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Introduction

ans ’analyse stoquastique, les équations différentielles stochastiques (EDS) jouent un role
trés important ; car on utilise les EDS pour modéliser et étudier des phénomeénes naturelles.
Les équations différentielles stochastiques sont les équations qui régissent ’évolution de la plu-
part des prix des actifs financiers, elles peuvent étre vues comme des équations différentielles,
ou comme des équations intégrales dans lesquelles interviennent des intégrales stochastiques
par rapport & un mouvement Brownien. Elles ont été d’abord étudiées par Ito, dans le but
de construire les diffusions (c’est-a-dire, processus continus et fortement markoviens dont les
générateurs sont des opérateurs différentiels du second ordre). C’est d’ailleurs dans ce but qu’il
a introduit le calcul stochastique.
Un point de vue plus moderne consiste & voir les EDS comme des équations différentielles ordi-
naires, perturbées par un bruit aléatoire. Pour une étude plus approfondie, nous suggérons par
exemple, la lecture de ([27], [36], [9]).

Dans ’analyse, la compréhension des phénoménes du monde réel et notre technologie sont
aujourd’hui en grande partie basées sur les équations aux dérivées partielles, qui seront notées
en abrégé EDP. C’est en effet grace a la modélisation de ces phénoménes au travers d’EDP que
I’'on a pu comprendre le role de tel ou tel paramétre, et surtout obtenir des prévisions parfois
extrémement précises.

Quand sont apparues les EDP 7 Elles ont été probablement formulées pour la premiére fois
lors de la naissance de la mécanique rationnelle au cours du 17 éme siécle (Newton, Leibniz...).
Ensuite le "catalogue" des EDP s’est enrichi au fur et & mesure du développement des sciences
et en particulier de la physique. S’il ne faut retenir que quelques noms, on se doit de citer celui
d’Euler, puis ceux de Navier et Stokes, pour les équations de la mécanique des fluides, ceux
de Fourier pour I'équation de la chaleur, de Maxwell pour celles de 'electromagnétisme, de
Schrodinger et Heisenberg pour les équations de la mécanique quantique, et bien sir d’Einstein
pour les EDP de la théorie de la relativité.

Cependant 1’étude systématique des EDP est bien plus récente, et c’est seulement au cours
du 20 éme siécle que les mathématiciens ont commencé a développer ’arsenal nécessaire. Un
pas de géant a été accompli par L. Schwartz lorsqu’il a fait naitre la théorie des distributions
(autour des années 1950), et un progrés au moins comparable est du a L. Hérmander pour la
mise au point du calcul pseudodifférentiel (au début des années 1970). II est certainement bon
d’avoir a l'esprit que I’étude des EDP reste un domaine de recherche trés actif en ce début de
21 éme siécle. D’ailleurs ces recherches n’ont pas seulement un retentissement dans les sciences
appliquées, mais jouent aussi un role trés important dans le développement actuel des mathé-
matiques elles-mémes, & la fois en géometrie et en analyse.

L’une des choses qu’il faut avoir a l'esprit a propos des EDP, c’est qu’il n’est en général pas
question d’obtenir leurs solutions explicitement ! Ce que les mathématiques peuvent faire par
contre, c’est dire si une ou plusieurs solutions existent, et décrire parfois trés précisement cer-
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taines propriétés de ces solutions.

L’apparition d’ordinateurs extrémement puissants permet néanmoins aujourd’hui d’obtenir des
solutions approchées pour des équations aux dérivées partielles, méme trés compliquées par les
méthodes numériques. C’est ce qui s’est passé par exemple lorsque vous regardez les prévisions
météorologiques, ou bien lorsque vous voyez les images animés d’une simulation d’écoulement
d’air sur l'aile d’'un avion. Le role des mathématiciens est alors de construire des schémas d’ap-
proximation, et de démontrer la pertinence des simulations en établissant des estimations a
priori sur les erreurs commises (voir [23]). Il est vrai que les méthodes numériques ont aidé a
résoudre les EDP, mais elles ont des inconvénients. Pour éviter les complications de ces mé-
thodes on a fait L’approche probabiliste qui permet aussi d’avoir accées rapidement & une
expression de la solution de certaines EDP.

Le but de ce travail est de montrer le lien mathématique profond entre certaines équations
aux dérivées partielles du second ordre et les processus de diffusion (solutions des EDS).

Ce travail est présenté en quatre chapitres :

Le premier chapitre est consacré aux rappels des résultats importants en calcul stochas-
tique. On donnera les principales propriétés des processus stochastiques, mouvement Brownien

et les martingales. On abordera enfin la notion d’intégrale stochastique sans laquelle il n’y au-
rait pas lieu a parler A’EDS ([16],[18],[8],[26],[29],[20]).

Dans le deuxiéme chapitre, on présente les équations différentielles stochastiques brow-
niennes. On citera ensuite I'un des théorémes les plus importants, a savoir le théoréme d’exis-
tence et d’unicité de la solution d’une EDS, enstuite on donne des exemples des EDS, ensuite
on traitera les diffusions d’It6. On terminera ce chapitre par la définition d’un opérateur pour
une diffusion d’Ité6 qu’on appellera générateur ([8], [9]).

Dans le troisiéme chapitre, on donnera des généralités sur les équations aux dérivées
partielles, ensuite nous présenterons des méthodes numériques pour la résolution des EDPs
du second ordre : ( la méthode des différnces finies, la méthode d’Euler) ; elles sont utilisées
dans le cas ou la résolution par les méthodes analytique est impossible. Dans ce cas la so-
lution trouvée est une solution approchée. A la fin de ce chapitre nous présentons quelques
exemples d’EDPs et leurs solutions numériques en utilisant MATLAB comme logiciel de calcul.
([35],[14],[22],[1],[19],[30])-

Dans le dernier chapitre, nous exhiberons le lien profond existant entre les équations
aux dérivées partielles (EDP) et les équations différentielles stochastiques (EDS) a travers des
théorémes. Ces théorémes représentent des formules (Formule de Dynkin, Formule de Feynman-
Kag,.....) qui nous permettent de donner une interprétation probabiliste des EDPs, et par consé-
quent une solution approchée sous forme d’une espérence d’une fonctionnelle. En terminant ce
chapitre par une application de calcul de la solution d’EDP par I’approche probabiliste présen-
tée dans ce dernier. ([8],[9],[36]).



Chapitre 1

Rappels et Compléments

Dans ce chapitre, nous rappelons quelques résultats de calcul stochastique utilisés le long
de ce mémoire.

1.1 Vecteurs gaussiens

Dans tout ce qui suit, (2, F,P) désigne un espace de probabilité complet.

Définition 1.1.1. On dit qu’une variable aléatoire réelle (v.a.r) X définie sur (Q, F,P) est une
variable aléatoire gaussienne ot normale de parametres (m,0?), (m € R, 0 € R%) si sa
fonction de densité fx est donnée par

o= —on(-4(52Y).

Dans ce cas, sa loi Px est donnée par

VA€ By,  Py(A) = /A Fr(@)dz,

et on note X ~ N(m,o?).

Définition 1.1.2. X = (X3, Xy,..., X,,) est un vecteur aléatoire gaussien si toutes les
combinaisons linéaires de ses composantes sont gaussiennes i.e.

n
Val, e, Qp € ]R,ZaiXi
=1

est une v.a.r gaussienne.

1.2 Processus stoquastiques

Définition 1.2.1. Un processus est une famille X = (X;)er de variables aléatoires réelles
définies sur (2, F,P).
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Définition 1.2.2. Dans ce qui suit on prend T = [0, ¢| avec ¢ > 0 ou bien T' = [0, 4o00|.
Une filtration (F,)er est une famille croissante de sous tribus de F :

Vs, tel, s<t=— F;CF;.

Si (Fi)i>o est une filtration de (Q, F,P) alors (Q, F, (Fi)i>0, P) est appelé espace de probabilité
filtreé.

Définition 1.2.3. Si (F;)i>0 est une filtration alors on définit la filtration suivante

Fe = ([ F)-

s>t

On dit qu’une filtration est continue a droite si :

VtZO, Ft:Ft+.

Soit N la classe des ensembles de F qui sont P-négligeables. Si N' C Fo, on dit que la filtration
(Ft)e>0 est compléte.

On dit qu’une filtration (F;)i>o satisfait les conditions habituelles si elle est a la fois conti-
nue a droite et compléte.

Définition 1.2.4. Soit (X;)i>0 un processus et (Fi)i>o une filtration de (§2, F,P).
On dit que X = (Xy)i>0 est adapté a la filtration (F;)i>o si VE > 0, X; est Fy-mesurable.

On dit que le processus est a trajectoires continues (ou est continu) si les applications
t — Xy(w) sont continues pour presque tout w.

Un processus est dit cadlag (continu a droite, pourvu de limites a gauche) si ses trajectoires
sont continues a droite, pourvues de limites a gauche. Méme définition pour caglad.

Définition 1.2.5. Un processus X = (X;)ierest un processus gaussien si
Vn> 1Vt <ty <...<t,€T" (Xy,...,Xs,) est un vecteur gaussien.
On dit que X est centré si pour tout t € T, E(X;) = 0.

Définition 1.2.6. On dit que le processus X = (Xi)i>0 est a accroissements indépendants si :
Vn>1, Vi <teo<...<t, €T, Xy, Xy, — Xyy,..., Xy, — Xy, , sont indépendantes.

Définition 1.2.7. (Convergence d’une suite de variables aléatoires).

On considére, sur un espace de probabilités fizé (Q, F,P), une variable aléatoire réelle X et
une suite de variables aléatoires (X,)n>0 et U'on s’intéresse a la convergence de cette suite. Le
caracteére aléatoire de la suite met en évidence plusieurs types de convergence :

e On dit que X,, converge presque strement vers X si

]P({w €0 lim X,(w) = X(w)}) ~0.
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e Sip >0, on dénote par LP(Q), F,P) l’ensemble des variables aléatoires X telles que (| X |P) <
0o. Si X,, X € LP, on dit que X,, converge dans L¥ vers X si

lim E(|X, — X|?) = 0.

n—oo

e On dit que X,, converge en probabilité vers X si

lim P(|X,, — X| > ¢€) =0, pour tout € > 0.

n—0o0

Les principaux liens entre ces trois notions de convergence sont résumées dans la proposition
suivante.

Proposition 1.2.1. e La convergence presque stre implique la convergence en probabilité.
e La convergence dans LP implique la convergence en probabilité.
e La convergence dans LP implique la convergence dans LY pour tout g < p.

e 5i X, — X presque stirement et X,, <Y avecY € LP alors X,, — X dans LP.

Preuve. voir (8).

Rappelons deux théorémes fondamentaux :

Théoréme 1.2.1. (Théoréme de convergence monotone)
Soit {X,,, n > 0} une suite croissante (ou décroissante) de variables aléatoires et soit
X =lim X,, p.s. Supposons que X soit intégrable. Alors E[X]| = lim E[X,,].

Preuve. voir (10).

Théoréme 1.2.2. (Théoréme de convergence dominée)

Soit {X,,, n > 0} une suite de variables aléatoires convergeant p.s.vers X. Supposons qu’il
existe une variable aléatoire Y intégrable telle que

| X| <Y, alors X est intégrable et E[|X,, — X|] — 0 quand n 1 +oc.

Preuve. voir (10).

Maintenant, nous donnons deux critéres pour comparer deux processus stochastiques.

Définition 1.2.8. Soient X = (X;)ier, Y = (Yi)ier deuzx processus stoquastiques.
1. On dit que Y est une modification de X ssi

VEET, P(X,=Y,) =1.

2. On dit que les processus X et Y sont indistinguables ssi

PVteT, X, =Y;) =1.
on note X =Y.
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Proposition 1.2.2. Soient T un intervalle de R, X = (X;)ier et Y = (Yi)ier deux processus
stoquastique continus alors :
X etY sont indistinguables <= X est une modification de Y.

1.3 Temps d’arrét

Dans un jeu de hasard, un temps d’arrét est un temps lors duquel le joueur décide d’arréter
de jouer, selon un critére ne dépendant que du passé et du présent. Il peut par exemple décider
d’arréter de jouer dés qu’il a dépensé tout son capital, dés qu’il a gagné une certaine somme,
dés qu’il a gagné un certain nombre de fois successives, ou selon toute combinaison de ces
critéres. Les temps d’arrét ont donc deux propriétés importantes : ils sont aléatoires, puisqu’ils
dépendent du déroulement antérieur du jeu, et ils ne peuvent pas dépendre du futur, puisque
le joueur doit a tout moment pouvoir décider s’il arréte ou non.

Définition 1.3.1. Un (F;)-temps d’arrét est une variable aléatoire Q@ — [0, +o0] (resp.
NU{+oo} siT =N telle que

VieT, {r<t}elkF.

Une conséquence importante de la continuité a droite de la filtration est que

Proposition 1.3.1. Pour T =R* ou T =[0,¢], on a
T est un temps d’arrét si et seulement si ¥Vt € T, {1 <t} € F,.

Preuve. voir (20).

1.4 Le mouvement Brownien

Nous pouvons & présent définir le processus le plus important en calcul stochastique, c’est
le mouvement Brownien appelé aussi processus de Wiener.

Un peu d’histoire :

Avant d’étre un objet mathématique rigoureux, le mouvement Brownien a été étudié en
Botanique, en Finance, et en Physique. Le botaniste R. Brown observe d’abord vers 1828 le
mouvement irrégulier de particules de pollen en suspension dans l'eau. En 1877, Delsaux ex-
plique les changements incessants de direction de trajectoire par les chocs entre les particules
de pollen et les molécules d’eau. Un mouvement de ce type est alors appelé mouvement au
hasard. En 1900, L. Bachelier, en vue d’étudier les cours de la Bourse de Paris dans sa thése,
met en évidence le caractére markovien du mouvement Brownien : la position d’'une particule
a 'instant ¢ 4+ s dépend de sa position en ¢, et ne dépend pas de sa position avant ¢t. Peu aprés,
vers 1905, A. Einstein détermine la densité de transition du Brownien par 'intermédiaire de
I’équation de la chaleur. La méme année, Smoluchowski décrit le mouvement Brownien comme
une limite de promenades aléatoires. La premiéere étude mathématique rigoureuse du Brow-
nien est faite par N. Wiener (1923), qui construit une mesure de probabilités sur 'espace des
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fonctions continues sous laquelle le processus canonique est un mouvement Brownien. Des re-
cherches d’une influence considérable ont ensuite été menées par P. Lévy (1948), lequel s’est
intéressé aux propriétés fines des trajectoires du Brownien. Ces objets ont été developpés par
les potentialistes américains a la suite de J. L. Doob, puis systématisés par les spécialistes de
la "Théorie Générale des Processus" de 1’école de Strasbourg, autour de P. A. Meyer.

Définition 1.4.1. Un processus B : (Q, F, (Ft)t>0, (Bt)i>0, P) a valeurs réelles est appelé mou-
vement Brownien si :

1. B =0, P-p.s.;
2.V0<s<t, lavaB; —Bg est indépendante de Fy;
3. V0 <s<tBy— B est de loi N(0,t — s).

Autrement dit, le processus B part de 0, ses accroissements sont indépendants du passé et sont
de loi normale centrée et de variance égale a la longueur de l’intervalle de temps.

Remarque 1.4.1. Lorsque (Fi)i>o est la filtration naturelle de (By)i>o0, on dit que B est un
mouvement Brownien naturel.

Caractére gaussien du mouvement Brownien

Théoréme 1.4.1. — Soit B : (2, F, (Ft)i>0, (Bt)i>0, P) un mouvement Brownien. Alors il
satisfait les propriétés suivantes :

1. B =0, P-ps.;
2.V0<t; <...<tn, (By,...,By,) est un vecteur gaussien centré ;
3. Vs,t >0, E(BsB;) = min(s, t).

C’est-a-dire B est un processus gaussien réel centré et de fonction de covariane
['(s,t) = min(s, t).

— Inversement, si un processus B vérifie 1,2,3 et si on note (.7:})@0 la filtration naturelle de
la famille (By )y alors B : (F, (Fi)iso0, (Bt )i=0, P) est un mouvement Brownien, (naturel).

Preuve. : voir (18).

Quelques propriétés du mouvement Brownien

Proposition 1.4.1. Si B est un mouvement Brownien, alors les processus suivants sont aussi
des mouvements Browniens.

e B, =By (symétrie)

e B, = tB1,Bg = 0; (inversion du temps)

e a >0 fizé, ]§t = \/LaBat; (Changement d’échelle "scaling”)

o T'>0 firé, B, =By — By, t €[0,7]. (retournement du temps)

Preuve. voir (18).
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Théoréme 1.4.2. (Propriété de Markov simple).

Soit s > 0. Le processus (By := Byys — Bg, t > 0) est un mouvement Brownien, indépendant de
Fs.

Preuve. voir (27).

Théoréme 1.4.3. (Propriété de Markov forte).

Soit 7 un temps d’arrét. Conditionnellement a 7 < oo, le processus (]§ =B, —B,,t>0) est
un mouvement Brownien indépendant de F,.

