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Introduction

Le mouvement brownien est le nom donné aux trajectoires irrégulières du pollen

en suspension dans l’eau, observé par le botaniste Robert Brown en 1828. Ce mou-

vement "aléatoire", dû aux chocs successifs entre le pollen et les molécules d’eau,

entrâine la dispersion ou diffusion du pollen dans l’eau. Le champ d’application du

mouvement brownien est beaucoup plus vaste que l’étude des particules microsco-

piques en suspension et inclut la modélisation du prix des actions, du bruit thermique

dans les circuits électriques, du comportement limite des problèmes de files d’attente

et des perturbations aléatoires dans un grand nombre de systèmes physiques, biolo-

giques ou économiques.

Bachelier (1900) a eu les premiers résultats quantitatifs en s’intéressant aux fluc-

tuations du prix des actions en économie. Einstein (1905) a obtenu la densité de

probabilité de transition du mouvement brownien à partir de la théorie moléculaire

de la chaleur. Le premier traitement mathématique rigoureux est dû à N. Wiener

(1923, 1924), qui a prouvé l’existence du brownien.

Dans ce mémoire, nous appliquons le calcul stochastique à la théorie des temps

locaux des semimartingales continues. Le temps local au niveau "a" d’une semi-

martingale X est un processus croissant qui mesure le «nombre de visites» de X

au niveau "a". Nous utilisons les formules classiques de Tanaka pour construire des

temps locaux puis étudier leurs propriétés de régularité par rapport à la variable

d’espace. les temps locaux peuvent être utilisés pour obtenir une version généralisée

de la formule d’Itô.

Les hypothèses de la formule d’Itô nous contraigne de l’employer pour des fonctions

de classe C2. Dans ce chapitre, nous essayons de relaxer cette hypothèse. Nous allons

ici nous attacher à la définition et aux premières propriétés des temps locaux, qui

permettent de mesurer le temps passé au voisinage d’un niveau donné par le pro-

cessus. Il existe différentes théories des temps locaux, mais nous nous intéresserons

ici uniquement aux temps locaux de semi-martingales continues. Rappelons qu’une

semi-martingale continue est un processus stochastique qui peut se décomposer de

manière unique en la somme d’un processus à variations finies et d’une martingale

locale, toutes deux supposées continues. La formule d’Itô permet justement de don-

ner cette décomposition pour les images de semi-martingales par des fonctions de

classe C2. En tentant d’étendre cette formule à des fonctions qui ne sont pas né-
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cessairement de classe C2 , on définit toute une famille de processus à variations

finies, famille associée à la semi-martingale initiale. Il se trouve que ces processus

ont une interpretation immédiate dans le cas du mouvement brownien, ils sont les

limites, en un certain sens, du temps passe au voisinage d’un point x avant l’instant

t, pour tout x ∈ R. Par conséquent, ces processus ont été appelés temps locaux de

semi-martingales, car ils représentent en quelque sorte l’échelle de temps ressentie

au voisinage du point x.

Le mémoire présenté est partagé en trois chapitres. Le premier chapitre traiter des

définitions du mouvement brownien, l’intégrale par rapport au mouvement brownien

et la formule d’itô. Et le deuxième chapitre est contient une introduction aux temps

locaux, des définition et des propriétés de temps lacal. De plus on voir la formule

de Meyer-Itô, quelques théorèmes principaux sur les temps locaux. Concernant le

dernier chapitre, il traiter quelques applications de temps local.



Chapitre 1

Quelques généralités sur les calculs

stochastiques

1.1 Mouvement brownien

1.1.1 Processus stochastiques en temps continu

On supposera donné un espace probabilisé (Ω,F ,P). Ω est un ensemble, F est

une tribu contenue dans l’ensemble des parties de Ω et P est une probabilité sur la

tribu F .

Définition 1.1.1.1. Une filtration {Ft; 0 = t < +∞} est une famille croissante

de sous-tribus de F : pour 0 ≤ s ≤ t ≤ +∞, Fs ⊂ Ft.

Définition 1.1.1.2. Un processus stochastique X est la donnée de {Xt; 0 ≤ t <

+∞}, où à t fixé, Xt est une variable aléatoire définie sur (Ω,F) à valeurs dans

(Rd,B(Rd)). B(Rd) désigne la tribu boréliènne de Rd.

A ω ∈ Ω fixé, la fonction t 7→ Xt(ω) ; t ≥ 0 est une trajectoire du processus X.

Xt peut représenter par exemple le nombre de clients qui attendent à un guichet ou

le prix d’une action à l’instant t.

Définition 1.1.1.3. Un processus X est dit mesurable si l’application suivante :
(
[0,+∞[×Ω,B([0,+∞[)⊗F

)
−→ (Rd,B(Rd)

(t, ω) 7−→ Xt(ω)

est mesurable.

Un processus est dit continu si pour presque tout ω ∈ Ω, t 7→ Xt(ω) est continue

(i.e. les trajectoires sont continues).

Définition 1.1.1.4. Un processus est dit adapté à la filtration {Ft; 0 ≤ t < +∞}
si pour tout t, Xt est Ft −mesurable.
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Dans la suite, on aura toujours affaire à des processus mesurables et adaptés à

une filtration que l’on précisera.

Définition 1.1.1.5. Un processus est dit progressivement mesurable par rapport

à la filtration {Ft; 0 = t < +∞}, si pour tout t ≤ 0 l’application suivante :
(
[0, t[×Ω,B([0, t[)⊗F

)
−→ (Rd,B(Rd)

(s, ω) 7−→ Xs(ω)

est mesurable.

1.1.2 Définition du mouvement brownien (M.B.)

Définition 1.1.2.1. Un mouvement brownien de dimension k, {Bt,Ft; 0 ≤ t <

+∞} est la donnée d’un processus mesurable B à valeurs dans Rk, et d’une filtration,

tels que B est adapté à (Ft)t = 0, est continu et vérifie :

1. B0 = 0 presque sûrement.

2. Pour 0 ≤ s < t, l’accroissement Bt − Bs est indépendant de Fs.

3. Pour 0 ≤ s < t, l’accroissement Bt − Bs suit une loi normale centrée, de ma-

trice de covariance
√
t− sIdk, où Idk désigne la matrice identité de dimension

k.

La filtration (Ft)t>0 fait partie de la définition. Cependant, si on se donne {Bt; 0 ≤
t < +∞}, processus continu et si on sait que :

1. B est à accroissements indépendants et stationnaires, i.e. : pour tout 0 ≤ r <

s ≤ t < u,Bu−Bt et Bs−Br sont indépendants et la loi de Bu−Bt ne dépend

que de la diférence u− t,

2. et Bt = Bt−B0 suit une loi normale centrée, de matrice de covariance
√
tIdk,

alors avec la tribu engendrée par B, {Bt,FB
t ; 0 ≤ t < +∞} est un mouvement

brownien où : FB
t = σ{Bs; 0 ≤ s ≤ t}.

Proposition 1.1.2.1. (propriétés de martingale)

i B est une martingale par rapport à la tribu (Ft)t≥0, de carré intégrable, i.e.

∀ 0 ≤ s < t;E(Bt|Fs) = Bs.

ii B2
t − t; 0 ≤ t < +∞ est aussi une martingale par rapport à la même tribu.

Preuve :

i

E(Bt − Bs|Fs) = E(Bt − Bs) = 0.

E((Bt − Bs)
2|Fs) = E(B2

t − B2
s |Fs) = (t− s).

Utilisation de l’indépendance et du caractère loi normale.
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ii La seconde propriété est très importante car elle démontre que le mouvement

brownien est à variation quadratique finie presque sûrement. Si Π = {t0, t1, ..., tm}
est une subdivision de l’intervalle [0, t], la variation quadratique sur l’intervalle

[0, t] par rapport à Π est

V 2
t (Π) =

m∑

k=1

|Btk − Btk−1
|2.

Si V 2
t (Π) converge quand le pas de la subdivision Π tend vers 0, on dit que le

processus est à variation quadratique finie. ✷

Théorème 1.1.2.0.1. [2]

1. Le M.B. est à variation infinie sur tout intervalle.

2. Le M.B. n’est dérivable en aucun point (Paley, Wiener, Zygmund 1933).

1.2 Intégrale par rapport au MB

On suppose donné un mouvement brownien B avec sa filtration (Ft)t=0. On

définit deux classes de processus :

H2 =

{
H = (Ht)0≤t, processus adapte, tel que ∀t, E

∫ t

0

H2
sds < +∞

}
,

et M2
c l’ensemble des martingales (par rapport à la filtration du brownien), de carré

intégrable, continues et nulles à l’instant 0.

