
N° Attribué par la bibliothèque

Année univ.: 2020/2021

République Algérienne Démocratique et Populaire

Ministère de l'enseignement supérieure et de la recherche scientifique

Produit de deux Variétés Riemannienne

Mémoire présenté en vue de l'obtention du diplôme de

Master Académique

Université Dr Tahar Moulay - Saïda

Discipline : MATHEMATIQUES

Spécialité : Analyse Mathématique

par

Bentadj Belmokhtar 1

Sous la direction de

Mr B. Saadli

Soutenu le 12/09/2021 devant le jury composé de

Mme F.Z Mostfai Université Dr Tahar Moulay - Saïda Président

Mr B. Saadli Université Dr Tahar Moulay - Saïda Encadreur
Mr H. Dida Université Dr Tahar Moulay - Saïda Examinateur
Mr F. Hathout Université Dr Tahar Moulay - Saïda Examinateur

1. e-mail : mokhtarbentadj@gmail.com



2

Remerciements

Je tiens à remercier mon Dieu Allah et toutes les personnes qui ont contribué au succès
de mon mémoire et mon période de étude et mon encadreur Dr Saadli Benjdide et Mr
Khater Mammar qui résolu mon pb.
et toutes les Profs de Université Saida
et les membre de jury Dr F.Z.Mostfai et Dr H.Dida et Dr Z.Hathout.
Je remercie mes très chers parents maman "Allah yerhamha " et mon père et mes soeurs
et mes familles et mes amis
Merci



3

DÉDICACE

A mon père et ma mère

A mes frères et mes seours

A toutes ma famille

A tous mes amis proche et collègues

A chacun des soutiens moraux tout au long d'un

parcours académique

Je dédie ce modeste travail



4



Table des matières

Introduction 7

1 Rappel et dé�nition 9
1.1 Notion d'espace topologique . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Espace topologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Espace Séparé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Di�érentielle D'une application sur un espace vectoriel normé . . . 10
1.1.4 Variété Di�érentiable . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.5 Théorème d'inversion locale . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Espace tangent et �bré tangent . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Espace tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Fibré tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Champ de vecteur . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Introduction à La géométrie Riemannienne 17
2.1 Notion de Tenseur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Métrique Riemannienne sur une variété . . . . . . . . . . . . . . . . . . . . 17
2.3 Connexion Linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Tenseur de Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Connexion Levi-Cevita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Courbure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Tenseur de Courbure. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Courbure Sectionnelle . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.3 Courbure de Ricci . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Opérateur sur une Variété Riemannienne . . . . . . . . . . . . . . . . . . . 28
2.7.1 Opérateur gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.2 Divergence d'un champ de vecteurs . . . . . . . . . . . . . . . . . . 29
2.7.3 Hessienne d'une fonction . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.4 Opérateur Laplacien . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.5 Formule de Bochner . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 variété Riemannienne produit tordus 33
3.1 Variété Produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Connexion linéaire produit . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Tenseur de Torsion produit . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Tenseur de courbure produit . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Métrique produit (diagonal) . . . . . . . . . . . . . . . . . . . . . . 35
3.1.5 Opérateur Laplacien produit . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Produit Tordu de Variété Riemannienne . . . . . . . . . . . . . . . . . . . 39



6 TABLE DES MATIÈRES

3.2.1 Connexion de Levi-Civita de la Variété Produit Tordu . . . . . . . 39
3.2.2 Tenseur de Courbure du Produit Tordu . . . . . . . . . . . . . . . . 41
3.2.3 Opérateur Laplacien dans le Produit Tordu . . . . . . . . . . . . . 45

Conclusion 47

Bibliographie 49



Introduction

En mathématiques, il y a plusieurs branches parmi les quelles a géométrie, cette der-
nière étudie les propriétés et les relations des formes et des �gures dans un espace. La
géométrie se divise en deux types, la géométrie analytique et la géométrie di�érentielle :

1. La géométrie analytique : Partie de la géométrie ayant recours au calcul algébrique
et analytique. Elle facilité les Étude des propriétés géométriques des courbes et
des surfaces et de leurs présentations graphiques ou la recherche de "lieux géomé-
triques".

2. La géométrie di�érentielle : Est une continuité du calcul in�nitésimal 2, elle permet
d'étudier

grâce aux techniques du calcul di�érentiel, une nouvelle famille d'espaces topologiques ap-
pelées "variété di�érentiable", permettant la rénovation de la vieille géométrie des courbes
et des surfaces de R3 la Gauss . Pendant de nombreux siècles, le cadre naturel de la géo-
métrie est la géométrie euclidienne du plan ou de l'espace. Les infructueuses tentatives
de démonstration du postulat des parallèles ont aidé les géomètres à imaginer les moyens
de dépasser ce cadre. Ainsi Lobatchevski en 1829 et Bolyai en 1832 introduisent les pre-
miers exemples de géométrie non euclidienne. Les espaces à géométrie hyperbolique qu'ils
construisent sont maintenant vus comme des cas particuliers de variétés riemanniennes "à
courbure négative. Quelques années auparavant, Gauss étudie la géométrie di�érentielle
des surfaces de l'espace euclidien. Il introduit pour les décrire une quantité fondamentale,
la courbure de Gauss. Il réalise que cette courbure peut être calculée sans faire intervenir
l'espace ambiant, directement à partir d'informations disponibles sur la surface, théorème
qu'il quali�e de "remarquable" (théorème egregium) 3. Gauss passe lui-même tout près de
la découverte de la géométrie hyperbolique Le premier pas de la géométrie riemannienne
proprement dite remonte aux travaux de Bernhard Riemann au dix-neuvième siècle et en
particulier lors d'une conférence inaugurale intitulée "Über die Hypothesen, welche der
Géométrie zu Grunde liegen1" (soit en français : Sur les hypothèses sous-jacentes à la
géométrie). C'est une généralisation directe de la géométrie di�érentielle des surfaces de
Gauss en n dimensions. Cette nouvelle démarche a largement étendu l'idée de géométrie
non euclidienne, même si son cadre conceptuel a mis plusieurs décennies à se mettre en
place

