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Introduction

D ans l’analyse stoquastique, les équations différentielles stochastiques (EDS) jouent un rôle
trés important ; car on utilise les EDS pour modéliser et étudier des phénomènes naturelles.
Les équations différentielles stochastiques sont les équations qui régissent l’évolution de la plu-
part des prix des actifs financiers, elles peuvent être vues comme des équations différentielles,
ou comme des équations intégrales dans lesquelles interviennent des intégrales stochastiques
par rapport à un mouvement Brownien. Elles ont été d’abord étudiées par Itô, dans le but
de construire les diffusions (c’est-à-dire, processus continus et fortement markoviens dont les
générateurs sont des opérateurs différentiels du second ordre). C’est d’ailleurs dans ce but qu’il
a introduit le calcul stochastique.
Un point de vue plus moderne consiste à voir les EDS comme des équations différentielles ordi-
naires, perturbées par un bruit aléatoire. Pour une étude plus approfondie, nous suggérons par
exemple, la lecture de ([27], [36], [9]).

Dans l’analyse, la compréhension des phénomènes du monde réel et notre technologie sont
aujourd’hui en grande partie basées sur les équations aux dérivées partielles, qui seront notées
en abrégé EDP. C’est en effet grâce à la modélisation de ces phénomènes au travers d’EDP que
l’on a pu comprendre le rôle de tel ou tel paramètre, et surtout obtenir des prévisions parfois
extrêmement précises.
Quand sont apparues les EDP? Elles ont été probablement formulées pour la première fois
lors de la naissance de la mécanique rationnelle au cours du 17 ème siècle (Newton, Leibniz...).
Ensuite le "catalogue" des EDP s’est enrichi au fur et à mesure du développement des sciences
et en particulier de la physique. S’il ne faut retenir que quelques noms, on se doit de citer celui
d’Euler, puis ceux de Navier et Stokes, pour les équations de la mécanique des fluides, ceux
de Fourier pour l’équation de la chaleur, de Maxwell pour celles de l’electromagnétisme, de
Schrödinger et Heisenberg pour les équations de la mécanique quantique, et bien sûr d’Einstein
pour les EDP de la théorie de la relativité.
Cependant l’étude systématique des EDP est bien plus récente, et c’est seulement au cours
du 20 ème siècle que les mathématiciens ont commencé à développer l’arsenal nécessaire. Un
pas de géant a été accompli par L. Schwartz lorsqu’il a fait naître la théorie des distributions
(autour des années 1950), et un progrès au moins comparable est du à L. Hörmander pour la
mise au point du calcul pseudodifférentiel (au début des années 1970). Il est certainement bon
d’avoir à l’esprit que l’étude des EDP reste un domaine de recherche très actif en ce début de
21 ème siècle. D’ailleurs ces recherches n’ont pas seulement un retentissement dans les sciences
appliquées, mais jouent aussi un rôle très important dans le développement actuel des mathé-
matiques elles-mêmes, à la fois en géometrie et en analyse.
L’une des choses qu’il faut avoir à l’esprit à propos des EDP, c’est qu’il n’est en général pas
question d’obtenir leurs solutions explicitement ! Ce que les mathématiques peuvent faire par
contre, c’est dire si une ou plusieurs solutions existent, et décrire parfois très précisement cer-

6



TABLE DES MATIÈRES 7

taines propriétés de ces solutions.
L’apparition d’ordinateurs extrêmement puissants permet néanmoins aujourd’hui d’obtenir des
solutions approchées pour des équations aux dérivées partielles, même très compliquées par les
méthodes numériques. C’est ce qui s’est passé par exemple lorsque vous regardez les prévisions
météorologiques, ou bien lorsque vous voyez les images animés d’une simulation d’écoulement
d’air sur l’aile d’un avion. Le rôle des mathématiciens est alors de construire des schémas d’ap-
proximation, et de démontrer la pertinence des simulations en établissant des estimations a
priori sur les erreurs commises (voir [23]). Il est vrai que les méthodes numériques ont aidé à
résoudre les EDP, mais elles ont des inconvénients. Pour éviter les complications de ces mé-
thodes on a fait L’approche probabiliste qui permet aussi d’avoir accées rapidement à une
expression de la solution de certaines EDP.

Le but de ce travail est de montrer le lien mathématique profond entre certaines équations
aux dérivées partielles du second ordre et les processus de diffusion (solutions des EDS).

Ce travail est présenté en quatre chapitres :

Le premier chapitre est consacré aux rappels des résultats importants en calcul stochas-
tique. On donnera les principales propriétés des processus stochastiques, mouvement Brownien
et les martingales. On abordera enfin la notion d’intégrale stochastique sans laquelle il n’y au-
rait pas lieu à parler d’EDS ([16],[18],[8],[26],[29],[20]).

Dans le deuxième chapitre, on présente les équations différentielles stochastiques brow-
niennes. On citera ensuite l’un des théorèmes les plus importants, à savoir le théorème d’exis-
tence et d’unicité de la solution d’une EDS, enstuite on donne des exemples des EDS, ensuite
on traitera les diffusions d’Itô. On terminera ce chapitre par la définition d’un opérateur pour
une diffusion d’Itô qu’on appellera générateur ([8], [9]).

Dans le troisième chapitre, on donnera des généralités sur les équations aux dérivées
partielles, ensuite nous présenterons des méthodes numériques pour la résolution des EDPs
du second ordre : ( la méthode des différnces finies, la méthode d’Euler) ; elles sont utilisées
dans le cas où la résolution par les méthodes analytique est impossible. Dans ce cas la so-
lution trouvée est une solution approchée. A la fin de ce chapitre nous présentons quelques
exemples d’EDPs et leurs solutions numériques en utilisant MATLAB comme logiciel de calcul.
([35],[14],[22],[1],[19],[30]).

Dans le dernier chapitre, nous exhiberons le lien profond existant entre les équations
aux dérivées partielles (EDP) et les équations différentielles stochastiques (EDS) à travers des
théorèmes. Ces théorèmes représentent des formules (Formule de Dynkin, Formule de Feynman-
Kac,.....) qui nous permettent de donner une interprétation probabiliste des EDPs, et par consé-
quent une solution approchée sous forme d’une espérence d’une fonctionnelle. En terminant ce
chapitre par une application de calcul de la solution d’EDP par l’approche probabiliste présen-
tée dans ce dernier. ([8],[9],[36]).



Chapitre 1

Rappels et Compléments

Dans ce chapitre, nous rappelons quelques résultats de calcul stochastique utilisés le long
de ce mémoire.

1.1 Vecteurs gaussiens
Dans tout ce qui suit, (Ω,F ,P) désigne un espace de probabilité complet.

Définition 1.1.1. On dit qu’une variable aléatoire réelle (v.a.r) X définie sur (Ω,F ,P) est une
variable aléatoire gaussienne où normale de paramètres (m,σ2), (m ∈ R, σ ∈ R∗+) si sa
fonction de densité fX est donnée par

fX(x) =
1

σ
√

2π
exp

(
− 1

2

(
x−m
σ

)2)
.

Dans ce cas, sa loi PX est donnée par

∀A ∈ BR, PX(A) =

∫
A

fX(x)dx,

et on note X ∼ N (m,σ2).

Définition 1.1.2. X = (X1, X2, . . . , Xn) est un vecteur aléatoire gaussien si toutes les
combinaisons linéaires de ses composantes sont gaussiennes i.e.

∀a1, . . . , an ∈ R,
n∑
i=1

aiXi

est une v.a.r gaussienne.

1.2 Processus stoquastiques
Définition 1.2.1. Un processus est une famille X = (Xt)t∈T de variables aléatoires réelles
définies sur (Ω,F ,P).
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Définition 1.2.2. Dans ce qui suit on prend T = [0, c] avec c > 0 ou bien T = [0,+∞[.
Une filtration (Ft)t∈T est une famille croissante de sous tribus de F :

∀s, t ∈ T, s < t =⇒ Fs ⊂ Ft.

Si (Ft)t≥0 est une filtration de (Ω,F ,P) alors (Ω,F , (Ft)t≥0,P) est appelé espace de probabilité
filtré.

Définition 1.2.3. Si (Ft)t≥0 est une filtration alors on définit la filtration suivante

Ft+ = (
⋂
s>t

Fs).

On dit qu’une filtration est continue à droite si :

∀t ≥ 0, Ft = Ft+ .

Soit N la classe des ensembles de F qui sont P-négligeables. Si N ⊂ F0, on dit que la filtration
(Ft)t≥0 est complète.
On dit qu’une filtration (Ft)t≥0 satisfait les conditions habituelles si elle est à la fois conti-
nue à droite et complète.

Définition 1.2.4. Soit (Xt)t≥0 un processus et (Ft)t≥0 une filtration de (Ω,F ,P).
On dit que X = (Xt)t≥0 est adapté à la filtration (Ft)t≥0 si ∀t ≥ 0, Xt est Ft-mesurable.

On dit que le processus est à trajectoires continues (ou est continu) si les applications
t −→ Xt(ω) sont continues pour presque tout ω.

Un processus est dit càdlàg (continu à droite, pourvu de limites à gauche) si ses trajectoires
sont continues à droite, pourvues de limites à gauche. Même définition pour càglàd.

Définition 1.2.5. Un processus X = (Xt)t∈T est un processus gaussien si
∀n ≥ 1,∀ t1 < t2 < . . . < tn ∈ T n, (Xt1 , . . . , Xtn) est un vecteur gaussien.
On dit que Xest centré si pour tout t ∈ T, E(Xt) = 0.

Définition 1.2.6. On dit que le processus X = (Xt)t≥0 est a accroissements indépendants si :
∀n ≥ 1, ∀ t1 < t2 < . . . < tn ∈ T, Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 sont indépendantes.

Définition 1.2.7. (Convergence d’une suite de variables aléatoires).
On considère, sur un espace de probabilités fixé (Ω,F ,P), une variable aléatoire réelle X et
une suite de variables aléatoires (Xn)n≥0 et l’on s’intéresse à la convergence de cette suite. Le
caractère aléatoire de la suite met en évidence plusieurs types de convergence :

• On dit que Xn converge presque sûrement vers X si

P

(
{ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 0.
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• Si p > 0, on dénote par Lp(Ω,F ,P) l’ensemble des variables aléatoires X telles que E(|X|p) <
∞. Si Xn, X ∈ Lp, on dit que Xn converge dans LP vers X si

lim
n→∞

E(|Xn −X|p) = 0.

• On dit que Xn converge en probabilité vers X si

lim
n→∞

P(|Xn −X| ≥ ε) = 0, pour tout ε ≥ 0.

Les principaux liens entre ces trois notions de convergence sont résumées dans la proposition
suivante.

Proposition 1.2.1. • La convergence presque sûre implique la convergence en probabilité.
• La convergence dans Lp implique la convergence en probabilité.
• La convergence dans Lp implique la convergence dans Lq pour tout q < p.

• Si Xn → X presque sûrement et Xn ≤ Y avec Y ∈ Lp alors Xn → X dans Lp.

Preuve. voir (8).

Rappelons deux théorèmes fondamentaux :

Théorème 1.2.1. (Théorème de convergence monotone)
Soit {Xn, n ≥ 0} une suite croissante (ou décroissante) de variables aléatoires et soit
X = limXn p.s. Supposons que X soit intégrable. Alors E[X] = limE[Xn].

Preuve. voir (10).

Théorème 1.2.2. (Théorème de convergence dominée)
Soit {Xn, n ≥ 0} une suite de variables aléatoires convergeant p.s.vers X. Supposons qu’il
existe une variable aléatoire Y intégrable telle que
|Xn| ≤ Y, alors X est intégrable et E[|Xn −X|]→ 0 quand n ↑ +∞.

Preuve. voir (10).

Maintenant, nous donnons deux critères pour comparer deux processus stochastiques.

Définition 1.2.8. Soient X = (Xt)t∈T , Y = (Yt)t∈T deux processus stoquastiques.
1. On dit que Y est une modification de X ssi

∀t ∈ T, P(Xt = Yt) = 1.

2. On dit que les processus X et Y sont indistinguables ssi

P(∀t ∈ T, Xt = Yt) = 1.

on note X ≡ Y.
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Proposition 1.2.2. Soient T un intervalle de R, X = (Xt)t∈T et Y = (Yt)t∈T deux processus
stoquastique continus alors :
X et Y sont indistinguables ⇐⇒ X est une modification de Y.

1.3 Temps d’arrêt
Dans un jeu de hasard, un temps d’arrêt est un temps lors duquel le joueur décide d’arrêter

de jouer, selon un critère ne dépendant que du passé et du présent. Il peut par exemple décider
d’arrêter de jouer dès qu’il a dépensé tout son capital, dès qu’il a gagné une certaine somme,
dès qu’il a gagné un certain nombre de fois successives, ou selon toute combinaison de ces
critères. Les temps d’arrêt ont donc deux propriétés importantes : ils sont aléatoires, puisqu’ils
dépendent du déroulement antérieur du jeu, et ils ne peuvent pas dépendre du futur, puisque
le joueur doit à tout moment pouvoir décider s’il arrête ou non.

Définition 1.3.1. Un (Ft)-temps d’arrêt est une variable aléatoire Ω → [0,+∞] (resp.
N ∪ {+∞} si T = N telle que

∀t ∈ T, {τ ≤ t} ∈ Ft.

Une conséquence importante de la continuité à droite de la filtration est que

Proposition 1.3.1. Pour T = R+ ou T = [0, c], on a
τ est un temps d’arrêt si et seulement si ∀t ∈ T, {τ < t} ∈ Ft.

Preuve. voir (20).

1.4 Le mouvement Brownien
Nous pouvons à présent définir le processus le plus important en calcul stochastique, c’est

le mouvement Brownien appelé aussi processus de Wiener.

Un peu d’histoire :
Avant d’être un objet mathématique rigoureux, le mouvement Brownien a été étudié en

Botanique, en Finance, et en Physique. Le botaniste R. Brown observe d’abord vers 1828 le
mouvement irrégulier de particules de pollen en suspension dans l’eau. En 1877, Delsaux ex-
plique les changements incessants de direction de trajectoire par les chocs entre les particules
de pollen et les molécules d’eau. Un mouvement de ce type est alors appelé mouvement au
hasard. En 1900, L. Bachelier, en vue d’étudier les cours de la Bourse de Paris dans sa thèse,
met en évidence le caractère markovien du mouvement Brownien : la position d’une particule
à l’instant t+ s dépend de sa position en t, et ne dépend pas de sa position avant t. Peu après,
vers 1905, A. Einstein détermine la densité de transition du Brownien par l’intermédiaire de
l’équation de la chaleur. La même année, Smoluchowski décrit le mouvement Brownien comme
une limite de promenades aléatoires. La première étude mathématique rigoureuse du Brow-
nien est faite par N. Wiener (1923), qui construit une mesure de probabilités sur l’espace des
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fonctions continues sous laquelle le processus canonique est un mouvement Brownien. Des re-
cherches d’une influence considérable ont ensuite été menées par P. Lévy (1948), lequel s’est
intéressé aux propriétés fines des trajectoires du Brownien. Ces objets ont été developpés par
les potentialistes américains à la suite de J. L. Doob, puis systématisés par les spécialistes de
la "Théorie Générale des Processus" de l’école de Strasbourg, autour de P. A. Meyer.

Définition 1.4.1. Un processus B : (Ω,F , (Ft)t≥0, (Bt)t≥0,P) à valeurs réelles est appelémou-
vement Brownien si :

1. B0 = 0, P-p.s. ;
2. ∀ 0 ≤ s ≤ t, la v.a Bt −Bs est indépendante de Fs;
3. ∀ 0 ≤ s ≤ t,Bt −Bs est de loi N (0, t− s).

Autrement dit, le processus B part de 0, ses accroissements sont indépendants du passé et sont
de loi normale centrée et de variance égale à la longueur de l’intervalle de temps.

Remarque 1.4.1. Lorsque (Ft)t≥0 est la filtration naturelle de (Bt)t≥0, on dit que B est un
mouvement Brownien naturel.

Caractére gaussien du mouvement Brownien

Théorème 1.4.1. – Soit B : (Ω,F , (Ft)t≥0, (Bt)t≥0,P) un mouvement Brownien. Alors il
satisfait les propriétés suivantes :
1. B0 = 0, P-p.s. ;
2. ∀ 0 ≤ t1 ≤ . . . ≤ tn, (Bt1 , . . . ,Btn) est un vecteur gaussien centré ;
3. ∀ s, t ≥ 0, E(BsBt) = min(s, t).

C’est-à-dire B est un processus gaussien réel centré et de fonction de covariane
Γ(s, t) = min(s, t).

– Inversement, si un processus B vérifie 1,2,3 et si on note (F̃t)t≥0 la filtration naturelle de
la famille (Bt)t≥0 alors B : (F , (F̃t)t≥0, (Bt)t≥0,P) est un mouvement Brownien (naturel).

Preuve. : voir (18).

Quelques propriétés du mouvement Brownien

Proposition 1.4.1. Si B est un mouvement Brownien, alors les processus suivants sont aussi
des mouvements Browniens.

• B̃t = Bt; (symétrie)

• B̃t = tB 1
t
,B0 = 0; (inversion du temps)

• a > 0 fixé, B̃t = 1√
a
Bat; (Changement d’échelle "scaling")

• T > 0 fixé, B̃t = BT −BT−t, t ∈ [0, T ]. (retournement du temps)

Preuve. voir (18).
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Théorème 1.4.2. (Propriété de Markov simple).
Soit s ≥ 0. Le processus (B̃t := Bt+s−Bs, t ≥ 0) est un mouvement Brownien, indépendant de
Fs.

Preuve. voir (27).

Théorème 1.4.3. (Propriété de Markov forte).
Soit τ un temps d’arrêt. Conditionnellement à τ <∞, le processus (B̃ := Bτ+t−Bτ , t ≥ 0) est
un mouvement Brownien indépendant de Fτ .

Preuve. voir (31).

1.5 Martingales à temps continu
Le nom martingale est synonyme de jeu équitable, c’est-à-dire d’un jeu où le gain que l’on

peut espérer faire en tout temps ultérieur est égal à la somme gagnée au moment présent.
Soit (Ω,F , (Ft)t≥0,P) est un espace de probabilite filtré.

