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Introduction

Le mouvement brownien est le nom donné aux trajectoires irréguliéres du pollen
en suspension dans I’eau, observé par le botaniste Robert Brown en 1828. Ce mou-
vement "aléatoire", dii aux chocs successifs entre le pollen et les molécules d’eau,
entraine la dispersion ou diffusion du pollen dans ’eau. Le champ d’application du
mouvement brownien est beaucoup plus vaste que 1’étude des particules microsco-
piques en suspension et inclut la modélisation du prix des actions, du bruit thermique
dans les circuits électriques, du comportement limite des problémes de files d’attente
et des perturbations aléatoires dans un grand nombre de systémes physiques, biolo-
giques ou économiques.

Bachelier (1900) a eu les premiers résultats quantitatifs en s’intéressant aux fluc-
tuations du prix des actions en économie. Einstein (1905) a obtenu la densité de
probabilité de transition du mouvement brownien a partir de la théorie moléculaire
de la chaleur. Le premier traitement mathématique rigoureux est dit a N. Wiener
(1923, 1924), qui a prouvé 'existence du brownien.

Dans ce mémoire, nous appliquons le calcul stochastique a la théorie des temps
locaux des semimartingales continues. Le temps local au niveau "a" d’une semi-
martingale X est un processus croissant qui mesure le «nombre de visites» de X
au niveau "a". Nous utilisons les formules classiques de Tanaka pour construire des
temps locaux puis étudier leurs propriétés de régularité par rapport a la variable
d’espace. les temps locaux peuvent étre utilisés pour obtenir une version généralisée
de la formule d’Tt6.

Les hypotheses de la formule d’Itd nous contraigne de ’employer pour des fonctions
de classe C?. Dans ce chapitre, nous essayons de relaxer cette hypothése. Nous allons
ici nous attacher a la définition et aux premiéres propriétés des temps locaux, qui
permettent de mesurer le temps passé au voisinage d’'un niveau donné par le pro-
cessus. Il existe différentes théories des temps locaux, mais nous nous intéresserons
ici uniquement aux temps locaux de semi-martingales continues. Rappelons qu’une
semi-martingale continue est un processus stochastique qui peut se décomposer de
maniére unique en la somme d’'un processus & variations finies et d’'une martingale
locale, toutes deux supposées continues. La formule d’It6 permet justement de don-
ner cette décomposition pour les images de semi-martingales par des fonctions de

classe C2. En tentant d’étendre cette formule & des fonctions qui ne sont pas né-
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cessairement de classe C? , on définit toute une famille de processus a variations
finies, famille associée a la semi-martingale initiale. Il se trouve que ces processus
ont une interpretation immeédiate dans le cas du mouvement brownien, ils sont les
limites, en un certain sens, du temps passe au voisinage d’un point x avant I'instant
t, pour tout x € R. Par conséquent, ces processus ont été appelés temps locaux de
semi-martingales, car ils représentent en quelque sorte 1’échelle de temps ressentie
au voisinage du point z.

Le mémoire présenté est partagé en trois chapitres. Le premier chapitre traiter des
définitions du mouvement brownien, l'intégrale par rapport au mouvement brownien
et la formule d’it6. Et le deuxiéme chapitre est contient une introduction aux temps
locaux, des définition et des propriétés de temps lacal. De plus on voir la formule
de Meyer-Ito, quelques théorémes principaux sur les temps locaux. Concernant le

dernier chapitre, il traiter quelques applications de temps local.



Chapitre 1

Quelques généralités sur les calculs

stochastiques

1.1 Mouvement brownien

1.1.1 Processus stochastiques en temps continu

On supposera donné un espace probabilisé (€2, F,P). ) est un ensemble, F est
une tribu contenue dans I’ensemble des parties de €2 et P est une probabilité sur la
tribu F.

Définition 1.1.1.1. Une filtration {F;;0 =t < 400} est une famille croissante
de sous-tribus de F : pour 0 < s <t < 4o0, Fs C F;.

Définition 1.1.1.2. Un processus stochastique X est la donnée de {X;;0 <t <
+oo}, ou a4t fixé, Xy est une variable aléatoire définie sur (Q, F) a valeurs dans
(R4, B(RY)). B(RY) désigne la tribu borélienne de R.

A w € Q fizé, la fonction t — Xy (w) ; t > 0 est une trajectoire du processus X.

Xy peut représenter par exemple le nombre de clients qui attendent a un guichet ou

le priz d’une action a l'instant t.

Définition 1.1.1.3. Un processus X est dit mesurable si ['application suivante :

<[0,+OO[XQ,B([O,+OO[)®}") —  (R%, B(RY)
(t,w) — Xi(w)

est mesurable.
Un processus est dit continu si pour presque tout w € €, t — X (w) est continue

(i.e. les trajectoires sont continues).

Définition 1.1.1.4. Un processus est dit adapté a la filtration {F;;0 < t < 400}

st pour tout t, X; est F; — mesurable.
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Dans la suite, on aura toujours affaire & des processus mesurables et adaptés a

une filtration que 'on précisera.

Définition 1.1.1.5. Un processus est dit progressivement mesurable par rapport
a la filtration {Fy;0 =t < 400}, si pour tout t < 0 Uapplication suivante :

([O,t[xQ,B([O,tD@)}") —  (R%, B(RY)
(s,w) — Xs(w)

est mesurable.

1.1.2 Définition du mouvement brownien (M.B.)

Définition 1.1.2.1. Un mouvement brownien de dimension k, {B;, F1;0 < t <
+o00} est la donnée d’un processus mesurable B a valeurs dans R¥, et d’une filtration,

tels que B est adapté a (F;)t =0, est continu et vérifie :
1. By = 0 presque strement.
2. Pour 0 < s <t, l'accroissement B; — By est indépendant de Fy.

3. Pour 0 < s < t, l'accroissement B; — By suit une loi normale centrée, de ma-

trice de covariance \/t — sldy, ot Idy désigne la matrice identité de dimension
k.

La filtration (F;)i=o fait partie de la définition. Cependant, si on se donne {By;0 <

t < 400}, processus continu et si on sait que :

1. B est a accroissements indépendants et stationnaires, i.e. : pour tout 0 < r <
s <t<u,B,—B; et B{— B, sont indépendants et la loi de B, — B; ne dépend

que de la diférence u —t,

2. et B; = By — By suit une loi normale centrée, de matrice de covariance /tIdy,
alors avec la tribu engendrée par B,{ By, F2;0 <t < +o0} est un mouvement
brownien ot : FP = 0{B,;0 < s < t}.

Proposition 1.1.2.1. (propriétés de martingale)

i B est une martingale par rapport & la tribu (Fi)i>o, de carré intégrable, i.e.
V 0 < s <t;E(B]Fs) = Bs.

ii B? —t;0 <t < 400 est aussi une martingale par rapport a la méme tribu.

Preuve :

E(Bt - lefs) = E(Bt - Bs) =0.
E((B: — B,)*|Fs) = B(B — BI|F,) = (t — ).

Utilisation de I'indépendance et du caractére loi normale.
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ii La seconde propriété est trés importante car elle démontre que le mouvement
brownien est a variation quadratique finie presque strement. Si Il = {to, 1, ..., t:n }
est une subdivision de U'intervalle [0, ¢], la variation quadratique sur I'intervalle

[0,t] par rapport & IT est
Vt2(H) = Z ‘Btk - Btk71|2'
k=1

Si V2(IT) converge quand le pas de la subdivision II tend vers 0, on dit que le

processus est a variation quadratique finie. O

Théoréme 1.1.2.0.1. /?/
1. Le M.B. est a variation infinie sur tout intervalle.

