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Index des notations

— R Le corps des nombres réels.

— C Ensemble des nombres complexes.

— LP[a,b] Espace des fonctions mesurables de puissance p € [0, +o0[ intégrables.

— C([a,b], X) Espace des fonctions continues sur [a,b] & valeurs dans un espace de Ba-
nach.

~ ACla,b] ou AC'[a,b] Espaces des fonctions absolument continues sur [a, b].

— I'(.) Fonctions Gamma d’Euler.

— B(.,.) Fonctions Béta D’Euler.

— ||| La norme.

— g D¢ Dérivée fractionnaire au sens de Hadamard d’ordre o > 0.

— gl Intégrale fractionnaire au sens de Hadamard.

— I Intégrale fractionnaire au sens de Riemann-Liouville d’ordre a@ > 0.

— BE Do Dérivée fractionnaire au sens de Riemann-Liouville d’ordre « > 0.

— ¢DY Dérivée fractionnaire au sens de Caputo d’ordre o > 0.



Introduction

Le calcul fractionnaire est une généralisation de la notion de dérivée d’ordre entier «
d’une fonction f(x) par rapport a la variable z a des valeurs non entiéres de a. Si « est
négatif, il s’agit d’une intégration non entiére et si « est positif, on parle d'une dérivation
non entiere.

Le sujet du calcul fractionnaire fournit plusieurs outils potentiellement utiles pour résoudre
les équations différentielles et intégrales , et divers autres problémes impliquant des fonctions
spéciales de la physique mathématique, ainsi que leurs extensions et généralisations dans une
et plusieurs variables.

L’histoire de la dérivée d’ordre non entier s’étale de la fin du 17 éme siécle jusqu’a nos
jours. Les spécialistes s’accordent pour faire remonter son début a la fin de 'année 1695
quand L’Hospital a soulevé une question a Leibniz en s’interrogeant sur la signification de
d;—ny lorsque n = % Leibniz, dans sa réponse , a voulut engager une réflexion sur une possible
théorie de la dérivation non entiére, et a écrit a L’Hospital :"... cela conduirait & une para-
doxe a partir duquel, un jour, on aura tirer des conséquences utiles". Il a fallu attendre les
années 1990 pour voir apparaitre les premiéres "conséquences utiles ". La premiére tentative
sérieuse de donner une définition logique pour la dérivée fractionnaire est di & Liouville qui
a publié neuf documents dans ce sujet entre 1832 et 1837 .

Indépendamment, Riemman a proposé une approche qui s’est avérée essentiellement celle de
Liouville, et c’est depuis, qu’elle porte le nom "Approche de Riemman-Liouville". Plus tard,
d’autres théories on fait leurs apparition comme celle Grunwal-Leitnikov, Weyl et Hadamard.
Le calcul fractionnaire est devenu une importante branche de mathématiques grace a son
immense application dans différents domaines tels que la physique, la chimie, I'ingénierie,
finances et d’autres sciences qui ont été développé dans la derniére décennie, en plus de
I'intérét que lui portent beaucoup de chercheurs en mathématiques.

L’objectif de ce mémoire est de donner quelques résultats concernant les intégrales fraction-
naires et les dérivées fractionnaires de type Hadamard et au sens de Hadamard. On donne
aussi des résultats d’existence et d’unicité pour des problémes aux limites avec une dérivée
fractionnaire au sens de Hadamard. Notre mémoire est divisée en trois chapitre.

e Dans le premier chapitre, on donne quelques notions, préliminaires et définitions es-

sentielles, utilisés dans le calcul fractionnaire.

e Dans les chapitres 2 et 3, on donne des conditions necessaires et suffisantes pour ’exis-

tence des solutions pour des problémes aux limites dont la dérivée fractionnaire est au
sens de Hadamard. On illustre ce travail par des exemples d’applications.



Les résultats de ces deux derniers chapitres se trouvent dans les travaux de B. Ahmad et
S.K. Ntouyas [I] et [2].



Chapitre 1

Notions Préliminaires

1.1 Espace de Banach

Définition 1.1.1. [5/ On dit qu’un espace vectoriel normé est complet si toute suite de
Cauchy est convergente dans cet espace.

Définition 1.1.2. [5] Un espace de Banach est un espace vectoriel normé et complet.

Définition 1.1.3. [J] Soient A et B deuz espaces de Banach. Un opérateur Q : A — B est
complétement continu s’il transforme tout borné de A en une partie relativement compact de
B.

Définition 1.1.4. [5] On dit que lopérateur Q) est complétement continue s’il est continue
et compact.

Définition 1.1.5. [J] Soit D C I x E ou E est un espace et I un intervalle de R. On dit
qu’une application f est lipschitzienne par rapport a la deuziéeme variable sur D s’il existe
une constante k > 0 telle que :
V(t,z) € D,¥Y(t,y) € D

|f(t @) — f(ty)le <klz —yle.

Si k <1, alors f est contractante.

1.2 Espaces Fonctionnels

1.2.1 Espace LP(a,b)

Soit (a,b) (—oo < a < b < +00) un intervalle fini de R.

Définition 1.2.1. [3] On appelle LP(a,b) (1 < p < +o0) Uespace des fonctions f mesurables
intégrables au sens de Lebesque a valeurs réelles telle que la norme | fl|, < +o0, ou

1l = ( / b |f<ac>|pdt)’i (1<p<+o0)

8



Pour p = +o00,0n a
[fllc = ess sup |f(x)],

a<z<b

et L>®(a,b) est lespace des fonctions essentiellement bornées sur (a,b).

1.2.2 Espaces des Fonctions Absolument Continues

Définition 1.2.2. [// On note par AC([a,b]) lespace des fonctions absolument continues
sur [a,b] constitué des fonctions f qui sont des primitives de fonctions Lebesgue sommables
1€ :

feAC([a,b]) & f(z) =c+ /x o(t)dt, telle que 3(p € L'(a,b)).

Définition 1.2.3. [}/ Pour n € N on note par AC"[a,b] l'espace des fonctions a valeurs
complexes f(x) ayant des dérivées jusqu’a 'ordre (n — 1) continues sur |a,b] telles que

f(nfl)(;p) € AC(la, b)), c’est-a-dire

AC™[a,b] = {f [0, — C et (D" f)(x) € AC([a,b]), (D %)}.

