée dans un fluide
Un Mouvement Brownien est généralement noté B pour Brown ou W pour Wiener.

1.2.1 Les accroissements du mouvement brownien

Définition 1.2.1.1. [18] Une famille B = (Bt, t ≥ 0) de variables alétoires réelles est un
mouvement brownien si :

1. la fonction t 7−→ Bt(w) est continue sur R+ p.s.

2. ∀ 0 ≤ s ≤ t, la variable aléatoire Bt −Bs est indépendante de Fs.

3. ∀ 0 ≤ s ≤ t,Bt −Bs est de loi N (0, σ2(t− s)).
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Remarque 1.2.1.1. Un mouvement brownien est dit standard si :

B0 = 0, σ = 1 p.s.

Définition 1.2.1.2. Lorsque (Ft)t≥0 est la filtration naturelle de (Bt)t≥0 on dit que B
est un mouvement brownien naturel.

1.2.2 Quelques propriétés du mouvement brownien

Proposition 1.2.2.1. [16] (Processus gaussien) Le processus B est un processus gaussien,

sa loi est caractérisée par son espérance nulle E(x) = 0 et sa covariance Cov(Bt, Bs) =

s ∧ t.

Proposition 1.2.2.2. [5]
Si B est un mouvement brownien .Les processus suivants sont aussi des mouvements

browniens.
i) Xt = −Bt (symétrie).

ii) Soit c > 0 fixé , Xt =
Btc√
c
pour t ≥ 0 (Scaling).

iii) Xt = tB1/t ∀t > 0 et X0 = 0 (inversion du temps).

iv) Soit r > 0 fixé ,Xt = Br −Br−t, t ∈ [0, r](retournement du temps).

Théorème 1.2.1. [4] (Propriétés des trajectoires).
— Le M.B. n’est à variation finie sur aucun intervalle.
— Le M.B. n’est dérivable en aucun point.
— lim supt→∞Bt = +∞ et lim inft→∞Bt = −∞.

Proposition 1.2.2.3. (Propriétés de martingale)

— Tout mouvement brownien est une martingale relativement,
i.e : pour tout s ≤ t,E(Bt|Fs) = Bs.

— Tout mouvement brownien est un processus à accroisement indépendants,
i.e : Pour tout s = t0 ≤ t1 ≤ ... ≤ tn,les variables aléatoires Btk−Btk−1

,(k = 1, ..., n)

sont indépendantes et indépendantes de la tribu Fs.
— Si B est un mouvement brownien , le processus (B2

t − t)t≥0 est une Ft-martingale.
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1.3 Intégrale Stochastique

On veut généraliser l’intégrale de Wiener et définir
∫ t
0

ΦsdBs pour des processus sto-

chastiques Φ.

1.3.1 Cas de processus étagés

On dit qu’un processus Φ étagés (élémentaire) s’il existe une suite de réels tj, 0 ≤
t0 ≤ t1.. ≤ tn et une suite de variables aléatoire Φj telles que : Φj soit Ftj mesurable,

appartienne à L2(Ω) et que Φt = Φj

pour tout t ∈]tj, tj+1],soit :

Φs(w) =
n−1∑
j=0

Φj(w)1]tj ,tj+1](s)

∫ t

0

ΦsdBs =
n−1∑
j=0

Φj(B(TJ+1 ∧ t)− B(Tj ∧ t))

On définit alors :

∫ ∞
0

ΦsdBs =
n−1∑
j=0

Φj(B(tj+1)− B(tj))

on a :

. E
( ∫ ∞

0

ΦsdBs
)

= 0

. var
( ∫ ∞

0

ΦsdBs
)

= E[(

∫ ∞
0

Φ2
sds]

On obtient :
∫ t

0

ΦsdBs =
n−1∑
j=0

Φj(B(tj+1 ∧ t)− B(tj ∧ t)) ce qui établit la continuité de

l’application t −→
∫ t

0

ΦsdBs.

Si Tj, 0 ≤ T0 ≤ T1.. ≤ Tn est une suite croissante de temps d’arrêt, et si Φs =
n−1∑
j=0

Φj1]TJ ,TJ+1](s)

ou Φj est une suite de variables aléatoires telles que Φj soit FJ -mesurable, appartienne à

L2(Ω), on définit alors :
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1.3.2 Cas général

On peut prolonger la définition de l’intégrale de Wiener à une classe plus grande de
processus. On perd le caractère gaussien de l’intégrale, ce qui est déja le cas pour le cas
de processus étagé.On définit les processus càglàd de carrée intégrable (appartenant à

L2(Ω × R+) comme l’ensemble Γ des processus Φ adaptés continus a gauche limites a

droite, (Ft)-adaptés tels que :

E
[ ∫ ∞

0

Φ2
tdt

]
≤ ∞

Les processus étagés appartiennent à Γ.

On dit que Φn converge vers Φ dans L2(Ω×R+) si : ‖ Φ− Φn ‖2−→ 0 quand n −→∞

L’application Φ −→‖ Φ ‖ définit une norme qui fait de Γ un espace complet. On peut

définir
∫ ∞
0

ΦsdBs pour tous les processus Φ de Γ :on approche Φ par des processus étagés,

soit Φ = lim
n−→∞

Φn ou Φn =

k(n)∑
j=1

Φ̃n
j 1]tj ,tj+1] ,avec Φn

j ∈ Ftj la limite étant au sens de

L2(Ω×R+).

L’intégrale
∫ ∞
0

ΦsdBs est alors la limite dans L2(Ω) des sommes

k(n)∑
j=1

Φ̃n
j (B(tj+1) − B(tj))

dont l’espérence est 0 et la variance :

E[
∑
j

Φ̃2
j(tj+1 − tj)]

On a alors :

. E(
∫∞
0

ΦsdBs) = 0

et

. E(
∫∞
0

ΦsdBs)2 = E(
∫∞
0

Φ2
sdBs).

On note
∫ t

0

ΦsdBs
def
=

∫ ∞
0

Φs1[0,t](s)dBs. Si Φ est étagé on a :
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∫ t

0

ΦsdBs =
∑
i

Φi(Bti+1∧t − Bt∧t)

Plus généralement, si τ est un temps d’arrêt, le processus 1]0,τ ](t) est adapté et on

définit :

∫ τ∧t

0

ΦsdBs =

∫ t

0

Φs1]0,τ ](s)dBs

1.3.3 Propriétés

On note Λ l’ensemble L2
Loc(Ω×R+) des processus Φ adaptés càglàd vérifiant : E(

∫ t

0

Φ2
s(w)ds) <

∞,∀t

1.3.3.1 Linéarité

Soit a et b des constantes et(Φi, i = 1, 2) deux processus de Λ.
On a : ∫ t

0

(
aΦ1

s + bΦ2
s

)
dBs = a

∫ t

0

Φ1
sdBs + b

∫ t

0

Φ2
sdBs

1.3.3.2 Propriétés de martingale

Proposition 1.3.3.1. soit :

Mt =

∫ t

0

ΦsdBs

où Φ ∈ Λ

1. Le processus M est une martingale à trajectoires continues.

2. Soit Nt =

(
lim
n→∞

∫ t

0

ΦsdBs
)2

−
∫ 2

0

Φ2
sds le processus

(
Nt, t ≥ 0

)
est une mar-

tingle.

