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Introduction

Depuis plusieurs années, un intérêt croissant est porté aux modèles qui incorporent
à la fois des parties paramétriques et non paramétriques. Ce type de modèles sont
appelés modèle semi paramétrique. Cette considération est due en premier lieu aux
problèmes dûs à la mauvaise spécification de certains modèles. Aborder un problème
de mauvaise spécification de manière semi paramétrique consiste à ne pas spécifier la
forme fonctionnelle de certaines composantes du modèle. Cette approche complète celle
des modèles non paramétrique, qui ne peuvent pas être utiles dans des échantillons de
petite taille, ou avec un grand nombre de variables. Notre travail porte sur les données
incomplètes, pour lesquelles la variable d’intérêt n’est pas complètement observée pour
toutes les données de l’échantillon. Nous présentons dans ce qui suit le cas des données
censurées à droite pour les modèles à direction révélatrice unique.
Dans ce domaine, différents types de modèles ont déjà été étudiés dans la littérature :
parmi les plus célèbres, on peut citer les modèles additifs, les modèles partiellement
linéaires ou encore les modèles à direction révélatrice unique (single index model). L’idée
de ces modèles, dans le cas de l’estimation de la densité conditionnelle ou de la régression
consiste à se ramener à des covariables de dimension plus petite que la dimension de
l’espace des variables, permettant ainsi de pallier au problème de fléau de la dimension.
Par exemple, dans le modèle partiellement linéaire on décompose la quantité que l’on
cherche à estimer, en une partie linéaire et une partie fonctionnelle. Cette dernière
quantité ne pose pas de problème d’estimation puisqu’elle s’exprime en fonction de
variables explicatives de dimension finie, évitant ainsi les problèmes liés au fléau de la
dimension. Afin de traiter ce problème, plusieurs approches semi paramétriques ont
été proposées. A titre d’exemple on peut citer : Xia et Al. ([29], [27], [28], 1999, 2002)
pour le modèle d’indice. Une présentation générale de ce type de modèle est donnée
dans Ichimura et al. ([8], 1993) où la convergence et la normalité asymptotique sont
obtenues. Dans le cas des M-estimateurs, Delecroix et Hristache ([11], 1999) prouvent
la consistance et la normalité asymptotique de l’estimateur de l’indice et ils étudient
son efficacité. La littérature statistique sur ces méthodes est riche, citons Hall ([18],
1989) présente une méthode d’estimation qui consiste à projeter la fonction densité
ainsi que la régression sur un espace de dimension un pour se ramener à une estimation
non paramétrique pour des covariables unidimensionnelle. Cela revient exactement à
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estimer ces fonctions dans un modèle à direction révélatrice unique. Par ailleurs, des
exemples montrent que les modèles à direction révélatrice unique sont particulièrement
adaptés à l’étude des données de survies (voir Delecroix et Geenens ([14], 2006)). Newey
et Stoker ([26], 1993) prouvent l’éffiicacité de ce modèle pour l’estimation de l’indice
avec la méthode ADE (Average Derivative Estimation), dans le cas de l’estimation de la
régression et l’estimation par pseudo-maximum de vraisemblance par l’estimateur de la
densité conditionnelle. Ce mémoire se décompose en quatre chapitres.
Au premier Chapitre , nous présentons en détail les différents nombres de notations, et
définissons les outils modèles de censure considérés. Nous fixons également qui seront
utilisés dans les chapitres suivants.
On présentera au chapitre deux la densité conditionnelle dans le cas où les variables
sont indépendantes identiquement distribuées. Ainsi ses dérivées dans lequels sont pris le
compte des effets de censure à droite au cour de nos observations. On construit dans ce
cas un estimateur à noyau pour ce paramètre. L’intérêt de notre étude est de montrer
comment l’estimation de la densité conditionnelle peut être utilisée pour obtenir une
estimation à direction révélatrice unique qui dépand d’une borne de troncation pour
éviter les problèmes dans les queues de la distribution lorsque la fonction de répartition
G est connue. Nous établissons la convergence presque sûre de cet estimateur.
Dans le troisième chapitre on généralise nos résultats obtenus du chapitre précédant
lorsque la fonction G est inconnu. On établit la consistance et la normalité asymptotique
dans deux cas paramétrique et semi paramétrique. Plus précisément, ce paramètre peut
être estimé par méthode de la vraisemblance qui est basé sur l’estimation de la densité
conditionnelle.
Le dernier chapitre est consacré à l’étude des évènements réccurents de la fonction de
régression pour un modèle à indice révélatrice. Nous considérons le même type lorsque la
fonction de répartition G est inconnue.



Chapitre 1

Notation et Définition

1.1 la durée de survie et la date d’origine
La durée de survie, noté par T , défini comme le délai écoulé entre deux états. Pour

définir ce délai il est nécessaire de définir la date d’origine qui est la date de debut du
phénomène étudié. Par exemple dans l’étude d’évolution d’une maladie, la date d’origine
Y0 est la date de debut de la maladie et si on s’intéresse à l’âge du sujet à la survenue de
l’évènement, la date d’origine sera la date de naissance du sujet Y0 = 0. Chaque individu
peut avoir une date d’origine différente.

Censure
Les données censurées sont des observations pour lesquells la valeur exacte d’un évène-

ment n’est pas toujours connue. Cependant, on dispose tout de même d’une information
partielle permettant de fixer une borne inférieure (censure à droite) ou d’une borne su-
périeure (censure à gauche). les raisons de cette censure peut être le fait que le patient
soit toujours vivant ou non malade à la fin de l’étude ou qu’il se soit retiré de l’étude
pour des raisons personnelles (immigrations, mutation professionnelle...). La censure est
le phénomène le plus couramment rencontré lors du recuiel de donnés de survie. Pour
l’individu i, considérons :

– Son temps de survie Yi
– Son temps de censure Ci
– la durée réellement observée Ti.

En pratique on peut etre confronte a une censure droite (si T est la variable d’interet,
l’observation de la censure C indique que T ≥ C ) ou a une censure a gauche (l’observation
de la censure C indique que T ≥ C).

Exemple 1.1.1. On considère

8
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1. Y : durée de vie d’une batterie de voiture.
2. T : expérience du conducteur.
3. C : temps au bout duquel le véhicule dans lequel est insérée la batterie est perdu de

vue (destruction, accident, vol...).
Dans cette exemple, un mauvais conducteur aura plus de chance d’avoir un accident avant
que sa batterie ne soit pas defectueuse. Chacune utilise des techniques spécifiques.

1.2 Types des données censurées
Il existe trois catégories de censures qu’on nomme censure à droite, censure à gauche

et censure par intervalle (lorqu’on connait la borne supérieure et la borne inférieure d’un
évènement). Il existe différentes types de censures dans ces trois catégories.

1. Censure type I
Soit C une valeur fixée, au lieu d’obsrever les variables Y1, ·, Yn, qui nous intéressent,
on observe uniquement Yi lorsque yi ≤ C ; sinon on sait uniquement que Yi > C.on
utilise la notation suivante Ti = Yi ∧ C = min(yi, C).
Par exemple dans l’apprentissage d’une langue par un groupe d’étudiants durant
un stage de période fixé. On note T la durée d’apprentissage de cette langue. Pour
certains étudiant snous allons observer leurs durées Yi d’apprentissage de la langue,
par contre pour d’autres leurs Xi,ne seront pas observées car le stage est limité dans
le temps.

2. Censure de type II
Elle est presenté quand on décide d’observer les durées de survie de n patients
jusqu’à ce que k d’entre eux soient décédés et d’arrêter l’étude à ce moment lâ.
Soient Y(i) et T(i) les statistiques d’ordre des variables Yi et Xi, la date de censure
est donc Y(k), et on observe les variables suivantes
T(1) = Y(1), ·, T(k) = Y(k), T(k+1) = Y(k+1), ·, T(n) = Y(n)

3. Censure de type III (censure aléatoire se type I)
Soient C1, ·, Cn des variables aléatoires i.i.d. on observe les variables

Ti = Yi ∧ Ci

L’information disponible peut être résumé par :
– la durée réellement observée Ti,
– un indicatrice δi = 1Yi≤Ci ,
– δi = 1 si l’évènement est observé (d’où Ti = Yi) on observe les "varies" durées ou

les durées complétes.
– δi = 0 si l’individu est censuré (d’où Ti = Ci) on observe les durées incomplétes

(censurées).



1.2.1 Censure à droite 10

La censure aléatoire est la plus courante, par exemple, lors d’un essai thérapetique,
elle peut être engendré par :
(a) la perte de vue : le patient quitte l’étude encours et on le revoit plus (à cause

d’un déménagement, le patient décide de de se faire soinger alleiurs), se sont
les patients "perdus de vue".

(b) l’arrêt ou le changement de traitement : les effets secondaires ou l’in-
efficacité de du traitement peuevent entrainer un changement ou un arrêt du
traitement. ces patients sont exclus de l’étude.

(c) la fin de l’étude : l’étude se termine alors que certains patients sont toujours
vivants (ils n’ont pas subi l’évènement). Ce sont des patients exclus-vivants.

1.2.1 Censure à droite

Une durée de survie est dite censurée à droite si l’individu n’a pas connu l’évènement
d’intéret à sa dernière visite. La censure à droite est l’exemple le plus fréquent d’ob-
servation incompléte en analyse de survie, et a largement été décrit dans la littérature
(Anderson, Borgan et Keiding 1993). Formellement la durée de survie d’un évènement est
définie par le couple (T, δ) où :

T = min(Y,C)

et avec la durée de vie Y et le temps de censure supposés indépandents. C’est à dire, on
observele véritable temps de survie que s’il est inférieur à C. Dans ce cas la donnée n’est
pas censurée et δ = 1. si δ = 0, la donnée est dite censurée à droite : au lieu d’observer
Y , on observe une valeur C avec pour seule information le fait que Y soit supérieur à C.
C’est la censure de type I.

1.2.2 Censure à gauche

Une durée de survie est dite censurée à gauche si l’individu a déjà connu l’évènement
d’intéret avant l’entrée dans l’étude. Formellement, la durée de survie pour un individu
est définie par le couple (T, δ), où :

T = max(Y,C)

et avec la durée de vie Y et le temps de censure supposés indépandents. Si δ = 1, le
sujet subit l’évènement et est observé. Si δ = 0, le sujet est dit censuré à gauche : au
lieu d’observer Y , ou observer une valeur C avec pour seule information le fait que Y soit
inférieur à C.
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1.3 Exemple classique
On veut savoir à quel age Y les enfants d’un groupe donne sont capables d’effectuer une

certaine tache. Lorsque l’experience debute, certains enfants d’age C sont deja capables
de l’accomplir, et pour eux Y ≥ C : il s’agit d’une censure gauche ; a la fin de l’experience,
certains enfants ne sont pas encore capables d’accomplir la tache en question, et pour eux
Y ≥ C : il s’agit d’une censure droite.

1.3.1 Censure par intervalle

Une situation plus générale de la censure se produit lorsque la durée de survie n’est
connue mais on sait seulement qu’il appartient à un certains intervalle. Ceci est le cas
lorsques les patients dans les éssais cliniques ont des suivis périodiques, par exemple
chaque six mois, si une maladie surgit,on sait seulement qu’elle est produite dans un
intervalle de temps séparant deux visites. Ce type de censure peut aussi apparaitre dans
les experiences industrielles où il y a des inspections périodiques des machines.
Dans le cas de la censure par intervalle, on observe à la fois une borne inférieure et une
borne supérieure de la durée d’intérêt. Ceci arrive dans des études de suivi médical où kes
patients sont contrôlés périodiquement, si un patient ne se présente pas à un ou plusieurs
contrôles et se rpéresnte ensuite aprés que l’évènement d’intérêt se produit. On a aussi
pour ce gendre d’expérience des données qui sont censurées à droite, plus rarement, à
gauche. Un avantage de ce type est qu’il permet de représenter les données censurées à
droite ou à gauche par des intervalles de type [a,∞[ et [0,a] respectivement, ce qui permet
de considérer ce modèle comme étant plus générique.

1.4 L’estimateur de Kaplan-Meier
En présence de censure, la fonction de répartition empirique de la variable Y n’est

plus disponible. En effet

F̂emp(t) =
1

n

n∑
i=1

1Yi≤t

la fonction de répartition empirique dépend des variables Yi qui ne sont pas observées.
Afin d’estimer la loi d’une variable Y , il est donc nécessaire de proposer un estimateur de
la fonction de répartition qui puisse, dans un cadre censuré, avoir des propriétés analoques
à celles de la fonction de répartition empirique utilisé en l’absence de censure.
L’estimateur de Kaplan-Meier (1958,[6]) permet de généraliser le concept de fonction de
répartition empirique, en présence de données censurées. Cet estimateur est défini comme
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suit

F̂ (t) = 1−
∏
Ti≤t

1− 1
n∑
j=1

1Tj≥Ti

 (1.1)

Il s’agit d’une fonction continue, ne présentant des sauts qu’aux observations non cen-
surées. Par ailleurs, les notions d’estimateur Kaplan-Meier et de fonction de répartition
empirique coincide en l’absence de censure. De plus, en intervertissant les roles de Y et
C, on observe une certaine symétrie du problème. On peut donc définir de maniére ana-
logue Ĝ, estimateur de Kaplan-Meier de la fonction G(t) = P(T ≤ t). La mesure définie
par l’estimateur de Kaplan-Meier n’attribue de poids qu’aux observations censurées, et
renforce le poids des grandes des grandes observations. En effet, il s’agit de compenser
dans la queue de distribution, causé par la censure.

1.4.1 L’estimateur de Kaplan-Meier en présence de variables ex-
plicatives

En présence de variables explicatives, X ∈ X ⊂ Rd, Stute (1993,[25]) propose un
estimateur de la fonction de répartition multivariée, (notée FX,Y = P(Y ≤ y,X ≤ x)).
Partant de l’expression de l’estimateur de Kaplan-Meier (1.1), Stute ([25],1993) propose
d’utiliser

F̂ (x, y) =
n∑
i=1

Win1Ti≤y,Xi≤x =
1

n

n∑
i=1

δi1Ti≤y,Xi≤x

1− Ĝ(Ti−)
(1.2)

Une autre façon de motivier l’introduction de l’estimateur (1.2) serait de considérer la
fonction de répartition

F̃ (x, y) =
1

n

n∑
i=1

δi1Ti≤y,Xi≤x
1−G(Ti−)

(1.3)

Cette fonction de répartition n’est pas à proprement parler un estimateur, puisqu’elle
dépend de la fonction de répartition G qui est inconnu. Néamoins, on peut remarque que
si la fonction G était connue, l’estimateur F̃ (x, y) serait un estimateur sans biais de la
fonctions de répartition F , et que les intégrales par rapport à la mesure définie par cette
fonction de répartition seraient elles-mêmes non biaisées.