Preuve. voir (31).

1.5 Martingales a temps continu

Le nom martingale est synonyme de jeu équitable, c’est-a-dire d’un jeu ou le gain que l'on
peut espérer faire en tout temps ultérieur est égal a la somme gagnée au moment présent.
Soit (2, F, (F¢)t>0, P) est un espace de probabilite filtré.

Définition 1.5.1. Soit M = (M;)>0 un processus adapté et intégrable (Vt > 0, E(|M;|) < o0),
on dit que M est

1. Une martingale si

VO<s<t, ]E(Mt/]-“s) = M,.

2. Une surmartingale si
V0<s<t, E(Mt/.ﬂ.) < M.
3. Une sousmartingale si

VO<s<t, E(Mt/}"s> > M.

On se place dans un espace de probabilité filtré (2, F, (F¢)i>0,P) qui vérifie les conditions
habituelles. Si 7 est un temps d’arrét, et si X := (X;, ¢ > 0) est un processus continu, on note
X7 le processus arrété (X7 = Xinr)i>o-

Définition 1.5.2. Un processus continu adapté M := (M;);>0 est appelé une martingale
locale (continue) s’il existe une suite croissante (7, n > 1) de temps d’arrét telle que

Tn /F 00 p.S. et que pour tout n, M™ — My soit une martingale uniformément intégrable.

On dit que la suite de temps d’arrét (1,) réduit M.

Définition 1.5.3. Un processus X = (X, t > 0) est appelé une semimartingale continue
sl s’écrit sous la forme

Xy = Xo+M, +V,

ot M est une martingale locale continue et V' est un processus a variation finie, avec My =
Vo =0.
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Mouvement Brownien et martingales

Théoréme 1.5.1. (Propriété de martingale du mouvement Brownien).
Le mouvement Brownien est une martingale par rapport a la filtration canonique (Fy)i>o-

Preuve. voir (8).

Proposition 1.5.1. e (B? — ), est une F;-martingale.

e Pour tout v € R, (exp(vBy —¥*%))i>0 est une Fy-martingale.
Preuve. voir (8).

Théoréme 1.5.2. (Caractérisation de P. Lévy du mouvement Brownien).
Soit (Fi)i>0 une filtration et M = (M;)i>o est une F; -martingale continue avec Mg = 0. Si le
Processus (Mt2 — t)i>0 est aussi une Fy-martingale, alors M est un mouvement Brownien.

Preuve. : voir (18).

Théoréme 1.5.3. (Caractérisation du MB par son crochet).
Soit X = (Xy,...,Xq) un processus a trajectoires continues (Fy)i>o-adapté issu de 0. Il y a
équivalence entre

o X est un (F;)i>o-mouvement Brownien en dimension d.

o Les processus Xy, ..., Xq sont des (F;)i>o-martingales locales continues et de plus
<Xi7 Xj>t - 6i,jt7
ow 0; ; désigne le symbole de Kronecker.

En particulier, une (Fi)i>o-martingale locale continue M issue de 0 est un (F;)i>o-mouvement
Brownien si et seulement si (M, M), =

Preuve. voir (18).

Quelques inégalités

Théoréme 1.5.4. (Inégalité de Cauchy-Schwarz).
En se plagant sur E = C([a,b],R) (avec a,b € R?) muni du produit scalaire (f,g) —< f,g >=

fff(t)g(t)dt, on obtient :
b ) ;
/ f(t)g(t)dt' < \// f(t)2dt.\// g(t)2dt,

avec E est un R-espace vectoriel muni du produit scalaire < .,. >, etVx € E, ||z| =< z,x >,
ceci définissent bien une norme sur E.

v(f.9) € (C(la,b], R))?,

Preuve. voir (24).
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Théoréme 1.5.5. (Inégalité maximale de Doob)
Si M = (M,;)i>0 une martingale continue a droite, alors

1 1
Vp > 1, (IE {| sup Ms|p]> <L sup <E {\MJ”]) .
0<s<t D — 1 o<s<t

Preuve. voir (8).

Théoréme 1.5.6. (Inégalité de Doob)
Soit (My,t > 0) une martingale continue. Alors pour tout t > 0,

]E< sup Mi) <A4E (Mf)
0<s<t

1.6 Intégrale stochastique (Intégrale d’It6)

Soit B = (B¢)t>0 un mouvement Brownien sur (2, F,P) sa filtration naturelle i.e. F; =
0(By,u < t). Le mouvement Brownien n’étant pas a variation bornée, on ne peut pas s’appuyer
sur la théorie de I'intégration classique de Riemann- Stieljes afin de donner un sens a la quantité

t
/ H,dB,,
0

ol H est un processus stochastique continu. C’est pour cette raison qu’on construit une nouvelle
intégrale, appelée 'intégrale d’It6, définie dans un sens quadratique.

Définition 1.6.1. (Intégrale d’It6) Soient B : [0,t] X Q — R un mouvement Brownien ainsi
que H : [0,t] x Q — R un processus stochastique de carré intégrable adapté a la filtration natu-
relle associée a B, alors l'intégrale d’Ito est définie par :

t n
/0 H,dB, = lim ; H, (B,,,, — By,) dans L*(),

ou 0=ty <ty <..<t,=t est une subdivision de [0,t] de pas § = sup (t; —t;_1).
i=1,..,n
Lorsque le pas de la subdivision tend vers 0, ces sommes considérées comme des sommes de
Riemann-Stieltjes pour chaque trajetoire du mouvement Brownien donné, ne convergent pas en
général ; la raison en est que le mouvement Brownien n’est pas a variations bornées. L’ usage

de la convergence quadratique est le point essentiel de cette définition.

Formule d’Ito
Soient (X});>o un processus d’It6

t t
X, =X +/ K.ds +/ HdB,, Vt<T P —p.s.,
0 0

avec, K, € L' et H, € .2,
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et f une fonction de classe C2 de R dans R. Alors

F(X,) = f(Xo) /f HdB+/f O Kds + = /f” X,)H2ds.

La formule d’It6 est I'outil de base du calcul stochastique : elle montre qu’une fonction de classe
C? de p semimartingales continues est encore une semimartingale continue, et elle exprime ex-
plicitement la décomposition de cette semimartingale.

Théoréme 1.6.1. (Formule d’Ité) Soient X une semimartingale et F': R — R une fonction
de classe C*. Alors

t 1 t
F(X;) = F(Xy) —i—/ F'(X,)dX, + 5/ F"(X)d({X, X)s,. (1.1)
0 0
Si on considere p semimartingales continues X', ..., X? et F : RP — R de classe C?* alors,
F(X},..., X)) =F(Xg,..., X} / o, XP)dX! / L XP) (X XY,
( to 9 t) ( 0> +Z 8:172 +5 Z @xlax] s) < ) >
(1.2)

Preuve. voir (9)

Formule d’intégration par parties (IPP)

Corollaire 1.6.1. (IPP)
Soient (Xy), (Y;) deux processus d’Ité. Alors pour tout t > 0 on a

t t
XtY;E - XOYE) = Xde; + / stXs + <X7 Y)ta p.s,
0 0

qu’on écrit encore sous forme différentielle

d(X.Y;) = XodY; + Yid Xy + d(X,Y),.

Preuve. voir (9).

Propriétés
Avec les notations précédentes, le processus stochastique (Y;):>o défini, pour tout ¢ réel positif,
par Y; = fot H,dB, vérifie les propriétés suivantes :

1. Y, est une martingale ;

2. E(Y}?) = fo E(H?)ds (Isométrie d’Tto) ;

3. E( fo HdB;) = 0.

Application
Soient t > 0 et (B;)o<t<r un mouvement Brownien réel. Soit 0 =ty < t; < --- < t, =t une
partition de I'intervale [0, ¢].

e Calculer l'intégrale f(f B,dB, au sens d’Ito.
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— Meéthode 1 : Utilisons la définition de I'intégrale d’Ito

JyB«dB, = lim > B, (B, - B,
=1

n—+oo £

n

= lim Z By, By, — Bt%q

n—+oo £

i=1
15
— Méthode 2 : Appliquons la formule d’'Itd
Si f(z) = 2% et Xy = By donc,
B} = 2 [/ BB, +1 [ 2ds

"t _ 1 2 1
— ‘/0 BSdBS = iBt — it



Chapitre 2

Equations Différentielles Stoquastiques

On présente dans ce chapitre les équations différentielles stochastiques browniennes. On
commence par en donner une motivation en Section (2.1) en tant que généralisation des équa-
tions différentielles ordinaires dans un contexte d’incertitude représentée par un bruit aléatoire,
aprés on décrit les principaux résultats d’existence et d’unicité en Section (2.2), des exemples
d’EDS classiques sont présentés en Section (2.3), et a la fin on parle briévement sur les solu-
tions d’EDS appelées diffusions ainsi que des outils importants pour leur étude en Section (2.4).

2.1 Introduction, définitions

Equations différentielles et EDS

Les équations Différentielles Stoquastiques ont été d’abord étudiées par It6, dans le but

de construire les diffusions (c’est-a-dire, processus continus et fortement markoviens dont les
générateurs sont des opérateurs différentiels du second ordre). C’est d’ailleurs dans ce but qu'’il
a introduit le calcul stochastique.
Les équations différentielles (standard) gouvernent de nombreux phénonénes déterministes.
Pour prendre en compte des phénoménes aléatoires, formellement on doit prendre en compte
des « différentielles stochastiques », ce qui transforme les équations en équations différentielles
stochastiques (EDS).

Les équations différentielles sont des équations d’évolution du type

(t) = b(t, z(t)), (2.1)
ot 'inconnue est une fonction x(t) qui doit vérifier une équation impliquant sa dérivée & et elle
méme. Les cas les plus simples sont les équations différentielles d’ordre 1 comme en (2.1) (seule
la dérivée lére est impliquée) avec b(t,z) = b+ cx indépendant de ¢ et affine par rapport a x.
Symboliquement, I’équation (2.1) se réecrit

dx(t) = b(t, xz(t))dt. (2.2)

Cette équation modélise typiquement un systéme physique (z(t)):>o qui évolue avec le temps
de fagon que x s’accroit, a la date t, selon le taux b(¢, x(t)). Par exemple, avec b(t,z) = b(t)z,
I'équation dx(t) = b(t)z(t) modélise le cours d'un actif financier x(¢) soumis au taux d’intérét
variable b(t) ou d’'une population avec un taux de natalité b(¢) Il est bien connu que la solution

18
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est

2(8) = 20 exp ( /0 t b(s)ds).

Les EDS sont des généralisations des équations (2.2) ot la dynamique déterministe d’évolution
b est perturbée par un terme aléatoire (stochastique). On parle alors d’équation différentielle
stochastique. En général la perturbation aléatoire est considérée comme un bruit, qui sera de
la forme 0dBy, o B désigne un mouvement Brownien et une intensité de bruit o (¢, x) :

dXt = b(t,Xt)dt+U(t,Xt)dBt, (23)

ol o est une fonction du temps t et de I'inconnue au temps ¢ (X;) mais pourrait juste dépendre
du temps (0;) ou de la valeur X, en t(o(X;)) ou encore étre constante o.

En fait, lécriture (2.3) est symbolique car dB; n’a pas vraiment de sens (le mouvement
Brownien n’est pas dérivable). Il faudrait écrire (2.3) sous la forme

t t
X = Xo+ / b(s, Xs)ds + / o(s, Xs)dBs (2.4)
0 0

qui, elle, a un sens si 'intégrale stochastique fot o(s,Xs)dBs a un sens. On généralise encore
dans la définition suivante la notion d’EDS dans un cadre vectoriel.

Définition 2.1.1. (EDS) On appelle équation différentielle stochastique (EDS) une équation
en le processus X (a valeurs dans R?) de la forme
dXt = b(t7 Xt)dt + O'(t, Xt)dBt (E(b, U))

ce qui, en terme intégrale, s’écrit

t mo o
X :Xg+/ bi(s,XS)ds+Z/ 0i5(5, X )dB!, 1<i<d (2.5)
0 = /o
ou, pour m,d des entiers positifs,

o b(t,x) = (bi(t,x))1<i<a est un vecteur mesurable de R? défini sur R, x RY appelé dérive ou
drift de I'EDS,

o o(t,z) = (0,,(t,x))1<i<d1<j<m €st une matrice d X m mesurable définie sur Ry x R? appelé

SOyl ) >

coefficient de diffusion de I'’EDS,

et B= (B',...,B™) est un mouvement Brownien standard en dimension m.
La solution d’une EDS est une fonction aléatoire. Il s’agit donc d’un processus qu’on note
X = (Xi)i>0. Plus précisément, on a :

Définition 2.1.2. (Solution d’une EDS).
On appelle solution de ’EDS E(b,o) la donnée de

e un espace probabilisé filtré (U, F, (Fi)i>0, P) vérifiant les conditions habituelles ;
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o un (F;)i>o-mouvement Brownien (B = (B!,... B™)) dans R™ défini sur cet espace de pro-
babilité ;

o un processus (F;)io-adapté continu X = (X', ..., X?%) & valeurs dans R? tel que (2./) soit
vérifiée, c’est a dire, coordonnée par coordonnée, pour tout 1 <i <d: (2.5).

Lorsque de plus Xo = x € R, on dira que le processus X est solution de E,(b,o).

2.2 Existence et unicité

Comme d’habitude pour les équations différentielles, les notions d’existence et d’unicité
sont essentielles. Dans le contexte des EDS, Le caractére aléatoire impose plusieurs notions
d’existence et d'unicité des EDS. Dans ce qui suit, on considére I'EDS E(b, o).

Définition 2.2.1. (Ezistence, unicité des EDS).
Pour ’équation E,(b,0), on dit qu’il y a :

— Ezistence d’une solution faible : si pour tout v € R E,(b,0) admet une solution X.

— Ezistence d’une solution forte : si E,(b,o) admet une solution X qui soit adaptée a la
filtration du Brownien porteur.

— Unicité faible : si tous les processus X solutions de E.(b,c) ont méme loi.

— Unicité trajectorielle : si lespace de probabilité filtré (0, F, (Fi)i>0, P) et le Brownien por-
teur étant fixés, deux solutions quelconques X et X' de E.(b,o) sont indistinguables.

Remarque 2.2.1. La solution d’une équation différentielle stochastique, si elle existe, n’est pas
forcément unique et si elle ’est dans un sens, elle ne [’est pas forcément dans [’autre.

1l peut y avoir existence et unicité faible sans qu’il y ait unicité trajectorielle. Pour voir cela,
on considére un mouvement Brownien (8 issu de By =y et on pose

&:Amm@wa

avec sign(z) = 1six > 0 et sign(x) = —1six < 0. On constate facilement que
t
Be=y+ / sign(Bs)dBs.
0
Comme B est une martingale locale a trajectoires continues et que
t t
B.B) = [ sign(s.pdi5.5). = [ ds—t
0 0

le Théoréme de P. Lévy (1.5.3) justifie que B est un mouvement Brownien (issu de 0). On voit
alors que (3 est solution de I’EDS

dXt - Sign(‘){t)dBtu XO =Y, (26)
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pour laquelle il y a donc existence faible. A nouveau, par le Théoréme de Lévy (1.5.3), on prouve
lunicité faible : toute solution X de (2.6) est une martingale locale & trajectoires continues et
vérifie

t t
(X,X)t:/ sz’gn(XS)Qd(B,B)s:/ ds =t,
0 0

et doit donc étre un mouvement Brownien (Théoréme de P. Lévy 1.5.3 ).
Par contre, il n’y a pas, en général, unicité trajectorielle : pour y = 0, on voit facilement que (3
et —f3 sont deux solutions de (2.0) associées au méme Brownien B. Noter que fot 1i5,—0ydBs =0

car
t 2 t t t
E|:(/ ﬂ{ﬁs_O}st) :| :E|:/ 1%58:0}d5:| = E{/ ]l{/gs_o}ds} :/ P(,BS = O)ds = 0,
0 0 0 0

et donc fg 1y5,—0ydBs = 0p.s. Aussi, 3 n’est pas solution forte de ’EDS : la filtration de B
coincide avec la filtration canonique de |3|, qui est strictement plus petite que celle de f.

Le résultat suivant relie les différentes notions d’existence et d’unicité :

Théoréme 2.2.1. (Yamada- Watanabe).

Existence faible et unicité trajectorielle impliquent unicité faible. De plus, dans ce cas, pour tout
espace de probabilité filtré (0, F, (Fi)is0, P) et tout (Fi)i>o-mouvement Brownien B il existe
pour chaque © € R? une (unique) solution forte de E,(b, o).

Preuve. voir (16).
Théoréme 2.2.2. (Cauchy-Lipschitz pour EDS).

On suppose qu’il existe une constante K positive telle que pour tout t > 0,z,y € R?

1. Condition de Lipschitz
2. Croissance linéaire

[bt, 2)] < K(1+ [z]), |o(t, 2)] < K(1+ |z]).