2. Le M.B. n’est dérivable en aucun point (Paley, Wiener, Zygmund 1933).

1.2 Intégrale par rapport au MB

On suppose donné un mouvement brownien B avec sa filtration (F;);—o. On

définit deux classes de processus :
t
H, = {H = (Hy)o<t, processus adapte, tel que Vt, IE/ HZds < —i—oo},
0

et M2 'ensemble des martingales (par rapport a la filtration du brownien), de carré

intégrable, continues et nulles & l'instant 0.

Théoréme 1.2.1. (Intégrale d’Ito)[”] Il existe une unique application linéaire,
notée I, de Hy dans M? telle que pour tout H € Hy et tout t,

t
E(I(H)2) = E / H2ds
0
On note :
I(H), = / H,dB,

Tel que le théoréme est énoncé, on peut se demander ot intervient vraiment le M.B.
dans l'intégrale. Pour comprendre son role, il faut se pencher un peu plus sur la

construction. Si le processus H est de la forme :
p
Hy = Qolo(t) + Z iy, 2 (8), (%)
i=1

oul0 =1ty <t <..<t, <400, Fy est Fp—mesurable et bornée et pour i =1, ..., p,

les F; sont F;, ,—mesurables et bornées, on pose

p
](H)t = Z Cbz‘ (Btmt - Bti_l/\t>-

=1
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Il est aisé de démontrer que l'intégrale stochastique I vérifie toutes les propriétés
énoncées précédemment sur les processus élémentaires. Ensuite on montre la densité
des processus de la forme (%) dans Hy. Et on va prolonger I définie sur les processus
élémentaires a la classe Hy. L’unicité signifie que si I et I sont deux prolongements

vérifiant les propriétés précédentes alors I(H) et I’(H) sont indistinguables.

Proposition 1.2.0.2. (Propriétés de l’intégrale d’It6)[’] Pour H € Hy et
TeR",

1. I(H) est a variation quadratique finie et cette variation sur [0,T] est égale a

fOT H?ds ;
2. E(SupOStST | [) HydB, |? ) <4E [ H2ds

Une derniére extension consiste a relaxer I’hypothése d’intégrabilité portant sur

H ., en introduisant :
t
H? = {H = (Hy)o<t, processusadapt, telquevt > O,/ H%ds < 400, P — p.s.}.
0

On peut encore prolonger I sur cet ensemble, mais on n’a plus une martingale, mais

seulement une martingale locale.

1.3 Formule d’It6

Définition 1.3.0.2. (Processus d’Ito) Un processu X, a valeurs dans R", est
appelé semi-martingale s’il se décompose de la maniére suivante : pour tout t,presque
strement :

0 t
X = Xo +/ Kyds + / H.dBq,
t 0

avec Xy et K a valeurs dans R™, H a valeurs dans R™¢, H € H? et
t
E/ | Ks|ds < oo, Vt.
0

Cette décomposition, si elle existe, est unique.

Théoréme 1.3.0.1. (Formule d’Ito)/[’] Soit f une fonction définie sur [0, +oo[xR",
a valeurs réelles, une fois continument dérivable en temps et deux fois en espace (i.e.
toutes les dérivées partielles d’ordre 2 existent et sont continues). Soit X une semi-

martingale :
t t
X, = Xo—l—/ sts—i—/ H.dB;.
0 0

Alors {f(t, X:);0 <t < +o0} est encore une semi-martingale et admet la décompo-

sition suvante :

) = £0.X0)+ [ GHsXdst [ (e < Kads [ 956, X.) e Hadb
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1 t
+§/ Trace(H:D?f(s, X,)H,)ds
0

ou V f désigne le gradient de f par rapport auz variables d’espace et D*f désigne la

matrice hessienne de f.

Sans I’hypothése de régularité sur f, ceci est faux. Sans celle-ci, on tombe dans
une autre classe de processus, dit de Dirichlet.

exemple :

t
B} = 2/ BydB, +t.
0

Si X et Y sont deux semi-martingales,

t t t t
Xt:X0+/ st3+/ HsdBS,Yt:YOJr/ K;ds+/ H'dB,,
0 0 0 0

t t
/ X,dY, = X,Y, — XoY, — / YidX, — (M, N),,
0 0

avec

t
(M, N, = / H.H'ds.
0



Chapitre 2

Quelques généralitités sur les temps

locaux

2.1 Introduction

Le temps local du mouvement brownien a été introduit en 1948 par le Francais
le mathématicien Paul Lévy dans son livre fondamental Processus Stochastique-
set Mouvement Brownien . Se posant naturellement dans de nombreux problémes
(comme par exemple, une extension de la formule d’It6 aux fonctions convexes, ou
trouver la densité de la mesure d’occupation de BM par rapport a la mesure de Le-
besgue bien siir), ils décrivent aussi approximativement le temps passé par un réel
standard mouvement brownien prés d’'un point donné, fournissant ainsi une des-
cription trés fine des exemples de chemins de BM. Nous commencerons par donner
plusieurs constructions de I’heure locale brownienne et leurs propriétés de base. En-
suite, nous illustrerons a la fois la puissance et 1’élégance de la théorie en prouvant
plusieurs théorémes de grande importance dans l’étude du mouvement brownien
et des processus stochastiques réels. Ceux-ci inclus : La loi d’arc sinus de P. Lévy,
I'identité de Lévy et les beaux théoremes de Rayet Knight sur le comportement

spatial des temps locaux.

Les hypotheéses de la formule d’It6 nous contraigne de I’employer pour des fonc-

tions de classe C2. Dans ce chapitre nous essayons de relaxer cette hypothése.

2.2 Premiére généralisation

On commence par une extension simple de la formule d’It6.

Théoréme 2.2.1. Soit g une fonction de classe Ct. On suppose que g est de classe

C?% en dehors d’un ensemble de points finis 2y, ..., z, et de plus que |g"(z)| = M pour

11
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x # zi,1=1,...,n. Soit B; un mouvement brownien de dim 1. Alors la formule d’Ito

est reste valable :
t 1 t
o(B) = g(Bo) + [ g(BJdB.+ 5 [ o' (Bds
0 0

ot 'on a prolongé ¢"(z;) :
9"(z) = lim ¢"(z)

T—r2;

Preuve : Soit p, une suite de fonction C* & support compact dans B(0,1/n)
telles que, p,(t) > 0 et [ p,(t)dt = 1. Alors g,, = p, * g est une fonction C* telle que
gn — ¢ uniformément sur tout compact de R. De plus comme g est de classe C?
on a g, = (pl,)*g=pn*(g) et par suite g/, — ¢’ uniformément sur tout compact

de R. Enfin on peut appliquer la formule d’It6 a g, :

9u(B:) = gu(Bo) + [y gh(B.)dB, + L [ g!(B,)ds. (2.1)

De part la continuité de s — B, on a sur [0, t]

lim [lga(B.) — 9(B.)lse = Ot lim [[gh(B.) — ¢/ (B}l = 0

n—oo

donc lim,,, gn(B;) = g(B;). D’autre part I'inégalité maximale de Doob implique

¢ ¢ 2

E[ sup (/ g;(BS)st—/ g’(Bs)st> }
s€0,t] 0 0

¢ ¢ 2

< sup E[(/ g;l(BS)st—/ g’(BS)st> }
s€[0,t] 0 0

et par l'isométrie d’It6 on a

= 4E{/Ot(g;(35) — g’(BS))QdS} — 0 quand n — oo

On en déduit qu’il existe une sous suite n, — oo telle que

t t 2
sup </ g;Lk(Bs)st—/ g/(Bs)st) —0
s€[0,t] 0 0
t g

presque siirement quand k — co. Pour traiter le dernier terme K = % [ g1 (B;)ds

on remarque que 1’équation (2.1) implique

t
K7 = o (B1) — guu(Bo) — / 4. (B.)dB,
0

et donc par ce qui préceéde

t
lim K™ = g(By) — g(Bo) / §(BJ)dB,
0

k—o0
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presque slirement.