En particulier on a AC([a,b]) = AC([a,b]).
Définition 1.2.4. [J] L’espace noté AC}([a,b]) défini par

ACH([a, b)) = {g ¢ [a,b] —> C : 5" [g(x)] € AC([a, b)), 6 x%}.

est appelé espace des fonctions absolument continues avec un point qui égale 1.

1.2.3 Espaces des fonctions continues

Définition 1.2.5. Soit Q = [a,b](— x<a<b<+ x) etne N={0,1,2,...}.
On note par C™(QY) lespace dse fonctions f qui leurs dérivées d’ordre n sont continues sur
Q,muni de la norme :

1/l = Ziplf Plle = Sig max | ¥ (@)], £

En particulier sin = 0 ,0°(Q) = C(Q) lecpace des fonctions continues sur 2 ;muni muni
de la norme :

Iflle = max| £()

Théoréme 1.2.1. (Arzela-Ascoli)[3] Soit A un sous ensemble de C([a,b],R), A est relati-
vement compact dans C([a,b],R) si et seulement si les conditions suivantes sont vérifiées :

1. L’ensemble A est borné i.e il existe une constante k > 0
tel que
lf()]| <k, pourtout z € [a,b] etfeA.



2. L’ensemble A est équicontinue i.e pour tout € > 0, il existe § > 0
tel que

[ty —ta] <6 = ||f(t1) — f(t2)|| <&, pourtout ti,ts € [a,b]et fe A.

1.3 Fonction Spéciales

Dans cette section, on expose deux fonctions principales pour le calcul différentiel non
entier. On définit la fonction Gamma et Béta d’Euler, puis on introduit quelques propriétés
liées a ces deux fonctions.

1.3.1 Fonction Gamma d’Euler

L’une des fonctions de base du calcul fractionnaire est la fonction Gamma, qui permet de
prolonger la notion du factorielle aux valeurs non entiéres, la fonction Gamma est appelée
aussi fonction factorielle généralisée.

Définition 1.3.1. [6] Pour tout nombre réel v tel que o > 0, on définit la fonction Gamma
d’Euler ' par ["intégrale suivante

+o0
['(a) = / t*le7tdt, a>0.
0

Proposition 1.3.1. Pour tout o > 0, la fonction Gamma satisfait les propriétés suivantes :
1. F(a +1) = ol ().
F'n)=(m-1)! n>1.
3. F(a +n)=ala+1)(a+2)...(a+n—1)(«a).

Exemple 1.3.1. On donne sur cet exemple quelques valeurs particulieres de T'(«)

. r(1) =T(2) = [, et ldt =

= 2f+oo e dt = /7. (L mtegmle de Gauss)
° F(TL+ 2) _ (n)!

22np)

1.3.2 Fonction Béta D’Euler

L’autre fonction importante dans le calcul fractionnaire est la fonction Béta d’Euler.

Définition 1.3.2. [6/ La fonction Béta est un type d’intégrale d’Euler définie pour tout
couple (o, B) € R%. par

1
B(a,ﬁ):/o (1—t)>" " at.

Remarque 1.3.1. La relation entre la fonctions Gamma et la fonction Béta est donnée par
I’expression suivante
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1.4 Notions Préliminaires en Calcul fractionnaire

L’intégration d’ordre fractionnaire est une généralisation de la notion de l'intégration
d’ordre entier.

1.4.1 Intégration et dérivation Fractionnaire au Sens de Riemann
Liouville
Définition 1.4.1. L’intégrale fractionnaire d’ordre a(a > 0) de Riemann-Liouville d’une

fonction f € Cla,b] est donnée par

IO = 57 [ =97 Fs)as. (1)

(cv

Définition 1.4.2. La dérivée fractionnaire d’ordre a(a > 0) au sens de Riemann-Liouville
d’une fonction f définie sur un intervalle [a,b] de R est donnée par

(EDEF)(t) = (DgIgf)(t) (1.2)
1 d\" [* a1
_ m(@ /a(t—s) F(s)ds. (1.3)

oun = [a]+1, et [a] est la partie entiére de a. En particulier si « = 0, alors
("EDaf)(8) = (L)) = f(t)

Sia=mn €N, alors
(D)) = f()

St de plus 0 < a < 1, alorsn =1, d’ou

(RED2f)(t) = ﬁ (%) /:(t — )" f(s)ds.

Exemple 1.4.1. Soient a > 0,3 > —1 et f(t) = (t — a)®, alors

IO = [t
DN = et
En effet, t
IO = g [ = =i (1.4)

En effectuant le changement de variable

s=a+u(t—a), 0<u<l1

11



alors devient
(t o a/)orhg

120 = /0 (1= w)ouldu.

En utilisant la définition de fonction Béta et la relation entre la fonction Béta et la fonction
Gamma, on trouve

i = Pl ap
I'(B+1) o
fBrarnt O

En particulier si =0 et a > 0, alors la dérivée fractionnaire de Riemann Liouville d’une
constante est en général non nulles. On a

("D50) = gyt @)

ol c est une constante.
Enoncons maintenant quelques propriétés des opérateurs I* et D®.

Proposition 1.4.1. Sia >0 et > 0, alors

(LIZHE) = (277
= (LI3N).

Proposition 1.4.2. Soit a« > 0 et f € Cla,b|, alors
(""DRIZ () = f(t).
Proposition 1.4.3. Soit « > 0 et f € Cla,b], alors

I("EDRf)(t) # f(2).

1.4.2 Dérivation Fractionnaire au sens de Caputo

Définition 1.4.3. Pour une fonction f € C"[a,b], et a > 0. La dérivée fractionnaire au
sens du Caputo de f est définie par :

(“D)(t) = (L™*Dyf)(t)

1

= — t — )" (§)ds.
e At ARAROL

oun = [a] + 1, avec o] est la partie entiére de .