Définition 1.5.1. Soit M = (Mt)t≥0 un processus adapté et intégrable (∀t ≥ 0, E(|Mt|) <∞),
on dit que M est

1. Une martingale si

∀ 0 ≤ s ≤ t, E
(
Mt/Fs

)
= Ms.

2. Une surmartingale si

∀ 0 ≤ s ≤ t, E
(
Mt/Fs

)
≤Ms.

3. Une sousmartingale si

∀ 0 ≤ s ≤ t, E
(
Mt/Fs

)
≥Ms.

On se place dans un espace de probabilité filtré (Ω,F , (Ft)t≥0,P) qui vérifie les conditions
habituelles. Si τ est un temps d’arrêt, et si X := (Xt, t ≥ 0) est un processus continu, on note
Xτ le processus arrêté (Xτ

t = Xt∧τ )t≥0.

Définition 1.5.2. Un processus continu adapté M := (Mt)t≥0 est appelé une martingale
locale (continue) s’il existe une suite croissante (τn, n ≥ 1) de temps d’arrêt telle que
τn ↗∞ p.s. et que pour tout n, Mτn −M0 soit une martingale uniformément intégrable.
On dit que la suite de temps d’arrêt (τn) réduit M.

Définition 1.5.3. Un processus X = (Xt, t ≥ 0) est appelé une semimartingale continue
s’il s’écrit sous la forme

Xt = X0 + Mt + Vt,

où M est une martingale locale continue et V est un processus à variation finie, avec M0 =
V0 = 0.
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Mouvement Brownien et martingales

Théorème 1.5.1. (Propriété de martingale du mouvement Brownien).
Le mouvement Brownien est une martingale par rapport à la filtration canonique (Ft)t≥0.

Preuve. voir (8).

Proposition 1.5.1. • (B2
t − t)t≥0 est une Ft-martingale.

• Pour tout γ ∈ R, (exp(γBt − γ2 t
2
))t≥0 est une Ft-martingale.

Preuve. voir (8).

Théorème 1.5.2. (Caractérisation de P. Lévy du mouvement Brownien).
Soit (Ft)t≥0 une filtration et M = (Mt)t≥0 est une Ft -martingale continue avec M0 = 0. Si le
processus (Mt

2 − t)t≥0 est aussi une Ft-martingale, alors M est un mouvement Brownien.

Preuve. : voir (18).

Théorème 1.5.3. (Caractérisation du MB par son crochet).
Soit X = (X1, . . . , Xd) un processus à trajectoires continues (Ft)t≥0-adapté issu de 0. Il y a
équivalence entre

• X est un (Ft)t≥0-mouvement Brownien en dimension d.
• Les processus X1, . . . , Xd sont des (Ft)t≥0-martingales locales continues et de plus

〈X i, Xj〉t = δi,jt,

où δi,j désigne le symbole de Kronecker.

En particulier, une (Ft)t≥0-martingale locale continue M issue de 0 est un (Ft)t≥0-mouvement
Brownien si et seulement si 〈M,M〉t = 0.

Preuve. voir (18).

Quelques inégalités

Théorème 1.5.4. (Inégalité de Cauchy-Schwarz).
En se plaçant sur E = C([a, b],R) (avec a, b ∈ R2) muni du produit scalaire (f, g) −→< f, g >=∫ b
a
f(t)g(t)dt, on obtient :

∀(f, g) ∈ (C([a, b],R))2,

∣∣∣∣ ∫ b

a

f(t)g(t)dt

∣∣∣∣ ≤
√∫ b

a

f(t)2dt.

√∫ b

a

g(t)2dt,

avec E est un R-espace vectoriel muni du produit scalaire < ., . >, et ∀x ∈ E, ‖x‖ =< x, x >,
ceci définissent bien une norme sur E.

Preuve. voir (24).
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Théorème 1.5.5. (Inégalité maximale de Doob)
Si M = (Mt)t≥0 une martingale continue a droite, alors

∀p > 1,

(
E

[
| sup

0≤s≤t
Ms|p

]) 1
p

≤ p

p− 1
sup

0≤s≤t

(
E

[
|Ms|p

]) 1
p

.

Preuve. voir (8).

Théorème 1.5.6. (Inégalité de Doob)
Soit (Mt, t ≥ 0) une martingale continue. Alors pour tout t > 0,

E

(
sup

0≤s≤t
M2

s

)
≤ 4E

(
M2

t

)
.

1.6 Intégrale stochastique (Intégrale d’Itô)
Soit B = (Bt)t≥0 un mouvement Brownien sur (Ω,F ,P) sa filtration naturelle i.e. Ft =

σ(Bu, u ≤ t). Le mouvement Brownien n’étant pas a variation bornée, on ne peut pas s’appuyer
sur la théorie de l’intégration classique de Riemann- Stieljes afin de donner un sens a la quantité∫ t

0

HsdBs,

où H est un processus stochastique continu. C’est pour cette raison qu’on construit une nouvelle
intégrale, appelée l’intégrale d’Itô, définie dans un sens quadratique.

Définition 1.6.1. (Intégrale d’Itô) Soient B : [0, t]×Ω→ R un mouvement Brownien ainsi
que H : [0, t]×Ω→ R un processus stochastique de carré intégrable adapté à la filtration natu-
relle associée à B, alors l’intégrale d’Itô est définie par :∫ t

0

HsdBs = lim
δ→0

n∑
i=1

Hti(Bti+1
−Bti) dans L2(Ω),

où 0 = t0 < t1 < ... < tn = t est une subdivision de [0, t] de pas δ = sup
i=1,...,n

(ti − ti−1).

Lorsque le pas de la subdivision tend vers 0, ces sommes considérées comme des sommes de
Riemann-Stieltjes pour chaque trajetoire du mouvement Brownien donné, ne convergent pas en
général ; la raison en est que le mouvement Brownien n’est pas à variations bornées. L’usage
de la convergence quadratique est le point essentiel de cette définition.

Formule d’Itô
Soient (Xt)t≥0 un processus d’Itô

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs, ∀t ≤ T P− p.s.,

avec, Ks ∈ L1 et Hs ∈ L2,
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et f une fonction de classe C2 de R dans R. Alors

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)HsdBs +

∫ t

0

f ′(Xs)Ksds+
1

2

∫ t

0

f ′′(Xs)H
2
sds.

La formule d’Itô est l’outil de base du calcul stochastique : elle montre qu’une fonction de classe
C2 de p semimartingales continues est encore une semimartingale continue, et elle exprime ex-
plicitement la décomposition de cette semimartingale.

Théorème 1.6.1. (Formule d’Itô) Soient X une semimartingale et F : R→ R une fonction
de classe C2. Alors

F (Xt) = F (X0) +

∫ t

0

F ′(Xs)dXs +
1

2

∫ t

0

F ′′(Xs)d〈X,X〉s. (1.1)

Si on considère p semimartingales continues X1, . . . , Xp et F : Rp → R de classe C2 alors,

F (X1
t , . . . , X

p
t ) = F (X1

0 , . . . , X
p
0 )+

p∑
i=1

∫ t

0

∂F

∂xi
(X1

s , . . . , X
p
s )dX i

s+
1

2

p∑
i,j=1

∫ t

0

∂2F

∂xi∂xj
(X1

s , . . . , X
p
s )d〈X i, Xj〉s.

(1.2)

Preuve. voir (9)

Formule d’intégration par parties (IPP)

Corollaire 1.6.1. (IPP)
Soient (Xt), (Yt) deux processus d’Itô. Alors pour tout t ≥ 0 on a

XtYt −X0Y0 =

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈X, Y 〉t, p.s,

qu’on écrit encore sous forme différentielle

d(XtYt) = XtdYt + YtdXt + d〈X, Y 〉t.

Preuve. voir (9).

Propriétés
Avec les notations précédentes, le processus stochastique (Yt)t≥O défini, pour tout t réel positif,
par Yt =

∫ t
0
HsdBs vérifie les propriétés suivantes :

1. Yt est une martingale ;
2. E(Y 2

t ) =
∫ t

0
E(H2

s )ds (Isométrie d’Itô) ;

3. E(
∫ t

0
HtdBt) = 0.

Application
Soient t > 0 et (Bt)0≤t≤T un mouvement Brownien réel. Soit 0 = t0 < t1 < · · · < tn = t une
partition de l’intervale [0, t].

• Calculer l’intégrale
∫ t

0
BsdBs au sens d’Itô.
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– Méthode 1 : Utilisons la définition de l’intégrale d’Itô

∫ t
0
BsdBs = lim

n→+∞

n∑
i=1

Bti−1
(Bti −Bti−1

)

= lim
n→+∞

n∑
i=1

Bti−1
Bti −B2

ti−1

= 1
2
B2
t − 1

2
t.

– Méthode 2 : Appliquons la formule d’Itô

Si f(x) = x2 et Xt = Bt donc,

B2
t = 2

∫ t
0
BsdBs + 1

2

∫ t
0

2ds

=⇒
∫ t

0
BsdBs = 1

2
B2
t − 1

2
t.



Chapitre 2

Equations Différentielles Stoquastiques

On présente dans ce chapitre les équations différentielles stochastiques browniennes. On
commence par en donner une motivation en Section (2.1) en tant que généralisation des équa-
tions différentielles ordinaires dans un contexte d’incertitude représentée par un bruit aléatoire,
aprés on décrit les principaux résultats d’existence et d’unicité en Section (2.2), des exemples
d’EDS classiques sont présentés en Section (2.3), et à la fin on parle brièvement sur les solu-
tions d’EDS appelées diffusions ainsi que des outils importants pour leur étude en Section (2.4).

2.1 Introduction, définitions
Equations différentielles et EDS

Les équations Différentielles Stoquastiques ont été d’abord étudiées par Itô, dans le but
de construire les diffusions (c’est-à-dire, processus continus et fortement markoviens dont les
générateurs sont des opérateurs différentiels du second ordre). C’est d’ailleurs dans ce but qu’il
a introduit le calcul stochastique.
Les équations différentielles (standard) gouvernent de nombreux phénonènes déterministes.
Pour prendre en compte des phénomènes aléatoires, formellement on doit prendre en compte
des « différentielles stochastiques », ce qui transforme les équations en équations différentielles
stochastiques (EDS).

Les équations différentielles sont des équations d’évolution du type

ẋ(t) = b(t, x(t)), (2.1)

où l’inconnue est une fonction x(t) qui doit vérifier une équation impliquant sa dérivée ẋ et elle
même. Les cas les plus simples sont les équations différentielles d’ordre 1 comme en (2.1) (seule
la dérivée 1ère est impliquée) avec b(t, x) = b + cx indépendant de t et affine par rapport à x.
Symboliquement, l’équation (2.1) se réecrit

dx(t) = b(t, x(t))dt. (2.2)

Cette équation modélise typiquement un système physique (x(t))t≥0 qui évolue avec le temps
de façon que x s’accroît, à la date t, selon le taux b(t, x(t)). Par exemple, avec b(t, x) = b(t)x,
l’équation dx(t) = b(t)x(t) modélise le cours d’un actif financier x(t) soumis au taux d’intérêt
variable b(t) ou d’une population avec un taux de natalité b(t) Il est bien connu que la solution

18
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est

x(t) = x0 exp

(∫ t

0

b(s)ds

)
.

Les EDS sont des généralisations des équations (2.2) où la dynamique déterministe d’évolution
b est perturbée par un terme aléatoire (stochastique). On parle alors d’équation différentielle
stochastique. En général la perturbation aléatoire est considérée comme un bruit, qui sera de
la forme σdBt, où B désigne un mouvement Brownien et une intensité de bruit σ(t, x) :

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (2.3)

où σ est une fonction du temps t et de l’inconnue au temps t (Xt) mais pourrait juste dépendre
du temps (σt) ou de la valeur Xt en t(σ(Xt)) ou encore être constante σ.

En fait, l’écriture (2.3) est symbolique car dBt n’a pas vraiment de sens (le mouvement
Brownien n’est pas dérivable). Il faudrait écrire (2.3) sous la forme

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs (2.4)

qui, elle, a un sens si l’intégrale stochastique
∫ t

0
σ(s,Xs)dBs a un sens. On généralise encore

dans la définition suivante la notion d’EDS dans un cadre vectoriel.

Définition 2.1.1. (EDS) On appelle équation différentielle stochastique (EDS) une équation
en le processus X (à valeurs dans Rd) de la forme

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (E(b, σ))

ce qui, en terme intégrale, s’écrit

X i
t = X i

0 +

∫ t

0

bi(s,Xs)ds+
m∑
j=1

∫ t

0

σi,j(s,Xs)dB
j
s, 1 ≤ i ≤ d (2.5)

où, pour m, d des entiers positifs,

• b(t, x) = (bi(t, x))1≤i≤d est un vecteur mesurable de Rd défini sur R+ × Rd appelé dérive ou
drift de l’EDS,

• σ(t, x) = (σi,j(t, x))1≤i≤d,1≤j≤m est une matrice d×m mesurable définie sur R+ × Rd appelé
coefficient de diffusion de l’EDS,

et B = (B1, . . . ,Bm) est un mouvement Brownien standard en dimension m.
La solution d’une EDS est une fonction aléatoire. Il s’agit donc d’un processus qu’on note
X = (Xt)t≥0. Plus précisément, on a :

Définition 2.1.2. (Solution d’une EDS).
On appelle solution de l’EDS E(b, σ) la donnée de

• un espace probabilisé filtré (Ω,F , (Ft)t≥0,P) vérifiant les conditions habituelles ;
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• un (Ft)t≥0-mouvement Brownien (B = (B1, . . . ,Bm)) dans Rm défini sur cet espace de pro-
babilité ;

• un processus (Ft)t≥0-adapté continu X = (X1, . . . , Xd) à valeurs dans Rd tel que (2.4) soit
vérifiée, c’est à dire, coordonnée par coordonnée, pour tout 1 ≤ i ≤ d : (2.5).

Lorsque de plus X0 = x ∈ Rd, on dira que le processus X est solution de Ex(b, σ).

2.2 Existence et unicité
Comme d’habitude pour les équations différentielles, les notions d’existence et d’unicité

sont essentielles. Dans le contexte des EDS, Le caractère aléatoire impose plusieurs notions
d’existence et d’unicité des EDS. Dans ce qui suit, on considère l’EDS E(b, σ).

Définition 2.2.1. (Existence, unicité des EDS).
Pour l’équation Ex(b, σ), on dit qu’il y a :

– Existence d’une solution faible : si pour tout x ∈ Rd, Ex(b, σ) admet une solution X.
– Existence d’une solution forte : si Ex(b, σ) admet une solution X qui soit adaptée à la
filtration du Brownien porteur.

– Unicité faible : si tous les processus X solutions de Ex(b, σ) ont même loi.
– Unicité trajectorielle : si l’espace de probabilité filtré (Ω,F , (Ft)t≥0,P) et le Brownien por-
teur étant fixés, deux solutions quelconques X et X ′ de Ex(b, σ) sont indistinguables.

Remarque 2.2.1. La solution d’une équation différentielle stochastique, si elle existe, n’est pas
forcément unique et si elle l’est dans un sens, elle ne l’est pas forcément dans l’autre.
Il peut y avoir existence et unicité faible sans qu’il y ait unicité trajectorielle. Pour voir cela,
on considère un mouvement Brownien β issu de β0 = y et on pose

Bt =

∫ t

0

sign(βsdβs),

avec sign(x) = 1 si x ≥ 0 et sign(x) = −1 si x < 0. On constate facilement que

βt = y +

∫ t

0

sign(βs)dBs.

Comme B est une martingale locale à trajectoires continues et que

〈B,B〉t =

∫ t

0

sign(βs)
2d〈β, β〉s =

∫ t

0

ds = t,

le Théorème de P. Lévy (1.5.3) justifie que B est un mouvement Brownien (issu de 0). On voit
alors que β est solution de l’EDS

dXt = sign(Xt)dBt, X0 = y, (2.6)
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pour laquelle il y a donc existence faible. À nouveau, par le Théorème de Lévy (1.5.3), on prouve
l’unicité faible : toute solution X de (2.6) est une martingale locale à trajectoires continues et
vérifie

〈X,X〉t =

∫ t

0

sign(Xs)
2d〈B,B〉s =

∫ t

0

ds = t,

et doit donc être un mouvement Brownien (Théorème de P. Lévy 1.5.3 ).
Par contre, il n’y a pas, en général, unicité trajectorielle : pour y = 0, on voit facilement que β
et −β sont deux solutions de (2.6) associées au même Brownien B. Noter que

∫ t
0
1{βs=0}dBs = 0

car

E

[(∫ t

0

1{βs=0}dBs

)2]
= E

[ ∫ t

0

12
{βs=0}ds

]
= E

[ ∫ t

0

1{βs=0}ds

]
=

∫ t

0

P(βs = 0)ds = 0,

et donc
∫ t

0
1{βs=0}dBs = 0 p.s. Aussi, β n’est pas solution forte de l’EDS : la filtration de B

coïncide avec la filtration canonique de |β|, qui est strictement plus petite que celle de β.

Le résultat suivant relie les différentes notions d’existence et d’unicité :

Théorème 2.2.1. (Yamada-Watanabe).
Existence faible et unicité trajectorielle impliquent unicité faible. De plus, dans ce cas, pour tout
espace de probabilité filtré (Ω,F , (Ft)t≥0,P) et tout (Ft)t≥0-mouvement Brownien B il existe
pour chaque x ∈ Rd une (unique) solution forte de Ex(b, σ).

Preuve. voir (16).

Théorème 2.2.2. (Cauchy-Lipschitz pour EDS).
On suppose qu’il existe une constante K positive telle que pour tout t ≥ 0, x, y ∈ Rd

1. Condition de Lipschitz

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|;

2. Croissance linéaire

|b(t, x)| ≤ K(1 + |x|), |σ(t, x)| ≤ K(1 + |x|).

Alors il y a unicité trajectorielle pour Ex(b, σ).
De plus, pour tout espace de probabilité filtré (Ω,F , (Ft)t≥0,P) et tout (Ft)t≥0-mouvement Brow-
nien, il existe pour chaque x ∈ Rd une (unique) solution forte pour Ex(b, σ).