Définition 1.3.3.1. Toutes ces propriétés se démontrent pour des processus étagés, puis
pour les processus de Λ par passage à la limite. La propriété de martingale s’écrit :

E
(∫ t

0

ΦudBu/Fs
)

=

∫ t

0

ΦudBu,∀t ≥ s
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où

E
(∫ t

0

ΦudBu/Fs
)

= 0

et implique en particulier que :

E
(∫ t

0

ΦudBu
)

= 0

La propriété 2) équivaut à

E
[
(

∫ t

s

ΦudB)2/Fs
]

= E
[ ∫ t

0

Φ2
udu/Fs

]
Si l’on veut définir Mt pour t ≤ T , il suffit de demander que Φ ∈ L2(Ω× [0, T ]), c’est à

dire E
(∫ T

0

Φ2
tdt

)
< ∞ et que Φ soit adapté. Sous cette condition Mt, t ≤ T est encore

une martingale.

Corrollaire 1.3.1. L’espérance de Mt est nulle et sa variance est égale à
∫ t

0

E{Φs}2ds

Soit Ψ ∈ Λ. E(

∫ t

0

ΦsdBs
∫ t

0

ΨsdBs) = E(

∫ s

0

ΦsΨsdBs) Si

Mt(Φ) =

∫ t

0

ΦsdBs

et

Mt(ϕ) =

∫ t

0

ϕsdBs

Le processus Mt(Φ)M(ϕ)−
∫ t

0

Φsϕsds est une martingale.

Proposition 1.3.3.2. Pour tout t on a :
∫ t

0

BsdBs =
1

2
(B2

t − t)

Définition 1.3.3.2. ∫ t

0

BsdBs = lim
n→∞

n∑
i=0

Bti(Bti+1
− Bti)

L’égalité :

2
n∑
i=0

Bti(Bti+1
− Bti) =

n∑
i=0

(B2
ti+1
− B2

ti
)−

n∑
i=0

(Bti+1
− Bti)2
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montre que : ∫ t

0

BsdBs =
1

2
[B2

t − lim
n→∞

n∑
i=0

(Bti+1
− Bti)2] =

1

2
[B2

t − t]

1.4 Calcul d’Itô

La formule d’itô (ou formule de changement de variables) est un outil particuliérement
important dans l’étude des processus stochastiques. On a un M.B. d-dimensionnel.

1.4.1 Processus d’Itô

Définition 1.4.1.1. [3](Processus d’Itô ou semi-martingales).
Un processus X, à valeurs dans Rn, est appelé semi-martingale s’il se décompose

de la maniére suivante :

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs

.

∀t ≤ T p.s, avec X0 et K à valeurs dans Rn,H à valeurs dans Rn×d ,H ∈ H2 et

E(

∫ t

0

|Ks|ds) <∞

.

Cette décomposition, si elle existe, est unique.

1.4.2 Propriétés d’Itô

Théorème 1.4.1. [13] (Isométrie d’Itô).

Pour tout f ∈ V(a, b) nous avons la relation suivante :

E[(

∫ b

a

XtdBt)
2] = E(

∫ b

a

X2
t dt)

.



1.4.3 Formule d’Itô 17

1.4.3 Formule d’Itô

Théorème 1.4.2. [11] Premiére formule.

Soit f une fonction de R dans R, de classe C2 à dérivées bornées. Alors :

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)σ
2
sds

Théorème 1.4.3. Deuxième formule.
Soit (t, x)→ f(t, x) une fonction réelle deux fois diférentiable en x et une fois diférentiable
en t et X un processus d’Itô :

f(t, x) = f(0, X0) +

∫ t

0

f ′x(s,Xs)dXs +

∫ t

0

f ′x(s,Xs)ds+
1

2

∫ t

0

f ′′xx(s,Xs)d〈X,X〉s.

Proposition 1.4.3.1. (Formule d’intégration par parties).
Si X et Y sont deux processus d’Itô, alors :

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈X, Y 〉t

.

avec la convention que :

〈X, Y 〉t =

∫ t

0

HsH
′
sds

.

Démonstration :
On a, d’après la formule d’Itô :

(Xt + Yt)
2 = (X0 + Y0)

2 + 2
∫ t
0
(Xs + Ys)d(Xs + Ys) +

∫ t
0
(Hs +H ′s)

2ds.

X2
t = X2

0 + 2
∫ t
0
XsdXs +

∫ t
0
H2
sds.

Y 2
t = Y 2

0 + 2
∫ t
0
YsdYs +

∫ t
0
H ′2s ds .

D’où, en faisant la différence entre la première ligne et les deux suivantes :

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs +

∫ t

0

HsH
′
sds.
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1.4.4 La formule d’Itô multidimensionnelle :

La formule d’Itô multidimensionnelle se généralise aux cas où la fonction f dépend de
plusieurs processus d’Itô et lorsque ces processus d’Itô s’expriment en fonction de plusieurs
mouvements browniens.

Définition 1.4.4.1. On appelle F-mouvement brownien d-dimensionnel un processus à

valeurs dans Rd, (Bt)t≥0 adapté à Ft, avec Bt = (B1
t , . . . ,Bdt ),où les (Bit)t≥0 sont des Ft-

mouvements browniens standards indépendants.
On généralise la notion de processus d’Itô.

Définition 1.4.4.2. On dit que (Xt)0≤t≤T est un processus d’Itô si :

Xt = X0 +

∫ t

0

Ksds+
d∑
i=1

∫ t

0

H i
sdBis.

Où
— Kt et les (H i

t) sont adaptés à (Ft).

—
∫ T
0
|Ks|ds P p.s.

—
∫ T
0

(H i
s)

2ds < +∞ P p.s.

Proposition 1.4.4.1. [14] Soient (X1
t , . . . , X

n
t ) n processus d’Itô :

X i
t = X i

0 +

∫ t

0

Ki
sds+

d∑
i=1

∫ t

0

H i,j
s dBjs.

Alors si f est une fonction deux fois différentiable en x et une fois différentiable en t, ces
dérivées étant continues en (t, x) :

f(t,X1
t , . . . , X

n
t ) = f(0, X1

0 , . . . , X
n
0 ) +

∫ t

0

∂f

∂s
(s,X1

s , . . . , X
n
s )ds

+
n∑
i=1

∫ t

0

∂f

∂xi
(s,X1

s , . . . , X
n
s )dX i

s

+
1

2

n∑
i,j=1

∫ t

0

∂2f

∂xixj
(s,X1

s , . . . , X
n
s )d〈X i, Xj〉s.

où
— dX i

s = Ki
sds+

∑p
j=1H

i,j
s dBjs,

— d〈X i, Xj〉s =
∑p

m=1H
i,m
s Hj,m

s ds.