Théorème 1.2.1. (Intégrale d’Itô)[2] Il existe une unique application linéaire,

notée I, de H2 dans M2
c telle que pour tout H ∈ H2 et tout t,

E(I(H)2t ) = E

∫ t

0

H2
sds

On note :

I(H)t =

∫
HsdBs

Tel que le théorème est énoncé, on peut se demander où intervient vraiment le M.B.

dans l’intégrale. Pour comprendre son rôle, il faut se pencher un peu plus sur la

construction. Si le processus H est de la forme :

Ht = Φ010(t) +

p∑

i=1

Φi1[ti−1,ti](t), (∗)

où 0 = t0 < t1 < ... < tp < +∞, F0 est F0−mesurable et bornée et pour i = 1, ..., p,

les Fi sont Fti−1
−mesurables et bornées, on pose

I(H)t =

p∑

i=1

Φi

(
Bti∧t − Bti−1∧t

)
.
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Il est aisé de démontrer que l’intégrale stochastique I vérifie toutes les propriétés

énoncées précédemment sur les processus élémentaires. Ensuite on montre la densité

des processus de la forme (∗) dans H2. Et on va prolonger I définie sur les processus

élémentaires à la classe H2. L’unicité signifie que si I et I0 sont deux prolongements

vérifiant les propriétés précédentes alors I(H) et I ′(H) sont indistinguables.

Proposition 1.2.0.2. (Propriétés de l’intégrale d’Itô)[2] Pour H ∈ H2 et

T ∈ R+,

1. I(H) est à variation quadratique finie et cette variation sur [0, T ] est égale à∫ T

0
H2

sds ;

2. E

(
sup0≤t≤T |

∫ t

0
HsdBs |2

)
≤ 4E

∫ T

0
H2

sds

Une dernière extension consiste à relaxer l’hypothèse d’intégrabilité portant sur

H, en introduisant :

H̃2 =

{
H = (Ht)0≤t, processusadapt, telque∀t ≥ 0,

∫ t

0

H2
sds < +∞,P − p.s.

}
.

On peut encore prolonger I sur cet ensemble, mais on n’a plus une martingale, mais

seulement une martingale locale.

1.3 Formule d’Itô

Définition 1.3.0.2. (Processus d’Itô) Un processu X, à valeurs dans Rn, est

appelé semi-martingale s’il se décompose de la manière suivante : pour tout t,presque

sûrement :

Xt = X0 +

∫ 0

t

Ksds+

∫ t

0

HsdBs,

avec X0 et K à valeurs dans Rn, H à valeurs dans Rn×d, H ∈ H2 et

E

∫ t

0

|Ks|ds < ∞, ∀t.

Cette décomposition, si elle existe, est unique.

Théorème 1.3.0.1. (Formule d’Itô)[2] Soit f une fonction définie sur [0,+∞[×Rn,

à valeurs réelles, une fois continument dérivable en temps et deux fois en espace (i.e.

toutes les dérivées partielles d’ordre 2 existent et sont continues). Soit X une semi-

martingale :

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs.

Alors {f(t,Xt); 0 ≤ t < +∞} est encore une semi-martingale et admet la décompo-

sition suivante :

f(t,Xt) = f(0, X0)+

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∇f(s,Xs)∗Ksds+

∫ t

0

∇f(s,Xs)∗HsdBs
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+
1

2

∫ t

0

Trace(H∗
sD

2f(s,Xs)Hs)ds

où ∇f désigne le gradient de f par rapport aux variables d’espace et D2f désigne la

matrice hessienne de f .

Sans l’hypothèse de régularité sur f , ceci est faux. Sans celle-ci, on tombe dans

une autre classe de processus, dit de Dirichlet.

exemple :

B2
t = 2

∫ t

0

BsdBs + t.

Si X et Y sont deux semi-martingales,

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs, Yt = Y0 +

∫ t

0

K ′
sds+

∫ t

0

H ′
sdBs,

∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs − 〈M,N〉t,

avec

〈M,N〉t =
∫ t

0

HsH
′
sds.



Chapitre 2

Quelques généralitités sur les temps

locaux

2.1 Introduction

Le temps local du mouvement brownien a été introduit en 1948 par le Français

le mathématicien Paul Lévy dans son livre fondamental Processus Stochastique-

set Mouvement Brownien . Se posant naturellement dans de nombreux problèmes

(comme par exemple, une extension de la formule d’Itô aux fonctions convexes, ou

trouver la densité de la mesure d’occupation de BM par rapport à la mesure de Le-

besgue bien sûr), ils décrivent aussi approximativement le temps passé par un réel

standard mouvement brownien près d’un point donné, fournissant ainsi une des-

cription très fine des exemples de chemins de BM. Nous commencerons par donner

plusieurs constructions de l’heure locale brownienne et leurs propriétés de base. En-

suite, nous illustrerons à la fois la puissance et l’élégance de la théorie en prouvant

plusieurs théorèmes de grande importance dans l’étude du mouvement brownien

et des processus stochastiques réels. Ceux-ci inclus : La loi d’arc sinus de P. Lévy,

l’identité de Lévy et les beaux théorèmes de Rayet Knight sur le comportement

spatial des temps locaux.

Les hypothèses de la formule d’Itô nous contraigne de l’employer pour des fonc-

tions de classe C2. Dans ce chapitre nous essayons de relaxer cette hypothèse.

2.2 Première généralisation

On commence par une extension simple de la formule d’Itô.

Théorème 2.2.1. Soit g une fonction de classe C1. On suppose que g est de classe

C2 en dehors d’un ensemble de points finis z1, ..., zn et de plus que |g′′(x)| = M pour

11
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x 6= zi, i = 1, ..., n. Soit Bt un mouvement brownien de dim 1. Alors la formule d’Itô

est reste valable :

g(Bt) = g(B0) +

∫ t

0

g′(Bs)dBs +
1

2

∫ t

0

g′′(Bs)ds

où l’on a prolongé g′′(zi) :

g′′(zi) = lim
x→zi

g′′(x)

.

Preuve : Soit ρn une suite de fonction C∞ à support compact dans B(0, 1/n)

telles que, ρn(t) ≥ 0 et
∫
ρn(t)dt = 1. Alors gn = ρn ∗ g est une fonction C∞ telle que

gn −→ g uniformément sur tout compact de R. De plus comme g est de classe C1

on a g′n = (ρ′n) ∗ g = ρn ∗ (g′) et par suite g′n −→ g′ uniformément sur tout compact

de R. Enfin on peut appliquer la formule d’Itô à gn :

gn(Bt) = gn(B0) +
∫ t

0
g′n(Bs)dBs +

1
2

∫ t

0
g′′n(Bs)ds. (2.1)

De part la continuité de s −→ Bs on a sur [0, t]

lim
n→∞

‖gn(Bs)− g(Bs)‖∞ = 0et lim
n→∞

‖g′n(Bs)− g′(Bs)‖∞ = 0

donc limn→∞ gn(Bt) = g(Bt). D’autre part l’inégalité maximale de Doob implique

E

[
sup
s∈[0,t]

(∫ t

0

g′n(Bs)dBs −
∫ t

0

g′(Bs)dBs

)2]

≤ sup
s∈[0,t]

E

[(∫ t

0

g′n(Bs)dBs −
∫ t

0

g′(Bs)dBs

)2]

et par l’isométrie d’Itô on a

= 4E

[ ∫ t

0

(g′n(Bs)− g′(Bs))
2ds

]
→ 0 quand n → ∞

On en déduit qu’il existe une sous suite nk → ∞ telle que

sup
s∈[0,t]

(∫ t

0

g′nk
(Bs)dBs −

∫ t

0

g′(Bs)dBs

)2

→ 0

presque sûrement quand k → ∞. Pour traiter le dernier terme Kn
t = 1

2

∫ t

0
g′′n(Bs)ds

on remarque que l’équation (2.1) implique

Knk

t = gnk
(Bt)− gnk

(B0)−
∫ t

0

g′nk
(Bs)dBs

et donc par ce qui précède

lim
k→∞

Knk

t = g(Bt)− g(B0)−
∫ t

0

g′(Bs)dBs
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presque sûrement.

Or en dehors de z1, ..., zn on a g′′n(x) → g(x). Sans perte de généralité on peut

supposerz 1 < z2 < ... < zn. Posons pour tout ǫ > 0 Iǫ =
⋃n

i=1]zi − ǫ, zi + ǫ[. On a

donc ∫ t

0

(g′′n(Bs)− g′′(Bs))1{R\Iǫ}(Bs)ds = 0

et de plus

∫ t

0

(g′′n(Bs)− g′′(Bs))1{Iǫ}(Bs)ds ≤ 2Mλ(s ∈ [0, t] : Bs ∈ Iǫ)

où λ désigne la mesure de Lebesgue. Or

lim
ǫ→0

λ(s ∈ [0, t] : Bs ∈ Iǫ) = 0

D’où l’égalité cherchée. ✷

Théorème 2.2.2. (Formule de Tanaka)[3]

Soit Bt un mouvement Brownien en dimension 1 alors presque sûrement on a

|Bt| = |B0|+
∫ t

0

sign(Bs)dBs + Lt

où Lt = limǫ→0
1
2ǫ
λ(s ∈ [0, t] : Bs ∈]− ǫ, ǫ]) et λ est la mesure de Lebesgue sur R.