Alors il y a unicité trajectorielle pour E.(b, o).
De plus, pour tout espace de probabilité filtré (Q, F, (Fi)i>0, P) et tout (F;)i>o-mouvement Brow-
nien, il existe pour chaque x € R? une (unique) solution forte pour E,(b, o).

Preuve. voir (16).

Pour montrer I'unicité trajectorielle on a besoin de lemme suivant :

Lemme 2.2.1. (Gronwall).
Soient T > 0 et g une fonction positive mesurable bornée sur [0,T]. On suppose qu’il existe
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deux constantes a > 0, b > 0 telles que pour tout t € [0,T], on a

g(t) <a-+ b/otg(s)ds.

Alors on a :
g(t) < aexp(bt) pour tout ¢t € [0,T].

Preuve. voir (9)

Preuve du Théoréme : (Existance et unicité)
Afin d’alléger les notations, on traitera uniquement le cas d = m = 1. Commencons par établir
I'unicité trajectorielle.
Unicité trajectorielle : Soit t € [0, T7.

On considére deux solutions X et X’ de E,(b, o) avec Xy = X, définies sur le méme espace et
avec le méme mouvement brownien B. Pour M > 0 fixé, on considére le temps d’arrét

7 =inf{t > 0,|X;| > M ou |X|| > M}.
D’aprés E,.(b,0) on a alors pour tout ¢ > 0 :
tAT tAT
Xopr = Xo + / b(s, X.)ds + / o (s, X.)dB,.
0 0
Vu que X'’ est aussi une solution, nous avons I’équation analogue :
tAT tAT
X =X+ / b(s, X!)ds —I—/ o(s, X.)dBs.
0 0

On consideére ¢t € [0,T]. Par différence, comme X = Xé et comme X, X sont bornées par M
sur ]0, 7], I'expression de la variance d’'une intégrale stochastique L?, I'inégalité de Cauchy-
Schwarz (| [ fds|> <t [5 |f|*ds, f : [0,#] — R), les hypothéses lipschitziennes et la majoration
(z +y)? < 2(2% + y*) donnent

E{m

tAr (S,Xs ) — b(s X’))d )2] +]EK Mo (s, Xs) —a(s,X;)st)QD

2

< 2 T]E tAT st)) ds]+]E{f”\T( (s, X,) — (S,X;))stD

IN

< 2K2T+1]E fOWX X,) }ds

< 2K*(T+1) {fo SAT T s/\T):|d8

Sion pose h(t) = E [(XMT —X{AT)Z} et C = 2K?*(T +1), alors on a établi que h vérifie pour
tel0,1]:



2.2 Existence et unicité 23

t
t)gC’/hsds
0

De plus, par définition de 7, la fonction h est bornée par 4M?, I'inégalité de Gronwall s’ap-
plique avec @ = 0 et b = C. On obtient h = 0, c’est a dire X,», = X,,, p.s. Finalement, en
faisant M — +oo on a7 — +00 et donc X; = X; p.s. Les processus X et X' sont des modifica-
tions a trajectoires continues, ils sont donc indistinguables, ce qui prouve 'unicité trajectorielle.

Passons a présent au deuxiéme point.
Existence forte : On procéde comme pour les équations différentielles avec une méthode d’ap-
proximation de Picard. Pour cela, on pose

X = T
X! = x+ fot b(s,x)ds + fot o(s,x)dBy

X2 = x+ [yb(s, XDds + [} o(s, X})dB,

t t
X' == —i—/ b(s, X' Nds —|—/ o(s, X 1)dBs,. (2.7)
0 0

Les intégrales stochastiques ci-dessus sont bien définies puisque par récurrence, on constate
que, pour chaque n, X' est continu et adapté donc localement borné si bien que le processus
o(t, X]') lest aussi (hypothése lipschitzienne) et I'intégrale correspondante bien définie.

On fixe maintenant 7" > 0 et on raisonne sur [0,7]. On prouve par récurrence qu’il existe C,
tel que, pour tout ¢t € [0, 77,

E[(X7)’] < Cu. (2.8)

En effet, (2.8) est immédiate si n = 0 avec Cy = x. Puis, on suppose que (2.8) est vraie au rang
n — 1 avec

b(s,y)| < K + Klyl, [o(s,9)] < K + Kly|, s €[0,T], y €R.

Noter que par la croissance sous-linéaire de o et I’hypothése de récurrence (2.8), on a
fo s, X" 1)2ds] < 400 on a donc

]E{(/Ota(s,X;l_l)st)T :E[/Ota(s,xg—lfds].

Comme (z +y + 2)? < 3(z* + y* + 2?) par I'inégalité de Cauchy-Schwarz, I'isométrie L?, et les
hypothéses lipschitziennes, on majore comme suit
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(1t ] (s ) | ] (ot s, ) )

(convexité)

3<|x|2 + t]E[fOt b(s, Xgl)st} - ]E[f(f o(s, Xgl)stD

E[(X7)?]

IN

IN

(isométrie L?, Cauchy-Schwarz)
<|x|2+2(T+1 +]E{f0 )2+ K2(Xn 12 )dsD

(hypothéses lipschitziennes)
<3(|z]? +2T(T + D) ((K')? + K2C,,_1)) =: C,,

ce qui établit (2.8) par récurrence.
La borne (2. 8) et la croissance sous-linéaire de o assurent alors que, pour chaque n, la martin-
gale locale ( fo s, X"dBs) est une vraie martingale bornée dans L? sur l'intervalle [0, T].

Cela va permettre de majorer par récurrence E[ sup X! — X/'|*]. On a
0<t<T

t t
Xpl X = / (b(s, XT) — b(s, X™1))ds + / (05, X7) — o (s, X)) dBs.

En utilisant les inégalités de Doob (1.5.6) et de Cauchy-Schwarz ainsi que les hypothéses
lipschitziennes, on déduit

s e -]

0<s<t

2

< QE{OS;% /0 (b, X™) — b, X)) du + s /0 (o, X™) — o(u, X 1))dBu 2}
(convexité)
< ( ({fo (u, X7 b(u,Xgl))uuﬂ +41EK/Ot(a(u,X3)—a(u,Xg—l))dBu)2D

(inégalité de Doob)

¢
< ( ([fo u, X7 b(u,Xgl))zdu] +4E{</ (o(u, X]') — o(u, Xq’}_l))Qdu}>
0
(isométrie L?, Cauchy-Schwarz)
¢
< 2(T + 4)K2EU | X — X]j_1|2du} (2.9)
0

(hypothéses lipschitziennes)

t
< CTE[/ sup | X — X;‘_1|2du] (2.10)
0

0<r<u
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avec Op = 2(4+T)K?. Si on note g, (u) = E[ sup | X" —X""?] et go(u) = E[ sup |X?|?] =

0<r<u 0<r<u
22 alors on a établi

i (£) < Oy /0 ' (). (2.11)

Par ailleurs, par (2.8) et les inégalités précédentes (cf. (2.9)), on voit que les fonctions g, sont
bornées sur [0, T]. En effet, go(t) = 2? pour t € [0, T] et par une récurrence utilisant (2.11), on
établit que pour tout n > 1et ¢t € [0,7] on a

t’n

2, m
gn(t) < CTH‘

+00
On déduit alors que Z 9n(T)Y? < +00, comme

n=0
“+o0 “+o00 —+00
n+1 n n+1 n o 1/2
E : sup ’Xs _Xsl S E sup ’Xs _Xsl - E gn(T> < 400
n—=0 0<s<T 2 n=0 0<s<T 2 n=0
cela entraine que p.s.
+o0o
1
sup | X7 — X'| < oo,
n=0 0<s<T

et donc p.s. la suite (X7')icor] converge uniformément sur [0,7] vers un processus limite
(Xt)tepo,r) qui est continu. Comme par récurrence, chaque processus X" est adapté par rap-
port & la filtration canonique de B, X l'est aussi a la limite.

Les estimations (2.10) établissent aussi que

+o0 1/2
]E[ sup | X" — Xs|2] < <ng(T)1/2) —0, n— +oo
k=n

0<s<t

On déduit alors de 'isométrie L?, des hypothéses lipschitziennes que, avec des limites dans L?
on a

t

L*— lim [ b(s,XMds = [, b(s,X,)ds,

n—-+o00 0

t

L? — lim o(s,X)dBs = f(fa(s,Xs)st.

n—-+o0o 0

Finalement, en passant a la limite dans 1’équation de récurrence (2.7), on obtient que X est
solution forte de E,(b, o) sur [0,T].

2.3 Exemples d’EDS

Les EDS affines admettent des solutions explicites qu’on peut obtenir comme dans le cas
déterministe par la méthode de variation de la constante. Le cas affine est important car les
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EDS affines apparaissent comme des linéarisées d’EDS plus complexes qu’on ne sait pas tou-
jours résoudre. On se place dans le cas réel, i.e. d =m = 1.

2.3.1 Equations linéaires

Ornstein-Uhlenbeck : équation b(t,x) = —bz b > 0 et o(z) = o. Il s’agit de I’équation
de Langevin :

c’est a dire avec b(t,z) = —bxb > 0 et o(z) = 0. La solution est donnée par
t
X, = Xoe "+ / e b= gB,. (2.13)
0
Sans le terme odB,, I’équation dX; = —bX,dt se résout immédiatement en X; = Ce " Pour

tenir compte du terme odB; on fait "varier la constante C'" :

dCe ™™ —bee™dt = dX, = —bX,dt + odB,
dC = oce’dBt

t
C = Xo+ / oe”dB,
0
et, avec X; = Ce~® Iexpression (2.13) est obtenue.

On peut observer directement que (2.13) est satisfaite en dérivant X; = Xoe " +oe~t fot e’ dB,
avec la formule d’It6 :

d(X,Y)) = X, dY, + Y,dX, + d(X,Y),.

I s’agit du processus d’Ornstein-Uhlenbeck. Ce cas se généralise au contexte vectoriel.

Equation b(t,x) = bz et o(x) = oyx. On suppose les processus (b;)i>o et (04)i>0 bornés ou
vérifiant I'intégrabilité fOT |b:|dt < +o0, fOT lo¢|>dt < +o00 PEDS

dXt = Xt(btdt + O'tdBt), XO =X (214)

t t 1 t
Xy =wexp (/ bsds +/ o,dB, — —/ afds). (2.15)
0 0 2 Jo

Pour le voir, on suppose X positivement borné sur [0,7] (minoré par 1 = n, majoré par n)
sinon, on introduit le temps d’arrét T, = inf(¢ : X; < % ou X; > n) et on arréte les processus
a ces dates. On applique la formule d’It6 & Xyar, et a la fonction In (qui est C? sur [+, n)]. De
'équation (2.14), on déduit d(X, X); = X2o2dt. Le processus Y; = In(X;,z, ) vérifie alors

admet pour solution

1 1d(X, X 02 |
4%, = X, - §<T3>t = (bt + 0dBy) — Tdt = (b — So?)dt + ovdBy,
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ce qui prouve le résultat (2.15).
Black et Scholes. C’est le cas particulier ou b(t, z) = bx et o(t,x) = oz, ie.

dXt = bXtdt + O'XtdBt. (216)

Cette EDS modélise ’évolution d'un cours X soumis & un taux d’intérét déterministe b et a
une perturbation stochastique o X;dB;. Dans un contexte financier, le coefficient de diffusion o
est appelé volatilité. Noter que la partie déterministe de I’accroissement de X,;(bX;) et sa partie
aléatoire (0X;) sont toutes les deux proportionnelles a la valeur courante, X;, en ¢ (ce qui est
typique des modéles de croissance).

La solution de (2.16) est un cas particulier de (2.15) :

0.2
Xt = Xoexp <bt - ?t+UBt>

On retrouve le mouvement brownien géométrique.

2.3.2 Equations affines

On suppose que b(t,z) = bz + ¢, et o(t,x) = oyx + , c’est & dire qu’on considére 'EDS
affine générale

dXt = Xt(btdt + O'tdBt) + Ctdt + (StdBt. (217)

Elle a une solution construite a partir de la solution Z de I'EDS linéaire dZ;, = Z;(b,dt + 0,dB;)
de condition initiale Zy = 1, ie.

t t 1 [t
7y = exp (/ bsds +/ o,dB, — 5/ azds)
0 0 0

donnée, avec ¢; = ¢; — 0.0, par

t
X, =2, (XO + / Z Y (Cuds + 5SdBS)). (2.18)
0

Avec la formule d’Ito, on vérifie que (2.18) satisfait effectivement ’équation (2.17) :

dX, = Z,(Z7'(cdt+ 6,dB,)) + X, (bdt + 0,dB,) + d(Z;, Z;7 6By,
e gtdt + 5tdBt + Xt(btdt + UtdBt) + Ut(stdt
= Xt(btdt + O'tdBt) + Ctdt + (5tdBt.

2.4 Générateur des diffusions

Dans I'étude des diffusions, il est particuliérement intéressant de considérer la dépendance
des solutions dans la condition initiale Xy = z. La propriété de Markov affirme que I’état X,
en un temps donné t détermine univoquement le comportement a tous les temps futurs. Ceci
permet de démontrer la propriété de semi-groupe, qui généralise celle du flot d’une équation
différentielle ordinaire.

Un semi-groupe de Markov peut étre caractérisé par son générateur, qui s’avére étre un opéra-
teur différentiel du second ordre dans le cas des diffusions.
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2.4.1 Diffusion

Définition 2.4.1. (Processus de Diffusion). On appelle diffusion un processus stochastique
obéissant a une équation differentielle stochastique de la forme suivante :

dXt = b(Xt)dt ‘I— O'(Xt>dBt, t Z S > 0, XS = T. (219)

Définition 2.4.2. (Diffusion d’It6). Une diffusion d’It6 homogéne dans le temps est un pro-
cessus stochastique {Xi(w)}i>o satisfaisant une équation différentielle stochastique de la forme

dXt: b(Xt) dt+ O'(Xt) dBt7
S—~— S——
Coeff-dérive Coeff-diffusion

o :

e B, est un mouvement Brownien standard de dimension m ;
o b:R" — R", coefficient de dérive ;

e 0:R" — R™™, coefficient de diffusion,

tels que L’EDS (2.19) admette une unique solution en tout temps.

Nous noterons la solution de I'équation (2.19), X;.

2.4.2 Propriété de Markov

L’homogénéité en temps, c’est-a-dire le fait que b et ¢ ne dépendent pas du temps, a la
conséquence importante suivante.

Lemme 2.4.1. Les processus { X7, }uso et {X, " }nso ont la méme loi.

Théoréme 2.4.1. (Propriété de Markov pour les diffusions d’Ito). Pour toute fonction
mesurable bornée p : R — R,

E*(¢(Xern) /Fe) (w) = EX@ (0(X3)), (2.20)

le membre de droite désignant la fonction EY(p(X})) évaluée en y = Xy(w).

Preuve. Considérons pour y € R" et s > ¢ la fonction

F(y,t,s,0) = X9(w) = y + / B(Xu () + / (X (w))dBu(w).

On notera que F' est indépendante de F;. Par unicité des solutions de I'EDS (2.19), on a
Xs(w) = F(Xi(w),t, s,w).

Posons o(y,w) = ¢ o F(y,t,t + h,w). On vérifie que cette fonction est mesurable. La relation
(2.20) est alors équivalente a

E(U(Xt7 w)/]:t) = E(QO © F<y’ 0, haw)>|y:Xt(w)'
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On a
E(o(Xi,w)/Fi) = E(9(y, w)/Fo)ly=x.()-

En effet, cette relation est vraie pour des fonctions de la forme g(y,w) = ¢(y)1(w), puisque
E(o(Xo)v(w)/Fr) = (X )E(Y(w)/Fr) = E(d(y)v(w)/Fi)ly=x1(w)-

Elle s’étend alors a toute fonction mesurable bornée en approximant celle-ci par une suite de
combinaisons linéaires de fonctions comme ci-dessus. Or il suit de I'indépendance de F' et de
Fi que
E(o(y,w)/Fi) = E(o(y,w))
= E(po F(y,t,t + h,w))
= E(po F(y,0,h,w)),

la derniére égalit é suivant du Lemme précédent. Le résultat s’obtient alors en évaluant la der-
niére égalité en y = X;. a

Comme pour le mouvement Brownien, la propriété de Markov se généralise a des temps
d’arréts.

Théoréme 2.4.2. (Propriété de Markov forte pour les diffusions d’Ito). Pour toute
fonction mesurable bornée p : R™ — R et tout temps d’arrét T fini presque sirement,

E* (p(Xr1) [ Fr) (w) = EX ) (p(Xa)).

2.4.3 Semi-groupe

Définition 2.4.3. (Semi-groupe de Markov). A toute fonction mesurable bornée o : R" —
R, on associe pour tout t > 0 la fonction Tip définie par :

(Thp)(2) = E*(p(Xy)).

L’opérateur linéaire T, est appelé le semi-groupe de Markov associé a la diffusion.
Par exemple, si p(z) = 14(z) est la fonction indicatrice d’un Borélien A C R", on a
(Ty1a)(x) = P*{X, € A}.
Le nom de semi-groupe est justifié par le résultat suivant.
Lemme 2.4.2. (Propriété de semi-groupe). Pour toust, h >0, on a
Th o Tt - Tt—i—h'
Preuve.