2. calcul in�nitésimal c à d calcul di�érentiel et calcul intégral
3. En mathématiques, et plus précisément en géométrie, le theorema egregium (� théorème remarquable

� en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des
surfaces. Il énonce que celle-ci peut être entièrement déterminée à partir de la métrique locale de la
surface1, c'est-à-dire qu'elle ne dépend pas de la manière dont la surface peut être plongée dans l'espace
tridimensionnel.
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Chapitre 1

Rappel et dé�nition

1.1 Notion d'espace topologique

1.1.1 Espace topologie

Dé�nition 1.1.1. Soit X un ensemble non vide une famille T de partie de X est une
topologie si et seulement si ;

1) X, ∅ ∈ T
2) ∀A,B ∈ T,A ∩B ∈ T
3) soit (Ai)i∈I une famille quelque de X,alors ∪i∈IAi ∈ T

(i) les élément de T appelé les ouverts de T
(ii) le couple (X,T ) est appelé un espace topologique sur X.

Exemple 1.1.1. Soit X = {1, 2, 3, 4} T = {∅, X, 1, 3, 4, 1, 2, 4} est une espace topologie
sur X puis qu'il véri�er les trois axiomes précédent.

Dé�nition 1.1.2. Un espace topologie X est dit espace T1 1 si et seulement si :∀a, b ∈ X
avec a 6= b alors ∃va ∈ V (a), vb ∈ V (b) V (a) design l'ensemble des voisinages de a V (b)
design l'ensemble des voisinages de b tel que b /∈ va et a /∈ vb .

Remarque 1.1.1. va, vb n'est pas nécessairement disjoint .

Dé�nition 1.1.3. Un espace topologique X est un espace T1 si et seulement si les {x} ⊂ X
sont des fermés.

Preuve :
Supposons que X est un espace T1, il su�t de montre que {x} ⊂ X est fermé.
Soit y ∈ {x}c on suppose que X plus qu'on point alors on peut choisir un ouvert Vy ⊂ X
qui contient a y mais pas x⇒ {x}c =

⋃
Vy est un ouvert . donc ⇒ {x} est fermé

⇐) on suppose que ∀{x} est fermé, et on montre que X est un espace T1 .
∀x, y ∈ X avec x 6= y ⇒ ∃ un ouvertU tell que x /∈ U ⊂ {x}c,(il est le mémé de y). Donc
X est un espace T1.

1. Un espace topologique E est T1 si pour tout couple (x, y) d'éléments de E distincts, il existe un
ouvert contenant x et pas y
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1.1.2 Espace Séparé

Dé�nition 1.1.4. Un espace topologique X est un espace sépare ou Hausdor� 2 ou espace
T2 si et seulement si : ∀a, b ∈ X et a 6= b ∃va ∈ V (a) et vb ∈ V (b) tell que va ∩ vb = ∅ .

Exemple 1.1.2. Tout espace métrique est un espace séparé.

Preuve :

Soit (X, d) un espace métrique. soit x, y ∈ X , x 6= y on pose 0 <
d(x, y)

2
= r et

U = B(x, r), V = B(y, r). supposons que z ∈ U∩V . alors on a : d(x, y) 6 d(x, z)+d(z, y) <
2r = d(x, y) contradiction. Donc U ∩ V = ∅ ⇒ X est Séparé .

Remarque 1.1.2. Un espace Séparé est toujours espace T1 mais la réciproque faux .

Exemple 1.1.3. La topologie grossière Tg = {∅, X} est un espace T1 En e�et ∀x, y ∈ X
avec x 6= y et ∀B(x, r) = B(y, r) = X. Donc B(x, r)∩B(y, r) = ∅ ⇒ Tg n'est pas Séparé .

1.1.3 Di�érentielle D'une application sur un espace vectoriel normé

Dé�nition 1.1.5. Soit E un espace vectoriel sur un corps commutatif K(R ou C)
on appelle norme sur E tout application ‖.‖ :E −→ R+ véri�er les condition suivant :

(1) ∀x ∈ E, ‖u‖ ≥ 0 et ‖u‖ = 0⇔ u = 0
(2) ∀(λ, x) ∈ K× E, ‖λu‖ = |λ| ‖u‖
(3) ∀(x, y) ∈ E × E, ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Un espace vectoriel munie d'une norme est appelé espace vectoriel normé.