2.3 Deuxième généralisation

Théorème 2.3.1. [3] Soient f : R → R une fonction convexe et X une semimar-

tingale continue. Alors f(X) est une semimartingale et

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dXs +Kt

où f ′ est la dérivée à gauche de f , c’est-à-dire f ′(x) = limh→0
f(x)−f(x−h)

h

et Kt = Kt(f,X) est un processus continu croissant adapté.

Remarque 2.3.1. La formule est linéaire en f . En effet si f1 et f2 sont deux fonc-

tions convexes de processus croissants associés K1
t = Kt(f1, X) et K2

t = Kt(f2, X)

alors

Kt(f1 + f2, X) = K1
t +K2

t

.
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2.4 Définition et premières propriétés

Définition 2.4.1. Soient X une semimartingale et f une fonction convexe alors

le processus Kt = Kt(f,X) définit dans le théorème précédent est appelé processus

croissant associé à f .

Le processus croissant associé à la fonction x 7→ |x− a| est appelé temps local en a

et est noté La
t = La(X)t, quant a = 0 on écrit simplement Lt.

Grâce au Théorème2.3.1 on abouti aisément à la généralisation suivante de la for-

mule de Tanaka.

Corollaire 2.4.1. Formule de Meyer-Tanaka.

Soit X une semimartingale continue. Alors pour tout a ∈ R

|Xt − a| = |X0 − a|+
∫ t

0

sign(Xs − a)dXs + La
t (2.2)

Le résultat qui suit donne une autre définition du temps local qui sera utile dans le

théorème à suivre.

Lemme 2.4.1. Le processus croissant associé à la fonction x 7→ (x − a)+ ou x 7→
(x− a)− est (1/2)La

t .

Preuve : Les fonctions x 7→ (x−a)+ et x 7→ (x−a)− sont convexes. Soient donc

K1
t et K2

t leur processus croissants associés respectifs. On a |x − a| = (x − a)+ +

(x − a)− donc La
t = K1

t +K2
t . Par ailleurs g(x) = x − a = (x − a)+ − (x − a)− est

une fonction (convexe) de classe C∞ donc par Itô :

g(Xt)− g(Xt) = Xt −X0 =

∫ t

0

1dXs

donc le processus croissant associé à g est 0. D’où le résultat cherché. ✷

Le résultat qui suit précise le sens des vocables "temps local" pour La
t .

Théorème 2.4.1. Soit X une semimartingale continue. Le processus La
t = La(X)t

ne crôit que lorsque Xt = a ; plus précisément pour presque tout ω la mesure sur

R+, dLa
t (ω) à pour support {s ≥ 0 : Xs(ω) = a}.

Preuve : Comme le processus croissant La
t est à trajectoire continue la mesure

dLa(ω) est une mesure diffuse (c’est à dire ne contient pas d’atome).

Supposons que l’on ait 0 ≤ S < T des temps d’arrêts tels que :

{(s, ω) : S(ω) ≤ s < T (ω)} ⊂ {(s, ω) : Xs(ω) < a}.

Alors X = a sur [S, T ]. En appliquant deux fois le Théorème 2.3.1 et le Lemme

précédent à f(x) = (x− a)+ aux temps S et T on a

0 = (XT − a)+ − (XS − a)+ =

∫ T

S

1{]a,8[}(Xs)dXs +
1

2
(La

T − La
S)
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d’où La
T − La

S = 0 c’est à dire La
T = La

S. Pour tout q ∈ Q+ on définit les temps

d’arrêt Sq par

Sq(ω) =

{
q, si Xq(ω) < a ;

∞, sinon.

Puis on définit

Tq(ω) = inf{t > Sq(ω) : Xt = a}.

On a donc [Sq, Tq[⊂ {X < a} et de plus

Int({s > 0 : Xs(ω) < a}) =
⋃

q∈Q+

]Sq(ω), Tq(ω)[

où Int(B) représente l’intérieur de l’ensemble B. Par l’analyse qui précède ceci

implique que dLa(ω)” ne charge pas Int({s > 0 : Xs(ω) < a}). Or {s > 0 :

Xs(ω) < a} est l’image inverse de l’ouvert ] − 8, a[ par une application continue

donc est lui même ouvert donc coincide avec son intérieur. Donc dLa(ω) ne charge

pas {s > 0 : Xs(ω) < a}. De façon analogue on montre que dLa ne charge pas

{s > 0 : Xs > a}. Donc son support est contenu dans l’ensemble {s = 0 : Xs = a}.
✷

2.5 Formule de Meyer-Itô

2.5.1 Pour les semimartingales continues

Le résultat suivant est optimal : Cinclar, Jacod, Protter et Sharpe (1980) ont

montré que si Bt est un mouvement Brownien et si Xt = f(Bt) est une semi mar-

tingale alors f doit être la diférence de deux fonctions convexes...

Théorème 2.5.1.1. (Formule de Meyer-Itô).

Soit X une semimartingale continue. Soit f la diférence de deux fonctions convexes,

f ′ la dérivée à gauche de f et µ = f ′′ au sens des distributions. Alors

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dXs +
1

2

∫
La
tµ(da)

où La
t = La(X)t est le temps local passé en a par X jusqu’au temps t.

Remarque 2.5.1.1. (a) Pour f(x) = |x| on a f ′(x) = sign(x) = 21{]0,+∞[}(x)− 1

et donc µ(da) = 2δ0(da) où δ0 est la mesure de Dirac en 0.

(b) Il est remarquable que le processus croissant associé (intégrale du temps local)

ne dépend pas de f .

Preuve du Théorème : Comme la formule est linéaire en f on peut supposer

sans perte de généralité que f est convexe. En localisant on peut supposer |Xt| et
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〈X〉t bornés par une constante C pour tout t. On pose alors

g(x) =
1

2

∫ C

−C

|x− a|µ(da).

Sur [−C,C] on a (f − g)′′ = 0 donc par suite f(x) − g(x) = a + bx pour |x| = N .

Comme le résultat est évident pour les fonctions linéaires (de processus croissant

associé nul) il suffit donc de le montrer pour g.

On a

g′(x) =
1

2

∫ C

−C

sign(x− a)µ(da).

Par définition du temps local (Théorème 2.3.1) on a

|Xt − a| − |X0 − a| =
∫ t

0

sign(Xs − a)dXs + La
t

et en intégrant 1
2

∫ C

−C
µ(da) on a

g(Xt)− g(X0) =
1

2

∫ C

−C

(∫ t

0

sign(Xs − a)dXs + La
t

)
µ(da)

On peut montrer que l’on peut échanger l’ordre d’intégration d’où

g(Xt)− g(X0) =

∫ t

0

g′(Xs)dXs +
1

2

∫ C

−C

La
tµ(da)

Comme La
t = 0 pour |a| > C ceci conclut la preuve. ✷

2.5.2 Cas général

Théorème 2.5.2.1. [3] Soit f une fonction convexe et X une semimartingale. Alors

f(X) est une semimartingale et on a

f(Xt)− f(X0) =

∫ t

0

f ′(Xs−)dXs + At

où f ′ est la dérivée à gauche de f et A = A(f,X) est un processus adapté, croissant,

continu à droite. De plus on a

△ At = f(Xt)− f(Xt−)− f ′(Xt−) △ Xt.

Définition 2.5.2.1. Soit a ∈ R, on définit le processus croissant Aa
t = Aa(X)t par

|Xt − a| − |X0 − a| =
∫ t

0+
sign(Xs− − a)dXs + Aa

t

. Le temps local passé par X en a jusqu’au temps t, noté La
t = La(X)t est définit

par

La
t = Aa

t −
∑

0<s≤t

[
|Xs − a| − |Xs− − a| − sign(Xs− − a) △ Xs

]
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Théorème 2.5.2.2. [3] Pour presque tout ω le support de la mesure dLa
t (ω) est

contenu dans l’ensemble {s : Xs − (ω) = a}.

Théorème 2.5.2.3. (Formule de Meyer-Itô.)[3] Soit X une semimartingale conti-

nue. Soit f la diférence de deux fonctions convexes, f ′ la dérivée à gauche de f et

µ = f ′′ au sens des distributions (c’est une mesure signée). Alors

f(Xt)−f(X0) =

∫ t

0

f ′(Xs)dXs+
∑

0<s≤t

[f(Xs)−f(Xs−)−f ′(Xs−) △ Xs]+
1

2

∫
La
tµ(da)

où La
t = La(X)t est le temps local passé en a par X jusqu’au temps t.

2.5.3 Propriétés du temps local

Une conséquence de la formule d’Itô-Meyer est le résultat significatif suivant.

Corollaire 2.5.3.1. Soit X une semimartingale continue de temps local La
t . Si g

est boréliènne bornée alors
∫ ∞

−∞

La
t g(a)da =

∫ t

0

g(Xs)d〈X〉s

.

Preuve :

Supposons g continue et positive alors notons f la fonction telle que f ′′ = g. La

fonction f est convexe de classe C2 donc on peut lui appliquer la formule d’Itô et la

formule de Meyer-Itô. Ce qui donne l’identité cherchée.