Chapitre 2

Équation différentielle stochastique non
linéaire

2.1 Équation différentielle stochastique linéaire

Le but des équations différentielles stochastiques est de fournir un modèle mathéma-
tique pour une équation différentielle perturbée par un bruit aléatoire. Considérons une
équation différentielle ordinaire de la forme :

ẋ(t) = b(t, x(t)). (2.1)

où l’inconnue est une fonction x(t) qui doit vérifier une équation impliquant sa dérivée
ẋet elle même. Les cas les plus simples sont les équations différentielles d’ordre 1 comme
en (2.1) (seule la dérivée 1ère est impliquée) avec b(t, x) = b + cx indépendant de t et

affine par rapport à y. Symboliquement, l’équation (2.1) se récrit :

dx(t) = b(t, x(t))dt. (2.2)

Une telle équation est utilisée pour d’écrire l’évolution d’un sysème physique. Si l’on
prend en compte les perturbations aléatoires, on ajoute un terme de bruit, qui sera de la
forme σdBt, où B désigne un mouvement brownien et s est pour l’instant une constante
qui correspond à l’intensité du bruit. On arrive à une équation différentielle "stochastique"
de la forme :

dXt = b(t,Xt)dt+ σ(t,Xt)dBt. (2.3)

19
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2.1.1 Définitions

En fait, l’écriture (2.3) est symbolique car dBt n’a pas vraiment de sens (le mouvement

brownien n’est pas dérivable !). Il faudrait écrire (2.3) sous la forme :

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs. (2.4)

Définition 2.1.1.1. (EDS) On appelle équation différentielle stochastique (EDS) une

équation en le processus X (à valeurs dans Rd) de la forme :

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (E(b, σ))

ce qui, en terme intégrale, s’écrit :

X i
t = X i

0 +

∫ t

0

bi(s,Xs)ds+
m∑
j=1

∫ t

0

σi,j(s,Xs)dBjs, 1 ≤ i ≤ d. (2.5)

Où, pour m,d des entiers positifs,

— b(t, x) = (bi(t, x))1≤i≤d est un vecteur mesurable de Rd défini sur

R+ × Rd appelé dérive ou drift de l’EDS,

— σ(t, x) = (σi,j(t, x))1≤i≤d une matrice d×m mesurable définie sur

R+ × Rd appelé coefficient de diffusion de l’EDS, et B = (B1, ..,Bm) est un
mouvement brownien standard en dimension m. La solution d’une EDS est une
fonction aléatoire. Il s’agit donc d’un processus qu’on note X = (Xt)t≥0. Plus
précisément, on a :

Définition 2.1.1.2. (Solution d’une EDS) On appelle solution de l’EDS E(σ, s) la donnée
de :

— un espace de probabilité filtré (Ω,F , (Ft)t≥0,P) satisfaisant les conditions habi-
tuelles.

— un (Ft)t≥0-mouvement brownien B = (B1, ..,Bm) dans Rm défini sur cet espace de
probabilité.

— un processus (Ft)t≥0-adapté continu X = (X1, .., Xd) a valeurs dans Rd tel que

(2.4) soit vérifiée, c’est à dire, coordonnée par coordonnée, pour tout 1 ≤ i ≤ d :

(2.5).

Lorsque de plus X0 = x ∈ Rd, on dira que le processus X est solution de Ex(b, σ).

On remarquera que lorsqu’on parle de solution de E(b, σ), on ne fixe pas a priori l’espace
de probabilité filtré ni le mouvement brownien B. Il existe plusieurs notions d4existence et
d’unicité pour les équations différentielles stochastiques



2.1.2 Existence et Unicité 21

2.1.2 Existence et Unicité

Définition 2.1.2.1. [9] (Existence, unicité des EDS) Pour l’équation Ex(b, σ) , on dit
qu’il y a :

— Existence faible : si pour tout x ∈ Rd, il existe une solution de Ex(b, σ).
— Existence forte : si X est adapté par rapport à la filtration canonique de B.
— Unicité faibles : si de plus toutes les solutions de Ex(b, σ) ont même loi.

— Unicité trajectorielle : si, l’espace de probabilité filtré,(Ω,F , (Ft)t≥0,P) et le

mouvement brownien B étant fixés, deux solutions X et X′ de Ex(b, σ) telles que

X0 = X
′
0 ps sont indistinguables .

Il y a unicité forte pour Ex(b, σ) si pour tout mouvement brownien B, deux solutions
fortes associées à B sont indistinguables.

Théorème 2.1.1. [6](Yamada-Watanabe).
Existence faible et unicité trajectorielle impliquent unicité faible. De plus, dans ce cas, pour
tout espace de probabilité filtré (Ω,F , (Ft)t≥0,P) et tout(Ft)t≥0 -mouvement brownien B,
il existe pour chaque x ∈ Rd une (unique) solution forte de Ex(b, σ).

Théorème 2.1.2. [12] Si σ et b sont des fonctions continues, telles qu’il existe K > 0 et

pour tout x, y ∈ Rd .
1) Condition de Lipschitz :

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y|.

2) Condition de croissance :

|σ(t, x)|+ |b(t, x)| ≤ K(1 + |x|).

3) La condition initiale x est de carré intégrable i.e :

E(|X0|2) <∞.

Alors Ex(b, σ) possède une unique solution dans l’intervalle [0.T ].De plus cette solution
Xs vérifie :

E[ sup
0≤t≤T

| Xs |2] < +∞.
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2.2 Équation différentielle stochastique non linéaire

On considère Y = (Yt)t∈[0.T ] un processus a valeur dans R alors considéré un system

d’équation non linéaire :
dYt = b(t, Yt)dt+ σ(t, Yt)dBt. (2.6)

où b(t, Yt) et σ(t, Yt) coefficients non linéaire.

2.2.1 Existence et Unicité

Théorème 2.2.1. [1] Il existe C > 0,ε > 0 et pour tout x, y ∈ Rd .

1) Condition de Lipschitz :

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ C
√
|x− y|.

2) Condition de décroissance linéaire :

|σ(t, x)|+ |b(t, x)| ≤ C(1 +
√
|x|).

3) l’équation différentielle stochastique (2.6) admet une solution unique Yt à valeur
dans R continue presque surement et satisfait la condition initiale Y0 = y0

l’unicité est dans le sens que si Xt et Yt sont deux solution continues presque
surement telle que Yt = Xt alors :

P [ sup
0≤t≤T

| Xt − Yt |> 0] = 0.