Définition 1.4.1. (1996,[1])Glivenko Cantelli Soient X1, ..., Xn des variables aléatoires
i.i.d. sur un espace de probabilté (Ω,A,P), on dit que F une classe des fonctions mesu-
rables f sur un espace (X ,A) est dite "P-Glivenko Cantelli" si

‖Pn − P‖F = sup
f∈F
|Pn(f)− P (f)| p.s.→ 0
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Remarque

Une classe de fonctions Glivenko-Cantelli fournit une loi des grands nombres uniforme,
car

sup
f∈F

∣∣∣∣n−1

n∑
i=1

f(Xi)− f(X)

∣∣∣∣ p.s.→ 0

Définition 1.4.2. Classe de Donsker Une classe des fonctions mesurables F est dite
de donsker si si le processus empirique αn converge en loi vers un processus gaussien
centré dans `∞(F)

αn
L→ G

Remarque

Une classe de Donsker fournit un théorème centrale limite (TCL) uniforme car le TCL
usuel

√
n

(
n−1

n∑
i=1

f(Xi)− P (f)

)
L→ N (0, f(X))

est vérifié "conjointement" pour tous les f ∈ F .
On pose ici les conditions d’entropie

Définition 1.4.3.

– Le covering number :
On dit que N(ε, F , ‖ · ‖) représente le nombre minimal de boules de rayon
ε, {g : ‖g − f‖ ≤ ε}, nécessaires pour recouvrir l’ensemble F .
Soit deux fonctions u et l. On note [u, l] l’ensemble des fonctions f telles que
u ≤ f ≤ l. On dire que [u, l] est un ε-crochets si ‖ u− l ‖≤ ε.
On dit qu’un ensemble de ε-crochets ([ui, li])l≤i≤k recouvre F si pour tout f ∈ F , il
existe 1 ≤ j ≤ k tel que f ∈ [uj, lj].

– Le bracketing number :
On note N[](ε,F , ‖·‖) le "bracketing number" voir Vander Vart et Wellner(1996,[1]),
le nombre minimal de ε-crochets nécessaires pour recouvrir F .
Pour toute mesure de probabilité ν et pout tout p > 0, f ∈ F , on note ‖f‖p,ν =∫
|f(w)|pdν(w) la norme de Lp(ν). On rappelle également qu’une fonction Φ est une

enveloppe pour la classe de fonctions F si |f(w)| ≤ Φ(w) presque sûrement pour
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tout élément f ∈ F . En utilisant la condition sur les brackets, la classe de fonctions
F sera Glivenko-Cantelli si :

N[](ε, F , L1(ν)) <∞.

Avec les covering numbers, une condition suffisante pour que F soit Givenko-
Cantelli est alors :

sup N(ε‖Φ‖ν,1, F , L1(ν)) <∞.

ν : ‖Φ‖ν,1<∞
De la même manière, une condition suffisante sur les brackets pour que F soit
Donsker est ∫ ∞

0

√
logN[](ε,F , L2(ν))dε <∞.

Par ailleurs, F sera Donsker si∫ ∞
0

sup
ν:‖Φ‖ν,2<∞

√
logN(ε‖Φ‖ν2,F , L2(ν))dε <∞.

Définition 1.4.4. ([3], 1984), ([1], 1996) Classes de Vapnik-C̃ervonkis (VC-
classes)
Soit C une collection de sous ensemble de X , soit {x1, · · · , xn} ∧ X un sous ensemble de
n points.
La VC classe index 4n(C, x1, · · · , xn) est définie comme suit

4n(C, x1, · · · , xn) = |{C ∩ {x1, · · · , xn} : C ∈ C}|

Où |A| le cardinalité d’un ensemble A, ainsi

V (C) = sup{n : max
x1,·,xn∈X

4n(C, x1, · · · , xn) = 2n}

Il nous donne une borne exponentielle du covering number (voir Van der Vaart et Wellner
(1996,[1])). Pour une VC-classe de fonctions F d’enveloppe Φ, on a, pour toute mesure
de probabilité ν tout p ≥ 1,

N(ε‖Φ‖ν,p, F , Lp(ν) ≤ KV (F)(16e)V (F)ε−p(V (F)−1),

Où K est une constante universelle et 0 < ε < 1. Ainsi, si Φ est intégrable, une VC-classe
sera également une classe de Glivenko-Cantelli tandis que si Φ est de carré intégrable, une
VC-classe de fonctions sera Donsker.
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Définition 1.4.5. La convergence dominée.
Soit (fn)n∈N une suite de fonctions mesurables sur un espace mesuré (E,A, µ), à valeurs
réelles ou complexes, telle que : la suite de fonctions (fn)n∈N converge simplement sur E
vers une fonction f ; il existe une fonction intégrable g telle que :

∀n ∈ N,∀x ∈ E, |fn(x)| ≤ g(x).

Alors,f est intégrable
et

lim
n→∞

∫
E
|fn − f | dµ = 0.

En particulier :

lim
n→∞

∫
E
fn dµ =

∫
E

lim
n→∞

fn dµ =

∫
E
f dµ.

Définition 1.4.6. La convergence en Probabilité
Soit (X,Xn), n ≥ 1 une suite de variables aléatoires réelles. définies sur le même espace
de probabilité (Ω,F ,P). La suite (Xn) converge en probabilité vers X si :

∀ε > 0, lim
n→∞

P(|Xn −X| ≥ ε) = 0

Définition 1.4.7. La convergence presque sûre
La suite (Xn) converge presque sûrement (p.s.) vers X, si :

{ω : lim
n→∞

Xn(ω) = X(ω)}

Définition 1.4.8. La convergence dans l’espace Lp

Soit p ≥ 1, et Lp := Lp(Ω,F ,P) l’espace des variables aléatoires réelles ayant un
moment d’ordre p, muni de la norme :

‖ Xn −X ‖p= E[|X|p]1/p.

Une suite (X,Xn), n ≥ 1 d’éléments dans Lp converge vers X dans Lp si :

‖ X ‖p→ 0, lorsque n→∞ ;

Définition 1.4.9. Le théorème de la limite centrale
Soit (Xn) un échantillon i.i.d. d’une loi de moyenne m et variance σ2. La convergence

suivante a lieu en loi, pour X̂n =
Sn
n

=
X1 +X2 + ...+Xn

n
,lorseque n→∞

Rn :=
√
n
X̂ −m
σ

=
Sn − nm√

nσ

L−→ N (0, 1).
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Définition 1.4.10. Théorème de Fubini
Soient (X,A, µ) et (Y,B, ν) deux espaces mesurés complets (non nécessairement σ-finis)
et (X × Y,A× B, ζ) l’espace mesurable produit muni d’une mesure produit τ .
Si

f : X × Y → R

est τ -intégrable, alors les fonctions

x 7→
∫
Y

f(x, y) dν(y) et y 7→
∫
X

f(x, y) dµ(x)

(définies presque partout) sont respectivement µ et ν-intégrables et∫
X×Y

f(x, y) dζ(x, y) =

∫
X

[∫
Y

f(x, y) dν(y)

]
dµ(x) =

∫
Y

[∫
X

f(x, y) dµ(x)

]
dν(y).

Définition 1.4.11. (1994,[22]) U-Processus Soient W1, . . . , Wn, n variables aléatoires
i.i.d, soit k un entier positif et F une classe de fonctions à valeurs réelles. Pour tout
k ≥ 1, on définit le processus

Uk
n(f) =

n!

(n− k)!

∑
i1<···<ik

f(Wi1 , . . . , Wik).

On appelle Uk
n(f), une U-statistique d’ordre k (voir Serfling (1980,[19])) et {Uk

n(f) : f ∈
F} un U-processus indexé par F d’ordre k (voir Sherman (1994,[22]) par exemple).

1.5 Outils
Lemme 1.5.1. (2009,[10]) Soient ε1, · · · , εn, n variables aléatoires de Rademacher 1,
indépendantes entre elles et indépendantes des Xi ; 1 <i <n. Soit G une classe de
fonctions mesurables ponctuellement telle que, pour 0 < M < +∞,

‖g‖∞ < M, g ∈ G.

Alors pour tout t>0, on ac

P

{
max

1≤m≤n
‖
√
mαm ‖G≥ A1

(
E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
G

+ t

)}
≤ 2

{
exp

(
−A2t

2

nσ2
G

)
+

(
−A2t

M

)}
1. la somme

∑n
i=1 εi = 1 égale à 1
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Où σ2
G = sup

g∈G
Var(g(X)) et A1, A2 sont des constantes universelles.

αn est un processus empirique de l’échantillon X1....Xn, tel que pour g : X → R on a :

αn(g) = n−1/2

n∑
i=1

(
g(Xi)− E

(
g(Xi

))
et que pour la classe G on note :

‖
√
nαn‖ = sup

g∈G
|αn(g)|

Cette inégalité de Talagrand a été donnée par (1.5.1,2009 [10]).

Lemme 1.5.2. ,([17],2009) Si la fonction θ 7→ µθ(t|θ′x) est différentiable, on a

∇θµθ0(t|X) = µ′θ0(t|θ
′
0X)(X − E[X|θ′0X]),

Où µ′θ0(t|u) =
∂

∂u
µθ0(t|u). En particulier,

E[∇θµθ0(t|X)|θ′0X] = 0.

Lemme 1.5.3. Sherman (1944) [21]
Soit F une VC-classe de fonctions dégénérée d’enveloppe de carré intégrable. On a alors,

sup
F
|nk/2Uk

nf | = OP(1).

Exemple 1.5.1. les modèles à hasards proportionnels expriment un effet multiplicatif
des divers covariables sur la fonction de hasard (modèles à structure multiplcative). On
introduit une fonction de hasard de base qui donne la forme générale de hasard et qui est
commune à tous les individus. Les modèles à hasards proportionnels se caractérisent par
la relation suivante, pour tout t > 0 :

λ(t|Z) = λ0(t)h(β, Z).

où Z est un vecteur de covariables, β le paramètre d’intérét et h une fonction positive.
La fonction de hasard est le produit d’une fonction qui ne dépend que du temps et d’une
fonction que n’en dépend pas. En général, on suppose que l’effet des covariables se résume
à une quantité réelle β′Z, c’est à dire λ(t|Z) = λ0(t)h(β′Z).
Ce modéle est dit à risque proportionnel car, quels que soient deux individus i et j qui
ont pour covariables Zi et Zj, le rapport des fonctions de hasard ne varie pas au cour du
temps.

λ(t|Zi)
λ(t|Zj)

=
h(β′Zi)

h(β′Zj)
.
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Les fonctions de hasards sont donc proportionnelles. C’est une conséquence du modèle
mais c’est aussi une hypothése qu’il faudra vérifier. Le rapport des fonctions de hasard est
par définition un risque relatif à l’instant t des sujets de caractéristiques Zi, par rapport
au caractéristiques Zj .
Un cas particulier trés important est le modèle de Cox, qui suppose que la fonction h est
la fonction exponentielle c’est à dire :

λ(t|Z) = λ0(t) exp(β′Z).

d’autres choix de la fonction h sont possibles, néamoins la fonction exponentielle est
trés souvnt utillisée dans dans la littérature car ces valeurs sont toujours positives et
exp(0) = 1.
Remarque : Si λ0 et ou h ont une forme inconnue, alors le modèle est dit semi-
paramétrique.



Chapitre 2

Vitesse de convergence de f̃hθ et de ses
dérivées partielles pour des données
censurées

Ce chapitre a pour but de présenter le cadre général dans lequel nous allons nous placer
tout au long de ce mémoire. La premiére section décrit les observations dont nous dispo-
serons par la suite. Un certain nombre d’hypothèses sous lesquelles nous nous placerons
sont présentées et nous justifions leur introduction. On essaye ici de définir un estimateur
de la denstié conditonnelle f̃h,τθ adapté au contexte des données censurées et on déduit les
vitesses de convergence de cet estimateur et de ses dérivées partielles d’ordre un et deux,
tout en supposant que la fonction de répartition G est connu qui se dispose à l’utiliser à
fin qu’il fait intervenir une somme de termes i.i.d.

2.1 Modèle
On s’intéresse à une variable aléatoire Y ∈ R ; qu’on cherche à expliquer par une

variable aléatoire X ∈ χ ⊂ Rd. La variable Y est censurée à droite aléatoirement (mais
pas la variable X), elle n’est donc pas observée directement. On introduit une variable
aléatoire de censure C ∈ R. Les observations sont constituées de

− Ti = Yi ∧ Ci,
− δi = 1Yi≤Ci ,

− Xi ∈ Rd

pour i = 1, . . . , n ; n désignant la taille de l’échantillon, les vecteurs aléatoires (Yi, Ci, Xi)
étant i.i.d. de même loi que (Y,C,X). Une information sera dite censurée si Ti < Yi,
non censurée sinon. En particulier, l’indicatrice δ permet de savoir si l’observation Ti

19
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considérée est censurée ou non. On introduit également les notations suivantes, pour
désigner les différentes fonctions de répartition F (t) = P (Y ≤ t) et G(t) = P (C ≤ t), tel
que

E(Y |X) = E(Y |θ′0X = θ′0x) = fθ0(θ
′
0x)

où f est une fonction inconnue et θ0 ∈ Θ ⊂ Rd un paramètre inconnu de dimension finie.
Afin de s’assurer que le modèle est bien défini, on impose que la première composante
de θ0 est égale à 1. Si θ0 était connu, le modèle se résumerait à un modèle de régression
non paramétrique, mais cette fois avec une variable explicative θ0X de dimension 1. Afin
d’estimer f(u; θ); on peut par exemple utiliser l’estimateur définis comme suit :

f̃h,τθ (θ′x, y) =

∫ ∫
K

(
θ′x− θ′v

h

)
K

(
y − w
h

)
1w≤τdF̃X,Y (v, w)

h

∫ ∫
K

(
θx− θv

h

)
1w≤τdF̃X,Y (v, w)

=

n∑
i=1

W̃i,nK

(
θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

h
n∑
i=1

W̃i,nK

(
θ′x− θ′Xi

h

)
1Ti≤τ

Tel que,K est un noyau, h = hn est un paramètre de lissage et W̃i,n =
δi

n(1−G(Ti−))
. Par

ailleurs, le paramètre de troncation τ est une constante positive pour éviter les problèmes
dans les queues de distribution.
On note les bornes supérieures du support des variables X,Y et C, c’est à dire τK =
inf{t : K(t) = 1} pour toute fonction de répartition K = F où G (resp. τK = τF où τG),
enfin τH = τF ∧ τG.

2.2 Convergence presque sûre uniforme

Hypothèses

On suppose que

H1


P(Y = C) = 0
Y q C
P(Y ≤ C | X, Y ) = P(Y ≤ C | Y ).

H2 K est un noyau 2 fois différentiable et d’ordre β dont ses dérivées partielles d’ordre
0, 1 et 2 sont à variations bornées. Il est également à support compact, disons
[−1/2, 1/2] et

∫
RK(s)ds = 1,

H3 κ; = ‖K‖∞ = sup
x∈R
|K(x)| <∞,
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H4 K := {K((x − ·)/h) : h > 0, x ∈ Rd} est une classe de fonctions mesurables ponc-
tuellement,

H5 h ∈ Hn ⊂ [αn−α, bn−α] avec α, b ∈ R, 1/8 < α < 1/6 et où Hn est de cardinalité
kn satisfaisant knn−4α → 0.