(Th o To)(p)(x) = (Tu(Tup))(z)
= E*((Twp)(

(Tirnp) ().

De plus, on vérife facilement les propriétés suivantes :
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1. T, préserve les fonctions constantes : Ty(clgn) = clgn;
2. T, préserve les fonctions non-négatives : ¢(x) > 0, Vo = (Typ)(z) > 0, Vz;
3. T; est contractante par rapport a la norme L* :

sup |(Typ)(x)| = sup [E*(p(Xy))| < sup [o(y)| sup E7(1) = sup |o(y)|

zeR" zeR" yeR” z€ER™ yeR”

Le semi-groupe de Markov est donc un opérateur linéaire positif, bornée par rapport a la
norme L. En fait, il est de norme opérateur 1. La propriété de semi-groupe implique que le
comportement de T, sur tout intervalle [0, €], avec € > 0 arbitrairement petit, détermine son
comportement pour tout ¢ > 0. Il est donc naturel de considérer la dérivée de T; en t = 0.

2.4.4 Générateur de diffusion

Il est fondamental pour beaucoup d’applications que nous pouvons associer un operateur
différentiel de second ordre L & une diffusion d’Itd6 X;; la relation de base entre L et X; est que
L est le générateur de la diffusion d'Ito X;.

Définition 2.4.4. (Générateur d’une diffusion d’Itd). Le générateur infnitésimal L d’une
diffusion d’Ito est défini par son action sur une fonction test @ via :

. (Thp)(z) — ()
(L) () = lim h :

(2.21)

Le domaine de L est par définition I’ensemble des fonctions ¢ pour lesquelles la limite existe
pour tout x € R™.

Remarque 2.4.1. Formellement, la relation (2.21) peut s’écrire

dT
L=—1' .
dt |,_,
Par la propriété de Markov, cette relation se généralise en
d Tiyp—T T; —id
Ty = lim 2 i 0T, = LT,
dt h—04 h h—04
et on peut donc écrire formellement
T, = exp(tL).

Pour montrer la relation entre L et les coefficients o et b on a la proposition suivante :

Proposition 2.4.1. Le générateur de la diffusion d’Ité (2.19) est 'opérateur différentiel

. 0 1L 0?
L= b(2)—+ = T () —2
Le domaine de L contient I’ensemble des fonctions deux fois continiment différentiables a sup-
port compact.
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Démonstration :  Considérons le cas m = n = 1. Soit ¢ une fonction deux fois contini-
ment différentiable a support compact, et soit Y; = p(X}).
Par la formule d’Ito,

h h h
V= oo+ [ SN s+ [ A Xe(Xa+ 5 [ XK.
E2(Y;) = p(x) + B ( JAC AT / w"<X5>o<Xs>2ds), (2.22)
d’ou
PO L [ s + o [ B (e(x)as
En prenant la limite h — 0., on obtient
(Lo)(a) = & (2)b(a) + 3¢ () ()

Les cas o m > 2 ou m > 2 se traitent de maniére similaire, en utilisant la formule d’It6
multidimensionnelle. O



Chapitre 3

Généralité sur les EDPs et la méthode des
différences finis

Les équations aux dérivées partielles (EDP) sont omniprésentes dans toutes les sciences,
puisqu’elles apparaissent aussi bien en dynamique des structures, mécanique des fluides que
dans les théories de la gravitation ou de I’électromagnétisme (Exemple : les équations de Max-
well). Elles sont primordiales dans des domaines tels que la simulation aéronautique, la synthése
d’images, la prévision météorologique, la démographie, ou les finances. Enfin, les équations les
plus importantes de la relativité générale et de la mécanique quantique sont également des EDP.
Ce sont des équations indispensables pour la résolution de presque la totalité des problémes
dans ces domaines. Nous pouvons citer par exemple :

1. L’équation de Fourrier ou équation de la chaleur qui décrit I’évolution de la température
en fonction du temps et de ’espace :
Pu  Pu  Pu  10u

= ——. Le nombre a est appelé diffusivité thermique du milieu.
0x? + 0y? + 022  adt P v q

2. l’équation de Black-Scholes utilisée en finances :

oc o? 9%c oc
En + S +rS— —rc=0ouc=c(tS) est un prix et o,r des constantes.

2 052 a8

3. I'équation d’advection qui décrit comment une quantité est transportée dans un courant
(par exemple un poluant dans Ieau) :

ou ou , : - .
—(x,t)+c=—(z,t) = f(z,1t), c : étant la vitesse du milieu qui est souvent une constante.

ot ox

Certaines de ces EDP ont été résolues analytiquement et leurs solutions sont connues. Toutefois,
un nombre important de ces EDP existent sans solutions analytiques. C’est dans cette optique
que les recherches se sont penchées sur les méthodes numériques pour arriver a approximer les
solutions de ces équations.

Notons que malgré ces efforts indéniables, il n’existe pas de méthodes universelles pour la ré-
solution numérique des EDP. L’algorithme de résolution dépend trés étroitement du type de

32
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probléme posé. C’est pour cela que nous allons restreindre notre champs d’étude. On exigera
que I’équation satisfasse quelques propriétés comme la linéarité pour que la résolution soit pos-
sible.

3.1 Généralité sur les équations aux dérivées partielles

3.1.1 Définitions - Exemples

Définition 3.1.1. En mathématiques, plus précisément en calcul différentiel, une équation aux
dérivées partielles ou équation différentielle partielle (EDP) est une équation dont les solutions
sont les fonctions inconnues vérifiant certaines conditions concernant leurs dérivées partielles.
C’est une équation mathématique contenant en plus de la variable dépendante (u définie comme
ci dessous), des variables indépendantes (z,y,...) € R" et une ou plusieurs dérivées partielles
qu’on peut écrire sous la forme :

ou Ou 0*u O*u

Flz,y,...,u,—, —, —,—,...) =0. 3.1
(z.9 ox’ Oy’ 0x2’ Oy? ) (3.1)
Exemples :
o L . *u  O%u . .
e I'équation aux dérivées partielles 92 e 0 qui admet comme solutions u(z,y) =
r Y

(x +y)3 u(z,y) = sin(z —y), . ..
e 'équation de la Laplace Au = 0, en dimensions 2D, qui admet aussi au moins deux solutions
dont u(z,y) =2 —y* et wv(z,y) = e*sin(y).

Définition 3.1.2. Une Equation aux Dérivées Partielles (EDP) est une équation fonctionnelle
qui met en relation des dérivées partielles. Typiquement, siu est une fonction a valeurs scalaires
des variables x et y, (x,y) € Q ou Q désigne un ouvert de R?, une EDP est une relation de la
forme :

—)=0  pour(x,y) € Q, (3.2)

ou F désigne une fonction définie sur un ouvert de R5.

L’ordre et la dimension d’une EDP :

L’ordre d'une équation aux dérivées partielles est le plus haut degré de dérivation présent
dans I’équation. L’équation (3.2) est donc d’ordre 1.

La dimension d’une équation aux dérivées partielles est le nombre de variables indépendantes
dont dépend la fonction inconnue w. L’équation (3.2) est donc de dimension 2.

Remarque 3.1.1. Résoudre une EDP consiste a déterminer toutes les fonctions u définies sur
Q satisfaisant (3.2).
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les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire ;
les problémes incluent souvent des conditions aux limites qui restreignent I’ensemble des
solutions. Pour assurer donc I'unicité de la solution, comme on le fait avec les équations différen-
tielles ordinaires, EDO, on tiendra compte des conditions prédonnées comme les conditions
aux limites et les conditions initiales.

En général, une EDP est complétée par des conditions sur le bord de €2 du type :

ou Ou
ox’ 8y>
Ces conditions peuvent étre de nature trés différentes et influent fortement sur I’existence et
la forme des solutions. Quand les conditions portent sur le bord complet du domaine, on parle
de probléme aux frontiéres. Quand le domaine est d’extension infinie autour d’un obstacle
compact (par exemple ; lors de 'étude de la signature radar d’un objet), on parle de probléme
extérieur.

Quand les conditions ne portent que sur une partie du bord du domaine sur lequel on connait
la valeur de la fonction et de ses dérivées de degré inférieur a 'ordre de I’équation, on parle de
probléme de Cauchy.

Les équations de la physique sont fréquemment posées sur des domaines spatio-temporels du
type 2 = w x [tg, +00[ ott w est un ouvert de 'espace R? (d = 2 ou3) et [to, +00] est Uintervalle
temporel d’étude, to est 'instant initial (souvent pris égal & 0). Le temps joue un role particu-
lier, dans la mesure o il est porteur du principe de causalité (C’est le principe suivant lequel,
si un phénomeéne physique, nommé cause, produit un autre phénomeéne, 'effet, alors ce dernier
ne peut précéder la cause). On a alors le plus souvent un probléme aux frontiéres en espace
et un probléme de Cauchy en temps que l'on appelle également probléme aux condition
initiales.

Les problémes aux frontiéres et les problémes aux conditions initiales obéissent a des logiques
différentes : pour les premiers, I’état est partiellement connu sur le bords et on cherche a I’aide de
L’EDP & déterminer la solution dans ’ensemble de domaine w, pour les seconds, 1’état est com-
plétement connu a l'instant initial ¢y, on va chercher a propager la solution a I'instant d’apres
puis, de proche en proche, déterminer la solution sur I’ensemble de I'intervalle temporel d’étude.

g(u, x,v, =0 pour(x,y) € I' C 0N). (3.3)

3.1.2 Les conditions aux limites

Pour résoudre une équation différentielle régissant un domaine D, il nous faut connaitre
les conditions aux limites que 'on applique sur les frontiéres 0D. Ces conditions aux limites
peuvent étre de différents types :

e Dirichlet : Dans ce type de conditions la valeur de la variable dépendante est imposée sur
la frontiére du domaine de calcul

u=f sur OD. (3.4)
e Neumann : La variable dépendante n’est pas connue sur la frontiére mais sa dérivée est bien

définit

% =f sur 0D. (3.5)
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e Mixte : Une combinaison linéaire des deux premiéres conditions est imposée sur la frontiére

g—Z—f—ngS:f, K >0 sur 0OD. (3.6)

Il n’existe pas de résultats généraux sur 'existence de solutions des équations aux dérivées
partielles, il est nécessaire de restreindre 1’étude & certains cas. On donne donc, dans ce qui
suit, une rapide classification des EDP.

3.1.3 Classification des équations aux dérivées partielles

Définition 3.1.3. (Classification des EDP) Cette classification est illustrée dans le cas des
équations du second ordre.

i) On dit qu’une équation aux dérivées partielles est linéaire si la dépendance par rapport a la
fonction inconnue et ses dérivées partielles est linéaire :

82u 2 2

U u ou ou

L’équation est dite homogéne si la fonction g est identiquement nulle sur 2.

it) On dit qu’une équation aux dérivées partielles est semi-linéaire si la dépendance par rap-
port aux dérivées partielles d’ordre le plus €levé est linéaire :

0%u 0%u 0%u ou Ou
T (e, )= gu L F gu ouy _
o)+ 200 ) i+ el 3+ Fius, 5 2 =0

ot a,b, c désignent des fonctions des variables x et y, et F' une fonction définie dans un
ouvert de R®.

i1i) On dit qu’une équation auz dérivées partielles est quasi-linéaire si elle est de la forme :

du du 0*u du Ou 0*u du du 0*u
a(ua%78_y7x7y)@+2b(u7%78_y7x7y) 6$8y+c(u7%73_y7x’y)8_y2+F(u’x’y’£78_y) -

ot a,b,c et F' sont des fonctions définies dans un ouvert de R5.

iv) On dit qu’une équation aux dérivées partielles est complétement non linéaire si elle
dépend non linéairement de ses termes d’ordre le plus élevé.

Classification physique des EDP :

De nombreux phénomeénes physiques se rangent dans I'une des classes suivantes :
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e Les problémes d’équilibre étudient ’état stationnaire d’un phénomeéne (champ, chaleur...)
dans un domaine borné ou non. Ils sont gouvernés par 'EDP elliptiques.

e Les problémes de valeurs propres sont en général des extensions des problémes d’équilibre
dans lesquels les valeurs critiques de certains paramétres doivent étre déterminées. C’est
le cas par exemple de la résonance des circuits électriques.

e Les problémes d’évolution étudient 1’évolution avec le temps d’un phénomeéne (champ, cha-
leur, vibration,....) & partir d’un état initial donné. Ils sont gouvernés par des EDP hy-
perboliques ou des EDP paraboliques.

Classification mathématique des EDPs linéaires du second ordre (cas de deux va-
riables indépendantes) :

Comme il est dit en haut, il n’existe pas des méthodes universelles pour la résolution des
EDP, nous allons nous contenter de celles qui sont linéaires et du second ordre.
Quand on pose X = (x1, %2, ...,T,) € R" une équation aux dérivées partielles du second ordre
sera de la forme :

>0 i (X) g () + DB ZE () + e = ()

i=1 j=1

avec a; ;, b;, ¢, g des fonctions indépendantes de v ne s’annulant pas toutes simultanément dans
R". Si nous nous limitons dans R?, c’est a dire X = (x,y) € R? I'égalité précédemment posée
prend la forme de :

0%u 0%u Pu Ou  Ou

o +b8x8y+cay2 +d%+ea—y—l—fu:g(a:,y). (3.7)

La classe d’une telle équation est détérminée par le calcul de :

A= 62(%7 Yo) — 4a(xo, yO)C(‘T07 Yo)-

e Si A < 0: on parle d’'une équation elliptique,
e Si A =0:T'EDP est dite parabolique,
e Si A > 0: on a une équation hyperbolique.

Cette appellation est faite par analogie avec I’équation générale du second ordre en géomé-
trie analytique

ax? + 2bxy + cy? = d, (3.8)

du duy

oil a,b et ¢ ne dépendent que de (x,y) et d est une fonction lineaire de (z,y,u, 3%, B

Ainsi, selon le signe du discriminant A = (b* — 4ac) nous obtenons différentes formes géo-
métriques :

o A= (b?—4ac) < 0 —> ellipse.
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o A = (b*—4ac) = 0 — parabole.
e A = (b? —4ac) > 0 — hyperbole.

On peut dire que :
les problémes elliptiques vont concerner les problémes de la mécanique;
les problémes paraboliques ceux de type équation de la chaleur;
— les problémes hyperboliques ceux de la propagation des ondes.

Exemples :

e [’équation de Laplace :
Pu  *u

922 "o 0

est une équation aux dérivées partielles elliptique.

e [’équation de diffusion :

2( %)_%
or\Yor) T Bt

est une équation aux dérivées partielles parabolique, avec o un réel strictement positif.

e [’équation des ondes :

Pu 0%

oz~ or?

est une équation aux dérivées partielles hyperbolique, avec ¢ un réel strictement positif.

Classification mathématique dans le cas général (n variables indépendantes) :

Si u est une fonction de n variables independantes, les EDP lineaires du second ordre sont
du type :

zn:a(x x)@%—zﬂ:b(x x)au+c(x Tp)u + d(x z,)=0. (3.9
= i\L1ly---ydn 833? i\L1y---ydn @xz 1y---54n 1y+--ydn) — Y. :

i=1
e Si tous les a; sont non nuls et de méme signe, 'EDP est de type elliptique.

e Si tous les a; sont non nuls et sont ; & une exception prés, de méme signe, 'EDP est de type
hyperbolique.

e Si un seul des a; est nul (noté a;y) et tous les autres de méme signe et si by est non nul,
I’EDP est de type parabolique.
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Les fonctions a; et b; étant dépendantes des variables (z1,...,x,), la classification est évidem-
ment fonction du point (z1,...,x,) considéré. Une EDP peut donc étre de différents types
suivant les points considérés : on dit qu’elle est de type mixte.

Remarque 3.1.2. Un probleme aux dérivées partielles nécessite la donnée :

e Un domaine D ;
e Une équation aux dérivées partielles (E.D.P);
e Des conditions auz limites (pour tous les problémes) ;

e Une condition initiale (pour les problémes d’évolution).

Un probléme est dit bien posé si :
e Il existe une solution de I'EDP satisfaisant les conditions aux frontiéres (existance).
e La solution doit étre unique (unicité).

e La solution doit étre stable par rapport aux conditions aux frontiéres imposées (stabilité).

Remarque 3.1.3. Notons que les méthodes numériques passent toujours par des discrétisa-
tions des problemes analytiques en des problemes numériques et qu’il existe plusieurs méthodes
de discrétisation des équations aux dérivées partielles. Nous allons citer les plus couramment
utilisées dans la résolution numérique des EDPs.

Pour des modéles d’EDPs qui ne dépendent que de la variable spatiale x (EDPs elliptiques par
exemple), nous allons avoir besoin de les discrétiser selon la variable spatiale x par une des
méthodes suivantes :

1. La méthode des différences finies,

2. La méthode des éléments finis,

3. la méthode des volumes finis,

4. la méthode des caractéristiques.