Exemple 1.1.4. Les trois normes usuelles sur K(R ou C)
Soit n ∈ N∗ considère ∀x = (x1, x2, ....xn) ∈ K les réel ‖x1‖, ‖x2‖, ‖x∞‖ dé�nie par :∑n

k=1 |xk| , ‖x2‖ = (
∑n

k=1 |x2k|)
1
2 , ‖x∞‖ = max1≤k≤n |xk|

Dé�nition 1.1.6. Soient E,F deux espace vectoriel normés U un ouvert de E et f :u −→ F
une application, on dit que f est di�érentiable en x0 ∈ U s'il existe une application linéaire
g de E dans F telle que :

lim
x→x0

‖f(x)− f(x0)− g(x− x0)‖F
‖x− x0‖E

= 0

ou f(x0 +h)− f(x0)− g(h) = o(‖h‖)ε(h)avec lim‖h‖−→0 ε(h) = 0et(h = x−x0) On dit que
g est la di�érentielle de f en x0 et est noté par Dx0f

� on dit que f est di�érentiable sur U s'elle est di�érentiable en tout point x en U .
� f est de classe C1 si d'application di�érentielle est continue.
� si f admet k-di�érentielle continues on dit que f est de classe Ck(k > 1).

2. un espace séparé, dit aussi espace de Hausdor�, est un espace topologique dans lequel deux points
distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome
T2 au sein des axiomes de séparation.
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Exemple 1.1.5. Toute application constante est di�érentiable en tout point a de U et
Df = 0.

Propriété 1.1.1. si f est di�érentiable au point x0 alors l'application linéaire continue g
de la dé�nition est unique.

Preuve :
Soient g1 et g2 deux application linéaire continue de E dans F tell que ∀h ∈ E avec
x0 +h ∈ U , on ait ; f(x0 +h) = f(x0) + g1(h) + o(‖h‖)ε1(h) = f(x0) + g2(h) + o(‖h‖)ε2(h)
avec lim ε1(h) = 0 et lim ε2(h) = 0
alors on a ‖(g1 − g2)(h)‖ = o(‖h‖ε(h) tell que ε = ε1 − ε2.
puis que lim ε1(h) = 0 et lim ε2(h) = 0,il en est de même de ε
Donc ∀r > 0, il excite α > 0 tells que pour tout h ∈ E, ‖h‖ ≤ α⇒ ‖ε(h)‖ ≤ r
on a alors
‖h‖ ≤ α, ‖(g1 − g2)(h)‖ = o(‖h‖)ε(h) ≤ r ‖h‖.
Il síen suite que ‖(g1 − g2)‖ ≤ r∀r > 0.
Donc ‖(g1 − g2)‖ = 0 , et obtient g1 = g2.

Propriété 1.1.2. Soient E F,G des espace vectoriel normés U un ouvert de E et V un
ouvert de F, f : U → V ,g : V → G a ∈ U, f(a) = b ∈ V . si f est di�érentiable en a et g
di�érentiable en b alors g ◦ f est di�érentiable en a et

D(g ◦ f)(a) = D(g(f(a)) ◦D(f(a))

Preuve :
On a (g ◦ f)(a + h) − (g ◦ f)(a) = g(f(a + h)) − g(f(a)). puis que f est di�érentiable au
point a on a alors {

f(a+ h)− f(a) = Df(a)(h) + ε(h) ‖h‖
limh→0 ε(h) = 0

posons Df(a)(h)+ε(h) ‖h‖ = l donc g(f(a+h)) = g(f(a)+ l). puis que g est di�érentiable
au point f(a) on a alors{

g(f(a) + l) = g(f(a)) +Dg(f(a))(l) + ε′(l) ‖l‖
liml→0 ε

′(l) = 0

1.1.4 Variété Di�érentiable

Soit M une espace topologique.

Dé�nition 1.1.7. Une carte local (U, φ) de dimension n pour M consiste en un ouvert
UdeM appelé domaine de la carte,
et un homéomorphisme 3φ : U −→ φ(U) ⊂ Rn appelé application de coordonnées.

Dé�nition 1.1.8. Un atlas di�érentiable A de dimension n pour M est une collection
A = {(Ui, φi)|i ∈ I} des cartes locales de dimension n pour M tell que :

- ∪i∈AUi = M .

- si Ui ∩ Uj 6= ∅ pour i, j ∈ I, alors l'application de changement de carte
φi ◦ φ−1j ;φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj) est di�érentiable.

3. application φ : U −→ φ(U)est un homéomorphisme si φ est bijective, et si φ et φ−1sont continue
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Dé�nition 1.1.9. Une variété topologique est un espace M muni d'une topologie pour
laquelle il est séparé 4, qui est homéomorphe a Rn,i.e pour tout x ∈M , il existe un homo-
morphisme.
φ : U −→ φ(U) ⊂ Rn, ou U est un voisinage ouvert de x dans M et φ(U) est un ouvert
de Rn.

Exemple 1.1.6. L'espace euclidien Rn est une variété topologique de dimension n.

Dé�nition 1.1.10. Deux carte (U1, φ1) et(U2, φ2) d'une variété topologique M , d'ordre K
compatible si U1 ∩ U2 6= ∅ ou si l'application de changement de carte

φ2 ◦ φ−11 ;φ1(U1 ∩ U2) −→ φ2(U1 ∩ U2)

est Ck di�éomorphisme 5.