Si g est continue de signe quelconque on pose g = g+ + g− et on obtient le résultat

par la linéarité et ce qui précède.

Enfin pour g boréliènne bornée : on utilise le fait que les fonctions continues consti-

tuent une classe monotone pour les fonctions boréliènnes bornées. ✷

Remarque 2.5.3.1. Pour le mouvement brownien standard W cette formule donne
∫ ∞

−∞

La
t g(a)da =

∫ t

0

g(Ws)ds.

Ainsi on voit que La
t = La

t (W ) peut être interprété comme le temps passé en a par

le Brownien jusqu’au temps t. Plus précisément La
t est la densité de la loi du temps

d’occupation au temps t :

υt(A) =

∫ t

0

1{A}(Ws)ds =

∫

A

Lu
t du.

Corollaire 2.5.3.2. Soit X une semimartingale càdlàg de temps local (La)a∈R. Soit

g une fonction boréliènne bornée. Alors pour tous t > 0 on a presque sûrement
∫

R

La
t g(a)da =

∫ t

0

g(Xs−)d[X,X]cs.
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2.6 Quelques Théorèmes principaux sur les temps

locaux

On considère un espace de probabilité filtré (Ω,F ,F,P) satisfaisant les conditions

habituelles. Soit X une semimartingale continue. Si f est une fonction de classe C2

définie sur R, la formula d’Itô affirme que f(X) est aussi une semimartingale continue

et on a

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d < X,X >s

La proposition suivante montre que cette formule peut être étendue au cas où f est

une fonction convexe.

Proposition 2.6.1. [5] Soient X une semimartingale continue et f une fonction

convexe sur R. Alors f(X) est une semimartingale, et, plus précisemment, il existe

un processus croissant Af tel que, pour tout t ≥ 0,

f(Xt) = f(X0) +

∫ t

0

f ′
−(Xs)dXs + Af ,

où f ′
−(x) représente la dérivée à gauche de f au point x.

Plus généralement, f(X) est une semimartingale si f est une différence de fonc-

tions convexes.

Définition 2.6.1. Un processus continu X admet des temps locaux par rapport

au processus croissant (At)t≥0 et à la mesure de Radon µ, s’il existe une fonction

mesurable (Λx
t , x ∈ R, t ≥ 0) telle que pour toute fonction f continue bornée et pour

tout t ≥ 0 on a : ∫ t

0

f(Xs)dAs =

∫

R

Λx
t f(x)µ(dx)

Dans la plus grande partie de la suite, les temps locaux que nous étudierons seront

les temps locaux de semi-martingales, dont le théorème suivant garantit l’existence.

Théorème 2.1. [5] Une semi-martingale continue X admet des temps locaux (Λx
t , x ∈

R, t ≥ 0) par rapport au processus croissant (< X >t)t≥0 et à la mesure de Lebesgue,

que l’on appelle simplement les temps locaux (de semi-martingales continues) de X.

En d’autre termes, il existe une fonction mesurable (Λx
t , x ∈ R, t ≥ 0) telle que pour

toute fonction f continue bornée et t ≥ 0 , on a

∫ t

0

f(Xs)d < X >s=

∫

R

Λx
t f(x)dx

Pour tout x ∈ R on notera

x+ =

{
x si x ≥ 0

0 si x < 0
et x− =

{
0 si x ≥ 0

−x si x < 0



2.6 Quelques Théorèmes principaux sur les temps locaux 19

les parties positive et négative de x.

Théorème 2.2. Formule de Tanaka Meyer[5]

Pour toute semimartingale continue, il existe une modification (Lx
t ) de Λ qui soit

conjointement continue en t et càdlàg en x. On a de plus :

1

2
Lx
t = (Xt − x)+ − (X0 − x)+ −

∫ t

0

1{Xs>x}dXs.

Soit Xt = X0 +Mt +At une semimartingale continue avec M une martingale locale

et A un processus à variation finie. Les sauts du temps local de X sont donnés par

la formule :

Lx
t − Lx−

t = 2

∫ t

0

1{Xs=x}dAs.

En particulier, si X est une martingale locale continue, la fonction de ses temps

locaux admet une version conjointement continue en t et x.

Remarque 2.6.1. Ce théorème est en quelque sorte une formule d’Itô appliquée à

la fonction x 7→ x+, qui n’est pas de classe C2. Notons de plus que, à x fixé, nous

avons accès au temps local en x d’une manière qui permet, par exemple, l’expression

d’intégrales contre le temps local, ce qui n’était pas donnée par la définition !

Corollaire 2.1. Soit X une semimartingale et (Lx
t ) une version continue en t et

càdlàg en x de la fonction de ses temps locaux , on a donc pour tout x ∈ R et t ≥ 0 :

Lx
t = lim

ε→0

1

ε

∫ t

0

1{x≤Xs<x+ε}d < X >s

Exemple 2.6.1. Si B est un mouvement brownien, et (Lx
t ) la version continue de

la fonction de ses temps locaux, pour tout ε > 0,

∫ ε

−ε

Lx
t dx =

∫ t

0

1{−ε<Bs<ε}ds.

Par conséquent,

L0
t = lim

ε→0

1

ε

∫ t

0

1{−ε<Bs<ε}ds,

et on retrouve ainsi la notion de temps passé au voisinage de 0 par le Brownien B,

d’où le terme : temps local en 0.

Proposition 2.6.2. Propriété fondamentale des temps locaux .[5]

Soit Y une semimartingale et L la fonction de ses temps locaux. Pour tout y ∈ R,

la mesure aléatoire dtLty est portée par {t ≥ 0 : Yt = y}.
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2.7 Continuité des temps locaux et Formule d’Itô

généralisé :

Nous considérons un X semimartingale continu et écrivons X = M + V pour

sa canonique décomposition. Notre premier objectif est d’étudier la continuité des

temps locaux de X par rapport à la variable d’espace a.

Il est pratique d’écrire La(X) pour la fonction continue aléatoire (La
t (X))t≥0, que

nous considérons comme une variable aléatoire avec des valeurs dans l’espace C(R+,R+).

Comme d’habitude, ce dernier espace est menu de la topologie de convergence uni-

forme sur tous les ensemble compact.

Théorème 2.7.1. le processus (La(X), a ∈ R) à des valeurs dans C(R+,R+) a un

càdlàg modification, que nous considérons désormais et pour laquelle nous gardons

la même notation (La(X), a ∈ R). De plus, si La−(X) = (La−
t (X))t≥0 désigne la

limite gauche de b −→ La(X) à a, nous avons pour tout t ≥ 0,

La
t (X)− La−

t (X) =

∫ t

0

1{Xs=a}dVs (2.3)

En particulier, si X est une martingale locale continue, le processus (La
t (X))a∈R,t≥0

a trajection continus.

La preuve du théorème repose sur la formule de Tanaka et les techniques de

lemme suivante.

Lemme 2.7.1. Soit p ≥ 1. Il existe une constant Cp qui ne dépend que de p tel que

pour tout a, b ∈ R avec a < b, on a

E

[(∫ t

0

1{a<Xs<b}d〈M,M〉s
)p]

≤ Cp(b−a)p
(
E[(〈M,M〉t)p/2]+E

[(∫ t

0

|dVs|
)p])

.

Pour chaque a ∈ R, écrivons Y a = (Y a
t )t≥0 pour la variable aléatoire avec des valeurs

dans C(R+,R) défini par

Y a
t =

∫ t

0

1{Xs>a}dMs.

Le processus (Y a, a ∈ R) a une modification continue.

Preuve : Commençons par la première affirmation. Il suffit de prouver que la

borne indiquée tient quand a = −u et b = u pour certains u > 0 (puis prendre u =

(b− a)/2 et remplacer X par X − (b+ a)/2). Soit f la fonction unique différentiable

deux fois en continu tel que

f ′′(x) = (2− |x|
u
)+,
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et f(0) = f ′(0) = 0.Notons que nous avons alors |f ′(x)| ≤ 2u pour chaque x ∈ R.

Depuis f ′′ ≥ 0 et f ′′(x) ≥ 1 si −u ≤ x ≤ u, on a
∫ t

0

1{−u<Xs≤u}d〈M,M〉s ≤
∫ t

0

f ′′(Xs)d〈M,M〉s (2.4)

Cependant, selon la formule d’Itô

1

2

∫ t

0

f ′′(Xs)d〈M,M〉s = f(Xt)− f(X0)−
∫ t

0

f ′(Xs)dXs. (2.5)

Rappelant que |f ′| ≤ 2u, on a

E[|f(Xt)− f(X0)|p] ≤ (2u)pE[|Xt −X0|p]

≤ (2u)pE

[(
|Mt −M0|+

∫ t

0
|dVs|

)p]

≤ Cp(2u)
p

(
E[(〈M,M〉t)p/2] + E

[( ∫ t

0
|dVs|

)p]
,

en utilisant les inégalités de Burkholder − Davis − Gundy. Ici et ci-dessous, Cp

représente une constante qui ne dépend que de p, qui peut varier d’une ligne à

l’autre. Alors,
∫ t

0

f ′(Xs)dXs =

∫ t

0

f ′(Xs)dMs +

∫ t

0

f ′(Xs)dVs.

on a

E

[∣∣∣∣
∫ t

0

f ′(Xs)dVs

∣∣∣∣
p]

≤ (2u)pE

[(∫ t

0

|dVs|
)p]

,

et en utilisant à nouveau les inégalités de Burkholder −Davis−Gundy,

E

[∣∣∣∣
∫ t

0
f ′(Xs)dMs

∣∣∣∣
p]

≤ CpE

[( ∫ t

0
f ′(Xs)

2〈M,M〉t
)p/2]

≤ Cp(2u)
p
E[(〈M,M〉t)p/2].