Preuve. voir (16).

Pour montrer l’unicité trajectorielle on a besoin de lemme suivant :

Lemme 2.2.1. (Gronwall).
Soient T > 0 et g une fonction positive mesurable bornée sur [0, T ]. On suppose qu’il existe
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deux constantes a ≥ 0, b ≥ 0 telles que pour tout t ∈ [0, T ], on a

g(t) ≤ a+ b

∫ t

0

g(s)ds.

Alors on a :
g(t) ≤ a exp(bt) pour tout t ∈ [0, T ].

Preuve. voir (9)

Preuve du Théorème : (Existance et unicité)
Afin d’alléger les notations, on traitera uniquement le cas d = m = 1. Commençons par établir
l’unicité trajectorielle.
Unicité trajectorielle : Soit t ∈ [0, T ].
On considère deux solutions X et X ′ de Ex(b, σ) avec X0 = X ′0 définies sur le même espace et
avec le même mouvement brownien B. Pour M > 0 fixé, on considère le temps d’arrêt

τ = inf{t ≥ 0, |Xt| ≥M ou |X ′t| ≥M}.

D’aprés Ex(b, σ) on a alors pour tout t ≥ 0 :

Xt∧τ = X0 +

∫ t∧τ

0

b(s,Xs)ds+

∫ t∧τ

0

σ(s,Xs)dBs.

Vu que X ′ est aussi une solution, nous avons l’équation analogue :

X ′t∧τ = X ′0 +

∫ t∧τ

0

b(s,X ′s)ds+

∫ t∧τ

0

σ(s,X ′s)dBs.

On considère t ∈ [0, T ]. Par différence, comme X = X
′
0 et comme X,X ′ sont bornées par M

sur ]0, τ ], l’expression de la variance d’une intégrale stochastique L2, l’inégalité de Cauchy-
Schwarz (|

∫ t
0
fds|2 ≤ t

∫ t
0
|f |2ds, f : [0, t]→ R), les hypothèses lipschitziennes et la majoration

(x+ y)2 ≤ 2(x2 + y2) donnent

E

[
(Xt∧τ −X ′t∧τ )2

]
≤ 2

(
E

[( ∫ t∧τ
0

(
b(s,Xs)− b(s,X ′s)

)
ds

)2]
+ E

[( ∫ t∧τ
0

σ(s,Xs)− σ(s,X ′s)dBs

)2])
≤ 2

(
TE
[ ∫ t∧τ

0

(
b(s,Xs)− b(s,X ′s)

)2

ds

]
+ E

[ ∫ t∧τ
0

(
σ(s,Xs)− σ(s,X ′s)

)2

ds

])
≤ 2K2(T + 1)E

[ ∫ t∧τ
0

(Xs −X
′
s)

2

]
ds

≤ 2K2(T + 1)E

[ ∫ t
0
(Xs∧τ −X

′
s∧τ )

2

]
ds.

Si on pose h(t) = E

[
(Xt∧τ −X ′t∧τ )2

]
et C = 2K2(T +1), alors on a établi que h vérifie pour

t ∈ [0, T ] :
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h(t) ≤ C

∫ t

0

h(s)ds.

De plus, par définition de τ, la fonction h est bornée par 4M2, l’inégalité de Gronwall s’ap-
plique avec a = 0 et b = C. On obtient h = 0, c’est à dire Xt∧τ = X

′
t∧τ p.s. Finalement, en

faisantM → +∞ on a τ → +∞ et donc Xt = X
′
t p.s. Les processus X et X ′ sont des modifica-

tions à trajectoires continues, ils sont donc indistinguables, ce qui prouve l’unicité trajectorielle.

�

Passons à présent au deuxième point.
Existence forte : On procède comme pour les équations différentielles avec une méthode d’ap-
proximation de Picard. Pour cela, on pose

X0
t = x

X1
t = x+

∫ t
0
b(s, x)ds+

∫ t
0
σ(s, x)dBs

X2
t = x+

∫ t
0
b(s,X1

s )ds+
∫ t

0
σ(s,X1

s )dBs

. . . = . . .

Xn
t = x+

∫ t

0

b(s,Xn−1
s )ds+

∫ t

0

σ(s,Xn−1
s )dBs. (2.7)

Les intégrales stochastiques ci-dessus sont bien définies puisque par récurrence, on constate
que, pour chaque n, Xn

t est continu et adapté donc localement borné si bien que le processus
σ(t,Xn

t ) l’est aussi (hypothése lipschitzienne) et l’intégrale correspondante bien définie.
On fixe maintenant T > 0 et on raisonne sur [0, T ]. On prouve par récurrence qu’il existe Cn
tel que, pour tout t ∈ [0, T ],

E[(Xn
t )2] ≤ Cn. (2.8)

En effet, (2.8) est immédiate si n = 0 avec C0 = x. Puis, on suppose que (2.8) est vraie au rang
n− 1 avec

|b(s, y)| ≤ K
′
+K|y|, |σ(s, y)| ≤ K

′
+K|y|, s ∈ [0, T ], y ∈ R.

Noter que par la croissance sous-linéaire de σ et l’hypothèse de récurrence (2.8), on a
E[
∫ t

0
σ(s,Xn−1

s )2ds] < +∞ on a donc

E

[(∫ t

0

σ(s,Xn−1
s )dBs

)2]
= E

[ ∫ t

0

σ(s,Xn−1
s )2ds

]
.

Comme (x+ y + z)2 ≤ 3(x2 + y2 + z2) par l’inégalité de Cauchy-Schwarz, l’isométrie L2, et les
hypothèses lipschitziennes, on majore comme suit



2.2 Existence et unicité 24

E[(Xn
t )2] ≤ 3

(
|x|2 + E

[( ∫ t
0
b(s,Xn−1

s )ds

)2]
+ E

[( ∫ t
0
σ(s,Xn−1

s )dBs

)2])
(convexité)

≤ 3

(
|x|2 + tE

[ ∫ t
0
b(s,Xn−1

s )2ds

]
+ E

[ ∫ t
0
σ(s,Xn−1

s )2ds

])
(isométrie L2, Cauchy-Schwarz)

≤3
(
|x|2 + 2(T + 1) + E

[ ∫ t
0
((K

′
)2 +K2(Xn−1

s )2)ds

])
(hypothéses lipschitziennes)

≤ 3(|x|2 + 2T (T + 1)((K
′
)2 +K2Cn−1)) =: Cn,

ce qui établit (2.8) par récurrence.
La borne (2.8) et la croissance sous-linéaire de σ assurent alors que, pour chaque n, la martin-
gale locale (

∫ t
0
σ(s,Xn

s dBs) est une vraie martingale bornée dans L2 sur l’intervalle [0, T ].
Cela va permettre de majorer par récurrence E[ sup

0≤t≤T
|Xn−1

t −Xn
t |2]. On a

Xn−1
t −Xn

t =

∫ t

0

(b(s,Xn
s )− b(s,Xn−1

s ))ds+

∫ t

0

(σ(s,Xn
s )− σ(s,Xn−1

s ))dBs.

En utilisant les inégalités de Doob (1.5.6) et de Cauchy-Schwarz ainsi que les hypothéses
lipschitziennes, on déduit

E

[
sup

0≤s≤t
|Xn+1

s −Xn
s |2
]

≤ 2E

[
sup

0≤s≤t

∣∣∣∣ ∫ s

0

(b(u,Xn
u )− b(u,Xn−1

u ))du

∣∣∣∣2 + sup
0≤s≤t

∣∣∣∣ ∫ s

0

(σ(u,Xn
u )− σ(u,Xn−1

u ))dBu

∣∣∣∣2]
(convexité)

≤ 2

(
E

([ ∫ t
0
|(b(u,Xn

u )− b(u,Xn−1
u ))|du

)2]
+ 4E

[(∫ t

0

(σ(u,Xn
u )− σ(u,Xn−1

u ))dBu

)2])
(inégalité de Doob)

≤ 2

(
TE

([ ∫ t
0
(b(u,Xn

u )− b(u,Xn−1
u ))2du

]
+ 4E

[(∫ t

0

(σ(u,Xn
u )− σ(u,Xn−1

u ))2du

])
(isométrie L2, Cauchy-Schwarz)

≤ 2(T + 4)K2E

[ ∫ t

0

|Xn
u −Xn−1

u |2du
]

(2.9)

(hypothéses lipschitziennes)

≤ CTE

[ ∫ t

0

sup
0≤r≤u

|Xn
r −Xn−1

r |2du
]

(2.10)



2.3 Exemples d’EDS 25

avec CT = 2(4+T )K2. Si on note gn(u) = E[ sup
0≤r≤u

|Xn
r −Xn−1

r |2] et g0(u) = E[ sup
0≤r≤u

|X0
r |2] =

x2 alors on a établi

gn+1(t) ≤ CT

∫ t

0

gn(u)du. (2.11)

Par ailleurs, par (2.8) et les inégalités précédentes (cf. (2.9)), on voit que les fonctions gn sont
bornées sur [0, T ]. En effet, g0(t) = x2 pour t ∈ [0, T ] et par une récurrence utilisant (2.11), on
établit que pour tout n ≥ 1 et t ∈ [0, T ] on a

gn(t) ≤ x2Cn
T

tn

n!
.

On déduit alors que
+∞∑
n=0

gn(T )1/2 < +∞, comme∥∥∥∥ +∞∑
n=0

sup
0≤s≤T

|Xn+1
s −Xn

s |
∥∥∥∥

2

≤
+∞∑
n=0

∥∥∥∥ sup
0≤s≤T

|Xn+1
s −Xn

s |
∥∥∥∥

2

=
+∞∑
n=0

gn(T )1/2 < +∞

cela entraine que p.s.

+∞∑
n=0

sup
0≤s≤T

|Xn+1
s −Xn

s | < +∞,

et donc p.s. la suite (Xn
t )t∈[0,T ] converge uniformément sur [0, T ] vers un processus limite

(Xt)t∈[0,T ] qui est continu. Comme par récurrence, chaque processus Xn est adapté par rap-
port à la filtration canonique de B, X l’est aussi à la limite.
Les estimations (2.10) établissent aussi que

E

[
sup

0≤s≤t
|Xn

s −Xs|2
]
≤
( +∞∑

k=n

gk(T )1/2

)1/2

→ 0, n→ +∞

On déduit alors de l’isométrie L2, des hypothéses lipschitziennes que, avec des limites dans L2

on a

L2 − lim
n→+∞

∫ t

0

b(s,Xn
s )ds =

∫ t
0
b(s,Xs)ds,

L2 − lim
n→+∞

∫ t

0

σ(s,Xn
s )dBs =

∫ t
0
σ(s,Xs)dBs.

Finalement, en passant à la limite dans l’équation de récurrence (2.7), on obtient que X est
solution forte de Ex(b, σ) sur [0, T ].

�

2.3 Exemples d’EDS
Les EDS affines admettent des solutions explicites qu’on peut obtenir comme dans le cas

déterministe par la méthode de variation de la constante. Le cas affine est important car les
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EDS affines apparaissent comme des linéarisées d’EDS plus complexes qu’on ne sait pas tou-
jours résoudre. On se place dans le cas réel, i.e. d = m = 1.

2.3.1 Equations linéaires

Ornstein-Uhlenbeck : équation b(t, x) = −bx b ≥ 0 et σ(x) = σ. Il s’agit de l’équation
de Langevin :

dXt = −bXtdt+ σdBt (2.12)

c’est à dire avec b(t, x) = −bx b ≥ 0 et σ(x) = σ. La solution est donnée par

Xt = X0e
−bt + σ

∫ t

0

e−b(t−s)dBs. (2.13)

Sans le terme σdBt, l’équation dXt = −bXtdt se résout immédiatement en Xt = Ce−bt Pour
tenir compte du terme σdBt on fait "varier la constante C" :

dCe−bt − bce−btdt = dXt = −bXtdt+ σdBt

dC = σebtdBt

C = X0 +

∫ t

0

σebsdBs

et, avec Xt = Ce−bt l’expression (2.13) est obtenue.
On peut observer directement que (2.13) est satisfaite en dérivant Xt = X0e

−bt+σe−bt
∫ t

0
ebsdBs

avec la formule d’Itô :

d(XtYt) = XtdYt + YtdXt + d〈X, Y 〉t.

Il s’agit du processus d’Ornstein-Uhlenbeck. Ce cas se généralise au contexte vectoriel.

Equation b(t, x) = btx et σ(x) = σtx. On suppose les processus (bt)t≥0 et (σt)t≥0 bornés ou
vérifiant l’intégrabilité

∫ T
0
|bt|dt < +∞,

∫ T
0
|σt|2dt < +∞ l’EDS

dXt = Xt(btdt+ σtdBt), X0 = x (2.14)

admet pour solution

Xt = x exp

(∫ t

0

bsds+

∫ t

0

σsdBs −
1

2

∫ t

0

σ2
sds

)
. (2.15)

Pour le voir, on suppose X positivement borné sur [0, T ] (minoré par 1 = n, majoré par n)
sinon, on introduit le temps d’arrêt Tn = inf(t : Xt ≤ 1

n
ou Xt > n) et on arrête les processus

à ces dates. On applique la formule d’Itô à Xt∧Tn et à la fonction ln (qui est C2 sur [ 1
n
, n)]. De

l’équation (2.14), on déduit d〈X,X〉t = X2
t σ

2
t dt. Le processus Yt = ln(Xt∧Tn) vérifie alors

dYt =
1

Xt

dXt −
1

2

d〈X,X〉t
X2
t

= (btdt+ σtdBt)−
σ2
t

2
dt = (bt −

1

2
σ2
t )dt+ σtdBt,



2.3.2 Equations affines 27

ce qui prouve le résultat (2.15).
Black et Scholes. C’est le cas particulier où b(t, x) = bx et σ(t, x) = σx, ie.

dXt = bXtdt+ σXtdBt. (2.16)
Cette EDS modélise l’évolution d’un cours X soumis à un taux d’intérêt déterministe b et à
une perturbation stochastique σXtdBt. Dans un contexte financier, le coefficient de diffusion σ
est appelé volatilité. Noter que la partie déterministe de l’accroissement de Xt(bXt) et sa partie
aléatoire (σXt) sont toutes les deux proportionnelles à la valeur courante, Xt, en t (ce qui est
typique des modèles de croissance).
La solution de (2.16) est un cas particulier de (2.15) :

Xt = X0 exp

(
bt− σ2

2
t+ σBt

)
.

On retrouve le mouvement brownien géométrique.

2.3.2 Equations affines

On suppose que b(t, x) = btx + ct et σ(t, x) = σtx + δt, c’est à dire qu’on considère l’EDS
affine générale

dXt = Xt(btdt+ σtdBt) + ctdt+ δtdBt. (2.17)
Elle a une solution construite à partir de la solution Z de l’EDS linéaire dZt = Zt(btdt+σtdBt)
de condition initiale Z0 = 1, ie.

Zt = exp

(∫ t

0

bsds+

∫ t

0

σsdBs −
1

2

∫ t

0

σ2
sds

)
donnée, avec c̃t = ct − σtδt, par

Xt = Zt

(
X0 +

∫ t

0

Z−1
s (c̃sds+ δsdBs)

)
. (2.18)

Avec la formule d’Itô, on vérifie que (2.18) satisfait effectivement l’équation (2.17) :

dXt = Zt(Z
−1
t (c̃tdt+ δtdBt)) +Xt(btdt+ σtdBt) + d〈Zt, Z−1

t δtBt〉t
= c̃tdt+ δtdBt +Xt(btdt+ σtdBt) + σtδtdt

= Xt(btdt+ σtdBt) + ctdt+ δtdBt.

2.4 Générateur des diffusions
Dans l’étude des diffusions, il est particulièrement intéressant de considérer la dépendance

des solutions dans la condition initiale X0 = x. La propriété de Markov affirme que l’état Xt

en un temps donné t détermine univoquement le comportement à tous les temps futurs. Ceci
permet de démontrer la propriété de semi-groupe, qui généralise celle du flot d’une équation
différentielle ordinaire.
Un semi-groupe de Markov peut être caractérisé par son générateur, qui s’avère être un opéra-
teur différentiel du second ordre dans le cas des diffusions.
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2.4.1 Diffusion

Définition 2.4.1. (Processus de Diffusion). On appelle diffusion un processus stochastique
obéissant à une équation differentielle stochastique de la forme suivante :

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s > 0, Xs = x. (2.19)

Définition 2.4.2. (Diffusion d’Itô). Une diffusion d’Itô homogène dans le temps est un pro-
cessus stochastique {Xt(ω)}t≥0 satisfaisant une équation différentielle stochastique de la forme

dXt= b(Xt)︸ ︷︷ ︸
Coeff-dérive

dt+ σ(Xt)︸ ︷︷ ︸
Coeff-diffusion

dBt,

où :

• Bt est un mouvement Brownien standard de dimension m ;

• b : Rn → Rn, coefficient de dérive ;

• σ : Rn → Rn×m, coefficient de diffusion,

tels que L’EDS (2.19) admette une unique solution en tout temps.

Nous noterons la solution de l’équation (2.19), Xs,x
t .

2.4.2 Propriété de Markov

L’homogénéité en temps, c’est-à-dire le fait que b et σ ne dépendent pas du temps, a la
conséquence importante suivante.

Lemme 2.4.1. Les processus {Xs,x
s+h}h≥0 et {X0,x

h }h≥0 ont la même loi.

Théorème 2.4.1. (Propriété de Markov pour les diffusions d’Itô). Pour toute fonction
mesurable bornée ϕ : Rn → R,

Ex(ϕ(Xt+h)/Ft)(ω) = EXt(ω)(ϕ(Xh)), (2.20)

le membre de droite désignant la fonction Ey(ϕ(Xh)) évaluée en y = Xt(ω).

Preuve. Considérons pour y ∈ Rn et s ≥ t la fonction

F (y, t, s, ω) = X t,y
s (ω) = y +

∫ s

t

b(Xu(ω))du+

∫ s

t

σ(Xu(ω))dBu(ω).