Proposition 1.4.4. :

12



1. (“DgIg NH)(t) = f(1).
2. (°D%) =0, ceR.
3. CDXCDEf(#)) = (DB f)(t) =C DE(CD2f(t)). ot f € Cta,b], 0 < a<1,0< B <
,0<a+p<1.
Démonstration. En effet pour [I]
(“DeIZf)(t) = I;°DyIZ f(t)
1 DRIg 15" f(t)
= L)
= f(b).
en effet pour [2] ,
(“Dge) = LDy
— 10
— 0.
en effet pour 3],
“Dy(CDIf(t)) = I, “Daly *D,f(t)
= 1,7PPD I, D f(t)
On sait que I?DLf(t) = (DL f(t). Alors,
LDl = LD D
— LD,
D’ou,
“D(“DIf(t) = “Df(t))
“DI(“Dgf(t))-

Lemme 1.4.1. Soient m — 1 < o <m,m € Nx, et f € C"[a,b]. Alors

CDOf(t) =0 f(t) = X5 ei(t —a) Ve, €R (1.5)
Démonstration. On a d’apreés la définition de Caputo :

CDf(t) = 17 (D f(1)).
Alors,
1;7(Dg f(t) = 0. (1.6)
On applique 'opérateur D'~ dans ’équation , on trouve
(D' f(£)) =0
Donc,
ft) =2t et —a) Ve, €R

13



Relation entre La Dérivation de Riemann Liouville et de Caputo

Proposition 1.4.5. Soient m — 1 < a <m,m € Nx, et f € C"|[a,b] alors

°pp = (D) £(t) - 5t U 0 ),

Démonstration. On sait que

() = 1) — s = o),

7!

On applique opérateur #2'D® de Riemann Liouville, on obtient
RLDIITF(t) = DPIIRDY (1)
= DJ'IJ I D f(t)
= 17D f(t)
= “DRf().

D’autre part, on a

g o) = D - S o)
= “D2f(t).

I3 f(a / an /tl & /tQ dt?’.../a f(t”)cii

]

1.4.3 Intégration et Dérivation Fractionnaire au Sens de Hadamard

L’intégrale fractionnaire de Hadamard était basée sur la généralisation de la niéme inté-

grale suivant :
Tdty [dty [ dt ¢ dt,,
tn—1 n

Définition 1.4.4. [T}/ L’opérateur intégral fractionnaire de Hadamard d’ordre a > 0 ; pour
une fonction f € C([a,b]) est défini par :

1 ¢ a1 ds
WI5(0) = | T(a) B8 I a0 (1.7)
f(t>7 Q=

ou I' est la fonction Gamma d’Fuler.

14



Remarque 1.4.1. Dans la formule , en prennant a =1, gl sera noté ylI®.

Proposition 1.4.6. Soient f,g € C([a,b]), pour a >0, >0 et A,BER, ona
1. (Propriété de semi groupe) gI®(gIP f)(t) =g 1P (g 12 f)(t) = (g 1P £)(1).
2. (La linéarité) gIS[Af(t) + By(t)] = Al f(t) + Bullg(t).

Démonstration. 1. la démonstration est obtenue par le calcul direct en utilisant la fonction
Béta. En effet,

WG = s [ (m;)w (1))

~ i [0 [ () (osz)

En posant

on obtient

¢ a+6—1
= (log =
(og u) B(a, B)

£\ T (0)T()
(logﬁ) Tt )

En remplacant la derniére formule dans ([1.8)), on aura

t a+p—1
WIS (a2 F)(t) = m / <1og£) f (u%“) — IO (1),

d’ou le résultat.
En utilisant la propriété précédente, on a

HIS (I f)(t) =g ISP F(t) =g 15T f(t) =5 10 (01 F)(2)

2. Ici, il suffit d’utiliser la linéarité de 'intégrale classique pour montrer le résultat.
m

15



B—1
t

Exemple 1.4.2. On considére la fonction f définie par f .t — (log —) .
a

L’intégrale fractionnaire de Hadamard s’écrira

w25 = o2 (e )

ps—1 t a—1
t 1 t s\BA-1ds
1 (1og2)  =——{ (l0gt (1 —) il 1.10
Ha(oga) F(a)/(l(ogs) 0g . (1.10)

pour évaluer cette intégrale, on effectuant le changement de variables

En effet

Alors devient

t
7%(1 “\8-1
H “(Oga)

( t)““"l
log — 1
a B—1 a—1
~L [ PN = )y

M(a) [ e

En utilisant la définition de la fonction Béta et la remarque|1.53.1 on obtient

aly f(t) = Blgij) <1Og£)a+ﬁl

Définition 1.4.5. [16/[13] Soient f € ACY (a,b)eta > 0,0 = x4 . La dérivation fraction-

naire au sens de Hadamard de la fonction f est définie par
DRf(t) = 0“1 f(t)

- () o

< e () [ () 0

oun—1<a<nmn=][al+1.

Dans la proposition suivante, on trouve une relation importantes entre la dérivée frac-
tionnaire au sens de Hadamard avec l'intégrale fractionnaire de Hadamard.

16



Proposition 1.4.7. Pour a >0 et f € Cla,b], on a
DI f(1) = £ (1),

(1.12)

Ainsi, d’aprés ((1.12)), Popérateur de dérivation fractionnaire au sens de Hadamard est
un inverse gauche de 'opérateur d’intégration fractionnaire au sens de Hadamard du méme

ordre.

Proposition 1.4.8. Pour a >0 et f € C[a,b], on a
1D f(t) # f(¢).
. t\B—1
Exemple 1.4.3. Soient a >0, 5> 0 et f(t) = (log E) alors

D) = % (10g 3>ﬁ

AN
D2 f(t) = o (I:a (102 )
a
D’apres (@, on obtient

o ¢ Bfl__ F(ﬁ) " n—a+p—1
& (log 5) “Th-atp) (10g &>

Dgf(t) = &)5” (log 2)”—a+6—1

n—a+p-1 n—a+8-1
St (log E) = ti (log E)
a dt a

En effet,

Alors

Sin=1, ona

Pour n =2, on obtient :

) ¢ n—a+p—1 . " B+n—a—2
0% | log — = 0(f+n—a—1)(log-
a a
t

= B+n—a—-1)B+n—a—-2) (loga

Pour n quelconque, on a

0" (10g£>na+ﬁ1:(ﬁ‘l‘n—a—1)(5+n—a—2)...(6—a) (1og2)