Or en dehors de zi,...,2, on a g/(x) — g(x). Sans perte de généralité on peut

supposerz 1 < z; < ... < z,. Posons pour tout € > 0 I, = J;_,]zi — €,z +¢€[. On a
donc

(A@ﬂ&%wﬂBmhmu&mmzo

et de plus

t
/ (gn(Bs) — ¢"(Bs)) 1410 (Bs)ds < 2MX(s € [0,t] : By € I.)
0
ot A désigne la mesure de Lebesgue. Or
limA(s € [0,t]: Bs€l.)=0
e—0
D’ou I’égalité cherchée.

Théoréme 2.2.2. (Formule de Tanaka)[7]

Soit By un mouvement Brownien en dimension 1 alors presque strement on a
t
|B:| = | Bo| +/ sign(Bs)dBs + Ly
0

ot Ly =lime 0 5-A(s € [0,t] : By €] —€,€]) et X est la mesure de Lebesgue sur R.

2.3 Deuxiéme généralisation

Théoréme 2.3.1. [7] Soient f : R — R une fonction convexe et X une semimar-

tingale continue. Alors f(X) est une semimartingale et

ﬂ&%ﬁ@&z%f@%&+&

f(@)—f(z=h)

ou f" est la dérivée a gauche de f, c’est-a-dire f'(x) = limy,_o -

et K; = Ki(f, X) est un processus continu croissant adapté.

Remarque 2.3.1. La formule est linéaire en f. En effet si fi et fo sont deux fonc-
tions convezes de processus croissants associés K} = K(f1,X) et K} = Ki(f2, X)

alors
Ki(fi+ f2, X) = K} + K}
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2.4 Définition et premiéres propriétés

Définition 2.4.1. Soient X une semimartingale et f une fonction convexe alors
le processus Ky = Ky(f, X) définit dans le théoréme précédent est appelé processus
croissant associé a f.

Le processus croissant associé a la fonction x +— |z — a| est appelé temps local en a
et est noté LY = L*(X);, quant a = 0 on écrit simplement L.

Grace au ThéoréemeZ2.5.1 on abouti aisément a la généralisation suivante de la for-

mule de Tanaka.

Corollaire 2.4.1. Formule de Meyer-Tanaka.

Soit X une semimartingale continue. Alors pour tout a € R
t
| X; —a] = | Xo—qf +/ sign(Xs — a)d X, + Lj (2.2)
0

Le résultat qui suit donne une autre définition du temps local qui sera utile dans le

théoréeme a suivre.

Lemme 2.4.1. Le processus croissant associé a la fonction x — (x — a)t ou x —
(x —a)” est (1/2)L¢.

Preuve : Les fonctions z — (x—a)t et x +— (r—a)~ sont convexes. Soient donc
K} et K? leur processus croissants associés respectifs. On a |z —a| = (z — a)™ +
(r —a)” donc LY = K} + K?. Par ailleurs g(z) =2 —a = (v —a)™ — (z —a)~ est

une fonction (convexe) de classe C*° donc par Ito :

t
g(X0) — g(X)) = X, — Xo = / 14X,
0

donc le processus croissant associé a g est 0. D’oit le résultat cherché. O

Le résultat qui suit précise le sens des vocables "temps local" pour Lf.

Théoréme 2.4.1. Soit X une semimartingale continue. Le processus L¢ = L*(X);
ne croit que lorsque X; = a; plus précisément pour presque tout w la mesure sur
R, dL{(w) a pour support {s > 0: Xs(w) = a}.

Preuve : Comme le processus croissant Lj est a trajectoire continue la mesure
dL*(w) est une mesure diffuse (c’est a dire ne contient pas d’atome).

Supposons que 'on ait 0 < S < T des temps d’arréts tels que :

{(s,w) : S(w) <s<T(w)} C{(s,w): Xs(w) < a}.
Alors X = a sur [S,T]. En appliquant deux fois le Théoréme 2.3.1 et le Lemme
précédent & f(z) = (r — a)* aux temps S et T on a

T
1
0= (Xr =) = (Xs =) = [ T (X)dX. + (55— I5)



2.5 Formule de Meyer-1t6 15

d'ou L§ — L% = 0 c’est a dire Ly = L%. Pour tout ¢ € Q on définit les temps

d’arrét S, par
Sq((.U) — { q, s1 Xq(w) < a;

00, sinon.
Puis on définit
Ty(w) =inf{t > Sy(w) : X; = a}.
On a donc [S,, T,[C {X < a} et de plus
Int({s > 0: X,(w) <a}) = | J]5,(w),T,(w)
q€Q*t

ou Int(B) représente 'intérieur de ’ensemble B. Par I'analyse qui précéde ceci
ne charge pas Int({s > 0 : X (w) < a}). Or {s > 0 :

Xs(w) < a} est I'image inverse de l'ouvert | — 8,a[ par une application continue

2

implique que dL%(w)

donc est lui méme ouvert donc coincide avec son intérieur. Donc dL,(w) ne charge
pas {s > 0 : X (w) < a}. De fagon analogue on montre que dL® ne charge pas
{s > 0: X > a}. Donc son support est contenu dans l'ensemble {s = 0: X, = a}.
a

2.5 Formule de Meyer-1to

2.5.1 Pour les semimartingales continues

Le résultat suivant est optimal : Cinclar, Jacod, Protter et Sharpe (1980) ont
montré que si By est un mouvement Brownien et si X; = f(B;) est une semi mar-

tingale alors f doit étre la diférence de deux fonctions convexes...

Théoréme 2.5.1.1. (Formule de Meyer-1té).
Soit X une semimartingale continue. Soit f la diférence de deux fonctions convexes,

f" la dérivée a gauche de f et = f" au sens des distributions. Alors

F(X0) — f(Xo) = / PN+ [ Liutda)
ot LY = L*(X); est le temps local passé en a par X jusqu’au temps t.

Remarque 2.5.1.1. (a) Pour f(z) = |z| on a f'(x) = sign(z) = 210 4oeop () — 1

et donc p(da) = 24p(da) ot &y est la mesure de Dirac en 0.

(b) I est remarquable que le processus croissant associé (intégrale du temps local)

ne dépend pas de f.

Preuve du Théoréme : Comme la formule est linéaire en f on peut supposer

sans perte de généralité que f est convexe. En localisant on peut supposer |X;| et
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(X); bornés par une constante C pour tout t. On pose alors

1

C
ote) =5 [ o alutda),

Sur [-C,C] on a (f — g)” = 0 donc par suite f(z) — g(z) = a + bz pour |z| = N.
Comme le résultat est évident pour les fonctions linéaires (de processus croissant

associé nul) il suffit donc de le montrer pour g.
On a

g(r) =3 / _sign(z — ayu(da)

Par définition du temps local (Théoréme 2.3.1) on a
¢
| Xy —al — | Xo—al = / sign(Xs —a)dXs + Lf
0
et en intégrant %ffcu(da) on a

g(Xy) — g(X%) = %/z (/Ot sign(X, — a)dX, + Lf}),u(da)

On peut montrer que 'on peut échanger 'ordre d’intégration d’ot

t C
o(X0) = 9(X0) = [ X)X+ 5 [ Lintaa)

Comme L¢ = 0 pour |a| > C' ceci conclut la preuve.

2.5.2 Cas général

Théoréme 2.5.2.1. [7] Soit f une fonction conveze et X une semimartingale. Alors

f(X) est une semimartingale et on a

F(X0) — f(Xo) = /0 (X)X, + A,

ot f' est la dérivée a gauche de f et A = A(f, X) est un processus adapté, croissant,

continu a droite. De plus on a
A A= f(X) = f(X-) = (X)) & X

Définition 2.5.2.1. Soit a € R, on définit le processus croissant Af = A*(X); par

t
| X —a| — | Xo—al = / sign(Xs— —a)d X + A}

o+
. Le temps local passé par X en a jusqu’au temps t, noté LY = L*(X), est définit
par

LY = A} — Z {|XS —a| — | Xs- —a| — sign(Xs- —a) A X

0<s<t



2.5.3 Propriétés du temps local 17

Théoréme 2.5.2.2. [7] Pour presque tout w le support de la mesure dL{(w) est

contenu dans l'ensemble {s : X; — (w) = a}.