On notera que F est indépendante de Ft. Par unicité des solutions de l’EDS (2.19), on a

Xs(ω) = F (Xt(ω), t, s, ω).

Posons σ(y, ω) = ϕ ◦ F (y, t, t + h, ω). On vérifie que cette fonction est mesurable. La relation
(2.20) est alors équivalente à

E(σ(Xt, ω)/Ft) = E(ϕ ◦ F (y, 0, h, ω))|y=Xt(ω).
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On a
E(σ(Xt, ω)/Ft) = E(g(y, ω)/Ft)|y=Xt(ω).

En effet, cette relation est vraie pour des fonctions de la forme g(y, ω) = φ(y)ψ(ω), puisque

E(φ(Xt)ψ(ω)/Ft) = φ(Xt)E(ψ(ω)/Ft) = E(φ(y)ψ(ω)/Ft)|y=Xt(ω).

Elle s’étend alors à toute fonction mesurable bornée en approximant celle-ci par une suite de
combinaisons linéaires de fonctions comme ci-dessus. Or il suit de l’indépendance de F et de
Ft que

E(σ(y, ω)/Ft) = E(σ(y, ω))
= E(ϕ ◦ F (y, t, t+ h, ω))
= E(ϕ ◦ F (y, 0, h, ω)),

la dernière égalit é suivant du Lemme précédent. Le résultat s’obtient alors en évaluant la der-
nière égalité en y = Xt. 2

Comme pour le mouvement Brownien, la propriété de Markov se généralise à des temps
d’arrêts.

Théorème 2.4.2. (Propriété de Markov forte pour les diffusions d’Itô). Pour toute
fonction mesurable bornée ϕ : Rn → R et tout temps d’arrêt τ fini presque sûrement,

Ex(ϕ(Xτ+h)/Fτ )(ω) = EXτ (ω)(ϕ(Xh)).

2.4.3 Semi-groupe

Définition 2.4.3. (Semi-groupe de Markov). A toute fonction mesurable bornée ϕ : Rn →
R, on associe pour tout t ≥ 0 la fonction Ttϕ définie par :

(Ttϕ)(x) = Ex(ϕ(Xt)).

L’opérateur linéaire Tt est appelé le semi-groupe de Markov associé à la diffusion.
Par exemple, si ϕ(x) = 1A(x) est la fonction indicatrice d’un Borélien A ⊂ Rn, on a

(Tt1A)(x) = Px{Xt ∈ A}.
Le nom de semi-groupe est justifié par le résultat suivant.

Lemme 2.4.2. (Propriété de semi-groupe). Pour tous t, h ≥ 0, on a

Th ◦ Tt = Tt+h.

Preuve.

(Th ◦ Tt)(ϕ)(x) = (Th(Ttϕ))(x)

= Ex((Ttϕ)(Xh))

= Ex(EXh(ϕ(Xt)))

= Ex(Ex(ϕ(Xt+h)/Ft)
= Ex(ϕ(Xt+h))

= (Tt+hϕ)(x).

De plus, on vérife facilement les propriétés suivantes :
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1. Tt préserve les fonctions constantes : Tt(c1Rn) = c1Rn ;

2. Tt préserve les fonctions non-négatives : ϕ(x) ≥ 0, ∀x =⇒ (Ttϕ)(x) ≥ 0, ∀x;

3. Tt est contractante par rapport à la norme L∞ :

sup
x∈Rn
|(Ttϕ)(x)| = sup

x∈Rn
|Ex(ϕ(Xt))| ≤ sup

y∈Rn
|ϕ(y)| sup

x∈Rn
Ex(1) = sup

y∈Rn
|ϕ(y)|.

Le semi-groupe de Markov est donc un opérateur linéaire positif, bornée par rapport à la
norme L∞. En fait, il est de norme opérateur 1. La propriété de semi-groupe implique que le
comportement de Tt sur tout intervalle [0, ε], avec ε > 0 arbitrairement petit, détermine son
comportement pour tout t ≥ 0. Il est donc naturel de considérer la dérivée de Tt en t = 0.

2.4.4 Générateur de diffusion

Il est fondamental pour beaucoup d’applications que nous pouvons associer un operateur
différentiel de second ordre L à une diffusion d’Itô Xt; la relation de base entre L et Xt est que
L est le générateur de la diffusion d’Itô Xt.

Définition 2.4.4. (Générateur d’une diffusion d’Itô). Le générateur infnitésimal L d’une
diffusion d’Itô est défini par son action sur une fonction test ϕ via :

(Lϕ)(x) = lim
h→0+

(Thϕ)(x)− ϕ(x)

h
. (2.21)

Le domaine de L est par définition l’ensemble des fonctions ϕ pour lesquelles la limite existe
pour tout x ∈ Rn.

Remarque 2.4.1. Formellement, la relation (2.21) peut s’écrire

L =
dTt

dt

∣∣∣∣
t=0

.

Par la propriété de Markov, cette relation se généralise en

d

dt
Tt = lim

h→0+

Tt+h − Tt

h
= lim

h→0+

Tt − id
h

Tt = LTt,

et on peut donc écrire formellement

Tt = exp(tL).

Pour montrer la relation entre L et les coefficients σ et b on a la proposition suivante :

Proposition 2.4.1. Le générateur de la diffusion d’Itô (2.19) est l’opérateur différentiel

L =
n∑
i=1

bi(x)
∂

∂xi
+

1

2

n∑
i,j=1

(σσT )ij(x)
∂2

∂xi∂xj
.

Le domaine de L contient l’ensemble des fonctions deux fois continûment différentiables à sup-
port compact.
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Démonstration : Considérons le cas m = n = 1. Soit ϕ une fonction deux fois continû-
ment différentiable à support compact, et soit Yt = ϕ(Xt).
Par la formule d’Itô,

Yh = ϕ(X0) +

∫ h

0

ϕ′(Xs)b(Xs)ds+

∫ h

0

ϕ′(Xs)σ(Xs)dBs +
1

2

∫ h

0

ϕ′′(Xs)σ(Xs)
2ds.

Ex(Yh) = ϕ(x) + Ex
(∫ h

0

ϕ′(Xs)b(Xs)ds+
1

2

∫ h

0

ϕ′′(Xs)σ(Xs)
2ds

)
, (2.22)

d’où

Ex(Yh)− ϕ(x)

h
=

1

h

∫ h

0

Ex(ϕ′(Xs)b(Xs))ds+
1

2h

∫ h

0

Ex(ϕ′′(Xs)σ(Xs)
2)ds.

En prenant la limite h→ 0+, on obtient

(Lϕ)(x) = ϕ
′
(x)b(x) +

1

2
ϕ
′′
(x)σ(x)2.

Les cas où n ≥ 2 ou m ≥ 2 se traitent de manière similaire, en utilisant la formule d’Itô
multidimensionnelle. 2



Chapitre 3

Généralité sur les EDPs et la méthode des
différences finis

Les équations aux dérivées partielles (EDP) sont omniprésentes dans toutes les sciences,
puisqu’elles apparaissent aussi bien en dynamique des structures, mécanique des fluides que
dans les théories de la gravitation ou de l’électromagnétisme (Exemple : les équations de Max-
well). Elles sont primordiales dans des domaines tels que la simulation aéronautique, la synthèse
d’images, la prévision météorologique, la démographie, ou les finances. Enfin, les équations les
plus importantes de la relativité générale et de la mécanique quantique sont également des EDP.
Ce sont des équations indispensables pour la résolution de presque la totalité des problèmes
dans ces domaines. Nous pouvons citer par exemple :

1. L’équation de Fourrier ou équation de la chaleur qui décrit l’évolution de la température
en fonction du temps et de l’espace :

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
=

1

α

∂u

∂t
. Le nombre α est appelé diffusivité thermique du milieu.

2. l’équation de Black-Scholes utilisée en finances :

∂c

∂t
+ S

σ2

2

∂2c

∂S2
+ rS

∂c

∂S
− rc = 0 où c = c(t, S) est un prix et σ, r des constantes.

3. l’équation d’advection qui décrit comment une quantité est transportée dans un courant
(par exemple un poluant dans l’eau) :

∂u

∂t
(x, t) + c

∂u

∂x
(x, t) = f(x, t), c : étant la vitesse du milieu qui est souvent une constante.

Certaines de ces EDP ont été résolues analytiquement et leurs solutions sont connues. Toutefois,
un nombre important de ces EDP existent sans solutions analytiques. C’est dans cette optique
que les recherches se sont penchées sur les méthodes numériques pour arriver à approximer les
solutions de ces équations.
Notons que malgré ces efforts indéniables, il n’existe pas de méthodes universelles pour la ré-
solution numérique des EDP. L’algorithme de résolution dépend trés étroitement du type de

32
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problème posé. C’est pour cela que nous allons restreindre notre champs d’étude. On exigera
que l’équation satisfasse quelques propriétés comme la linéarité pour que la résolution soit pos-
sible.

3.1 Généralité sur les équations aux dérivées partielles

3.1.1 Définitions - Exemples

Définition 3.1.1. En mathématiques, plus précisément en calcul différentiel, une équation aux
dérivées partielles ou équation différentielle partielle (EDP) est une équation dont les solutions
sont les fonctions inconnues vérifiant certaines conditions concernant leurs dérivées partielles.
C’est une équation mathématique contenant en plus de la variable dépendante (u définie comme
ci dessous), des variables indépendantes (x, y, . . .) ∈ Rn et une ou plusieurs dérivées partielles
qu’on peut écrire sous la forme :

F (x, y, . . . , u,
∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2
, . . .) = 0. (3.1)

Exemples :

• l’équation aux dérivées partielles
∂2u

∂x2
− ∂2u

∂y2
= 0 qui admet comme solutions u(x, y) =

(x+ y)3, u(x, y) = sin(x− y), . . .

• l’équation de la Laplace ∆u = 0, en dimensions 2D, qui admet aussi au moins deux solutions
dont u(x, y) = x2 − y2 et v(x, y) = ex sin(y).

Définition 3.1.2. Une Équation aux Dérivées Partielles (EDP) est une équation fonctionnelle
qui met en relation des dérivées partielles. Typiquement, si u est une fonction à valeurs scalaires
des variables x et y, (x, y) ∈ Ω où Ω désigne un ouvert de R2, une EDP est une relation de la
forme :

F (u, x, y,
∂u

∂x
,
∂u

∂y
) = 0 pour(x, y) ∈ Ω, (3.2)

où F désigne une fonction définie sur un ouvert de R5.

L’ordre et la dimension d’une EDP :

L’ordre d’une équation aux dérivées partielles est le plus haut degré de dérivation présent
dans l’équation. L’équation (3.2) est donc d’ordre 1.

La dimension d’une équation aux dérivées partielles est le nombre de variables indépendantes
dont dépend la fonction inconnue u. L’équation (3.2) est donc de dimension 2.

Remarque 3.1.1. Résoudre une EDP consiste à déterminer toutes les fonctions u définies sur
Ω satisfaisant (3.2).
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les conditions étant moins strictes que dans le cas d’une équation différentielle ordinaire ;
les problèmes incluent souvent des conditions aux limites qui restreignent l’ensemble des
solutions. Pour assurer donc l’unicité de la solution, comme on le fait avec les équations différen-
tielles ordinaires, EDO, on tiendra compte des conditions prédonnées comme les conditions
aux limites et les conditions initiales.

En général, une EDP est complétée par des conditions sur le bord de Ω du type :

G
(
u, x, y,

∂u

∂x
,
∂u

∂y

)
= 0 pour(x, y) ∈ Γ ⊂ ∂Ω. (3.3)

Ces conditions peuvent être de nature très différentes et influent fortement sur l’existence et
la forme des solutions. Quand les conditions portent sur le bord complet du domaine, on parle
de problème aux frontières. Quand le domaine est d’extension infinie autour d’un obstacle
compact (par exemple ; lors de l’étude de la signature radar d’un objet), on parle de problème
extérieur.
Quand les conditions ne portent que sur une partie du bord du domaine sur lequel on connaît
la valeur de la fonction et de ses dérivées de degré inférieur à l’ordre de l’équation, on parle de
problème de Cauchy.
Les équations de la physique sont fréquemment posées sur des domaines spatio-temporels du
type Ω = w× [t0,+∞[ où w est un ouvert de l’espace Rd (d = 2 ou 3) et [t0,+∞[ est l’intervalle
temporel d’étude, t0 est l’instant initial (souvent pris égal à 0). Le temps joue un rôle particu-
lier, dans la mesure où il est porteur du principe de causalité (C’est le principe suivant lequel,
si un phénomène physique, nommé cause, produit un autre phénomène, l’effet, alors ce dernier
ne peut précéder la cause). On a alors le plus souvent un problème aux frontières en espace
et un problème de Cauchy en temps que l’on appelle également problème aux condition
initiales.
Les problèmes aux frontières et les problèmes aux conditions initiales obéissent à des logiques
différentes : pour les premiers, l’état est partiellement connu sur le bords et on cherche à l’aide de
L’EDP à déterminer la solution dans l’ensemble de domaine w, pour les seconds, l’état est com-
plètement connu à l’instant initial t0, on va chercher à propager la solution à l’instant d’après
puis, de proche en proche, déterminer la solution sur l’ensemble de l’intervalle temporel d’étude.

3.1.2 Les conditions aux limites

Pour résoudre une équation différentielle régissant un domaine D, il nous faut connaître
les conditions aux limites que l’on applique sur les frontières ∂D. Ces conditions aux limites
peuvent être de différents types :

• Dirichlet : Dans ce type de conditions la valeur de la variable dépendante est imposée sur
la frontière du domaine de calcul

u = f sur ∂D. (3.4)

• Neumann : La variable dépendante n’est pas connue sur la frontière mais sa dérivée est bien
définit

∂u

∂n
= f sur ∂D. (3.5)
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• Mixte : Une combinaison linéaire des deux premières conditions est imposée sur la frontière

∂u

∂n
+Kφ = f, K > 0 sur ∂D. (3.6)

Il n’existe pas de résultats généraux sur l’existence de solutions des équations aux dérivées
partielles, il est nécessaire de restreindre l’étude à certains cas. On donne donc, dans ce qui
suit, une rapide classification des EDP.

3.1.3 Classification des équations aux dérivées partielles

Définition 3.1.3. (Classification des EDP) Cette classification est illustrée dans le cas des
équations du second ordre.

i) On dit qu’une équation aux dérivées partielles est linéaire si la dépendance par rapport à la
fonction inconnue et ses dérivées partielles est linéaire :

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x
+ e(x, y)

∂u

∂y
+ f(x, y)u+ g(x, y) = 0.

L’équation est dite homogène si la fonction g est identiquement nulle sur Ω.

ii) On dit qu’une équation aux dérivées partielles est semi-linéaire si la dépendance par rap-
port aux dérivées partielles d’ordre le plus élevé est linéaire :

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ F (u, x, y,

∂u

∂x
,
∂u

∂y
) = 0,

où a, b, c désignent des fonctions des variables x et y, et F une fonction définie dans un
ouvert de R5.

iii) On dit qu’une équation aux dérivées partielles est quasi-linéaire si elle est de la forme :

a
(
u,
∂u

∂x
,
∂u

∂y
, x, y

)∂2u

∂x2
+2b

(
u,
∂u

∂x
,
∂u

∂y
, x, y

) ∂2u

∂x∂y
+c
(
u,
∂u

∂x
,
∂u

∂y
, x, y

)∂2u

∂y2
+F
(
u, x, y,

∂u

∂x
,
∂u

∂y

)
= 0,

où a, b, c et F sont des fonctions définies dans un ouvert de R5.

iν) On dit qu’une équation aux dérivées partielles est complètement non linéaire si elle
dépend non linéairement de ses termes d’ordre le plus élevé.

Classification physique des EDP :

De nombreux phénomènes physiques se rangent dans l’une des classes suivantes :
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• Les problèmes d’équilibre étudient l’état stationnaire d’un phénomène (champ, chaleur...)
dans un domaine borné ou non. Ils sont gouvernés par l’EDP elliptiques.

• Les problèmes de valeurs propres sont en général des extensions des problèmes d’équilibre
dans lesquels les valeurs critiques de certains paramètres doivent être déterminées. C’est
le cas par exemple de la résonance des circuits électriques.

• Les problèmes d’évolution étudient l’évolution avec le temps d’un phénomène (champ, cha-
leur, vibration,....) à partir d’un état initial donné. Ils sont gouvernés par des EDP hy-
perboliques ou des EDP paraboliques.

Classification mathématique des EDPs linéaires du second ordre (cas de deux va-
riables indépendantes) :

Comme il est dit en haut, il n’existe pas des méthodes universelles pour la résolution des
EDP, nous allons nous contenter de celles qui sont linéaires et du second ordre.
Quand on pose X = (x1, x2, . . . , xn) ∈ Rn, une équation aux dérivées partielles du second ordre
sera de la forme :

n∑
i=1

n∑
j=1

ai,j(X)
∂2u

∂xi∂xj
(X) +

n∑
i=1

bi(X)
∂u

∂xi
(X) + cu = g(X),

avec ai,j, bi, c, g des fonctions indépendantes de u ne s’annulant pas toutes simultanément dans
Rn. Si nous nous limitons dans R2, c’est à dire X = (x, y) ∈ R2, l’égalité précédemment posée
prend la forme de :

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g(x, y). (3.7)

La classe d’une telle équation est détérminée par le calcul de :

∆ = b2(x0, y0)− 4a(x0, y0)c(x0, y0).

• Si ∆ < 0 : on parle d’une équation elliptique,
• Si ∆ = 0 : l’EDP est dite parabolique,
• Si ∆ > 0 : on a une équation hyperbolique.

Cette appellation est faite par analogie avec l’équation générale du second ordre en géomé-
trie analytique

ax2 + 2bxy + cy2 = d, (3.8)

où a, b et c ne dépendent que de (x, y) et d est une fonction lineaire de (x, y, u, ∂u
∂x
, ∂u
∂y

).

Ainsi, selon le signe du discriminant ∆ = (b2 − 4ac) nous obtenons différentes formes géo-
métriques :

• ∆ = (b2 − 4ac) < 0 −→ ellipse.
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• ∆ = (b2 − 4ac) = 0 −→ parabole.
• ∆ = (b2 − 4ac) > 0 −→ hyperbole.