Commentaires :
Sous la deuxiéme condition de l’Hypothèse (H1), on utilise des techniques basées sur
l’estimateur de Kaplan-Meier ([6], 1958) permettant l’estimation de la fonction de répar-
tition F (y) = P (Y ≤ y). En effet, sous les deux premiers condtions de l’hypothèse (H1)
reste valide, et Sous la première condition de l’Hypothèse (H1) est la condition sous la-
quelle l’estimateur de Kaplan-Meier converge. Elle est vérifiée dans le cas particulier où
C est indépendant du couple (X, Y) mais reste un peu plus générale. En effet, sous cette
hypothèse, la variable C est autorisée à dépendre de X dans une certaine mesure.Cette
hypothèse technique permet d’assurer une parfaite symétrie entre Y et C qui nous per-
mettra d’inverser à loisir les rôles de ces deux variables et donc de définir des estimateurs
similaires pour F et G et assure notamment que l’indicatrice ne brise pas la "symétrie"
du modèle de censure aléatoire. En effet, dans le cas Y = C, la variable Y est privilégiée
par rapport à la variable C.
Les autres hypothèses, plus technique, sont des hypothèses classique dans la théorie de
l’estimateur de Kaplan-Meier. Elles seront supposées vérifiées dans toute la suite de ce
mémoire.

2.2.1 Résultats

Théorème 2.2.1. On suppose que fθ′X est continue et strictement positive sur X . Alors,
sous les hypothèses (H1)-(H5), on a :

sup
x,y,h,τ,θ

√
nh2

log n
| f̃h,τθ (θ′x, y)− Ef̃ τθ (θ′x, y) | 1y≤τ = Op.s.(1), (2.1)

sup
x,y,h,τ,θ

h−β‖Ef̃h,τθ (x, y)− f τθ (x, y)‖1y≤τ = O(1). (2.2)

Tel que pour x ∈ X et Jθ(x, c) > 0, pour tout y ∈ Y, h ∈ H, τ < τF et pour θ ∈ Θ où
H = {h : h = cnα; c, α > 0}.

2.2.2 Démonstration

Pour la partie biais (2.2)

Ef̃h,τθ (x, y)− f τθ (x, y) = E

(
1

f τθ′X(θ′x)
K
(θ′x− θ′X

h

)
K
(y − Yi

h

)
1Y≤τ

)
− f τθ (x, y)

≤ M ‖ fθ1(x, y)− fθ(x, y) ‖≤Mhβ
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Pour la partie de dispersion (2.1) : Soit√
nh2

log n

n∑
i=1

|f̃h,τθ (x, y)− Ef̃ τθ (x, y)|1y≤τ

=

√
nh2

log n

∣∣∣∣ 1

nh2fh,τθ′X(θ′x)

n∑
i=1

(
W̃i,nK

(
θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

)
− E

(
W̃i,nK

(θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

) ∣∣∣∣
=

1√
n

∣∣∣∣h−1[log n]−1

fh,τθ′X(θ′x)

n∑
i=1

(
W̃i,nK

(
θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

)
− E

(
W̃i,nK

(θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

) ∣∣∣∣
=

1√
n

[
n∑
i=1

(g(xi, yi))− Eg(xi, yi)

]
= αn(g(x, y))

Pour la démonstration, on doit utiliser les conditions suivante pour appliquer l’inégalité
de Talagrand (1.5.1, [10]).
Soit G une classe des fonctions bornées ponctuellement mesurables tel que pour C, v ≥ 1
et 0 < α ≤ β et G comme ci-dessus, les conditions suivants :

1. E(G(x, y)2) ≤ β2

2. N(ε,G) ≤ Cε−v,0 < ε < 1

3. σ2
0 = sup

g∈G
E[g(x, y)2] ≤ σ2

4. sup
g∈G
‖g‖∞ ≤ 1

4
√
v

√
nσ2/log(C1β/σ). où C1 = C1/v ∨ e

Alors, on a pour une constante A > 0

E ‖
n∑
i=1

εig(xi, yi) ‖G ≤ A(t+ E(max(G(xi, yi))

≤ A(t+
√
E(max(G2(xi, yi))

≤ A(t+

√√√√E(
n∑
i=1

(G2(xi, yi))

≤ A(t+
√
nβ2)



2.2.2 Démonstration 23

Pour β =
√
E(G2(xi, yi)) =‖ G ‖L2 , donc

E ‖
n∑
i=1

εig(xi, yi) ‖G≤ A(t+
√
n ‖ G ‖L2)

D’autre part

σ2
0 = sup

g∈G
V ar[g(x, y)2]

= sup
g∈G

(E[g(x, y)2]− E[g(x, y)]2)

≤ sup
g∈G

E[g(x, y)2]

On a alors

Eg2(x, y)2 ≤ ‖G2(x, y)‖ = σ2 <∞
On a

E ‖
n∑
i=1

εig(xi) ‖G≤ C.

Finallement,

E‖αn(g)‖G ≤ 2E ‖
n∑
i=1

εig(xi) ‖G≤ C.

Théorème 2.2.2. Supposons que K est deux fois différentiable et que ses dérivées par-
tielles d’ordre un et deux sont à variations bornées. Sous les Hypothèses (H1)-(H5), on
a

sup
x,y,h,τ,θ

√
nh4

log n
‖ ∇l

θf̃
h,τ
θ (x, y)− E∇l

θf̃
τ
θ (x, y) ‖ 1y≤τ = Op.s.(1), l = 1, 2 (2.3)

sup
x,y,h,τ,θ

h−β ‖ E∇l
θf̃

h,τ
θ (x, y)−∇l

θf
τ
θ (x, y) ‖ 1y≤τ = O(1). l = 1, 2 (2.4)

Démonstration :
On pose

∇θf̃
h,τ
θ (θ′, x, y) =

n∑
i=1

(x−Xi)W̃i,nK
′
(
θ′x−θ′Xi

h

)
K
(
y−Ti
h

)
1Ti≤τ

h3f̂h,τθ′X(θ′x)

−

n∑
i=1

W̃i,nK
(
θ′x−θ′Xi

h

)
K
(
y−Ti
h

)
1Ti≤τ

h2f̂h,τθ′X(θ′x)

+

n∑
i=1

(x−Xi)W̃i,nK
′
(
θ′x−θ′Xi

h

)
1Ti≤τ

h2f̂h,τθ′X(θ′x)
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Tel que,

f̂h,τθ′X(θ′x) =
1

h

n∑
i=1

W̃i,nK

(
θ′x− θ′Xi

h

)
1Ti≤τ

On pose,

Sh,τn (θ, x, y, γ) =
1

h2

n∑
i=1

W ∗
i φ(Xi, Zi, θ)∇lK

(
θ′x− θ′X

h

)
K

(
y − Ti
h

)
, l = 1, 2

(2.5)
Tel que φ(X, T, θ) = f τθX(θ′X)−1IT≤τ est une fonction bornée par rapport à θ et x avec
la convention 0/0 = 0 et où f τθX(u) = P(Y ≤ τ, θ′X = u). On étudie ce terme par les
mêmes étapes du théorème précédente

sup
θ,x,y,h,τ

√
nh2(1+l)

log n

∣∣∣∣Sh,τn (θ, x, y, l)− E
[
Sh,τn (θ, x, y, l)

]∣∣∣∣1y≤τ = Op.s.(1). (2.6)

Les termes de gradient de f̃h,τθ :

r̂h,τ1n,θ(x, y) =
1

h3

n∑
i=1

(x−Xi)W̃i,nK
′
(
θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ ,

r̄h,τ1,θ (x, y) =
1

h3
E

[
K

(
θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

]
,

rτ1,θ(x, y) =
∂

∂u

{
E

[
(x−X) | θ′X = u, Y = y

]
fθ′,x,y(u, y)

}∣∣∣∣
u=θ′

1Ti≤τ

Puis

r̂h,τ1n,θ(x, y) =
1

h2

n∑
i=1

W̃i,nK

(
θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

r̄h,τ2,θ (x, y) =
1

h2
E

[
K

(
θ′x− θ′Xi

h

)
K

(
y − Ti
h

)
1Ti≤τ

]
,

rτ2,θ(x, y) = fθ′X,Y (θ′x, y)1Ti≤τ

et

r̂h,τ3n,θ(x, y) =
1

h3

n∑
i=1

(x−Xi)W̃i,nK
′
(
θ′x− θ′Xi

h

)
r̄h,τ3,θ (x, y) =

1

h2
E

[
(x−X)K

(
θ′x− θ′Xi

h

)
1Ti≤τ

]
rτ3,θ(x, y) =

∂

∂u

{
E

[
(x−X)1Y≤τ | θ′X = u

]
fθ′,x,y(u, y)

}∣∣∣∣
u=θ′
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Donc,

f̄h,τθ′X(θ′X) =
1

h
E
[
K

(
θ′x− θ′X

h

)
1Y≤τ

]
D’aprés (2.6), on a

sup
θ,x,y,h,τ

√
nh

logn

∣∣∣∣f̂h,τθ′X(θ′x)− f̄h,τθ′X(θ′x)

∣∣∣∣1y≤τ = Op.s.(1)

sup
θ,x,y,h,τ

√
nh4

logn

∥∥∥∥r̂h,τ1n,θ(x, y)− r̄h,τ1,θ (x, y)

∥∥∥∥1y≤τ = Op.s.(1)

sup
θ,x,y,h,τ

√
nh2

logn

∣∣∣∣r̂h,τ2n,θ(x, y)− r̄h,τ2,θ (x, y)

∣∣∣∣1y≤τ = Op.s.(1)

sup
θ,x,y,h,τ

√
nh3

logn

∥∥∥∥r̂h,τ3n,θ(x, y)− r̄h,τ3,θ (x, y)

∥∥∥∥1y≤τ = Op.s.(1) (2.7)

De la même manière du Théorème (2.2.1) on a dans les parties de biais

sup
θ,x,y,h,τ

h−β
∣∣∣∣f̄h,τθ′X(θ′x)− f τθ′X(θ′x)

∣∣∣∣1y≤τ = O(1)

sup
θ,x,y,h,τ

h−β
∥∥∥∥r̄h,τi,θ (x, y)− rτi,θ(x, y)

∥∥∥∥1y≤τ = O(1), pour i=1,2,3. (2.8)

Puis,

∇f τθ (θ′x, y) =
rτ1,θ(x, y)

f τθ′X(θ′x)
−
rτ2,θ(x, y)× rτ3,θ(x, y)

f τθ′X(θ′x)2

Puisque

f τθ (θ′x, y) =
f τθ′X,Y (θ′x, y)

f τθ′(θ
′x)

Tel que
f τθ′X,Y (θ′x, y) = fθ′X,Y (θ′x, y)1y≤τ

Donc,

∇f τθ (θ′x, y) =
x

f τθ′(θ
′x)

∂

∂u
{f τθ′X,Y (u, y)}|u=θ′x −

f τθ (θ′x, y)f τθ′X(θ′x)

f τθ′X(θ′x)2

On a encore,

rτ1,θ(x, y)

f τθ′X(θ′x)
=

x

f τθ′(θ
′x)

∂

∂u
{f τθ′X,Y (u, y)}|u=θ′x

− ∂

∂u
{E[X|θ′X = u, Y = y]}|u=θ′xf

τ
θ (θ′X, Y )

−E[X|θ′X = u, Y = y]

f τθ′(θ
′x)

∂

∂u
{f τθ′X,Y (u, y)}|u=θ′x
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et

E[X|θ′X = u, Y = y] =

∫
xfX,Y (x, y) dx

fθ′X, Y (u, y)
,

Ensuite,
rτ2,θ(x, y)× rτ3,θ(x, y)

f τθ′X(θ′x)2
= f τθ (θ′x, y) =

f τθ′X,Y (θ′x, y)

f τθ′X(θ′x)

(
x
∂

∂u

{
E[1Y≤τ |θ′X = u]f τθ′X(u)

}
|u=θ′x

− ∂

∂u

{
E[1Y≤τ |θ′X = u]f τθ′X(u)

}
|u=θ′x

)
On observe que

E[1Y≤τ |θ′X = u] =
f τθ′X(u)

fθ′X(u)
,

E[X1Y≤τ |θ′X = u] =
E[X1Y≤τ ]

fθ′X(u)

et

f τθ′X(θ′x)′ =
∂

∂u
{E[X1Y≤τ |θ′X = u]} |u=θ′xfθ′X(θ′x) + E[X1Y≤τ |θ′X=θ′x]fθ′X(θ′x)′

Le deuxième terme de ∇f τθ (θ′x, y)

xf τθ′X,Y (θ′x, y)f τθ′X(θ′x)′

f τθ′X(θ′x)2
=

xf τθ′X,Y (θ′x, y)

f τθ′X(θ′x)2

(
∂

∂u
{E[X1Y≤τ |θ′X = u]} |u=θ′xfθ′X(θ′x)

+E[X1Y≤τ |θ′X=θ′x]fθ′X(θ′x)′
)

Les deux autres termes de rτ2,θ(x, y)× rτ3,θ(x, y)(f τθ′X(θ′x)2)−1 s’annulent.
Finalement, pour étudier ∇θf̂

h,τ
θ −∇θfτθ, on écrit :

r̂h,τ1n,θ(x, y)

f̂h,τθ′X(θ′x)
−
rτ1,θ(x, y)

f τθ′X(θ′x)
=
r̂h,τ1n,θ(x, y)− rτ1,θ(x, y)

f̂h,τθ′X(θ′x)
+

(
f τθ′X(θ′x)− f̂h,τθ′X(θ′x)

)
rτ1,θ(x, y)

f τθ′X(θ′x)f̂h,τθ′X(θ′x)
(2.9)

et on applique les résultats sur les vitesses de convergence obtenus par (2.7) et (2.8).
Comme on s’est placé sur des x ∈ X tels que Jθ(x, c) > 0, on a f τθ′X(θ′x) > 0 et f̂h,τθ′X(θ′x) >

0 car f̂h,τθ′X(θ′x) converge vers f τθ′X(θ′x). pour :

r̂h,τ2n,θ(x, y)r̂h,τ3n,θ(x, y)(
f̂h,τθ′X(θ′x)

)2 −
rτ2,θ(x, y)rτ3,θ(x, y)(

f τθ′X(θ′x)
)2 =

(
r̂h,τ2n,θ(x, y)

f̂h,τθ′X(θ′x)
−
rτ2,θ(x, y)

f τθ′X(θ′x)

)
︸ ︷︷ ︸

A1

rτ3,θ(x, y)

f τθ′X(θ′x)

+
r̂h,τ1n,θ(x, y)

f̂h,τθ′X(θ′x)

(
r̂h,τ3n,θ(x, y)

f̂h,τθ′X(θ′x)
−
rτ3,θ(x, y)

f τθ′X(θ′x)

)
︸ ︷︷ ︸

A2
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et en utilisant la même décomposition que (2.9) pour les deux termes (A1) et (A2), il suffit
d’appliquer les vitesses de convergence obtenues par (2.7) et (2.8) pour obtenir le résultat
final.



Chapitre 3

L’estimation de l’index par la méthode
de vraisemblance

Dans ce chapitre, on cherche à estimer la valeur du paramètre θ0 en poursuivant la
méthode de maximum vraisemblance. Ce chapitre est divisé en deux parties. On introduit
notre modèle ainsi que son estimation dans la première partie. Les conditions nécessaires
à l’obtention de notre résultats asymptotiques, sont présentées dans la deuxième partie.
On établit la consistance et à la normalité asymptotique de cette estimateur dans deux
cas paramétrique et semi paramétrique.