Théoréme 2.5.2.3. (Formule de Meyer-1to.)[5] Soit X une semimartingale conti-
nue. Soit f la diférence de deux fonctions convezes, f’ la dérivée a gauche de f et

= f" au sens des distributions (c’est une mesure signée). Alors

FXO=FX0) = [ PN T PO FXe )= Xe) & X+ [ Liutaa)

0<s<t

ou L§ = L*(X); est le temps local passé en a par X jusqu’au temps t.

2.5.3 Propriétés du temps local
Une conséquence de la formule d’Itd6-Meyer est le résultat significatif suivant.

Corollaire 2.5.3.1. Soit X une semimartingale continue de temps local LY. Si g
est borélienne bornée alors

| nigtayia= [ (X)),

oo

Preuve :
Supposons ¢ continue et positive alors notons f la fonction telle que f” = ¢. La
fonction f est convexe de classe C2 donc on peut lui appliquer la formule d’It6 et la
formule de Meyer-1t6. Ce qui donne l'identité cherchée.
Si g est continue de signe quelconque on pose g = g™ + ¢~ et on obtient le résultat
par la linéarité et ce qui précéde.
Enfin pour g boréliénne bornée : on utilise le fait que les fonctions continues consti-

tuent une classe monotone pour les fonctions boréliénnes bornées. O

Remarque 2.5.3.1. Pour le mouvement brownien standard W cette formule donne

[ tratanda = [ gwias

o0

Ainsi on voit que L = LY (W) peut étre interprété comme le temps passé en a par
le Brownien jusqu’au temps t. Plus précisément L} est la densité de la loi du temps

d’occupation au tempst :

t
n(A) = / Ly (W,)ds = / Ldu.
0 A

Corollaire 2.5.3.2. Soit X une semimartingale cadlag de temps local (L*)qer. Soit

g une fonction borélienne bornée. Alors pour toust > 0 on a presque sirement

[ totada= [ gx. i X
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2.6 Quelques Théorémes principaux sur les temps

locaux

On considére un espace de probabilité filtré (2, F,F, P) satisfaisant les conditions
habituelles. Soit X une semimartingale continue. Si f est une fonction de classe C?
définie sur R, la formula d’'It6 affirme que f(X) est aussi une semimartingale continue

et on a
f(Xy) = f(Xo) + /f $)dX + = /f” Hd < X, X >

La proposition suivante montre que cette formule peut étre étendue au cas ou f est

une fonction convexe.

Proposition 2.6.1. [7] Soient X une semimartingale continue et f une fonction
conveze sur R. Alors f(X) est une semimartingale, et, plus précisemment, il existe

un processus croissant Al tel que, pour tout t > 0,

f(Xy) = f(Xo) + / f(X,)dX, + AT,

ou f" (x) représente la dérivée a gauche de f au point x.

Plus généralement, f(X) est une semimartingale si f est une différence de fonc-

tions convexes.

Définition 2.6.1. Un processus continu X admet des temps locaur par rapport
au processus croissant (At)i>o et a la mesure de Radon p, s’il existe une fonction

mesurable (Af,x € R,t > 0) telle que pour toute fonction f continue bornée et pour

toutt >0 on a : .
| s = [ aprantas)
0 R

Dans la plus grande partie de la suite, les temps locaux que nous étudierons seront

les temps locaux de semi-martingales, dont le théoréme suivant garantit I'existence.

Théoréme 2.1. [5] Une semi-martingale continue X admet des temps locaux (AY, x €
R,t > 0) par rapport au processus croissant (< X >;);>¢ et a la mesure de Lebesgue,
que l'on appelle simplement les temps locauzx (de semi-martingales continues) de X .
En d’autre termes, il existe une fonction mesurable (Af,x € R,t > 0) telle que pour

toute fonction f continue bornée ett >0 , on a

[ rxga<x == [ s

Pour tout z € R on notera

n z st r>0 _ 0 st >0
T = ) et 7 = .
0 st <0 —x st <0
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les parties positive et négative de x.

Théoréme 2.2. Formule de Tanaka Meyer[’]
Pour toute semimartingale continue, il existe une modification (LY) de A qui soit

conjointement continue en t et cadlag en x. On a de plus :

1 t
§Lf = (Xy—2)" - (Xo—2)" - /O Lix,>2)d X

Soit X; = Xo+ M; + A; une semimartingale continue avec M une martingale locale
et A un processus a variation finie. Les sauts du temps local de X sont donnés par

la formule :
t
Ly — L = 2/ Lix,—aydAs.
0

En particulier, st X est une martingale locale continue, la fonction de ses temps

locauz admet une version conjointement continue en t et x.

Remarque 2.6.1. Ce théoreme est en quelque sorte une formule d’Ité appliquée a
la fonction x — x*, qui n'est pas de classe C*. Notons de plus que, & x fixé, nous
avons acces au temps local en x d’une maniére qui permet, par exemple, l’expression

d’intégrales contre le temps local, ce qui n’était pas donnée par la définition !

Corollaire 2.1. Soit X une semimartingale et (L}) une version continue en t et

cadlag en x de la fonction de ses temps locauz , on a donc pour toutx € Ret t >0 :
1 t

Exemple 2.6.1. Si B est un mouvement brownien, et (L) la version continue de

la fonction de ses temps locaux, pour tout € > 0,

€ t
/ Lfd:c - / 1{_5<Bs<€}d5.
—€ 0

1
L(t):lli%g o 1{*E<BS<€}d‘S7

Par conséquent,

et on retrouve ainsi la notion de temps passé au voisinage de O par le Brownien B,

d’ou le terme : temps local en 0.

Proposition 2.6.2. Propriété fondamentale des temps locaux .[5]
Soit Y une semimartingale et L la fonction de ses temps locaux. Pour tout y € R,

la mesure aléatoire d; Ly est portée par {t > 0:Y; = y}.
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2.7 Continuité des temps locaux et Formule d’It6
généralisé :

Nous considérons un X semimartingale continu et écrivons X = M + V pour
sa canonique décomposition. Notre premier objectif est d’étudier la continuité des
temps locaux de X par rapport a la variable d’espace a.
Il est pratique d’écrire L*(X) pour la fonction continue aléatoire (L{(X))t>0, que
nous considérons comme une variable aléatoire avec des valeurs dans l'espace C(R4, R).
Comme d’habitude, ce dernier espace est menu de la topologie de convergence uni-

forme sur tous les ensemble compact.

Théoréme 2.7.1. e processus (L*(X),a € R) a des valeurs dans C(R4,Ry) a un
cadlag modification, que nous considérons désormais et pour laquelle nous gardons
la méme notation (L*(X),a € R). De plus, si L*(X) = (L} (X))o désigne la
limite gauche de b — L*(X) a a, nous avons pour tout t > 0,

t
LE(X) — L5 (X) = / 1oV (2.3)

En particulier, si X est une martingale locale continue, le processus (L{(X))aer >0

a trajection continus.

La preuve du théoréme repose sur la formule de Tanaka et les techniques de

lemme suivante.

Lemme 2.7.1. Soit p > 1. Il existe une constant C, qui ne dépend que de p tel que

pour tout a,b € R avec a < b, on a

E[(/Ot]l{a<xs<b}d<M, M>s>p] < Cp(b—a)p(E[(<M, M>t)P/2]+]EK/Ot|dVS|)p]>.

Pour chaque a € R, écrivons Y = (Y,*);>0 pour la variable aléatoire avec des valeurs
dans C(R4,R) défini par

t
Y = / Lix,>aydM,.
0
Le processus (Y, a € R) a une modification continue.