On peut dire que :
– les problèmes elliptiques vont concerner les problèmes de la mécanique ;
– les problèmes paraboliques ceux de type équation de la chaleur ;
– les problèmes hyperboliques ceux de la propagation des ondes.

Exemples :
• L’équation de Laplace :

∂2u

∂x2
+
∂2u

∂y2
= 0

est une équation aux dérivées partielles elliptique.

• L’équation de diffusion :

∂

∂x

(
α
∂u

∂x

)
=
∂u

∂t

est une équation aux dérivées partielles parabolique, avec α un réel strictement positif.

• L’équation des ondes :

∂2u

∂t2
− c2∂

2u

∂x2
= 0

est une équation aux dérivées partielles hyperbolique, avec c un réel strictement positif.

Classification mathématique dans le cas général (n variables indépendantes) :

Si u est une fonction de n variables independantes, les EDP lineaires du second ordre sont
du type :

n∑
i=1

ai(x1, . . . , xn)
∂2u

∂x2
i

+
n∑
i=1

bi(x1, . . . , xn)
∂u

∂xi
+ c(x1, . . . , xn)u+ d(x1, . . . , xn) = 0. (3.9)

• Si tous les ai sont non nuls et de même signe, l’EDP est de type elliptique.
• Si tous les ai sont non nuls et sont ; à une exception prés, de même signe, l’EDP est de type

hyperbolique.
• Si un seul des ai est nul (noté ai0) et tous les autres de même signe et si bi0 est non nul,

l’EDP est de type parabolique.
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Les fonctions ai et bi étant dépendantes des variables (x1, . . . , xn), la classification est évidem-
ment fonction du point (x1, . . . , xn) considéré. Une EDP peut donc être de différents types
suivant les points considérés : on dit qu’elle est de type mixte.

Remarque 3.1.2. Un problème aux dérivées partielles nécessite la donnée :

• Un domaine D ;
• Une équation aux dérivées partielles (E.D.P) ;
• Des conditions aux limites (pour tous les problèmes) ;
• Une condition initiale (pour les problèmes d’évolution).

Un problème est dit bien posé si :
• Il existe une solution de l’EDP satisfaisant les conditions aux frontières (existance).
• La solution doit être unique (unicité).
• La solution doit être stable par rapport aux conditions aux frontières imposées (stabilité).

Remarque 3.1.3. Notons que les méthodes numériques passent toujours par des discrétisa-
tions des problèmes analytiques en des problèmes numériques et qu’il existe plusieurs méthodes
de discrétisation des équations aux dérivées partielles. Nous allons citer les plus couramment
utilisées dans la résolution numérique des EDPs.
Pour des modèles d’EDPs qui ne dépendent que de la variable spatiale x (EDPs elliptiques par
exemple), nous allons avoir besoin de les discrétiser selon la variable spatiale x par une des
méthodes suivantes :
1. La méthode des différences finies,
2. La méthode des éléments finis,
3. la méthode des volumes finis,
4. la méthode des caractéristiques.

Pour des EDPs dépendant d’une variable temporelle t, en plus de la variable x (EDPs d’évo-
lution comme les équations paraboliques ou hyperboliques), on aura besoin d’une discrétisation
spatio-temporelle. Spatiale à l’aide d’une des méthodes mentionnées ci-dessus. Temporelle avec
une des méthodes suivantes :

1. Euler explicite.
2. Euler implicite.
3. Runge-Kutta.
4. Crank-Nicolson.
Dans la suite de ce manuscrit, et par souci de simplicité, nous allons utiliser la méthode

des différences finies pour la discrétisation en espace, et la méthode d’Euler explicite pour la
discrétisation en temps.

la méthode des différences finies consiste à remplacer les dérivées partielles par des
différences divisées ou combinaisons de valeurs ponctuelles de la fonction en un nombre fini de
points discrets ou noeuds du maillage. L’avantage de cette méthode est qu’il y a une grande



3.1.3 Classification des équations aux dérivées partielles 39

simplicité d’écriture et un faible coût de calcul. Elle est couramment pratique et facile d’accés.
Elle repose sur deux notions : la discrétisation des opérateurs de dérivation ou différentiation
et la convergence du schéma numérique ainsi obtenu. Son inconvénient est qu’on se limite à des
géométries simples, et qu’il y a des difficultés de prise en compte des conditions aux limites de
type Neumann.

Maillage :
Puisqu’on a évoqué le mot maillage dans le paragraphe précédent et qu’on en aura tout le temps
besoin, définissons-le ici.
On appelle maillage un ensemble de points du domaine de définition sur lequel on va appliquer
la méthode des différences finies. Pour une application définie sur un segment de R, on ajoutera
en général les deux extrémités du segment ; pour un maillage en dimension supérieure, on sera
amené à choisir, éventuellement, des points du contours du domaine de définition. On appelle
le pas du maillage la distance entre deux points successifs du maillage voisins. En dimension 1,
cela se simplifie en différence des abscisses. Ce pas n’est pas nécessairement constant, il peut
même être judicieux de ne pas le fixer comme tel. Le pas (global) de l’approximation peut être
défini comme le plus grand pas du maillage. Ainsi, si ce pas global tend vers 0, cela veut dire que
la répartition des points du maillage dans l’intervalle choisi tend à se faire sur tout le domaine
d’étude par densité.

Exemple :
Pour un intervalle de validité [0, 2], avec n le nombre des pas, on aura n + 1 points qui sont
donnés par la relation xi = i× h avec h = 2

n
constant, 0 ≤ i ≤ n.

Notation indicielle :
Durant ces projets nous utiliserons souvent la notation indicielle. C’est pourquoi nous voulons
en rappeler le principe. si x est un des vecteurs de base du repère (quadrillage) discrétisé, nous
noterons le point x(i), qui est la ieme abscisse par xi et de même la jeme ordonnée y(j) sera noté
yj et si u est maintenant la fonction, ici la solution de l’équation aux dérivées partielles dépen-
dant seulement des variables de l’espace, on remplacera u(xi, yj) par ui,j. Si, en plus des variables
de l’espace, il existe une variable temprelle t(k) = tk, alors la fonction u(xi, yj, tk) sera notée uki,j

En résumé, les indices des variables spatiales resteront en indices et celui du temps sera
en exposant. C’est ce qu’on appelera la notation indicielle.
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3.1.4 Consistance, Convergence et stabilité

Un certain nombre de notion est nécessaire lors de la résolution d’équations aux dérivées
partielles (EDP). Les trois principales sont la convergence, la stabilité et la consistance.
Ces trois propriétés permettent de relier la solution exacte des équations continues à la solu-
tion exacte des équations discrétisées et à la solution numérique obtenue. Ces différents liens,
résumés sur la Figure 3.1, sont :

• la stabilité, c’est la propriété qui assure que la différence entre la solution numérique obtenue
et la solution exacte des équations discrétisées est bornée.

• la consistance, c’est la propriété qui assure que la solution exacte des équations discrétisées
tende vers la solution exacte des équations continues lorsque le pas de discrétisation (∆t
et ∆x) tendent vers zéro.

• la convergence, c’est la propriété qui assure que la solution numérique tende vers la (ou une)
solution exacte des équations continues. C’est évidemment la propriété la plus recherchée.

Figure 3.1 – Solutions exacte, numérique et discrète
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Ces propriétés sont liées les unes aux autres par des théorèmes :(voir 19)
Le théorème de Lax
Dans un problème bien posé, et avec un schéma numérique consistant, la stabilité est une condi-
tion nécessaire et suffisante pour la convergence.
Condition de stabilité CFL
Pour des problèmes d’évolution temporelle, certains schémas sont stables à condition que le pas
de temps soit inférieur à une certaine valeur critique fonction du pas d’espace. Cette inégalité
constitue la condition de Courant-Friedrichs-Lewy (1928) ou condition CFL. Elle est néces-
saire et suffisante pour assurer la stabilité.
La condition CFL varie d’une équation à une autre.
Par exemple pour l’équation de la chaleur 1D (pour plus de detail voir (19) page [19-20]), les
schémas explicites (Euler) sont stables sous la condition CFL suivante :

α
∆t

∆x2
< 0.5,

avec α c’est le paramètre de diffusion de l’équation de la chaleur.
Alors que les schémas implicites sont toujours stables.

Dans cette section nous étudierons la résolution numérique des équations aux dérivées par-
tielles (les EDPs elliptiques et les EDPs paraboliques).

3.2 La résolution numérique des EDPs

3.2.1 Cas elliptique :

Dans cette sous section on va traiter le cas des EDPs elliptiques.

3.2.1.1 Discrétisation de l’EDP :

Soit l’EDP suivante :

∂2u

∂x2
+
∂2u

∂y2
= 0, ∀(x, y) ∈ [a, b]× [c, d].

On prendra hx et hy les pas de discrétisation des intervalles [a, b] et [c, d].

1. Discrétisation de l’intervalle [a, b] :

hx =
b− a
nx

(nx étant le nombre d’intervalles dans [a, b])

=⇒ x(i) = xi = a+ i× hx, i = 0, 1, . . . , nx.

2. Discrétisation de l’intervalle [c, d] :

hy =
d− c
ny

(ny étant le nombre d’intervalles dans [c, d])

=⇒ y(j) = yj = c+ j × hy, j = 0, 1, . . . , ny.
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Remarque 3.2.1. Constatons que xi+1 = a + (i + 1)hx = (a + ihx) + hx = xi + hx. Dans
la suite, nous remplacerons chaque fois xi + hx, xi − hx, yj + hy, yj − hy succéssivement par
xi+1, xi−1, yi+1, yi−1.

A) Méthode des différences finies :

Cette méthode consiste à approximer les dérivées partielles d’une équation au moyen des
developpemets de Taylor et ceci se déduit directement de la définition de la dérivée.

Soit f(x, y) une fonction continue et dérivable de classe C∞, alors la dérivée partielle pre-
mière de f par rapport à x est calculée par la formule :

f
′

x(x, y) = lim
hx−→0

f(x+ hx, y)− f(x, y)

hx
.

Si hx <<< 1, le développement de Taylor au voisinage de 0 de f(x+ hx, y) donne :

f(x+ hx, y) = f(x, y) + hx
∂f

∂x
+ θ(hx) ' f(x, y) + hx

∂f

∂x
avec une erreur de l’ordre de hx.

=⇒ ∂f(x, y)

∂x
' f(x+ hx, y)− f(x, y)

hx
,

ceci est appelé le schéma avant.
De la même manière, nous pouvons aussi donner le schéma arrière qui est de la forme :

∂f(x, y)

∂x
= lim

hx→0

f(x, y)− f(x− hx, y)

hx
.

Avec la formule de Taylor, ceci nous donne :

f(x, y) = f(x− hx, y) + h
∂f(x, y)

∂x
+ θ(hx) ' f(x− hx, y) + h

∂f(x, y)

∂x
avec une erreur de hx

=⇒ ∂f(x, y)

∂x
' f(x, y)− f(x− hx, y)

hx
.

La somme de ces deux schémas nous donne le schéma centré suivant :

∂f(x, y)

∂x
' f(x+ hx, y)− f(x− hx, y)

2hx
.

En résumé, on a les trois approximations suivantes pour la dérivée partielle première de f(x, y)
par rapport à x avec la formule de Taylor :

f
′
x(x, y) = lim

hx→0

f(x+ hx, y)− f(x, y)

hx
≈



∂f(x, y)

∂x
' f(x+ hx, y)− f(x, y)

hx
, schéma avant ;

∂f(x, y)

∂x
' f(x, y)− f(x− hx, y)

hx
, schéma arrière ;

∂f(x, y)

∂x
' f(x+ hx, y)− f(x− hx, y)

2hx
, schéma centré.
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La dérivée seconde f ′′x de f(x, y) sera alors de la forme :

∂2f

∂x2
≈

f(xi+1,yj)−f(xi,yj)

hx
− f(xi,yj)−f(xi−1,yj)

hx

hx

∂2f

∂x2
' f(xi+1, yj)− 2f(xi, yj) + f(xi−1, yj)

h2
x

. (3.10)

Nous utiliserons tour à tour ces égalités dans la suite pour approximer les dérivées partielles.

B) Approximation de l’équation différentielle partielle :
Soit l’équation de Laplace :

∆u = 0⇔ ∂2u

∂x2
+
∂2u

∂y2
= 0. (3.11)

Posons u(xi, yj) = ui,j (en notation indicielle). Compte tenu de la relation (3.10) du paragraphe
précédent,

∂2u

∂x2
≈ ui+1,j − 2ui,j + ui−1,j

h2
x

.

Puisque xi et yj jouent un rôle symétrique dans l’équation du potentiel (de Laplace), un rai-
sonnement analogue à celui de l’approximation de f ′′x nous donne :

∂2u

∂y2
≈ ui,j+1 − 2ui,j + ui,j−1

h2
y

,

rapportons ces aproximations dans l’EDP (3.11) :

⇔ ∆u ≈ ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

= 0.

Dans ce cas particulier où hx = hy = h, donc, nous avons finalement :{
∆u = 0⇔ ui+1,j + ui,j+1 − 4ui,j + ui−1,j + ui,j−1

h2
= 0,

i = 0, 1, . . . , nx et j = 0, 1, . . . , ny.

Remarque 3.2.2. A chaque étape, nous remarquons que pour calculer la valeur de ui,j au point
(xi, yj) nous avons besoin de connaitre les points ui−1,j, ui,j−1, ui+1,j et ui,j+1 comme l’indique
le dessin suivant :
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Figure 3.2 – Illustration de la position de ui,j par rapport aux point ui−1,j, ui,j−1, ui+1,j et
ui,j+1

C’est pour cela que nous appelons cette formule "la formule à 5 points" qui peut être repre-
sentée comme suit :

∆u = 0 =⇒ 1

h2


1

1 −4 1
1

ui,j = 0.

3.2.1.2 Résolution de l’EDP elliptique par la méthode directe :

Exemple :
Soit à résoudre l’équation de Laplace :

∆u = 0 dans le domaine (x, y) ∈ [0, 20]× [0, 10],
u(x, 0) = u(x, 10) = u(0, y) = 0 et u(20, y) = 100
hx = hy = h ∈ {5, 2.5, 1.25, 0.625, 0.3125}.

Tout en variant h, résoudre cette EDP En utilisant la méthode directe.

Cas où h= 5 :

On a : hx =
b− a
nx

⇒ nx =
b− a
hx

=
20− 0

5
= 4 et ny =

d− c
hy

=
10− 0

5
= 2. La grille

maillée contient alors (nx + 1) × (ny + 1) mailles vu que nous avons à rajouter les points où
xi = 0 et ceux où yj = 0 c’est à dire les points intersection de la courbe avec les axes. Mais
comme les conditions aux limites nous donnent les images sur les bords, alors les points inconnus
restent seulement ceux de l’intérieur du cadrillage. Ce qui fait donc que le nombre d’inconnues
est alors (nx − 1)× (ny − 1) = 3× 1 = 3.
Nous obtenons le système de trois équations à trois inconnues suivant :

−4u1,1 + u2,1 + 0u3,1 = 0,
u1,1 − 4u2,1 + u3,1 = 0,
0u1,1 + u2,1 − 4u3,1 = −100.
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Il nous reste maintenant à résoudre le système matriciel : A× U = B Avec :

A =

 −4 1 0
1 −4 1
0 1 −4,


B =

 0
0
−100


et

U =

 u1,1

u2,1

u3,1

 .

Avec une des méthodes vues en Analyse Numérique II (résolution des systèmes linéaires), nous
obtenons la solution :

U =

 1.786
7.143
26.786


Cas où h = 2.5 :

Nous avons aussi : nx =
b− a
h

=
20− 0

2.5
= 8 et ny =

d− c
h

=
10− 0

2.5
= 4, ce qui nous

donne un système à n = (nx−1)× (ny−1) = 7×3 = 21 équations à 21 inconnues de la forme :

−4u1,1 + u2,1 + . . .+ u1,2 + . . . = 0
u1,1 − 4u2,1 + u3,1 + . . .+ u2,2 + . . . = 0
...
. . . . . .+ u6,1 − 4u7,1 + . . . . . . = −100
u1,1 + . . . . . .− 4u2,1 + u2,2 + . . . . . . = 0
...

Les conditions aux limites nous ont ramené à avoir la grille suivante dans laquelle nous al-
lons chercher les inconnus de l’équation :
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Figure 3.3 – La position de la solution ui,j sur la grille qui correspond au système (I).

Avec un petit programme sur Matlab, nous transformons la matrcie U en un vecteur −→v
pour pouvoir bien résoudre le système sans erreur puisque la résolution du système AU = B
éxige que U soit un vecteur. Voici le programme qui a assuré la transformation :

********************************************
for j = 1 : ny − 1
for i = 1 : nx− 1
v(k) = u(i, j);
k = k + 1;
end
end
********************************************

Ce qui nous donne aprés, le système :

−4v1 + v2 + . . .+ v8 + . . . . . . = 0
v1 − 4v2 + v3 + . . .+ v9 + . . . = 0
...
. . . . . .+ v6 − 4v7 + . . . . . . = −100
v1 + . . . . . .− 4v8 + v9 + . . . . . . = 0
...

Il nous reste maintenant à résoudre le système matriciel suivant : A×−→v = B, avec
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Figure 3.4 – La matrice A et le vecteur B obtenu aprés la discrétisation.