3.1 Modèle et son estimateur
Soit (X, Y ) un couple de variable aléatoire à valeurs dans Rd ×R. Pour tout X ∈ Rd,

on suppose que la densité conditionnelle de Y sachant X existe sous structure d’index xθ.
On rappelle qu’on s’intérésse dans notre modèle étudié à la densité conditionnelle :

∃ θ0 ∈ Θ ⊂ Rd, fY |X(x, y) = fθ0(θ
′
0x, y) (3.1)

où fθ(t; y) représente la densité conditionnelle de Y sachant xθ = t évaluée au point y.
L’idée consiste à prendre la vraisemblance. La densité conditionnelle de Y sachant X = x
égale à la densité conditionnelle f τθ (u, y) de Y sachant θ′X = u et Y ∈ Aτ évaluée au
point y, tel que Aτ une suite de compacts inclus dans l’ensemble {t : τ1 ≤ t ≤ τ}, pour
τ ≤ τ0 où τ0 < τH .
Pour l’étude de la densité conditionnelle. On commence par la vraisemblance de fθ qui
est égale à

n∏
i=1

fθ(θ
′Xi, Yi)fX(Xi)

28
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Cette méthode consiste à maximiser la log-vraisemblance qui s’écrit comme suit :

n∑
i=1

log fθ(θ
′Xi, Yi) +

n∑
i=1

log fX(Xi).

Puisque le terme
n∑
i=1

log fX(Xi) ne dépend pas de θ, l’estimateur du maximum de

vraisemblance pourrait être défini, si fθ était connue, en maximisant le premier terme
n∑
i=1

log fθ(θ
′Xi, Yi). Comme fθ est inconnue, le M-estimateur est définit comme suit :

θ̂ = arg max
θ∈Θ

n∑
i=1

log(f̂hθ (θ′Xi, Yi)) (3.2)

Où f̂hθ représente l’estimateur à noyau de fθ. En effet, si on note fθ la densité de θ′X
alors on s’assure que l’estimateur défini en (3.2) ne prenne en compte que les θ′iXi pour
lesquels f(θ′X) est positif, sans avoir pour autant à supposer f(θ′x) > 0 pour tout x; y et
θ. Plus précisément, l’estimateur de fθ est donnée par

θ̂ = arg max
θ∈Θn

n∑
i=1

log(f̂hθ (θ′Xi, Yi)J(Xi)

Où Θn est une suite de voisinages décroissants de θ0 obtenue à partir de θn et J la fonction
de trimming.

Estimation du fonction de trimming J

L’utilité de la fonction de trimming J est d’éviter les problèmes d’estimation quand
le dénominateur de f̂hθ est nul. On suppose un ensemble B pour lequel inf{fθ′X(θ′x) : x ∈
B, θ ∈ Θ} > c, où c > 0. On introduit JB(x) = 1x∈B de façon préliminaire et pour une
suite déterministe h0 de fenêtres, on définit notre estimateur préliminaire de θ0,

θn = arg max
θ∈Θ

Ln(θ, f̂h0 , JB).

On peut maintenant estimer J0 par

Ĵ0(x, c) = J̃(f̂h0θ′nX , θ
′
nx, c).

Où c > 0 et J̃(h, u, c) = 1g(u)>c Délécroix et al. (([14], 2006) ont montré que Ĵ0 était
équivalent à J0. L’estimateur final de θ0 est :
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θ̂ = arg max
θ∈Θn

Ln(θ, f̂h0 , Ĵ0),

où Θn est une suite de voisinages décroissants de θ0 obtenue à partir de θn.
On définit tout d’abord, pour toute fonction J ≥ 0,

Lτ (θ, J) = E[log f τθ (θ
′X,Y )J(X)1Yi∈Aτ ] =

∫∫
log fhθ (θ

′x, y)J(x)1y∈AτdFX,Y (x, y) (3.3)

Pour tout τ < τ0 et sous l’égalité (3.1), Lτ (θ, J) est maximiser par un unique maximum
θ0 sous certaines conditions sur le modèle de régression et J .
Comme FX,Y et f τθ sont inconnus, passons à la version empirique de Lτ (θ, J) par estimer
la fonction de répartion par l’estimateur de Kaplan-Meier, on aura :

Lτn(θ, f τ , J) =

∫∫
log f τθ (θ′x, y)J(x)1y∈AτdF̂X,Y (x, y)

=
n∑
i=1

Win log f τθ (θ′Xi, Ti)J(Xi)]1Ti∈Aτ

L’estimateur de fhθ est défini comme suit :

f̂h,τθ (θ′x, y) =

∫∫
K( θ

′x−θ′v
h

)K(y−w
h

)]1w≤τdF̂X,Y (v, w)

h
∫∫

K( θx−θv
h

)]1w≤τdF̂X,Y (v, w)
(3.4)

=

n∑
i=1

Ŵi,nK
(
θ′x−θ′Xi

h

)
K
(
y−Ti
h

)
1Ti≤τ

h
n∑
i=1

Ŵi,nK
(
θ′x−θ′Xi

h

)
1Ti≤τ

(3.5)

Les poids de l’estimateur de Kaplan-Meier de la fonction de répartition F sont égaux à :

Wi,n =
δi

n(1− Ĝ(Ti−))

le cas de δi = 0, Wi,n s’annule. où Ĝ et le terme (1 − Ĝ(Ti−)) fait intervenir tous les Tj
inférieurs à Ti. Pour l’estimation de W, on s’intéressera aussi au fonction :

W̃ (s) =
(
1−G(s−)

)
,

Tel que G(·−) = P(C ≤ ·) la limite à gauche de G(·).
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L’estimation adaptatif du paramètres h et τ

Estimation de la fenêtre de lissage

Nous établissons ici une estimation à partir du données à fin d’obtenir une fenêtre h
adapté pour notre estimateur de la densité conditionnelle pour chaque θ ∈ Θ, Fan et Yim
(2004[9])ont adopté la méthode de validation croisée pour obtenir

ĥτ (θ) = arg min
h∈Hn

n∑
i=1

Win1Ti∈Aτ{
∫
Aτ

f̂h,τθ (θ′Xi, w)2dw − 2f̂h,τθ (θ′Xi, Ti)}.

Estimation de la borne de troncation

le mal comprotement de l’estimateur de Kaplan-Meier sur les queues de la distribution
impose de suggérer une solution pour remédier ce problème, c’est de tronquer ce les
données de grandes tailles par le paramètre τ . Pour cela Bouaziz (2009,[17]) à donné
l’estimateur de la borne comme unerreur quadratique maoyenne de θ̂τ (ĥ) :

E2(τ) = lim sup
n→∞

E[‖θ̂τ (ĥτ )− θ0‖2]

Où Ê2(τ) satisfait
sup

τ1≤τ≤τ0
|Ê2(τ)− E2(τ)| →P 0.

Donc, notre estimateur est :
τ̂ = arg min

τ1≤τ≤τ0
Ê2(τ).

Enfin l’estimateur de l’index se défini comme suit :

θ̂ := θ̂τ̂ (ĥ) = arg max
θ∈Θ

Lτ̂n(θ, f̂ τ̂ ,ĥ)

3.2 La consistance de θ̂
Hypothéses : On garde les hypothèses (H1)-(H5) et ajoute les hypothèses sui-

vantes : On suppose que pour tout τ1 ≤ τ ≤ τ0 et tout θ ∈ Θ− {θ0},
D1

Lτ (θ0, JB)− Lτ (θ, JB) > 0.

D2 On suppose que pour tout θ1, θ2 ∈ Θ, γ > 0, x ∈ X , y ∈ Y et pour une fonction Φ
telle que E[Φ(X, Y )] < +∞, on a

sup
τ
|f τθ1(θ

′
1x, y)− f τθ2(θ

′
2x, y)| ≤ ‖θ1 − θ2‖γΦ(x, y).

Remarque Ces hypothèses sert à identifier notre modèle de régression.
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Résultats
Théorème 3.2.1. Sous les hypothèses (D1) et (D2), on a

sup
τ,θ
|Lτn(θ, f̂h0,τ , JB)− Lτ (θ, JB)| = oP(1) (3.6)

Donc
θn

P→ θ0.

Démonstration : La démonstration est basée sur la décomposition suivante :

|Ln(θ, f̂h0,τ , J)− Ln(θ, J)| ≤ |Ln(θ, f̂h0,τ , J) + Ln(θ, f τ , J)|+ |Ln(θ, f τ , J)− Ln(θ, J)|

Pour démontrer (3.6), on a deux étapes :

I On considère tout d’abord la partie paramétrique Lτn(θ, f τ , JB)− Lτ (θ, JB).
D’après l’hypothèse (D2), la famille {log(f τθ (θ′·, ·)), θ ∈ Θ, τ1 ≤ τ ≤ τ0} est
Glivenko-Cantelli ([1],1996), donc

sup
θ,τ
|Lτn(θ, f τ , JB)− Lτ (θ, JB)|

≤ | log f τθ (θ′x, y)JB(x)|
∫ ∫

d(F̂X,Y (x, y)− FX,Y (x, y))

Puisqu’on a dans le cadre paramétrique, la loi des grands nombres fournit par le
théorème Glivenko-Cantelli et donc le Théorème de Stute (1993,[25]) nous donne :

sup
τ,θ
|Lτn(θ, f τ , JB)− Lτ (θ, JB)| P→ 0.

II Pour le deuxième terme Lτn(θ, f̂h0,τ , JB) − Lτn(θ, f τ , JB). En utilisant l’inégalité des
accroissements finis, il existe un c > 0 tel que pour tout x, y, θ,

| log f̂h0,τθ (θ′x, y)− log f τθ (θ′x, y)|JB(x) ≤ c−1|f̂h0,τθ (θ′x, y)− f τθ (θ′x, y)|JB(x).

Ainsi,

sup
τ,θ
|Lτn(θ, f̂h0,τ , JB)− Ln(θ, f τ , JB)|

≤ c−1 sup
x,y,τ,θ

|f̂h0,τθ (θ′x, y)− f τθ (θ′x, y)|JB(x)1y∈Aτ

∫ ∫
dF̂ (x, y)

≤ c−1 sup
θ,y,u,τ

|f̂h0,τθ (u, y)− f τθ (u, y)|JB(x)1y∈Aτ .
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Ainsi que

|f̂h0,τθ (u, y)− f τθ (u, y)| ≤ |f̂h0,τθ (u, y)− f̃h0,τθ (u, y)|+ |f̃h0,τθ (u, y)− Ef̃h0,τθ (u, y)|
+ |Ef̃h0,τθ (u, y)− f τθ (u, y)|

Pour le premier terme, d’aprés (2.1) et (3.5), on a∣∣∣|f̂h0,τθ (u, y)− f̃h0,τθ (u, y)
∣∣∣ ≤ sup

x,y,θ,τ

∣∣∣∣∣Ĝ(Ti −G(Ti)

n(1− Ĝ(Ti))

∣∣∣∣∣ f̃h0,τθ (u, y)

On a,d’aprés Gill (1983,[20])

sup
x,y,θ,τ

∣∣∣∣∣Ĝ(Ti −G(Ti)

n(1− Ĝ(Ti))

∣∣∣∣∣ = OP(1)

Donc
|f̂h0,τθ (u, y)− f̃h0,τθ (u, y)| P→ 0. (3.7)

Enfin, d’aprés la demonstration de la proposition du chapitre précédent et (3.7), on a

sup
θ,τ
|Lτn(θ, f̂h0,τ , JB)− Lτn(θ, f τ , JB)| P→ 0.

3.3 Normalité asymptotique de θ̂
La normalité asymptotique nous permet de construire les intervalles de confiance et

de faire les tests. On établit de cet estimateur lorsque les observations sont indépendants
et identiquement distribuées dans deux cas.

3.3.1 Cas paramétrique

Hypothèses

M1 On suppose que pour tout θ1, θ2 ∈ Θ, pour une fonction Φ telle que
‖Φ‖∞ < +∞, pour γ > 0, x ∈ X et y ∈ Y , on a

sup
τ
‖∇2

θf
τ
θ1

(x, y)−∇2
θf

τ
θ2

(x, y)‖ ≤ ‖θ1 − θ2‖γΦ(x, y).

Cette hypothèse nous donne également les inégalités suivantes, obtenues par le théo-
rème des accroissements finis :

sup
τ
‖∇θf

τ
θ1

(x, y)−∇θf
τ
θ2

(x, y)‖ ≤ ‖θ1 − θ2‖M
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et
sup
τ
‖f τθ1(x, y)− f τθ2(x, y)‖ ≤ ‖θ1 − θ2‖M ′,

M2 Soient

H1 = C1+δ(θ′0X × Aτ ,M),

H2 = xC1+δ(θ′0X × Aτ ,M) + C1+δ(θ′0X × Aτ ,M).

On suppose que f τθ0(·, ) ∈ H1 ( en tant que fonction de θ′0x et y) et ∇θf
τ
θ0

(·, ) ∈ H2.
Ces classes sont prouvés comme classes de Donsker (Bouaziz (2009,[17])).

Remarque :
Ces hypothèses établit les conditions de régularité sur notre modèle de regression, ainsi
que nos classe de fonctions, pour assurer le résultat de la normalité asymptotique.

La n-consistance de θn vers θ0

Théorème 3.3.1. On suppose que θn maximise Γn(θ) et θ0 maximise Γ(θ). On suppose
également que θn converge en probabilité vers θ0 et que il existe un voisinage N de θ0 et
une constante η > 0 tels que

Γ(θ) ≤ −η(θ − θ0)′(θ − θ0)

Pour tout θ ∈ N , uniformément sur un oP(1) voisinage de θ0,

Γn(θ) = Γn(θ0) + Γ(θ) + (θ− θ0)′Q1n(θ) + (θ− θ0)′Q2n(θ)(θ− θ0) +Q3n(θ)−Γ(θ0), (3.8)

Où

sup
θ
Q1n(θ) = OP(n−1/2)

sup
θ
Q2n(θ) = oP(1)

sup
θ
Q3n(θ) = OP(n−1)

Alors,
θn − θ0 = OP(n−1/2).

La convergence en loi de θn − θ0 vers une variable aléatoire gaussienne.

Théorème 3.3.2. On suppose que θn est
√
n-consistant pour θ0 et que uniformément sur

les OP(n−1/2) voisinage de θ0,

Γn(θ) = Γn(θ0) +
1

2
(θ − θ0)′V θ +

1√
n

(θ − θ0)′Wn + oP(n−1) (3.9)
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Où V est une matrice définie négative et Wn converge en loi vers un vecteur aléatoire de
loi N(0,4). Alors,

θn − θ0 = −n−1/2V −1Wn +Rn(θ),

Où
sup
θ
Rn(θ) = oP(n−1/2)

Donc √
n(θn − θ0)

L→ N (0, V −14V −1).

La démonstration de ces deux théorème est basée sur le lemme suivant :

Lemme 3.3.1. Sous les hypothèse (M1) et (M2), on a
1. Sur les oP(1) voisinages de θ0,

Lτn(θ, f τ , J0) = Lτ (θ, J0) + (θ − θ0)′T1n(θ) + (θ − θ0)′T2n(θ)(θ − θ0) + T3n(θ0),

Où sup
θ,τ
|T1n| = OP(n−1/2), sup

θ,τ
|T2n| = oP(1) et T3n(θ0) = Lτn(θ0, f

τ , J0)−Lτ (θ0, J0).