Preuve : Commencons par la premiére affirmation. Il suffit de prouver que la
borne indiquée tient quand a = —u et b = u pour certains u > 0 (puis prendre u =
(b—a)/2 et remplacer X par X — (b+a)/2). Soit f la fonction unique différentiable

deux fois en continu tel que

@) = 2 )

u
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et f(0) = f'(0) = 0.Notons que nous avons alors |f'(z)| < 2u pour chaque x € R.
Depuis f” > 0et f’(x) > 1si —u <z <wu,ona

/t]l{ uex,<uyd(M, M), / f(X)d{(M, M) (2.4)

Cependant, selon la formule d’Ito6

3 | a0, = 106 - 0 - [ poxgax. @

Rappelant que |f/| < 2u, on a

E[F(X) - F(Xo)l) < (2uPE[X: - Xol
s@W@Kwrwm+ﬁqu]

< cynp (00 +u[(fav)]

en utilisant les inégalités de Burkholder — Davis — Gundy. Ici et ci-dessous, C,

représente une constante qui ne dépend que de p, qui peut varier d'une ligne a

/f DX, = /f )M, +/f
E{ /Otf’(X av, } s(m)pE[(/otum)p},

et en utilisant a nouveau les inégalités de Burkholder — Davis — Gundy,

ol romf] < aef(groronn)]

< Cp(2u)PE[((M, M),)"].
La premiére affirmation du lemme suit en combinant les bornes précédentes, en
utilisant (2.4) et (2.5).

Passons a la deuxiéme affirmation. On fixe p > 2. Par l'inégalité de Burkholder —

I’autre. Alors,

[y f(Xy)d

Davis — Gundy, on a pour tout a < b et tout t > 0,

t p/2
B swplv? - ver| < 6B |( [ tuesamanran.) | e
s>0 0

et le coté droit peut étre estimé a partir de la premiére affirmation du lemme. Plus

précisément, pour chaque entier n > 1, introduisons le temps d’arrét

t
T, :=inf{t > 0: (M, M), +/ |dVy| > n}.
0
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Dés la premiére affirmation du lemme avec X remplacé par le processus arrété X n,

nous avons pour chaque t > 0,

tATy, p/2
E[(/ L jaex,<tyd(M, M>S> } < Cp(nP'* + 0P (b — a)?/?
0

En utilisant (2.6), encore une fois avec X remplacé par X" et en laissant ¢t — oo,
on obtient

E [sup Y2 — Y;;Tﬂ < (" + ) (b — ap,
s>0

Puisque p > 2, nous voyons que nous pouvons appliquer le lemme de Kolmogorov
a obtenir I'existence d'une modification continue du processus a — (Y, )s>0, avec
valeurs en C(R,, R). Ecrivons (Ys(n)’a)szo pour cette modification continue.

Alors, si 1 < n < m, pour tout a fixe, nous avons Y""" = Ys(/\";)na pour tout s > 0,
p.s. Par un argument de continuité, cette derniere égalité vaut simultanément pour
a € R et tous s > 0, en dehors d’un seul ensemble de probabilités zéro. Il s’ensuit
que nous pouvons définir un processus Y, a € R) avec des valeurs en C(R.,R),
avec échantillon continu chemins tels que pour tout n > 1, YA™* = }Z“/‘\Tn pour tout
a € R et tout s > 0, p.s. Le processus ?“,a € R) est la modification continue
souhaitée.

(I

Proposition 2.7.1. Soit M une martingale locale continue telle que My = 0. Alors

nous avons (M, M) = 0 si et seulement si M =0

Remarque 2.7.1. En appliquant la borne du lemme 2.7.1 a X™ (avec T,, comme
dans le précédent preuve) et en laissant a tendance a b, on obtient que pour chaque
beR,

t
/ H{stb}d<M, M>3 — O
0

pour tout t > 0 p.s. Par conséquent en wutilisant la proposition 2.7.1 nous avons

également
t
/ H{stb}dMs - 0,
0
pour tout t > 0 p.s.

Preuve de la proposition 3.6.1 : Avec un léger abus de notation, nous écri-
vons toujours (Y% a € R) pour la modification continue obtenue dans la deuxiéme
affirmation du lemme 2.7.1. nous laissez également (Z% a € R) étre le processus

avec des valeurs en C'(Ry, R) défini par

t
Zta:/ ]l{Xs>a}d‘/s-
0

Selon la formule de Tanaka, nous avons pour tout a € R fixe,

LY = 2<(Xt —a)t = (Xg—a)t =Y - Zf), pour tout t >0 p.s.
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Le coté droit du dernier affichage fournit la modification de cadlag souhaité. En

effet, le processus

a— ((Xt —a)t — (Xg—a)t - Yta)

>0
a des chemins d’échantillonnage continus, et d’autre part le processus a — Z¢ a
des chemins d’échantillonnage continus cadlag : pour tout a € R, le théoréeme de

convergence dominé montre que

¢ t
fO ]l{X5>a}dV; —alao f(] 1{Xs>ao}cﬂ/‘o‘a

fot ]l{Xs>a}d‘/S HCLTCLQ,CL<CLO f(]t 1{X3>ao}d‘/;’

uniformément sur chaque intervalle de temps compact. I’écriture précédent montre

également que le saut Z% — Z%~ est donné par

t
AR A I —/0 Lyx,—a0)dV

et ceci compléte la preuve du théoréme. O
Désormais, nous ne nous tratons que la modification cadlag des temps locaux obte-

nue dans le théoréme 2.7.1.

Remarque 2.7.2. Pour illustrer le théoréme 2.7.1 définissons W, = | X,|, qui est

également une demi — partition selon la formule de Tanaka (2.2), on a

Wy = (W) = |Xo|+ [ Tyx,op (sign(X,dX, +dL0 + LLO(W)

= | Xo| + [y sign(XdX, + [ Lix,—0yd X, + SLOW),

notant que fg]l{‘xs>0|}dLg = 0 par la propriété de support de temps locale (corol-
laire 2.4.1). En comparant la formule résultante avec (2.2) écrite avec a = 0, nous

obtenons
t
LW) = 22206) = 2 | 1xapdX. = IO + L2 (X),
0

en utilisant (2.4). La formule LY(W) = LY(X) + LY~ (X) est un cas particulier de la
formule plus générale L§(W) = LY (X) + L,gfa)f(X), pour tout a > 0, qui se déduit
facilement du corollaire 2.7.1 ci-dessous. Nous notons que la propriété support de
temps locale implique LE(W) = 0 pour tout a < 0, et en particulier LY (W) = 0.
Nous laissons comme exercice au lecteur de vérifier que la formule (2.]) appliquée a

LY(W) + LY (X) donne un résultat ce qui est cohérent avec 'expression précédente
pour LY(W).
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Nous allons maintenant donner une extension de la formule d’It6 (dans le cas ou
elle est appliquée a une fonction d’une seule semimartingale). Si f est une fonction
convexe sur R, la dérivée gauche f’ est une fonction non décroissante monotone
continue gauche, et il existe une mesure de Radon unique f”(dy) sur R, telle que
f"([a,b)) = f.(b)— f"(a), pour tout a < b. On peut également interpréter f” comme
la dérivée seconde de f au sens de distributions. Notez que f”(da) = f"(a)da si f est
deux fois différenciable en continu. Si f est maintenant une différence de fonctions
convexes, c’est-a-dire f = f1 — fz ol f1 et f2 sont convexes, nous pouvons toujours
donner un sens a [ f"(dy)e(y) = [ f1(dy)e(y) — [ f5(dy)e(y) pour toute fonction

mesurable bornée ¢ prise en charge sur un 1ntervalle compact de R.