Pour des EDPs dépendant d’une variable temporelle t, en plus de la variable x (EDPs d’évo-
lution comme les équations paraboliques ou hyperboliques), on aura besoin d’une discrétisation
spatio-temporelle. Spatiale a l'aide d’une des méthodes mentionnées ci-dessus. Temporelle avec
une des méthodes suivantes :

1. Fuler explicite.
2. Euler implicite.
3. Runge-Kutta.

4. Crank-Nicolson.

Dans la suite de ce manuscrit, et par souci de simplicité, nous allons utiliser la méthode
des différences finies pour la discrétisation en espace, et la méthode d’Euler explicite pour la
discrétisation en temps.

la méthode des différences finies consiste a remplacer les dérivées partielles par des
différences divisées ou combinaisons de valeurs ponctuelles de la fonction en un nombre fini de
points discrets ou noeuds du maillage. L’avantage de cette méthode est qu’il y a une grande
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simplicité d’écriture et un faible cotit de calcul. Elle est couramment pratique et facile d’accés.
Elle repose sur deux notions : la discrétisation des opérateurs de dérivation ou différentiation
et la convergence du schéma numérique ainsi obtenu. Son inconvénient est qu’on se limite & des
géométries simples, et qu’il y a des difficultés de prise en compte des conditions aux limites de
type Neumann.

Maillage :

Puisqu’on a évoqué le mot maillage dans le paragraphe précédent et qu’on en aura tout le temps
besoin, définissons-le ici.

On appelle maillage un ensemble de points du domaine de définition sur lequel on va appliquer
la méthode des différences finies. Pour une application définie sur un segment de R, on ajoutera
en général les deux extrémités du segment ; pour un maillage en dimension supérieure, on sera
amené a choisir, éventuellement, des points du contours du domaine de définition. On appelle
le pas du maillage la distance entre deux points successifs du maillage voisins. En dimension 1,
cela se simplifie en différence des abscisses. Ce pas n’est pas nécessairement constant, il peut
méme étre judicieux de ne pas le fixer comme tel. Le pas (global) de 'approximation peut étre
défini comme le plus grand pas du maillage. Ainsi, si ce pas global tend vers 0, cela veut dire que
la répartition des points du maillage dans I'intervalle choisi tend a se faire sur tout le domaine
d’étude par densité.

Exemple :
Pour un intervalle de validité [0, 2], avec n le nombre des pas, on aura n + 1 points qui sont
donnés par la relation x; =17 x h avec h = % constant, 0 < i < n.

Notation indicielle :

Durant ces projets nous utiliserons souvent la notation indicielle. C’est pourquoi nous voulons
en rappeler le principe. si x est un des vecteurs de base du repére (quadrillage) discrétisé, nous
noterons le point x(4), qui est la i¢ abscisse par x; et de méme la j¢¢ ordonnée y(j) sera noté
y; et si u est maintenant la fonction, ici la solution de I’équation aux dérivées partielles dépen-
dant seulement des variables de 'espace, on remplacera u(z;, y;) par u; ;. Si, en plus des variables

de Despace, il existe une variable temprelle (k) = t;, alors la fonction u(z;, y;, t) sera notée uj;

eme

En résumé, les indices des variables spatiales resteront en indices et celui du temps sera
en exposant. C’est ce qu’on appelera la notation indicielle.
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3.1.4 Consistance, Convergence et stabilité

Un certain nombre de notion est nécessaire lors de la résolution d’équations aux dérivées
partielles (EDP). Les trois principales sont la convergence, la stabilité et la consistance.
Ces trois propriétés permettent de relier la solution exacte des équations continues a la solu-
tion exacte des équations discrétisées et a la solution numérique obtenue. Ces différents liens,
résumés sur la Figure 3.1, sont :

e la stabilité, c’est la propriété qui assure que la différence entre la solution numérique obtenue
et la solution exacte des équations discrétisées est bornée.

e la consistance, c’est la propriété qui assure que la solution exacte des équations discrétisées
tende vers la solution exacte des équations continues lorsque le pas de discrétisation (At
et Ax) tendent vers zéro.

e la convergence, c’est la propriété qui assure que la solution numérique tende vers la (ou une)
solution exacte des équations continues. C’est évidemment la propriété la plus recherchée.

E.D.P. Equation discrétisée

CONSISTANCE

Solution exacte Solution discréte

CONVERGENCE STABILITE

( Solution numérique )

FIGURE 3.1 — Solutions exacte, numérique et discréte
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Ces propriétés sont liées les unes aux autres par des théorémes :(voir 19)
Le théoréme de Lax
Dans un probléme bien posé, et avec un schéma numérique consistant, la stabilité est une condi-
tion nécessaire et suffisante pour la convergence.
Condition de stabilité CFL
Pour des problémes d’évolution temporelle, certains schémas sont stables & condition que le pas
de temps soit inférieur a une certaine valeur critique fonction du pas d’espace. Cette inégalité
constitue la condition de Courant-Friedrichs-Lewy (1928) ou condition CFL. Elle est néces-
saire et suffisante pour assurer la stabilité.
La condition CFL varie d'une équation a une autre.
Par exemple pour I’équation de la chaleur 1D (pour plus de detail voir (19) page [19-20]), les
schémas explicites (Euler) sont stables sous la condition CFL suivante :

At
— < 0.5
an2 ’

avec « c’est le paramétre de diffusion de 1’équation de la chaleur.
Alors que les schémas implicites sont toujours stables.

Dans cette section nous étudierons la résolution numérique des équations aux dérivées par-
tielles (les EDPs elliptiques et les EDPs paraboliques).

3.2 La résolution numérique des EDPs

3.2.1 Cas elliptique :

Dans cette sous section on va traiter le cas des EDPs elliptiques.

3.2.1.1 Discrétisation de 'EDP :

Soit 'EDP suivante :

0’u  J%*u

w + a—y2 = 0, V(I,y) & [a,b] X [C,d].

On prendra h, et h, les pas de discrétisation des intervalles [a, b] et [c, d].

1. Discrétisation de l'intervalle [a, b] :
I b—a

— z(i)=wz;=a+iXhg,i=0,1,...,n,.

(n, étant le nombre d’intervalles dans [a, b])

2. Discrétisation de l'intervalle ¢, d] :
d—
hy, = ¢ (n, étant le nombre d’intervalles dans [c, d])
Ty
= y(j)=yj=c+jxhy,j=0,1,...,n,.
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Remarque 3.2.1. Constatons que x;11 = a + (i + 1)h, = (a + ihy) + hy = x; + h,. Dans
la suite, nous remplacerons chaque fois x; + hy,x; — hg,y; + hy,y; — hy succéssivement par
Lit+1, Ti—1, Yi+1, Yi-1-

A) Méthode des différences finies :

Cette méthode consiste a approximer les dérivées partielles d’une équation au moyen des
developpemets de Taylor et ceci se déduit directement de la définition de la dérivée.

Soit f(x,y) une fonction continue et dérivable de classe O, alors la dérivée partielle pre-
miére de f par rapport a x est calculée par la formule :

! . f(x+hx,y)—f($,y)
falz,y) = lim h :

Si h, <<< 1, le développement de Taylor au voisinage de 0 de f(z + h,,y) donne :

fx+ heyy) = flx,y) + hmg +0(hy) >~ f(z,y) + hxg—f avec une erreur de 'ordre de h,.
x x
_ Uy f@they) — f@y)
ox ha

ceci est appelé le schéma avant.
De la méme maniére, nous pouvons aussi donner le schéma arriére qui est de la forme :

8f(.17,y): 1 f(x,y)—f(:v—hm,y)
ox ha—0 h, '
Avec la formule de Taylor, ceci nous donne :
flz,y) = f(x — hyyy) + hw +0(h,) ~ f(x — hyyy) + hw avec une erreur de h,
— af(x,y) ~ f(xvy) _ f(l‘— hxay)
or hy

La somme de ces deux schémas nous donne le schéma centré suivant :

(9]”(513’,@/) f(x+hx7y)_f(x_hzay)

~

ox 2h,

En résumé, on a les trois approximations suivantes pour la dérivée partielle premiére de f(z,y)
par rapport a x avec la formule de Taylor :

( 8f(a:,y) f(x_'_hxay)_f(x?y)

~

schéma avant ;

ox Iy ’
’ hx> - ) 3 ) - - g, .
he—0 hy ox hy

of(x,y)  f(x+hay) — f(x — ha,y)

~

\ ox 2h, '

schéma centré.
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La dérivée seconde f, de f(z,y) sera alors de la forme :

92 f N f(wi+17y32;f($i7yj) _ f(m,yj)—hJ;(mfuyj)

ox2 hy

Pf  fwi,yy) — 2f (i yy) + flain,y))
022 = B2

Nous utiliserons tour a tour ces égalités dans la suite pour approximer les dérivées partielles.

. (3.10)

B) Approximation de ’équation différentielle partielle
Soit I'équation de Laplace :

Pu 0%u
Au=0& — +— =0. 3.11
“ 0x? + Oy? (3.11)
Posons u(z;,y;) = u;; (en notation indicielle). Compte tenu de la relation (3.10) du paragraphe
précédent,

2
Fu  Uitrj — 25+ Uiy

o2~ h2

Puisque z; et y; jouent un role symétrique dans I’équation du potentiel (de Laplace), un rai-
sonnement analogue a celui de 'approximation de f;’ nous donne :

2
OPu i — 2ui 5+ Ui

9y 02

rapportons ces aproximations dans 'EDP (3.11) :

Wir1j — 25+ W1y | Wij1 — 2Ui5 + Ui 1
RN Au ~ J J J + J J J

% i = 0.

Dans ce cas particulier ou h, = h, = h, donc, nous avons finalement :

i1y + Ui — g+ Wio1j + Uijy

Au=0<« 2
1=0,1,...,n, et j=0,1,...,ny

=0,

Remarque 3.2.2. A chaque étape, nous remarquons que pour calculer la valeur de w; ; au point
(wi,y;) nous avons besoin de connaitre les points w;_q ;, u;j—1,Uit1; €t U;j+1 comme lindique
le dessin suivant :
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g j41

j%él i Ui 4 it j

M i1

FIGURE 3.2 — Illustration de la position de u;; par rapport aux point u;_i j, u; j—1, Uit1,; et

Wi j+1

C’est pour cela que nous appelons cette formule "la formule a 5 points” qui peut étre repre-

sentée comme suit :
1

1
h? 1 ’

3.2.1.2 Résolution de PEDP elliptique par la méthode directe :

Exemple :
Soit & résoudre I’équation de Laplace :

Au = 0 dans le domaine (x,y) € [0,20] x [0, 10],
u(z,0) = u(x,10) = u(0,y) = 0 et u(20,y) = 100
he = h, = h € {5,2.5,1.25,0.625,0.3125}.

Tout en variant h, résoudre cette EDP En utilisant la méthode directe.

Cas ol h=15:

Ona: h, = b;xa = n, = b};a = 205_0 =4etn, = dh_ycz 105_0 = 2. La grille
maillée contient alors (n, + 1) x (n, + 1) mailles vu que nous avons a rajouter les points ol
x; = 0 et ceux o y; = 0 c’est a dire les points intersection de la courbe avec les axes. Mais
comme les conditions aux limites nous donnent les images sur les bords, alors les points inconnus
restent seulement ceux de l'intérieur du cadrillage. Ce qui fait donc que le nombre d’inconnues
est alors (ny, —1) x (n, —1) =3 x1=3.

Nous obtenons le systéme de trois équations a trois inconnues suivant :

—4U1,1 + U2.1 + OU371 = O,
ury —4uzy +uzy =0,
Oum + U1 — 4U371 = —100.
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Il nous reste maintenant a résoudre le systéme matriciel : A x U = B Avec :

—4 1 0
A= 1 -4 1
0 1 -4

0
B = 0
—100
et
Uy,1
U= U2,1
U3z 1
Avec une des méthodes vues en Analyse Numérique II (résolution des systémes linéaires), nous
obtenons la solution :

1.786
U= 7.143
26.786
Casou h=25:
) b—a 20—-0 d—c 10 -0 )
Nous avons aussi : n, = = =8etn, = = = 4, ce qui nous

h 2.5 2.5
donne un systéme a n = (n, —1) X (n, —1) = 7 x 3 = 21 équations a 21 inconnues de la forme :

( —4U1,1+U2’1+...—|—U172—|—... =0
ul,l—4u2,1+u3,1+...+u272+... =0

‘. + U1 — 4U7,1 + .. = —100
U+ ... —dusy +uso+ ... =

Les conditions aux limites nous ont ramené a avoir la grille suivante dans laquelle nous al-
lons chercher les inconnus de 1’équation :
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v

0 0 ] 0] 0 0 0] 0 0
0 LENT EER] Lo 3 L3 4 U3z 5 Uz 6 Uz 7 100
0 SR U2 2 [ o 4 o 5 Uz 6 U 7 100
0 LS i 9 1.3 ] 4 ] 5 U6 (15 100
OU [41] [4] [1] [§] 0 0 0 0

FIGURE 3.3 — La position de la solution w; ; sur la grille qui correspond au systéme (I).

5

Avec un petit programme sur Matlab, nous transformons la matrcie U en un vecteur o
pour pouvoir bien résoudre le systéme sans erreur puisque la résolution du systéme AU = B

éxige que U soit un vecteur. Voici le programme qui a assuré la transformation :

KKk ok ok sk ok ok sk ok okokokok sk ok sk sk sk sk kR okokoskok skook sk skosk sk okoskokoskokoskok skokkokox

forj=1:ny—1
fori=1:nzx—1

v(k) = u(,j);
k=k+1,;
end

end

>k ok >k skook sk skok sk skok ok skokook sk skok sk kok sk skokosk skokokoskokokskokokoskoskokoskoskokokskok

Ce qui nous donne aprés, le systéme :

Il nous reste maintenant & résoudre le systéme matriciel suivant : A x v =B , avec

\
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0
-4 1 1 :
1 —4 1 1 ,
0 1 -4 1 1 :
_ —100
41— 1 -4 0 1 wB_| ¢
1 0 -4 1 1 :
0 - 15, e e —100
0 1 1 -4 :
—100

FIGURE 3.4 — La matrice A et le vecteur B obtenu aprés la discrétisation.

Voici le programme complet, expliqué, saisi en Matlab qui nous a permis d’avoir la matrice

U a partir des calculs des élements du vecteur .
oKk o KKK R K KKK SR KK R K ok KoK ok K SRk K ok K SRR ok K ok Kok ok K SRk ok ok KRR ok K SR KRR KKK ok oK K

cle ;clear

h = 2.5;

a=0;

b = 20;
c=0;d=10;
nx = (b—a)/h;
ny = (d—c)/h;

n=(nzr—1)x(ny—1);

(remplissage des éléments de la matrice A)
A = zeros(n);

fori=1:(n—-1)

A(i, i) = —4;

Ali+1,0) = 1;

A(i,i+1) =1,
if(mod(i,(nx — 1)) == 0)
Al +1,i) =0;

A(iyi+ 1) = 0;

end

end

fori=1:n—nx+1

Alnz —1414,i) = 1;

A(i,ne —1414) = 1;

end

A(n,n) = —4;

(remplissage des éléments de la matrice B)
fori=1:n

B(i) = 0;

if(mod(i,nx — 1) == 0)
B(i) = —100;

end

end

(résolution du systéme Av = B et transformation du vecteur ¥ en la matrice U).



3.2.1 Cas elliptique :

48

V =inv(A) x B';
k=1;

forj=1:ny—1
fori=1:nx—1

u(j, 1) = V(k);
k=k+1;
end

end

(décallage des élements pour insérer les conditions aux limites)
forj=ny:—1:2

fori=mnx:—-1:2

u(j,i) = u((j — 1),i — 1);

end

end

fori=1:nx

forj=1:ny

u(l,i) = 0;

u(j,1) =0;

u(ny +1,1) = 0;

u(j,nx + 1) = 100;

end

end

u(l,nx +1) = 0;

les vecteurs x et y

xr=0:h:b;y=0:h:d,

(affichage la surface en tenant compte des vecteurs = ,y et de la matrice U)

mesh(x,y,u)
Skoske sk skoske sk skosk sk skosk sk skosk skoske sk skosk sk skosk sk skosk skoske sk skoske sk skosk sk skosk sk skosk skoskeosk skoske sk skosk sk skosk skoskeosk skoske sk skosk sk skoskoskoskosk skoskeoskoskokokoskok
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Remarque 3.2.3. Pour évaluer le systéme avec les autres valeurs de h, il suffit de remplacer

h = 2.5 par les autres valeurs et compiler le programme, cela donnera la surface correspondante
pour chaque valeur de h.

Voici en résumé, les surfaces qu’on obtient en variant h :

h=5 h=2.5

Z L7 .

e T

e
e

QRSN \\\‘

SRR
i

“::\‘\‘\‘\‘:\\\\\‘:‘

FIGURE 3.5 — Evolution de la surface représentative de la solution de Au = 0 en fonction de h
avec la méthode directe.
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3.2.2 Cas parabolique :

Dans cette sous section, on va traiter le cas des EDPs paraboliques ot1 on va prendre deux
exemples qui sont I’équation de la chaleur en 2D et 1D.