17
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Alors devient :

- 10,

Dart) = I'(n—a+pB)

D’apres la propriété I'(z + 1) = 2I'(z), on trouve

'n—a+p)=F+n—a-1F+n—a—-2)...(8—a)I'(f—a)

Dy f(t) = % <log 2)5041

En particulier, si § = 1 et a > 0, alors la dérivée fractionnaire de Hadamard d’une
constante est en général non nulle

1 t\ “
D% = ———— | log—
a® ['(1l—a) (Oga>

Proposition 1.4.9 (7). soit« > 0,n=[a]+1 et 0 < a < b <o . légalité (DS f)(x) = Oest
vérifiée si et seulement si

Donc,

flr) =2, Ci (log 0) "

ou C; € R(i = 1,...,n) sont des constantes arbitraires. En particulier, si 0 < o < 1, la
relation (D% f)(z ) = () est satisfaite si et seulement si ,f(z) = C (log 2)*"" pour tout C € R.

Pour montrer la proposition on a besoin du lemme suivant :

Lemme 1.4.2. Soit g : [a,b] — R une fonction et n € N*,

Alors §"g(z) = 0,si et seulement si g(x) = Xp_)dy (log %)k , ot les dk sont des constantes
réelles pour tout k =0,--- ,n.

Démonstration. supposons que les hypothéses de la proposition sont satisfaites.
on a,

(Dgf)(x) =0,
signifie que

51" (z) = 0.

Alors d’aprés le lemme précédent, on a

(7)) = izden (1og %)

ol ¢, € R pour tout k=1,2,---,n
On applique I'intégrale fractionnaire de Hadamard d’ordre a aux deux membres de I’équation

18



précédente , on obtient

(@) = Sole (15%) (@)

a+k+1
- I'(k+1) 7N\ atk+1-1
- sl o)
k_ockf(a +Ek+1) 08 a
n—1 F(k')

1 €T a+k
0T(a+ k1 1) " <Og5> ’

Par suite,

B ['(k!) x\atk
_ mn n—1 d
=0 (Zkzor(a tE+D) " (10g a) )

_ I'(k!) Ttk
— n—1 n (] d
0Tt k4 1) ( ©8 a)
et (R . MNa+k+1) <1 g)oﬂrk—n
T4+ k+1) "T(a+k+1—n) %

1 F(kl) . (10 x>a+k—n
Dla+k+1—n)" %4 .

Si on pose i = n — k, on obtient

fl) = T F(”—_”'Z)c (106 7)™

ou

Réciproquement, si .
@) =20 (g =)
a

on applique la dérivée fractionnaire au sens de Hadamard aux deux membres de 1’équation
précédente, on obtient

(Def)(@) = <D§E?:101 <log5>w>

e, (Dz: (10g g)“‘i)

= 0.
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Lien Entre la Dérivée Fractionnaire au Sens de Caputo et Celle au Sens de
Hadamard

Soient y € AC)[a, b, > Oetn = [o] + 1. Alors :

Dy () = e [£(a) ~ 51 72 (105 ) ], (117

7!

Cas particulier, si 0 < a < 1, on a :

‘D f(x) = cDg[f(z) = f(a)] (1.18)

1.5 Quelques Théorémes de point fixe

1.5.1 Théorémes de point fixe

Les théorémes de point fixe permettent d’assurer ’existence de solutions d’un probléme
donné en le transformant en un probléme du point fixe, et en fournissant des conditions
suffisantes pour les quelles, une application donnée admet des points fixes.

Théoréme du Point Fixe de Krasnoselski-Zabreiko

Théoréme 1.5.1. Soit (X,|| - ||) est un espace de Banach. F' : X — X un opérateur
compleétement continue et A : X — X est un opérateur linéaire borné tel que 1 ne soit pas

une valeur propre de A. De plus, si
- ||[Fx— Az|
lim — =
lall—oo ||

0. (1.19)

Alors F' admet un point fixe dans X.

Principe de Contraction de Banach
Théoréme 1.5.2. [17] Soit (B,d) un espace métrique complet, et soit f : B, — B, une
application, qui pour tout x,y € B,, vérifie

d(f(x) — fly)) < kd(z —y) avec 0<k<1.

Alors, f admet un point fize unique.

Théoréme du Point Fixe de Krasnoselski

Théoréme 1.5.3. [Z1] Soit M un sous-ensemble fermé, borné, conveze et non vide d’un
espace de Banach X. Et soient A, B deux opérateurs tels que :

1. Ar+Bye M Vz,ye M,

2. A est compact et continu,

3. B est une application contractante.
Alors il existe z € M tel que z = Az + Bz.
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Alternative Non Linéaire de Leray Schauder

Théoréme 1.5.4. [§] Soit X un espace de Banach et K un sous ensemble convere non
vide, soit U un sous ensemble ouvert non vide de K, 0 € U et T : U — K un opérateur
compléetement continu, alors une des assertions suivantes est vérifiées,

1. L’opérateur T admet un point fize dans U, soit,
2. 3N € (0,1) et x € OU tels que x = \T'(x).

1.5.2 Lemmes auxiliaires

Lemme 1.5.1. Soient x € C([1,¢e],R) et a > 0. L’équation D*x(t) = 0 admet une solution
générale donnée par : ‘
z(t) = XLy ci(logt)*™

ov eERI=1,2....netn—1<a<n, n=lo+1
Lemme 1.5.2. [18] Soient x € C([1,¢e],R) et pour tout o > 0, on a
I°D(t) = z(t) + X1 c;(logt)* ™

o €RI=1,2,....netn—1<a<n, n=/[a]+1.
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Chapitre 2

Probléme aux limites fractionnaire du
type Hadamard a trois points

2.1 Introduction

Dans cette section, nous étudions le probléme aux limites a trois points suivant

Dex(t) = f(t,z(t)),1<t<el<a<?2 -
{ z(1) =0,z(e) = Bz(n),1 <n<e, (2.1)

ol

e D% est la dérivée fractionnaire d’ ordre o au sens de Hadamard.

e f:[l,e] xR — R est une fonction continue donnée et § est une constante réelle.
Notre objectif est d’établir un résultat d’existence pour le probléme via le théoréme du
point fixe de Krasnoselskii-Zabeiko.