Théoréme 2.7.2. (Formule It6 généralisée)[’]

Soit f une différence des fonctions convexes sur R. Ensuite, pour tout t > 0,

P = 100+ [ xax+ 3 [ 100 o)
R
Remarque 2.7.3. Par le corollaire 2.4.1 et un argument continuité, nous avons

LX) =0 pour tout a¢ [ min X,, max X51’ D.S,

0<s<t O<s<

et en plus la fonction a — L§(X) est bornée, avec les observations précédant I’énoncé

du théoreme cela montre que Uintégrale [ LY(X)f"(da) a du sens.

Preuve du Théoréme :
Par linéarité, il suffit de traiter le cas ot f est convexe. De plus, par de simples
arguments de "localisation", nous pouvons supposer que f” est une mesure finie
supportée sur U'intervalle [— K, K] pour certains K > 0. En ajoutant une fonction
affine & f, nous pouvons également supposer que f = 0 sur (—oo, —K]. Ensuite, il

est élémentaire de vérifier que, pour tout x € R,

f(x) = L{(X)(x — a)" ["(da),

7@ [ Lon o) 1)

La formule de Tanaka donne pour tout a € R,
1
(Xt — CL)+ = (XO — CL)+ + Yta + Zf + §L?(X)

ou nous utilisons la notation de la preuve du théoréme (2.7.1) (et nous rappelons
que (Y% a € R) représente la modification continue obtenue dans le lemme 2.7.1).
On peut intégrer cette derniére égalité par rapport a la mesure finie f”(da) et on
obtient

F(X,) = F(Xo) / Y2 £ (da) + / ng"(da)+% / Lo(X) £ (da).
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Par le théoréme de Fubini,

[z = (i bodn) s

= (S renans) o

= [ f(X,)dVs.

La preuve sera donc compléte si nous pouvons également vérifier que

[resan= [ rxoi. 28)

Cette identité doit étre considérée comme une sorte de théoréme de Fubini im-
pliquant une intégrale stochastique. Pour fournir une justification rigoureuse, il
convient d’introduire les temps d’arréts T,, := infs > 0: (M, M), > n, pour tout
n > 1. En rappelant (2.7), nous voyons que notre affirmation (2.8) suivra si on peut

vérifier que, pour tout n > 1, on a

/ ( / MTnﬂ{XQa}dMs)f”(da)— / T( / ﬂ{xsm}dMs)f”(da), ps (29)

ou dans le coté gauche, nous convenons que nous considérons la modification continue
de a — fot N 1 x,>aydM, fournie par le lemme 2.7.1. Il est simple de vérifier que le
coté gauche de (2.9) définit une martingale Mtf dans H?, et de plus pour toute autre
martingale N dans H2,

B0 N} = BN = 5| [ (" Lo d(,N). ) ')

- E Jo" (f Lix.>af "(da))dW’ N>S:

= E |:<f[)Tn ( f ]l{Xs>a}f,/<da)) dMs) Noo:| .
Par un argument de dualité dans H?, cela suffit pour vérifier que Mtf coincide avec la

martingale de H? dans la partie droite de (2.9). Ceci compléte la preuve. O

Corollaire 2.7.1. (Formule de la densité du temps d’occupation)
On a presque strement, pour tout t > 0 et toute fonction mesurable non négative

sur R,
/0 P(X)d(X, X), = /R o(a)L5(X)da.

Plus généralement, nous avons p.s pour toute fonction mesurable non négative F
sur Ry X R,

/OOO F(s, X)d(X, X), I/Rda/ooo F(s,a)d.Lo(X).
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preuve : Fixons ¢t > 0 et considérons une fonction continue non négative ¢ sur R
avec un support compact. Soit f une fonction deux fois continuellement différenciable
sur R telle que f” = . Notez que f est convexe depuis ¢ > 0. En comparant la
formule d’Ité appliquée a f(X;) et la formule du théoréme 2.7.2, nous obtenons

immédiatement que p.s,

/OtSO(Xs)d(X,X)S :/]R¢(G)L?(X)da_

Cette formule est valable simultanément (en dehors d'un ensemble de probabilités
zéro) pour tout ¢ > 0 (par un argument de continuité) et pour chaque fonction
© appartenant & un sous-ensemble dense dénombrable de ’ensemble de toutes les
fonctions continues non négatives sur R avec support compact. Cela suffit pour

conclure que p.s, pour tout ¢t > 0, la mesure aléatoire

A /t ]lA(Xs)d<X7 X>s

a la densité (L{(X)).ecr par rapport a la mesure de Lebesgue sur R. Ceci donne la
premiére affirmation du corollaire. Il s’ensuit que la formule de la deuxiéme assertion

est vraie lorsque F' est du type
F(57 CL) = ]l[u,v](s)]lA<a)

ou 0 <u<wet Aest un sous — ensemble borel de R. Par conséquent, les mesures
o — finies

B—>/ 1p(s, X,)d(X, X),

B—>/da/ 1p(s,a)dsL3(X)

prendre la méme valeur pour B de la forme B = [u,v] X A, ce qui implique que les
deux mesures coincident. O
Si X = M +V est une semimartingale continue, alors une application immédiate de

la formule de densité de temps d’occupation donne pour tout b € R,

t
/ ]l{stb}d<M, M)S = / ﬂ{b}(a)Lf(X)da: 0.
0 R

Cette propriété a déja été dérivée apres la preuve du lemme 2.7.1. De l'autre il peut

exister des valeurs de b telles que

¢
/ Tix,—ydVs # 0,
0

et ces valeurs de b correspondent a des discontinuités de temps locale par rapport a

la variable d’espace, comme le montre le théoréme 2.7.1.
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Corollaire 2.7.2. St X est de la forme X; = Xo+ V;, ou V' est un processus de
variation finie, alors L{(X) = 0 pour tout a € R et t > 0.

Preuve :D’aprés la formule de densité de temps d’occupation et le fait que
X, X) =0, nous obtenons [, ¢(a)L{(X)da = 0 pour toute fonction mesurable non
R t

négative @, et le résultat souhaité suit. O

Remarque 2.7.4. Nous aurions pu tirer le dernier corolaire directement de la for-

mule de Tanaka.

2.8 Approximations des temps locaux

Notre premier résultat d’approximation est une conséquence facile de la densité

d’occupation formule de temps.

Proposition 2.8.1. Soit X une semimartingale continue. Puis p.s pour tout a € R
ett >0,
1 t
L? :hm— ]]-{a§X5§a+e}d<X7X>s'
0

e—0 €

Preuve : Par la densité de la formule du temps d’occupation,

1 t 1 a+te
_/ ]l{anggaJrs}d(Xv X)s = _/ L?(X)dba
0 a

€ €

et le résultat découle de la continuité droite de b +— L{(X) en a (théoréme 2.7.1).0

Remarque 2.8.1. Le méme argument donne

1 1 _
hm—/ ]]‘{CL*ESXSSCL+E}d<X7 X>s = é(L?(X) + L? (X))
0

e—0 2¢

La quantité L4(X) = S(LH(X)+L§™ (X)) est parfois appelée symétrique temps locale
de la semimartingale X. Notons que la formule de densité de temps d’occupation
reste vraie si L9(X) est remplacée par LX) (en effet, L4(X) et L4(X) peuvent
différer dans au plus grand nombre de valeurs de a). La formule généralisée d’It6
(théoreme 2.7.2) reste également vraie si L*(X) est remplacée par L2(X), a condition
que la dérivée gauche f' soit remplacée par %(f’+ + f"). Des observations similaires

s’appliquent aux formules de Tanaka.

En conséquence de la proposition précédente et du lemme 2.7.1, nous dérivons

une borne utile sur les moments des temps locaux.