Exemple 1.1.7. La sphère S2 ⊂ R3, est une variété de dimension 2 : on peut construire
un atlas en utilisant la projection stéréographique. Les points N(0, 0, 1) et S = (0, 0,−1)
désignant respectivement les pôles nord et sud .

Dé�nition 1.1.11. Un atlas di�érentiable A pour une variété di�érentiable M est dit
maximal si il n'est pas inclus strictement dans un autre atlas di�érentiable pour M .

Dé�nition 1.1.12. Une variété di�érentiable de dimension n est un espace topologique
M muni d'un atlas di�érentiable maximal de dimension n.

Exemple 1.1.8. L'espace Rn est une variété di�érentiable de dimension n et de classe
C∞.

Exemple 1.1.9. La sphère S2 est une variété di�érentiable de dimension 2.

4. Une espace topologique M est dit séparé si deux points distincts de M possèdent des voisinages
disjoint

5. Un di�éomorphismes de classe Ck est une application bijective de classe Ck dont réciproque est
aussi de classe Ck
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1.1.5 Théorème d'inversion locale

Dé�nition 1.1.13. Soit f : U → V une application ,où U est un ouvert de E et V un
ouvert de F et k ∈ N∗U{∞} On dit que f est un Ck-di�éomorphisme de U sur V si
seulement si :
• f est bijective.
• f−1 et f sont de classe Ck.On dit alors que U et V sont di�éomorphes.

Propriété 1.1.3. Si f : U → F est un Ck-di�éomorphisme, alors l'image de tout ouvert
de U est un ouvert de V , et l'image réciproque de tout ouvert de V est un ouvert de U

Dé�nition 1.1.14. Soit f : U → F et x0 ∈ U . f est un Ck-di�éomorphisme local en x0
si seulement si il existe un voisinage Ux0 de x0 dans U , un voisinage Vf(x0) dans F tel
que f : Ux0 → Vf(x0) soit un C

k di�éomorphisme.

Dé�nition 1.1.15. f : U → F est un Ck di�éomorphisme local sur U si seulement si
c'est un Ck di�éomorphisme local en tout point de U .

Théorème 1.1.1. [4] (d'inversion local 1)
Soit E et F deux espace Banach 6 .Si f : U → F est Ck en x0 et dx0f ∈ Iso(E;F ) alors
f est un Ck di�éomorphisme en x0.

Théorème 1.1.2. [4] (d'inversion local 2)
Soit E et F deux espace Banach .Si f : U → F est Ck sur U et dx0f ∈ Iso(E;F ) pour
tout x ∈ U . Alors f est un Ck di�éomorphisme local sur U .

Théorème de Rang

Dé�nition 1.1.16. (Rang d'une application)
Soient (E, ||.||E) et (F, ||.||F ) deux espace de Banach et f : U ⊂ E → F une application
de classe C1 Si Im(Dxf) = Dxf(h);h ∈ E est une espace vectoriel de dimension �ni.on
dit alors que f est de rang �ni en x et on note

rangx(f) = dim(Im(Dxf))

Remarque 1.1.3. Soient (E, ||.||E) et (F, ||.||F ) deux espace de Banach et f : U ⊂ E → F
une application de classe C1.Si E est de dimension �ni ,alors

dim(E) = dim(ker(Dxf)) + dim(Im(Dxf))

d'où
rengx(f) = dim(Im(Dxf)) = dim(E)− dim(ker(Dxf))

Dé�nition 1.1.17. (Immersion)
Soient (E, ||.||E) et (F, ||.||F ) deux espace de Banach et f : U ⊂ E → F une application de
classe C1.On dit que f est une immersion en x ∈ U si Dxf : E → F est une application
injective (i.e ker(Dxf) = {0}.
f est dit immersion sur U si elle est immersion en tout point x ∈ U .

6. Un espace vectoriel normé est un espace de Banach si et seulement si, dans cet espace, toute série
absolument convergente est convergente
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Dé�nition 1.1.18. (submersion)
Soient (E, ||.||E) et (F, ||.||F ) deux espace de Banach et f : U ⊂ E → F une application de
classe C1.On dit que f est une submersion en x ∈ U si Dxf : E → F est une application
surjective (i.e Im(Dxf) = F .
f est dit submersion sur U si elle est submersion en tout point x ∈ U .

Remarque 1.1.4. Si E et F sont de dimension �nis alors :

1. f est une immersion en x si et seulement si rangx(f) = dim(E)

2. f est une submersion en x si et seulement si rangx(f) = dim(F )

1.2 Espace tangent et �bré tangent

Soit M une variété di�érentielle de dimension n. On note C∞ l'ensemble des fonctions
réelles de classe C∞ sur M .

Dé�nition 1.2.1. L'ensemble C∞(M) est un espace vectoriel sur R est une algèbre as-
sociative et commutative avec le produit usuel (fg)(x) = f(x)g(x), ou f, g ∈ C∞(M) et
x ∈M .