2.2 Forme intégrale du probléme aux limites

Lemme 2.2.1. Pour 1 <a <2 et (€ C([1,¢],R), Le probleme aux limites

Dex(t) = ¢(t),1 <t <e,
{ 2(1) =0, x(e) = Bz(n), (2.2)

est équivalent a [’équation intégrale suivante

ol

(logt)*~ a L¢(s) )
+ 1—B(logna 1 Fa / s (23)

- ) (o) fw

ou B(logn)*~' #1
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Démonstration. D’aprés le Lemme|1.5.2] on peut écrire la solution de ’équation (2.2) comme
suit : . .
1 AN
x(t) = (o) /1 <log g> %ds + c1(logt)* ! + co(log t)* 2. (2.4)

avec 1 < a < 2. En utilisant la condition aux limites, z(1) = 0, on obtient :

a—1
z(1) = L /11 <log 1) @ds + ¢1(log 1)* ! + co(log 1)*72

S

ce qui entraine que c3 = 0, car a — 2 < 0. Par suite x(e) = Sx(n) ce qui entraine que

a7 —5<1<1>gn)a—1 {F(ﬂa) /j (10g g)a_l @ds N ﬁ/l (log S)a_l %S)ds} ‘

Ainsi, en substituant les valeurs de ¢; et ¢z en (2.4) on obtient (2.3). Inversement par un
calcul direct, on peut établir que I’équation (2.3)) satisfait le probléme ([2.2). Ceci compléte
la preuve. O

D’aprés le Lemme [2.2.1} 1a solution du probléme([2.1)) peut s’écrire sous la forme :

o(t) = %a)/lt (logt)a (s a() )

it [ (s e

i, (o) O] e

Notation : On note par &€ = C([1, ¢, R) 'espace de Banach de toutes les fonctions définies
de [1,e] — R continues muni de la topologie de convergence uniforme avec la norme définie

par - |[zf| = sup{|z(t)| : t € [1, ]}.

2.3 Resultat d’existence

Théoréme 2.3.1. Soit f une fonction continue, vérifiant f(a,0) # 0 pour a € [1,€], et

1
lim Jit.o) = A1), Amax = max [A(t)] < 5

|| —oc x te(l,e]

Avec

_ 1 [ 1+ B(logn)™
I'(a+1) 11— B(logm)—t1”

Alors le probleme auz limites admet au moins une solution non triviale sur [1,e].
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Démonstration. On définit 'opérateur F' : £ — & par

Fa(t) = ﬁ /lt (logé)alwd,ﬁ

T —<l;((glf)?ga7;)a1 [F(ﬁa) /177 (l"g g>a1 Mds (2:6)

_ ﬁ/j <log§>a_lwds}, te(l e

Il est clair que 'opérateur F' est bien définie. On cherche les points fixes de l'opérateur F
sur 'espace de Banach £ en utilisant le théoréme de point fixe de Krasnoselsk’ii-Zabreiko.
La preuve sera donnée en plusieurs étapes.

Etape 1 Montrons que F' est continue.
Soit (x,), C € une suite convergente vers x. Pour tout ¢ € [1,¢e], On a

|Fxn<>— ()

(10g )  fls,mn() = fls 26,
= |
)

IN

N / (1og€ o1 /(s 3n(5) — S5, 5(5)) ]

S S

||f<s,xn<s>> ~ oD [ T o]

IN

Ainsi
[ Fx,(t) — Fxt)| < 6[[f(s,za(s)) — f(s,2(s))]-

Or, on sait que toute suite convergente est bornée, alors il existe un nombre réel positif
k> 0 tels que ||z,|| < k et ||z]| < k. Et par conséquent, f est uniformément continue
sur tout ensemble compact de la forme {(¢,x) : t € [1,¢], ||x|| < k}. Par suite

|Fx, — Fz|| <e,¥n > ny.

Ceci montre que F est continue.

Etape 2 Pour tout R > 0, considérons l’ensemble fermé
C={zel/|=zl <R}

Montrons que F(C') est relativement compact dans ’espace de Banach £. Posons fi.x =
max{|f(t,x)| : t € [1,¢],||z]| < R} alors, on a
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IN

Fo) < o [ (1gt) LUECIY

* gl (o) e

N ﬁ/j(bg )a tf (s, S())\ds]

< e [ 0BT

Pla+1) L 1= Blogn)?|
ainsi ||Fz|| < fmaxd et par conséquent F(C) est uniformément borné.
Soient 11,7y € [1,¢€], avec 71 < T, On a

|Fa(mp) — Fa(m)|

max a-l1] m a-l]
f | / log 7—2 —ds - / (log n ) —ds|
. s s

(lOng) (108;71) B K nye-11
e B(logn)a*1 [F(a)/l <10g§> gds

1 ¢ eye11
ok )
F(a)/l (Ogs s |
max 71 a—1 a—171
< f \ log2> - <log2) ]—ds]
s s

max a1 ]
+ f |/ —= —ds|
1

(long)”‘ (long) a-lr B n nye-11
 fnasd — B(logn)o—1 [F(a)/l <logg> gds

ol <10g |

IA

< fmax L Tz/ﬁ + [(log 72)° — (log,)°]
(log(Tz) — (logm)*™" rS(logn)* — 1
T foa 5(108;77)“ ! [ Pla+1) ]|'

le second terme de la derniére inégalité est indépendant de x et tend vers 0 lorsque
T1 — Tp ce qui entraine que F'(C) est équicontinue. Et d’aprés le théoréme d’ Ascoli-
d’Arzela, on conclut que I’ est une application complétement continue sur £. Ce qui
achéve la preuve de I’étape 2.