2. Sur les OP(n−1/2) voisinages de θ0,

Lτn(θ, f τ , J0) = Lτn(θ0, f
τ , J0) + n−1/2(θ − θ0)′Wn,τ −

1

2
(θ − θ0)′Vτ (θ − θ0) + T4n(θ),

Où
sup
θ,τ
|T4n| = oP(n−1), f1(x, y) = f τ

−1

θ0
(θ′0x, y)J0(x, c)∇θf

τ
θ0

(x, y),

Wn,τ =
1√
n

n∑
i=1

ψ(δi, Xi, Ti; f11Aτ ) (3.10)

et
Vτ = E[f τ

−2

θ0
(θ′0X, Y )J0(X, c)∇θf

τ
θ0

(X, Y )∇θf
τ
θ0

(X, Y )′1Y ∈Aτ ]. (3.11)

Démonstration :
Le développement de Taylor en θ0 de Lτn(θ, f τ ), nous donne

Lτn(θ, f τ , J0) = Lτn(θ0, f
τ , J0) + (θ − θ0)′∇θL

τ
n(θ, f τ , J0)|θ=θ0

+
1

2
(θ − θ0)′∇2

θL
τ
n(θ, f τ , J0)|θ=θ̃(θ − θ0).

Tel que θ̃ est entre θ et θ0.
La preuve est basée sur le même développement de Taylor pour Lτ (X, J0). Alors,

∇θL
τ
n(θ, f τ , J0)|θ=θ0 −∇θL

τ (θ, f τ , J0)|θ=θ0
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=
n∑
i=1

Win∇θ log f τθ0(Xi, Ti)J0(Xi)1τi∈Aτ − E[∇θ log f τθ0(X, Y )J0(X)1Y ∈Aτ ] = OP(n−1/2).

Puisque la classe de fonctions {(x, y) 7→ ∇θ log f τθ0(x, y)J0(x)1Ti∈Aτ} est une VC classe
de d’après l’hypothèse (M2). Pour le gradient d’ordre deux, on écrit

∇2
θL

τ
n(θ, f τ , J0)|θ=θ̃ = (∇2

θL
τ
n(θ, f τ , J0)|θ=θ̃−∇

2
θL

τ
n(θ, f τ , J0)|θ=θ0)+∇2

θL
τ
n(θ, f τ , J0)|θ=θ0

et le premier terme tend vers 0 puisque θ̃ est dans un 0P(1) voisinage de θ0. La démons-
trattion suit le même du cas précédent pour le gradient d’ordre deux en θ0, puisque la
classe de fonctions {(x, y) 7→ ∇2

θ log f τθ0(x, y)J0(x)1τi∈Aτ} est également une VC classe
d’après les hypothèses (M1) et (M2). Pour prouver (3.8), on reprend la décomposition
(3.12), on trouve

∇θL
τ
n(θ, f τ , J0)|θ=θ0 =

1

n

n∑
i=1

ψ(δi, Xi, Ti; f11Aτ ) +Rn(f11Aτ ),

où
sup
f
1T

, Rn(f11Aτ ) = OP(n−1(log n)3),

ce qui nous donne bien le terme n−1/2(θ − θ0)′Wn,τ , (θ − θ0)′Rn(f11Aτ ) étant un oP(n−1)
uniformément en θ et τ . Pour le gradient d’ordre deux, on observe que le premier
terme est un oP(n−1) puisque cette fois on est sur des OP(n−1/2) voisinages de θ0. Pour
∇2
θL

τ
n(θ, f τ , J0)|θ=θ0 , on applique encore la même preuve qui converge bien vers Vτ tandis

que le reste convergent vers 0 et en utilisant le fait que ‖θ − θ0‖2 = OP(n−1), on obtient
bien que ces termes sont uniformément en θ et τ des oP(n−1).

3.3.2 Cas semi-paramétrique

Théorème 3.3.3. Soit τ ∗ = arg min
τ
E2(τ). On garde les Hypothèses (H2) − (H5) et

(M2), on a

θ̂ − θ0 = − 1

n1/2
V −1
τ∗ Wn,τ∗ + oP(n−1/2) (3.12)

Où Vτ et Wn,τ sont définis (4.7) et (4.8). Donc,

n1/2(θ̂ − θ0)
L→ N (0, Στ∗)

Où Στ∗ = V −1
τ∗ 4τ∗(f1)V −1

τ∗ , 4τ∗(f1) = V ar(ψ(δ,X, T ; f11Aτ∗)). Ce théorème est une
conséquence du Lemme suivante.
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Lemme 3.3.2. Sous les Hypothèses (H2)− (H5), (D1)− (D2), (M1)− (M2), on a

Lτn(θ, f̂h,τ , Ĵ0) = Lτn(θ, f τ , J0)+(θ−θ0)′Rn(θ, h, τ)+(θ−θ0)′Qn(θ, h, τ)(θ−θ0)+L̃τn(θ0)

, Où
sup
θ,h,τ

Rn(θ, h, τ) = oP(n−1/2),

sup
θ,h,τ

Qn(θ, h, τ) = oP(1)

et
L̃τn(θ0) = Aτ1n(θ0, f̂

h,τ )−Bτ
2n(θ0, f̂

h,τ ),

Aτ1n(θ0, f̂
h,τ ) et Bτ

2n(θ0, f̂
h,τ ) étant définis dans la preuve de ce lemme.

Démonstration du théorème (3.3.3) Soient

Γ0n(θ, τ, h) = Lτn(θ, f̂h,τ , Ĵ0),

Γ1n(θ, τ) = Lτn(θ, f̂ ĥ,τ , Ĵ0)

Γ2n(θ) = Lτ̂n(θ, f̂ ĥ,τ̂ , Ĵ0).

Les deux théorèmes précédentes nous permettent une représentation asymptotique de
type (3.9), donc

θ̂ − θ0 = − 1

n1/2
V −1
τ Wn,τ +Rn,τ (θ), (3.13)

Tel que sup
θ,τ

Rn,τ (θ) = oP(n−1/2). On a en particulier la représentation (3.12) et le théorème

central limite.
Démonstration du lemme (3.3.2) :
Tout d’abord, on applique les même arguments que dans Delecroix et al. ([14], 2006) pour
remplacer Ĵ0 by J0. On définit alors Jθ(x, c) = 1fθX(θ′x)≥c

. L’hypothèse (D2) sur la densité
de θ′x nous permet alors, sur une suite de voisinages décroissants de θ0, de remplacer
J0(x, c) par Jθ(x, c/2). Tel que sup

x,y,h,τ,θ
désigne que x ∈ X , y ∈ Y , h ∈ Hn, τ1 ≤ τ ≤ τ0

et θ ∈ Θn.

Lτn(θ, f̂h,τ , J0)− Lτn(θ, f τ , J0) =
n∑
i=1

δiWin1Zi∈Aτ log

(
f̂h,τθ (θ′Xi, Ti)

f τθ (θ′Xi, Ti)

)
J0(Xi, c)

=
n∑
i=1

δiWin1Zi∈Aτ

(
f̂h,τθ (θ′Xi, Ti)− f τθ (θ′Xi, Ti)

)
J0(Xi, c)

f τθ (θXi, Ti)

−
n∑
i=1

δiWin1Zi∈Aτ

(
f̂h,τθ (θ′Xi, Ti)− f τθ (θ′Xi, Ti)

)2

J0(Xi, c)

φ
(
f τθ (θ′Xi, Ti), f̂

h,τ
θ (θ′Xi, Ti)

)2

=: Aτ1n(θ, f̂h,τ )−Bτ
1n(θ, f̂h,τ ),
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Où φ(f τθ (θ′Xi, Ti), f̂
h,τ
θ (θ′Xi, Ti)) est entre f̂h,τθ (θ′Xi, Ti) et f τθ (θ′Xi, Ti).

Pour le premier terme Aτ1n :
Un développement de Taylor appliqué en θ0 nous donne la décomposition suivante :

Aτ1n(θ, f̂h,τ ) =
n∑
i=1

Win1Zi∈Aτ

(
f̂h,τθ (θ′Xi, Ti)− f τθ (θXi, Ti)

)
J0(Xi, c)

f τθ (θ′Xi, Ti)

+ (θ − θ0)′
n∑
i=1

Win1Zi∈Aτ (∇θf̂
h,τ
θ0

(Xi, Ti)−∇θf
τ
θ0

(Xi, Ti))Jθ(Xi, c/2)

f τθ (θ′Xi), Ti

+ (θ − θ0)′

[
n∑
i=1

Win1Zi∈Aτ (∇2
θf̂

h,τ

θ̃
(Xi, Ti)−∇2

θf
τ
θ̃
(Xi, Ti))Jθ(Xi, c/2)

2f τθ (θXi, Ti)

]
(θ − θ0)

Pour θ̃ entre θ et θ0. On remplace alors θ par θ0 dans le premier terme de la manière
suivante :

Aτ1n(θ0, f̂
h,τ ) + Aτ4n(θ, f̂h,τ ) =

n∑
i=1

Win1Zi∈Aτ (f̂
h,τ
θ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti))J0(Xi, c)

f τθ (θXi, Ti)

Où

Aτ4n(θ, f̂h,τ ) =
n∑
i=1

Win1Zi∈Aτ (f̂
h,τ
θ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti))J0(Xi, c)

× (f τθ0(θ
′
0Xi, Ti)− f τθ (θ′Xi, Ti))Jθ(Xi, c/2)(f τθ (θ′Xi, Ti)f

τ
θ0

(θ′0Xi, Ti))
−1

On pose alors

Aτ2n(θ, f̂h,τ ) =
n∑
i=1

Win1Zi∈Aτ (∇θf̂
h,τ
θ0

(Xi, Ti)−∇θf
τ
θ0

(Xi, Ti))Jθ(Xi, c/2)

f τθ (θ′Xi, Ti)

et

Aτ3n(θ̃, f̂h,τ ) =
n∑
i=1

Win1Zi∈Aτ (∇2
θf̂

h,τ

θ̃
(Xi, Ti)−∇2

θf
τ
θ̃
(Xi, Ti))Jθ(Xi, c/2)

2f τθ (θXi, Ti)
,

Donc,

Aτ1n(θ, f̂h,τ ) = Aτ1n(θ0, f̂
h,τ )+(θ−θ0)′Aτ2n(θ, f̂h,τ )+(θ−θ0)′Aτ3n(θ̃, f̂h,τ )(θ−θ0)+Aτ4n(θ, f̂h,τ )

Pour θ̃ compris entre θ et θ0. Comme∇2
θf̂

h,τ
θ (x, y) converge uniformément vers∇2

θf
τ
θ (x, y)

d’après les hypothèses (H1-H5), on a

sup
θ̃,τ,h

Aτ3n(θ̃, f̂h,τ ) = oP (1).
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En utilisant la forme de sauts de l’estimateur de Kaplan-Meier F̂X,Y =
n∑
i=1

Wi,n1{Xi≤x,Ti≤y}, en suite

Aτ2n(θ, f̂h,τ ) =
n∑
i=1

W̃i,n1Ti∈Aτ (∇θf̂
h,τ
θ0

(Xi, Ti)−∇θf
τ
θ0

(Xi, Ti))Jθ(Xi, c/2)

f τθ (θXi, Ti)

+
1

n

n∑
i=1

W̃i,nZG(Ti−)
δi1Zi∈Aτ (∇θf̂

h,τ
θ0

(Xi, Ti)−∇θf
τ
θ0

(Xi, Ti))Jθ(Xi, c/2)

f τθ (θ′Xi, Ti)

1−G(Ti−)

1− Ĝ(Ti−)

=: Aτ21n(θ, f̂h,τ ) + Aτ22n(θ, f̂h,τ ),

Où

ZG(t) =
Ĝ(t)−G(t)

1−G(t)
.

Par les égalités sup
t≤τ0
|Ĝ(t) − G(t)| = OP(n−1/2) et sup

t≤τ0

1−G(t)

1− Ĝ(t)
= OP(1),d’aprés

Gill(1983,[20]), on a

sup
τ,θ
|A22n(θ, f̂h,τ )| ≤ oP(n−1/2)× n−1

n∑
i=1

δi(1−G(Zi−))−1,

et le dernier terme est un OP(1) puisqu’il est d’espérance nulle. Pour le terme Aτ21n, on
remplace tout d’abord θ au dénominateur par θ0, ce qui nous donne :

Aτ21n(θ, f̂h,τ ) =
n∑
i=1

W̃i,n1Zi∈Aτ (∇θf̂
h,τ
θ0

(Xi, Ti)−∇θf
τ
θ0

(Xi, Ti))J0(Xi, c/4)

f τθ0(θ
′
0Xi, Ti)

+
n∑
i=1

W̃i,n1Ti∈Aτ (f
τ
θ0

(θ′0Xi, Ti)− f τθ (θ′Xi, Ti))J0(Xi, c/4)

× (∇θf̂
h,τ
θ0

(Xi, Ti)−∇θf
τ
θ0

(Xi, Ti))Jθ(Xi, c/8)(f τθ0(θ
′
0Xi, Ti)f

τ
θ (θ′Xi, Ti))

−1

D’aprés l’hypothèse (D1) et la convergence uniforme de ∇θf̂
h,τ
θ0

Rτ
1n(θ, h)(θ − θ0), où sup

θ,τ,h
|Rτ

1n(θ, h)| = oP (1).

L’hypothèse (M2) et les classes de fonctions (H1) et (H2) introduites dans l’Hypothèse
(M2) sont des classes de Donsker. De plus, f̂h,τθ0

et∇f̂h,τθ0
appartiennent respectivement aux

classes (H1) et (H2) avec probabilité tendant vers 1 pour une constante M suffisamment
grande, nous assurent que les classes {(x, y) 7→ ∇θf

τ
θ0

(x, y)} et {(x, y) 7→ ∇θf̂
h,τ
θ0

(x, y)}
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sont des classes de Donsker.
Ainsi,

∇θf̂
h,τ
θ0

(x, y) −→ ∇θf
τ
θ0

(x, y).

Alors, d’aprés propriété suivante :

∀ε > 0, lim
δ→0

lim
n→∞

supP

(
sup

ρP (g1−g2)<δ

|Gn(g1 − g2)| > ε

)
= 0

On obtient :

Aτ2n(θ, f̂h,τ ) =

∫ ∫
(∇θf̂

h,τ
θ0

(x, y)−∇θf
τ
θ0

(x, y))1y∈AτJ0(x, c/4)dP(x, y)

f τθ0(θ
′
0x, y)

+ Rτ
1n(θ, h)(θ − θ0) +Rτ

2n(θ, h),

Où
sup
θ,τ,h
|Rτ

1n(θ, h)| = oP(1) et sup
θ,τ,h
|Rτ

2n(θ, h)| = oP(n−1/2).

