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Introduction

Depuis plusieurs années, un intérét croissant est porté aux modéles qui incorporent
a la fois des parties paramétriques et non paramétriques. Ce type de modeéles sont
appelés modéle semi paramétrique. Cette considération est due en premier lieu aux
problémes diis a la mauvaise spécification de certains modéles. Aborder un probléme
de mauvaise spécification de maniére semi paramétrique consiste a ne pas spécifier la
forme fonctionnelle de certaines composantes du modéle. Cette approche compléte celle
des modéles non paramétrique, qui ne peuvent pas étre utiles dans des échantillons de
petite taille, ou avec un grand nombre de variables. Notre travail porte sur les données
incomplétes, pour lesquelles la variable d’intérét n’est pas complétement observée pour
toutes les données de ’échantillon. Nous présentons dans ce qui suit le cas des données
censurées a droite pour les modéles a direction révélatrice unique.
Dans ce domaine, différents types de modéles ont déja été étudiés dans la littérature :
parmi les plus célébres, on peut citer les modéles additifs, les modéles partiellement
linéaires ou encore les modéles & direction révélatrice unique (single index model). L’idée
de ces modéles, dans le cas de 'estimation de la densité conditionnelle ou de la régression
consiste a se ramener a des covariables de dimension plus petite que la dimension de
I’espace des variables, permettant ainsi de pallier au probléme de fléau de la dimension.
Par exemple, dans le modéle partiellement linéaire on décompose la quantité que 1'on
cherche a estimer, en une partie linéaire et une partie fonctionnelle. Cette derniére
quantité ne pose pas de probléme d’estimation puisqu’elle s’exprime en fonction de
variables explicatives de dimension finie, évitant ainsi les problémes liés au fléau de la
dimension. Afin de traiter ce probléme, plusieurs approches semi paramétriques ont
été proposées. A titre d’exemple on peut citer : Xia et Al ([29], [27], [28], 1999, 2002)
pour le modéle d’indice. Une présentation générale de ce type de modéle est donnée
dans Ichimura et al. ([8], 1993) ou la convergence et la normalité asymptotique sont
obtenues. Dans le cas des M-estimateurs, Delecroix et Hristache ([11], 1999) prouvent
la consistance et la normalité asymptotique de l'estimateur de l'indice et ils étudient
son efficacité. La littérature statistique sur ces méthodes est riche, citons Hall (]1&],
1989) présente une méthode d’estimation qui consiste a projeter la fonction densité
ainsi que la régression sur un espace de dimension un pour se ramener a une estimation
non paramétrique pour des covariables unidimensionnelle. Cela revient exactement a
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estimer ces fonctions dans un modeéle a direction révélatrice unique. Par ailleurs, des
exemples montrent que les modéles a direction révélatrice unique sont particuliérement
adaptés a I’étude des données de survies (voir Delecroix et Geenens (|!1], 2006)). Newey
et Stoker ([20], 1993) prouvent l'éffiicacité de ce modéle pour l'estimation de 'indice
avec la méthode ADE (Average Derivative Estimation), dans le cas de I'estimation de la
régression et 'estimation par pseudo-maximum de vraisemblance par l'estimateur de la
densité conditionnelle. Ce mémoire se décompose en quatre chapitres.

Au premier Chapitre , nous présentons en détail les différents nombres de notations, et
définissons les outils modeéles de censure considérés. Nous fixons également qui seront
utilisés dans les chapitres suivants.

On présentera au chapitre deux la densité conditionnelle dans le cas ou les variables
sont indépendantes identiquement distribuées. Ainsi ses dérivées dans lequels sont pris le
compte des effets de censure a droite au cour de nos observations. On construit dans ce
cas un estimateur a noyau pour ce parameétre. L’intérét de notre étude est de montrer
comment l'estimation de la densité conditionnelle peut étre utilisée pour obtenir une
estimation a direction révélatrice unique qui dépand d’une borne de troncation pour
éviter les problémes dans les queues de la distribution lorsque la fonction de répartition
G est connue. Nous établissons la convergence presque stire de cet estimateur.

Dans le troisiéme chapitre on généralise nos résultats obtenus du chapitre précédant
lorsque la fonction G est inconnu. On établit la consistance et la normalité asymptotique
dans deux cas paramétrique et semi paramétrique. Plus précisément, ce paramétre peut
étre estimé par méthode de la vraisemblance qui est basé sur 'estimation de la densité
conditionnelle.

Le dernier chapitre est consacré a 1’étude des événements réccurents de la fonction de
régression pour un modeéle & indice révélatrice. Nous considérons le méme type lorsque la
fonction de répartition G est inconnue.



Chapitre 1

Notation et Définition

1.1 la durée de survie et la date d’origine

La durée de survie, noté par T', défini comme le délai écoulé entre deux états. Pour
définir ce délai il est nécessaire de définir la date d’origine qui est la date de debut du
phénomeéne étudié. Par exemple dans I'étude d’évolution d'une maladie, la date d’origine
Y} est la date de debut de la maladie et si on s’intéresse a ’age du sujet a la survenue de
I’événement, la date d’origine sera la date de naissance du sujet Yy = 0. Chaque individu
peut avoir une date d’origine différente.

Censure

Les données censurées sont des observations pour lesquells la valeur exacte d’un événe-
ment n’est pas toujours connue. Cependant, on dispose tout de méme d’une information
partielle permettant de fixer une borne inférieure (censure a droite) ou d’une borne su-
périeure (censure & gauche). les raisons de cette censure peut étre le fait que le patient
soit toujours vivant ou non malade & la fin de I’étude ou qu’il se soit retiré de I'étude
pour des raisons personnelles (immigrations, mutation professionnelle...). La censure est
le phénomeéne le plus couramment rencontré lors du recuiel de donnés de survie. Pour
I'individu ¢, considérons :

— Son temps de survie Y;

— Son temps de censure C}

— la durée réellement observée T;.

En pratique on peut etre confronte a une censure droite (si 7" est la variable d’interet,
I'observation de la censure C indique que T' > C') ou a une censure a gauche (’observation
de la censure C indique que 7' > C).

Exemple 1.1.1. On considére
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1. Y : durée de vie d’une batterie de voiture.
2. T : expérience du conducteur.

3. C : temps au bout duquel le véhicule dans lequel est insérée la batterie est perdu de
vue (destruction, accident, vol...).

Dans cette exemple, un mauvais conducteur aura plus de chance d’avoir un accident avant
que sa batterie ne soit pas defectueuse. Chacune utilise des techniques spécifiques.

1.2 Types des données censurées

Il existe trois catégories de censures qu’on nomme censure a droite, censure a gauche
et censure par intervalle (lorqu’on connait la borne supérieure et la borne inférieure d’un
événement). Il existe différentes types de censures dans ces trois catégories.

1. Censure type I

Soit C' une valeur fixée, au lieu d’obsrever les variables Y7, -, Y,,, qui nous intéressent,
on observe uniquement Y; lorsque y; < C'; sinon on sait uniquement que Y; > C'.on
utilise la notation suivante 7; = Y; A C' = min(y;, C).

Par exemple dans ’apprentissage d’'une langue par un groupe d’étudiants durant
un stage de période fixé. On note 7' la durée d’apprentissage de cette langue. Pour
certains étudiant snous allons observer leurs durées Y; d’apprentissage de la langue,
par contre pour d’autres leurs X;,ne seront pas observées car le stage est limité dans
le temps.

2. Censure de type 11
Elle est presenté quand on décide d’observer les durées de survie de n patients
jusqu’a ce que k d’entre eux soient décédés et d’arréter I'étude & ce moment la.
Soient Y(;) et T{;) les statistiques d’ordre des variables Y; et X;, la date de censure
est donc Yy, et on observe les variables suivantes
Ty =Yy, Ty = Yoy, Toerr) = Yoern)s - Tin) = Yo

3. Censure de type III (censure aléatoire se type I)
Soient (', -, C,, des variables aléatoires i.i.d. on observe les variables

T, =YiNC;

L’information disponible peut étre résumé par :

— la durée réellement observée T;,

— un indicatrice §; = ly,<¢,,

— 0; = 1 si ’'événement est observé (d’ou T; = Y;) on observe les "varies" durées ou
les durées complétes.

— §; = 0 si 'individu est censuré (d’ou T; = C;) on observe les durées incomplétes
(censurées).
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La censure aléatoire est la plus courante, par exemple, lors d'un essai thérapetique,
elle peut étre engendré par :

(a) la perte de vue : le patient quitte I’étude encours et on le revoit plus (& cause
d’un déménagement, le patient décide de de se faire soinger alleiurs), se sont
les patients "perdus de vue".

(b) Varrét ou le changement de traitement : les effets secondaires ou l'in-
efficacité de du traitement peuevent entrainer un changement ou un arrét du
traitement. ces patients sont exclus de I'étude.

(c) la fin de I’étude : ’étude se termine alors que certains patients sont toujours
vivants (ils n’ont pas subi I’événement). Ce sont des patients exclus-vivants.

1.2.1 Censure a droite

Une durée de survie est dite censurée a droite si I'individu n’a pas connu 1’événement
d’intéret & sa derniére visite. La censure a droite est l'exemple le plus fréquent d’ob-
servation incompléte en analyse de survie, et a largement été décrit dans la littérature
(Anderson, Borgan et Keiding 1993). Formellement la durée de survie d’un événement est
définie par le couple (7',0) ou :

T = min(Y,C)

et avec la durée de vie Y et le temps de censure supposés indépandents. C’est a dire, on
observele véritable temps de survie que s’il est inférieur & C'. Dans ce cas la donnée n’est
pas censurée et 0 = 1. si 0 = 0, la donnée est dite censurée a droite : au lieu d’observer
Y, on observe une valeur C avec pour seule information le fait que Y soit supérieur a C'.
C’est la censure de type I.

1.2.2 Censure a gauche

Une durée de survie est dite censurée a gauche si I'individu a déja connu 1’événement
d’intéret avant ’entrée dans 1’étude. Formellement, la durée de survie pour un individu
est définie par le couple (7, 9), ou :

T =max(Y,C)

et avec la durée de vie Y et le temps de censure supposés indépandents. Si 6 = 1, le
sujet subit I’événement et est observé. Si 6 = 0, le sujet est dit censuré & gauche : au
lieu d’observer Y, ou observer une valeur C' avec pour seule information le fait que Y soit
inférieur a C'.
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1.3 Exemple classique

On veut savoir a quel age Y les enfants d’un groupe donne sont capables d’effectuer une
certaine tache. Lorsque 'experience debute, certains enfants d’age C sont deja capables
de I'accomplir, et pour eux Y > C': il s’agit d’une censure gauche; a la fin de I'experience,
certains enfants ne sont pas encore capables d’accomplir la tache en question, et pour eux
Y > C : il s’agit d'une censure droite.

1.3.1 Censure par intervalle

Une situation plus générale de la censure se produit lorsque la durée de survie n’est

connue mais on sait seulement qu’il appartient a un certains intervalle. Ceci est le cas
lorsques les patients dans les éssais cliniques ont des suivis périodiques, par exemple
chaque six mois, si une maladie surgit,on sait seulement qu’elle est produite dans un
intervalle de temps séparant deux visites. Ce type de censure peut aussi apparaitre dans
les experiences industrielles ot il y a des inspections périodiques des machines.
Dans le cas de la censure par intervalle, on observe a la fois une borne inférieure et une
borne supérieure de la durée d’intérét. Ceci arrive dans des études de suivi médical ou kes
patients sont controlés périodiquement, si un patient ne se présente pas a un ou plusieurs
controles et se rpéresnte ensuite aprés que I’événement d’intérét se produit. On a aussi
pour ce gendre d’expérience des données qui sont censurées a droite, plus rarement, a
gauche. Un avantage de ce type est qu’il permet de représenter les données censurées a
droite ou a gauche par des intervalles de type [a, oo[ et |0,a] respectivement, ce qui permet
de considérer ce modéele comme étant plus générique.

1.4 L’estimateur de Kaplan-Meier

En présence de censure, la fonction de répartition empirique de la variable Y n’est
plus disponible. En effet

. ]
Fomp(t) = D v
=1

la fonction de répartition empirique dépend des variables Y; qui ne sont pas observées.
Afin d’estimer la loi d’une variable Y, il est donc nécessaire de proposer un estimateur de
la fonction de répartition qui puisse, dans un cadre censuré, avoir des propriétés analoques
a celles de la fonction de répartition empirique utilisé en ’absence de censure.