Corollaire 2.8.1. Soit p > 0. Il existe une constant C,, tel que, pour tout semimar-
tingale X avec décomposition canonique X = M + V', nous avons pour tout a € R
ett >0,

B0 < 6 (i ang <[ [av)]
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Preuve : Cela découle facilement de la limite de lemme 2.7.1, en utilisant 1'ap-
proximation de L{(X) dans la proposition 2.8.1 et le lemme de Fatou. O
Nous passons ensuite a ’approximation croisée de temps locale. Nous devons
d’abord introduire une notation. Soit X une semimartingale continue et € > 0. Nous
introduisons ensuite deux séquences (0, )n>1 €t (75)n>1 des temps d’arrét, qui sont

définis de maniére inductive par
of :=inf{t > 0: X, =0}, 1= inf{t > o] : X; = €},
et pour tout n > 1,
oy o= inf{t > 77 : X; = 0}, 7o = inf{t > o), : X; = €}.

Nous définissons ensuite le nombre de croisement ascendant de X le long de [0, €]
avant l'instant ¢ par
NX(t) = Card{n >1:71¢ < t}.

€

Proposition 2.8.2. Nous avons pour tout t > 0,
1

L}(X)
en probabilité.

Preuve : Pour simplifier la notion, nous écrivons L? au lieu de LY(X) dans cette

preuve. Nous utilisons d’abord formule de Tanaka pour obtenir, pour tout n > 0

TSN

n

1
(XT;LAt)Jr - (Xa;At)+ = / 1ix,>0pd X + —(L%At - Lg;/\t)'

€At 2

On additionne la derniére identité sur tout n > 1 pour obtenir

0o t 0o 1 0o
> (i) = (Koo = [ (X ) LpwomdXo 5 D0~ L)
n=1 n=1 n

(2.10)
Notez qu’il existe seulement un nombre fini de valeurs de n telles que 77" < ¢, et que
I'interversion de la série et de I'intégrale stochastique est justifiée en approximant la
série avec des sommes finies.
Considérez les différents termes dans(2.10). Puisque le temps locale L° n’augmente

pas sur des intervalles de type [75, 05, ;) (ni sur [0,07)), nous avons

oo [e.9]

Z(ng/\t - Lg;At = Z(Lg;HAt - Lg;At) = Lg-

n n
Ensuite, notant que (X;en)T — (Xoepe)T =€sit; <t,ona

o

Z((ngAt)Jr — (Xogne)™) = eNZ (1) + u(e),

n=1
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ot 0 <ule) <e
A partir de (2.10) et des deux derniers affichages, le résultat de la proposition suivra

si nous pouvons vérifier que

t 00
/ < Z Liog ] (5)> Tix,>00dXs —c50 0
0 n=1

en probabilité,puisque

0< (21(02’75](5)>]1{Xs>0} < ]10<ng€
n=1

et To<x,<c — 0 quand € — 0. O



Chapitre 3

Quelques applications sur les EDSs

3.1 Le temps local du mouvement brownien linéaire

Tout au long de cette section, (By);>o est un véritable mouvement brownien
partant de 0 et (F;) est la filtration canonique (terminée) de B.
Le théoréme suivant, connu sous le nom de théoréeme de Trotter, est essentiellement
un retraitement des résultats des sections précédentes dans le cas particulier d'un
Mouvement brownien. Pourtant, I'importance du résultat justifie cette répétition.

Nous écrivons sup(u) pour le support topologique d’une mesure finie p sur R.

Théoréme 3.1.1. (Trotter) Il existe un processus (unique) (LE(B))aer >0, dont
les chemins d’échantillonnage sont des fonctions continues de la paire (a,t), de sorte
que, pour chaque fivre a € R, L¢(B))i>0 est un processus croissant, et comme pour

tout t > 0, pour tout  mesurable non négatif sur R,

t
[ etBods= [ w@iis)da
0 R
De plus, a.s. pour chaque a € R,
supp(dsL3(B)) C {s > 0: By = a}, (3.1)
et cette inclusion est une égalité avec probabilité un si a est fixé.

Preuve :

La premiére assertion suit en appliquant le théoréme 2.7.1 et le corollaire 2.7.1 & X =
B, notant que (B, B); = t. Nous avons déja vu que l'inclusion (3.1) est de probabilité
1 si a est fixe, donc simultanément pour tous les rationnels, p.s. Un argument de
continuité nous permet d’obtenir que (3.1) est valable simultanément pour tout
a € R en dehors d'un seul ensemble de probabilités zéro. En effet, supposons que
pour certains a € R et 0 < s <t nous avons L{(B) > L% B) et B, # a pour chaque

€ [s,t]. On peut alors trouver un b rationnel dans R suffisamment proche de a tel

que les mémes propriétés se maintiennent lorsque a est remplacé par b, ce qui donne

30
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une contradiction.
Enfin, vérifions que (3.1) est un p.s. égalité si a € R est fixe. Fixons donc a € R, et

pour tout ¢ > 0 (rationnel), définissons
H,:=inf{t > q: B, = a}.

Notre réclamation suivra si nous pouvons vérifier que p.s. pour tout e > 0, Ly | (B) >
L‘}{q(B). En utilisant la forte propriété de Markov au temps H,, il suffit de prouver
que si B’ est un vrai mouvement brownien partant de a, on a L*(B’) > 0, pour tout
e > 0, p.s. Clairement, nous pouvons prendre a = 0. Nous observons ensuite que on

a
LY(B) =" VeL{(B),

par un argument de mise & ’échelle facile (utilisez par exemple les approximations

de la section précédente). Aussi P(LY > 0) > 0 puisque E[L}(B)] = E[| B[] selon la

formule de Tanaka. Une application de la loi zéro-un de Blumenthal & I’événement
A= ({L-.(B) > 0} = lim 1 {L5 .(B) > 0}
el n—o0

compléte la preuve. O

Proposition 3.1.1.

i Soit a € R\ {0} et T, := inf{t > 0 : B, = a}.Alors L}, (B) a une distribution
exponentielle de moyenne 2|al.
ii Soit @ > 0 et U, := inf{t > 0 : |B,| = a}. Alors L}, (B) a une exponentielle

distribution avec moyenne a.

Preuve :

i Par de simples arguments d’échelle et de symétrie, il suffit de prendre a = 1. On
observe alors que L% (B) = oo p.s. En effet, Pargument de mise a 1’échelle de
la preuve précédente montre que L2 (B) a la méme distribution que ALY (B),
pour tout A > 0, et nous avons également vu que LY (B) > 0 p.s. Fixons s > 0
et définissons
7 :=inf{t > 0: L)(B) > s},

de sorte que 7 soit un temps d’arrét de la filtration (F;). De plus, B, = 0 par

la propriété support de temps locale. Par la forte propriété Markov,
B; = BT+t

est un mouvement brownien partant de 0, qui est également indépendant de
F,. La proposition 2.8.1 donne, pour tout ¢ > 0,

L{(B') = BSH

(B) — s.



3.1 Le temps local du mouvement brownien linéaire 32

Sur 'événement {L9, (B) > s} = {r < T;}, on a donc
L(I)“l(B) — 5= L%l—T(B,) = Lg“l’(B/>’

ou T} := inf{t > 0 : B]}. Puisque I’événement {7 < T est F,—mesurable et
B’ est indépendant de F,, nous obtenons que la distribution conditionnelle
de LY. (B) — s sachant que L, (B) > s est la méme que la distribution in-
conditionnelle de LY, (B). Cette implique que la distribution de LY, (B) est
exponentielle.

Enfin, la formule de Tanaka montre que JE[L{ ;] = E[(Bir,)"]. Lorsque
t — o0, E[L},,] converge vers E[L]. ] par convergence monotone et E[(Biar) ]
converge vers E[(Br1)T] par convergence dominée, puisque 0 < (Bjay)t < 1.

Ceci montre que E[Lia7,] = 2, comme souhaité.

ii L’argument est exactement similaire. Nous utilisons maintenant la formule de
Tanaka (2.2) pour vérifier que E[LY, (B)] = a. O

Remarque 3.1.1. On peut donner une preuve alternative de la proposition en uti-
lisant le calcul stochastique. Pour obtenir (ii), par exemple utilisez la formule d’Ité

pour vérifier que, pour tout A > 0,
(1+ A[Bi]) exp(—=AL{(B))

est une martingale locale continue, délimitée par [0, Ual. Une application du théoréme
d’arrét facultatif montre alors que Elexp(—=ALY; (B))] = (14 Aa)™".