Ensuite,

sup
τ,h
|
∫ ∫

(∇θf̃
h,τ
θ0

(x, y)−∇θf
τ
θ0

(x, y))1y∈AτJ0(x, c/4)dP(x, y)|

= sup
τ,h
|
∫ ∫

∇θf̃
h,τ
θ0

(x, y)1y∈AτJ0(x, c/4)dP(x, y)| = OP(h4) = oP(n−1/2),

puisque nh8 → 0 d’après les hypothèses (H2)-(H5). Le terme Aτ4n(θ, f̂h,τ ) traité de la
même façon. Pour le terme Ãτ4n(θ, f̂h,τ ), on remplace Win par W̃i,n et par suite θ par θ0

au dénominateur. On a donc :

Ãτ4n(θ, f̂h,τ ) =
n∑
i=1

W̃i,n1Zi∈Aτ (f̂
h,τ
θ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti))(f

τ
θ0

(θ′0Xi, Ti)− f τθ (θ′Xi, Ti))J0(Xi, c)

(f τθ0(θ
′
0Xi, Ti))2

+
n∑
i=1

W̃i,n1Zi∈Aτ (f
τ
θ0

(θ′0Xi, Ti)− f τθ (θ′Xi, Ti))
2(f̂h,τθ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti))

× (f τθ (θ′Xi, Ti))
−1(f τθ0(θ

′
0Xi, Ti))

−2J0(Xi, c)Jθ(Xi, c/2)

D’après l’hypothèse (M1), le deuxième terme est égal à (θ − θ0)′Rτ
3n(θ, h)(θ − θ0) où

sup
θ,τ,h
|Rτ

3n(θ, h)| = oP (1). Quant au premier terme, l’hypothèse (M2) et que les classes de

fonctions {(x, y) 7→ f τθ0(x, y)} et {(x, y) 7→ f̂h,τθ0
(x, y)} sont des classes de Donsker et

la convergence uniforme de f̂h,τθ0
(x, y) vers f τθ0(x, y), on peut alors utiliser la propriété
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d’équicontinuité des classes de Donsker. En utilisant également l’hypothèse (M1) pour le
terme f τθ0(θ

′
0Xi, Ti)− f τθ (θ′Xi, Ti), on peut donc écrire :

Ãτ4n(θ, f̂h,τ ) =

∫ ∫
(f̂h,τθ0

(θ′0x, y)− f τθ0(θ
′
0x, y))1y∈Aτ (θ − θ0)′∇θf

τ
θ0

(x, y)J0(x, c/4)dPX,Y (x, y)

(f τθ0(θ
′
0x, y))2

+ (θ − θ0)′Rτ
3n(θ, h)(θ − θ0) +Rτ

4n(θ, h),

Où
sup
θ,τ,h
|Rτ

3n(θ, h)| = oP(1) et sup
θ,τ,h
|Rτ

4n(θ, h)| = oP(n−1/2).

On a,
dPX,Y = dPY |XdPX|θ′0XdPθ′0X

Pour tout y ∈ Y ∫∫
∇θf

τ
θ0

(x, y)J0(x, c/4)dPX|θ′0X(x, u) = 0

Donc,
Ãτ4n = 0

Pour le deuxième étape :
Tout d’abord, un développement de Taylor en θ0 nous donne :

(f̂h,τθ (θ′Xi, Ti)− f τθ (θ′Xi, Ti))
2

= (f̂h,τθ0
(θ′0Xi, Ti)− f τθ0(θ

′
0Xi, Ti) + (θ − θ0)′(∇θf̂

h,τ

θ̃
(θ̃′Xi, Ti)−∇θf

τ
θ̃
(θ̃′Xi, Ti)))

2

= (f̂h,τθ0
(θ′0Xi, Ti)− f τθ0(θ

′
0Xi, Ti))

2

+ 2(θ − θ0)′(∇f̂h,τ
θ̃

(θ̃′Xi, Ti)−∇f τθ̃ (θ̃′Xi, Ti))(f̂
h,τ
θ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti))

+ (∇f̂h,τθ0
(θ′0Xi, Ti)−∇f τθ0(θ

′
0Xi, Ti))

′(∇f̂h,τ
θ̃

(θ̃′Xi, Ti)−∇f τθ̃ (θ̃′Xi, Ti)).

Alors

Bτ
1n(θ, f̂h,τ ) =

n∑
i=1

Wi,n1Ti∈Aτ (f̂
h,τ
θ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti))

2Jθ(Xi, c/2)

φ(f τθ (θ′Xi, Ti), f̂
h,τ
θ (θXi, Ti))2

+ 2(θ − θ0)′
n∑
i=1

Wi,n1Ti∈Aτ (f̂
h,τ
θ0

(θ′0Xi, Ti)− f τθ (θ′0Xi, Ti))Jθ(Xi, c/2)

× (∇θf̂
h,τ

θ̃
(θ̃′Xi, Ti)−∇θf

τ
θ̃
(θ̃′Xi, Ti))(φ(f τθ (θ′Xi, Ti), f̂

h,τ
θ (θ′Xi, Ti))

2)−1

+
n∑
i=1

Wi,n1Ti∈AτJθ(Xi, c/2)
{(θ − θ0)′(∇θf̂

h,τ

θ̃
(Xi, Ti)−∇θf

τ
θ̃
(Xi, Ti))}2

φ(f τθ (θXi, Ti), f̂
h,τ
θ (θXi, Ti))2

.
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On remplace θ par θ0 dans le dénominateur du premier terme et d’aprés l’hypothèse
(M1)(3.3.1) et la convergence uniforme de f̂h,τθ0

(θ′0Xi, Ti) vers f τθ (θ′0Xi, Ti) implique

n∑
i=1

Wi,n1Ti∈Aτ (f̂
h,τ
θ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti)

2J0(Xi, c/4)

φ(f τθ0(θ
′
0Xi, Ti), f̂

h,τ
θ0

(θ′0Xi, Ti))2
+ (θ − θ0)′Rτ

3n(θ, h)(θ − θ0),

Où
sup
θ,τ,h
|Rτ

3n(θ, h)| = oP(1).

Donc,

Bτ
1n(θ, f̂h,τ ) = Bτ

2n(θ0, f̂
h,τ ) + (θ − θ0)′Bτ

3n(θ, f̂h,τ ) + (θ − θ0)′Bτ
4n(θ̃, f̂h,τ )(θ − θ0)

+ (θ − θ0)′Rτ
3n(θ, h)(θ − θ0),

Où

Bτ
2n(θ0, f̂

h,τ ) =
Wi,n1Ti∈Aτ (f̂

h,τ
θ0

(θ′0Xi, Ti)− f τθ0(θ
′
0Xi, Ti)

2J0(Xi, c/4)

φ(f τθ0(θ
′
0Xi, Ti), f̂

h,τ
θ0

(θ′0Xi, Ti))2

et

Bτ
3n(θ, f̂h,τ ) = 2

n∑
i=1

Wi,n(f̂h,τθ0
(θ′0Xi, Ti)− f τθ (θ′0Xi, Ti))Jθ(Xi, c/2)

× (∇θf̂
h,τ

θ̃
(θ̃′Xi, Ti)−∇θf

τ
θ̃
(θ̃′Xi, Ti))(φ(f τθ (θ′Xi, Ti), f̂

h,τ
θ (θ′Xi, Ti))

2)−1

Bτ
4n(θ, f̂h,τ ) =

n∑
i=1

Wi,nJθ(Xi, c/2)(φ(f τθ (θ′Xi, Ti), f̂
h,τ
θ (θ′Xi, Ti))

2)−1

× (∇θf̂
h,τ

θ̃
(Xi, Ti)−∇θf

τ
θ̃
(Xi, Ti))(∇θf̂

h,τ

θ̃
(Xi, Ti)−∇θf

τ
θ̃
(Xi, Ti))

′

et sup
θ,τ,h
|Rτ

3n(θ, h)| = oP(1). Donc,

sup
θ,τ,h
‖Bτ

3n(θ, f̂h,τ )‖ = oP(n−1/2)

et

sup
θ,τ,h
‖Bτ

4n(θ, f̂h,τ )‖ = oP(1),



Chapitre 4

Les évènements récurrents dans un
modèle à direction révélatrice unique

Ce chapitre concerne à l’étude des évènements récurrents en présence de données
censurées à droite. On étudie le modèle de la moyenne µ(t|x) = µθ0(t, θ

′
0x). Dans la

première section, notre procédure d’estimation nécessite l’introduction d’une mesure qui
nous permet de contrôler les poids, parfois trop grands dans les queues de distribution,
de l’estimateur de Kaplan-Meier. Dans la deuxième partie, nous encore établissons des
résultats de la consistance et de normalité asymptotique de l’estimateur obtenus pour une
mesure adaptative choisie à partir des données.

4.1 Présentation du modèle
Soit le processus N∗(t) compte le nombre d’évènements récurrents survenant dans

l’intervalle de temps pour [0, t] et précédant l’évènement terminal Y . Le modèle est défini
comme suit :

µ(t|x) = E[N∗(t)|X = x] (4.1)

qui compte le nombre d’évènements récurrents moyen à chaque instant, sachant un vecteur
de variables explicatives X ∈ X ⊂ Rd. Le processus de comptage N∗ nous donne des
informations importantes sur Y . Nous posons deux cas :
Cas paramétrique

µ(t|x) = µ0(t, x; θ0) (4.2)

Tel que θ0 ∈ Θ ⊂ Rd est inconnue et µ0 est une fonction connue.
Cas semi-paramétrique

µ(t|x) = µθ0(t, θ
′
0x) (4.3)

Où θ0 ∈ Θ ⊂ Rd, µθ(t, u) = E[N∗(t)|θ′X = u] et la fonction µ0 est inconnu. En pratique,
N∗ ne sera pas toujours directement observé sur tout l’intervalle de temps [0, Y ], puisque
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Y peut être censuré. On utilisera les mêmes notations que dans les chapitres précédents
pour C, T et δ. Ainsi, pour tout t, au lieu d’observer N∗(t) on observera N(t) := N∗(t∧T ).
Dans ce chapitre, nos observations seront donc i.i.d. de (Ti, δi, Xi, Ni(·))1≤i≤n.

4.2 Méthode d’estimation

Le processus Z(·)
On trouve des problèmes dans l’estimation de la moyenne µ puisque le processus N∗

n’est pas directement observé. Donc, on ne peut pas utilisé des critères qui dépend de N∗,
pour cela, on introduit un processus Z(·) telque

Z(t) =

∫ t

0

dN(s)

1−G(s−)
. (4.4)

Cela, nous aide de compenser le manque d’observations dans les queues de la distribution
dans le cas censuré, on a

E[dN(s)|X] = E[dN∗(s ∧ C)|X]

= E[dN∗(s)1s≤c|X]

= E[dN∗(s)E[1s≤C |N∗, X, Y ]|X]

= E[dN∗(s)|X](1−G(s−)),

Ainsi, on a
E(Z(t)|X) = E(N∗(t)|X) = µ(t|X) (4.5)

On a estimé Z par l’estimateur de Kaplan-Meier, puisque la fonction G est inconnue qui
est par la relation suivante

Ẑ(t) =

∫ t

0

dN(s)

1− Ĝ(s−)
. (4.6)

Donc, le but générale est d’étudier la différence entre Z et son estimateur.
On pose le lemme suivant qui donne une représentation asymptotique i.i.d. uniforme,

pour une classe de fonctions faisant intervenir le processus Ẑ(·). On considère une version
intégrée de ce processus par rapport à une mesure w appartenant à une classe de mesures
de probabilitéW . Nous explicitons tout d’abord cette famille de mesure en présentant les
hypothèses qu’elle doit vérifier pour nous permettre d’obtenir ce lemme.
Soit la classe de fonctions

G = {g : (t, x) ∈ [0, τH ]×X 7→ g(t, x)}.

On s’intéressera notamment à G = {µθ : (t, x) ∈ [0, τH ] × X 7→ µθ(t, x), θ ∈ Θ} ou aux
classes de fonctions des dérivées partielles d’ordre 1 ou 2 de µθ.
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condition 4.2.1. Soit Gτ = {g(t, ·), t ∈ [0, τ ], g ∈ G}, une classe de fonctions définie
sur X Pour τ < τH . Alors, pour tout τ < τH ,Gτ est une VC-classe de fonctions.

Commentaire
la mesure w joue deux rôle :
Le premier, dans la pratique : on a plus de poids sur certains intervalles de temps de plus
grande importance.
Le deuxième, dans la théorie : cette mesure permet de controller la processus Z dan les
queues de distribution.

Hypothèses
On suppose que

– (F1)
{

P(dN∗(C) 6= 0) = 0,
P(Y = C) = 0.

– (F2)
{
C ⊥ (N∗, Y ),
P(C ≤ t|N∗, X, Y ) = P(C ≤ t|N∗, Y ) pour tout t ∈ [0, τH ].

– (F3) On suppose qu’il existe une mesure w0 et une constante positive C0 telles que,
pour tout w ∈ W , ∫ τH

t

dw(s) ≤ C0W0(t),

Où W0(t) =

∫ τH

t

dw0(s). De plus,

W0(t) = W1(t)W2(t),

Où W1 et W2 sont deux fonctions positives et décroissantes telles que∫ τH

0

W 2
1 (t)dG(t)

(1− F (t−))(1−G(t−))2
<∞, (4.7)

∫ τH

0

W2(t)E[dN∗(t)] <∞ (4.8)

et
lim
t→τH

W2(t) = 0

.
– (F4) On suppose que pour tout τ < τH , il existe une constante α > 0 telle que,

E

[
sup

t≤τ,t≤τ

|N(t)−N(t′)|
|t− t′|α

]
<∞.

Remarque
pour l’hypothèse (F3),



4.2 Méthode d’estimation 46

– L’hypothèse (F3, 4.7) permet de controller (1−Ĝ(t−)) (dans la définition de Z pour
tout t dans les queues de distribution.

– L’hypothèse (F3, 4.8) Sert à verifier que N∗(t) ne grandit pas trop vite dans les
queues de distribution.

Ainsi, l’hypothèse (F4) impose une condition de "Hölder" sur le processus N , nous assure
que certains de nos classes de fonctions appartiennent à des VC classes.

Lemme 4.2.1. Soit G, une classe de fonctions d’enveloppe Φ vérifiant la Condition (4.2.1)
et soit W une classe de mesures vérifiant l’hypothèse (F3)On suppose également que l’hy-
pothèse (F4) est vérifiée. On définit, pour tout g ∈ G,

Sn(g, w) =
1

n

n∑
i=1

∫ τH

0

Zi(t)g(t,Xi)dw(t)

et

Ŝn(g, w) =
1

n

n∑
i=1

∫ T(n)

0

Ẑi(t)g(t,Xi)dw(t).

(i) On suppose que sup
w∈W

E[Sn(Φ, w)] <∞. Alors, pour tout g ∈ G, on a :

Ŝn(g, w)−Sn(g, w) =
1

n

n∑
i=1

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[g(t, X)dµ(s|X)]dw(t)+Rn(g, w),

où

ηt(T, δ) =
(1− δ)1T≤t
1−H(T−)

−
∫ t

0

1T≥sdG(s)

(1−H(s−))(1−G(s−))

et sup
w∈W,g∈G

|Rn(g, w)| = oP(n−1/2). De plus, si les supports des mesures w sont tous

inclus dans [0, τ ], pour un τ < τH , alors sup
w∈W,g∈G

|Rn(g, w)| = OP(n−1 log n).

(ii) Si ĝ représente une famille d’estimateurs nonparamétriques de g telle que
sup
g∈G
‖ĝ − g‖∞ = oP(1), alors

sup
w∈W
|Ŝn(ĝ, w)− Sn(ĝ, w)| = oP(n−1/2)

(resp. OP(n−1 log n) si les supports des mesures w sont tous inclus dans [0, τ ]).

preuve du lemme (4.2.1) On pose

S
T(n)
n (g, w) =

1

n

n∑
i=1

∫ T(n)

0

Zi(t)g(Xi, t)dw(t).
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On a

Ŝn(g, w) = S
T(n)
n (g, w) +

1

n

n∑
i=1

∫ T(n)

0

g(Xi, t)

∫ t

0

(Ĝ(s−)−G(s−))dNi(s)

(1−G(s−))(1− Ĝ(s−))
dw(t)

= S
T(n)
n (g, w) +Rn(g, w).