Voici le programme complet, expliqué, saisi en Matlab qui nous a permis d’avoir la matrice
U à partir des calculs des élements du vecteur −→v .
***************************************************************************
clc ;clear
h = 2.5;
a = 0;
b = 20;
c = 0; d = 10;
nx = (b− a)/h;
ny = (d− c)/h;
n = (nx− 1) ∗ (ny − 1);
(remplissage des éléments de la matrice A)
A = zeros(n);
for i = 1 : (n− 1)
A(i, i) = −4;
A(i+ 1, i) = 1;
A(i, i+ 1) = 1;
if(mod(i, (nx− 1)) == 0)
A(i+ 1, i) = 0;
A(i, i+ 1) = 0;
end
end
for i = 1 : n− nx+ 1
A(nx− 1 + i, i) = 1;
A(i, nx− 1 + i) = 1;
end
A(n, n) = −4;
(remplissage des éléments de la matrice B)
for i = 1 : n
B(i) = 0;
if(mod(i, nx− 1) == 0)
B(i) = −100;
end
end
(résolution du système Av = B et transformation du vecteur −→v en la matrice U).
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V = inv(A) ∗B′;
k = 1;
for j = 1 : ny − 1
for i = 1 : nx− 1
u(j, i) = V (k);
k = k + 1;
end
end
(décallage des élements pour insérer les conditions aux limites)
for j = ny : −1 : 2
for i = nx : −1 : 2
u(j, i) = u((j − 1), i− 1);
end
end
for i = 1 : nx
for j = 1 : ny
u(1, i) = 0;
u(j, 1) = 0;
u(ny + 1, i) = 0;
u(j, nx+ 1) = 100;
end
end
u(1, nx+ 1) = 0;
les vecteurs x et y
x = 0 : h : b; y = 0 : h : d;
(affichage la surface en tenant compte des vecteurs x ,y et de la matrice U)
mesh(x, y, u)
************************************************************************
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Remarque 3.2.3. Pour évaluer le système avec les autres valeurs de h, il suffit de remplacer
h = 2.5 par les autres valeurs et compiler le programme, cela donnera la surface correspondante
pour chaque valeur de h.

Voici en résumé, les surfaces qu’on obtient en variant h :

Figure 3.5 – Evolution de la surface représentative de la solution de ∆u = 0 en fonction de h
avec la méthode directe.
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3.2.2 Cas parabolique :

Dans cette sous section, on va traiter le cas des EDPs paraboliques où on va prendre deux
exemples qui sont l’équation de la chaleur en 2D et 1D.

A) L’équation de la chaleur en 2D :


∂u

∂t
−
(
∂2u

∂x2
+
∂2u

∂y2

)
= 0 ∀(x, y) ∈ [a, b]× [c, d], ∀t ∈ [0, T ]

u(x, 0) = f(x).

(3.12)

On commence par la discrétisation temporelle du terme
∂u

∂t
avec une méthode d’Euler explicite

qui va s’écrire sous la forme :

∂u

∂t
≈
uk+1
i,j − uki,j

∆t
,

avec ∆t est le pas de discrétisation de l’intervalle [0, T ] avec une subdivision : tk+1 = tk+∆t
et tN = T (N = T

∆t
) et uk+1 représente la solution à l’instant tk+1. (L’indice k représente le

temps).
En reprenant la notation indicielle (i, j) qui représente (x, y), on retrouve :

uk+1
i,j − uki,j

∆t
=
uki+1,j + uki,j+1 − 4uki,j + uki−1,j + uki,j−1

h2
(3.13)

où le membre droit de l’équation (3.13) est obtenu à partir de la discrétisation de l’EDP ellip-
tique représenté dans le cas précédent.
Nous déduisons que la solution est obtenue par itération selon la formule :

uk+1
i,j = uki,j +

∆t

h2

(
uki+1,j + uki,j+1 − 4uki,j + uki−1,j + uki,j−1

)
(3.14)

avec la notation : uki,j ≈ u(xi, yj, tk).

Pour le schéma (3.14) soit stable, il faut choisir ∆t et h pour que la condition de stabilité
de CFL soit vérifiée (voir section 3.2.3 pour plus de détails).
Comme cela, on obtient un schéma convergent .
La condition de stabilité dans le cas d’EDP de chaleur en 2D est :

α
∆t

∆x2
+ α

∆t

∆y2
< 0.5

Dans notre cas α = 1 (paramétre de diffusivité) et ∆x = ∆y = h

On obtient donc 2
∆t

h2
< 0.5 et la condition de stabilité sera

∆t

h2
< 0.25.
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Résolution de l’EDP parabolique par la méthode directe :

Le programme suivant représente la résolution numérique de l’EDP de chaleur en 2D avec la
condition initiale et les conditions aux limites suivantes :

∂tu−∆u = 0, dans D × [0, T ] ;
u(x, t) = 0, dans ∂D × [0, T ] ;

u(x, 0) =

{
2, si 1 ≤ x ≤ 1.5 et 1 ≤ y ≤ 1.5 ;
0, sinon.

(3.15)

avec D = [a, b]× [c, d] où a = c = 0 et b = d = 3.5, et T = 0.1 et x = (x, y).

*****************************************************************
clear

clc
a = 0;
c = 0;
(Nombre de points en x)
nx = 50;
(Nombre de points en y)
ny = 50;
(Nombre de points en t)
nt = 100;
(pas de temps)
dt = 0.001;
(pas en x)
dx = 0.07;
(pas en y)
dy = 0.07;
b = dx ∗ nx;
d = dy ∗ ny;
x = a : dx : b;
y = c : dy : d;
(initialisation u)
u = zeros(nx+ 1, ny + 1);
(Preallocating un)
un = zeros(nx+ 1, ny + 1);
alpha = 1;
(x = a Dirichlet B.C)
uxa = 0;
(x = b Dirichlet B.C)
uxb = 0;
(y = c Dirichlet B.C)
uyc = 0;
(y = d Dirichlet B.C )
uyd = 0;
h = dx;

uinit = 2;
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for i = 1 : nx
for j = 1 : ny
if((1 <= y(j)) and (y(j) <= 1.5) and (1 <= x(i)) and (x(i) <= 1.5))
u(i, j) = uinit;
else
u(i, j) = 0;
end
end
end

i = 2 : nx− 1;
j = 2 : ny − 1;
it = 0 : nt;
for k = 1 : length(it)
un = u;
hh=surf(x, y, u′,"EdgeColor","none") ;
shading interp
zlim([0uinit])
title(["Equation de la chaleur en 2D"] ;["Temps (t) = ",num2str(it(k)*dt)])
xlabel(’x’)
ylabel(’y’)
zlabel(’u(x,y,t)’)

drawnow ;
refreshdata(h)
u(i, j) = un(i, j) + (alpha∗dt∗ (un(i+ 1, j)−4∗un(i, j) +un(i−1, j)) +un(i, j+ 1) +un(i, j−
1)))/(h2)
u(1, :) = uxa;
u(nx, :) = uxb;
u(:, 1) = uyc;
u(:, ny) = uyd;
end
*********************************************************************************
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Figure 3.6 – Solution de l’équation de la chaleur en 2D en 4 instants différents T = 0, T =
0.09, T = 0.032 et T = 0.1

B) L’équation de la chaleur en 1D :

Maintenant, on va résoudre une équation de chaleur en 1D.
Nous choisissons un problème que nous savons résoudre analytiquement et par différences finies
pour faire une comparaison entre les deux. ∂u(x, t)

∂t
= a

∂2u(x, t)

∂x2
, Dans D = [0, xf ]× [0, T ] ;

u(x, 0) = f(x).
(3.16)

avec : 
domaine D = [0, 3]× [0, 0.1], a = 1 ;
condition initiale f(x) = sinπx.

condition aux limites

{
u(0, t) = 0,
u(1, t) = 0

(3.17)

On sait résoudre cette équation analytiquement et la solution (exacte) est :

u(x, t) = sin(πx)exp(−π2t).
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Le programme suivant en matlab nous permettre de calculer la solution exacte et la solution
approximée de l’EDP (3.16) avec les conditions (3.17).

*************************************************************
clear
clc
(Coefficient de diffusivité de l’equation de chaleur en 1D)
a = 1;
(Condition initiale du problème)
f = inline(′sin(pi ∗ x)′,′ x′);
(Condition aux limites de Dirichlet)
bx0 = inline(′0′);
(Conditions aux limites de Dirichlet)
bxf = inline(′0′);
(L’intervale pour x ∈ [0, xf ])
xf = 3;
(Nombre de points en x)
M = 150;
dx = xf/M ;
x = linspace(0, xf,M);
T = 0.1;
(Respect de la condition de stabilite de CFL)
dt = ((dx2 ∗ 0.5)/1)− 1e− 6;
t = 0 : dt : T ;
(Nombre de points en temps)
N = length(t);

fori = 1 : M
(Prise en compte de la condition initiale dans u)
u(i, 1) = f(x(i));
end

(Prise en compte des conditions aux limites)
for n = 1 : N
u(1, n) = bx0(t(n));
u(M,n) = bxf(t(n));
end
(Calcul de la solution par iteration en temps k + 1)
for k = 1 : N − 1
for i = 2 : M − 1
u(i, k + 1) = u(i, k) + dt ∗ (u(i+ 1, k)− 2 ∗ u(i, k) + u(i− 1, k))/dx2;
end
end
(Dessin de la solution approchee)
figure, mesh(t, x, u);
xlabel(’t’)
ylabel(’x’)
zlabel(’u(x,t)’) ;
title(’Solution numerique de l”EDP par differences finies’)
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(uexacte = (u(x, t) = sin(pi ∗ x) ∗ exp(−pi2 ∗ t)) :)

for i = 1 : M
for j = 1 : N
uexact(i,j) = sin(pi ∗ x(i)) ∗ exp(−pi2 ∗ t(j));
end
end
figure,mesh(t, x, uexact) ;
xlabel(’t’)
ylabel(’x’)
zlabel(’u(x,t)’) ;
title(’Solution exacte’) ;
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La Figure 3.7 représente la solution analytique u(x, t) en fonction de t et x.

Figure 3.7 – Solution analytique u(x, t) en fonction de x et t

La Figure 3.8 donne l’illustration graphique de la solution approximée en fonction de x et
t (par différences finies).

Figure 3.8 – Solution approximée par la méthode des différences finies.



3.2.2 Cas parabolique : 57

La Figure 3.9 illustre la solution exacte et approximée au long de l’axe t et pour un point
d’espace fixé x = 1.5. On remarque que les deux graphes sont presque confondus ce qui veut
signifier que l’erreur est acceptable.

Figure 3.9 – Solution exacte et approximée par la méthode des différences finies de l’EDP
(3.16) pour x = 1.5

La Figure 3.10 illustre le vecteur e(x; t) (Erreur) de la méthode des différences finies pour
x = 1.5.

Figure 3.10 – L’erreur de la méthode pour x = 1.5



Chapitre 4

Approche probabiliste des EDPs

Le but de ce chapitre est de montrer les liens qui peuvent exister entre la théorie des pro-
cessus stochastiques et les équations aux dérivées partielles (EDP). Les processus stochastiques
utilisés sont des processus possédant la propriété de Markov. L’idée principale est de montrer
que l’espérance mathématique de fonctionnelles de ces processus fournit une représentation
probabiliste de solutions de certaines équations, i.e. les processus de diffusions obtenus comme
solution d’EDS à partir de processus de Wiener, nous permettent de représenter les solutions
des EDP du second ordre.
L’approche probabiliste permet d’avoir accées rapidement à une expression de la solution pour
des domaines D de géométrie (relativement) arbitraire. De plus, elle ouvre la porte à des tech-
niques de simulations de ces solutions d’EDP (méthode de Monte-Carlo) pour approximer les
espérences.

4.1 Diffusion et EDP
Dans cette section, on va présenter quelques rapports entre les diffusions et les équations

aux dérivées partielles. Grace à la formule d’Itô, il est possible de donner une interprétation
probabiliste à certaines équations aux dérivées partielles, ce qui permet ainsi de prouver l’exis-
tance de solutions.

4.1.1 La formule de Dynkin

La formule de Dynkin est essentiellement une généralisation de l’expression (2.22) à
des temps d’arrêt. Elle fournit une première classe de liens entre diffusions et équations aux
dérivées partielles.

Proposition 4.1.1. (Formule de Dynkin) Soit (Xt)t≥0 une diffusion de générateur L, x ∈
Rn, τ un temps d’arrêt tel que Ex[τ ] <∞ et, ϕ ∈ C2

c (Rn,R). Alors :

Ex[ϕ(Xτ )] = ϕ(x) + Ex
[ ∫ τ

0

(Lϕ)(Xs)ds

]
.

Preuve. Afin de simplifier la preuve, on considère le cas n = m = 1, (m étant la dimension
du mouvement Brownien).

En utilisant la formule d’Itô et en prenant l’espérance de deux membres, on obtient :

Ex[ϕ(Xτ )] = ϕ(x) + Ex
[ ∫ τ

0

(Lϕ)(Xs)ds

]
+ Ex

[ ∫ τ

0

σ(Xs)ϕ
′(Xs)dBs

]
.

58
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Il suffit donc de montrer que l’espérance de l’intégrale stochastique est nulle.
Puisque pour toute fonction h bornée par M , et N ∈ N, on a :

Ex
[ ∫ τ∧N

0

h(Xs)dBs

]
= Ex

[ ∫ N

0

1{s<τ}h(Xs)dBs

]
= 0,

car 1{s<τ} et h(Xs) sont Fs-mesurables.
Puis :

Ex
[(∫ τ

0

h(Xs)dBs −
∫ τ∧N

0

h(Xs)dBs

)2]
= Ex

[ ∫ τ

τ∧N
h(Xs)

2ds

]
≤ M2Ex[τ − τ ∧N ],

qui tend vers 0 quand N → +∞, en vertu de l’hypothèse Ex(τ) < +∞, par convergence
dominée. On a donc :

lim
N−→+∞

Ex
[ ∫ τ∧N

0

h(Xs)dBs

]
= Ex

[ ∫ τ

0

h(Xs)dBs

]
= 0,

ce qui conclut la preuve pour h = σϕ′ qui est bornée car continue à support compact.
La preuve du cas général est analogue.

�

4.1.2 Liens avec des EDPs linéaires

La seconde classe de liens entre équations différentielles stochastiques et équations aux dé-
rivées partielles est constituée par les EDP linéaires.

Nous supposons dans cette sous section que b et σ sont continus et indépendants du temps.
On note Ck

b (Rd) l’espace des fonctions sur Rd de classe Ck continues et bornées avec leurs
dérivées jusqu’à l’ordre k.

Equations paraboliques :

Nous nous intéressons à des équations aux dérivees partielles (EDP) paraboliques de la forme
∂u

∂t
= Lu, t> 0

u(0, x) = f(x), x ∈ Rd,

(4.1)

où f ∈ Cb(Rd) et u : R+ × Rd → R est continue bornée, avec

u(., x) ∈ C1(]0,+∞[), u(t, .) ∈ C2
b (Rd), ∀(t, x) ∈ ]0,+∞[×Rd. (4.2)

Théorème 4.1.1. Soit x ∈ Rd. Si u satisfait (4.1)−(4.2) et (Xt)t≥0 est une solution de Ex(b, σ)
alors

u(t, x) = Ex[f(Xt)], t ≥ 0. (4.3)
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Preuve :
Le résultat suit en appliquant la formule d’Itô au processus (u(t− s,Xs))s∈[0,t] :

du(t− s,Xs) =
(
− ∂u

∂t
+ Lu

)
(t− s,Xs)ds+ dMs,

où M est une martingale. Donc

u(t, x) = u(0, Xt) +Mt = f(Xt) +Mt,

et en prénant l’espérance nous avons le résultat souhaité.

�

La formule de Feynman-Kac :

Jusqu’ici nous avons rencontré des problèmes à valeurs au bord elliptique de la forme Lu = θ,
et des équations d’évolution paraboliques de la forme ∂tu = Lu. la formule de Feyman-kac
montre q’on peut également lier des propriétés d’une diffusion à celles d’équation paraboliquess
où le générateur contient un terme linéaire en u.
L’ajout d’un terme linéaire dans le générateur peut s’interpréter comme le fait de "tuer" la
diffusion avec un certain taux. Le cas le plus simple est celui d’un taux constant.
Soit V : Rd → R continue et bornée inférieurement (inf V > −∞). Nous nous intéressons à
l’EDP 

∂u

∂t
= Lu− V u, t> 0

u(0, x) = f(x), x ∈ Rd,

(4.4)

où f ∈ Cb(Rd).

Théorème 4.1.2. Soit x ∈ Rd. Si u satisfait (4.2), (4.4) et (Xt)t≥0 est une solution de Ex(b, σ)
alors

u(t, x) = E

[
f(Xt) exp

(
−
∫ t

0

V (Xs)ds

)]
, t ≥ 0. (4.5)

Preuve. Le résultat suit en appliquant la formule d’Itô au processus (e−
∫ s
0 V (Xu)duu(t −

s,Xs))s∈[0,t] :

d
(
e−

∫ s
0 V (Xu)duu(t− s,Xs)

)
= e−

∫ s
0 V (Xu)du

(
− ∂u

∂t
+ Lu− V u

)
(t− s,Xs)ds+ dMs,

où M est une martingale. Donc
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u(t, x) = e−
∫ s
0 V (Xu)duu(0, Xt) +Mt = e−

∫ t
0 V (Xu)duf(Xt) +Mt,

et en prénant l’espérance nous avons le résultat souhaité.

Cette formule a été inspirée par la mécanique quantique, où V joue le rôle d’un potentiel.

�

Equations elliptiques :

Nous nous intéressons à l’EDP

λu− Lu = f, (4.6)

où f ∈ Cb(Rd) et λ > 0

Théorème 4.1.3. Soit x ∈ Rd. Si u satisfait (4.6), u ∈ C2
b (Rd) et (Xt)t≥0 est une solution de

Ex(b, σ) alors

u(x) =

∫ ∞
0

e−λtE[f(Xt)]dt. (4.7)

Preuve. Le résultat suit en appliquant la formule d’Itô au processus (e−λsu(Xs))s∈[0,t] :

d(e−λsu(Xs)) = e−λs(−λu+ Lu)(Xs)ds+ dMs,

où M est une martingale. Donc

u(x)− e−λtu(Xt) =

∫ t

0

e−λsf(Xs)ds−Mt.

En prénant l’espérance et en faisant tendre t→ +∞ nous obtenons

u(x) =

∫ ∞
0

e−λsEx[f(Xs)]ds.