La preuve précédente a 'avantage d’expliquer I'apparence de la distribution expo-

nentielle.

Pour tout ¢ > 0, nous fixons

S; == sup By, I, .= inf B..

0<s<t 0<s<t

Théoréme 3.1.2. (Lévy) Les deux processus (Si, Sy — By)i>o et LY(B), |By|)i>o ont
la méme distribution.

Remarque 3.1.2. Par un argument de symétrie évident, la paire (—I;, By — It)t>0

a également la méme distribution que (Si, St — Bt)i>o0-
Preuve du théoréme : Par la formule de Tanaka, pour tout ¢t > 0,
|By| = =B + L{(B), (3.2)

ol

By = — /Ot sgn(Bs)dBs.
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Depuis (8, 8); = t, donc 5 est un mouvement brownien commencé a partir de 0.

Nous affirmons alors que pour tout ¢ > 0,
L)(B) = sup{f, : s < t}.

Le fait que LY(B) > sup{B3, : s < t} soit immédiat puisque (3.2) montre que
LY(B) > LY(B) pour tout s € [0,t]. Pour obtenir I'inégalité inverse, écrivons 7; pour
le dernier zéro de B avant l'instant ¢. Par la propriété de support de temps locale,
L)(B) = L3,(B), et en utilisant (3.2), L), (B) = #,, < sup{f, : s < t}.

Nous avons ainsi prouvé p.s.

(Li(B),|Bil)i=0 = (sup{Bs : s < t},sup{Bs : s <t} — Br)eo,

et puisque (8s)s>0 et (Bs)s>0 ont la méme distribution, la paire dans la coté droite

a la méme disribution que (S;, Sy — By)>o0- O

Proposition 3.1.2. Nous avons p.s.
{t>0:B,=0}={rs:s>0}U{r_ : s € D}

ou D est l'ensemble dénombrable des temps de saut de (Ts)s>0-

Preuve : Nous savons par (3.1) que p.s.
supp(d,LY)(B)) C {t > 0: B, = 0}.

Il s’ensuit que tout instant ¢ de la forme ¢ = 7, ou t = 7,_ doit appartenir a
I'ensemble zéro de B. Inversement, rappelant que (3.1.2) est un 1’égalité p.s. pour
a = 0, nous obtenons également cela, pour tout ¢ tel que B; = 0, nous avons soit
LY . (B) > L}(B) pour tout € > 0, soit si ¢ > 0, L}(B) > L{__(B) pour chaque € > 0
avec € < t (ou les deux simultanément), ce qui implique que nous avons t = TLO(B) OU

t = TL?(B)—' O

3.2 La loi Kallianpur-Robbins

Dans cette section, nous utilisons les temps locaux pour donner une courte preuve
de la loi de Kallianpur-Robbins pour le mouvement brownien plan. Nous laissons
B représenter un mouvement brownien complexe et pour simplifier nous supposons
que By = 1 (le cas général suivra ensuite, par exemple en appliquant la propriété
de Markov forte au premier moment de frappe du cercle unitaire).D’aprés le théo-
réme ci-dessous 7.19, nous pouvons écrire |B;| = exp(f8y,) ou [ est un véritable

mouvement brownien partant de 0, et

t
H; = / |g—8|2 =inf{s >0: / exp(26,)du > t}.
0 s

s
0
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Pour tout A > 0, nous considérons également le mouvement Brownien a 1’échelle
,Bt()‘) = %ﬁ)\zt, et pour ¢t > 1 nous utilisons la notation \; = (logt)/2.
Nous visons a prouver que pour tout R > 0,

9 t

logt J, LuB.l<mds

converge en distribution exponentielle de moyenne R2. A cette fin, nous écrivons

pour tout ¢ > 1 fixe,

t t
o7 Jo Lusg<mds = 5 Jo Lisu,<1og myds
= LM (26,)d
At JO {Bu<log R} €xXp w ) AU

A\t)T2H At

= Ay t]1{/3Sﬁt)<(At)*1logR}eXp(”‘t@(‘ )du
)L

= MO exp(2ha) Ly oy, (B da

R +(\) tlogr
Jo L(At)_ng (B rdr.

Dans I’avant-derniére égalité, nous avons appliqué la formule de densité de temps
d’occupation (Corollaire 2.7.1) au mouvement brownien ) et dans la derniére
nous avons utilisé le changement des variables r = e*®. Comme t — oo, (\;) ! logr —
0, pour tout r > 0, et le lemme 7.21 nous indique également que (\;)"2H; — Tl(m)
converge en probabilité vers 0, avec la notation Tl(At) =inf{s > 0: 3} = 1}. De la
continuité conjointe des temps locaux browniens (Théoréme 3.1.1), nous obtenons

alors que pour tout € € (0, R),

sup

At)"2H
e<r<R (Ae) ¢

-1 ogr
L()\t)* e (5( )) LO (At)(ﬁ()\t)>‘ —t—00 07
en probabilité. En combinant cela avec le résultat précédent, nous obtenons que

logt/ ]l{|Bs|<R}d8 o TLTI(NKﬁ( t))‘ ?t—00 07
0

en probabilité. Pour compléter la preuve, notons simplement que la loi de L° O (BM)
ne dépend pas de A > 0, et est exponentielle avec la moyenne 2, par la prop081t10n
3.1.

Exemple 3.2.1. Soit B un mouvement brownien standard issu de 0 et a,b > 0,a #
b. On pose
=|B| et Z;=aB} —bB;.

Le but de cet exemple est de calculer LY(Y') et LY(Z) en fonction de LY(B).
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Par définition des temps locauz, on a pour toute fonction f continue a support

compact : )
/ fY)d <Y >s=/f(:v)Lf(Y)d:v.
0 R

On obtient en remplagant Y; par |By|, on obtient :

[ f@riode = [ rBbas = [ fladzips.
On obtient alors pour tout x > 0,
Ly(Y) = L{(B) + Ly *(B),

et pour tout x < 0, L7 (Y') = 0. Par continuité a droite de x — L7 (Y'), on obtient
LO(Y) = 2LY(B), et L0~ (Y) = 0.

Pour ce qui est de Z, on le réécrit de la maniére suivante, en utilisant la formule

de Tanaka-Meyer, et en écrivant B~ en fonction de BT et B :

1 t 1 ¢

o 18—l [ i) 05 [ 10,
0 0

On a donc décomposé Z; en une martingale locale et le processus (“T*I’L(t),t > 0),

a wvariation finie (car continu et monotone). On peut donc appliquer la formule

donnant les sauts du temps local pour obtenir :
t t
LNZ)— LY (Z) = (a—b) / L7 _gyds = (a—b) / LY(B)1p,—opds = (a—b) L},
0 0

car LY ne croit que sur l’ensemble des instants t tels que By = 0 et cela d’apres la
propriété fondamentale des temps locaux. On en déduit que Ly (Z) est discontinu en

0, et le saut réalisé par le temps local en ce point vaut (a — b)LY.
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Conclusion

Dans ce mémoire, j’ai étudié les différentes propriétés du temps locaux relatifs aux
semimartingales , mais aussi pour le mouvement Brownien en particulier ;

— J’ai d’abord présenté les ingrédients correspondants a cette théorie (processus
stochastiques, et calcul stochastique sous-jacent).

— J’ai présenté avec détails les notions importantes relatives a cette théorie de
temps local ainsi que quelques ses propriétés concernant la généralisation de
la formule d’It6 pour les différentes versions.

- 1 terminé mon mémoire avi uelques exem montrant comment expri-
J’ai te ¢ mon mémoire avec quelques exemples montrant comment e

mer le temps local dans un cadre Brownien.
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