De plus, en utilisant les mêmes arguments utilisés dans le Théorème (4.3.1), on a

sup
w∈W,f∈F

|ST(n)n (g, w)− Sn(g, w)| = oP(n−1/2).

Soient τ < τH et wτ (t) = w(t)1t≤τ . Sur [0, τ ] on utilise la représentation asymptotique
i.i.d. de l’estimateur de Kaplan-Meier Ĝ,

Ĝ(t)−G(t)

1−G(t)
=

1

n

n∑
j=1

ηt(Tj, δj) + R̃1n(t),

Où sup
t≤τ
|R̃n(t)| = Op.s.(n

−1 log n)

Et

ηt(T, δ) =
(1− δ)1T≤t
1−H(T−)

−
∫ t

0

1T≥sdG(s)

(1−H(s−))(1−G(s−))
.

De plus, on a d’parés Gill ([20],1983)

sup
t≤τ
|Ĝ(t)−G(t)| = OP(n−1/2)

et
sup
t≤τ

1−G(t)

1− Ĝ(t)
= OP(1).

On obtient donc,

Rn(g, wτ ) =
1

n2

∑
i,j

∫ T(n)

0

g(Xi, t)

∫ t

0

ηs−(Tj, δj)dNi(s)

1−G(s−)
dwτ (t) +R2n(g, wτ ).

Tel que F est un ensemble uniformément borné, que∫
dwτ ≤ 1, et que E[N(τ)] ≤ ∞

pour tout τ , on en déduit que

sup
g,w
|R2n(g, wτ )| = OP(n−1).
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Le terme Rn(g, wτ ) se reécrire comme suit :

Rn(g, wτ )

1

n

n∑
j=1

∫ T(n)

0

∫ t

0

ηs−(Tj, δj)E[g(X, t)dµ(s|X)]dwτ (t)+

∫
1

n2

∑
i,j

ψg′t(Xi, Ni, Tj, δj)dwτ (t)

Où

ψg,t(Xi, Ni, Tj, δj) =

∫ t

0

ηs−(Tj, δj)

(
g(Xi, s)dNi(s)

1−G(s−)
− E[g(X, s)dµ(s|X)]

)
.

On peux remplacer la borne T(n) par τ dans les intégrales, avec probabilité tendant vers
1. Soient (g, g′) ∈ G2 et (t, t′) ∈ [0, τ ]2,

|ψg,t(Zi, Ni, Tj, δj)− ψg
′,t′(Zi, Ni, Tj, δj)| ≤ |ψg′t(Zi, Ni, Tj, δj)− ψg,t

′
(Zi, Ni, Tj, δj)|

+|ψg,t′(Zi, Ni, Tj, δj)− ψg
′,t′(Zi, Ni, Tj, δj)|

≤ Cτ‖g − g′‖∞Ni(τ)

+ C ′τ |t− t′|α sup
t,t≤τ

|Ni(t)−Ni(t
′)|

|t− t′|α
,

Où Cτ , C ′τ < ∞ et α > 0. Soit Hτ l’ensemble de toutes les fonctions ψg,t pour g ∈ G et
t ∈ [0, τ ]. Cette dernière inégalité et l’hypothèse (F4) nous assurent alors que Hτ est une
VC-classe de fonctions uniformément bornées. La propriété de Glivenko-Cantelli([1],1996)
de cette classe nous donne

sup
g,t≤τ
| 1

n2

n∑
i=1

ψg,t(Xi, Ni, Ti, δi)| = OP(n−1).

D’autre part, le Théorème (1.5.3, [21]) nous donne

, sup
g,t≤τ
| 1

n2

∑
i 6=j

ψg,t(Xi, Ni, Tj, δj)| = OP(n−1),

Puisque cette quantité peut être vue comme un U -processus dégénéré d’ordre deux indexé
par Hτ . On a donc obtenu la représentation i.i.d. pour Ŝn(g, wτ ), τ < τH . Pour obtenir
la représentation pour Ŝn(ĝ, wτ ), on écrit

Ŝn(ĝ, wτ ) = S
T(n)
n (ĝ, wτ ) +Rn(ĝ − f, wτ ) +Rn(g, wτ ).

En effet
sup
g∈G
‖g − ĝ‖∞ = oP(1),
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et
sup
t≤τ
|Ĝ(t)−G(t)| = OP(n−1/2),

On en déduit que sup
g,w
|Rn(g − ĝ, wτ )| = oP(n−1/2) ce qui nous donne la représentation

pour Ŝn(ĝ, wτ ). On veut maintenant faire tendre τ vers τH . Soient

P̂ τ
n (g, w) = Ŝn(g, w)− ST(n)n (g, w),

et P τ
n (f, w) = Ŝn(f, wτ )−S

T(n)
n (f, wτ ). Puisque la classe de fonctions G est uniformément

bornée, on a

|P̂ τ
n (g, w)− P τ

n (g, w)| ≤ M

n

n∑
i=1

∫ T(n)

0

|Ĝ(s−)−G(s−)|
[1−G(s−)][1− Ĝ(s−)]

dNi(s)dw(t)

≤ M ′

n

n∑
i=1

∫ T(n)

0

W0(s ∨ τ)|Ĝ(s−)−G(s−)|dNi(s)

[1−G(s−)][1− Ĝ(s−)]
,

Où la dernière inégalité vient du théorème de Fubini (1.4.10) et de l’hypothèse (F3). La
condition sur W1 de l’hypothèse (F3) et en utilisant le fait que d’aprés Gill (1983,[20])

sup
t≤T(n)

(1−G(t−))(1− Ĝ(t−))−1 = OP(1)

On a,

|P̂ τ
n (f, w)− P τ

n (f, w)| ≤ An
n

n∑
i=1

∫ T(n)

0

W2(s ∨ τ)dNi(s)

1−G(s−)
,

Où An = OP(n−1/2).

4.2.1 Cas paramétrique

On définit, pour une mesure w telle que w([0, ∞)) <∞,

Mw(θ, µ0) =

∫ τH

0

E[µ0(t, X; θ)2]dw(t)− 2

∫ τH

0

E[Z(t)µ0(t, X; θ)]dw(t).

Par la relation (4.5), on a donc :

θ0 = arg min
θ∈Θ

∫ τH

0

E[(Z(t)− µθ(t, θ′X))2]dw(t)

= arg min
θ∈Θ

Mw(θ, µ0).

Sous l’estimation, on a utilisé la version empirique de Mw :
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Mn,w(θ, µ0) =
1

n

n∑
i=1

∫ T(n)

0

µ0(t, θ′Xi)
2dw(t)− 2

n

n∑
i=1

∫ T(n)

0

Ẑi(t)µ0(t, θ′Xi)dw(t).

On définit ainsi l’estimateur suivant de θ0 :

θ̂(w) = arg min
θ∈Θ

Mn,w(θ, µ0). (4.9)

4.3 Résultats asymptotiques
Hypothèses
– (I) On suppose que pour tout w ∈ W , Vw,p =

∫ τH

0

E[∇θµ0(t, X)∇θµ0(t, X)′]dw(t)

est inversible. De plus, les classes de fonctions {µ0(·, ·), θ ∈ Θ}, {∇θµ0(·, ·), θ ∈ Θ}
et {∇2

θµ0(·, ·), θ ∈ Θ} vérifient la Condition (4.2.1) et les deux conditions suivantes.

condition 4.3.1. Soit G = {gθ : (t, x) ∈ [0, τH ] × X 7→ gθ(t, x), θ ∈ Θ} une classe

de fonctions. On suppose que {(x, z) 7→
∫ τH

0

z(t)g(t, x)dw(t), gθ ∈ G, w ∈ W} est

Glivenko-Cantelli(1996,[1]).

condition 4.3.2. Soit gθ ∈ {(t, x) 7→ gθ(t, x), θ ∈ Θ}. On suppose que pour tout
(θ1, θ2) ∈ Θ2 et x ∈ X ,

sup
w∈W

∫ τH

0

‖gθ1(t, x)− gθ2(t, x)‖dw(t) ≤ C‖θ1 − θ2‖,

Où C est une constante positive.
De plus, ∇θµ0(s, x; θ1) (respectivement ∇2

θµ0 ( s, x; θ1)) représente le vecteur des dérivées
partielles (respectivement la matrice Hessienne) de µ0(s, x; θ) par rapport à toutes les
composantes de θ, évalué en θ1.

Remarque :
Ces deux derniers conditions (4.3.1) et (4.3.2) concernent le modèle paramétrique et
peuvent être interprétées comme des conditions de régularité sur le modèle de régression.

Résultats
Théorème 4.3.1. On suppose que l’égalité (4.2) est vérifiée. Soit θ̂(w), défini par (4.9).
Sous les hypothèses (F1)-(F4), (I), on a

θ̂(w)− θ0 = V −1
w,p{

1

n

n∑
i=1

(

∫ τH

0

(Zi(t)− µ0(t, Xi; θ0))∇θµ0(t, Xi; θ0)dw(t)

+

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[∇θµ0(t, X; θ0)dµ0(s, X; θ0)]dw(t))}+Rn(w),
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Où

ηt(T, δ) =
(1− δ)1T≤t
1−H(T−)

−
∫ t

0

1T≥sdG(s)

(1−H(s−))(1−G(s−))

Et sup
w∈W
|Rn(w)| = oP (n−1/2). Pour tout w ∈ W,

√
n(θ̂(w)− θ0)

L→ N (0,Σw,p),

0ù Σw,p = V −1
w,p4w,pV

−1
w,p et 4w,p est la matrice de covariance associée à chaque terme de

la somme entre accolades.

Ce théorème nous donne donc une représentation i.i.d. de θ̂(w)− θ0 puisque le terme
entre accolades représente la somme de termes i.i.d. et d’espérance nulle. En effet,

E[(µ0(t, X; θ0)− Z(t))∇θµ0(t, X; θ0)] = E[∇θµ0(t, X; θ0)(µ0(t, X; θ0)− E[Z(t)|X])]

= 0

D’après (4.5). De plus, en utilisant l’hypothèse (F2), on montre que

E[ηt(T, δ)] = 0. (4.10)

Démonstration
La preuve de ce théorème se décompose en deux parties.
Consistance de θ̂(w) :
D’aprés le Lemme (4.2.1, i)

Mn,w(θ, µ0) = −2Ŝn(µ0(·, ·; θ), w) +
1

n

n∑
i=1

∫ T(n)

0

µ0(t, Xi; θ)
2dw(t)

= −2Sn(µ0(·, ·; θ), w) +
1

n

n∑
i=1

∫ T(n)

0

µ0(t, Xi; θ)
2dw(t)

+
1

n

n∑
i=1

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[µ0(t, X; θ)dµ(s|X)]dw(t) +Rn(µ0(·, ·; θ), w),

Où sup
w,θ

Rn(µ0(·, ·; θ), w) = oP(n−1/2). Puisque la classe de fonctions {µ0 : (t, x) ∈

[0, τH ]×X 7→ µ0(t, θ′x), θ ∈ Θ} vérifie la Condition (4.3.1),

sup
θ,w
|Sn(µ0(·, ·; θ), w)−

∫ τH

0

E[Z(t)µ0(t, X; θ)]dw(t)| = oP(1).

De même, la classe de fonctions {µ2
0 : (t, x) ∈ [0, τH ] × X 7→ µ0(t, θ′x)2, θ ∈ Θ} étant

Glivenko-Cantelli ([1],1996) d’après la Condition (4.3.2), on a

sup
θ,w
| 1
n

n∑
i=1

∫ T(n)

0

µ0(t, Xi; θ)
2dw(t)−

∫ τH

0

E[µ0(t, X; θ)2]dw(t)| = oP(1).
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Enfin,

sup
θ,w
| 1
n

n∑
i=1

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[µ0(t, X; θ)dµ(s|X)]dw(t)| = oP(1),

d’après (4.10), on a donc

sup
θ,w
|Mn,w(θ, µ0)−Mw(θ, µ0)| = oP(1),

Finalement on a la convergence uniforme (en w) en probabilité de θ̂(w) vers θ0.

Théorème Central Limite de θ̂(w) :
Le développement de Taylor de ∇θMn,w(θ, µ0) en θ0 :

∇θMn,w(θ̂, µ0) = ∇θMn,w(θ0, µ0) +∇2
θMn,w(θ̃, µ0)(θ̂ − θ0), (4.11)

pour un θ̃ entre θ̂ et θ0, on a La partie gauche est égale à zéro . De plus, pour un n assez
grand, la matrice ∇2

θMn,w(θ̃, µ0) est presque sûrement inversible, d’après l’hypothèse (I),
puisque θ̃ converge vers θ0. On a

θ̂(w)− θ0 = −∇2
θM

−1
n,w(θ̃, µ0)∇θMn,w(θ0, µ0).

Soit,

∇2
θMn,w(θ̃, µ0) = −2(Ŝn(∇2

θµ0(·, ·; θ̃), w)− 1

n

n∑
i=1

∫ τH

0

(∇θµ0(t, Xi; θ̃)∇θµ0(t, Xi; θ̃)
′

+ µ0(t, Xi; θ̃)∇2
θµ0(t, Xi; θ̃))dw(t) +

1

n

n∑
i=1

∫ τH

T(n)

(∇θµ0(t, Xi; θ̃)∇θµ0(t, Xi; θ̃)
′

+ µ0(t, Xi; θ̃)∇2
θµ0(t, Xi; θ̃))dw(t))

=: −2(A1n,w(θ̃, µ0) + A2n,w(θ̃, µ0) + A3n,w(θ̃, µ0)),

Tel que

A1n,w(θ̃, µ0) = Ŝn(∇2
θµ0(·, ·; θ̃), w),

A2n,w(θ̃, µ0) =
1

n

n∑
i=1

∫ τH

0

(∇θµ0(t,Xi; θ̃)∇θµ0(t, Xi; θ̃)
′ + µ0(t, Xi; θ̃)∇2

θµ0(t, Xi; θ̃))dw(t),

A3n,w(θ̃, µ0) =
1

n

n∑
i=1

∫ τH

T(n)

(∇θµ0(t, Xi; θ̃)∇θµ0(t, Xi; θ̃)
′ + µ0(t, Xi; θ̃)∇2

θµ0(t, Xi; θ̃))dw(t).

Par le théorème de convergence dominée de Lebesgue (1.4.5), A3n,w(θ̃, µ0) converge en
probabilité, uniformément par rapport à w, vers 0 puisque T(n) converge vers τH et∫ τH

0

E[∇θµ0(t, Xi; θ0)∇θµ0(t, Xi; θ0)′ + µ0(t, X; θ0)∇2
θµ0(t, X; θ0)]dw(t) <∞.
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Comme précédemment, on utilise le Lemme (4.2.1) pour A1n,w(θ̃, µ0). Puisque la classe
de fonctions {∇2

θµ0 : (t, x) ∈ [0, τH ]× X 7→ ∇2
θµ0(t, θ′x), θ ∈ Θ} vérifié les Conditions

(4.3.1) et (4.3.2), et puisque θ̃ converge uniformément en w vers θ0, on a alors :

sup
w
|A1n,w(θ̃, µ0)−

∫ τH

0

E[Z(t)∇2
θµ0(t, X; θ0)]dw(t)| = oP(1).