L’estimateur de Kaplan-Meier (1958,[6]) permet de généraliser le concept de fonction de
répartition empirique, en présence de données censurées. Cet estimateur est défini comme
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suit
Fity=1-]] o (1.1)

n
Tist > lrer,
=1

Il s’agit d’une fonction continue, ne présentant des sauts qu’aux observations non cen-
surées. Par ailleurs, les notions d’estimateur Kaplan-Meier et de fonction de répartition
empirique coincide en 1’absence de censure. De plus, en intervertissant les roles de Y et
C, on observe une certaine symétrie du probléme. On peut donc définir de maniére ana-
logue G, estimateur de Kaplan-Meier de la fonction G(t) = P(T < t). La mesure définie
par l'estimateur de Kaplan-Meier n’attribue de poids qu’aux observations censurées, et
renforce le poids des grandes des grandes observations. En effet, il s’agit de compenser
dans la queue de distribution, causé par la censure.

1.4.1 L’estimateur de Kaplan-Meier en présence de variables ex-
plicatives

En présence de variables explicatives, X € X C R% Stute (1993,[25]) propose un
estimateur de la fonction de répartition multivariée, (notée Fxy = P(Y < y, X < x)).
Partant de I'expression de 'estimateur de Kaplan-Meier (1.1), Stute ([25],1993) propose

d’utiliser .

. & 1 —diln<y xi<a
F r,Y)= VVin]lTi< Xi<e = — # 1.2
(2,9) 2; <X n;1—G(Ti—) (12)
Une autre fagon de motivier l'introduction de lestimateur (1.2) serait de considérer la
fonction de répartition

I 1 - 5i]lT-< X<z
F — iSY, A4S 1

Cette fonction de répartition n’est pas a proprement parler un estimateur, puisqu’elle
dépend de la fonction de répartition GG qui est inconnu. Néamoins, on peut remarque que
si la fonction G était connue, Pestimateur F(z,y) serait un estimateur sans biais de la
fonctions de répartition I, et que les intégrales par rapport a la mesure définie par cette
fonction de répartition seraient elles-mémes non biaisées.

Définition 1.4.1. (1996,/1]) Glivenko Cantelli Soient X1, ..., X,, des variables aléatoires
i.i.d. sur un espace de probabilté (Q, A,P), on dit que F une classe des fonctions mesu-
rables f sur un espace (X, A) est dite "P-Glivenko Cantelli” si

1P, — Pl = sup |P(f) — P(f)| = 0
feFr
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Remarque

Une classe de fonctions Glivenko-Cantelli fournit une loi des grands nombres uniforme,
car

p.s.

sup — 0

feFr

n YD FX) - f(X)

Définition 1.4.2. Classe de Donsker Une classe des fonctions mesurables F est dite
de donsker si si le processus empirique «, converge en loi vers un processus gaussien
centré dans (>°(F)

o, -G

Remarque

Une classe de Donsker fournit un théoréme centrale limite (TCL) uniforme car le TCL
usuel

\/ﬁ(n > X - P<f>) 5 N0, £(X))

est vérifié "conjointement" pour tous les f € F.
On pose ici les conditions d’entropie

Définition 1.4.3.

— Le covering number :
On dit que N(e, F, || -||) représente le nombre minimal de boules de rayon
e, {g:lg — fll < e}, nécessaires pour recouvrir l’ensemble F.
Soit deuz fonctions u et I. On note [u,l] l'ensemble des fonctions f telles que
u < f <1. On dire que [u,l] est un e-crochets si || u—1]<e.
On dit qu’un ensemble de e-crochets ([u;, l;])i<i<k recouvre F si pour tout f € F, il
existe 1 < j <k tel que f € [u;,1;].

— Le bracketing number :
On note Ny(e, F, ||-||) le "bracketing number"” voir Vander Vart et Wellner(1996,[1]),
le nombre mainimal de e-crochets nécessaires pour recouvrir F.
Pour toute mesure de probabilité v et pout tout p > 0, f € F, on note ||f|,, =

/ |f(w)[Pd,(w) la norme de LP(v). On rappelle également qu’une fonction ® est une

enveloppe pour la classe de fonctions F si |f(w)] < ®(w) presque sdrement pour
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tout élément f € F. En utilisant la condition sur les brackets, la classe de fonctions
F sera Glivenko-Cantelli si :

NH(E, F, Ll(l/)) < 00.

Avec les covering numbers, une condition suffisante pour que F soit Givenko-
Cantelli est alors :
sup N(e||®|,q1, F, L1(v)) < oo.
v ||q)H1/,1<oo

De la méme maniere, une condition suffisante sur les brackets pour que F soit
Donsker est

/ \/logN[](s,}",Lg(l/))ds < 0.
0

Par ailleurs, F sera Donsker si

/ sup  /log N(e||®]],2, F, La(v))de < oo.
0

vil|®ly,2<00

Définition 1.4.4. ([3], 1984), ([1], 1996) Classes de Vapnik-Cervonkis (VC-
classes)

Soit C une collection de sous ensemble de X, soit {x1, -+ ,x,} N X un sous ensemble de
n points.
La VC classe index /N, (C,xq,- -+ ,x,) est définie comme suit

Nn(Crayy - yxy) = {CNHxy, -+ 2.} C €CY

Ou |A| le cardinalité d’un ensemble A, ainsi

V(C) = sup{n : maxXAn(C’, Ty, ay) = 2"}
T1,,Tn€
Il nous donne une borne exponentielle du covering number (voir Van der Vaart et Wellner

(1996,[1])). Pour une VC-classe de fonctions F d’enveloppe ®, on a, pour toute mesure
de probabilité v tout p > 1,

N(e|®|lyp, F, Ly(v) < KV(F)(16¢)"FepVEI=D),

Ou K est une constante universelle et 0 < e < 1. Ainsi, si ® est intégrable, une VC-classe
sera également une classe de Glivenko-Cantelli tandis que si ® est de carré intégrable, une
VC-classe de fonctions sera Donsker.
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Définition 1.4.5. La convergence dominée.

Soit (fn)nen une suite de fonctions mesurables sur un espace mesuré (E, A, i), a valeurs
réelles ou complezes, telle que : la suite de fonctions (fn)nen converge simplement sur E
vers une fonction f; il existe une fonction intégrable g telle que :

Vn € N,Vz € E, [fu(2)| < g().

Alors,f est intégrable
et

lim /|fn—f| dp = 0.
n—oo E
En particulier :

lim [ f. d,u:/ lim f, du:/f dpe.

n—oo

Définition 1.4.6. La convergence en Probabilité
Soit (X, X,,),n > 1 une suite de variables aléatoires réelles. définies sur le méme espace
de probabilité (2, F,P). La suite (X,,) converge en probabilité vers X si :

Ve >0, lim P(|X,, — X| >¢) =0
n—oo

Définition 1.4.7. La convergence presque sire
La suite (X,,) converge presque strement (p.s.) vers X, si :

{w: lim X, (w) = X(w)}
n—oo
Définition 1.4.8. La convergence dans l’espace LP

Soit p > 1, et LP := LP(Q,F,P) l'espace des wvariables aléatoires réelles ayant un
moment d’ordre p, muni de la norme :

| X0 = X lp=B[IX 7).
Une suite (X, X,),n > 1 d’éléments dans LP converge vers X dans LP si :
| X ||l,— 0, lorsque n — oo ;

Définition 1.4.9. Le théoréme de la limite centrale

Soit (X,,) un échantillon i.i.d. d’une loi de moyenne m et variance o*. La convergence

S, Xi+Xo+ ...+ X,
— = Jlorseque n — 00
n n

sutvante a lieu en loi, pour X, =

X-m S,—nm .

R, :=+/n - NG — N(0,1).
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Définition 1.4.10. Théoréeme de Fubini
Soient (X, A, n) et (Y,B,v) deur espaces mesurés complets (non nécessairement o-finis)
et (X xY, A x B,() lespace mesurable produit muni d’une mesure produit T.
Si
f: X XY =R

est T-intégrable, alors les fonctions

£ / f(oy) dvy) ety /X f(@,y) du(z)

(définies presque partout) sont respectivement et v-intégrables et

ey T @) Al 9) = /Uf“/dV }du /Ufa:y dp(x ]du(y).

Définition 1.4.11. (1994,/22]) U-Processus Soient W1, ..., Wy, n variables aléatoires
1.9.d, soit k un entier positif et F une classe de fonctions a valeurs réelles. Pour tout
k > 1, on définit le processus

UNf) = ——= > [(Wi, oo, Wy,

: 11< -<ip

On appelle U%(f), une U-statistique d’ordre k (voir Serfling (1980,[19])) et {UX(f): f €
F} un U-processus indexé par F d’ordre k (voir Sherman (1994,[22]) par exemple).

1.5 OQOutils

Lemme 1.5.1. (2009,[/10]) Soient &1, ,e,, n variables aléatoires de Rademacher®,
mdépendantes entre elles et indépendantes des X;; 1 <i <n. Soit G une classe de
fonctions mesurables ponctuellement telle que, pour 0 < M < 400,

9llec <M, g€g.

Alors pour tout t>0, on ac

i9(

P{ max || vma,, ||g> Ay (E

1<m<n

o 41 <afon (52 (57

1. la somme > 1 ;¢ =1 égale a1
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Ou 0§ = sup Var(g(X)) et Ay, Ay sont des constantes universelles.
9€eg
a, est un processus empirique de [’échantillon X;....X,,, tel que pour g : X — R on a :

n

an(g) =n7"2 ) (9(X) — B(g(Xy)

i=1

et que pour la classe G on note :

[v/nan|| = sup an(g)|
geg

Cette inégalité de Talagrand a été donnée par (1.5.1,2009 [10]).
Lemme 1.5.2. ,([17],2009) Si la fonction 0 — uy(t|0'x) est différentiable, on a

Veﬂeo (t|X) - MIGO(HQE)X)(X - E[X|6E)X])7
Ot i, (tlu) = aﬁ,ugo (t|u). En particulier,
u

E[Vapa, (1] X)|06X] = 0.

Lemme 1.5.3. Sherman (1944) [21]
Soit F une VC-classe de fonctions dégénérée d’enveloppe de carré intégrable. On a alors,

sup [n"/2Uy f| = Og(1),
]:

Exemple 1.5.1. les modéles a hasards proportionnels expriment un effet multiplicatif
des divers covariables sur la fonction de hasard (modéles a structure multipleative). On
introduit une fonction de hasard de base qui donne la forme générale de hasard et qui est
commune & tous les individus. Les modéles a hasards proportionnels se caractérisent par
la relation suivante, pour tout t > 0 :

A(t1Z) = Xo(t)R(B, Z).

ou Z est un vecteur de covariables, B le parametre d’intérét et h une fonction positive.
La fonction de hasard est le produit d’une fonction qui ne dépend que du temps et d’une
fonction que n’en dépend pas. En général, on suppose que [’effet des covariables se résume
a une quantité réelle B'Z, c’est a dire AN(t|Z) = Mo(t)h(5'Z).

Ce modéle est dit a risque proportionnel car, quels que soient deux individus i et j qui
ont pour covariables Z; et Z;, le rapport des fonctions de hasard ne varie pas au cour du

temps.
A(tZ:) _ h(B'Zy)

At1Z;) W' Z5)
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Les fonctions de hasards sont donc proportionnelles. C’est une conséquence du modéle
mais ¢’est ausst une hypothése qu’il faudra vérifier. Le rapport des fonctions de hasard est
par définition un risque relatif a linstant t des sujets de caractéristiques Z;, par rapport
au caractéristiques Zj .

Un cas particulier trés important est le modéle de Cox, qui suppose que la fonction h est
la fonction exponentielle c’est a dire :

At Z) = Xo(t) exp(B'Z).

d’autres choix de la fonction h sont possibles, néamoins la fonction exponentielle est
trés souvnt utillisée dans dans la littérature car ces wvaleurs sont toujours positives et
exp(0) = 1.

Remarque : St Ay et ou h ont une forme inconnue, alors le modéle est dit semi-
paramétrique.