A) L’équation de la chaleur en 2D :

2 2
% - <%+ g—yl;) =0 V(z,y) € [a,b] X [c,d], Yt € [0,T]
(3.12)
u(z,0) = f(x).
On commence par la discrétisation temporelle du terme % avec une méthode d’Euler explicite
qui va s’écrire sous la forme : t
ou iyt —
ot At ’
avec At est le pas de discrétisation de I'intervalle [0, T| avec une subdivision : ¢, = ¢ + At
etty =T (N = %) et uF*! représente la solution a l'instant t3,;. (L’indice k représente le

temps).
En reprenant la notation indicielle (4, j) qui représente (x,y), on retrouve :

k+1 & k

k k k k
ij — Wig Uiy T Ui — Augy g ug

At = = (3.13)

ol le membre droit de I’équation (3.13) est obtenu a partir de la discrétisation de 'EDP ellip-
tique représenté dans le cas précédent.
Nous déduisons que la solution est obtenue par itération selon la formule :

u

At

k+1 _ K k k k k k
Uij = Uit 73 (um,j F Ui — Ay Ut “z‘,j1> (3.14)

avec la notation : ufj ~ u(z, yj, te)-
Pour le schéma (3.14) soit stable, il faut choisir At et h pour que la condition de stabilité
de CFL soit vérifiée (voir section 3.2.3 pour plus de détails).

Comme cela, on obtient un schéma convergent .
La condition de stabilité dans le cas I’EDP de chaleur en 2D est :

Dans notre cas a = 1 (paramétre de diffusivité) et Az = Ay =h

At t
On obtient donc Qﬁ < 0.5 et la condition de stabilité sera W2 < 0.25.
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Résolution de ’EDP parabolique par la méthode directe :

Le programme suivant représente la résolution numérique de 'EDP de chaleur en 2D avec la
condition initiale et les conditions aux limites suivantes :

O — Au =0, dans D x [0,T7;
u(z,t) =0, dans 9D x [0,T]; (3.15)
2, sil<z<15etl1<y<15; :
u(z,0) = :
0, sinon.

avec D = [a,b] X [c,d]ota=c=0etb=d=35et T =0.1et x = (x,y).

ks ok koo sk kR sk okosk sk sk kR sk kR sk sk skosk sk skok sk skokosk sk kok sk skok sk skokosk skokok sk ok skokokoskoskokoskoskokokskoRoskoskoskokokskokok

clear
cle
a = 0;
c=0;
(Nombre de points en x)
nx = 50;
(Nombre de points en y)
ny = 50;
(Nombre de points en t)
nt = 100;
(pas de temps)
dt = 0.001;
(pas en x)
dz = 0.07;
(pas en y)
dy = 0.07;
b= dx xnx;
d = dy x ny;
r=a:dx:b
y=-c:dy:d;
(initialisation u)
u = zeros(nx + 1,ny + 1);
(Preallocating un)
un = zeros(nx + 1,ny + 1);
alpha = 1;
(x = a Dirichlet B.C)
uxa = 0;
(x = b Dirichlet B.C')
uxb = 0;
(y = ¢ Dirichlet B.C')
uyc = 0;
(y = d Dirichlet B.C')
uyd = 0;
h = dx;

uinit = 2;
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fori=1:nx

forj=1:ny

i]E((l)<— y(7))and (y(j) <= 1.5)and (1 <= z(i)) and (z(i) <= 1.5))
u(z, j) = winit;

else

U(Z,]) =0;

end

end

end

1=2:nx—1;

J=2:ny—1;

1t =0 : nt;

fork =1:length(it)
un = u;

hh=surf(z, y, v’',"EdgeColor","none") ;

shading interp

zlim([Ouinit|)

title(|"Equation de la chaleur en 2D"|;["Temps (t) = ", num2str(it(k)*dt)|)
xlabel('x")

ylabel(’y’)

zlabel("u(x,y,t)’)

drawnow ;

refreshdata(h)
w(i,j) = un(i, j)+ (alphaxdt« (un(i+1,7) —4dxun(i,j)+un(i—1,75)) +un(i,j+ 1) +un(i,j —
1)/ (2)
u(l,:) = uzxa;

(nx,:) = uxb;
u(:, 1) = uyc;
u(yny) = uyd;

end
Sksk sk sk skosk ok sk sk sk skoskosk ok sk sk sk sk skoskosk sk sk sk sk skosk sk sk sk sk sk sk skosk sk sk sk sk sk skeskosk sk sk sk sk sk skoskosk sk sk skeosk skoskoskoskosk sk skeosk skoskoskoskosk sk sk skoskoskokoskoskosk sk skoskok
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Equation de la chaleur en 2D Equation de la chaleur en 2D
Temps (t) =0 Temps (t) = 0.009

Uy
ulxyt)

Equation de la chaleur en 2D Equation de la chaleur en 2D
Temps (t} = 0.032 Temps (t) = 0.1

ulxy)

FIGURE 3.6 — Solution de I'équation de la chaleur en 2D en 4 instants différents T' = 0, T' =

0.09, T =0.032 et T = 0.1

B) L’équation de la chaleur en 1D :

Maintenant, on va résoudre une équation de chaleur en 1D.

Nous choisissons un probléme que nous savons résoudre analytiquement et par différences finies

pour faire une comparaison entre les deux.

ou(x,t) 0*u(z,t)

, Dans D = [0,z x [0,T7;

ot o
u(z,0) = f(x).
avec :
domaine D = [0,3] x [0,0.1], a=1;
condition initiale f(x) = sinmz.
i . u(0,t) =0,
condition aux lzmztes{ (1) = 0

On sait résoudre cette équation analytiquement et la solution (exacte) est :

u(z,t) = sin(rx)exp(—mt).

(3.16)

(3.17)
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Le programme suivant en matlab nous permettre de calculer la solution exacte et la solution

approximée de 'EDP (3.16) avec les conditions (3.17).
Sk AR K K

clear

cle

(Coefficient de diffusivité de I'equation de chaleur en 1D)

a=1;

(Condition initiale du probléme)

f =inline('sin(pi x x)' )/ x');

(Condition aux limites de Dirichlet)

bx0 = inline('0V);

(Conditions aux limites de Dirichlet)

brf = inline('0’);

(L’intervale pour z € [0,z f])

xf =3;

(Nombre de points en z)
M = 150;

dx =xf/M;

x = linspace(0, z f, M);
T =0.1;

(Respect de la condition de stabilite de CFL)
dt = ((dz* % 0.5)/1) — 1le — 6;

t=0:dt:T;

(Nombre de points en temps)

N = length(t);

fori =1: M
(Prise en compte de la condition initiale dans u)

u(i, 1) = f(z(2));

end

(Prise en compte des conditions aux limites)
forn=1:N
u(l,n) = bx0(t(n));
u(M,n) = b f(t(n));
end
(Calcul de la solution par iteration en temps k + 1)
fork=1:N—-1
fori=2:M—-1
w(i,k+1) = u(i, k) +dt * (u(i + 1,k) — 2« u(i, k) +u(i — 1,k))/dx?;
end
end
(Dessin de la solution approchee)
figure, mesh(t, x,u);

xlabel(’t’)
ylabel(’'x")
zlabel("u(x,t)’) ;

title("Solution numerique de I’EDP par differences finies’)
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(Uezacte = (u(x,t) = sin(pi * x) x exp(—pi® * t)) :)

fori=1:M
forj=1:N
Uegact(i,j) = Szn(pl * .CE(Z)) * 6$p(—p22 * t(]))?
end
end
figure,mesh(t, T, Uezact) ;
xlabel(’t")
ylabel(’x”)

zlabel("u(x,t)’) ;
title(’Solution exacte’) ;
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La Figure 3.7 représente la solution analytique u(x,t) en fonction de ¢ et x.

Solution exacte

[+X:]

[+X]

[+X]

02

uet)

FIGURE 3.7 — Solution analytique u(x,t) en fonction de = et ¢

La Figure 3.8 donne l'illustration graphique de la solution approximée en fonction de x et
t (par différences finies).

Solution numerique de I'EDP par differences finies

08
[+X-]
o4

oz

ufxt)

FIGURE 3.8 — Solution approximée par la méthode des différences finies.
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La Figure 3.9 illustre la solution exacte et approximée au long de 'axe ¢ et pour un point
d’espace fixé x = 1.5. On remarque que les deux graphes sont presque confondus ce qui veut
signifier que l'erreur est acceptable.

u exacte et approchée pour x=1.5
-0.3 . . . : : : . :

u exacte
— - u approche par differences finies|
041 el

Y

-0.6 - rd -

u(x.t)

0.7 F b

-0.8 b

0.9 | b

1 | | | | | | | 1 |
0 001 002 003 004 005 006 007 008 009 041
t

FIGURE 3.9 — Solution exacte et approximée par la méthode des différences finies de 'EDP
(3.16) pour x = 1.5

La Figure 3.10 illustre le vecteur e(x;t) (Erreur) de la méthode des différences finies pour
xr = 1.5.

w1073 Erreur en u pour x=1.5

Ermreur

0 | | | | | | | 1 |
] 001 0.02 003 004 005 006 007 008 009 041

t

FIGURE 3.10 — L’erreur de la méthode pour z = 1.5



Chapitre 4

Approche probabiliste des EDPs

Le but de ce chapitre est de montrer les liens qui peuvent exister entre la théorie des pro-

cessus stochastiques et les équations aux dérivées partielles (EDP). Les processus stochastiques
utilisés sont des processus possédant la propriété de Markov. L’idée principale est de montrer
que l'espérance mathématique de fonctionnelles de ces processus fournit une représentation
probabiliste de solutions de certaines équations, i.e. les processus de diffusions obtenus comme
solution d’EDS & partir de processus de Wiener, nous permettent de représenter les solutions
des EDP du second ordre.
L’approche probabiliste permet d’avoir accées rapidement a une expression de la solution pour
des domaines D de géomeétrie (relativement) arbitraire. De plus, elle ouvre la porte a des tech-
niques de simulations de ces solutions d’EDP (méthode de Monte-Carlo) pour approximer les
espérences.

4.1 Diffusion et EDP

Dans cette section, on va présenter quelques rapports entre les diffusions et les équations
aux dérivées partielles. Grace a la formule d’Ito, il est possible de donner une interprétation
probabiliste & certaines équations aux dérivées partielles, ce qui permet ainsi de prouver 1’exis-
tance de solutions.

4.1.1 La formule de Dynkin

La formule de Dynkin est essentiellement une généralisation de I’expression (2.22) a
des temps d’arrét. Elle fournit une premiére classe de liens entre diffusions et équations aux
dérivées partielles.

Proposition 4.1.1. (Formule de Dynkin) Soit (X;)i>0 une diffusion de générateur L,z €
R", 7 un temps d’arrét tel que E*[1] < oo et, p € C32(R™,R). Alors :

B 1) = (o) + 7| [ (o]
0
Preuve. Afin de simplifier la preuve, on considére le cas n = m = 1, (m étant la dimension

du mouvement Brownien).
En utilisant la formule d’It6 et en prenant ’espérance de deux membres, on obtient :

Bl = vl + | [ o] + 8| [Tatxp ).

o8
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Il suffit donc de montrer que 'espérance de I'intégrale stochastique est nulle.
Puisque pour toute fonction h bornée par M, et N € N, on a :

TAN N
E”* |:/ h(XS)dBS:| =E* |:/ ]-{s<~r}h(Xs)dBS:| = 07
0 0

car 1y, et h(X,) sont F,-mesurables.
Puis :

EIK/OT h(XS)dBS—/OTAN h(XS)dBSﬂ = EI{/T:N h(Xs)st]

< MZ?E*[r — 1 A NJ,

qui tend vers 0 quand N — 400, en vertu de 'hypothése E*(7) < +o0, par convergence
dominée. On a donc :

lim IE"”[ /0 " h(Xs)st} :Eﬂ"”[ /0 ' h(Xs)st} =0,

N—+4o0

ce qui conclut la preuve pour h = o’ qui est bornée car continue a support compact.
La preuve du cas général est analogue.

4.1.2 Liens avec des EDPs linéaires

La seconde classe de liens entre équations différentielles stochastiques et équations aux dé-
rivées partielles est constituée par les EDP linéaires.

Nous supposons dans cette sous section que b et ¢ sont continus et indépendants du temps.
On note CF(R?) T'espace des fonctions sur R? de classe C* continues et bornées avec leurs
dérivées jusqu’a 'ordre k.

Equations paraboliques :

Nous nous intéressons a des équations aux dérivees partielles (EDP) paraboliques de la forme
0
a—“ ~ Lu, )
t (4.1)
u(0,2) = f(x), »€RY,

ot f € Cy(RY) et u: Ry x RY — R est continue bornée, avec

u(.,x) € C'(]0, +oo|), u(t,.) € CERY), V(t,z) € 10, 4o00[xR%. (4.2)

Théoréme 4.1.1. Soit z € RY. Siu satisfait (4.1)—(4.2) et (X;)i>o0 est une solution de E*(b, o)
alors

ult, ) = B2[F(X0)]. t>0. (4.3)



4.1.2 Liens avec des EDPs linéaires 60

Preuve :
Le résultat suit en appliquant la formule d’It6 au processus (u(t — s, X5))sepo,q

du(t — s, X,) = (- % + Lu) (t — s, X,)ds + dM;,

ol M est une martingale. Donc

u(t,z) = u(0, Xy) + My = f(Xy) + My,

et en prénant ’espérance nous avons le résultat souhaité.

La formule de Feynman-Kac :

Jusqu’ici nous avons rencontré des problémes a valeurs au bord elliptique de la forme Lu = 6,
et des équations d’évolution paraboliques de la forme d;u = Lu. la formule de Feyman-kac
montre q’on peut également lier des propriétés d’une diffusion & celles d’équation paraboliquess
ol le générateur contient un terme linéaire en wu.

L’ajout d’un terme linéaire dans le générateur peut s’interpréter comme le fait de "tuer" la
diffusion avec un certain taux. Le cas le plus simple est celui d’un taux constant.
Soit V : R4 — R continue et bornée inférieurement (inf V' > —o00). Nous nous intéressons a
I'EDP

Ju

5= Lu—Vu, t>0

t (4.4)

u(0,) = f(z), z€RY,

ou f € Cb<]Rd)

Théoréme 4.1.2. Soit x € RY. Siu satisfait (4.2), (4.4) et (X;)i>0 est une solution de E*(b, o)
alors

t
u(t,z) =E {f(Xt) exp ( - / V(Xs)ds)}, t>0. (4.5)
0
Preuve. Le résultat suit en appliquant la formule d’Ttd au processus (e~ Jo VXu)dug, ¢ —
Sst))se[O,t} :

d(e” Jo VXaduy i _ . X,)) =e" ) V(X“)d“( - ((;—1: + Lu — Vu)(t — s, X;)ds + dM,,

ol M est une martingale. Donc
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u(t,x) — e I V(Xu)duu(o7 Xt) + M, =e Jo V(Xu)duf(Xt) + M,,

et en prénant I'espérance nous avons le résultat souhaité.

Cette formule a été inspirée par la mécanique quantique, ot V' joue le role d’un potentiel.

Equations elliptiques :

Nous nous intéressons & 'EDP

A — Lu = f, (4.6)
ot f € Cy(RY) et A >0

Théoréme 4.1.3. Soit v € R, Si u satisfait (4.6), u € CZ(RY) et (X;)i>0 est une solution de
E*(b,0) alors

() = / e ME[f(X,)]dt. (@7)
0
Preuve. Le résultat suit en appliquant la formule d’It6 au processus (e u(X))sejoy

d(e ™ u(X,)) = e (=u + Lu)(X,)ds + dM,,
ou M est une martingale. Donc

u(z) — e Mu(Xy) = / e f(X,)ds — M,.

0

En prénant I'espérance et en faisant tendre ¢ — 400 nous obtenons

u(z) = /0 MBI (X, ds.
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Probléme de Dirichlet :
Nous considérons un ouvert régulier borné D C R? et L’EDP

o L t>0,z€D;
a1

ut,z) = g(z), t>0,2€ D; (4.8)
u(0,2) = f(x), z€ D,

oit f € Cy(D), g € Cy(OD) et wu:R, x D — R est continue bornée, avec

u(.,z) € C(]0, +o0) u(t,.) € CZ(D), Y(t,z) €]0, +oo[xD. (4.9)

Théoréme 4.1.4. Soit x € D. siu satisfait (4.8) —(4.9) et (Xi)i>0 est une solution de E*(b, o)
alors pour tout t > 0

u(t,x) = B [Lper) f(Xo)] + E*[L>ng(X7)], 7:=inf{u>0:X, ¢ D}. (4.10)

Preuve. Le résultat suit en appliquant la formule d’It6 au processus (u(t—sAT, Xar))sco,q

)
du(t — s A7, Xopnr) = (= a—;‘ +Lu) + (t— 5 AT, Xonr)ds + dM],

ol M est une martingale bornée. Donc

U(t,l’) = U(t A T, Xt/\-,-) — MtT = ]1(t<7')f(Xt) + ]l(tzT)g(XT) — MtT

Donc, par le théoréme d’arrét, en prenant 1’espérance nous avons le résultat souhaité.