Etape 3 Dans la suite, on va considérer le probléme aux limites suivant
Dezx(t) = ANt)z(t),l <t<e

2(1) = 0,2(e) = Bx(n)

(2.7)



Définissons un opérateur A : £ — & par

(logt)*! [ B <1og g)“l A(S)S:L‘(S) ds

L’opérateur A linéaire et borné. En effet,

1. On a, pour tout ¢ € [1, €]

Az +y)(t) = ﬁ /j (log §>0‘—1 Als)lz + y](s)ds

L[ 61 A8)y(s)
- W/1 (logg) ds}
= A(z)+ A(y).
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Ainsi que :

Alka(t)) = L) /1 t (1ogf)a1 CASLIC

_ k[ﬁ/j_(logé)al(%)ds
- i ), (ed) ()

~ e, o)
= kA(z(t)), tell,e

Alors A est linéare. On a pour tout t € [1,e] En effet,

JA@ O < Amax Sup} [ /1 t (@E)H ()]

S

te(l,e
g7 et |z(s)]
* T Bgr [<>/1(10g5> s @
1 a Ulx(s)]
) / s
1 + B(logn)”

- Am‘“r(au)“ﬂ ~Blogne 1]
= Amax0Z]|
< ApaxOR
< R.

Ceci montré que A est linéaire borné.

Etape 4 Montrons que 1 n’est pas une valeur propre de A.
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Supposons que le probléme aux limites (2.7) admet une solution non triviale x. Alors,

Izl = [|A@)] = sup [Ax(t)|

te(l,e]

t t a—1
Amax SUp [/ <log —) ‘x(sﬂds
te[le] L J1 S S

e [ ey

1- (a

1
B(log
1 € a=1 |z(s)|
+m/1< ) ( s
1

IN

1+ B(logn)
< Mt T - a1
= Auwcz]
<l

cette contradiction montre que le probléme aux limites (2.7) n’a pas de solution non
triviale, 1 n’est pas un valeur propre de A

Etape 5 montrons que l'assertion ([1.19]) est vérifiée. Reste a établir que :

P-4
lim —————— =
lall—oo [l]]
: flt,x) S
Comme, lim,|—o = = A(t), alors pour tout € > 0, il existe M > 0, tel que
x

|f(t,x) — AN(t)z| < e|z| pour |z|> M.

Posons M* = maxci o {max|s<a |f(t, )|} et choisissons R" > 0 de telle sorte que
M* 4+ ApaxM < €R'. Notons par :

={tel,e]:|zt)| < M}

L={te[le:|a(t)] > M}).

Pour tout « € £ avec ||z|]| > R,/ t € I, on a

[F(t2) = A(O)x] < [f(E2)] + Amax|2|
S M* + A1’[13,)(]\4
<eR' <egl|z].

Pour toute z € € avec ||z| > R/, t € I, on a

[F(t,2) = A(t)z] < ellz]].
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Par suite, pour tout z € £ avec ||z|| > R/, on a

[f(t,2) = M)z < ell]

On obtient alors :

[Fz— Az| = tit[llp}l(Ffr—Ax)(t)l
L\ (s 0(s)) — Als)a(s)]
< o [ray [ () S

ogt)* ! B " a=1|f(s,z(s)) — \(s)x(s
T St [y, (o)

b L [ (o) )Xot

['(a)
1 1 + B(logn)~
< )\max 1+
N T 4L T Fiog e
= EAmaxd|| |-

et passant a la limite, on trouve

N i

|| —s o0 Izl

=0

par conséquent, le Théoremd2.3.1] garantit 'existence d’au moins une solution non
triviale au probléme aux limites (2.1).

m
Exemple 2.3.1. on considere le prombleme auz limte suivant :
D3%gx(t) = f(t,x(t)),1 <t <e 1<
(2.9)
z(1) =0,z(e) = 3z(2)
Icioo = 2 3 =2 n=2cetd~ 6.3938692.50 f(t,x) = 5(t* + 1)x(t),t € [1,€] ensuite

Amax0 =~ 0.4194527 < 1, avec § =

1 1+ B(logn)”
[ + B(logn) , et donc par le Théoreme

Fla+1 L 1= p(logn)*|
le brobleme auz limite (2.9) a au moins une solution.
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Chapitre 3

Probléme aux Limites avec Conditions
intégrales

3.1 Introdution

Les problémes différentiels a conditions intégrales ont été abordés par plusieurs auteurs.
Dans ce chapitre, nous nous intéressons a I’étude d’un probléme différentiel d’ordre frac-
tionnaire avec des conditions initiales intégrales. Sont basés sur quelques idées classiques
de la théorie du point fixe. se termine cet section par quelques exemples. Nous étudions le
probléme aux limite suivant :

Dezx(t) = f(t,z(t), 1 <t<el<a<?2

(3.1)
z(1) = 0,z(e) = Pz(e) = ﬁ i (log f)ﬁ_l @ds,ﬁ >0
Ou
o D% est la dérivée fractionnaire de Hadamard d’ordre «.
o [P est I'intégrale fractionnaire de Hadamard d’ordre 3.
e Et f:[l,e] x R — R est une fonction continue donnée.
3.2 Forme intégrale du probléme
Lemme 3.2.1. Etant donné y € C([1,¢e],R), l'unique solution du probléeme
Dex(t) =y(t),l <t<el<a<2
o (3.2)
z(1) = 0,z(e) = IPz(e) = ﬁ 7 (log ¢) xis)ds,
est donnée par
I'(8+ a)(logt)*™
t) = Ioy(t [1ey(e) = 1y(e) . 3.3
o) = 1) + 5 oy o (17706 = 10 (33
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Démonstration. [20] En composant avec l'intégrale de Hadamard dans I’équation différen-
tielle du probléme (3.2]), on obtient

x(t) = I%Y(t) + ¢ (logt)* ™ + cy(log t)* 2. (3.4)
Et en utilisant les conditions aux limites donnée, on trouve cy = 0, et

IPy(e) + o = I7 (I%y(s) + cr(logt)* 1) (e)

e B—1 a—1
= IPTy(e) + L / <10g E) (log )™ ds
1

INEe) s S
()
= JPta
AR EE
ce qui donne
['(B+ «)
- B*oy(e) — I } 3.5
@ = TG ) =Ty e — I (3.5)
En substituant les valeurs de ¢; etcy trouvées, dans (3.4)), nous obtenons (3.3)). O

D’abrés le Lemme la solution du probléme peut étre écrite sous la forme suivante :

o) = %a) /1 t (mgé)a_lwds

I'(B+ «a)(logt)* 1 )/1e (log §>ﬁ+a—1 f(s,x(s))ds

(
T TETa) I {r(ma s

_ ﬁ /16 <log S)a_l ‘}C(&Tx(‘s))ds],t € [1,€]. (3.6)