Chapitre 2

Vitesse de convergence de feh et de ses
dérivées partielles pour des données
censureées

Ce chapitre a pour but de présenter le cadre général dans lequel nous allons nous placer
tout au long de ce mémoire. La premiére section décrit les observations dont nous dispo-
serons par la suite. Un certain nombre d’hypothéses sous lesquelles nous nous placerons
sont présentées et nous justifions leur introduction. On essaye ici de définir un estimateur
de la denstié conditonnelle feh " adapté au contexte des données censurées et on déduit les
vitesses de convergence de cet estimateur et de ses dérivées partielles d’ordre un et deux,
tout en supposant que la fonction de répartition G' est connu qui se dispose a 'utiliser a
fin qu’il fait intervenir une somme de termes i.i.d.

2.1 Modéle

On s’intéresse a une variable aléatoire Y € R; qu’on cherche & expliquer par une
variable aléatoire X € y C RY. La variable Y est censurée a droite aléatoirement (mais
pas la variable X), elle n’est donc pas observée directement. On introduit une variable
aléatoire de censure C' € R. Les observations sont constituées de

51' = llYigci;

X, e R?

pour i = 1,...,n; n désignant la taille de I’échantillon, les vecteurs aléatoires (Y;, C;, X;)
étant i.i.d. de méme loi que (Y,C,X). Une information sera dite censurée si T; < Y;,
non censurée sinon. En particulier, 'indicatrice 6 permet de savoir si ’observation T;

19
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considérée est censurée ou non. On introduit également les notations suivantes, pour
désigner les différentes fonctions de répartition F(t) = P(Y <t) et G(t) = P(C <t), tel
que

E(Y]X) = E(Y[0,X = 6x) = fo, (65)

ou f est une fonction inconnue et §, € © C R? un paramétre inconnu de dimension finie.
Afin de s’assurer que le modéle est bien défini, on impose que la premiére composante
de 6y est égale a 1. Si 6y était connu, le modéle se résumerait & un modéle de régression
non paramétrique, mais cette fois avec une variable explicative #pX de dimension 1. Afin
d’estimer f(u;0); on peut par exemple utiliser 'estimateur définis comme suit :

[ [ (P55 & (U5 b (o)

70, y) =
0r — 0 ~
h//K( ’ - ”) LyerdFyy (v, w)
n 0z —0'X, —-T
S WK (=) i (Y Lpe,
i=1 h h =
n . 0z —0'X,
hy Wi K (x—) L
i=1 h N
Tel K est h = h, est stre de i t W, 0 P
e ue €St un novau = N, €St un parametre de lissage € in — . rar

ailleurs, le parameétre de troncation 7 est une constante positive pour éviter les problémes
dans les queues de distribution.

On note les bornes supérieures du support des variables XY et C, c’est a dire 74 =
inf{t : K(t) = 1} pour toute fonction de répartition K = F ou G (resp. 7 = 7p ol Tg),
enfin 7y = 70 A 76.

2.2 Convergence presque sire uniforme

Hypothéses

On suppose que
P(Y=C)=0
H1 YHuc
PY<C|X,Y)=PY <C|Y).

H2 K est un noyau 2 fois différentiable et d’ordre S dont ses dérivées partielles d’ordre
0, 1 et 2 sont a variations bornées. Il est également & support compact, disons
[—1/2,1/2] et [, K(s)ds = 1,

H3 ;= [|K|le = sup |K(z)] < oo,

zeR
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H4 K :={K((x —-)/h) : h > 0, z € R} est une classe de fonctions mesurables ponc-
tuellement,

H5 h € H, C [an™®, bn | avec a, b € R, 1/8 < a < 1/6 et ou H,, est de cardinalité
k, satisfaisant k,n=** — 0.

Commentaires :

Sous la deuxiéme condition de I'Hypothése (H1), on utilise des techniques basées sur
I'estimateur de Kaplan-Meier ([6], 1958) permettant 'estimation de la fonction de répar-
tition F'(y) = P(Y < y). En effet, sous les deux premiers condtions de I’hypothése (H1)
reste valide, et Sous la premiére condition de 'Hypothése (H1) est la condition sous la-
quelle 'estimateur de Kaplan-Meier converge. Elle est vérifiée dans le cas particulier ou
C est indépendant du couple (X, Y) mais reste un peu plus générale. En effet, sous cette
hypothése, la variable C est autorisée a dépendre de X dans une certaine mesure.Cette
hypothése technique permet d’assurer une parfaite symétrie entre Y et C qui nous per-
mettra d’inverser a loisir les roles de ces deux variables et donc de définir des estimateurs
similaires pour F et G et assure notamment que l'indicatrice ne brise pas la "symétrie"
du modele de censure aléatoire. En effet, dans le cas Y = C, la variable Y est privilégiée
par rapport a la variable C.

Les autres hypotheses, plus technique, sont des hypothéses classique dans la théorie de
I'estimateur de Kaplan-Meier. Elles seront supposées vérifiées dans toute la suite de ce
mémoire.

2.2.1 Reésultats

Théoréme 2.2.1. On suppose que fgx est continue et strictement positive sur X. Alors,
sous les hypothéses (H1)-(H5), on a :

nh? rh,m (1 T
sup [ i— | fy (02, y) — B (0'0,9) [ Ly, = Opa(D), (2.1)
zyh0 | 1081

sup A2\ Efy T (2,y) — f (@ y)l[lyer = O(1). (2:2)

x,y,h,7,0
Tel que pour x € X et Jo(x,c) > 0, pour tout y € Y, h € H, 7 < 7p et pour € © ou
H={h:h=cn%ca>0}
2.2.2 Démonstration
Pour la partie biais (2.2)

. 1 0'r —0'X - Y
Ef;”(x,y) — fg(l'ay) =K (f&x(e’ﬂﬁ) . h )K(y h )1Y<T) o fg(x’y)

< M| fo(z.y) = folz.y) [|I< MB

K(
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Pour la partie de dispersion (2.1) : Soit

ZI —Efj(z.y)|Ly<r

log n

't —0'X y—1T,
\ logn h2f’” 0'x) ( ( ) ( h ) T<T)

- (WMK NG )nm)‘

~Hlogn|™* ( (0’3:—9’)() (y—Ti) 1 )
T T; <t
ah/xe h

P (155 1)
1

- = [Z (9(xisy:) — Eg(xi, i)

=1

§

i

= an(9(2,y))

Pour la démonstration, on doit utiliser les conditions suivante pour appliquer 'inégalité
de Talagrand (1.5.1, [10]).

Soit G une classe des fonctions bornées ponctuellement mesurables tel que pour C,v > 1
et 0 < a < et G comme ci-dessus, les conditions suivants :

1 E(G(z,y)*) < 52
2. N(g,G)<Ce " 0<e<1

3. a3 =sup E[g(,y)?] < o
geG

4. SugHgHOO < 4\1/5\/7102/109(6’16/0). o Cp =CYvve
ge

Alors, on a pour une constante A > 0

EHZ&Q(%%) lg < At + E(max(G (i, y:))

IN

Alt + VE(max(G2 (w4, ;)

n

At + E(Z«;Q(% yi))

i=1

At ++/np2)

IN

IN
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Pour = E(GQ(:L‘“%)) :H G ||E2v donc

E | D eg(eiy) lo< Alt+ v/l Gllc.)
i=1

D’autre part

og = supVar[g(z,y)?
geG

= sup(E[g(:E,y)Q] — ]E[g(x,y)]Q)

geG

sup E[g(z, y)?]
geG

IA

On a alors
Eg*(z,y)* < |G*(z,y)] =0® < oo
On a .
B egl) o< C.
Finallement, - §
Ellan(9)lle < 2E | Y aig() o< C.
Théoréme 2.2.2. Supposons que K est deu;::}ois différentiable et que ses dérivées par-

tielles d’ordre un et deuzx sont & variations bornées. Sous les Hypothéses (H1)-(H5), on
a

nht hor <
sup | —— || Vofe T (z,y) = EVyfi(,y) | 1y<r = O, (1), [=1,2 (2.3)
zyhro | logn
sup h P | EV,fy " (2,y) — Vo fi(2,y) || L<r = O(1). =12 (24)

x7y7h77-79
Démonstration :
On pose

Z($ . Xi>ﬁ/i,nK/ <0'$—hc9'X¢) K (ythi) ]lTigr

13 fyz (0'x)

L 0'z—0'X; _T
gmﬂ[(( R )K(yh )]sz'ST
h2 fyik (0')
> (0 = X)Win k' (225505) iy,

=1

W fyr(0')
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Tel que,
. 1 o - 0r—0'X
G}L,X(Q/x) = E 2 Wan( 5 )]IT<T
On pose,
Or—0'X y —T;
h,T * ¢ =
ST, 2,1y, 7) = hQZW XZ,ZZ,Q)VK<T)K( - ) 1=1,2

(2.5)
Tel que ¢(X, T, 0) = f75(0'X) 'Ir<, est une fonction bornée par rapport a 6 et = avec
la convention 0/0 = 0 et ou fiy(u) = P(Y < 7, /X = u). On étudie ce terme par les
mémes étapes du théoréeme précédente

nh20+) | X
sup SyT(0,z,y,l) — E |:Sn’7(9,$, Y, Z)] 1<, =0,5(1). (2.6)
owyhr | logn =
Les termes de gradient de f(f T
B 0'r —0X; y—T,
rfn@(x y) = h3 Z VI/’LTLK, (T) K ( h > ]1T<T,
. 1 0'r — 06X, y—T;
T'ilg({[‘ y) = th |:K (T) K( h > ]1T<T:| ’
0
o) = Bl -0 10X =wy =]y tne
u=0’
Puis
- g 0’z — 0'X; y —T;
oo — 3o (55 (58 e
—h,T 1 9/1’ — Q/Xz Yy — E
r;&(x y) = h2E |:K( h )K< h )]1T¢<‘r:| )
7’;79(1’,y) = fG’X,Y(elflfay)]lTigr
et

~h,T 0/1' — Q/Xz)

1 & .
o) = 45 Ll - XoWn (25
=1

] 1 O —0X,
Ao = B |- 0K (P55 i

0

alen) = g Bl = 0tve 10X =] foay ()}

u=6"
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Donc,
- 1 Oxr—0'X
h,T
Q’X(H/X) — EE |:K (T) ]]-YST:|
D’aprés (2.6), on a
n rh,T rh,T
sup loghn 0’X(0/x) —Jox (0"2) | 1y<~ = Ops(1)
0,x,y,h,T
s i) - s |Le = 0,0
7x7y7 7T
, SUI; 12,:1 fg;:e(x,y) - 7:;,7;(%?/) Iy<r = Op.s.(1)
7I7y7 7T
nh3 || Ah,T _h,T
sup (SR ) = 75 09) [Lyee = Oy (1) 27)
7x’y7 7T
De la méme maniére du Théoréme (2.2.1) on a dans les parties de biais
s WP (0') = fix(0'0) | yer = O(1)
7;1:7:[/7 77—
sup h78 |7 (x,y) — rzg(q:,y)‘ 1,<, =0(1), pour i=1,2,3. (2.8)
0,z,y,h,T ’ ’ -
Puis,
ro(@,y) 5w, y) X 15e(T,y)
Vii(Oz,y) = —= - = ’
' f5x(0'2) fox (0
Puisque
Joxy(0'z,y)
fo(0'r,y) = ————
? fo(0'x)
Tel que
foxy Oz, y) = foxy(@z,y)l,<,
Donc,
v 0 170, y) F3x (0'0)
VTQ/, - T, , Y- 0 ) 6’ X
f@( T y) fg-r,(g/m) au{fe X,Y(u y)}| 0 fglx(elx)2

On a encore,

TI,9($7y> . x a -
m a W%{fefx,y(%y)}‘u:e/x

a Vi T /
~ 5 BXIOX = u,Y = y[}u—p f (0°X, Y)
CEX|PX =uY =y

0
fa(0'z) %{fg’X,Y(ua Y) Hu=pz
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et
fo,Y(xvy) dz
EXFX =uY =)= ff@’X Y(uy)
Ensuite,
r30(2,y) X r34(2,y)

fGT’X,Y (0'z,y) xﬁ
fox(0'x) ou

0
_%{]E[]IYST|9/X = U]f&x(u)}luﬁ’f)

fi(0'z,y) = {BlLy < [6'X = u] £ () }uzpra

forx(0'2)?