La première affirmation du lemme suit en combinant les bornes précédentes, en

utilisant (2.4) et (2.5).

Passons à la deuxième affirmation. On fixe p > 2. Par l’inégalité de Burkholder −
Davis−Gundy, on a pour tout a < b et tout t ≥ 0,

E

[
sup
s≥0

|Y b
s − Y a

s |p
]
≤ CpE

[(∫ t

0

1{a<Xs≤b}d〈M,M〉s
)p/2]

, (2.6)

et le côté droit peut être estimé à partir de la première affirmation du lemme. Plus

précisément, pour chaque entier n ≥ 1, introduisons le temps d’arrêt

Tn := inf{t ≥ 0 : 〈M,M〉t +
∫ t

0

|dVs| ≥ n}.
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Dés la première affirmation du lemme avec X remplacé par le processus arrêté XTn ,

nous avons pour chaque t ≥ 0,

E

[(∫ t∧Tn

0

1{a<Xs≤b}d〈M,M〉s
)p/2]

≤ Cp(n
p/4 + np/2)(b− a)p/2.

En utilisant (2.6), encore une fois avec X remplacé par XTn et en laissant t → ∞,

on obtient

E

[
sup
s≥0

|Y b
s∧Tn

− Y a
s∧Tn

|p
]
≤ Cp(n

p/4 + np/2)(b− a)p/2.

Puisque p > 2, nous voyons que nous pouvons appliquer le lemme de Kolmogorov

à obtenir l’existence d’une modification continue du processus a → (Y a
s∧Tn

)s≥0, avec

valeurs en C(R+,R). Écrivons (Y
(n),a
s )s≥0 pour cette modification continue.

Alors, si 1 ≤ n < m, pour tout a fixe, nous avons Y
(n),a
s = Y

(m),a
s∧Tn

pour tout s ≥ 0,

p.s. Par un argument de continuité, cette dernière égalité vaut simultanément pour

a ∈ R et tous s ≥ 0, en dehors d’un seul ensemble de probabilités zéro. Il s’ensuit

que nous pouvons définir un processus Ỹ a, a ∈ R) avec des valeurs en C(R+,R),

avec échantillon continu chemins tels que pour tout n ≥ 1, Y
(n),a
s = Ỹ a

s∧Tn
pour tout

a ∈ R et tout s ≥ 0, p.s. Le processus Ỹ a, a ∈ R) est la modification continue

souhaitée.

✷

Proposition 2.7.1. Soit M une martingale locale continue telle que M0 = 0. Alors

nous avons 〈M,M〉 = 0 si et seulement si M = 0

Remarque 2.7.1. En appliquant la borne du lemme 2.7.1 à XTn (avec Tn comme

dans le précédent preuve) et en laissant a tendance à b, on obtient que pour chaque

b ∈ R, ∫ t

0

1{Xs=b}d〈M,M〉s = 0

pour tout t ≥ 0 p.s. Par conséquent en utilisant la proposition 2.7.1 nous avons

également ∫ t

0

1{Xs=b}dMs = 0,

pour tout t ≥ 0 p.s.

Preuve de la proposition 3.6.1 : Avec un léger abus de notation, nous écri-

vons toujours (Y a, a ∈ R) pour la modification continue obtenue dans la deuxième

affirmation du lemme 2.7.1. nous laissez également (Za, a ∈ R) être le processus

avec des valeurs en C(R+,R) défini par

Za
t =

∫ t

0

1{Xs>a}dVs.

Selon la formule de Tanaka, nous avons pour tout a ∈ R fixe,

La
t = 2

(
(Xt − a)+ − (X0 − a)+ − Y a

t − Za
t

)
, pour tout t ≥ 0 p.s.
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Le côté droit du dernier affichage fournit la modification de càdlag souhaité. En

effet, le processus

a 7→
(
(Xt − a)+ − (X0 − a)+ − Y a

t

)

t≥0

a des chemins d’échantillonnage continus, et d’autre part le processus a 7→ Za a

des chemins d’échantillonnage continus càdlàg : pour tout a ∈ R, le théorème de

convergence dominé montre que

∫ t

0
1{Xs>a}dVs −→a↓a0

∫ t

0
1{Xs>a0}dVs,

∫ t

0
1{Xs>a}dVs −→a↑a0,a<a0

∫ t

0
1{Xs>a0}dVs,

uniformément sur chaque intervalle de temps compact. l’écriture précédent montre

également que le saut Za0 − Za0− est donné par

Za0
t − Za0−

t = −
∫ t

0

1{Xs=a0}dVs

et ceci complète la preuve du théorème. ✷

Désormais, nous ne nous tratons que la modification càdlàg des temps locaux obte-

nue dans le théorème 2.7.1.

Remarque 2.7.2. Pour illustrer le théorème 2.7.1 définissons Wt = |Xt|, qui est

également une demi− partition selon la formule de Tanaka (2.2), on a

Wt = (Wt)
+ = |X0|+

∫ t

0
1{|Xs>0|}(sign(XsdXs + dL0

s +
1
2
L0
s(W )

= |X0|+
∫ t

0
sign(XsdXs +

∫ t

0
1{Xs=0}dXs +

1
2
L0
s(W ),

notant que
∫ t

0
1{|Xs>0|}dL

0
s = 0 par la propriété de support de temps locale (corol-

laire 2.4.1). En comparant la formule résultante avec (2.2) écrite avec a = 0, nous

obtenons

L0
t (W ) = 2L0

t (X)− 2

∫ t

0

1{Xs=0}dXs = L0
t (X) + L0−

t (X),

en utilisant (2.4). La formule L0
t (W ) = L0

t (X)+L0−
t (X) est un cas particulier de la

formule plus générale La
t (W ) = La

t (X) + L
(−a)−
t (X), pour tout a ≥ 0, qui se déduit

facilement du corollaire 2.7.1 ci-dessous. Nous notons que la propriété support de

temps locale implique La
t (W ) = 0 pour tout a < 0, et en particulier L0−

t (W ) = 0.

Nous laissons comme exercice au lecteur de vérifier que la formule (2.4) appliquée à

L0
t (W ) + L0−

W (X) donne un résultat ce qui est cohérent avec l’expression précédente

pour L0
t (W ).
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Nous allons maintenant donner une extension de la formule d’Itô (dans le cas où

elle est appliquée à une fonction d’une seule semimartingale). Si f est une fonction

convexe sur R, la dérivée gauche f ′
− est une fonction non décroissante monotone

continue gauche, et il existe une mesure de Radon unique f ′′(dy) sur R+ telle que

f ′′([a, b)) = f ′
−(b)−f ′

−(a), pour tout a < b. On peut également interpréter f ′′ comme

la dérivée seconde de f au sens de distributions. Notez que f ′′(da) = f ′′(a)da si f est

deux fois différenciable en continu. Si f est maintenant une différence de fonctions

convexes, c’est-à-dire f = f1 − f2 où f1 et f2 sont convexes, nous pouvons toujours

donner un sens à
∫
f ′′(dy)ϕ(y) =

∫
f ′′
1 (dy)ϕ(y)−

∫
f ′′
2 (dy)ϕ(y) pour toute fonction

mesurable bornée ϕ prise en charge sur un intervalle compact de R.

Théorème 2.7.2. (Formule Itô généralisée)[5]

Soit f une différence des fonctions convexes sur R. Ensuite, pour tout t ≥ 0,

f(Xt) = f(X0) +

∫ t

0

f ′
−(Xs)dXs +

1

2

∫

R

La
t (X)f ′′(da).

Remarque 2.7.3. Par le corollaire 2.4.1 et un argument continuité, nous avons

La
t (X) = 0 pour tout a 6∈

[
min
0≤s≤t

Xs, max
0≤s≤t

Xs

]
, p.s,

et en plus la fonction a 7→ La
t (X) est bornée, avec les observations précédant l’énoncé

du théorème cela montre que l’intégrale
∫
R
La
t (X)f ′′(da) a du sens.