3.3 Reésultats d’existence

Nous définissons l'opérateur A : C([1,¢e],R) — C([1,e],R) par :

Ax(t) = ﬁ /lt (log é) " Mds
I'(B+ a)(logt)> 1 1 € e\Ate-1 f(s,z(s
- 15(&1 025 —gr)(a> [F(ﬁ +a) /1 () wds
N ﬁ/l (1Og S)a 176&9}, te(l e (3.7)

Et dans la suite, on établira quelques résultats d’existence et d’unicité a partir des théorémes
de point fixe.
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3.3.1 Reésultat d’existence via le Théoréme de point fixe de Banach

Dans cette sous-section, nous présentons notre premier résultat traitant I'existence et
de l'unicité de la solution pour le probléme (3.1)) en utilisant le Théoréme de point fixe de
Banach. Posons,

__ L5 +a) 1 1
YT T+ D) T(Bta) - <F(ﬁ—|—a—|—1) " F(a+1)) ‘ (3:8)

Théoréme 3.3.1. Soit f: [1,e] x R — R une fonction continue. Supposons que
(H1) Il existe une constante Ly > 0 telle que

|[f(t,x) — f(t,y)| < Li|lx —y|, pourtout te[lye] et z,yeR.
St
Lyw < 1. (3.9)
alors le probleme aux limites fractionnaire admet une solution unique sur [1,e].

Démonstration. Nous transformons le probléme en un probléme de point fixe x = Ax
ou 'opérateur A est défini par . En utilisant le principe de contraction de Banach , nous
montrerons que A admet un point fixe.

Posons mawxcp ¢| f(t,0)] = M < oo, et choisissons r

B, ={x € C([1,e,R) : ||z]| < r}.

Etape 1 Pour z € B,, nous avons

[ Az

< (e ) (Igi)MM“

(5 + a)(log ) a1 | f(s,z(s))]
F(5++ @) —gF(a) [ @4_@ / < ) fds

b (o) Dl

y m{%/ (1ogf) ' U626) ~ S0, 01 4 0,
T telle () J S

>Mw

On montre que AB, C B,, ol

SCET I R >ﬁ+a1 rfsxs))—f(st,onﬂf(t,on) .

N ﬁ/l (log§>a—1 (f(s,2(s)) — S( ]}

= (L”*M’t%%’é{ﬁ/j (lgt> 1 (F((BB )>(log13)< >>[ <51+ >/ (les)
= (L1T+M)%?§{r<(lzgi);+(Pr((ﬁﬁ++ao)4§loglf 1( 5+0¢+1)+F(a1—1— 1))}

= (L17”+M)wS'r.
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ce qui prouve que AB, C B,.
Etape 2 Soit x,y € C([a,b],R), alors, pour t € [1, ¢], nous avons

|(Az)(t) — (Ay)(D)]
£\ £ (5,2(5)) = f(5,9(9))]
< el /(o) o
lo 1 ¢ e\Ata—1|f(s,x(s)) — f(s,y(s
+ (F((ﬁJr )§ glf)(a)) [F(B+a>/l <1()_gg) L ())Sf( y( ))|d8]}
< Lulle — yll ma { <>/( i) s
a)(lo N eya-!
bty e o) e
1 € 11
+ m/l <log ) Sds]}
— Lz -yl
Par suite,

|Av — Au|| < Lyw||lu — .

Et comme Liw < 1 d’aprés (3.9)), A est une contraction. En conséquence du Théoréme
du point fixe de Banach, I'opérateur A admet un point fixe qui correspond a la solution

unique du probléme (3.1).
O

3.3.2 Reésultat de 'existence via le théoréme de Krasnoselskii

Théoréme 3.3.2. Soit f : [1,e] x R — R une fonction continue satisfaisant les hypothéses
susvantes :

(H1) 1l existe une constante Ly > 0 tel que
|f(t,z) — f(t,y)| < Lilx —y|,  pour toutt € [1,¢e],z,y € R.
(H2) 1l existe une fonction € C([1,¢e],R+), tel que
|f(t, )| < p(t),V(t,u) € [1,e] xR.

Alors le probleme au limites admet au moins une solution sur [1,e], (H1) : f:[1,€] x
R,une fonction continue
(H2) :|f(t,z)] < p(t),V(t,u) € [1,e] xR, et p € C([1,e],R+), alors le probleme 3.1 a au

moins une solution sur [1,e] Si

LB+ a) 1 1
F(5+a)—F(a)<F(6+a+1) - (a+1)> <1 (3.10)
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Démonstration. On a supep o |14(t)| = ||p||, choisissons 7 une constante réelle telle que
72> [,

ol w est définie par la relation (3.8)). Soit By = {z € C([1,¢],R) : ||z|]| < T} un sous ensemble
de C([1,¢],R). Définissons les opérateurs P et @) sur By par

(Po)(t) — ﬁ [ (logé)alwd&

I+ a)(logt)*! 1 ¢ op & Bra=1 f(s,x(s)) 5
@0 = 75wty lrEra ), (o) s

_ ﬁ /1 (1o g)a_l —ﬂs’;ﬁ(‘s))ds} .

Etape 1 Montrons que Px + Qy € By pour tout z,y € Br.
Soient z,y € By, on a

1Pe+Qul < Il [ (og%)" 2o
(B + a)(logt)*! 1 ¢ Bta-11
N T+ - “Fa) a>/1 (oeg)  Sas
+ / <log§>a 11ds]}
< Hun
< T

Ce qui entraine que Px + Qy € Br.
Etape 2 Montrons que P est continue et compact.
1. La continuité de f implique que 'opérateur P est continu.

2. Reste a montrer que P est compact. On a

[l
P < 170
1Pzl < INa+1)

ce qui implique que P uniformement bornée sur B7. Prouvons dans la suite la
compacité de I'opérateur P.
On supy e exna [f (7)) = f < oo, 1,7 € [1,¢] avec 71 < 7. Ce qui entraine
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que

|(P$ (Pl’)( )|
< \/ (1 1ds—/l2 <log%> 1cl5|
e ey
o e
f

— m [|(log 1) + (log 72 — log 71)® — (log 72)“|

+ |(og 7 —logm)°]].