On observe que

b0 =] =
E[X1y-,
E[X1y |0X =u] = J[%X_Evu_)]

et
, 0
fox(0'z) = 5y (EIX Iy < |0'X = ul} [u=pre forx (0'2) + BIX Ly <rjprx=pr] forx (')’

Le deuxiéme terme de V f7 (0'z,y)

zfoxy O, y)fox0x)  afyxy(0xy) (0 I /
Jix (00 = T \ou Xy lfX = ul} oo fox (6'0)

ou
+E[X Ly < jgx=02) forx (9/I)/>

1

Les deux autres termes de 73 4(x,y) X 15 (2, y)(f5 x(0')?)~" s’annulent.

. , . rh L, .
Finalement, pour étudier Vg f,”" — Vy [y, on écrit :

/‘hrT T ’\haT T T AhyT T
7’1n,9(7f'>y) B Tl,e(xvy) _ rlnﬂ(x7y) - 7“1,0(3773” (fe,X(H’a:) - efxwlx))ﬁ,a(%y)
px(0x)  Jix(0'7) o (0x) Fix(0'2) fy (0')
et on applique les résultats sur les vitesses de convergence obtenus par (2.7) et (2.8).
Comme on s’est placé sur des 2 € X tels que Jy(z,¢) > 0, ona f(0'z) > 0et fi7(0'x) >
0 car fix(0'x) converge vers f,(6'x). pour :

(2.9)

722;:0 (Ia y)f:];’:e(xv y) N 7“5?(:1:‘, y)?“é—ﬁ(l', Z/) _ 7;37’17:6 (:L’, y) _ 7”5,9 (:C, Z/) 7”;9(:13', Z/)
(F% (o) (Fpx(0'))” for@x)  Lix(O00) ) fix(0')
A
~h,T ~h,T T
+ Tln,@(xa y) T3n,9 (IL', y) . 7’379(1, y)
ox(00) \ fox(0z)  fox(02)

-~

Az

(.

J/
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et en utilisant la méme décomposition que (2.9) pour les deux termes (A;) et (As), il suffit
d’appliquer les vitesses de convergence obtenues par (2.7) et (2.8) pour obtenir le résultat
final.



Chapitre 3

L’estimation de I'index par la méthode
de vraisemblance

Dans ce chapitre, on cherche a estimer la valeur du parameétre 6y en poursuivant la
méthode de maximum vraisemblance. Ce chapitre est divisé en deux parties. On introduit
notre modéle ainsi que son estimation dans la premiére partie. Les conditions nécessaires
a l'obtention de notre résultats asymptotiques, sont présentées dans la deuxiéme partie.
On établit la consistance et a la normalité asymptotique de cette estimateur dans deux
cas paramétrique et semi paramétrique.

3.1 Modéle et son estimateur

Soit (X,Y) un couple de variable aléatoire a valeurs dans R? x R. Pour tout X € R,
on suppose que la densité conditionnelle de Y sachant X existe sous structure d’index x6.
On rappelle qu’on s’intérésse dans notre modéle étudié a la densité conditionnelle :

36y € © CRY, fyix(2,y) = fo (07, y) (3.1)

ou fy(t;y) représente la densité conditionnelle de Y sachant xzf = ¢ évaluée au point y.
L’idée consiste a prendre la vraisemblance. La densité conditionnelle de Y sachant X = x
égale a la densité conditionnelle f](u,y) de Y sachant X = u et Y € A, évaluée au
point y, tel que A, une suite de compacts inclus dans l'ensemble {t : 4 <t < 7}, pour
T<T9O0uTH < TH.

Pour I’étude de la densité conditionnelle. On commence par la vraisemblance de fp qui
est égale a

T o0/ X3, Y0) £ (X3)

=1

28
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Cette méthode consiste & maximiser la log-vraisemblance qui s’écrit comme suit :

> log fo(0'X;, Yi)+ ) log fx(Xi).
=1 =1

n

Puisque le terme Zlog fx(X;) ne dépend pas de 6, l'estimateur du maximum de
i=1

vraisemblance pourrait étre défini, si fp était connue, en maximisant le premier terme

n
Z log f¢(0'X;,Y;). Comme fp est inconnue, le M-estimateur est définit comme suit :
i=1

7 — Fhonft . .
0 = arg max ; log(f5(6'X;,Y7)) (3:2)

Ou fél représente l'estimateur & noyau de fy. En effet, si on note fy la densité de ¢'X
alors on s’assure que I'estimateur défini en (3.2) ne prenne en compte que les §;X; pour
lesquels f(0'X) est positif, sans avoir pour autant a supposer f(6'z) > 0 pour tout z;y et
6. Plus précisément, l'estimateur de fy est donnée par

0 = argmaxy log(f}(0'X;, Yi)J(X))
" =1

Ou 6,, est une suite de voisinages décroissants de 6, obtenue a partir de 6, et J la fonction
de trimming.

Estimation du fonction de trimming J

L’utilité de la fonction de trimming J est d’éviter les problémes d’estimation quand
le dénominateur de fgb est nul. On suppose un ensemble B pour lequel inf{ fy x(6'x) : x €
B,0 € ©} > ¢, ot ¢ > 0. On introduit Jg(z) = 1,ep de fagon préliminaire et pour une
suite déterministe hg de fenétres, on définit notre estimateur préliminaire de 6,

_ £ho
0, = argrgleag[/n(e,f ,JB).

On peut maintenant estimer .Jy par

Jo(z,¢) = J( A&OX,Q’:E, c).

n

Ot ¢ > 0 et J(h,u,c) = lyuyse Délécroix et al. (([14], 2006) ont montré que Jo était
équivalent a Jy. L’estimateur final de 6, est :
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0 arggrel%an(Q,f ,Jo),

ou O, est une suite de voisinages décroissants de #, obtenue a partir de 6,,.
On définit tout d’abord, pour toute fonction J > 0,

L7(8,.7) = Ellog f§(0'X,Y)J(X)Ly.ca.] = / / log 302, y)J(@)1yen dFxy (r,y)  (3.3)

Pour tout 7 < 7 et sous l'égalité (3.1), L7(#, J) est maximiser par un unique maximum
Oy sous certaines conditions sur le modeéle de régression et J.

Comme Fyy et fj sont inconnus, passons a la version empirique de L7(6, J) par estimer
la fonction de répartion par l'estimateur de Kaplan-Meier, on aura :

160, f7.0) = / / log f7(0', y)J (x)Lyea, dEx y (2, )

= Z Win log f&T(QIXZv E)J<Xl)]]sz€A-r
i=1

L’estimateur de f est défini comme suit :

Fh,T 1 - ffK(%)K(%)]ﬂwSTCZﬁX,Y(uw)
) e T K (L, dFey (v, w) &4

S Wi (22 1 (55) 1
=1

h Zi: VVz,nK (%) ]1T¢§‘r

=1

Les poids de I'estimateur de Kaplan-Meier de la fonction de répartition F' sont égaux a :

VVi,n = 5}
n(l—-G(T;-))

le cas de &; = 0, W, s’annule. ot G et le terme (1 — G(T;—)) fait intervenir tous les T}
inférieurs a T;. Pour l'estimation de W, on s’intéressera aussi au fonction :

W(s) = (1 — G(s—)),

Tel que G(-—) = P(C < +) la limite a gauche de G(+).
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L’estimation adaptatif du paramétres h et 7
Estimation de la fenétre de lissage

Nous établissons ici une estimation a partir du données a fin d’obtenir une fenétre h
adapté pour notre estimateur de la densité conditionnelle pour chaque 6 € ©, Fan et Yim
(2004]9])ont adopté la méthode de validation croisée pour obtenir

7(6) — arg min > Wirlnea { / (O'X;, w)dw — 2f17(0'X, T},
heHn

Estimation de la borne de troncation

le mal comprotement de ’estimateur de Kaplan-Meier sur les queues de la distribution
impose de suggérer une solution pour remédier ce probléme, c’est de tronquer ce les
données de grandes tailles par le parameétre 7. Pour cela Bouaziz (2009,[17]) & donné
I'estimateur de la borne comme unerreur quadratique maoyenne de 67 (h) :

E*(1) = limsup E[||07 (h7) — 6||’]
n—oo
Ou E2(1) satisfait )
sup |E*(r) — E*(1)| =Y 0.

T1<7<70
Donc, notre estimateur est :

= arg 7122270 E ( )

Enfin Uestimateur de 'index se défini comme suit :

0 :=07(h) = arg max L0, 7 h)

3.2 La consistance de 6

Hypothéses : On garde les hypothéses (H1)-(H5) et ajoute les hypothéses sui-
vantes : On suppose que pour tout 71 < 7 < 79 et tout § € © — {6y},

D1
L™(6y, Jp)— L7(0, Jg) > 0.

D2 On suppose que pour tout 61,60, € ©,v > 0,z € X,y € ) et pour une fonction P
telle que E[®(X,Y)] < +00, on a

Remarque Ces hypothéses sert & identifier notre modeéle de régression.
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Résultats
Théoréme 3.2.1. Sous les hypothéses (D1) et (D2), on a
sup | L, (6, 1T, Jp) = L7(8, Jp)| = op(1) (3.6)
Donc
6, — 6.

Démonstration : La démonstration est basée sur la décomposition suivante :
L0, 107, 1) = L0, )] < |La(0, 17, J) + La(0, 7, J)] + [ La(0, £7.J) = Lu(0,.7)

Pour démontrer (3.6), on a deux étapes :

I On considére tout d’abord la partie paramétrique L7 (0, f7, Jg) — L7(0, Jp).
D’aprés hypotheése (D2), la famille {log(f;(0'-,-)), 0 € ©,71 < 7 < 75} est
Glivenko-Cantelli ([1],1996), donc

Seup |L;(07 fT7 JB) - LT(O’ JB)|

< log f5(6'x,9)J5(x)| / / d(Fxy(z,y) — Fxy(.y))

Puisqu’on a dans le cadre paramétrique, la loi des grands nombres fournit par le
théoréme Glivenko-Cantelli et donc le Théoréme de Stute (1993,(25]) nous donne :

sup |L7(0, f7, Jg) — L7 (0, Jg)| 2 0.
7,0

II Pour le deuxiéme terme L7 (6, f'7 Jg) — L7(6, 7, Jg). En utilisant I'inégalité des
accroissements finis, il existe un ¢ > 0 tel que pour tout z,y, 6,

| log f3°7 (0'x,y) —log f7 0z, y)|Jp(x) < ¢ M| fyo7 (02, y) — f5(0'x,y)|Tp(x).
Ainsi,
Suep |L:z(9> fho,Tv ‘]B) - Ln(97 fT> l]B)|

<ot sup |17 O) - 700 a@) e, [ [ ()

x7y77—?9

<c! Sup [fg" " (w,y) = 7 (w,9) Jp (@) Lyea,
YU, T
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Ainsi que

fo" () = fr(wp)l < 1f5"7 (wy) = Jo () 4 1 (s y) = B (u,y)]
+ [Bfy T (uy) = f7 (u.y)]

Pour le premier terme, d’aprés (2.1) et (3.5), on a

pho,T . hO’Tu u w hoTu
3 o) = ()| < S ey |
On a,d’aprés Gill (1983,[20])
G = G(T)| _
S n—amy| =W
Donc N P
’ hoT( ) eho’T(u,y)|—>0. (37)

Enfin, d’aprés la demonstration de la proposition du chapitre précédent et (3.7), on a

sup| L7 (6, fo7 ) — Lo (6, f7, Jp)| 2 0.

3.3 Normalité asymptotique de 0

La normalité asymptotique nous permet de construire les intervalles de confiance et
de faire les tests. On établit de cet estimateur lorsque les observations sont indépendants
et identiquement distribuées dans deux cas.

3.3.1 Cas paramétrique

Hypothéses

M1 On suppose que pour tout 6, 65 € O, pour une fonction ® telle que
| Pl < +o00, pour v >0, x € X ety €Y, on a

sup [V /s, (z,y) = Vifa, (@, y)ll < 1101 — 0] ®(z, ).