Preuve du Théorème :

Par linéarité, il suffit de traiter le cas où f est convexe. De plus, par de simples

arguments de "localisation", nous pouvons supposer que f ′′ est une mesure finie

supportée sur l’intervalle [−K,K] pour certains K > 0. En ajoutant une fonction

affine à f , nous pouvons également supposer que f = 0 sur (−∞,−K]. Ensuite, il

est élémentaire de vérifier que, pour tout x ∈ R,

f(x) = La
t (X)(x− a)+f ′′(da),

et

f ′
−(x)

∫
1{a<x}f

′′(da). (2.7)

La formule de Tanaka donne pour tout a ∈ R,

(Xt − a)+ = (X0 − a)+ + Y a
t + Za

t +
1

2
La
t (X).

où nous utilisons la notation de la preuve du théorème (2.7.1) (et nous rappelons

que (Y a, a ∈ R) représente la modification continue obtenue dans le lemme 2.7.1).

On peut intégrer cette dernière égalité par rapport à la mesure finie f ′′(da) et on

obtient

f(Xt) = f(X0) +

∫
Y a
t f

′′(da) +

∫
Za

t f
′′(da) +

1

2

∫
La
t (X)f ′′(da).
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Par le théorème de Fubini,

∫
Za

t f
′′(da) =

∫ ( ∫ t

0
1{Xs>a}dVs

)
f ′′(da)

=
∫ t

0

(∫
1{Xs>a}dVs

)
f ′′(da)

=
∫ t

0
f ′
−(Xs)dVs.

La preuve sera donc complète si nous pouvons également vérifier que
∫

Y a
t f

′′(da) =

∫ t

0

f ′
−(Xs)dMs. (2.8)

Cette identité doit être considérée comme une sorte de théorème de Fubini im-

pliquant une intégrale stochastique. Pour fournir une justification rigoureuse, il

convient d’introduire les temps d’arrêts Tn := infs ≥ 0 : 〈M,M〉s ≥ n, pour tout

n ≥ 1. En rappelant (2.7), nous voyons que notre affirmation (2.8) suivra si on peut

vérifier que, pour tout n ≥ 1, on a
∫ (∫ t∧Tn

0

1{Xs>a}dMs

)
f ′′(da) =

∫ t∧Tn

0

(∫
1{Xs>a}dMs

)
f ′′(da), p.s (2.9)

où dans le côté gauche, nous convenons que nous considérons la modification continue

de a 7→
∫ t∧Tn

0
1{Xs>a}dMs fournie par le lemme 2.7.1. Il est simple de vérifier que le

côté gauche de (2.9) définit une martingale M f
t dans H2, et de plus pour toute autre

martingale N dans H2,

E[〈M f , N〉∞] = E[M f
∞N∞] = E

[ ∫ ( ∫ Tn

0
1{Xs>a}d〈M,N〉s

)
f ′′(da)

]

= E

[ ∫ Tn

0

(∫
1{Xs>a}f

′′(da)

)
d〈M,N〉s

]

= E

[( ∫ Tn

0

(∫
1{Xs>a}f

′′(da)

)
dMs

)
N∞

]
.

Par un argument de dualité dans H2, cela suffit pour vérifier que M f
t coïncide avec la

martingale de H2 dans la partie droite de (2.9). Ceci complète la preuve. ✷

Corollaire 2.7.1. (Formule de la densité du temps d’occupation)

On a presque sûrement, pour tout t ≥ 0 et toute fonction mesurable non négative ϕ

sur R, ∫ t

0

ϕ(Xs)d〈X,X〉s =
∫

R

ϕ(a)La
t (X)da.

Plus généralement, nous avons p.s pour toute fonction mesurable non négative F

sur R+ ×R,
∫ ∞

0

F (s,Xs)d〈X,X〉s =
∫

R

da

∫ ∞

0

F (s, a)dsL
a
s(X).
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preuve : Fixons t ≥ 0 et considérons une fonction continue non négative ϕ sur R

avec un support compact. Soit f une fonction deux fois continuellement différenciable

sur R telle que f ′′ = ϕ. Notez que f est convexe depuis ϕ ≥ 0. En comparant la

formule d’Itô appliquée à f(Xt) et la formule du théorème 2.7.2, nous obtenons

immédiatement que p.s,

∫ t

0

ϕ(Xs)d〈X,X〉s =
∫

R

ϕ(a)La
t (X)da.

Cette formule est valable simultanément (en dehors d’un ensemble de probabilités

zéro) pour tout t ≥ 0 (par un argument de continuité) et pour chaque fonction

ϕ appartenant à un sous-ensemble dense dénombrable de l’ensemble de toutes les

fonctions continues non négatives sur R avec support compact. Cela suffit pour

conclure que p.s, pour tout t ≥ 0, la mesure aléatoire

A 7→
∫ t

0

1A(Xs)d〈X,X〉s

a la densité (La
t (X))a∈R par rapport à la mesure de Lebesgue sur R. Ceci donne la

première affirmation du corollaire. Il s’ensuit que la formule de la deuxième assertion

est vraie lorsque F est du type

F (s, a) = 1[u,v](s)1A(a)

où 0 ≤ u ≤ v et A est un sous− ensemble borel de R. Par conséquent, les mesures

σ − finies

B −→
∫ ∞

0

1B(s,Xs)d〈X,X〉s

et

B −→
∫

R

da

∫ ∞

0

1B(s, a)dsL
a
s(X)

prendre la même valeur pour B de la forme B = [u, v]× A, ce qui implique que les

deux mesures coïncident. ✷

Si X = M +V est une semimartingale continue, alors une application immédiate de

la formule de densité de temps d’occupation donne pour tout b ∈ R,

∫ t

0

1{Xs=b}d〈M,M〉s =
∫

R

1{b}(a)L
a
t (X)da = 0.

Cette propriété a déjà été dérivée après la preuve du lemme 2.7.1. De l’autre il peut

exister des valeurs de b telles que

∫ t

0

1{Xs=b}dVs 6= 0,

et ces valeurs de b correspondent à des discontinuités de temps locale par rapport à

la variable d’espace, comme le montre le théorème 2.7.1.
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Corollaire 2.7.2. Si X est de la forme Xt = X0 + Vt, où V est un processus de

variation finie, alors La
t (X) = 0 pour tout a ∈ R et t ≥ 0.

Preuve :D’aprés la formule de densité de temps d’occupation et le fait que

〈X,X〉 = 0, nous obtenons
∫
R
ϕ(a)La

t (X)da = 0 pour toute fonction mesurable non

négative ϕ, et le résultat souhaité suit. ✷

Remarque 2.7.4. Nous aurions pu tirer le dernier corolaire directement de la for-

mule de Tanaka.

2.8 Approximations des temps locaux

Notre premier résultat d’approximation est une conséquence facile de la densité

d’occupation formule de temps.

Proposition 2.8.1. Soit X une semimartingale continue. Puis p.s pour tout a ∈ R

et t ≥ 0,

La
t = lim

ǫ→0

1

ǫ

∫ t

0

1{a≤Xs≤a+ǫ}d〈X,X〉s.

Preuve : Par la densité de la formule du temps d’occupation,

1

ǫ

∫ t

0

1{a≤Xs≤a+ε}d〈X,X〉s =
1

ǫ

∫ a+ǫ

a

La
t (X)db,

et le résultat découle de la continuité droite de b 7→ La
t (X) en a (théorème 2.7.1).✷

Remarque 2.8.1. Le même argument donne

lim
ǫ→0

1

2ǫ

∫ t

0

1{a−ǫ≤Xs≤a+ǫ}d〈X,X〉s =
1

2
(La

t (X) + La−
t (X)).

La quantité L̃a
t (X) := 1

2
(La

t (X)+La−
t (X)) est parfois appelée symétrique temps locale

de la semimartingale X. Notons que la formule de densité de temps d’occupation

reste vraie si La
t (X) est remplacée par L̃a

t (X) (en effet, L̃a
t (X) et La

t (X) peuvent

différer dans au plus grand nombre de valeurs de a). La formule généralisée d’Itô

(théorème 2.7.2) reste également vraie si La
t (X) est remplacée par L̃a

t (X), à condition

que la dérivée gauche f ′
− soit remplacée par 1

2
(f ′

+ + f ′
−). Des observations similaires

s’appliquent aux formules de Tanaka.

En conséquence de la proposition précédente et du lemme 2.7.1, nous dérivons

une borne utile sur les moments des temps locaux.

Corollaire 2.8.1. Soit p ≥ 0. Il existe une constant Cp tel que, pour tout semimar-

tingale X avec décomposition canonique X = M + V , nous avons pour tout a ∈ R

et t ≥ 0,

E[(La
t (X)p)] ≤ Cp

(
E[(〈M,M〉t)p/2] + E

[(∫ t

0

|dVs|
)]

.
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Preuve : Cela découle facilement de la limite de lemme 2.7.1, en utilisant l’ap-

proximation de La
t (X) dans la proposition 2.8.1 et le lemme de Fatou. ✷

Nous passons ensuite à l’approximation croisée de temps locale. Nous devons

d’abord introduire une notation. Soit X une semimartingale continue et ǫ > 0. Nous

introduisons ensuite deux séquences (σǫ
n)n≥1 et (τ ǫn)n≥1 des temps d’arrêt, qui sont

définis de manière inductive par

σǫ
1 := inf{t ≥ 0 : Xt = 0}, τ ǫ1 := inf{t ≥ σǫ

1 : Xt = ǫ},

et pour tout n ≥ 1,

σǫ
n+1 := inf{t ≥ τ ǫ1 : Xt = 0}, τ ǫn+1 := inf{t ≥ σǫ

n : Xt = ǫ}.