1.2.1 Espace tangent

Dé�nition 1.2.2. Un vecteur tangent en un point p ∈M est l'application

v : C∞(M) −→ R

telle que pour tout a, b ∈ R, pour tout f, g ∈ C∞(M),on a

1. vest R-Linéaire : v(af + bg) = av(f) + bv(g).

2. v satisfait la règle de Leibniz : v(f.g)(p) = v(f)g(p) + v(g)f(p).

L'ensemble de vecteurs tangents au point p de M est noté par TpM et on l'appelle l'espace
tangent en p ∈M c'est un espace vectoriel de dimension n (dimM).
Il existe une autre notion de l'espace tangent .

Dé�nition 1.2.3. On dé�nit l'espace tangent à M en un de ses points comme l'ensemble
des vecteurs tangents à une courbe tracée dans M : un vecteur v de Rn est dit tangent à
M en un point x de M s'il existe une courbe paramétrée de classe C1.

Exemple 1.2.1. L'espace tangent en tout point p d'un ouvert U de Rn est TpU = Rn.

Propriété 1.2.1. L'espace tangent TpM est un espace vectoriel réel de dimension n. Si
(U, φ) est une carte local en p avec coordonnées local (x1, ...xn).

1.2.2 Fibré tangent

Dé�nition 1.2.4. On appelle �bré tangent a M ,qu'on l'on désigne par TM , l'ensemble
de tout les vecteurs tangent de M en ses points, c'est donc la réunion de tout les espaces
tangents TpM en ses divers points :

TM =
⋃
p∈M

TPM =
⋃
p∈M

{(p, v)|p ∈M, v ∈ TpM} .

C'est une famille d'espace vectoriel paramétrisé par M . On peut le munir d'une projection
π : TM −→M dé�nie par π(TxM) = x.
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Exemple 1.2.2. Si M = U est un ouvert de Rn, l'espace tangent a M en chaque point x
s'identi�e canoniquement a Rn, en utilisant l'atlas à un seul élément donné par l'inclusion
de M dans Rn.
Le �bré tangent de U s'identi�er alors à U × Rn.

Exemple 1.2.3. Le �bré tangent au cercle

S1 = {(x, y) ∈ R2, x2 + y2 = 1}

apparait ainsi comme la variété

{(x, y,X, Y ) ∈ R4, x2 + y2 = 1, xX + yY = 0}

il est di�éomorphe au cylindre S1 × Rn.

Propriété 1.2.2. [4] Si M une variété di�érentiable de Rn, de dimension n et de classe
Ck,k > 1, alors son �bré tangent est une variété Rn × Rn de dimension 2n et de classe
Ck−1.

1.2.3 Champ de vecteur

On désigne par TpM l'espace tangent à une variété M en un point p. Les espace tan-
gents TpM ou p parcourt la variété M forment une variété di�érentiable de dimension 2n
(ou n = dimM), noté TM qui se projette canoniquement sur M la projection

π : TM −→M

associé a tout vecteur X son point d'application, c à d un point p ∈M tel que X ∈ TpM de
sort que TpM = π−1(p). les section de cette projection c à d les application di�érentiable.

X : M → TM

p 7→ Xp

tel que π ◦ X = id c à d Xp ∈ TpM s'appellent champ de vecteurs sur M . Ces champs
des vecteurs engendrent canoniquement un espace vectoriel de dimension in�nie qui sera
désigné H(M).

Dé�nition 1.2.5. soit M est une variété di�érentiable.
Le crochet de Lie noté [, ] est dé�nie par [X, Y ] = XY − Y X pour tout X, Y ∈ H(M)
véri�ent les propriété suivants :

1 [, ] est bilinéaire et antisymétrique

2 [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 pour X, Y ∈ H(M).

3 [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X pour X, Y ∈ H(M) et f, g ∈ C∞

4 [X, Y ] = X i ∂Y j

∂xi
− Y i ∂Xj

∂xi
ou X = X i ∂

∂xi
Y = Y j ∂

∂xj
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Dé�nition 1.2.6. Soient V1, V2, ..., Vk et W des espaces vectoriels, soit F une application
de V1 × ... × Vk → W. On dit que l'application F est k-linéaire ou (multilinéaire ?aire) si
elle est linéaire sur chaque variable i.e

F (v1, ..., αvi1 + βvi2 , ..., vk) = αF (v1, ..., vi1 , ..., vk) + βF (v1, .., vi2 , ..., vk)

Pour tout α, β ∈ K et i = 1, ..., k. Soit V un espace vectoriel sur R, l'application ω : V → R
est applée un covecteur, l'ensemble des covecteurs est appelé le dual de V noté V ∗.
On va considérer que 〈ω, v〉 = 〈v, ω〉 = ω(v) ∈ R, v ∈ V, ω ∈ V ∗.

Propriété 1.2.3. Si (v1, ..., vn) est une base de V espace vectoriel de dimension n, alors
(w1, ..., wn) est une base de V ∗ et on a wj(vi) = δij. En particulier, dim V = dim V ∗.