Exemple :
Si g = 0 alors nous avons un probléme de Dirichlet homogéne et la solution s’écrit

u(t, ) = E*[1gen f(XL)].

On peut remarquer que cette solution est égale a celle d’'une équation de Feynman-Kac avec

0, reD;
Viz) = { +o0, x¢& D,
car dans ce cas exp(— fo w)du) = 1<r). On dit que le processus X est tué au bord de D.

Si nous considérons maintenant 1’équation

{ u(z) = g(x), =€aD, (4.11)
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oit f € Cy(D) et u: D — R est continue bornée, avec u € C2(D).

Théoréme 4.1.5. Soit x € D. Si u satisfait (4.11) et (Xi)i>0 est une solution de E.(b, o) et,
en définissant T := inf{u > 0: X, ¢ D}, P(1 < +00) =1 alors

u(z) = Elg(X,)] + E{ / Tf(Xs)ds]- (1.12)

Preuve. Le résultat suit en appliquant la formule d’It6 au processus (u(Xgnr))sefo,q

du(Xsnr) = Lisery(=Au 4 Lu)(Xopr )ds + dM],
ol M est une martingale bornée. Donc
tAT
u(x) = w(Xinr) + / f(Xs)ds — M.
0
Par le théoréeme d’arrét, en prenant ’espérance nous avons

tAT
ute) = B[]+ B| [ ],
0
et en faisant tendre ¢ — +00

ute) = Elg)]+ B [ r0xas)

4.1.3 EDP de type Dirichlet

Considérons le cas ou le temps d’arrét 7 est le temps de premiére sortie d’un ouvert borné
D C R"™. Supposons que le probléme avec conditions au bord

{ (Lu)(z) =6(z), =€ D;
u(z) = ¢(x), x € 0D.

admet une unique solution. C’est le cas si D, 6 et ¢ sont suffisamment réguliers. Substituant ¢
par u dans la formule de Dynkin, on obtient la relation

(4.13)

u(z) = B (w(XT) - /0 T@(Xs)ds) (4.14)

Pour ¢y = 0 et 6 = —1, u(x) est égale a 'espérence de 7 partant de x. Pour # = 0 et ¢ 'indica-
trice d’une partie A du bord 9D, u(z) est la probabilité de quitter D par A. Ainsi, si I'on sait
résoudre le probléme (4.13), on obtient des informations sur le temps et le lieu de sortie de D.

Exemple :(Temps de sortie moyen du mouvement Brownien d’une boule)
Soit K = {z € R" : ||z]| < R} la boule de rayon R centrée a l'origine. Soit

T =inf{t >0:2+B; ¢ K} (4.15)
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et soit

T7(N) =7 A N. (4.16)

La fonction ¢(z) = ||z||*1s<r est & support compact et satisfait A(p(z)) = 2n pour
x € K. On peut par ailleurs la prolonger en dehors de K de maniére qu’elle soit lisse et a
support compact. En substituant dans la formule de Dynkin, on obtient

7(N) 1
E*(|lz + Byw|I?) = ||;;;||2+]E90(/0 §A¢(Bs)d8)

= ||z|* + nE*(r(N)). (4.17)
Comme ||z +B,w)|| < R, faisant tendre IV vers I'infini, on obtient par convergence dominée

R* — ||=||?

n

B (7)) = (4.18)

4.2 Mouvement Brownien et EDP

Des liens importants existent entre probabilités et EDP via les processus stochastiques.
Ceux-ci sont souvent reliés a des opérateurs différentiels linéaires, ce qui permet d’exprimer les
solutions de certaines EDP en termes de processus stochastiques. L’opérateur le plus simple est
celui de Laplace A et il est directement relié au mouvement Brownien. On étudie dans cette
section les connexions entre mouvement Brownien et équations liées au laplacien (équation de
Laplace, probléme de Dirichlet, équation de la chaleur, formule de Feynman- Kac).

4.2.1 Fonctions harmoniques
Le laplacien Au d'une fonction C? sur un ouvert U de R? est défini par
B . 0%

i=1

Au(z)

Le mouvement Brownien B dans R est naturellement relié & cet opérateur, en effet la
formule d’'It6 montre que si ® : R — R est C? alors

1 t t
O(B;) = P(By) + 5/ AD(B;)ds +/ VO&(B;).dBs. (4.19)
0 0
Ainsi, si A® = 0, alors (B) est une martingale locale.

Définition 4.2.1. (Fonction harmonique) Soit D C R? un domaine (ouvert, conneze). Une
fonction u : D — R est harmonique si u est de classe C? sur D et satisfait I’équation de Laplace
Au =0 dans D.

Exemples

1. En dimension 2 : u(xy,z2) = In(z? + 22) et u(xy, x2) = €™ sin xy sont harmoniques.
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2. En dimension d : 1/]x]|?"% est une fonction harmonique sur D = R\ {0}.

La propriété suivante joue un role essentiel pour relier les solutions d’EDP a des espérances
de processus arrétés en des temps de sortie de domaine. Dans la suite, pour GG ouvert, on note
pour B mouvement Brownien :

¢ = inf(t > 0: B, ¢ G) le temps d’entrée dans G°,
oc =inf(t > 0: B; ¢ G) le temps de sortie de G.

On note que le temps de sortie de G est plus grand que le temps d’entrée dans G¢ : 0 > 7¢.
Par exemple si GG est ouvert et B part de G, on a 7¢ = 0 mais og > 0 si B commence par
entrer dans G.

Proposition 4.2.1. Soit G un ouvert borné avec G C D et B un mouvement Brownien issu
deaeG. Stu:D — R est harmonique alors

Mt = U(Bt/\TG) — U(a)
est une martingale centrée.

Preuve. : voir (28).

Formule de la moyenne

Définition 4.2.2. (Formule de la moyenne) Une fonction réelle u est dite satisfaire la
formule de la moyenne sur D si pour toute boule ouverte B(a,r) telle que B(a,r) C D, on a

u(a) :/ u(z) g r(dx), (4.20)
0B(a,r)
0l Ao, est la probabilité uniforme sur la sphére 0B(a,r).

Proposition 4.2.2. Soit u : D — R. Alors u est harmonique sur D ssi u vérifie la formule de
la moyenne (4.20).

Preuve. : voir (28).

4.2.2 Probléme de Dirichlet

Le probléme de Dirichlet (D, f) consiste & trouver une fonction harmonique v : D — R
continue sur D et C? sur D, prolongeant une fonction continue définie sur la frontiére de 'ouvert
D telle que f: 0D — R. En résumé, le probléme s’écrit sous la forme suivante :

Au= 0, surD,
(4.21)
U\aD = f.

Ce probléme porte le nom du mathématicien allemand Johann Peter Gustav Lejeune Diri-
chlet. Il s’agit d’un probléme bien connu qu’on peut résoudre explicitement de facon analytique
en utilisant la transformation de Fourier sur des domaines pertinents. L’approche probabiliste
permet d’avoir accés rapidement a une expression de la solution pour des domaines D de géo-
métrie (relativement) arbitraire. De plus, elle ouvre la porte a des techniques de simulations
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de ces solutions d’EDP (méthode de Monte-Carlo). Cependant pour simplifier, nous supposons
que D est borné.

Théoréme 4.2.1. (Dirichlet 1) On considére le probléme de Dirichlet (4.21). Soit

u(@) =E°[f(B,,)], x¢€D. (4.22)

(1) SiE*[|f(B:p)|] < oo,Ya € D, alors u donnée par (4.22) vérifie (4.21).

(2) Si f est bornée et
P4(mp < +00) =1, Ya € D

alors toute solution bornée du probléeme de Dirichlet (D, f) s’écrit comme (4.22).

Si D est bornée alors la condition dans (1) au dessus est satisfaite car B;, reste dans D et
f est finie sur un domaine borné.

D’aprés le Théoréme (4.2.1), pour résoudre le probléme de Dirichlet (4.21), il reste seulement
a voir la continuité sur 0D de u donnée par (4.22), c’est a dire

lim E*[f(B.,)] = f(a),  a€dD. (4.23)

Ceci est lié a la notion de régularité du bord, cf. ci-dessous.
Preuve.
On montre d’abord (2) puis (1).
(2) On suppose d’abord qu'il existe u vérifiant le probléme de Dirichlet (4.21). Soient x € D et
D¢ ={x € D : dist(z, D) > €} le e-intérieur de D. Pour € assez petit, z € D. On applique
alors la Proposition (4.2.1) et en prenant I’espérance de la martingale obtenue, on a

u(z) = E*[u(Biarp )]-

Par hypothése, on a 7pe < 400 p.s. (D C D) : On se raméne facilement, au cas ou D
est un rectangle et on utilise les temps de sortie des marginales de B qui sont des mouve-
ments browniens unidimensionnels dont les temps de sorties d’intervalles sont bien connus. On
utilise le théoréme de convergence dominée (u bornée sur D puisque D est borné) pour faire
successivement ¢ — +o0o et € — 0 : d’abord comme 7pe < +00p.s.

u(@) = 1im Eu(Binrye )] = Bu( By )]

Puis comme D = U 0D, on a 7pe  7p lorsque € — 0 donc par continuité de B et de u,
a nouveau par convergence dominée :

u(x) = ImE*[u(B;,. )] = E*[u(By,)] = E*[f(B,)],

e—0

ou la derniére égalité vient de la condition au bord du probléme de Dirichlet (4.21) avec
B., € 0D. Finalement, si € 0D, 7p = 0 et on a u(z) = f(x).
Si elle existe, la solution de (4.21) est donc unique et nécessairemant donnée par (4.22).
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(1) On considére maintenant u donnée par (4.22). Comme pour (2), il est immédiat que
uw(z) = f(z) si x € 9D. Pour montrer que u est harmonique dans D, on montre que u vérifie la
formule de la moyenne, ce qui est équivalent par la Proposition (4.2.2).

Soit B(a,r) C D. Quand B part de a € B(a,r) C D, comme Tp(,,) < Tp,ona Fr,
et par conditionnement on a

u(a) = Eolf(Brp)] = Ea[Balf (Brp )/ Fryo -

)C]:TD

Mais
Ea[f(BTD)/‘FTB(a,T)] = Ea[f(BTD - BTB(a,r) + BTB((L,T))/'FTB(a,r)]

_ (T (a,'r))
- Ea [f(BTDB_TB(a,r) + BTB(CL,T))/‘FTB(G,,T)]
o (T (a,r))
- Ea [f(BT/DB + BTB(a,’r))/FTB(a,T)}
= U(BTB(G,T)%

car par la propriété de Markov forte, Bt(TB(“’”) = Biirpny — Brps, t = 0, est un mouvement

Brownien issu de 0, indépendant de .FTBWT) et donc sachant ]-"TB(M), Bfﬁj;(*;)f) + BTBQ”> est un

mouvement Brownien partant de B, = € 0B(a,r) pour lequel 7}, = Tp — Tp(a,r) Teste le temps
de sortie D (il s’agit de 7p reinitialisé a la date 7).
Finalement, on a

u(a) = Eofu(Bn,y, )] = / o B0 el

ce qui établit la formule de la moyenne donc I’harmonicité par la Proposition (4.2.2), c’est a
dire I’équation de Laplace sur D.

Régularité du bord :
Pour avoir une solution au probléme de Dirichlet (4.21) & partir de (4.22), il reste a voir la
continuité sur 9D, ie. (4.23). Pour cela, on utilise la notion de régularité du bord.

Définition 4.2.3. (Régularité) On rappelle que op = inf(t > 0 : By ¢ D) est le temps de
sortie de D d’un mouvement Brownien B.

1. Un point x € D est régulier pour D si P*(op =0) = 1.

2. Le domaine D est régulier si tous ses points frontiéres le sont :
Px(O'DZO):l VmE@D

Proposition 4.2.3. (Régularité du bord) Soient d > 2 et a € OD. les assertions suivantes
sont équivalentes.

1. La condition (4.23) est remplie pour toute fonction mesurable bornée f : 0D — R, conti-
nue en a.

2. Le point a est régulier pour D.

3. Pour tout e > 0, on a
lim P*(mp > ¢€) = 0.

zeD
Tr—ra
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Preuve. voir (28).

Théoréme 4.2.2. (Dirichlet 2) Si le domaine D est régulier, alors la fonction u donnée par
(4.22) est lunique solution du probleme de Dirichlet, ie. u est C* sur D et continue sur D et
(4.21) est satisfait.

Preuve. voir (28).

4.2.3 Equation de la chaleur

Les lois de la thermodynamique expliquent que la solution u du probléme de Dirichlet (D, f)
en (4.8) est le champ de température a I’équilibre a U'intérieur D d’un récipient dont les parois
0D sont maintenues a température f (cette interprétation suppose que f > 0) . On s’intéresse
maintenant aux équations de Laplace avec évolution dans le temps : par exemple, pour pour-
suivre la méme interprétation thermodynamique, on considére une plaque infiniment mince
isolée homogene et infinie. La température u(t,y, z) au point (y,z) a U'instant ¢ se détermine
en fonction de la température initiale f comme la solution de 'EDP.

ou  o® (Q*u N 0*u
ot 2 \0y2 022
partant de u(0,.) = f(.). Le coefficient ¢ > 0 ne dépend pas de (y, z) et caractérise la conduc-

tance thermique de la plaque.
En dimension d quelconque, on appelle équation de la chaleur, le probleme de Cauchy

ou 1
{ a2t (4.24)
u(0,.) = f.

Remarque 4.2.1. L’équation de la chaleur modélise la "diffusion” de la chaleur dans un fil :
u(t, z) représente la température du filament au point x au temps t. Et f represente le "profil"
wmatial de la température sur le fil.

Nous allons relier cette EDP a des objets probabilistes. On considére d’abord la loi de B; sa-
chant F; : par indépendance et stationnarité des accroissements, en écrivant B; = B, — B, + By,
on constate qu’il s’agit de la loi gaussienne (conditionnelle) Ny(Bs, (t —s)Iy) de densité au point
y, en notant B, = = donnée par

p(t = s,2,y) = gis(y — @)
On voit sans difficulté que p = p(t, z,y) veérifie
_1(9]9 o _i + ]y—:CIQ

ot 2t 2t2
et que
_18_217 _ _1 + (yi — 5Uz')2
x? t 2
de sorte que la fonction p est solution de I’équation progressive (dite forward) (ie. en la variable
y de la position future)

dp 1

5% = §Ayp, K%pdy = 0g,
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ol 0, est la mesure de Dirac en 0 et aussi par symétrie solution de I'équation rétrograde (dite
backward) (ie. en la variable x de la position passée)

op 1
— ==-A,p, limpdr=24,.
ot ool RGP %

Ces relations justifient que p est la solution fondamentale de ’équation de la chaleur. (De ce

fait, on appelle p le noyau de la chaleur).

Proposition 4.2.4. On suppose que la condition initiale f vérifie [, |f(z)|e~ P dr < +o0
pour une constante ¢ > 0. Alors la fonction

u(t, z) = E*[f(By)]
est solution de l’équation de la chaleur (4.24) sur [0,to[xR¢ avec ty=1/(2¢).

Démonstration :
Par définition, on a u(t,z) = / fy)p(t, z,y)dy. La propriété d’intégrabilité de f permet de
R4
dériver sous le signe intégrale pour ¢ € [0,1/(2¢)[ et d’avoir

ou Ip(t, x,y) 32U_/ Pp(t, x,y)
e R e R =

ce qui implique d’aprés I’équation rétrograde pour p que u est solution de (4.24) sur cet intervalle
de temps avec la bonne condition initiale.

|
4.2.4 Formule de Feynman-Kac
On considére ’'EDP parabolique linéaire
du 1 * d.
{ a:§Au—ku, (t,z) € RY x R?; (4.25)
u(0,.) = f.

Le terme supplémentaire k(z) représente le taux de dissipation de la chaleur en = dans le cas
ol k > 0. Dans le cas ol k£ n’est pas positive, on interprétera plutdt cette équation avec f > 0
comme décrivant la densité u(t,z) au temps t et au point = de particules diffusant dans l'es-
pace qui se multiplient dans les sites tels que k(z) < 0 (& un taux —k) et qui sont tuées dans
les sites tels que k(x) > 0 (a4 un taux k). Puisque cette équation se réduit si k = 0 a 1'équa-
tion de la chaleur, le résultat suivant n’est pas surprenant compte tenu de la Proposition (4.2.4) :

Proposition 4.2.5. On suppose que f : RY — Ret k : R? — R sont boréliennes avec f
a croissance sous-exponentielle et k bornée. Alors toute solution u(t,xz) de 'EDP parabolique
linéaire (4.25) de classe CY* dont le gradient est a croissance sous-exponentielle (uniformément
en temps), est donnée par la formule

u(t,z) = B [ F(B,) exp ( - /0 t k(Bs)dsH | (4.26)
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En particulier, une telle solution est unique.