Cette hypothése nous donne également les inégalités suivantes, obtenues par le théo-
réme des accroissements finis :

sup [|Vo fg, (z,y) = Vo fg,(z,y)|| < (161 — 02]|M
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et
sup || f, (2, y) — fo,(z, ) || < 102 — 62| M,

M2 Soient

H, = C™OLX x A, M),
Hy = zC'™(0LX x A, M) + C(0,X x A, M).

On suppose que f§ (-, ) € Hi ( en tant que fonction de 6z et y) et Vo fg (-,) € Ha.
Ces classes sont prouvés comme classes de Donsker (Bouaziz (2009,[17])).

Remarque :
Ces hypothéses établit les conditions de régularité sur notre modeéle de regression, ainsi
que nos classe de fonctions, pour assurer le résultat de la normalité asymptotique.

La n-consistance de 6,, vers 6,

Théoréme 3.3.1. On suppose que 0, mazimise T',(0) et Oy maximise T'(0). On suppose
également que 0, converge en probabilité vers Oy et que il existe un voisinage N de 0y et
une constante n > 0 tels que

T'(0) < =n(0 — 00)'(0 — bo)
Pour tout § € N, uniformément sur un op(1) voisinage de 6o,
I'(0) = Tn(fo) +T'(0) + (0 — 00)' Q1 (0) + (0 — 00)' Q2 (0) (0 — 0) + Q3 (0) —T'(00), (3.8)
o1
sup Q1(0) = Op(n'/?)
Stle Q2n(0) = 0p(1)
sup Qsa(¢) = Op(n™")

Alors,

0, — by = Op(n1/?).
La convergence en loi de 6, — 6, vers une variable aléatoire gaussienne.
Théoréme 3.3.2. On suppose que 0,, est \/n-consistant pour 6y et que uniformément sur

les Op(n=12) voisinage de 0y,

Fn(é) = Fn(eo) + %(9 - 90)/‘/9 + %(9 - OU)IWn + 0]}»(71_1) (39)
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Ou V' est une matrice définie négative et W,, converge en loi vers un vecteur aléatoire de
loi N(0,A\). Alors,
en - 90 = _n71/2V71Wn + Rn(e)a
o1
sup R, (0) = op(n="?)
0

Donc
V(0. — 05) S N, VIAVTY).

La démonstration de ces deux théoréme est basée sur le lemme suivant :

Lemme 3.3.1. Sous les hypothese (M1) et (M2), on a

1. Sur les op(1) voisinages de 6y,
LT(8, 7, Jo) =L7(0,Jo) + (6 — 60)'T1n(0) + (6 — 60) T, (0) (6 — o) + T3,(00),
01 sup | Tin| = Op(n™"/?), sup |Tan| = 0p(1) et Tsn(60) = L7, (6o, 7, Jo)— L7 (60, Jo).

0,7

2. Sur les Op(n~'%) voisinages de 0y,

1
LT(0, f7, Jo) = L7 (0o, [T, Jo) + 1" 2(0 — 00) W, — 5(9 —00)'Vo(0 — 6y) + T, (0),

o
sup [Tin| = op(n™Y), filz, y) = fo (Ohx,y)Jo(x, ) Vo fs (x,y),
1 n
Whr=— 9i, X3, Ti; [1l 3.10
, ﬁ;w Aila) (3.10)
et

Ve = E[ff, (05X, Y) Jo(X, o) Vo ff, (X, Y)Vaf7,(X,Y) Tyea,] (3.11)

Démonstration :
Le développement de Taylor en 6y de L7 (6, f7), nous donne

L:l(97 fTa JO) = L;(907 fT7 JO) + (9 - GO)IVHL;(ea fT> JO)’H:GO
1 / T T
+ 5(9 —00)' oL (0, 7, Jo)|g—g (0 — 6o).

Tel que 6 est entre 6 et 6.
La preuve est basée sur le méme développement de Taylor pour L™ (X, Jy). Alors,

VoL, (0, f7, Jo)lo=a, — VoL™(0, f7, Jo)lo=a,
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= ZWmVQ log f5.(Xi, Ti)Jo(Xi)lrea, — E[Volog f7 (X, Y)Jo(X)lyea,] = Op(n~'7?).
i=1

Puisque la classe de fonctions {(z, y) + Veglog fj (v, y)Jo(2)1r,ca,} est une VC classe

de d’aprés 'hypothése (M2). Pour le gradient d’ordre deux, on écrit

ngZ—z(ga fT7 JO)|9:§ = (V3L2(07 fTa JO)|0=§_V3L77’—L(07 fTv ‘]0)|9:90)+V3L:1(07 fTv J0)|9:90

et le premier terme tend vers 0 puisque 6 est dans un Op(1) voisinage de 6. La démons-
trattion suit le méme du cas précédent pour le gradient d’ordre deux en 6y, puisque la
classe de fonctions {(z, y) — Vjlog f7 (z, y)Jo(z)Lrca,} est également une VC classe
d’aprés les hypotheéses (M1) et (M2). Pour prouver (3.8), on reprend la décomposition
(3.12), on trouve

1 n
VoL, (0, f7, Jo)lo=6, = ﬁziﬂ(% Xiy Tj; fila,) + Ru(fila,),
=1

ol

sup, R,(fi14,) = Op(n ' (logn)?),

T
ce qui nous donne bien le terme n=Y2(0 — 09)'W,, ., (0 — 0p)' R, (fi14,) étant un op(n=?)
uniformément en 6 et 7. Pour le gradient d’ordre deux, on observe que le premier
terme est un op(n~!) puisque cette fois on est sur des Op(n~'/2) voisinages de . Pour
VZLT (0, f7, Jo)|e=s,, on applique encore la méme preuve qui converge bien vers V;, tandis
que le reste convergent vers 0 et en utilisant le fait que ||§ — 6y||* = Op(n™!), on obtient
bien que ces termes sont uniformément en 6 et 7 des op(n™!).

3.3.2 Cas semi-paramétrique

Théoréme 3.3.3. Soit 7* = argmin E*(7). On garde les Hypothéses (H2) — (H5) et

(M2), on a

A 1
Q—QOZ—W

Ou V, et W, sont définis (4.7) et (4.8). Donc,

VW e+ 0p(n?) (3.12)

n'2(0 - 0y) 5 N(0, 3.

Ot Yo = VAL (A, Dn(fi) = Var((6, X, T; fila,.)). Ce théoréme est une

conséquence du Lemme suivante.
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Lemme 3.3.2. Sous les Hypothéses (H2) — (Hb5), (D1) — (D2),(M1) — (M2), on a
L0, f'7, Jo) = L0, f7, Jo)+(0—00) Ra(0, h, T)+(0—00)Qnu(6, h, T)(0—00)+L](60)

, Ou

sup Rn<97 ha T) - OP(n_l/Q)v
0,h, 7

sup @ (0, h, 7) = op(1)
6,h,

et
L7 (60) = AT, (00, f™7) — B3, (00, f™7),

AT (0o, f77) et BE (6, f7) étant définis dans la preuve de ce lemme.
Démonstration du théoréme (3.3.3) Soient
Con(0, 7, h) = L3(0, 7, Jo),
T1a(0, 7) = L0, /7, Jo)
Pou(0) = 1,0, ", Jo).

Les deux théorémes précédentes nous permettent une représentation asymptotique de

type (3.9), donc
1

j _ -1
9 - 90 - _’I’L1/2‘/T Wn,T + RTL,T(Q)7 (313)
Tel que sup R, (f) = op(n~/?). On a en particulier la représentation (3.12) et le théoréme

0,1
central limite.
Démonstration du lemme (3.3.2) :
Tout d’abord, on applique les méme arguments que dans Delecroix et al. ([14], 2006) pour
remplacer Jp by Jo. On définit alors Jo(x, ¢) = L, or0y5.- L'hypothese (D2) sur la densité
de #’x nous permet alors, sur une suite de voisinages décroissants de 6, de remplacer
Jo(x, ¢) par Jy(x, ¢/2). Tel que sup désignequez € X, ye Y, he H,, n1 <7<1

x7y7h77—79

et 0 € ©,.

L7(0, f7 o) — L0, 7, Jo) = iaw 1 lo 0" (0%, T) Jo( X, )
n\Y, 5 J0 n\Y, 3 J0 — - iWinlz,ea, 108 fg(ele,T;) 0 iy C

v Wil zea, (F37(0X0T) = [0'X0T) ) Jol(Xisc)

i=1
~ 2
n Winlziea, (J37(0/X0T0) = fFO'X0,T)) Jol(Xisc)
=1 o(f5(0' X5, Ts), fo (0 X, Ti))2
= AL (0, ") = BL(0, f"7),
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Ou ¢(f7(0'X;, Ty), f™(0'X;, T)) est entre f)7(0'X;, T)) et f5(0'X, Ty).
Pour le premier terme A7, :
Un développement de Taylor appliqué en 6y nous donne la décomposition suivante :

n Winlzea, ( Agh’T(QIXi,E) — feT(QXi,Ti)> Jo(Xi, ¢)

ATn 8, Ah,T —
(@ 177 f70X;,T;)

=1
4 9 9 ,Z WznllZ €A, v@f (XHT;) - V@fe:)<X171—’l))J9(Xlac/2>
0 (0!
i=1 fe (9 X’L))T;
. 0 " Wil zea, (V3f3T (X0, Th) = V31X, T0)) Jo(Xi, ¢/2) 0 6)
o) 2f7 (06X, Ty) 0

Pour § entre 6 et 6. On remplace alors @ par , dans le premier terme de la maniére
suivante :

T rh,T T th.T a VV'm]IZZ Aq-( A}zT(e,Xivn) - fT (GIX’L?E))JO(X“C)
AL (G0, [27) + A0, /") =) S 170X, TB; 0
2] 19 (3

i=1

Ou
Aq (0, f7) = ZwmnzeA (foT (06X, To) — f5,(06X:,T:)) Jo(Xi, c)

X (feo(e/OXiaTi> = [ (0'Xi, T))Jo(Xi, ¢/2)(f5(0'Xi, T) f5,(00X5, T))~"
On pose alors

Winlzea, Vefg (X5, T;) — Vo fs, (X, Ti)) Jo(Xi, ¢/2)

ATn th
? ; f7(0'X;,T;)
et
A7 (3. o) = " Winlzea, (V327 (X0, Th) — V3£5(X5, T)) Jo(Xi, ¢/2)
s p 2f7(0X;,T;) ’
Donc,

AT (0, F17) = AT, (8o, ["7)+(0—00)' A3, (8, F"7)+(6—60)' A3, (8, /*7) (6 —60)+ AL, (8, f*7)

Pour § compris entre et §,. Comme \% fgh (z, y) converge uniformément vers Vz f7 (z, y)
d’aprés les hypothéses (H1-H5), on a

sup A%, (0, f*7) = op(1).
0,7,h
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En utilisant la forme de sauts de l'estimateur de Kaplan-Meier 3 Xy =

n
g Winl{x,<e1,<y}, €1 sUite

i=1
- i " Winlrea, (Vofy, (Xi, T)) = Vofg (X0, 1)) Jo(Xi, ¢/2)
A2n(07fh’ ) = Z = ‘ T QX T -
i=1 f@( Iz ’L)
1 0l zea, (Voo (X T) = Vo g (X, ) Jo(Xi,¢/2) 1 — G(Ty—
v 15w, zem oy aea Vol (X Th) = Voldy (X0 T))Jo(Xs, /2) 1 = GT)
n [ (0'X;,T;) 1—G(T;—)
= Agln(a fh’T) + A72—2n<‘97 fh’T)v
Ou .
G(t) -G
Za(t) = ————.
2 Iy A -1/2 1_G(t) ) 2
Par les égalités sup |G(t) — G(t)] = Op(n™ /%) et sup————= = Op(1),d’aprés
t<7o t<rp 1 — G(t)

Gill(1983,]20]), on a

n

sup | Ag2n (0, [*7)| < op(n™ ) x 0"y (1 — G(Zi—)) 7",

i=1

et le dernier terme est un Op(1) puisqu’il est d’espérance nulle. Pour le terme A7, , on
remplace tout d’abord # au dénominateur par y, ce qui nous donne :

e n m’n]lZiGAT<v9fA9h(;T(Xi7ﬂ)_VQfec)(Xi’ﬂ))Jo(Xi’C/Zl)
a0, 7) = > 77 00X, 1)

i=1

+ Z m,n1T¢€AT (fGTO (96X17 7—’1) - f97-<91X17 ﬂ))JO(X’H 0/4)

i=1

X (Vofg (Xis T0) = Vo fg, (Xiy T)o(Xis ¢/8)(f5, (06X, T)f5(0' X, T))™"
D’aprés 'hypothése (D1) et la convergence uniforme de Vy féﬁ) u

Ry, (0, h)(0 —6o), oun SHI;LIRLL(& h)| = op(1).