Proposition 2.2.1.1. [2](Stroock, Varadhan).Soit l’équation différentielle stochastique
suivante :

dY i
t = bi(t, Yt)dt+

m∑
j=1

σi,j(t, Yt)dB
j
t . (2.7)

Tel que Y0 = y0 et i = (0, 1, ..., n).le coefficient b est mesurable et borné,le coefficient σ

est continu et borné et pour tout t ≥ 0,x ∈ Rn alors il existe une constante ε(t, x) > 0 tel
que :

‖σ(t, x)λ‖ ≥ ε(t, x)‖λ‖. (2.8)

λ ∈ Rn,et qu’il existe une solution de l’équation qui est unique en loi , c’est à dire solution
faible.

Remarque 2.2.1.1. [15]

1- Pour la condition de Lipschitz soit satisfaite, il suffit que b(t, x) et σ(t, x) admettent

des dérivées partielles continues et bornées pour tout t ∈ [0.T ].
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2- on peut remplace la condition de Lipschitz global par une condition local :

∀N > 0.∃KN > 0 tel que ∀t ∈ [0.T ],∀(x, y) ∈ Rd,|x| < N, |y| < N :

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ KN |x− y|.

3- Dans le cas d’un équation différentielle stochastique autonome c’est a dire σ(t, x) =

σ(x) et b(t, x) = b(x) la condition de restriction sur la croissance est conséquence
de la condition Lipschitz.

4- Dans de nombreux cas le processus solution d’une équation différentielle stochas-
tique non linéaire est un processus de diffusion. Il est donc complétement défini
par sa famille de probabilités de transition qui peut être construite explicitement en
résolvant une équation linéaire dite de Fokker-Planck (EFP) associée à l’équation
différentielle stochastique non linéaire.

2.3 La résolution des EDS non linéaires

2.3.1 la linéarisation statistique EDS non linéaires

Théorème 2.3.1. [8] (Théorème d’inverse local). Soit Ω est un ouverte de E et

f : Ω 7−→ E.

ω 7−→ x = f(ω),

une fonction de classe (C1continue et différentiable).

Soit ω0 ∈ Ω,x0 = f(ω0).Supposons que df(x0)(c-à-d df(ω0) 6= 0)alors, il existe un voisi-

nage U(ω0) de x0 et un voisinage V (x0) de x0 tel que la restriction de f àU(ω0) soit une

bijection de U(ω0) sur V (x0).
En autre,la réciproque :

f−1 : V (x0) 7−→ U(ω0)

f−1 est de classe C1(si f est de classe Ck, k ∈ N∗,alors f−1 est également de classe Ck).

Proposition 2.3.1.1. [7] Soit l’équation EDS non linéaire suivante :

dYt = b(t, Yt)dt+ σ(t, Yt)dBt. (2.9)

On peut écrire l’équation (2.9) sous forme d’une EDS linéaire d’après la méthode de li-
néarisation et on trouve la forme suivante :

dXt = (b1(t)Xt + b2(t))dt+ (σ1(t)Xt + σ2(t))dBt.

Xt = u(t, Yt).

(2.10)
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où encore b(t, Yt) = b1(t)u(t, Yt) + b2(t).

σ(t, Yt) = σ1(t)u(t, Yt) + σ2(t).

Si ∂u
∂y

(t, yt) 6= 0 d’après le théorème d’inverse (2.3.1) il existe un inverse locale y = v(t, x)et

x = u(t, y) et la solution Yt est de la forme Yt = v(t, u(t,Xt)) .

On doit définir les condition de u(t, Yt) :

L’application de la formule d’Itô de u(t, Yt) permet d’écrire :

dXt = du(t, Yt).

= ∂u
∂t

(t, Yt)dt+ ∂u
∂y

(t, Yt)dy + 1
2
[∂

2u
∂t2

(t, Yt)dtdt+ 2 ∂2u
∂t∂y

(t, Yt)dtdy + ∂2u
∂y2

(t, Yt)dydy].

Si Yt est un processus d’Itô a valeur dans R, on peut définir une règle de calcul formelle
pour d < Y, Y >t par :

d < Y, Y >t= dYtdYt.
dtdt = 0.

dBtdBt = dt.

Alors :

d < Y, Y >t = dYtdYt.

= (b(t, Yt)dt+ σ(t, Yt)dBt)(b(t, Yt)dt+ σ(t, Yt)dBt).

= σ2(t, Yt)dt.

En remplacent dYt par son expression (2.9) on trouve :

dXt = [
∂u

∂t
(t, Yt) + b(t, Yt)

∂u

∂y
(t, Yt) +

1

2
σ2(t, Yt)

∂2u

∂y2
(t, Yt)]dt+ σ(t, Yt)

∂u

∂y
(t, Yt)dBt.

Alors Xt = u(t, Yt) est la solution approximative de l’équation (2.9) alors on identifie

l’équation (2.10) à l’équation dXt on obtient :
∂u
∂t

(t, Yt) + b(t, Yt)
∂u
∂y

(t, Yt) + 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt) = b1(t)Xt + b2(t).

σ(t, Yt)
∂u
∂y

(t, Yt) = σ1(t)Xt + σ2(t).

(2.11)

où 
∂u
∂t

(t, Yt) + b(t, Yt)
∂u
∂y

(t, Yt) + 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt) = b1(t)u(t, Yt) + b2(t).

σ(t, Yt)
∂u
∂y

(t, Yt) = σ1(t)u(t, Yt) + σ2(t).

(2.12)
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2.3.2 Les conditions de réductibilité l’EDS non linéaire a un EDS
linéaire

Soient


∂u
∂t

(t, Yt) + b(t, Yt)
∂u
∂y

(t, Yt) + 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt) = b1(t)u(t, Yt) + b2(t). (∗)

σ(t, Yt)
∂u
∂y

(t, Yt) = σ1(t)u(t, Yt) + σ2(t). (∗∗)

(2.13)

On dérive équation (∗) par rapport à y et on écrit :

∂2u
∂y∂t

(t, Yt) = ∂
∂y

[b1(t)u(t, Yt) + b2(t)− b(t, Yt)∂u∂y (t, Yt)− 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt)].

= b1
∂u
∂y

(t, Yt)− ∂b
∂y

(t, Yt)
∂u
∂y

(t, Yt)− b(t, Yt)∂
2u
∂y2

(t, Yt).

−1
2
σ2(t, Yt)

∂3u
∂y3

(t, Yt)− σ(t, Yt)
∂σ
∂y

(t, Yt)
∂2u
∂y2

(t, Yt).