�
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Problème de Dirichlet :
Nous considérons un ouvert régulier borné D ⊂ Rd et L’EDP


∂u

∂t
= Lu, t > 0, x ∈ D ;

u(t, x) = g(x), t > 0, x ∈ D ;
u(0, x) = f(x), x ∈ D,

(4.8)

où f ∈ Cb(D), g ∈ Cb(∂D) et u : R+ ×D → R est continue bornée, avec

u(., x) ∈ C1(]0,+∞[) u(t, .) ∈ C2
b (D), ∀(t, x) ∈]0,+∞[×D. (4.9)

Théorème 4.1.4. Soit x ∈ D. si u satisfait (4.8)−(4.9) et (Xt)t≥0 est une solution de Ex(b, σ)
alors pour tout t ≥ 0

u(t, x) = Ex[1(t<τ)f(Xt)] + Ex[1(t≥τ)g(Xτ )], τ := inf{u > 0 : Xu /∈ D}. (4.10)

Preuve. Le résultat suit en appliquant la formule d’Itô au processus (u(t−s∧τ,Xs∧τ ))s∈[0,t] :

du(t− s ∧ τ,Xs∧τ ) =
(
− ∂u

∂t
+ Lu

)
+ (t− s ∧ τ,Xs∧τ )ds+ dM τ

s ,

où M est une martingale bornée. Donc

u(t, x) = u(t− t ∧ τ,Xt∧τ )−M τ
t = 1(t<τ)f(Xt) + 1(t≥τ)g(Xτ )−M τ

t .

Donc, par le théorème d’arrêt, en prenant l’espérance nous avons le résultat souhaité.

�

Exemple :
Si g ≡ 0 alors nous avons un problème de Dirichlet homogène et la solution s’écrit

u(t, x) = Ex[1(t<τ)f(Xt)].

On peut remarquer que cette solution est égale à celle d’une équation de Feynman-Kac avec

V (x) =

{
0, x ∈ D ;
+∞, x /∈ D,

car dans ce cas exp(−
∫ t

0
V (Xu)du) = 1(t<τ). On dit que le processus X est tué au bord de D.

Si nous considérons maintenant l’équation{
−Lu = f, x ∈ D ;
u(x) = g(x), x ∈ ∂D, (4.11)
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où f ∈ Cb(D) et u : D → R est continue bornée, avec u ∈ C2
b (D).

Théorème 4.1.5. Soit x ∈ D. Si u satisfait (4.11) et (Xt)t≥0 est une solution de Ex(b, σ) et,
en définissant τ := inf{u > 0 : Xu /∈ D}, P(τ < +∞) = 1 alors

u(x) = E[g(Xτ )] + E

[ ∫ τ

0

f(Xs)ds

]
. (4.12)

Preuve. Le résultat suit en appliquant la formule d’Itô au processus (u(Xs∧τ ))s∈[0,t] :

du(Xs∧τ ) = 1(s<τ)(−λu+ Lu)(Xs∧τ )ds+ dM τ
s ,

où M est une martingale bornée. Donc

u(x) = u(Xt∧τ ) +

∫ t∧τ

0

f(Xs)ds−M τ
t .

Par le théorème d’arrêt, en prenant l’espérance nous avons

u(x) = E[(Xt∧τ )] + E

[ ∫ t∧τ

0

f(Xs)ds

]
,

et en faisant tendre t→ +∞

u(x) = E[g(Xτ )] + E

[ ∫ τ

0

f(Xs)ds

]
.

�

4.1.3 EDP de type Dirichlet

Considérons le cas où le temps d’arrêt τ est le temps de première sortie d’un ouvert borné
D ⊂ Rn. Supposons que le problème avec conditions au bord{

(Lu)(x) = θ(x), x ∈ D ;
u(x) = ψ(x), x ∈ ∂D. (4.13)

admet une unique solution. C’est le cas si D, θ et ψ sont suffisamment réguliers. Substituant ϕ
par u dans la formule de Dynkin, on obtient la relation

u(x) = Ex
(
ψ(Xτ )−

∫ τ

0

θ(Xs)ds

)
(4.14)

Pour ψ = 0 et θ = −1, u(x) est égale à l’espérence de τ partant de x. Pour θ = 0 et ψ l’indica-
trice d’une partie A du bord ∂D, u(x) est la probabilité de quitter D par A. Ainsi, si l’on sait
résoudre le problème (4.13), on obtient des informations sur le temps et le lieu de sortie de D.

Exemple :(Temps de sortie moyen du mouvement Brownien d’une boule)
Soit K = {x ∈ Rn : ‖x‖ < R} la boule de rayon R centrée à l’origine. Soit

τK = inf{t > 0 : x+ Bt /∈ K} (4.15)
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et soit

τ(N) = τK ∧N. (4.16)

La fonction ϕ(x) = ‖x‖21‖x‖≤R est à support compact et satisfait ∆(ϕ(x)) = 2n pour
x ∈ K. On peut par ailleurs la prolonger en dehors de K de manière qu’elle soit lisse et à
support compact. En substituant dans la formule de Dynkin, on obtient

Ex(‖x+ Bτ(N)‖2) = ‖x‖2 + Ex
(∫ τ(N)

0

1

2
∆ϕ(Bs)ds

)

= ‖x‖2 + nEx(τ(N)). (4.17)

Comme ‖x+Bτ(N)‖ ≤ R, faisant tendre N vers l’infini, on obtient par convergence dominée

Ex(τK) =
R2 − ‖x‖2

n
. (4.18)

4.2 Mouvement Brownien et EDP
Des liens importants existent entre probabilités et EDP via les processus stochastiques.

Ceux-ci sont souvent reliés à des opérateurs différentiels linéaires, ce qui permet d’exprimer les
solutions de certaines EDP en termes de processus stochastiques. L’opérateur le plus simple est
celui de Laplace ∆ et il est directement relié au mouvement Brownien. On étudie dans cette
section les connexions entre mouvement Brownien et équations liées au laplacien (équation de
Laplace, problème de Dirichlet, équation de la chaleur, formule de Feynman- Kac).

4.2.1 Fonctions harmoniques

Le laplacien ∆u d’une fonction C2 sur un ouvert U de Rd est défini par

∆u(x) =
d∑
i=1

∂2u

∂x2
i

(x).

Le mouvement Brownien B dans Rd est naturellement relié à cet opérateur, en effet la
formule d’Itô montre que si Φ : Rd → R est C2 alors

Φ(Bt) = Φ(B0) +
1

2

∫ t

0

∆Φ(Bs)ds+

∫ t

0

∇Φ(Bs).dBs. (4.19)

Ainsi, si ∆Φ = 0, alors Φ(B) est une martingale locale.

Définition 4.2.1. (Fonction harmonique) Soit D ⊂ Rd un domaine (ouvert, connexe). Une
fonction u : D → R est harmonique si u est de classe C2 sur D et satisfait l’équation de Laplace
∆u = 0 dans D.

Exemples

1. En dimension 2 : u(x1, x2) = ln(x2
1 + x2

2) et u(x1, x2) = ex1 sinx2 sont harmoniques.
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2. En dimension d : 1/|x|d−2 est une fonction harmonique sur D = Rd\{0}.
La propriété suivante joue un rôle essentiel pour relier les solutions d’EDP à des espérances

de processus arrêtés en des temps de sortie de domaine. Dans la suite, pour G ouvert, on note
pour B mouvement Brownien :

τG = inf(t ≥ 0 : Bt /∈ G) le temps d’entrée dans Gc,

σG = inf(t > 0 : Bt /∈ G) le temps de sortie de G.

On note que le temps de sortie de G est plus grand que le temps d’entrée dans Gc : σG ≥ τG.
Par exemple si G est ouvert et B part de ∂G, on a τG = 0 mais σG > 0 si B commence par
entrer dans G.

Proposition 4.2.1. Soit G un ouvert borné avec G ⊂ D et B un mouvement Brownien issu
de a ∈ G. Si u : D → R est harmonique alors

Mt = u(Bt∧τG)− u(a)

est une martingale centrée.

Preuve. : voir (28).

Formule de la moyenne

Définition 4.2.2. (Formule de la moyenne) Une fonction réelle u est dite satisfaire la
formule de la moyenne sur D si pour toute boule ouverte B(a, r) telle que B(a, r) ⊂ D, on a

u(a) =

∫
∂B(a,r)

u(x)λa,r(dx), (4.20)

où λa,r est la probabilité uniforme sur la sphère ∂B(a, r).

Proposition 4.2.2. Soit u : D → R. Alors u est harmonique sur D ssi u vérifie la formule de
la moyenne (4.20).

Preuve. : voir (28).

4.2.2 Probléme de Dirichlet

Le problème de Dirichlet (D, f) consiste à trouver une fonction harmonique u : D → R
continue sur D et C2 sur D, prolongeant une fonction continue définie sur la frontière de l’ouvert
D telle que f : ∂D → R. En résumé, le problème s’écrit sous la forme suivante :

∆u = 0, sur D,

u\∂D = f.
(4.21)

Ce problème porte le nom du mathématicien allemand Johann Peter Gustav Lejeune Diri-
chlet. Il s’agit d’un problème bien connu qu’on peut résoudre explicitement de façon analytique
en utilisant la transformation de Fourier sur des domaines pertinents. L’approche probabiliste
permet d’avoir accés rapidement à une expression de la solution pour des domaines D de géo-
métrie (relativement) arbitraire. De plus, elle ouvre la porte à des techniques de simulations
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de ces solutions d’EDP (méthode de Monte-Carlo). Cependant pour simplifier, nous supposons
que D est borné.

Théorème 4.2.1. (Dirichlet 1) On considère le problème de Dirichlet (4.21). Soit

u(x) = Ex[f(BτD)], x ∈ D. (4.22)

(1) Si Ex[|f(BτD)|] <∞,∀x ∈ D, alors u donnée par (4.22) vérifie (4.21).
(2) Si f est bornée et

Pa(τD < +∞) = 1, ∀a ∈ D

alors toute solution bornée du problème de Dirichlet (D, f) s’écrit comme (4.22).

Si D est bornée alors la condition dans (1) au dessus est satisfaite car BτD reste dans D et
f est finie sur un domaine borné.

D’après le Théorème (4.2.1), pour résoudre le problème de Dirichlet (4.21), il reste seulement
à voir la continuité sur ∂D de u donnée par (4.22), c’est à dire

lim
x∈D
x→a

Ex[f(BτD)] = f(a), a ∈ ∂D. (4.23)

Ceci est lié à la notion de régularité du bord, cf. ci-dessous.
Preuve.
On montre d’abord (2) puis (1).
(2) On suppose d’abord qu’il existe u vérifiant le problème de Dirichlet (4.21). Soient x ∈ D et
Dε
− = {x ∈ D : dist(x,Dc) > ε} le ε-intérieur de D. Pour ε assez petit, x ∈ Dε

−. On applique
alors la Proposition (4.2.1) et en prenant l’espérance de la martingale obtenue, on a

u(x) = Ex[u(Bt∧τDε−
)].

Par hypothèse, on a τDε− < +∞ p.s. (Dε
− ⊂ D) : On se ramène facilement, au cas où D

est un rectangle et on utilise les temps de sortie des marginales de B qui sont des mouve-
ments browniens unidimensionnels dont les temps de sorties d’intervalles sont bien connus. On
utilise le théorème de convergence dominée (u bornée sur D puisque D est borné) pour faire
successivement t→ +∞ et ε→ 0 : d’abord comme τDε− < +∞ p.s.

u(x) = lim
t→+∞

Ex[u(Bt∧τDε−
)] = Ex[u(BτDε−

)].

Puis comme D = ∪ε>0D
ε
−, on a τDε− ↗ τD lorsque ε→ 0 donc par continuité de B et de u,

à nouveau par convergence dominée :

u(x) = lim
ε→0

Ex[u(BτDε−
)] = Ex[u(BτD)] = Ex[f(BτD)],

où la dernière égalité vient de la condition au bord du problème de Dirichlet (4.21) avec
BτD ∈ ∂D. Finalement, si x ∈ ∂D, τD = 0 et on a u(x) = f(x).
Si elle existe, la solution de (4.21) est donc unique et nécessairemant donnée par (4.22).
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(1) On considère maintenant u donnée par (4.22). Comme pour (2), il est immédiat que
u(x) = f(x) si x ∈ ∂D. Pour montrer que u est harmonique dans D, on montre que u vérifie la
formule de la moyenne, ce qui est équivalent par la Proposition (4.2.2).

Soit B(a, r) ⊂ D. Quand B part de a ∈ B(a, r) ⊂ D, comme τB(a,r) ≤ τD, on a FτB(a,r)
⊂ FτD

et par conditionnement on a

u(a) = Ea[f(BτD)] = Ea[Ea[f(BτD)/FτB(a,r)
]].

Mais
Ea[f(BτD)/FτB(a,r)

] = Ea[f(BτD −BτB(a,r)
+BτB(a,r)

)/FτB(a,r)
]

= Ea[f(B
(τB(a,r))
τD−τB(a,r)

+BτB(a,r)
)/FτB(a,r)

]

= Ea[f(B
(τB(a,r))

τ ′D
+BτB(a,r)

)/FτB(a,r)
]

= u(BτB(a,r)
),

car par la propriété de Markov forte, B(τB(a,r))

t = Bt+τB(a,r)
− BτB(a,r)

, t ≥ 0, est un mouvement

Brownien issu de 0, indépendant de FτB(a,r)
et donc sachant FτB(a,r)

, B
(τB(a,r))

t+τB(a,r)
+ BτB(a,r)

est un
mouvement Brownien partant de BτB(a,r)

∈ ∂B(a, r) pour lequel τ ′D = τD−τB(a,r) reste le temps
de sortie D (il s’agit de τD reinitialisé à la date τB(a,r)).
Finalement, on a

u(a) = Ea[u(BτB(a,r)
)] =

∫
∂B(a,r)

u(y)λa,r(dy),

ce qui établit la formule de la moyenne donc l’harmonicité par la Proposition (4.2.2), c’est à
dire l’équation de Laplace sur D.

�

Régularité du bord :
Pour avoir une solution au problème de Dirichlet (4.21) à partir de (4.22), il reste à voir la
continuité sur ∂D, ie. (4.23). Pour cela, on utilise la notion de régularité du bord.

Définition 4.2.3. (Régularité) On rappelle que σD = inf(t > 0 : Bt /∈ D) est le temps de
sortie de D d’un mouvement Brownien B.

1. Un point x ∈ ∂D est régulier pour D si Px(σD = 0) = 1.
2. Le domaine D est régulier si tous ses points frontières le sont :

Px(σD = 0) = 1 ∀x ∈ ∂D.

Proposition 4.2.3. (Régularité du bord) Soient d ≥ 2 et a ∈ ∂D. les assertions suivantes
sont équivalentes.

1. La condition (4.23) est remplie pour toute fonction mesurable bornée f : ∂D → R, conti-
nue en a.

2. Le point a est régulier pour D.
3. Pour tout ε > 0, on a

lim
x∈D
x→a

Px(τD > ε) = 0.
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Preuve. voir (28).

Théorème 4.2.2. (Dirichlet 2) Si le domaine D est régulier, alors la fonction u donnée par
(4.22) est l’unique solution du problème de Dirichlet, ie. u est C2 sur D et continue sur D et
(4.21) est satisfait.

Preuve. voir (28).

4.2.3 Equation de la chaleur

Les lois de la thermodynamique expliquent que la solution u du problème de Dirichlet (D, f)
en (4.8) est le champ de température à l’équilibre à l’intérieur D d’un récipient dont les parois
∂D sont maintenues à température f (cette interprétation suppose que f ≥ 0) . On s’intéresse
maintenant aux équations de Laplace avec évolution dans le temps : par exemple, pour pour-
suivre la même interprétation thermodynamique, on considère une plaque infiniment mince
isolée homogène et infinie. La température u(t, y, z) au point (y, z) à l’instant t se détermine
en fonction de la température initiale f comme la solution de l’EDP.

∂u

∂t
=
σ2

2

(
∂2u

∂y2
+
∂2u

∂z2

)
partant de u(0, .) = f(.). Le coefficient σ > 0 ne dépend pas de (y, z) et caractérise la conduc-
tance thermique de la plaque.
En dimension d quelconque, on appelle équation de la chaleur, le problème de Cauchy{

∂u

∂t
=

1

2
∆u,

u(0, .) = f.
(4.24)

Remarque 4.2.1. L’équation de la chaleur modélise la "diffusion" de la chaleur dans un fil :
u(t, x) représente la température du filament au point x au temps t. Et f represente le "profil"
initial de la température sur le fil.

Nous allons relier cette EDP à des objets probabilistes. On considére d’abord la loi de Bt sa-
chant Fs : par indépendance et stationnarité des accroissements, en écrivant Bt = Bt−Bs+Bs,
on constate qu’il s’agit de la loi gaussienne (conditionnelle) Nd(Bs, (t−s)Id) de densité au point
y, en notant Bs = x donnée par

p(t− s, x, y) = gt−s(y − x).

On voit sans difficulté que p = p(t, x, y) vérifie

p−1∂p

∂t
= − d

2t
+
|y − x|2

2t2

et que

p−1 ∂
2p

∂x2
i

= −1

t
+

(yi − xi)2

t2
,

de sorte que la fonction p est solution de l’équation progressive (dite forward) (ie. en la variable
y de la position future)

∂p

∂t
=

1

2
∆yp, lim

t↘0
p dy = δx,
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où δx est la mesure de Dirac en 0 et aussi par symétrie solution de l’équation rétrograde (dite
backward) (ie. en la variable x de la position passée)

∂p

∂t
=

1

2
∆xp, lim

t↘0
p dx = δy.

Ces relations justifient que p est la solution fondamentale de l’équation de la chaleur. (De ce
fait, on appelle p le noyau de la chaleur).

Proposition 4.2.4. On suppose que la condition initiale f vérifie
∫
Rd |f(x)|e−c|x|2dx < +∞

pour une constante c > 0. Alors la fonction

u(t, x) = Ex[f(Bt)]

est solution de l’équation de la chaleur (4.24) sur [0, t0[×Rd avec t0 = 1/(2c).