Nous définissons ensuite le nombre de croisement ascendant de X le long de [0, ǫ]

avant l’instant t par

NX
ǫ (t) = Card{n ≥ 1 : τ ǫn ≤ t}.

Proposition 2.8.2. Nous avons pour tout t ≥ 0,

ǫNX
ǫ (t) −→ǫ→0

1

2
L0
t (X)

en probabilité.

Preuve : Pour simplifier la notion, nous écrivons L0
s au lieu de L0

s(X) dans cette

preuve. Nous utilisons d’abord formule de Tanaka pour obtenir, pour tout n ≥ 0

(Xτǫn∧t)
+ − (Xσǫ

n∧t)
+ =

∫ τǫn∧t

σǫ
n∧t

1{Xs>0}dXs +
1

2
(L0

τǫn∧t
− L0

σǫ
n∧t

).

On additionne la dernière identité sur tout n ≥ 1 pour obtenir

∞∑

n=1

((Xτǫn∧t)
+−(Xσǫ

n∧t)
+) =

∫ t

0

( ∞∑

n=1

1(ǫǫn−τǫn](s)

)
1{Xs>0}dXs+

1

2

∞∑

n

(L0
τǫn∧t

−L0
σǫ
n∧t

).

(2.10)

Notez qu’il existe seulement un nombre fini de valeurs de n telles que τnǫ ≤ t, et que

l’interversion de la série et de l’intégrale stochastique est justifiée en approximant la

série avec des sommes finies.

Considérez les différents termes dans(2.10). Puisque le temps locale L0 n’augmente

pas sur des intervalles de type [τ ǫn, σ
ǫ
n+1) (ni sur [0, σǫ

1)), nous avons

∞∑

n

(L0
τǫn∧t

− L0
σǫ
n∧t

=
∞∑

n

(L0
σǫ
n+1∧t

− L0
σǫ
n∧t

) = L0
t .

Ensuite, notant que (Xτǫn∧t)
+ − (Xσǫ

n∧t)
+ = ǫ si τ εn ≤ t, on a

∞∑

n=1

((Xτǫn∧t)
+ − (Xσǫ

n∧t)
+) = ǫNX

ǫ (t) + u(ǫ),
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où 0 ≤ u(ǫ) ≤ ǫ.

À partir de (2.10) et des deux derniers affichages, le résultat de la proposition suivra

si nous pouvons vérifier que

∫ t

0

( ∞∑

n=1

1(σǫ
n,τ

ǫ
n](s)

)
1{Xs>0}dXs −→ǫ→0 0

en probabilité,puisque

0 ≤
( ∞∑

n=1

1(σǫ
n,τ

ǫ
n](s)

)
1{Xs>0} ≤ 10<Xs≤ǫ

et 10<Xs≤ǫ −→ 0 quand ǫ → 0. ✷



Chapitre 3

Quelques applications sur les EDSs

3.1 Le temps local du mouvement brownien linéaire

Tout au long de cette section, (Bt)t≥0 est un véritable mouvement brownien

partant de 0 et (Ft) est la filtration canonique (terminée) de B.

Le théorème suivant, connu sous le nom de théorème de Trotter, est essentiellement

un retraitement des résultats des sections précédentes dans le cas particulier d’un

Mouvement brownien. Pourtant, l’importance du résultat justifie cette répétition.

Nous écrivons sup(µ) pour le support topologique d’une mesure finie µ sur R+.

Théorème 3.1.1. (Trotter) Il existe un processus (unique) (La
t (B))a∈R,t≥0, dont

les chemins d’échantillonnage sont des fonctions continues de la paire (a, t), de sorte

que, pour chaque fixe a ∈ R, La
t (B))t≥0 est un processus croissant, et comme pour

tout t ≥ 0, pour tout ϕ mesurable non négatif sur R,

∫ t

0

ϕ(Bs)ds =

∫

R

ϕ(a)La
t (B)da.

De plus, a.s. pour chaque a ∈ R,

supp(dsL
a
s(B)) ⊂ {s ≥ 0 : Bs = a}, (3.1)

et cette inclusion est une égalité avec probabilité un si a est fixé.

Preuve :

La première assertion suit en appliquant le théorème 2.7.1 et le corollaire 2.7.1 à X =

B, notant que 〈B,B〉t = t. Nous avons déjà vu que l’inclusion (3.1) est de probabilité

1 si a est fixe, donc simultanément pour tous les rationnels, p.s. Un argument de

continuité nous permet d’obtenir que (3.1) est valable simultanément pour tout

a ∈ R en dehors d’un seul ensemble de probabilités zéro. En effet, supposons que

pour certains a ∈ R et 0 ≤ s < t nous avons La
t (B) > La

s(B) et Br 6= a pour chaque

r ∈ [s, t]. On peut alors trouver un b rationnel dans R suffisamment proche de a tel

que les mêmes propriétés se maintiennent lorsque a est remplacé par b, ce qui donne

30
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une contradiction.

Enfin, vérifions que (3.1) est un p.s. égalité si a ∈ R est fixe. Fixons donc a ∈ R, et

pour tout q ≥ 0 (rationnel), définissons

Hq := inf{t ≥ q : Bt = a}.

Notre réclamation suivra si nous pouvons vérifier que p.s. pour tout ǫ > 0, La
Hq+ǫ(B) >

La
Hq
(B). En utilisant la forte propriété de Markov au temps Hq, il suffit de prouver

que si B′ est un vrai mouvement brownien partant de a, on a La
ǫ (B

′) > 0, pour tout

ǫ > 0, p.s. Clairement, nous pouvons prendre a = 0. Nous observons ensuite que on

a

L0
ǫ(B) =(d)

√
ǫL0

1(B),

par un argument de mise à l’échelle facile (utilisez par exemple les approximations

de la section précédente). Aussi P (L0
1 > 0) > 0 puisque E[L0

1(B)] = E[|B1|] selon la

formule de Tanaka. Une application de la loi zéro-un de Blumenthal à l’événement

A :=
∞⋂

n=1

{L0
2−n(B) > 0} = lim

n→∞
↑ {L0

2−n(B) > 0}

complète la preuve. ✷

Proposition 3.1.1.

i Soit a ∈ R \ {0} et Ta := inf{t ≥ 0 : Bt = a}.Alors L0
Ta
(B) a une distribution

exponentielle de moyenne 2|a|.
ii Soit a > 0 et Ua := inf{t ≥ 0 : |Bt| = a}. Alors L0

Ua
(B) a une exponentielle

distribution avec moyenne a.

Preuve :

i Par de simples arguments d’échelle et de symétrie, il suffit de prendre a = 1. On

observe alors que L0
∞(B) = ∞ p.s. En effet, l’argument de mise à l’échelle de

la preuve précédente montre que L0
∞(B) a la même distribution que λL0

∞(B),

pour tout λ > 0, et nous avons également vu que L0
∞(B) > 0 p.s. Fixons s > 0

et définissons

τ := inf{t ≥ 0 : L0
t (B) > s},

de sorte que τ soit un temps d’arrêt de la filtration (Ft). De plus, Bτ = 0 par

la propriété support de temps locale. Par la forte propriété Markov,

B′
t := Bτ+t

est un mouvement brownien partant de 0, qui est également indépendant de

Fτ . La proposition 2.8.1 donne, pour tout t ≥ 0,

L0
t (B

′) = B0
τ+t(B)− s.
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Sur l’événement {L0
T1
(B) ≥ s} = {τ ≤ T1}, on a donc

L0
T1
(B)− s = L0

T1−τ (B
′) = L0

T ′

1
(B′),

où T ′
1 := inf{t ≥ 0 : B′

1}. Puisque l’événement {τ ≤ T est Fτ−mesurable et

B′ est indépendant de Fτ , nous obtenons que la distribution conditionnelle

de L0
T1
(B) − s sachant que L0

T1
(B) ≥ s est la même que la distribution in-

conditionnelle de L0
T1
(B). Cette implique que la distribution de L0

T1
(B) est

exponentielle.

Enfin, la formule de Tanaka montre que 1
2
E[L0

t∧T1
] = E[(Bt∧T1)

+]. Lorsque

t → ∞,E[L0
t∧T1

] converge vers E[L0
T1
] par convergence monotone et E[(Bt∧T1)

+]

converge vers E[(BT1)
+] par convergence dominée, puisque 0 ≤ (Bt∧T1)

+ ≤ 1.

Ceci montre que E[Lt∧T1 ] = 2, comme souhaité.

ii L’argument est exactement similaire. Nous utilisons maintenant la formule de

Tanaka (2.2) pour vérifier que E[L0
Ua
(B)] = a. ✷

Remarque 3.1.1. On peut donner une preuve alternative de la proposition en uti-

lisant le calcul stochastique. Pour obtenir (ii), par exemple utilisez la formule d’Itô

pour vérifier que, pour tout λ > 0,

(1 + λ|Bt|) exp(−λL0
t (B))

est une martingale locale continue, délimitée par [0, Ua]. Une application du théorème

d’arrêt facultatif montre alors que E[exp(−λL0
Ua
(B))] = (1 + λa)−1.