Démonstration :
On fixe t > 0 et on applique la formule d’It6 au temps s €]0, t[ & s — u(t—s, B;) exp(— fos kB,.dr).

Il vient
dJutt~sByew (- [ xBar)]

= | — kBsu(t — s5,B;)ds — %ds + Vu(t — s,B,)dB; + 1 Au(t — s, B,)ds

xexp ( — [ k(B,)dr
= Vu(t — s, BS)<dBS exp ( - f;> k:(B,,)dr)

en utilisant 'EDP (4.25). On intégre entre s =0 et s =t :

exp (- IN k(BT)dr> w(0,By) —u(t,By) = exp ( — [ k(Br)dr) F(By) — u(t,By)
= [, exp ( - k(BT)dr) Vu(t — s,B,)dBs;.

On passe a 'espérance sous P?, en notant que l'intégrale stochastique est une martingale L>
d’aprés les hypothéses de croissance sous-exponentielle de u et de la bornitude pour k ; elle est
donc d’espérance nulle. On obtient alors

B {exp ( _ /0 t k(BT)dr) F(B,) — ult, BO)] ~0

soit, puisque By = x sous P,,

u(t,z) = B {exp ( - /0 t k(BT)dT)f (Bt>}

ce qui est la formule de Feynman-Kac (4.26).
|

Remarque 4.2.2. Dans le cas ou on a une EDP avec des coefficients non constants, ['impor-
tance de la méthode probabiliste est bien apparue car 'application de la méthode des différences
finies sur cette EDP est difficile a cause des coefficients non constant, c’est-a-dire, dépendent de
la variable de l’espace, cette dépendance rend la solution non stable parfois. La méthode proba-
biliste nous donne une bonne représentation de la solution grice a la formule de Feynman-Kac.
Plus on augmente le nombre des trajectoires dans la méthode de Monte-Carlo on obtient une
solution plus précise avec une erreur faible.
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4.3 Discrétisation de probléme

On a vu dans ce chapitre que 'interprétation des EDPs conduit & écrire la solution sous
forme E[f(X;)] avec la quantité f(X;(w)) dépend de temps ¢ et du hasard w. Le processus X est
une diffusion, il n’est alors pas possible de calculer exactement E[f(X;)] et I'on a naturellement
recours a la simulation numérique. Tout d’abord une discrétisation temporelle de la dynamique
permet de générer une variable aléatoire X; dont la loi est proche de celle de X;. On applique
ensuite la méthode de Monte Carlo : la moyenne arithmétique de N copies indépendantes de
la variable f(X,) converge vers E[f(X,)].

4.3.1 Le schéma d’Euler

Une des simples méthodes de discrétisation de processus de diffusion est I’approximation
d’Euler, appelée Euler-Maruyama. On considére un processus de diffusion X = (X;), to <t <
T') satisfait I'EDS :

dX; = b(t, Xy)dt +o(t, Xy)dBy, to <t <T. (4.27)

La méthode d’Euler qui représente la premiére étape dans la simulation, permet de donner
une variable aléatoire X qui est proche en loi de X, ot X = (X7) est le processus de Markov
solution de I’équation différentielle stochastique (4.27).

Soit T un temps fini, on peut sans perte de généralité prendre 7' = 1; on cherche a estimer la
loi de X§ = X¥ qui en général n’est pas connue. Pour ce faire on approche X* par son schéma
d’Euler dordre n > 1, disons X, défini de la facon suivante : on considére la subdivision
réguliere v, = {0 =t < ... < t!_, <t = 1} de lintervalle [0, 1] i.e. t} = k/n et on pose
X§ =X, et pour tout k= {0,1,...,n—1} et t € [t}, ], ,].

~n,x N,z

X1 =X b(X) (1) + o(K) (B — By)

Le schéma d’uler est simulable. C’est une petite perturbation X* que 'on peut expliquer de la
facons suivante :

— On part a la date 0 de la valeur vraie x.

— Sur l'intervalle [0,t}], on gele les coefficients de L’EDS en leurs valeurs exactes b(x) et
o(x) a gauche de cet intervalle et on calcule la valeur Yg}x en t7 de la solution de cette
nouvelle petite EDS.

— Sur lintervalle [t7, 5], on géle les coefficients de L’EDS en leurs valeurs exactes b(yzfx)

et 0'(7?;21) a gauche de cet intervalle et on calcule la valeur Y%{I en t5 de la solution de
cette nouvelle petite EDS.
— FEt ainsi de suite.....
De plus, on a les variables aléatoires Bt2?+1 — Byp sont mutuellement indépendantes et de méme
loi gaussienne centrée de variance ¢} — t};

4.3.2 La méthode de Monte-carlo

On voit que les EDPs peuvent étre interprétés a 1’aide de processus de Markov bien choisis :
on interpréte u a 'aide du générateur infinitésimal du semi-groupe de transition d’un processus
de Markov (X}, ¢t > 0). Les motivations de cette démarche peuvent étre d’ordre théorique et/ou
numérique. En effet, en particulier lorsque (X;, ¢t > 0) est solution d’une équation différentielle
stochastique, le calcul stochastique permet parfois d’obtenir des résultats d’existence, d’ unicité
ou de régularité de la solution de 'EDP.
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D’autre part, dés que I'on peut écrire la solution de 'EDP sous la forme d’une espérance du
type u(t) = EF(X) avec F' fonctionnelle sur I'espace des trajectoires de X entre 0 et ¢, on peut
chercher & développer une méthode de Monte-Carlo pour approcher u(¢) méme si on ne sait pas
simuler des trajectoires exactes de X : il suffit de construire un processus proche (en loi) de X,
comme on a vu dans le paragraphe précédent (schéma d’uler), en simulant un grand nombre
de trajectoires entre 0 et t, évaluer la fonctionnelle F' le long de chaque trajectoire simulée et
enfin moyenner toutes les valeurs obtenues.

Considérons un exemple élémentaire donnée par 1’équation de la chaleur suuivante :

ou
E(t,a:) =vAu(t,z), V(t,x) €)0,T] x RY, (4.28)
avec la condition initiale u(0,.) = wug(.) est une fonction mesurable bornée. Le Paramétre
v est strictement positif qui s’apppele "paramétre de viscosité" en mécanique des fluides ou
"volatilité" en finance.
D’aprés ce qui précéde, on a la fonction :

Y(t,z) €]0,T] x R, u(t, z) = Bug(z + V20t B,)

ot (B;) est un mouvement Brownien standard & valeur dans RY, satisfait (4.28) ainsi que
Ilfir% u(t, r) = up(z) en tout point de continuté de ug. Par application de la loi des grand nombres,
—

on peut donc approcher u(t, x) par :
LN
N Z uo(z + V2utg;(w)),
i=1

ot les {g;(w)} forment une famille de variables alétoires gaussiennes indépendantes, a valeurs
dans RY, centrées et de matrice de covariance Idga. Cet algorithme est tré simple a mettre en
ceuvre : on sait efectuer des tirages gaussiens indépendants a 1’aide d’appels a un générateur de
nombres pseudo-aléatoires uniformément répartis. La vitesse de convergence est décrite par des
théorémes limites tels que le théoréeme de limite centrale, la loi du logarithme itéré, I'inégalité
de Berry-Essen : la convergence est d’ordre 1/N, elle est donc lente. Toutefois, le cott de
I’algorithme croit seulement linéairement avec la dimension d de 1’espace puisq’on simule Nd
trajectoires d’'un mouvement Brownien unidimensionnel standard, et ce coiit est indépendant
du parameétre v.

Typiquement, les méthodes de Monte-carlo pour des équations aux dérivées partielles el-
liptiques ou paraboliques peuvent permettre de traiter des problémes extrémes, en trés grande
dimension ou avec de trés faibles viscosités, lorsqu’il serait difficile, ou extrémement cotiteux,
d’utiliser des algorithmes classiques.

A T’aide de schéma d’Euler on peut écrire :

N

ult, ) ~ 5 3 wo(X ().

=1

4.4 Application

On applique dans cette section quelques formules et méthodes citées dans les sections précé-
dentes. Cette application repose sur la simulation numérique. Pour commencer, nous abordons
la simulation des trajectoires de mouvement Brownien qui est la base des autres simulations
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stochastiques de notre travail. Il faut discrétisé le probléme (3.16), cette discrétisation se faisant
au niveau des variables, par exemple sur la variable de temps pour le mouvement Brownien.

Aprés la simulation du mouvement Brownien, on passe a l'illustration numérique du pro-
bléme par la méthode probabiliste qui est notre point essentiel.

4.4.1 Discrétisation du mouvement Brownien

Le mouvement Brownien standard est une variable aléatoire B(t) qui dépend continument
de temps (¢t € [0,T]) et satisfait les quartes conditions connues (Chapl).

Pour la computation proposée, il est utile de considérer le mouvement Brownien discrétisé,
ou B(t) est spécifié aux valeurs discrétes de ¢; ainsi nous donnons At = %, pour un certain
entier positive N et soit B; une notation de B(¢;) avec t; = jAL.

La premiére condition est By = 0 avec une probabilité 1, la deuxiéme et la troisiéme sont
données par :

IngZIIgjfl +-Z&Igj,‘j:: 1,2,.“,PV

ot AB; est une variable aléatoire indépendante de vV AtAN(0, 1).
Le programme (PROG1) en MATLAB nous donne la simulation d’une trajectoire du Mou-
vement Brownien standard sur 'intervalle [0,0.1] avec N = 503. Le résultat de la simulation

est illustré dans la Figure 4.1 qui représente 503 points (¢;, B;) en les joignant par interpolation
linéaire :

PROG1 : Simulation du MB

SRk sk sk koo sk kR sk kR sk sk kot sk skok sk kR skt kosk sk skokoskoskok skokokoskoskoskokoskoskokoskokokoskoskoskokoskoskokoskokokoskoskokokoskokokoskoskokokoskoroskesk

clear

cle

tic

xf =3;

Nombre de points en espace
M = 150;

dx =z f/M;

x = linspace(0, z f, M);

T =0.1;

respect de la condition de stabilité CFL
dt = ((dx* x 0.5)/1) — 1le — 6;
t=0:dt:T;

Nombre de points en temps

N = length(t);

Simulation du MB :

fori=1:N
dB(1,i) = 0;
end

dB = sqrt(dt) x randn(N, N);
B = cumsum(dB, 2);

3Kk ok ok ok sk ok sk ok skok sk ok ok ok sk sk sk ok sk okok ok ok ok sk sk sk sk ok skokoskok skook sk sk sk ok sk okokok ok ok sk sk sk sk ok skokokokokook sk sk sk sk skokokokokokoskoskoskskkok
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Simulation d'une trajectoire d'un mouvement brownien
1 ﬁ T T T T T T T T T

14t » P.'ﬁ i
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FIGURE 4.1 — Simulation d’une trajectoire d’'un MB

4.4.2 Illustration numérique du probléme par la méthode probabiliste

On passe maintenant a 'application de la méthode probabiliste sur le méme probléme (3.16),
donc on s’intéresse a 'interprétation probabiliste de la solution de ’équation de la chaleur 1D
(3.16), pour t € [0,T]. Ce probléme est traité dans le chapitre précédent, et par 'application
de la formule de Feynman-Kac on peut écrire la solution sous forme :

u(z,t) = E*[f(X)], (4.29)

ou le processus stochastique sous-jacent (X;) est la solution de :

t
X, =z +/ V2dB,, 0<t<T. (4.30)
0

La solution numérique est obtenue par la simulation de Monte-Carlo ; ’application de schéma
d’Euler donne une solution approximée de 'équation (3.16). On simule N trajectoires de cette
solution, et par la fonction de condition initiale on calcule les valeurs f(X;). En moyennant ces
valeurs on trouve :

u(z,t) ~ Z sin(mXF). (4.31)
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Le programme suivant donne la solution approximée par la méthode probabiliste, ou le
processus (XF) est discrétisé avec le méme pas de temps utilisé dans la premiére méthode (dif-
férences finies abordée dans le 3 éme chapitre), c.-a-d. on prend N = 503 et donc At =T/N =
1/503.

KoKk ok ok ok sk ok sk ok ok kR ok ok ok sk sk sk ok sk okokokokook sk ok sk sk sk ok skokok ok ok sk sk sk sk sk kokokokook skook sk sk sk sk skokoskokook sk sk sk sk skokoskokokokoskosk sk sk skoskokokokoskokk

clear

cle

tic

xf =3;

(Nombre de points en espace)
M = 150;

dx =xf/M;

x = linspace(0, z f, M);

T =0.1;

(respect de la condition de stabilité CFL)
dt = ((dz* % 0.5)/1) — 1le — 6;
t=0:dt:T;

(Nombre de points en temps)

N = length(t);

(Simulation du MB :)

fori=1: N
dB(1,i) = 0;
end

dB = sqrt(dt) * randn(N, N);

B = cumsum(dB, 2);

for k = 1: length(z)

(Position initiale)

zzero = z(k);

fore=1:N

forj=1: N

(Condition initiale appliquee au processus correspondant a I’'EDP)
fx(i,4) = sin(pi x (xzero + sqrt(2) x B(i, j)));

end

end

(Monte Carlo pour le calcul de I'esperance de f(X))
u(k,:) = mean(fx);

end

figure, mesh(t,x,u)

xlabel(’t")

ylabel(’x")

zlabel("u(x,t)")

title("Solution u obtenue avec u = E(f(Xy))’);

toc
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L’illustration graphique de la solution (4.31) est donnée par la Figure 4.2

Solution u obtenue avec u-Eiﬂx‘J]

et}

FIGURE 4.2 — Solution approximée par la méthode probabiliste.

La Figure 4.3 illustre la solution probabiliste et la solution exacte au long de ’axe de temps
et pour un point d’espace fixé x = 1.5, on peut voir que la solution probabiliste approche de la
solution exacte avec des perturbations.

03 u exacte et approchée pour x=1.5

u exacte

—-—-u approche par Monte Carlo
-0.4 - S
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FIGURE 4.3 — Solution exacte et probabiliste de 'EDP (3.16) pour z = 1.5
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La Figure 4.4 illustre le vecteur e(x,t) (Erreur) pour une valeur de z fixé comme dans la
premiére méthode mentionnée dans le chapitre précédent (méthode des différences finies) pour
xr=1.5.

Erreur en u pour x=1.5
0.03 T T T T T T T T T
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FIGURE 4.4 — L’erreur de la méthode probabiliste pour x = 1.5

On remarque visuellement que l'erreur est plus grand que celle de la premiére méthode
mentionnée dans le chapitre précédent (la méthode des différences finies). Ce qui signifie que
la solution approximée par méthode des différences finies est meilleure que celle de la méthode
probabiliste.

Interprétation des résultats :
Malgré que l'approximation de la solution par la méthode des différences finies soit meilleure
que celle de la méthode probabiliste, on peut dire que la méthode probabiliste donne une ap-
proximation acceptable de la solution.

Puisque la méthode est basée sur la simulation de Monte-Carlo, la convergence de la mé-
thode est lente, et I'approximation sera faible de celles des méthodes déterministes.

L’utilisation de cette méthode est avantagée dans le cas de résolution des EDPs ot la réso-
lution par les méthodes déterministes implique une résolution des systémes linéaires a grandes
dimensions.



Conclusion

Dans ce mémoire, on a présenté les équations différentielles stoquastiques qui sont des EDOs
pertubées par un terme aléatoire, ot on a démontré le théoréme fondamental d’existence et
d’unicité. Ensuite, on a parlé des équations aux dérivées partielles du second ordre, et des mé-
thodes numeériques pour les résoudre (la méthode des différences finies et la méthode d’Euler).
On a terminé ce travail par une interprétation probabiliste des EDPs a I'aide d’'une méthode
de Monte-Carlo.

L’approche probabiliste sert a étudier le lien mathématique profond entre certaines équa-
tions aux dérivées partielles du second ordre et les EDS. On a illustré ce lien par la formule de
dynkin, le probléme de Dirichlet, ’équation de la chaleur et la formule de Feyman-Kac.

L’avantage de cette approche est qu’elle permet d’avoir accées rapidement & une expression
de la solution des EDPs et éviter les complications des méthodes numériques utilisées pour la
résolution des EDPs.

Pour bien présenter 1'utilité de la méthode probabiliste on a fait une application sur un
exemple d’EDP parabolique que nous savons résoudre analytiquement et par la méthode des
différences finies. La comparaison faite entre les solutions approximatives de chaque méthode
et la solution exacte montre qu’on peut adopter la méthode probabiliste comme une méthode
de résolution, mais les avantages de cette méthode apparaissent dans les différents cas ou on
veut résoudre un probléme en dimension élevée (par exemple supérieure a 4). Les méthodes
classiques conduisent a l’obtention de systémes linéaires de taille qui deviennent impraticable,
et la méthode probabiliste est souvent utilisée.
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