L’hypothése (M2) et les classes de fonctions (H1) et (H2) introduites dans 'Hypothése
(M2) sont des classes de Donsker. De plus, f;; T et V feho’T appartiennent respectivement aux

classes (H1) et (H2) avec probabilité tendant vers 1 pour une constante M suffisamment
grande, nous assurent que les classes {(z,y) — Vg f§ (x,y)} et {(z,y) — nggg’T(x,y)}
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sont des classes de Donsker.
Alinsi, R
Vofo (z, y) — Vofi(z, y).

Alors, d’aprés propriété suivante :

Ve > 0, lim lim supP < sup  |Gn(g1 — g2)| > e) =0

8—0n—o0 pp(91—g2)<d

On obtient :
T (g fhT (Vofg" — Vofr (x,y) Lyea, Jo(z, c/4)dP(x,y)
e =) s
6o 7y>
+ R7,(0, h)(0 —6y) + R3,(0, h),
Ou
sup | RT,(0, )| = 0p(1) et sup|R5, (0, h)| = op(n™2),
0,7,h 6,7,h
Ensuite,

sup) / / (Yol (2, y) — Vof (2, 1)) Lyen Jo(x, c/4)dP(z,y)]

= sup| / / Vo T (2, y) Lyen Jo(x, ¢/ ) dB(z, y)| = Op(h*) = op(n~1),

puisque nh® — 0 d’aprés les hypotheéses (H2)-(H5). Le terme A, (6, fP7) traité de la
méme fagon. Pour le terme A7, (6, f7), on remplace W;, par W, et par suite 6 par 6
au dénominateur. On a donc :

" Windzea, (F7 00X T3) — f7 (06X0, T)) (5 (00 X0, T3) — £5(0' X2, T)) Jo(Xi, )

ATTL Q’th,T _ :

WS = 2 U7 X T)?

+ Y Windzea (f,06X:, T) = f5(0X5, T))*(fo7 (06X, Ti) — f7, (60X, T2))
=1

< (f5OXs, T)) 7 (f5, (00X, T) 2 Jo(Xs, ©)Jo(Xi, ¢/2)

D’aprés I'hypothése (M1), le deuxiéme terme est égal a (0 — 6y)'R3, (0, h)(6 — 6y) ou
sup | R, (0, h)| = op(1). Quant au premier terme, I'hypothése (M2) et que les classes de
0,7,h

fonctions {(x, y) = fg (z, y)} et {(z, y) — f&’T(x, y)} sont des classes de Donsker et
. rh.T T 1 24z
la convergence uniforme de fy" (v, y) vers fg (, y), on peut alors utiliser la propriété
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d’équicontinuité des classes de Donsker. En utilisant également I’hypothése (M1) pour le
terme f7 (00Xs,T;) — f5(0'X;,T;), on peut donc écrire :

_ // f (06, y) — fo,(00z,y)) yea, (0 — 00)'Vofs (2,y)Jo(z,c/4)dPxy(z,y)
(f5, (O, y))?
+ (0 —6)R%,(0, h)(0—0y) + R, (0, h),

AL (6, )

Ou

sup |R3, (0, h)| = op(1) et sup|Ry,(0, h)| = op(n™"/?).
0,7,h 6,7,h

On a,
dPxy = dPy|xdPx|g x APy x

Pour tout y € Y
/ Vo fo,(x, y)Jo(z, ¢/4)dPx g x (7, u) =0

Donc, .
A, =0
Pour le deuxiéme étape :
Tout d’abord, un développement de Taylor en 6y nous donne :

(fom(0'Xs, Ty) — f7(0'X:, T)))?

= (faT (000, To) — f3,(06X0 T) + (0 — 00) (VoS (0'X,, T) — Vofg (08X, T)))?
= (fa7 (00X, T)) — f7.(00X;, Tp))?
+ 200 = 00) (VIO X, T) — V50X, TO)fo" (00X, Th) — f7,(06X:, Th))
+ (VIR0 Xs, T) — Vi (66X, T)) (V70X T) — VX, Th)).
Alors
" Winlnea, (fo (06 X:, T0) — 17, (00X, T2))? Jo( Xi, ¢/2)
P S(f7(0 X, T), fy 7 (0X:,T5))2

Br, (0. f7) =

+ 9 90 ZWzn]lTGA f (96X17 E) - f9T<9(/)Xl7 E))JG(X“ C/2>

x (VofyT(# Xi, T) = Vo5 (0'X:, T))O(f5(6'X:, T), f7 (0'X:, Th))*) "

—~ | {(0 = 00) (Vo f}(Xi, To) = Vo f7 (X5, T)) Y2
2 W e o TR
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On remplace ¢ par 6y dans le dénominateur du premier terme et d’aprés I'hypothese
(M1)(3.3.1) et la convergence uniforme de f(Z)’T(%Xi, T;) vers f;(00X;,T;) implique

i I/Vi:n]lTiEAr<f£07T<96Xia 7-'7,) - fgo ((96X“ E)zt]o(Xi, 0/4)
o(f5 (00X, T), fo " (06X, T5))?

i=1

+ (6 = 00)' B3, (6, h)(0 — b)),

Ou

sup |R3, (6, h)| = os(1).
0,7,h

Donc,

BT,(0,f") = B (00, f"7) + (0 — 60) B5, (0, ") + (0 — 60)'BL,(0, f"7)(6 — 6o)
+ (0= 60) 5, (0, h)(0 — ),

Winlrea, (o (00X, Ty) — f5 (06X, T3)2Jo (X, ¢/4)
o(f5 (06 X0, T0), fo T (00X, T7))2

B3, (6o, f"7) =

et

By, (0, f"7) = 2 Win(fo (00X, To) = [0, T0))Jo(Xs, ¢/2)
=1

X

(Vefg’T(é/Xi, T;) —Vefg(é/Xz‘, T))(b(f7(0' X, To), fo " (00X, T1)*) ™!

BL(0,f"7) = D Windo(Xi, ¢/2)(6(f5(0'X,, To), fy™(0'X:, T1))*) !
i=1
X (Vofy"(Xi, To) = Vo5 (Xi, T))(Vofy™(Xi, Th) = Vof7 (X, T))
et sup |Rj,(0,h)| = op(1). Donc,

0,7,h

sup | B3, (6, /)| = os(n ")

et

sup | 57,0, )| = os(1),



Chapitre 4

Les événements récurrents dans un
modeéle a direction révélatrice unique

Ce chapitre concerne a 1’étude des événements récurrents en présence de données
censurées & droite. On étudie le modéle de la moyenne p(t|z) = ug,(t,0z). Dans la
premiére section, notre procédure d’estimation nécessite l'introduction d’'une mesure qui
nous permet de controler les poids, parfois trop grands dans les queues de distribution,
de l'estimateur de Kaplan-Meier. Dans la deuxiéme partie, nous encore établissons des
résultats de la consistance et de normalité asymptotique de I'estimateur obtenus pour une
mesure adaptative choisie a partir des données.

4.1 Présentation du modéle

Soit le processus N*(¢) compte le nombre d’événements récurrents survenant dans
'intervalle de temps pour [0, t] et précédant 1’événement terminal Y. Le modeéle est défini
comme suit :

p(tlz) = EIN* (1) X = a] (4.1)

qui compte le nombre d’événements récurrents moyen a chaque instant, sachant un vecteur
de variables explicatives X € X C RY. Le processus de comptage N* nous donne des
informations importantes sur Y. Nous posons deux cas :

Cas paramétrique

p(tlz) = polt, z;00) (4.2)

Tel que 6y € © C R? est inconnue et i est une fonction connue.
Cas semi-paramétrique

p(tlx) = o, (£, o) (4.3)

Ou by € © C RY, py(t, u) = E[N*(t)|¢’ X = u] et la fonction jq est inconnu. En pratique,
N* ne sera pas toujours directement observé sur tout I'intervalle de temps [0, Y], puisque

43
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Y peut étre censuré. On utilisera les mémes notations que dans les chapitres précédents
pour C, T et §. Ainsi, pour tout ¢, au lieu d’observer N*(¢) on observera N (t) := N*(tA\T).
Dans ce chapitre, nos observations seront donc i.i.d. de (13, 9;, X;, Ni(+))i<i<n-

4.2 Méthode d’estimation

Le processus Z(-)

On trouve des problémes dans ’estimation de la moyenne p puisque le processus N*
n’est pas directement observé. Donc, on ne peut pas utilisé des critéres qui dépend de N*,
pour cela, on introduit un processus Z(-) telque

Z(t) = /0 %. (4.4)

Cela, nous aide de compenser le manque d’observations dans les queues de la distribution
dans le cas censuré, on a

E[dN(s)|X] = E[dN*(s A C)|X]

Ainsi, on a

E(Z(#)|X) = E(N"(1)[X) = u(t|X) (4.5)

On a estimé Z par l'estimateur de Kaplan-Meier, puisque la fonction G est inconnue qui

est par la relation suivante .
2(t) = / _dN(s) (4.6)
0o 1—G(s—)
Donc, le but générale est d’étudier la différence entre Z et son estimateur.

On pose le lemme suivant qui donne une représentation asymptotique .i.d. uniforme,
pour une classe de fonctions faisant intervenir le processus Z (+). On considére une version
intégrée de ce processus par rapport a une mesure w appartenant a une classe de mesures
de probabilité WW. Nous explicitons tout d’abord cette famille de mesure en présentant les
hypothéses qu’elle doit vérifier pour nous permettre d’obtenir ce lemme.

Soit la classe de fonctions

G={g:(t x) 0,7y x X+ g(t,x)}.

On s’intéressera notamment & G = {ug : (t, ) € [0,7y] X X — pe(t, x),0 € O} ou aux
classes de fonctions des dérivées partielles d’ordre 1 ou 2 de pyg.
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condition 4.2.1. Soit G, = {g¢(t, -), t € [0, 7|, g € G}, une classe de fonctions définie
sur X Pour 7 < 1g. Alors, pour tout T < 1y, G, est une VC-classe de fonctions.

Commentaire
la mesure w joue deux role :
Le premier, dans la pratique : on a plus de poids sur certains intervalles de temps de plus
grande importance.
Le deuxiéme, dans la théorie : cette mesure permet de controller la processus Z dan les
queues de distribution.

Hypothéses

On suppose que
P(dN*(C) #0) =0,

- (F1) { P(Y =C) =0.
CL(N*Y),
P(C <tN*X,Y)=P(C <t|N*Y) pour tout t € [0, Tx].
— (F3) On suppose qu’il existe une mesure wy et une constante positive Cy telles que,

pour tout w € W,

- {

/ dw(s) S CQWO(t),
t
Ou Wy(t) = / dwy(s). De plus,

t

Wo(t) = Wi(t)Wa(t),

Ou W7 et W5 sont deux fonctions positives et décroissantes telles que

o WRNAG()
/0 (1= Ft-)1 -Gy =™ (4.7)
/TH Wa(t)E[dN*(t)] < oo (48)
et
Jim Wi(0) =0

— (F4) On suppose que pour tout 7 < 7y, il existe une constante a > 0 telle que,

e[y MOV

su < Q0.
tST,tI;T ‘t - t/|a

Remarque
pour 'hypotheése (F3),
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— L’hypothese (F3, 4.7) permet de controller (1—G(t—)) (dans la définition de Z pour
tout ¢t dans les queues de distribution.
— L’hypothése (F3, 4.8) Sert a verifier que N*(¢) ne grandit pas trop vite dans les
queues de distribution.
Ainsi, 'hypothése (F4) impose une condition de "Holder" sur le processus N, nous assure
que certains de nos classes de fonctions appartiennent a des VC classes.