Alors :

∂2u
∂y∂t

(t, Yt) = (b1(t)− ∂b
∂y

(t, Yt))
∂u
∂y

(t, Yt)− (b(t, Yt) + σ(t, Yt)
∂σ
∂y

(t, Yt))
∂2u
∂y2

(t, Yt)

−1
2
σ2(t, Yt)

∂3u
∂y3

(t, Yt)
(2.14)

ou dérive aussi d’équation(∗∗) par rapport à t et on écrit :

∂
∂t

(σ(t, Yt)
∂u
∂y

(t, Yt)) = ∂
∂t

(σ1(t)u(t, Yt) + σ2(t))

∂σ
∂t

(t, Yt)
∂u
∂y

(t, Yt) + σ(t, Yt)
∂2u
∂t∂y

(t, Yt) = σ
′
1(t)u(t, Yt) + σ

′
2(t) + σ1(t)

∂u
∂t

(t, Yt).

alors :

σ(t, Yt)
∂2u

∂t∂y
(t, Yt) = σ

′

1(t)u(t, Yt) + σ
′

2(t) + σ1(t)
∂u

∂t
(t, Yt)−

∂σ

∂t
(t, Yt)

∂u

∂y
(t, Yt). (2.15)

On dérive aussi l’équation (∗∗) par rapport à y et on écrit :

∂
∂y

(σ(t, Yt)
∂u
∂y

(t, Yt)) = ∂
∂y

(σ1(t)u(t, Yt) + σ2(t)).

∂σ
∂y

(t, Yt)
∂u
∂y

(t, Yt) + σ(t, Yt)
∂2u
∂y2

(t, Yt) = σ1(t)
∂u
∂y

(t, Yt).

donc :

σ(t, Yt)
∂2u

∂y2
(t, Yt) = σ1(t)

∂u

∂y
(t, Yt)−

∂σ

∂y
(t, Yt)

∂u

∂y
(t, Yt). (2.16)
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On a d’après l’équation (∗∗) on a :

∂u

∂y
(t, Yt) =

1

σ(t, Yt)
(σ1(t)u(t, Yt) + σ2(t)). (2.17)

On introduit l’équation (∗∗) dans l’équation (2.15) on trouve :

∂2u

∂y2
(t, Yt) =

1

σ(t, Yt)
[(σ1(t)−

∂σ

∂y
(t, Yt))

∂u

∂y
(t, Yt)].

∂2u
∂y2

(t, Yt) = 1
σ(t,Yt)

[(σ1(t)− ∂σ
∂y

(t, Yt))
∂u
∂y

(t, Yt)]
1

σ(t,Yt)
[(σ1(t)− ∂σ

∂y
(t, Yt))

1
σ(t,Yt)

(σ1(t)u(t, Yt) + σ2(t))].

Alors :
∂2u

∂y2
(t, Yt) =

1

σ2(t, Yt)
(σ1(t)−

∂σ

∂y
(t, Yt))(σ1(t)u(t, Yt) + σ2(t)). (2.18)

d’après l’équation (∗)on a :

∂u

∂t
(t, Yt) = −b(t, Yt)

∂u

∂y
(t, Yt)−

1

2
σ2(t, Yt)

∂2u

∂y2
(t, Yt)b1(t)u(t, Yt)b2(t). (2.19)

on introduit les équations (2.16) et (2.17) dans l’équation précédente équation et on
trouve :

∂u
∂t

(t, Yt) = −b(t, Yt)[ 1
σ(t,Yt)

(σ1(t)u(t, Yt) + σ2(t))]− 1
2
σ2(t, Yt)[

1
σ2(t,Yt)

(σ1(t)

−∂σ
∂y

(t, Yt))(σ1(t)u(t, Yt) + σ2(t))] + b1(t)u(t, Yt)b2(t).
(2.20)

Alors

∂u

∂t
(t, Yt) = (σ1(t)u(t, Yt) + σ2(t))[−

b(t, Yt)

σ(t, Yt)
− 1

2
(σ1(t)−

∂σ

∂y
(t, Yt))] + b1(t)u(t, Yt) + b2(t).

(2.21)

on introduit les équations (2.15),(2.17),(2.18)dans l’équation (2.14) :

−1
2
σ2(t, Yt)

∂3u
∂y3

(t, Yt) = ∂2u
∂y∂t

(t, Yt) + ( ∂b
∂y

(t, Yt)− b1(t))∂u∂y (t, Yt)

+(b(t, Yt) + σ(t, Yt)
∂σ
∂y

(t, Yt))
∂2u
∂y2

(t, Yt).

= 1
σ(t,Yt)

[σ
′
1(t)u(t, Yt) + σ

′
2(t) + σ1(t)

∂u
∂t

(t, Yt)

−∂σ
∂t

(t, Yt)
1

σ(t,Yt)
(σ1(t)u(t, Yt) + σ2(t))]

+( ∂b
∂y

(t, Yt)− b1(t)) 1
σ(t,Yt)

(σ1(t)u(t, Yt) + σ2(t)) + (b(t, Yt)

+σ(t, Yt)
∂σ
∂y

(t, Yt))
1

σ2(t,Yt)
(σ1(t)− ∂σ

∂y
(t, Yt))(σ1(t)u(t, Yt) + σ2(t)).
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En partant de l’équation (2.21),on a donc trouvé :

∂3u
∂y3

(t, Yt) = − 2
σ2(t,Yt)

[ 1
σ(t,Yt)

(σ1(t)u(t, Yt) + σ2(t)) + σ1(t)
σ(t,Yt)

∂u
∂t

(t, Yt)

+(− 1
σ(t,Yt)

∂σ
∂t

(t, Yt)− b1(t) + ∂b
∂y

(t, Yt))
1

σ(t,Yt)
(σ1(t)u(t, Yt) + σ2(t))

+(b(t, Yt) + σ(t, Yt)
∂∂σ
∂y

(t, Yt))(
1

σ2(t,Yt)
(σ1(t)− ∂σ

∂y
(t, Yt))(σ1(t)u(t, Yt) + σ2(t))]

2.3.3 les caractéristiques de Xt = u(t, Yt)

Les caractéristiques de Xt = u(t, Yt) :

u : R+ × R 7−→ R

1- u est de classe C3(R).

2- u continue dérivable sur R+.
3- u vérifie les condition de Cauchy Schwartz u ∈ C2(R).

2.3.3.1 La formule de u(t, Yt)

On suppose Xt = u(t, Yt),l’équation (2.13) en ecrire sous forme :


∂u
∂t

(t, Yt) + b(t, Yt)
∂u
∂y

(t, Yt) + 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt) = b1(t)u(t, Yt) + b2(t)

σ(t, Yt)
∂u
∂y

(t, Yt) = σ1(t)u(t, Yt) + σ2(t)

(2.22)

Dans ce cas on suppose que σ(t, y) 6= 0 et σ1 6= 0 D’âpres l’équation (∗∗) (un equation

différentielle ordinaire) la solution de cette equation est :

u(t, Yt) = −Cσ2(t)
σ1(t)

exp(σ1(t)

∫ y

0

1

σ(t.z)
dz)− σ2(t)

σ1(t)
(2.23)



Chapitre 3

La recherche des coeffcient d’EDS
linaire

3.1 les caractéristiques de l’EDS linéaire

3.1.1 Proposition

1- l’EDS est homogène si b2(t) = 0 et σ2(t) = 0.

2- l’EDS est autonome si b1(t), b2(t),σ1(t) et σ2(t) sont des constantes.

3- l’EDS est un bruit additif si b1(t) = 0 et a un bruit multiplicatif si b2(t) = 0 .