La preuve précédente a l’avantage d’expliquer l’apparence de la distribution expo-

nentielle.

Pour tout t ≥ 0, nous fixons

St := sup
0≤s≤t

Bs, It := inf
0≤s≤t

Bs.

Théorème 3.1.2. (Lévy) Les deux processus (St, St−Bt)t≥0 et L0
t (B), |Bt|)t≥0 ont

la même distribution.

Remarque 3.1.2. Par un argument de symétrie évident, la paire (−It, Bt − It)t≥0

a également la même distribution que (St, St − Bt)t≥0.

Preuve du théorème : Par la formule de Tanaka, pour tout t ≥ 0,

|Bt| = −βt + L0
t (B), (3.2)

où

βt = −
∫ t

0

sgn(Bs)dBs.
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Depuis 〈β, β〉t = t, donc β est un mouvement brownien commencé à partir de 0.

Nous affirmons alors que pour tout t ≥ 0,

L0
t (B) = sup{βs : s ≤ t}.

Le fait que L0
t (B) ≥ sup{βs : s ≤ t} soit immédiat puisque (3.2) montre que

L0
t (B) ≥ L0

t (B) pour tout s ∈ [0, t]. Pour obtenir l’inégalité inverse, écrivons γt pour

le dernier zéro de B avant l’instant t. Par la propriété de support de temps locale,

L0
t (B) = L0

γt(B), et en utilisant (3.2), L0
γt(B) = βγt ≤ sup{βs : s ≤ t}.

Nous avons ainsi prouvé p.s.

(L0
t (B), |Bt|)t≥0 = (sup{βs : s ≤ t}, sup{βs : s ≤ t} − βt)t≥0,

et puisque (βs)s≥0 et (Bs)s≥0 ont la même distribution, la paire dans la côté droite

a la même disribution que (St, St−Bt)t≥0. ✷

Proposition 3.1.2. Nous avons p.s.

{t ≥ 0 : Bt = 0} = {τs : s ≥ 0} ∪ {τs− : s ∈ D}

où D est l’ensemble dénombrable des temps de saut de (τs)s≥0.

Preuve : Nous savons par (3.1) que p.s.

supp(dtL
0
t (B)) ⊂ {t ≥ 0 : Bt = 0}.

Il s’ensuit que tout instant t de la forme t = τs ou t = τs− doit appartenir à

l’ensemble zéro de B. Inversement, rappelant que (3.1.2) est un l’égalité p.s. pour

a = 0, nous obtenons également cela, pour tout t tel que Bt = 0, nous avons soit

L0
t+ǫ(B) > L0

t (B) pour tout ǫ > 0, soit si t > 0, L0
t (B) > L0

t−ǫ(B) pour chaque ǫ > 0

avec ǫ < t (ou les deux simultanément), ce qui implique que nous avons t = τL0
t (B) ou

t = τL0
t (B)−. ✷

3.2 La loi Kallianpur-Robbins

Dans cette section, nous utilisons les temps locaux pour donner une courte preuve

de la loi de Kallianpur-Robbins pour le mouvement brownien plan. Nous laissons

B représenter un mouvement brownien complexe et pour simplifier nous supposons

que B0 = 1 (le cas général suivra ensuite, par exemple en appliquant la propriété

de Markov forte au premier moment de frappe du cercle unitaire).D’après le théo-

rème ci-dessous 7.19, nous pouvons écrire |Bt| = exp(βHt
) où β est un véritable

mouvement brownien partant de 0, et

Ht =

∫ t

0

ds

|Bs|2
= inf{s ≥ 0 :

∫ s

0

exp(2βu)du > t}.



3.2 La loi Kallianpur-Robbins 34

Pour tout λ > 0, nous considérons également le mouvement Brownien à l’échelle

β
(λ)
t = 1

λ
βλ2t, et pour t > 1 nous utilisons la notation λt = (log t)/2.

Nous visons à prouver que pour tout R > 0,

2

log t

∫ t

0

1{|Bs|<R}ds

converge en distribution exponentielle de moyenne R2. À cette fin, nous écrivons

pour tout t > 1 fixe,

2
log t

∫ t

0
1{|Bs|<R}ds = 1

λt

∫ t

0
1{βHs<logR}ds

= 1
λt

∫ Ht

0
1{βu<logR} exp(2βu)du

= λt

∫ (λt)−2Ht

0
1
{β

(λt)
u <(λt)−1 logR}

exp(2λtβ
(λt)
u )du

= λt

∫ (λt)−1 logR

−∞
exp(2λta)L

a
(λt)−2Ht

(β(λt))da

=
∫ R

0
L
(λt)−1 log r

(λt)−2Ht
(β(λt))rdr.

Dans l’avant-dernière égalité, nous avons appliqué la formule de densité de temps

d’occupation (Corollaire 2.7.1) au mouvement brownien β(λt), et dans la dernière

nous avons utilisé le changement des variables r = eλta. Comme t → ∞, (λt)
−1 log r →

0, pour tout r > 0, et le lemme 7.21 nous indique également que (λt)
−2Ht − T

(λt)
1 )

converge en probabilité vers 0, avec la notation T
(λt)
1 = inf{s ≥ 0 : βλt

s = 1}. De la

continuité conjointe des temps locaux browniens (Théorème 3.1.1), nous obtenons

alors que pour tout ǫ ∈ (0, R),

sup
ǫ≤r≤R

∣∣∣∣L
(λt)−1 log r

(λt)−2Ht
(β(λt))− L0

T
(λt)
1

(β(λt))

∣∣∣∣ −→t→∞ 0,

en probabilité. En combinant cela avec le résultat précédent, nous obtenons que
∣∣∣∣

2

log t

∫ t

0

1{|Bs|<R}ds−
R2

2
L0

T
(λt)
1

(β(λt))

∣∣∣∣ −→t→∞ 0,

en probabilité. Pour compléter la preuve, notons simplement que la loi de L0

T
(λ)
1

(β(λ))

ne dépend pas de λ > 0, et est exponentielle avec la moyenne 2, par la proposition

3.1.

Exemple 3.2.1. Soit B un mouvement brownien standard issu de 0 et a, b > 0, a 6=
b. On pose

Yt = |Bt| et Zt = aB+
t − bB−

t .

Le but de cet exemple est de calculer L0
t (Y ) et L0

t (Z) en fonction de L0
t (B).
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Par définition des temps locaux, on a pour toute fonction f continue à support

compact : ∫ t

0

f(Ys)d < Y >s=

∫

R

f(x)Lx
t (Y )dx.

On obtient en remplaçant Yt par |Bt|, on obtient :

∫

R

f(x)Lx
t (Y )dx =

∫ t

0

f(|Bs|)ds =
∫

R

f(|x|)Lx
t (B)dx.

On obtient alors pour tout x > 0,

Lx
t (Y ) = Lx

t (B) + L−x
t (B),

et pour tout x < 0, Lx
t (Y ) = 0. Par continuité à droite de x 7→ Lx

t (Y ), on obtient

L0
t (Y ) = 2L0

t (B), et L0−
t (Y ) = 0.

Pour ce qui est de Z, on le réécrit de la manière suivante, en utilisant la formule

de Tanaka-Meyer, et en écrivant B− en fonction de B+ et B :

Zt = aB+
t − bB−

t = a(
1

2
L0
t +

∫ t

0

1{Bs>0}dBs)− b(
1

2
L0
t −

∫ t

0

1{Bs≤0}dBs).

On a donc décomposé Zt en une martingale locale et le processus (a−b
2
L0
t , t ≥ 0),

à variation finie (car continu et monotone). On peut donc appliquer la formule

donnant les sauts du temps local pour obtenir :

L0
t (Z)−L0−

t (Z) = (a− b)

∫ t

0

L0
s1{Zs=0}ds = (a− b)

∫ t

0

L0
s(B)1{Bs=0}ds = (a− b)L0

t ,

car L0
t ne croit que sur l’ensemble des instants t tels que Bt = 0 et cela d’après la

propriété fondamentale des temps locaux. On en déduit que Lx
t (Z) est discontinu en

0, et le saut réalisé par le temps local en ce point vaut (a− b)L0
t .
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Conclusion

Dans ce mémoire, j’ai étudié les différentes propriétés du temps locaux relatifs aux

semimartingales , mais aussi pour le mouvement Brownien en particulier ;

– J’ai d’abord présenté les ingrédients correspondants à cette théorie (processus

stochastiques, et calcul stochastique sous-jacent).

– J’ai présenté avec détails les notions importantes relatives à cette théorie de

temps local ainsi que quelques ses propriétés concernant la généralisation de

la formule d’Itô pour les différentes versions.

– J’ai terminé mon mémoire avec quelques exemples montrant comment expri-

mer le temps local dans un cadre Brownien.
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