Démonstration :
Par définition, on a u(t, x) =

∫
Rd
f(y)p(t, x, y)dy. La propriété d’intégrabilité de f permet de

dériver sous le signe intégrale pour t ∈ [0, 1/(2c)[ et d’avoir

∂u

∂t
=

∫
f(y)

∂p(t, x, y)

∂t
dy,

∂2u

∂x2
i

=

∫
f(y)

∂2p(t, x, y)

∂x2
i

dy,

ce qui implique d’aprés l’équation rétrograde pour p que u est solution de (4.24) sur cet intervalle
de temps avec la bonne condition initiale.

�

4.2.4 Formule de Feynman-Kac

On considère l’EDP parabolique linéaire{
∂u

∂t
=

1

2
∆u− ku, (t, x) ∈ R∗+ × Rd ;

u(0, .) = f.
(4.25)

Le terme supplémentaire k(x) représente le taux de dissipation de la chaleur en x dans le cas
où k ≥ 0. Dans le cas où k n’est pas positive, on interprétera plutôt cette équation avec f ≥ 0
comme décrivant la densité u(t, x) au temps t et au point x de particules diffusant dans l’es-
pace qui se multiplient dans les sites tels que k(x) ≤ 0 (à un taux −k) et qui sont tuées dans
les sites tels que k(x) ≥ 0 (à un taux k). Puisque cette équation se réduit si k = 0 à l’équa-
tion de la chaleur, le résultat suivant n’est pas surprenant compte tenu de la Proposition (4.2.4) :

Proposition 4.2.5. On suppose que f : Rd −→ R et k : Rd −→ R sont boréliennes avec f
à croissance sous-exponentielle et k bornée. Alors toute solution u(t, x) de l’EDP parabolique
linéaire (4.25) de classe C1,2 dont le gradient est à croissance sous-exponentielle (uniformément
en temps), est donnée par la formule

u(t, x) = Ex
[
f(Bt) exp

(
−
∫ t

0

k(Bs)ds

)]
. (4.26)
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En particulier, une telle solution est unique.

Démonstration :
On fixe t ≥ 0 et on applique la formule d’Itô au temps s ∈]0, t[ à s 7−→ u(t−s,Bs) exp(−

∫ s
0
kBrdr).

Il vient

d

[
u(t− s,Bs) exp

(
−
∫ s

0

k(Br)dr

)]

=

[
− kBsu(t− s,Bs)ds− ∂u(t−s,Bs)

∂t
ds+∇u(t− s,Bs)dBs + 1

2
∆u(t− s,Bs)ds

]
× exp

(
−
∫ s

0
k(Br)dr

)
= ∇u(t− s,Bs)dBs exp

(
−
∫ s

0
k(Br)dr

)
en utilisant l’EDP (4.25). On intègre entre s = 0 et s = t :

exp

(
−
∫ t

0
k(Br)dr

)
u(0,Bt)− u(t,B0) = exp

(
−
∫ t

0
k(Br)dr

)
f(Bt)− u(t,B0)

=
∫ t

0
exp

(
−
∫ s

0
k(Br)dr

)
∇u(t− s,Bs)dBs.

On passe à l’espérance sous Px, en notant que l’intégrale stochastique est une martingale L2

d’aprés les hypothèses de croissance sous-exponentielle de u et de la bornitude pour k ; elle est
donc d’espérance nulle. On obtient alors

Ex
[

exp

(
−
∫ t

0

k(Br)dr

)
f(Bt)− u(t,B0)

]
= 0

soit, puisque B0 = x sous Px,

u(t, x) = Ex
[

exp

(
−
∫ t

0

k(Br)dr

)
f(Bt)

]
ce qui est la formule de Feynman-Kac (4.26).

�

Remarque 4.2.2. Dans le cas où on a une EDP avec des coefficients non constants, l’impor-
tance de la méthode probabiliste est bien apparue car l’application de la méthode des différences
finies sur cette EDP est difficile à cause des coefficients non constant, c’est-à-dire, dépendent de
la variable de l’espace, cette dépendance rend la solution non stable parfois. La méthode proba-
biliste nous donne une bonne représentation de la solution grâce à la formule de Feynman-Kac.
Plus on augmente le nombre des trajectoires dans la méthode de Monte-Carlo on obtient une
solution plus précise avec une erreur faible.
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4.3 Discrétisation de problème
On a vu dans ce chapitre que l’interprétation des EDPs conduit à écrire la solution sous

forme E[f(Xt)] avec la quantité f(Xt(w)) dépend de temps t et du hasard w. Le processus X est
une diffusion, il n’est alors pas possible de calculer exactement E[f(Xt)] et l’on a naturellement
recours à la simulation numérique. Tout d’abord une discrétisation temporelle de la dynamique
permet de générer une variable aléatoire X t dont la loi est proche de celle de Xt. On applique
ensuite la méthode de Monte Carlo : la moyenne arithmétique de N copies indépendantes de
la variable f(X t) converge vers E[f(X t)].

4.3.1 Le schéma d’Euler

Une des simples méthodes de discrétisation de processus de diffusion est l’approximation
d’Euler, appelée Euler-Maruyama. On considère un processus de diffusion X = (Xt), t0 ≤ t ≤
T ) satisfait l’EDS :

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t0 ≤ t ≤ T. (4.27)

La méthode d’Euler qui représente la première étape dans la simulation, permet de donner
une variable aléatoire X qui est proche en loi de X, où X = (Xx

t ) est le processus de Markov
solution de l’équation différentielle stochastique (4.27).

Soit T un temps fini, on peut sans perte de généralité prendre T = 1 ; on cherche à estimer la
loi de Xx

T = Xx
1 qui en général n’est pas connue. Pour ce faire on approche Xx par son schéma

d’Euler dordre n ≥ 1, disons Xn,x, défini de la façon suivante : on considère la subdivision
régulière γn = {0 = tn0 < . . . < tnn−1 < tnn = 1} de l’intervalle [0, 1] i.e. tnn = k/n et on pose
Xx

0 = X, et pour tout k = {0, 1, . . . , n− 1} et t ∈ [tnk , t
n
k+1].

X
n,x

t = X
n,x

tnk
+ b(X

n,x

tnk
)(t− tnk) + σ(X

n,x

tnk
)(Bt −Btnk

)

Le schéma d’uler est simulable. C’est une petite perturbation Xx que l’on peut expliquer de la
façons suivante :

– On part à la date 0 de la valeur vraie x.
– Sur l’intervalle [0, tn1 ], on gèle les coefficients de L’EDS en leurs valeurs exactes b(x) et
σ(x) à gauche de cet intervalle et on calcule la valeur Xn,x

tn1
en tn1 de la solution de cette

nouvelle petite EDS.
– Sur l’intervalle [tn1 , t

n
2 ], on gèle les coefficients de L’EDS en leurs valeurs exactes b(Xn,x

tn1
)

et σ(X
n,x

tn1
) à gauche de cet intervalle et on calcule la valeur Xn,x

tn2
en tn2 de la solution de

cette nouvelle petite EDS.
– Et ainsi de suite.....

De plus, on a les variables aléatoires Btnk+1
−Btnk

sont mutuellement indépendantes et de même
loi gaussienne centrée de variance tnk+1 − tnk

4.3.2 La méthode de Monte-carlo

On voit que les EDPs peuvent être interprétés à l’aide de processus de Markov bien choisis :
on interprète u à l’aide du générateur infinitésimal du semi-groupe de transition d’un processus
de Markov (Xt, t ≥ 0). Les motivations de cette démarche peuvent être d’ordre théorique et/ou
numérique. En effet, en particulier lorsque (Xt, t ≥ 0) est solution d’une équation différentielle
stochastique, le calcul stochastique permet parfois d’obtenir des résultats d’existence, d’unicité
ou de régularité de la solution de l’EDP.
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D’autre part, dès que l’on peut écrire la solution de l’EDP sous la forme d’une espérance du
type u(t) = EF (X) avec F fonctionnelle sur l’espace des trajectoires de X entre 0 et t, on peut
chercher à développer une méthode de Monte-Carlo pour approcher u(t) même si on ne sait pas
simuler des trajectoires exactes de X : il suffit de construire un processus proche (en loi) de X,
comme on a vu dans le paragraphe précédent (schéma d’uler), en simulant un grand nombre
de trajectoires entre 0 et t, évaluer la fonctionnelle F le long de chaque trajectoire simulée et
enfin moyenner toutes les valeurs obtenues.

Considérons un exemple élémentaire donnée par l’équation de la chaleur suuivante :

∂u

∂t
(t, x) = ν∆u(t, x), ∀(t, x) ∈]0, T ]× Rd, (4.28)

avec la condition initiale u(0, .) = u0(.) est une fonction mesurable bornée. Le Paramètre
ν est strictement positif qui s’apppele "paramètre de viscosité" en mécanique des fluides ou
"volatilité" en finance.

D’aprés ce qui précède, on a la fonction :

∀(t, x) ∈]0, T ]× Rd, u(t, x) = Eu0(x+
√

2νtBt)

où (Bt) est un mouvement Brownien standard à valeur dans Rd, satisfait (4.28) ainsi que
lim
t→0

u(t, x) = u0(x) en tout point de continuté de u0. Par application de la loi des grand nombres,
on peut donc approcher u(t, x) par :

1

N

N∑
i=1

u0(x+
√

2νtgi(w)),

où les {gi(w)} forment une famille de variables alétoires gaussiennes indépendantes, à valeurs
dans Rd, centrées et de matrice de covariance IdRd . Cet algorithme est tré simple à mettre en
œuvre : on sait efectuer des tirages gaussiens indépendants à l’aide d’appels à un générateur de
nombres pseudo-aléatoires uniformément répartis. La vitesse de convergence est décrite par des
théorèmes limites tels que le théorème de limite centrale, la loi du logarithme itéré, l’inégalité
de Berry-Essen : la convergence est d’ordre 1/N , elle est donc lente. Toutefois, le coût de
l’algorithme croît seulement linéairement avec la dimension d de l’espace puisq’on simule Nd
trajectoires d’un mouvement Brownien unidimensionnel standard, et ce coût est indépendant
du paramètre ν.

Typiquement, les méthodes de Monte-carlo pour des équations aux dérivées partielles el-
liptiques ou paraboliques peuvent permettre de traiter des problèmes extrêmes, en trés grande
dimension ou avec de trés faibles viscosités, lorsqu’il serait difficile, ou extrêmement coûteux,
d’utiliser des algorithmes classiques.

A l’aide de schèma d’Euler on peut écrire :

u(t, x) ∼ 1

N

N∑
i=1

u0(X
nx

t (wi)).

4.4 Application
On applique dans cette section quelques formules et méthodes citées dans les sections précé-

dentes. Cette application repose sur la simulation numérique. Pour commencer, nous abordons
la simulation des trajectoires de mouvement Brownien qui est la base des autres simulations
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stochastiques de notre travail. Il faut discrétisé le problème (3.16), cette discrétisation se faisant
au niveau des variables, par exemple sur la variable de temps pour le mouvement Brownien.

Après la simulation du mouvement Brownien, on passe à l’illustration numérique du pro-
blème par la méthode probabiliste qui est notre point essentiel.

4.4.1 Discrétisation du mouvement Brownien

Le mouvement Brownien standard est une variable aléatoire B(t) qui dépend continument
de temps (t ∈ [0, T ]) et satisfait les quartes conditions connues (Chap1).

Pour la computation proposée, il est utile de considérer le mouvement Brownien discrétisé,
où B(t) est spécifié aux valeurs discrètes de t; ainsi nous donnons ∆t = T

N
, pour un certain

entier positive N et soit Bj une notation de B(tj) avec tj = j∆t.

La première condition est B0 = 0 avec une probabilité 1, la deuxième et la troisième sont
données par :

Bj = Bj−1 + ∆Bj, j = 1, 2, ..., N

où ∆Bj est une variable aléatoire indépendante de
√

∆tN (0, 1).

Le programme (PROG1) en MATLAB nous donne la simulation d’une trajectoire du Mou-
vement Brownien standard sur l’intervalle [0, 0.1] avec N = 503. Le résultat de la simulation
est illustré dans la Figure 4.1 qui représente 503 points (tj,Bj) en les joignant par interpolation
linéaire :

PROG1 : Simulation du MB
**********************************************************************
clear
clc
tic
xf = 3;
Nombre de points en espace
M = 150;
dx = xf/M ;
x = linspace(0, xf,M);
T = 0.1;
respect de la condition de stabilité CFL
dt = ((dx2 ∗ 0.5)/1)− 1e− 6;
t = 0 : dt : T ;
Nombre de points en temps
N = length(t);

Simulation du MB :
for i = 1 : N
dB(1, i) = 0;
end
dB = sqrt(dt) ∗ randn(N,N);
B = cumsum(dB, 2);
**************************************************************************
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Figure 4.1 – Simulation d’une trajectoire d’un MB

4.4.2 Illustration numérique du problème par la méthode probabiliste

On passe maintenant à l’application de la méthode probabiliste sur le même problème (3.16),
donc on s’intéresse à l’interprétation probabiliste de la solution de l’équation de la chaleur 1D
(3.16), pour t ∈ [0, T ]. Ce problème est traité dans le chapitre précédent, et par l’application
de la formule de Feynman-Kac on peut écrire la solution sous forme :

u(x, t) = Ex[f(Xt)], (4.29)

où le processus stochastique sous-jacent (Xt) est la solution de :

Xt = x+

∫ t

0

√
2dBs, 0 ≤ t ≤ T. (4.30)

La solution numérique est obtenue par la simulation de Monte-Carlo ; l’application de schéma
d’Euler donne une solution approximée de l’équation (3.16). On simule N trajectoires de cette
solution, et par la fonction de condition initiale on calcule les valeurs f(Xt). En moyennant ces
valeurs on trouve :

u(x, t) ≈ 1

N

N∑
k=1

sin(πXk
t ). (4.31)
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Le programme suivant donne la solution approximée par la méthode probabiliste, où le
processus (Xk

t ) est discrétisé avec le même pas de temps utilisé dans la première méthode (dif-
férences finies abordée dans le 3 éme chapitre), c.-à-d. on prend N = 503 et donc ∆t = T/N =
1/503.

********************************************************************************
clear
clc
tic
xf = 3;
(Nombre de points en espace)
M = 150;
dx = xf/M ;
x = linspace(0, xf,M);
T = 0.1;
(respect de la condition de stabilité CFL)
dt = ((dx2 ∗ 0.5)/1)− 1e− 6;
t = 0 : dt : T ;
(Nombre de points en temps)
N = length(t);

(Simulation du MB :)
for i = 1 : N
dB(1, i) = 0;
end
dB = sqrt(dt) ∗ randn(N,N);
B = cumsum(dB, 2);
for k = 1 : length(x)
(Position initiale)
xzero = x(k);
for i = 1 : N
for j = 1 : N
(Condition initiale appliquee au processus correspondant a l’EDP)
fX(i, j) = sin(pi ∗ (xzero+ sqrt(2) ∗B(i, j)));
end
end
(Monte Carlo pour le calcul de l’esperance de f(X))
u(k, :) = mean(fX);
end
figure, mesh(t,x,u)
xlabel(’t’)
ylabel(’x’)
zlabel(’u(x,t)’)
title(’Solution u obtenue avec u = E(f(Xt))’) ;
toc
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L’illustration graphique de la solution (4.31) est donnée par la Figure 4.2

Figure 4.2 – Solution approximée par la méthode probabiliste.

La Figure 4.3 illustre la solution probabiliste et la solution exacte au long de l’axe de temps
et pour un point d’espace fixé x = 1.5, on peut voir que la solution probabiliste approche de la
solution exacte avec des perturbations.

Figure 4.3 – Solution exacte et probabiliste de l’EDP (3.16) pour x = 1.5
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La Figure 4.4 illustre le vecteur e(x, t) (Erreur) pour une valeur de x fixé comme dans la
première méthode mentionnée dans le chapitre précédent (méthode des différences finies) pour
x = 1.5.

Figure 4.4 – L’erreur de la méthode probabiliste pour x = 1.5

On remarque visuellement que l’erreur est plus grand que celle de la première méthode
mentionnée dans le chapitre précédent (la méthode des différences finies). Ce qui signifie que
la solution approximée par méthode des différences finies est meilleure que celle de la méthode
probabiliste.

Interprétation des résultats :
Malgré que l’approximation de la solution par la méthode des différences finies soit meilleure
que celle de la méthode probabiliste, on peut dire que la méthode probabiliste donne une ap-
proximation acceptable de la solution.

Puisque la méthode est basée sur la simulation de Monte-Carlo, la convergence de la mé-
thode est lente, et l’approximation sera faible de celles des méthodes déterministes.

L’utilisation de cette méthode est avantagée dans le cas de résolution des EDPs où la réso-
lution par les méthodes déterministes implique une résolution des systèmes linéaires à grandes
dimensions.



Conclusion

Dans ce mémoire, on a présenté les équations différentielles stoquastiques qui sont des EDOs
pertubées par un terme aléatoire, où on a démontré le théorème fondamental d’existence et
d’unicité. Ensuite, on a parlé des équations aux dérivées partielles du second ordre, et des mé-
thodes numériques pour les résoudre (la méthode des différences finies et la méthode d’Euler).
On a terminé ce travail par une interprétation probabiliste des EDPs à l’aide d’une méthode
de Monte-Carlo.

L’approche probabiliste sert a étudier le lien mathématique profond entre certaines équa-
tions aux dérivées partielles du second ordre et les EDS. On a illustré ce lien par la formule de
dynkin, le problème de Dirichlet, l’équation de la chaleur et la formule de Feyman-Kac.

L’avantage de cette approche est qu’elle permet d’avoir accées rapidement à une expression
de la solution des EDPs et éviter les complications des méthodes numériques utilisées pour la
résolution des EDPs.

Pour bien présenter l’utilité de la méthode probabiliste on a fait une application sur un
exemple d’EDP parabolique que nous savons résoudre analytiquement et par la méthode des
différences finies. La comparaison faite entre les solutions approximatives de chaque méthode
et la solution exacte montre qu’on peut adopter la méthode probabiliste comme une méthode
de résolution, mais les avantages de cette méthode apparaissent dans les différents cas où on
veut résoudre un problème en dimension élevée (par exemple supérieure à 4). Les méthodes
classiques conduisent à l’obtention de systèmes linéaires de taille qui deviennent impraticable,
et la méthode probabiliste est souvent utilisée.
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