3.1.2 l’EDS linéaire est autonome

- Si tout les coefficients b1(t), b2(t),σ1(t) et σ2(t) sont des constantes :


∂u
∂t

(t, Yt) + b(t, Yt)
∂u
∂y

(t, Yt) + 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt) = b1u(t, Yt) + b2. (∗)

σ(t, Yt)
∂u
∂y

(t, Yt) = σ1u(t, Yt) + σ2. (∗∗)
(3.1)

En résoudre la solution générale d’équation (∗∗) prise en compte des condition sur les

coefficients, ensuite, nous allons compenser la valeur de u(t, Yt) dans l’équation (∗) pour

trouve les coefficients b1(t), b2(t) .

La solution générale d’équation (∗∗) est :

u(t, Yt) = −Cσ2
σ1
exp(σ1

∫ y

0

1

σ(t.z)
dz)− σ2

σ1
(3.2)

28
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D’après le calcule des dérive partielle par rapport a t et par apport a y on a :

∂u

∂t
= −Cσ2

∂

∂t
[

∫ y

0

1

σ(t.z)
dz] exp(σ1

∫ y

0

1

σ(t.z)
dz)

.
∂u

∂y
= −C σ2

σ(t, Yt)
exp(σ1

∫ y

0

1

σ(t.z)
dz)

.

∂2u

∂y2
= C

σ2
σ2(t, Yt)

∂σ

∂y
(t, Yt)exp(σ1

∫ y

0

1

σ(t.z)
dz)− C σ2

σ2(t, Yt)
σ1 exp(σ1

∫ y

0

1

σ(t.z)
dz)

Alors D’après l’équation (∗) trouve :

∂u

∂t
(t, Yt) + b (t, Yt)

∂u

∂y
(t, Yt) +

1

2
σ2 (t, Yt)

∂2u

∂y2
(t, Yt) = b1u (t, Yt) + b2.

=⇒− Cσ2 exp

(
σ1

∫ y

0

1

σ(t, z)
dz

)[
∂

∂t

[∫ y

0

1

σ(t, z)
dz

]
+
b (t, Yt)

σ (t, Yt)
− 1

2

∂σ

∂y
(t, Yt) +

1

2
σ1 −

b1
σ1

]
.

= − b1
σ1
σ2 + b2.

On dérive cette equation par rapport a y (pour réduire le nombre de variable) :

−Cσ2 exp(σ1
∫ y
0

1
σ(t,z)

dz)[ ∂
∂y∂t

∫ y
0

1
σ(t,z)

dz + ∂
∂y

[ b(t,Yt)
σ(t,Yt)

]− 1
2
∂2σ
∂y2

(t, Yt)

+ σ1
σ(t,Yt)

∂
∂t

[
∫ y
0

1
σ(t,z)

dz + σ1
b(t,Yt)
σ2(t,Yt)

− σ1
σ(t,Yt)

1
2
∂σ
∂y

(t, Yt) + 1
2

σ2
1

σ(t,Yt)
− b1

σ(t,Yt)
]] = 0

=⇒ ∂

∂y∂t
(

∫ y

0

1

σ(t, z)
dz) +

∂

∂y
[
b(t, Yt)

σ(t, Yt)
]− 1

2

∂2σ

∂y2
(t, Yt)

+
σ1

σ(t, Yt)

∂

∂t
[

∫ y

0

1

σ(t, z)
dz] + σ1

b(t, Yt)

σ2(t, Yt)
− σ1
σ(t, Yt)

1

2

∂σ

∂y
(t, Yt) +

1

2

σ2
1

σ(t, Yt)
− b1
σ(t, Yt)

= 0

on écrire cette égalité sous forme :
[
σ1A(t, y) + 1

2
σ2
1 +B(t, y)− b1

]
= 0.

A(t, y) = ∂
∂t

[∫ y
0

1
σ(t,z)

dz
]

+ b(t,Yt)
σ(t,Yt)

− 1
2
∂σ
∂y

(t, Yt) .

B(t, y) = σ (t, Yt)
∂

∂y∂t

(∫ y
0

1
σ(t,z)

dz
)

+ σ (t, Yt)
∂
∂y

[
b(t,Yt)
σ(t,Yt)

]
− σ (t, Yt)

1
2
∂2σ
∂y2

(t, Yt) .

(3.3)
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On dérive cette équation par rapport à y on obtient alors :

Si ∂A
∂y

(t, y) 6= 0 on à :

σ1 = −
∂B(t,y)
∂y

∂A(t,y)
∂y

donc :

− Si σ1(t) 6= 0⇒ u (t, yt) = −Cσ2(t)
σ1(t)

exp

(
σ1(t)

∫ y

0

1

σ(z)
dz

)
− σ2(t)

σ1(t)
.

− Si σ1(t) = 0⇒ u (t, yt) = σ2(t)

(∫ y

0

1

σ(z)
dz

)
+ C.

Alors la forme de constante b1 d’âpres l’équation (3.3) est :

b1 = σ1A(t, y) +
1

2
σ2
1 +B(t, y)

Nous allons obtenir la valeur de la seconde constante σ2 à partir de la première valeur
de la constante σ1 pour compense la première dans l’équation (3.1) et la correspondance.
De même pour obtenir la valeur de la constante b2

Exemple : On a l’EDS de la forme :

dYt =
1

2
exp (−2Yt) dt+ exp (−Yt) dBt

1- On faire un changement de variable de la forme Xt = u (Yt)

2- on calcule A(y) :

A(y) =
b (t, Yt)

σ (t, Yt)
− 1

2

dσ

dy
(y) = 0

3-la formule de u est :

u(y) = σ2(t)

(∫ y

0

1

σ(z)
dz

)
+ C

4-
σ2(t) = C = 1 et b1(t) = b2(t) = 0,
alors dXt = dBt, la solution de l’EDS non linéaire est :

Yt = ln [Bt + exp (Y0)]
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3.1.3 l’EDS linéaire est homogène

Si b2(t) = 0 et σ2(t) = 0,

d’après les condition l’équation (3.1) écrire sous forme :


∂u
∂t

(t, Yt) + b(t, Yt)
∂u
∂y

(t, Yt) + 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt) = b1(t)u(t, Yt) (∗)

σ(t, Yt)
∂u
∂y

(t, Yt) = σ1(t)u(t, Yt) (∗∗)
(3.4)

On recherche la valeur de σ1(t) et de b1(t) de la même manière utilisé dans le cas
précédent :
La solution générale d’équation (∗∗) est :

u (t, Yt) = Cexp

(
σ1(t)

∫ y

0

1

σ(t, z)
dz

)
.

En dérive le u (t, Yt) par rapport a t et y(pour réduire le nombre de variable) :

∂u

∂t
(t, Yt) = C exp

(
σ1(t)

∫ y

0

1

σ(t, z)
dz

)[
σ′1

[∫ y

0

1

σ(t, z)
dz

]
+ σ1(t)

∂

∂t

[∫ y

0

1

σ(t, z)
dz

]]
.