Dé�nition 1.2.7. 1. Un k-tenseur covariant sur V est une application k-linéaire
V k → R tel que V k = V × ...× V︸ ︷︷ ︸

k fois

. On note T k(V ) l'ensemble des tenseurs k-

covariante sur V

2. Un l-tenseur contravariant est une application linéaire sur V ∗l → R. On note
Tl(V ) l'ensemble des tenseurs l-contravariant sur V

3. Un k-tenseur covariant et l-tenseur contravariante est une application (k + l)-
linéaire sur V k×V ∗l → R. un tenseur de type (k, l) est k-covariante et l-contravariante.
On note T kl (V ) l'ensemble des tenseurs de type (k, l).

4. Par convention T 0(V ) = T0(V ) = R.

Dé�nition 1.2.8. Le produit tensoriel de deux tenseurs F ∈ T kl (V ) et G ∈ T pq (V ) est le
tenseur noté F ⊗G ∈ T k+pl+q (V )

F ⊗G(v1, ..., vk, ..., vk+p, w
1, ..., wl, ..., wl+q) =

F (v1, ..., vk, w
1, ..., wl)G(vk+1, ..., vk+p, w

l+1, ..., wl+q).

Lemme 1.2.1. Si (v1, ..., vn) est la base de V et (ω1, ..., ωn) la base duale correspondante
à V (i.e. ωi(vj) = δij), alors le tenseur :

wi1 ⊗ ...⊗ wik ⊗ vi1 ⊗ ...⊗ vil , 1 ≤ jp, iq ≤ n

forme une base de T kl (V ). Par conséquent, dim T kl (V ) = nk+1 Tenseurs sur une variété.
Pour tout p ∈M , dé�nissons l'espace vectoriel

T (s,r)
p M = TpM ⊗ ...⊗ TpM︸ ︷︷ ︸

s fois

⊗ T ∗pM ⊗ ...⊗ T ∗pM︸ ︷︷ ︸
r fois

Un élément T ∈ T
(s,r)
p M est un tenseur de type (s, r) au dessus de p. Dans une base

associée à des coordonnées (xi) au voisinage de p, il s'écrit

T|p = T i1...isj1...jr
(p)

∂

∂xi1
(p)⊗ ...⊗ ∂

∂xis
(p)⊗ dxj1|p ⊗ ...⊗ dx

jr
|p



Chapitre 2

Introduction à La géométrie

Riemannienne

2.1 Notion de Tenseur

2.2 Métrique Riemannienne sur une variété

Dé�nition 2.2.1. Une métrique Riemannienne g sur une variété M est une application,

g : Γ(TM)× Γ(TM)→ C∞(M)

C∞(M) bilinéaire,symétrique,non dégénéré et dé�nie positif .

Remarque 2.2.1. Soit g une métrique Riemannienne sur M pour tout V,W ∈ Γ(TM)
on à :

� g(V,W ) = g(W,V ). (symétrique)
� g(V, V ) = 0⇒ V = 0 (non dégénéré)
� g(V, V ) ≥ 0 (dé�nie positif)

2 g ∈ Γ(TM∗)⊗ Γ(TM∗) si (U, φ) une carte sur M alors

g =
k∑

i,j=1

gijdx
i ⊗ dxj

ou gij sont des fonction di�érentiable sur U appelé composantes de tenseur métrique rela-
tivement a la carte (U, φ).
localement, si V = V i∂i et W = W j∂j on à

g(V,W ) = gijV
iW j

3 pour tout x ∈M on à
gx : TxM × TxM −→ R

est une forme bilinéaire,symétrique non dégénéré et dé�nie positif ou TxM désigne l'espace
tangent en x.

Dé�nition 2.2.2. Une variété riemannienne est un couple (M, g) ou M est une variété
di�érentiable et g une métrique Riemannienne sur le �bré tangent (TM, π,M).
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Exemple 2.2.1. L'espace Rn muni du produit scalaire standard

g0(v, w) =
n∑
i=1

viwi

ou v = (v1, ....vn)x et w = (w1, ...wn)x ∈ TxRnet x ∈ Rn.

Exemple 2.2.2. L'espace Rn muni du produit scalaire standard

g0(v, w) =
n∑
i=1

viwi

ou v = (v1, ....vn)x et w = (w1, ...wn)x ∈ TxRnet x ∈ Rn.
sur M = R3 on pose g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz = dx2 + dy2 + dz2

la matrice associé à g est

gij =

1 0 0
0 1 0
0 0 1


g est bilinéaire car soit V1, V2,W1,W2 ∈ Γ(TM)et f, h ∈ C∞(M)

g(fV1 + hV2,W ) = dx2(fV1 + hV2,W ) + dy2(fV1 + hV2,W ) + dz2(fV1 + hV2,W )

= dx(fV1 + hV2)dx(W ) + dy(fV1 + hV2)dy(W ) + dz(fV1 + hV2)dz(W )

= fdx(V1)dx(W ) + hdx(V2)dx(W ) + fdx(V1)dy(W ) + hdy(V2)dy(W )

+ fdz(V1)dz(W ) + hdz(V2)dz(W )

= fg(V1,W ) + hg(V2,W )

g(V, fW1 + hW2) = dx2(V, fW1 + hW2) + dy2(V, fW1 + hW2) + dz2(V, fW1 + hW2)

= fg(V,W1) + hg(V,W2)

det (gij) = 1 6= 0 non dégénéré
g12 = g21, g13 = g31, g23 = g32 alors g est symétrique
det gij = 1 > 0 dé�nie positif
donc g une métrique Riemannienne.