Lemme 4.2.1. Soit G, une classe de fonctions d’enveloppe ® vérifiant la Condition (4.2.1)
et soit W une classe de mesures vérifiant l’hypothése (F3)On suppose également que I’hy-
pothese (F4) est vérifiée. On définit, pour tout g € G,

Z/ Jolt, Xo)du()

et
Z/ " g (t X:)dw(t).

(1) On suppose que sup E[S, (P, w)] < co. Alors, pour tout g € G, on a :
wew

5.0 w)=Sulg. ) = > [ [ 0 (B 8Bl X)dus 0100+ Rl w),

ol

. (1 — 5)]1T§t t ]szsdG(S)
T 9= - | e e

et svlvlp . IR, (g, w)| = op(n~?). De plus, si les supports des mesures w sont tous
weW,ge

inclus dans [0, 7], pour un 7 < 7, alors sup |R,(g, w)| = Op(n"'logn).
weEW,geqg

(ii) Si g représente une famille d’estimateurs nonparamétriques de g telle que
sup ||g — gllee = 0p(1), alors
9€g

sup [5,(9, w) — Su(g, w)| = op(n~"/?)
weWw

(resp. Op(n~1logn) si les supports des mesures w sont tous inclus dans [0, 7).

preuve du lemme (4.2.1) On pose

T(n)
570 g, Z | Zatx., )
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— Sn(”) (g9, w) + Rn(g, w).

De plus, en utilisant les mémes arguments utilisés dans le Théoréme (4.3.1), on a

T, -
sSup |STL( )(97 lU) - Sn(ga ’ZU)| = 0]}»(71 1/2)'
weW, feF
Soient 7 < 7y et w,(t) = w(t)li<,. Sur [0, 7] on utilise la représentation asymptotique
1.2.d. de 'estimateur de Kaplan-Meier G,

TG Ta et o

Ot sup |R,(t)| = Op,.(n ' logn)

Et t<rt
(A =9lre [ Lr2;dG(s)
n(T, 6) = T_H(T-) /0 (1—H(s—))(1 —G(s—))

De plus, on a d’parés Gill ([20],1983)

sup |G(t) — G(t)] = Op(n~'/?)

t<t

et

On obtient donc,

Rn(g, w:) = Z/ " 9(Xi, 1) /0 i ﬁT_ g()d_)( )dwT< t) + Ran(g, wr).

Tel que F est un ensemble uniformément borné, que
/dwT <1, etque E[N(1)] <o

pour tout 7, on en déduit que

sup | Raa(g, w,)| = Op(n™").
g,w
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Le terme R, (g, w,) se reécrire comme suit :
Rn(g, wr)
1 < [Tyt . )
52/0 /Ons(Tj, d;)Elg(X, t)du(s|X)]dwT(t)+/ﬁng (Xi, Ny, T, 6;)dw (1)
Jj=1 07
Ou

00N T30 = [ () (ST Bl (el ).

On peux remplacer la borne T,y par 7 dans les intégrales, avec probabilité tendant vers
1. Soient (g, ¢') € G* et (¢, t') €10, )2,

|1/}g’t(Zi7Ni7iTj)6j) - 77Z)g/’t/(Zi7Ni7,'Tj7 5j)| S |77Z)g/t(Z7j’Ni7 71]'7 5]) - ¢g’t/(Zi7Ni’iZ}76j)|
I (Ziy Niy Ty, 05) — 0 (Ziy N, T, 05)|
< Crllg = ¢'lleNi(T)
Ni(t) — Ny(¢'
+ Gt =t|" Sup| =)

ti<r |t —t]®

Y

Ou C,, C! < oo et a > 0. Soit H, ensemble de toutes les fonctions 9" pour g € G et
t € [0, 7]. Cette derniére inégalité et 'hypothése (F4) nous assurent alors que H., est une
VC-classe de fonctions uniformément bornées. La propriété de Glivenko-Cantelli([1],1996)
de cette classe nous donne

n

1
sup | 094X, Ni, T, 6,) = Oe(n ™).

n
g;t<T i—1

D’autre part, le Théoréme (1.5.3, [21]) nous donne

1 _
, sSup |_szg’t(Xia Ni7 ,—Tju 6])' = O[[D(TL 1)7
git<r T it

Puisque cette quantité peut étre vue comme un U-processus dégénéré d’ordre deux indexé
par H,. On a donc obtenu la représentation i.i.d. pour S,(g, w;), 7 < Ty. Pour obtenir
la représentation pour S, (g, w,), on écrit

A

Su(g, wr) = Sa™ (G, wr) + Ru(§ — f, wy) + Rul(g, w,).

En effet

sup [|g — glloc = or(1),
g€eg
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et
sup |G(t) — G(t)| = Op(n~"7%),
t<t
On en déduit que sup |R,(g — §, w,)| = op(n~/?) ce qui nous donne la représentation

pour Sy(§, w,). On veut maintenant faire tendre 7 vers 7. Soient

]5;(9, ’LU) :Sn(ga U)) _Sz;(n)(ga U)),

et PT(f, w) = S, (f, w,) — G (f, w;). Puisque la classe de fonctions G est uniformément
bornée, on a

PT(g, w)— Pl(g.w)| < 23/“ H‘“zﬁ'”dN<>mmw

M T““Wo(s\/T)\G( —) — G(s—)ldNi(s)
”z;/o [1—G(s—)l[1 - G(s-)]

Ou la derniére inégalité vient du théoréme de Fubini (1.4.10) et de I’hypothése (F3). La
condition sur W; de I'hypothése (F3) et en utilisant le fait que d’aprés Gill (1983,[20])

sup (1 — G(t—))(1 — G(t—))! = Op(1)

t<T(n)

<

I

1=

Tin S T
B, w) - |<—Z/”%\g@”,

Ou An = Op(nfl/Q).

4.2.1 Cas paramétrique

On définit, pour une mesure w telle que w([0, o0)) < oo,

Ah@uwzlmﬂm@Xﬁﬁ%ﬁ%ﬂémﬂﬂthXﬂWMU

Par la relation (4.5), on a donc :

Oy = arg Ielélél /TH E[(Z(t) — po(t, 0 X))?]dw(t)

= M(6, o).
arg min M, (6, o)

Sous 'estimation, on a utilisé la version empirique de M,
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n

M6, 10) Z/T(n) (6,0 X 2dw(t) — EZ/OT(”) 248 ot 0 X))

i=1
On définit ainsi 'estimateur suivant de 6y :

f(w) = arg min My.(0, po). (4.9)
USC]

4.3 Reésultats asymptotiques
Hypothéses

TH

— (I) On suppose que pour tout w € W, V,,, = / E[Vouo(t, X)Vouo(t, X)|dw(t)
est inversible. De plus, les classes de fonctions O{MO(-, ),0 € 0}, {Vouo(-,-),0 € ©}
et {Viuo(-,-),0 € ©} vérifient la Condition (4.2.1) et les deux conditions suivantes.

condition 4.3.1. Soit G = {gp : (t, z) € [0, Ty| X X — go(t,x), 0 € O} une classe
de fonctions. On suppose que {(x, z) > /TH 2(t)g(t, x)dw(t), go € G, w € W} est
Glivenko-Cantelli(1996,[1]). ’

condition 4.3.2. Soit g9 € {(t, ) — go(t, x), 6 € O}. On suppose que pour tout
(61, 05) €O et w € X,

TH
sup / 1gs (£, 2) — gas(t, 2)|duw(t) < C6r — 6]
weW Jo

Ou C' est une constante positive.
De plus, Vouo(s, x;01) (respectivement Viug (s, x;01)) représente le vecteur des dérivées
partielles (respectivement la matrice Hessienne) de po(s, x;0) par rapport a toutes les
composantes de 0, évalué en 6.

Remarque :
Ces deux derniers conditions (4.3.1) et (4.3.2) concernent le modeéle paramétrique et
peuvent étre interprétées comme des conditions de régularité sur le modéle de régression.

Résultats

Théoréme 4.3.1. On suppose que l’égalité (}.2) est vérifiée. Soit é(w), défini par (4.9).
Sous les hypotheses (F1)-(F4), (1), on a

Ow)— 6 = Vil Z | )= ol Xis60)amot, X 0p)dut

/OTH/O Ns—(T;, 6)E[Vouo(t, X;00)duo(s, X;60)]dw(t))} + Ru(w),
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O
(=0l ¢ Trs.dG(s)
CORRE e v R ey = e
Et sup |R,(w)| = op(n~Y?). Pour tout w € W,

Va(d(w) — o) 5 N(0, %),

; _ -1 ~1 - - I
0t Xy = Vw7pAw,pr7p et Ay, est la matrice de covariance associée a chaque terme de
la somme entre accolades.

Ce théoréme nous donne donc une représentation i.i.d. de é(w) — 0y puisque le terme
entre accolades représente la somme de termes i.i.d. et d’espérance nulle. En effet,

E[(uo(t, X;60) — Z(1))Voro(t, X;60)] = E[Vouo(t, X;60)(uo(t, X;6o) —E[Z(1)X])]
= 0

D’aprés (4.5). De plus, en utilisant ’hypothése (F2), on montre que

Bl (T, 5)] = 0. (4.10)

Démonstration

La preuve de ce théoréme se décompose en deux parties.
Consistance de 0(w) :

D’aprés le Lemme (4.2.1, 1)

~

1 < [T
M8, o) = —25,(po(-, -56), w) +;Z/ po(t, Xi;0)2dw(t)
i=1 70
1 < [T )
= =28, (pol-, 0), w)+52/ po(t, Xi;0)%dw(t)
i=1 70

+ %;/OTH/O ne—(T;, 6)E[po(t, X;0)du(s|X)]dw(t) + Ru(po(-, +6), w),

Ot sup Ry (po(-, - 80), w) = op(n~'?). Puisque la classe de fonctions {uo : (¢, z) €
w,0
[0, 7] X X = po(t, 0'z), 0 € ©} vérifie la Condition (4.3.1),
TH
sup S, (o 10), w)— [ BIZ(no(t, X:0)du(t) = oe(1).
w 0

De méme, la classe de fonctions {u2 : (¢, z) € [0, ] X X — po(t, 0'z)% 6 € O} étant
Glivenko-Cantelli ([1],1996) d’aprés la Condition (4.3.2), on a

sup |l Z/o " po(t, Xi;0)*dw(t) — /OTH Eluo(t, X;0)*|dw(t)| = op(1).

n
Ow 05
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Enfin,
sup| =3 / ! / ne(Ts, )Epot, X:0)dpu(s|X)|duw(t)] = op(1),

w T —

d’aprés (4.10), on a donc
Seup ’Mn,w(ea /'LO) - Mw(ea M0)| = OP(l)a
Finalement on a la convergence uniforme (en w) en probabilité de 6(w) vers 6.
Théoréme Central Limite de 6(w) :
Le développement de Taylor de VoM, ,,(6, po) en 6y :
VQMn,w(éa MO) = VGMn,w(Q(b ,LL()) + VgMn,w(éa MO)(é - QO)a (411)

pour un 0 entre 0 et fo, on a La partie gauche est égale a zéro . De plus, pour un n assez
grand, la matrice VM, .(0, po) est presque sirement inversible, d’aprés 'hypothese (1),
puisque # converge vers . On a

O(w) — o = =V M, 0, (0, 110)VoMiuw(Bo, po)-

Soit,

2 ) Q 2 ) 1 < ™ 0 0\’
VoMnw(0, o) = —2(5.(Vapo(-, 50), w)— EZ/ (Vopuo(t, Xi;0)Vouo(t, Xi;0)

i=1 70
- - 1 < [TH - <
i=1 Y T(n)
= _2(A1n,w(97 /LO) +A2n,w(97 ﬂO) +A3n,w(97 /JJ()))?