∂u

∂y
(t, Yt) = C exp

(
σ1(t)

∫ y

0

1

σ(t, z)
dz

)[
σ1(t)

σ (t, Yt)

]
.

∂2u

∂y2
(t, Yt) = C exp

(
σ1(t)

∫ y

0

1

σ(t, z)
dz

)[(
σ1(t)

σ (t, Yt)

)2

− σ1(t)
∂σ

∂y
(t, Yt)

1

σ2 (t, Yt)

]
.

Nous compenser ces valeur dans l’équation (∗) nous obtenir :

∂u

∂t
(t, Yt) + b (t, Yt)

∂u

∂y
(t, Yt) +

1

2
σ2 (t, Yt)

∂2u

∂y2
(t, Yt) = b1(t)u (t, Yt)

=⇒ C exp(σ1(t)
∫ y
0

1
σ(t,z)

dz)[σ′1(
∫ y
0

1
σ(t,z)

dz) + σ1(t)
∂
∂t

(
∫ y
0

1
σ(t,z)

dz) + σ1(t)
b(t,Yt)
σ(t,Yt)

+ 1
2
σ2
1(t).

−1

2
σ1(t)

∂σ

∂y
(t, Yt)] = b1(t)Cexp(σ1(t)

∫ y

0

1

σ(t, z)
dz)

(on a le terme : C exp
(
σ1(t)

∫ y
0

1
b(t,z)

dz
)
> 0 ) alors :
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σ′1(t)

[∫ y

0

1

σ(t, z)
dz

]
+ σ1(t)

∂

∂t

(∫ y

0

1

σ(t, z)
dz

)
+ σ1(t)

b (t, Yt)

σ (t, Yt)
+

1

2
σ2
1(t)

−1

2
σ1(t)

∂σ

∂y
(t, Yt)− b1(t) = 0.

en dérive par rapport a y (pour réduire le coefficient b1(t)) on va trouve :

σ′1(t)
∂

∂y

[∫ y

0

1

σ(t, z)
dz

]
+ σ1(t)

∂

∂y∂t

(∫ y

0

1

σ(t, z)
dz

)
+ σ1(t)

∂

∂y

[
b (t, Yt)

σ (t, Yt)
− 1

2
σ1(t)

∂2σ

∂y2
(t, Yt)

]
= 0.

=⇒σ′1(t)

σ1(t)
= − 1

∂
∂y

[∫ y
0

1
σ(t,z)

dz
] [ ∂

∂y∂t

(∫ y

0

1

σ(t, z)
dz

)
+

∂

∂y

[
b (t, Yt)

σ (t, Yt)
− 1

2

∂σ

∂y
(t, Yt)

]

On pose :

K (t, Yt) = − 1

∂
∂y

[∫ y
0

1
σ(t,z)

dz
] [ ∂

∂y∂t

(∫ y

0

1

σ(t, z)
dz

)
+

∂

∂y

(
b (t, Yt)

σ (t, Yt)

)
− 1

2

∂σ

∂y
(t, Yt)

]

Alors :

σ1(t) = C exp

(∫ t

0

K (t, Yt)

)
,

est b1(t) est un valeur de forme :

b1(t) = σ′1

[∫ y

0

1

σ(t, z)
dz

]
+σ1(t)

∂

∂t

(∫ y

0

1

σ(t, z)
dz

)
σ1(t)

b (t, Yt)

σ (t, Yt)
+

1

2
σ2
1(t)−1

2
σ1(t)

∂2σ

∂y2
(t, Yt) .

3.1.4 l’EDS linéaire un bruit additif

Dans ce cas on pose que σ1 = 0 et b1 = 0 alors en écrire le système sous forme :


∂u
∂t

(t, Yt) + b(t, Yt)
∂u
∂y

(t, Yt) + 1
2
σ2(t, Yt)

∂2u
∂y2

(t, Yt) = b2(t) (∗)

σ(t, Yt)
∂u
∂y

(t, Yt) = σ2(t) (∗∗)
(3.5)
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En dérive l’équation (∗∗) par rapport à t et y :
∂
∂y

[
σ (t, Yt)

∂u
∂y

(t, Yt)
]

= ∂
∂y

[σ2(t)]⇔ ∂σ
∂y

(t, Yt)
∂u
∂y

(t, Yt) + σ (t, Yt)
∂2u
∂y2

(t, Yt) = 0 (	)

∂
∂t

[
σ (t, Yt)

∂u
∂y

(t, Yt)
]

= ∂
∂t

[σ2(t)]⇔ ∂σ
∂t

(t, Yt)
∂u
∂y

(t, Yt) + σ (t, Yt)
∂2u
∂t∂y

(t, Yt) = σ′2 (⊕)

en dérive aussi l’équation (∗) par rapport à y :

∂2u

∂t∂y
= −∂b

∂y
(t, Yt)

∂u

∂y
(t, Yt)− b (t, Yt)

∂2u

∂y2
(t, Yt)−

1

2
σ2 (t, Yt)

∂3u

∂y3
(t, Yt)

− σ (t, Yt)
∂σ

∂y
(t, Yt)

∂2u

∂y2
(t, Yt)

d’après l’équation (⊕)

σ′2(t) =
∂σ

∂t
(t, Yt)

∂u

∂y
(t, Yt) + σ (t, Yt)

∂2u

∂t∂y
(t, Yt)

= σ (t, Yt)

[
1

σ (t, Yt)

∂σ

∂t
(t, Yt)

∂u

∂y
(t, Yt) +

∂2u

∂t∂y
(t, Yt)

]

= σ (t, Yt)

[
1

σ (t, Yt)

∂σ

∂t
(t, Yt)

∂u

∂y
(t, Yt)−

∂b

∂y
(t, Yt)

∂u

∂y
(t, Yt)− b (t, Yt)

∂2u

∂y2
(t, Yt)

− 1

2
σ2 (t, Yt)

∂3u

∂y3
(t, Yt)− σ (t, Yt)

∂σ

∂y
(t, Yt)

∂2u

∂y2
(t, Yt)].

d’après les deux équation (∗∗) et (	) on a :

σ′2(t) = σ (t, Yt)

[
1

σ2 (t, Yt)

∂σ

∂t
(t, Yt)σ2(t)−

1

σ (t, Yt)

∂b

∂y
(t, Yt)σ2(t) +

b (t, Yt)

σ (t, Yt)

∂σ

∂y
(t, Yt)

∂u

∂y
(t, Yt)

−∂σ
∂y

(t, Yt)
∂σ

∂y
(t, Yt)

∂u

∂y
(t, Yt)−

1

2
σ3 (t, Yt)

∂u

∂y
(t, Yt)

]
.