2.3 Connexion Linéaire

Dé�nition 2.3.1. Une connexion linéaire sur une variété M est une application

∇ : Γ(TM)× Γ(TM)→ Γ(TM)

(X, V ) 7→ ∇XV

véri�ant :

1 ∇X(V +W ) = ∇XV +∇XW
2 ∇X(fV ) = X(f)V + f∇XV
3 ∇X+fY = ∇XV + f∇Y V
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pour tout X, Y, V,W ∈ Γ(TM) et f ∈ C∞(M).

Dé�nition 2.3.2. Soient ∇ une connexion sur une variété M de dimension n et (∂1, ....∂n)
resp(dx1, ...dxn) une base local de section de Γ(TM)respΓ(T ∗M) on dé�nie les coe�cient
de Christo�el par :

Γkij = dxk(∇∂i∂j).

Dé�nition 2.3.3. Une section V ∈ Γ(TM) est dite parallèle par rapport à la connexion
∇ si :

∇XV = 0

pour tout X ∈ Γ(TM).
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2.4 Tenseur de Torsion

Dé�nition 2.4.1. Soient M une variété di�érentiable et ∇ la connexion linéaire sur M le
tenseur de torsion associé à ∇ est une application vectorielle C∞(M)-bilinéaire dé�nie par

Γ(TM)× Γ(TM) −→ Γ(TM)
(x, y) 7−→ T (X, Y ) = ∇XY −∇YX − [X, Y ]

pour tout X, Y ∈ Γ(TM) la connexion ∇ est dite sans torsion si T ≡ 0.

Remarque 2.4.1. on à les propriété suivants :

1. T une champ de tenseur de type (1,2).
2. T (X, Y ) = −T (Y,X) pour tout
3. la connexion ∇ est sans torsion ssi pour tout X, Y ∈ Γ(TM) on à

[X, Y ] = ∇XY −∇YX

4. pour tout x ∈M le tenseur de torsion T induit une application bilinéaire vectoriel
Tx : TxM × TxM → TxM(v, w) 7→ TxM(v, w) = (∇XY )x − (∇YX)x − [X, Y ]x
ou X, Y ∈ Γ(TM),telle que Xx = v,Yx = w indépendamment du choix X, Y .

Théorème 2.4.1. [8] Soit ∇ une connexion linéaire sur M si p ∈M tel que Tp ∼= 0 alors
il existe une carte (u, x1, ...xn) telle que pour tout i, j, k = 1, ...n, on à

Γkij(p) = 0

.

2.5 Connexion Levi-Cevita

Théorème 2.5.1. Soit (M,g) une variété Riemannienne,l'application

∇ : Γ(TM)× Γ(TM) −→ Γ(TM)

dé�nie par la formule de kozul

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z) + Zg(X, Y )

+ g(Z, [X, Y ]) + g(Y, [Z,X])− g(X, [Y, Z])

est une connexion linéaire sur M,appelé connexion de Levi-Cevita.

Preuve :
pour tout X, Y, Z ∈ Γ(TM)etf ∈ C∞′M) on à
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2g(∇fXY, Z) = fXg(Y, Z) + Y g(Z, fX)− Zg(fX, Y ) + g(Z, [fX, Y ])

+ g(Y, [Z, fX])− g(fX, [Y, Z])

= fXg(Y, Z) + Y (f)g(Z,X) + fY (g(Z,X))− Z(f)g(X, Y )

− fZ(g(X, Y ))− Y (f)g(Z,X) + fg(Z, [X, Y ])

+ Z(f)g(Y,X) + fg(Y, [Z,X])− fg(X, [Y, Z])

= fXg(Y, Z) + fY g(Z,X)− fZg(X, Y ) + fg(Z, [X, Y ])

+ fg(Y, [Z,X])− fg(X, [Y, Z])

= 2fg(∇XY, Z)

a et comme g non dégénéré ∇fXY = f∇XY
2.

2g(∇X+WY, Z) = (X +W )g(Y, Z) + yg(Z,X +W )− Zg(X +W,Y )

+ g(Z, [X +W,Y ]) + g(Y, [Z,X +W ])− g(X +W, [Y, Z])

= X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y )) + g(Z, [X, Y ])

+ g(Y, [Z,X])− g(X, [Y, Z]) +Wg(Y, Z) + Y (g(Z,W ))

− Z(g(W,Y )) + g(Z, [W,Y ]) + g(Y, [Z,W ])− g(W, [Y, Z])

= 2g(∇XY, Z) + 2g(∇WY, Z)

= 2g(∇XY +∇WY, Z)

d'ou ∇X+WY = ∇XY +∇WY .
3.

2g(∇XfY, Z) = X(g(fY, Z)) + fY g(Z,X)− Z(g(X, fY )) + g(Z, [X, fY ])

+ g(fY, [Z,X])− g(X, [fY, Z])

= X(f)g(Y, Z) + fXg(Z, Y ) + fY g(Z,X)− Z(f)g(X, Y )

− fZg(X, Y ) +X(f)g(Z, Y ) + fg(Z, [X, Y ]) + fg(Y, [Z,X])

+ Z(f)g(X, Y )− fg(X, [Y, Z])

= 2X(f)g(Y, Z) + fXg(Y, Z) + fY g(Z,X)− fZg(X, Y )

+ fg(Z, [X, Y ]) + fg(Y, [Z,X])− fg(X, [Y, Z])

= 2X(f)g(Y, Z) + 2fg(∇XY, Z)

= 2g(X(f)y + f∇XY, Z)

d'où ∇XfY = X(f)Y + f∇XY
De même manière on obtient,∇X(Y + Z) = ∇Xy +∇XZ.Donc ∇ une connexion linéaire
sur M.