Pour A2n,w, puisque les classes de fonctions {µ0 : (t, x) 7→ µ0(t, θ′x), θ ∈ Θ}, {∇θµ0 :
(t, x) 7→ ∇θµ0(t, θ′x), θ ∈ Θ} et {∇2

θµ0 : (t, x) 7→ ∇2
θµ0(t, θ′x), θ ∈ Θ} vérifient les Condi-

tions (4.3.1) et (4.3.2), le terme

sup
w

∣∣∣∣A2n,w(θ̃, µ0)−
∫ τH

0

E[∇θµ0(t,X; θ0)∇θµ0(t,X; θ0)′ − µ0(t,X; θ0)∇2
θµ0(t, X; θ0)]dw(t)

∣∣∣∣
converge en probabilité vers 0. On trouve que∫ τH

0

E[µ0(t, X; θ0)∇2
θµ0(t, X; θ0)− Z(t)∇2

θµ0(t, X; θ0)]dw(t)

=

∫ τH

0

∇2
θµ0(t, X; θ0)E[E[µ0(t, X; θ0)− Z(t)|X]]dw(t)

= 0,

D’après le lemme (1.5.2), on a

sup
w
‖∇2

θM
−1
n,w(θ̃, µ0)−∇2

θM
−1
w (θ0, µ0)‖ = oP(1).

Donc,

∇θMn,w(θ0, µ0) = −2(Ŝn(∇θµ0(·, ·; θ0), w)− 1

n

n∑
i=1

∫ τH

0

µ0(t, X; θ0)∇θµ0(t, X; θ0)dw(t))

+
2

n

n∑
i=1

∫ τH

T(n)

µ0(t, X; θ0)∇θµ0(t, X; θ0)dw(t).

D’aprés la convergence de convergence dans L1 (1.4.8) du dernier terme. On a
√
nE[1T(n)≤t<τHµ0(t, X; θ0)∇θµ0(t, X; θ0)] ≤

√
n‖µ0∇θµ0‖∞P(T(n) ≤ t < τH)

≤
√
n‖µ0∇θµ0‖∞ exp (n log(H(t)))1t<τH

Le terme à droite tends vers 0. Ainsi, en utilisant le théorème de convergence dominée de
Lebesgue (1.4.5), on a

sup
w
|2
√
n

n

n∑
i=1

∫ τH

T(n)

µ0(t, X; θ0)∇θµ0(t, X; θ0)dw(t)| = oP(1),
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Puisque ∫ τH

0

E[µ0(t, X; θ0)∇θµ0(t,X; θ0)]dw(t) <∞.

On conclut la preuve de ce théorème en utilisant une dernière fois la représentation asymp-
totique du Lemme (4.2.1) pour Ŝn(∇θµ0(·, ·; θ0), w).

4.3.1 Cas semi-paramétrique

On pose
θ0 = arg min

θ∈Θ
Mw(θ, µθ), (4.12)

Où µθ est inconnue, avec θ ∈ Θ. Telque

Mw(θ, µθ) =

∫ τH

0

E[µθ(t, θ
′X)2]dw(t)− 2

∫ τH

0

E[Z(t)µθ(t, θ
′X)]dw(t).

En prenant une famille non-paramétrique d’estimateurs {µ̂θ, θ ∈ Θ} de {µθ, θ ∈ Θ}, on
définit l’estimateur de θ0 suivant :

θ̂(w) = arg min
θ∈Θ

Mn,w(θ, µ̂θ) (4.13)

Où Mn,w(θ, µ̂θ) = n−1

n∑
i=1

∫ T(n)

0

µ̂θ(t, θ
′Xi)

2dw(t)− 2n−1

n∑
i=1

∫ T(n)

0

Ẑi(t)µ̂θ(t, θ
′Xi)dw(t).

D’aprés Ghosh et Lin ([5], 2000), on a la relation

µθ(t, u) =

∫ t

0

(1− Fθ(s− |u))dRθ(s|u),

où
Rθ(t|u) := E[N∗(t)|Y ≥ t, θ′X = u]

et
Fθ(s|u) = P(Y ≤ s|θ′X = u).

En utilisant l’hypothèse (F2), on peut écrire

E[dN(s)|θ′0X] = E[dN∗(s)|θ′0X](1−G(s−)).

Par ailleurs, on a

P(dN∗(s) = 1, Y ≥ s, θ′X = u) = P(dN∗(t) = 1, θ′X = u),

Pour Y ≥ s
dRθ(s|u) = P(dN∗(s) = 1|Y ≥ s, θ′X = u)



4.4 Résultats asymptotiques 55

=
P(dN∗(s) = 1, θ′X = u)

(1− Fθ(s− |u))fθ′0X(u)

= E[dN∗(s)|θ′0X]

1− Fθ(s− |u) .

Finalement, on trouve

µθ(t, u) =

∫ t

0

E[dN(s)|θ′X = u]

1−G(s−)
. (4.14)

Son estimateur est

µ̂θ,h(t, u) =

∫ t

0

n∑
i=1

K(
u− θ′Xi

h
)dNi(s)∑n

j=1K(
u−θXj
h

)(1− Ĝ(s−))
(4.15)

Où K est un noyau et h une fenêtre tendant vers 0.

4.4 Résultats asymptotiques
Hypothèses On ajoute
– (B1)On suppose que pour tout w ∈ W ,

Vw,sp =

∫ τH

0

E[∇θµθ0(t, X)∇θµθ0(t, X)′]dw(t) est inversible. De plus, les classes de

fonctions {µθ(·, ·), θ ∈ Θ}, {∇θµθ(·, ·), θ ∈ Θ} et {∇2
θµθ(·, ·), θ ∈ Θ} vérifient

les Conditions (4.2.1), (4.3.1) et (4.3.2).

– (B2)supposons que :
(i) Soient λ1, λ2 tels que λ1 +λ2 ≥ 1 et µθ(t, u) = sup(µθ(t, u), 1). On suppose que :

sup
t,θ,x

∣∣∣∣ µ̂θ(t, θ′x)− µθ(t, θ′x)

µθ0(t, θ
′
0x)λ1+λ2

∣∣∣∣ = oP(1),

sup
t,θ,x

∥∥∥∥∇θµ̂θ(t, z)−∇θµθ(t, x)

µθ0(t, θ
′
0x)λ1+λ2

∥∥∥∥ = oP(1),

sup
t,θ,x

∥∥∥∥∇2
θµ̂θ(t, z)−∇2

θµθ(t, x)

µθ0(t, θ
′
0x)λ1+λ2

∥∥∥∥ = oP(1),

Pour t ≤ T(n), θ ∈ Θ et x ∈ X .
(ii) On suppose que

sup
t,x
|µ̂θ0(t, θ′0x)− µθ0(t, θ′0x)| = OP (ε1,n),

sup
t,x
‖∇θ0µ̂θ0(t, x)−∇θµθ0(t, x)‖ = OP (ε2,n),
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Pour t ≤ T(n), x ∈ X et ε1,nε2,n = oP (n−1/2).
Pour µθ on a besoin une condition supplémentaire.

– (B3) Pour tout w ∈ W , on suppose que

sup
x

∫ τH

0

(E[N∗(t)|X = x])2(λ1+λ2)dw(t) <∞,

Où λ1 et λ2 ont été définis dans l’hypothèse (B2)
– (B4) Il existe des classes de Donsker H1 et H2 telles que pour tout w ∈ W ,

(t, z) 7−→
∫ τH

0

(µθ0(t, θ
′
0x)− z(t))∇θµθ0(t, x)dw(t) ∈ H1,

Z 7−→
∫ τH

0

µθ0(t, θ
′
0x)∇θµθ0(t, x)dw(t) ∈ H2.

De plus, on suppose que pour un n suffisament grand,

(t, z) 7−→
∫ τH

0

(µθ0(t, θ
′
0x)− z(t))∇θµ̂θ0(t, x)dw(t) ∈ H1,

y 7−→
∫ τH

0

µ̂θ0(t, θ
′
0x)∇θµθ0(t, x)dw(t) ∈ H2,

avec probabilité tendant vers 1.

Résultats :
Théorème 4.4.1. Sous les hypothèses (F1), (F2) et (B1)-(B4), on a la représentation
asymptotique suivante de θ̂(w),

θ̂(w)− θ0 = V −1
w,sp{

1

n

n∑
i=1

(

∫ τH

0

(Zi(t)− µθ0(t, θ′0Xi))∇θµθ0(t, Xi)dw(t)

+

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[∇θµθ0(t, θ
′
0X)dµθ0(s, θ

′
0X)]dw(t))}+Rn(w),

Où

ηt(T, δ) =
(1− δ)1T≤t
1−H(T−)

−
∫ t

0

1T≥sdG(s)

(1−H(s−))(1−G(s−))

et sup
w∈W
|Rn(w)| = oP(n−1/2). Pour tout w ∈ W,

√
n(θ̂(w)− θ0)

L→ N (0, Σw,sp),

Où Σw,sp = V −1
w,sp4w,spV

−1
w,sp et 4w,sp est la matrice de covariance associée à chaque terme

de la somme entre accolades.
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Démonstration :
La démonstration de ce théorème se décompose en deux parties :
I.Consistance de θ̂(w) :
La consistance de θ̂ se démontre exactement de la même manière que pour le Théorème
(4.3.1), en utilisant le (ii) du Lemme (4.2.1) et la convergence uniforme de µ̂θ obtenue par
l’hypothèse (B2). D’une manière similaire,

θ̂(w)− θ0 = −∇2
θM

−1
n,w(θ̃, µ̂θ̃)∇θMn,w(θ0, µ̂θ0)

et
sup
w
‖∇2

θM
−1
n,w(θ̃, µ̂θ̃)−∇

2
θM

−1
w (θ0, µθ0)‖ = oP(1),

On suit les mêmes arguments utilisés dans le Théorème (4.3.1),

∇θMn,w(θ0, µ̂θ0) = −2(Ŝn(∇θµ̂θ0(·, θ′0·), w)− 1

n

n∑
i=1

∫ T(n)

0

µ̂θ0(t, θ
′
0Xi)∇θµ̂θ0(t, Xi)dw(t)).

D’aprés le (ii) du lemme (4.2.1)
∇θMn,w(θ0, µ̂θ0)

= ∇θMn,w(θ0, µθ0)

− 2

n

n∑
i=1

∫ τH

0

µθ0(t, θ
′
0Xi)

λ1+λ2(µθ0(t, θ
′
0Xi)− Zi(t))

∇θµθ0(t,Xi)−∇θµ̂θ0(t,Xi)

µθ0(t, θ
′
0Xi)λ1+λ2

dw(t)

+
2

n

n∑
i=1

∫ τH

0

µ̂θ0(t, θ
′
0Xi)− µθ0(t, θ′0Xi)

µθ0(t, θ
′
0Xi)λ1+λ2

µθ0(t, θ
′
0Xi)

λ1+λ2∇θµθ0(t, Xi)dw(t)

+
2

n

n∑
i=1

∫ τH

0

(µ̂θ0(t, θ
′
0Xi)− µθ0(t, θ′0Xi))(∇θµ̂θ0(t,Xi)−∇θµθ0(t,Xi))

µθ0(t, θ
′
0Xi)2(λ1+λ2)µθ0(t, θ

′
0Xi)−2(λ1+λ2)

dw(t) +R4n(w)

=: ∇θMn,w(θ0, µθ0) +R1n(w) +R2n(w) +R3n(w) +R4n(w),

Où R4n(w) vient du Lemme (4.2.1) et du passage de T(n) à τH dans les bornes d’intégration.
Donc, on suit les mêmes que dans le Théorème (4.3.1),

sup
w
‖R4n(w)‖ = oP(n−1/2).

Les vitesses de convergence uniforme de µ̂θ0 − µθ0 et ∇θµ̂θ0 −∇θµθ0 des hypothèses (B2),
(B3)

sup
w
‖R3n(w)‖ = oP(n−1/2).
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En utilisant l’hypothèse (B4)et les vitesses de convergence uniforme de l’hypothèse (B2),
la propriété d’équicontinuité des classes de Donsker nous donne

R1n(w) = 2

∫∫ τH

0

(µθ0(t, θ
′
0x)− z(t))(∇θµθ0(t, x)−∇θµ̂θ0(t, x))dPX,Z(x, z)dw(t) +R∗1n(w)

= 2

∫ τH

0

∫
(∇θµθ0(t, x)−∇θµ̂θ0(t, x))dPX(x)

×(

∫
(µθ0(t, θ

′
0x)− z(t))dPZ|X(z|x))dw(t) +R∗1n(w),

Où sup
w
‖R∗1n(w)‖ = oP(n−1/2).

∫
(µθ0(t, θ

′
0x)− z(t))dPZ|X(z|x) = E[µθ0(t, θ

′
0x)− z(t)|Z = z] = 0,

D’après la relation suivante :

E[Z(t)|X] = E[N∗(t)|X] = µ(t|X),

On a
sup
w
‖R1n(w)‖ = oP(n−1/2).

R2n(w) se traite d’une manière similaire. L’hypothèse (B4) et les vitesses de convergence
uniforme de l’hypothèse (B2) nous permettent d’utiliser la propriété d’équicontinuité des
classes de Donsker et d’avoir ainsi

R2n(w) = 2

∫∫ τH

0

(µ̂θ0(t, θ
′
0x)− µθ0(t, θ′0x))∇θµθ0(t, x)dPX(x)dw(t) +R∗2n(w)

= 2

∫∫ τH

0

(µ̂θ0(t, u)− µθ0(t, u))(

∫
∇θµθ0(t, x)dPX|θ′0X(x|u))dPθ′0X(u)dw(t) +R∗2n(w)

Où sup
w
‖R∗2n(w)‖ = oP(n−1/2). Et

∫
∇θµθ0(t, x)dPX|θ′0X(x|u) = E[∇θµθ0(t, X)|θ′0X = u] = 0,

D’après le lemme (1.5.2), donc

sup
w
‖R2n(w)‖ = oP(n−1/2).



Conclusion

Le modèle semi-parmétrique à direction révélatrice unique a été un outil important
pour réduire la dimension et puisqu’on ne peux pas observer la variable d’intérét donc la
fonction de répartition empirique reste impossible pour l’utiliser.
Pour ce cas, on a utilisé l’estimateur de Kaplan-Meier qui se aussi comporte mal dans les
queues de distribution. Donc on a vu qu’une solution était de tronquer les variables par
une borne de troncation tel que on garde que les observations plus petite que la borne pour
estimer la densité conditionnelle en présence de censures lorsque la fonction de répartition
G est connue.
Ensuite, on a utilisé la méthode du maximum de vraisemblance lorsque la fonction G est
inconnu par son estimateur en utilisant une suite de compacts pour qu’on ne trouve pas
des problémes d’estimation dans la fonction répartition multivarié FX,Y .
Ce modèle aura l’avantage de généraliser d’autres modèles existants dans le contexe des
évènements récurrents par un processus de comptage qui nous donne des informations
sur la variable d’intérét, mais on ne peux pas parfois l’observer, donc, on introduit un
autre processus Z, ainsi, par une mesure pour contrôller les poids parfois trop grands de
l’estimateur de Kaplan-Meier.
On a étudie la convergence presque sûre, ainsi la consistance et la normalité asymptotique
de l’estimateur dans le cas paramétrique et le cas semi-paramétrique qui nous donne les
mêmes résultats.
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