= σ2(t)σ (t, Yt)

[
1

σ2(t,Yt)
∂σ
∂t

(t, Yt)− ∂
∂y

[
b(t,Yt)
σ(t,Yt)

]
+ 1

σ(t,Yt)

(
∂σ
∂y

(t, Yt)
)2
− 1

2
σ2(t,Yt)
σ1(t)

∂3u
∂y3

(t, Yt)

]
.

On à d’âpres l’équation (	) on à :

∂

∂y

[
∂σ

∂y
(t, Yt)

∂u

∂y
(t, Yt) + σ (t, Yt)

∂2u

∂y2
(t, Yt)

]
= 0.

=⇒∂2σ

∂y2
(t, Yt)

∂u

∂y
(t, Yt) + 2

∂σ

∂y
(t, Yt)

∂2u

∂y2
(t, Yt) + σ (t, Yt)

∂3u

∂y3
(t, Yt) = 0.

=⇒σ (t, Yt)
∂3u

∂y3
(t, Yt) = −∂

2σ

∂y2
(t, Yt)

∂u

∂y
(t, Yt)− 2

∂σ

∂y
(t, Yt)

∂2u

∂y2
(t, Yt) .



3.1.4 l’EDS linéaire un bruit additif 34

Alors :
1

σ (t, Yt)

(
∂σ

∂y
(t, Yt)

)2

− 1

2

σ2 (t, Yt)

σ2(t)

∂3u

∂y3
(t, Yt) .

=
1

2

σ (t, Yt)

σ2(t)

∂2σ

∂y2
(t, Yt)

∂u

∂y
(t, Yt) +

σ (t, Yt)

σ2(t)

∂σ

∂y
(t, Yt)

∂2u

∂y2
(t, Yt) +

1

σ (t, Yt)

(
∂σ

∂y
(t, Yt)

)2

.

=
1

2

∂2σ

∂y2
(t, Yt) +

1

σ2(t)

∂σ

∂y
(t, Yt)

(
−∂σ
∂y

(t, Yt)
∂u

∂y
(t, Yt)

)
+

1

σ2(t)

(
∂σ

∂y

)
(t, Yt)

)2

.

=
1

2

∂2σ

∂y2
(t, Yt) .

En remplace cette valeur à l’équation :

σ′2(t) = σ2(t)σ (t, Yt)

[
1

σ2 (t, Yt)

∂σ

∂t
(t, Yt)−

∂

∂y

[
b (t, Yt)

σ (t, Yt)

]
+

1

2

∂2σ

∂y2
(t, Yt)

]
.

On suppose que :

γ (t, Yt) =

[
1

σ (t, Yt)

∂σ

∂t
(t, Yt)− σ (t, Yt)

∂

∂y

[
b (t, Yt)

σ (t, Yt)

]
+
σ (t, Yt)

2

∂2σ

∂y2
(t, Yt)

]
.

Alors :
σ′2(t)

σ2(t)
= γ (t, Yt) .

=⇒ ln

(
σ′2(t)

σ2(t)

)
=

∫ t

0

γ (s, Ys) ds.

=⇒ σ2(t) = Cexp

(∫ t

0

γ (s, Ys) ds

)
,

donc :
∂u

∂y
= σ2(t)

1

σ (t, Yt)
=⇒ u (t, Yt) = σ2(t)

(∫ y

0

1

σ (t, zt)
dz

)
.

On remplace u (t, Yt) dans l’équation (∗) est on trouve la valeur de b2(t).
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3.2 Exemple

On définie une équation différentielle stochastique non linéaire :

dYt = (sin(2Yt)−
1

2
sin(4Yt))dt+ 2cos2(Yt)dBt.

On linéarisé cette équation au forme :


dXt = (b1Xt + b2)dt+ (σ1Xt + σ2)dBt.

Xt = u(Yt).

(3.6)

Telle que les coefficients b1, b2, σ1 et σ2 sont des constante.

D’âpres les conditions l’EDS est autonome on a :
1- On calcule la valeur A (Yt) :

Indication : .

cos(2x) = cos2(x)− sin2(x).

= 2 cos2(x)− 1.

- sin(2x) = 2 cos(x) sin(x).

A (Yt) =
b (Yt)

σ (Yt)
− 1

2

∂σ

∂y
(Yt) .

=

(
sin (2Yt)− 1

2
sin (4Yt)

)
(2 cos2(Yt))

− 1

2

∂

∂y
[2 cos2(Yt)].

=

(
sin (2Yt)− 1

2
sin (4Yt)

)
(2 cos2 (Yt))

− 1

2
(−4 cos (Yt) sin (Yt)) .

=
sin (2Yt)

2 cos (Yt)

[
1

cos (Yt)
− cos (2Yt)

cos (Yt)
+ 2 cos (Yt)

]
.

=
sin (2Yt)

2 cos (Yt)

[
1

cos (Yt)
− (2 cos2 (Yt)− 1)

cos (Yt)
+ 2 cos (Yt)

]
.

=
sin (2Yt)

2 cos (Yt)

[
1

cos (Yt)
− 2 cos (Yt) +

1

cos (Yt)
+ 2 cos (Yt)

]
.

=
2

2

cos (Yt) sin (Yt)

cos (Yt)

[
2

cos (Yt)

]
.

= 2 tan (Yt) .
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2- On calcule le valeur de σ1 :

∂A

∂y
(Yt) =

2

cos2 (Yt)
.

alors :

σ1 = −
∂B(t,y)
∂y

∂A(t,y)
∂y

.

,

On a dans ce cas ∂u
∂t

= 0..

B(Yt) = σ(Yt)
∂A

∂y
(Yt) = 2 cos2 (Yt)

2

cos2 (Yt)
= 4.

.
=⇒ σ1 = 0.

- D’apres l’équation (3.1) :
σ2 = 1.

3- Valeurs b1 et b2 d’apres l’équation (3.3) on a :

σ1A(Yt) +
1

2
σ2
1 +B(Yt)− b1 = 0.

alors :
b1 = B(Yt) = 4.

. et
b2 = 0.

Alors l’EDS linéaire à coefficients constantes est :

dXt = 4Xtdt+ dBt.

la solution de EDS est :

Xt = exp(4t)

[
X0 +

∫ t

0

exp(s)dBs

]
. (3.7)
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On a :

u (Yt) = Xt ⇐⇒ Xt = 2 tan (Yt) . (solution approché ) .

=⇒ Yt = arctan

(
1

2
Xt

)
. (solution exacte) .



Conclusion

En conclusion, nous avons pu voir clairement l’intérêt énorme de la technique d’ap-
plication du calcul stochastique sur les équations différentielles stochastiques .Cet intérêt
nous permet de créer des liens féconds entre processus stochastiques et EDP.

On a étudié une méthode de résolution d’une équation différentielle stochastique non
linéaire par les techniques de linéarisation statistique. Cette méthode a été utilisée pour
convertir l’équation non linéaire en une équation linéaire en utilisant la formule d’Itô
.

On termine ce travail avec la recherche des coeffcient d’EDS linaire et un exemple
d’équation différentielle stochastique non linéaire. .
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