Lorsque 75 — 7y alors |(Px)(m) — (Px)(m2)] — 0 ce qui implique que P est
équicontinu. Ainsi P est relativement compact sur By, et par le Théoréme Ascoli-
Arezla, on en conclut que P est compact sur By.

Etape 3 Montrons que () est une application contractante.
L’hypothése (H1) et (3.10)) entraine que @ est une application contractante.

Ainsi, toutes les hypothéses Théoréme de Kranoselski sont satisfaites, ce qui entraine que le
probléme aux limites (3.1) admet au moins une solution sur [1, €]. O

3.3.3 Reésolution via alternative non Linéaire de Leray Schauder

Théoréme 3.3.3. Soit f : [1,e] x R — R wune fonction continue. On suppose que les
hypotheéses suivantes sont vérifiées.
(H1) Il existe une fonction continue non décroissante V : [0, co[— [0, co[et une fonction
p e C([1,e],RY) tel que |f(t,u)] < p(t)¥(Ju|) pour tout (t,u) € [1,e] x R.
(H2) 1l eziste constante M > 0 tel que

M

— > 1
v(M)|pl K

avec

1 (B+ ) 1 1
K_{rm+w*wﬁ+@trm»(mﬁ+a+n+rm+w>}

Alors le probleme aux limites fractionnaire a au moins une solution sur [1,e].

Démonstration. la preuve de ce théoréme sera donnée en plusieurs étapes

Etape 1 On montre que I'application A transforme les ensembles bornés en des ensembles
bornés dans C'([1, e}, R).
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Soit r un réel positif et B, = {u € C([1,¢],R),||lul]| < r} une boule bornée dans
C([1,¢e],R). Pour t € [1,€], on a

| Ax(t )I

1 t z(s))|
< log — —d
- tE[l e] P( /1 ( 8 S) N

* ) T T >/ S

%/ (10g )a LS (s, 8( ))|d8”
|

t a—1
(R [ (1) L,
te(le] ['«) 1 s s

()

< max H

W(lal)D(8 +a)(log )™ r 1 frq eysrail
T8 +a)) - I(a)) [r( )/1 <log ) 54

0
+ o ), (es8) ]}

m<||x||>||p||{r<a;+1>

IN

(B + ) 1 1
T Bro—T(@) <r(5+a+1> + F(a+1)) }

par conséquent d’aprés 'hypothése (H2),

1 (8 +a) L !
[ Az < \II(T)HPH{F(B o) T TB+a) —T() <r(5 Tatl) T+ 1)) } =T

Etape 2 Montrons que A transforme tout une sous ensemble borné en ensemble équicontinu

dans C([1, €], R).
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Soit 11,79 € [1,€] avec 7y < 73 et x € B,., Alors

|(Az)(72) — (Az)(m1)]

NS
U (r)|[plIT (B + a)|(log 2)* " —log 75)* ") 1 ¢ e\B+a-11
* : (+(B+ocg) T(a)) : [P(ﬁ+a) /1 (log§> 5

* F(loz) / (g 7)" tds}}
< ‘I’IQQ)H)Z)H{l/I [<logm%)a_ — (log%)a_l]édﬂ
B [ 1,2y L

U(r)||p|T(8 + a)|(log 72)*~" — log 75)* )| 1 e ey Bta—1 1
T3 +a) —I(a) [r(ﬁm) / (log 5) 30

bor | (o) )

Il est clair que |(Az)(m2) — (Az)(m)| — 0, lorsque 75 — 71 indépendamment de = €
B,.. Ainsi d’aprés le théoréme Ascoli-Arzela, 'opérateur A : C([1,¢],R) — C([1,¢],R)
est complétement continu.

+

Etape 3 Soit x une solution. Alors, pour t € [1, €], et d’aprés 'Etape 1, on a

1 ['(B+ «) 1 1
=] < \I'(HxH)”pH{F(B_i_a) + T(B+a)—T(a)) (F(6+a+ 1) + T(a+ 1)>}

ou
]

1 r'(B+a) 1 1
‘I’(||x||)||p||{p(3+a) + TBra)—T@) <F(B+a+1) + F(a+1)>}

D’aprés (H2), il existe M tel que ||u|| # M. Posons

U={ueC(l,e,R): |ul| <M}

Notons que l'opérateur A : U — C([1,¢],R) est continu et complétement continu. Le

choix de U, entraine qu’il n existe pas de u € U tel que u = A\Au, avec A € (0,1).
Par conséquent, grace l'alternative non linéaire de Leray-Schauder, On déduit que A admet
un point fixe u € U qui est solution du problém 1} O

Exemple 3.3.1. Considérons le probléeme suivant :

D32x(t) = g (smm—i— IL‘L”S) + \/+1 d<t<e,

(3.11)
z(1) = 0,z(e) = I'?x(e).
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Avec o = 3/2, [ = 1/2et f(t,x) = %(sinx—l— 1ﬁ§|3) + @ A partir de ces données,

nous trouvons que

1 n L'+ a) 1 n 1
w =
FB+a) TB+a)—T(a) \I'B+a+1) T(a+1)
B 16 — /7
o 3VT(2— 7))’
L . |z[® : lyl®

t,x) — f(t, < —|sinx+ —F— —siny+ ——| < Lz — y|.

|f(t,2) = f(t.9)] < 5 T+ 2] Y 1+|y|3| |z -yl
Avec L < % = 3‘(7;(3—\_/%‘/77), toutes les hypothéses du théorém sont satisfaites. Et, le pro-

bleme a une solution unique sur [1,e].
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Conclusion

L’objectif de ce mémoire est de donner quelques applications concernant les intégrales
fractionnaires et les dérivées fractionnaires de type Hadamard dans les équations différen-
tielles. On donne aussi quelques résultats d’existence et d’unicité pour certains problémes
aux limites en utilisant la théorie de point fixe.

Ce travail nous a permis de savoir I'importance du calcul fractionnaire dans le domaine des
mathématiques .
Mots clés : Intégrale fractionnaire, Dérivée fractionnaire, Problémes aux limites.
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