Tel que

Aln,w(énu()) = Sn(ngO(a 79)7w)7

1 s [ _ _ _ _
Aznw(0, o) = 52/ (Vono(t, Xi;0)Vopo(t, Xi0) + po(t, Xi;0)Viuo(t, Xi:0))dw(t),
i=1 70

- 1 o [TH - - - -
i=1 (n)

Par le théoréme de convergence dominée de Lebesgue (1.4.5), A3n7w(é, llo) converge en
probabilité, uniformément par rapport a w, vers 0 puisque T{,) converge vers 7y et

/ E[Vopio(t, Xi:00)Vopo(t, Xi:06) + polt, X:06)V2po(t, X:60)]duw(t) < oo,
0
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Comme précédemment, on utilise le Lemme (4.2.1) pour Ay, (6, ). Puisque la classe
de fonctions {Viuo : (¢, ) € [0, 7u] x X = Viuo(t, #'x), 6 € O} vérifié les Conditions
(4.3.1) et (4.3.2), et puisque # converge uniformément en w vers 6, on a alors :

Sli)p ’Aln,w<é7 ,UO) - /OTH E[Z(t)vgluO(t? X; 00)]dw(t)‘ = OIP’(1>'

Pour Ay, ., puisque les classes de fonctions {uo : (t,2) — po(t,0'z),0 € O}, {Vouo :
(t,2) = Vouo(t,0'z),0 € O} et {Viug : (t,x) — Viue(t,0'x),0 € O} vérifient les Condi-
tions (4.3.1) et (4.3.2), le terme

sup
w

Aopw(0, o) — / E[Vopo(t, X;00)Vopo(t, X;60) — po(t, X;00)Vipo(t, X;6)ldw(t)
0
converge en probabilité vers 0. On trouve que

/ Eluo(t, X;00)Viuo(t, X;60) — Z(t)Viuo(t, X;00)]dw(t)
0

_ / Vpio(t, X:00)EE [ (t, X:00) — Z(£)|X]]duw(?)

D’aprés le lemme (1.5.2), on a
SUPHVe M, (0, o) — VoM, (80, po)ll = 0p(1).

Donc,

A 1 <& TH
VoMow(o, o) = —2(Su(Vopo(-, -1 00), w) — ;Z/ po(t, X;00)Vepo(t, X;60)dw(t))
i=1 70

2y~ [™

+ HZ/ po(t, X;60)Vopo(t, X;60)dw(t).
i=1 YT

D’aprés la convergence de convergence dans L' (1.4.8) du dernier terme. On a

VnE[lg, <icrypio(t, X;600)Vopo(t, X;6)] Vil poVopio|loP(Timy <t < Tg)

Vo Vool exp (n log(H(t)))Li<r,

Le terme & droite tends vers 0. Ainsi, en utilisant le théoréme de convergence dominée de
Lebesgue (1.4.5), on a

<
<

st—ZAfMX%Wm@XWWM—M)



4.3.1 Cas semi-paramétrique 54

Puisque
TH
/ Elpo(t, X: 00)Vopto(t, X: 60)]dw(t) < oo,
0
On conclut la preuve de ce théoréme en utilisant une derniére fois la représentation asymp-
totique du Lemme (4.2.1) pour S,,(Vguo(-,;6p), w).
4.3.1 Cas semi-paramétrique

On pose
0y = arg I@niél M0, ), (4.12)
€

Ol g est inconnue, avec € ©. Telque

My (0, 1g) = /0 " Bl (t. 0/ X)duwt) — 2 /0 " B2 ot 03X duw(t).

En prenant une famille non-paramétrique d’estimateurs {1y, 6 € O} de {ug, 0 € O}, on
définit Pestimateur de 6, suivant :

~

O(w) = arg min My.0(0, [19) (4.13)

Ty 5
Ou M, (0, f1g) =n~ Z/ o(t, 0'X;)? 2n12/ o(t, 0'X;)dw(t).

D’aprés Ghosh et Lin ([ ] 2000), on a la relation

ot u) = / (1~ Fy(s — |u))dRq(s]u),
. Rot|u) = E[N* (DY > ¢, 0'X = 1]

et
Fy(slu) =P(Y < 5|0’ X = u).

En utilisant 'hypothése (F2), on peut écrire
E[dN (s)|6,X] = E[dN*(s)]|6,X](1 — G(s—)).
Par ailleurs, on a
P(AN*(s) =1, Y > s, X = u) = PAN*(t) = 1, X =),

Pour Y > s
dRy(s|u) =P(dN*(s) =1|Y > s, 0'X = u)
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P(AN*(s) = 1,0'X = u)

(1= Fy(s — |u)) foy x (u)
= E[dN*(s)|0,X]
1— Fy(s—u) .

palt, w) = [ B (1.14)

Finalement, on trouve

Son estimateur est
- u — QIXZ
SR

0 S K (0 (1 ()

Ou K est un noyau et h une fenétre tendant vers 0.

fon(t, u) = (4.15)

4.4 Résultats asymptotiques
Hypothéses On ajoute
— (B1)On suppose que pour tout w € W,
TH
Vio,sp = / E[Voua, (t, X)Vapug,(t, X)|dw(t) est inversible. De plus, les classes de
0
fonctions {ue(-, ), 6 € O}, {Voue(-, -), 0 € O} et {Vaua(-, -), 0 € O} vérifient
les Conditions (4.2.1), (4.3.1) et (4.3.2).

— (B2)supposons que :
(1) Soient A1, Ag tels que A+ Ao > 1 et fip(t, u) = sup(ue(t,u),1). On suppose que :

lae(ta 9/1,) — Heo (tv 9/$)

= 1
Vi R O T P
sSup V9ﬂ0<t7 Z) - Va/w(t, SC) — 0]}»(1)
.0, Hag, (t, O ) 122 7
sup vzﬂG(tv Z) — vgﬁw(t? I) _ Op(l)
t,0,x HQO (t7 66'1;))\1+)\2 ’

Pour t <Tp,), 0 €Oet x € X.
(77) On suppose que

Stup ‘ﬂeo(t> 9656) - :U’@o<t7 96$)| = OP<81,H>7

sup Hv9oﬂ90 (ta ZC) - VGIU'GO <t7 l‘)” = OP(€2,H)>
t.x
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Pour t <T(y), x € X et 1,82, = OP(TFl/Q).

Pour iy on a besoin une condition supplémentaire.

— (B3) Pour tout w € W, on suppose que

sup /OTH(IE[N*(t)|X = g])2M1H22) gy (t) < oo,

T

O A\; et A\g ont été définis dans 'hypothése (B2)
— (B4) 1l existe des classes de Donsker H; et H, telles que pour tout w € W,

(t, =) —s / " oo, 80) — 2(8)) Voptan (b, 2)duw(t) € Ha,

Zr / 15y (£, 6,2 Vopian (£, )dw(t) € Ho.
0

De plus, on suppose que pour un n suffisament grand,

(t, 2) — / " (8, 042) — () Vojing(t, D)duw(t) € Hy,

TH
v [t Oh) Va8 2)dule) € e,
0

avec probabilité tendant vers 1.

Résultats :

Théoréme 4.4.1. Sous les hypothéses (F1), (F2) et (B1)-(B4), on a la représentation
asymptotique suivante de 6(w),

~

) =0 = Vi S (0 s 6X0)Tom b, Xt

+/OTH /Otns—(ﬂ7 6i)E[V9M00(t, QSX)d/uL@O(& QéX)]dw@))}_'_Rn(w),

Ou
. (1 — 5)]1T§t o t ]]-TZSdG(S)
DRSS e T )
et sup |R,(w)| = op(n~?). Pour tout w € W,
wew

Va(B(w) — 6p) 5 N0, Ey.),

y _ -l -1 - - I
Ot X sp = Vi spDow,spVipsp €6 Dwsp €t la matrice de covariance associée & chaque terme

de la somme entre accolades.
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Démonstration :
La démonstration de ce théoréme se décompose en deux parties :
I.Consistance de 0(w) :
La consistance de 6 se démontre exactement de la méme maniére que pour le Théoréme
(4.3.1), en utilisant le (ii) du Lemme (4.2.1) et la convergence uniforme de jig obtenue par
I’hypothése (B2). D’une maniére similaire,

é(w) - ‘90 = _ng’n_,'Lll)(07 ﬂé)VGMn,w(em ﬂ@o)

et

sup IVEM, (0, fi5) — V5 My, (8o, pigo)]l = or(1),
On suit les mémes arguments utilisés dans le Théoréme (4.3.1),

L , 1~ [T , .
VoMo, fto,) = —2(Sn(Vofia, (-5 05), w)—EZ/ figy (t, 60X:) Vi, (t, X;)dw(t)).
— Jo

D’aprés le (ii) du lemme (4.2.1)
VO n w(007 Meo)

= Vy nw(907 Meo)
< 5% A1+A2 5% velu@o(t X) V9ﬂ90<t7Xi) w
_ Z/ Floo(ts 00X a8, 65X) = Zi(1) == mem SR == du()

fiay (t, 00 X;) — 110, (t, 00 X;) ¢y
i _Z/ ueotex)xlm Tig, (t, 06X:)M 2 Vopg, (t, X;)dw(t)

(f1g, (t, 6} X) tg, (t, 00X:)) (Vofig, (t, Xi) — Vg, (t, X))
i _Z/ Tlg, (t, 00 X;) 2P+, (t, 0 X;)~2(M+e) dw(t) + Ran(w)

= VGMn,w(‘g()’ M@O) + Rln(w) + RQn(w) + RSn(w) + R4n(w)7

Ot Ry, (w) vient du Lemme (4.2.1) et du passage de T{,,y & 7 dans les bornes d’intégration.
Donc, on suit les mémes que dans le Théoréme (4.3.1),

sup || Ry (w)|| = op(n~"7%).

Les vitesses de convergence uniforme de fig, — g, €t Vofig, — Vopig, des hypothéses (B2),
(B3)
sup || Ry, (w)]| = op(n~"72).
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En utilisant 'hypothése (B4)et les vitesses de convergence uniforme de 'hypothése (B2),
la propriété d’équicontinuité des classes de Donsker nous donne

Ru(w) = 2 / / i (1, 852 — () (Voo b, @) — Vofiay(t, 2))dPx.z(x. 2)dw(t) + Ry (w)
— 9 / " [ (T tt, ) = Do 1, )P (2)
< Gt Bh0) = 2(O)P 7 (cJo)) () + B (w)

Ot sup || Ry, (w)[| = op(n~"/?).

[ttt 852) = =) B x(2le) = Bl 1, Gh) — (0|2 = 2] =
D’apres la relation suivante :
E[Z(#)]X] = E[N*()| X] = p(t]X),

On a
sup || Run(w)]| = op(n"12).

Ry, (w) se traite d’une maniére similaire. L’hypothése (B4) et les vitesses de convergence
uniforme de ’hypothése (B2) nous permettent d’utiliser la propriété d’équicontinuité des
classes de Donsker et d’avoir ainsi

Rop(w) = 2//OTH(ﬂ90(t’ Oox) — pay (t, 05x))Vape, (t, 2)dPx(z)dw(t) + R;,(w)
= 2 [ e ) =t ) [ Vot )Pl By () ) + R )

Ou sup || R, (w)|| = o]p(n_l/Q). Et

/Veueo(t, [B)dIP)X‘g(I)X(.Ilu) = E[V@Meo(t, X)’(%X = u] =0,

D’aprés le lemme (1.5.2), donc

sup || Ran (w)|| = op(n™"72).



Conclusion

Le modele semi-parmétrique & direction révélatrice unique a été un outil important
pour réduire la dimension et puisqu’on ne peux pas observer la variable d’intérét donc la
fonction de répartition empirique reste impossible pour 'utiliser.

Pour ce cas, on a utilisé ’estimateur de Kaplan-Meier qui se aussi comporte mal dans les
queues de distribution. Donc on a vu qu’une solution était de tronquer les variables par
une borne de troncation tel que on garde que les observations plus petite que la borne pour
estimer la densité conditionnelle en présence de censures lorsque la fonction de répartition
G est connue.

Ensuite, on a utilisé la méthode du maximum de vraisemblance lorsque la fonction G est
inconnu par son estimateur en utilisant une suite de compacts pour qu’on ne trouve pas
des problémes d’estimation dans la fonction répartition multivarié¢ Fx y.

Ce modéle aura 'avantage de généraliser d’autres modéles existants dans le contexe des
événements récurrents par un processus de comptage qui nous donne des informations
sur la variable d’intérét, mais on ne peux pas parfois 'observer, donc, on introduit un
autre processus Z, ainsi, par une mesure pour controller les poids parfois trop grands de
I’estimateur de Kaplan-Meier.

On a étudie la convergence presque siire, ainsi la consistance et la normalité asymptotique
de I'estimateur dans le cas paramétrique et le cas semi-paramétrique qui nous donne les
mémes résultats.
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