Théorème 2.5.2. (théorème fondamental sur la géométrie Riemannienne)
si (M,g) est une variété Riemannienne,alors la connexion de Levi-Civita est l'unique
connexion linéaire sans torsion et compatible avec g.
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Preuve :

g(∇XY, Z)− g(∇YX,Z) =
1

2
{g(Z, [X, Y ])− g(Z, [Y,X])}

= g(Z, [X, Y ])

d'où la connexion de Levi-Civita est sans torsion.Et ;

g(∇XY, Z)− g(∇YZ, Y ) =
1

2
{Xg(Y, Z) +Xg(Z, Y )}

= Xg(Y, Z)

cela prouve que la connexion de Levi-Civita est compatible avec la métrique g sur M comme
est non dégénéré cette relation détermine complètement la connexion ∇, Ce qui donne
l'unicité.

Propriété 2.5.1. soient (Mm, g) une variété Riemannienne de dimension m et ∇ la

connexion de Levi-Cevita. si (U, φ) est une carte sur M avec les champs de bases (
∂

∂x1
, ...

∂

∂xk
)

associé alors les coe�cient de Christo�el Γkij sont donné par :

Γkij =
1

2

m∑
l=1

ggl{∂gjl
∂xi

+
∂gil

∂xj
− ∂gij

∂xl
}.

gklΓ
k
ij =

1

2
{∂gjl
∂xi

+
∂gil

∂xj
− ∂gij

∂xl
}.

ou gij sont les coordonnée de g relativement à la carte (U, φ).

Preuve :

comme [∂i, ∂j] = 0,pour tout i, j = 1, ...m,ou ∂i =
∂

∂xi
pour tout i = 1, ..m on à

2g(∇∂i∂j, ∂l) = 2
m∑
s=1

g(Γsij∂s, ∂l)

= 2
m∑
s=1

Γsijgsl

= ∂i(g(∂j, ∂l)) + ∂j(g(∂l, ∂i)) + ∂l(g(∂i, ∂j))

donc

m∑
s=1

Γsijgsl =
1

2
{∂igjl + ∂jgli− ∂lgij}
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d'où

m∑
s=1

Γsijgslg
lk =

1

2
glk{∂igjl + ∂jgli− ∂lgij}

et

m∑
s,l=1

Γsijgslg
lk =

1

2

m∑
l=1

glk{∂igjl + ∂jgli− ∂lgij}

et comme (gij) est la matrice inverse de (gij) on à
∑m

l=1 gslg
lk = δks ouδks le symbol de

Kronecker d'ou

Γkij =
1

2

m∑
l=1

ggl{∂gjl
∂xi

+
∂gil

∂xj
− ∂gij

∂xl
}.

.

Exemple 2.5.1. Nous paramétrons la surface du Tore X par

X(u, v) =


x = (c+ a cos v) cosu
y = (c+ a cos v) sinu
z = a sin v

Nous commençons par calculer
1/la métrique induite : Soit geu = dx2 + dy2 + dz2 la métrique Euclidienne sur R3


dx = −(c+ a cos v) sinudu− a cosu sin vdv
dy = (c+ a cos v) cosudu− a sinu sin vdv
dz = 0du+ a cos vdv
dx2 = (−(c+ a cos v) sinu)2du2 + (−a cosu sin v)dv2

dy2 = ((c+ a cos v) cosu)2du2 + (−a sinu sin v)2dv2

dz2 = 0du2 + (a cos v)2dv2

Alors, geu = (c+ a cos v)2du2 + a2dv2. La matrice et son inverse sont données par gij =[
g11 g12
g21 g22

]
=

[
(c+ a cos v)2 0

0 a2

]
; gij =

[
g11 g12

g21 g22

]
=

[ 1
(c+a cos v)2

0

0 1
a2

]
les dérivées partielles : gij,u =

[
0 0
0 0

]
et gij,v =

[
−2a cos v(c+ a cos v) 0

0 0

]
.
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2/ les symbole de Christo�el :

Γuuu =
1

2
[guu(guu,u + guu,u − guu,u) + guv(gvu,u + gvu,u − guu,v)]

Γuuu =
1

2
[guu(0 + 0− 0) + 0(gvu,u + gvu,u − guu,v)]

Γuuu = Γvvv = 0

Γuuv =
1

2
[guu(guv,u + guu,v − guv,u) + guv(gvv,u + gvu,v − guv,v)]

Γuuv =
1

2
[guu(0 + guu,v − 0) + 0(gvv,u + gvu,v − guv,v)]

Γuuv = − a sin v

(c+ a cos v)

Γuvu =
1

2
[guu(guu,v + guv,u − gvu,u) + guv(gvu,v + gvv,u − gvu,v)]

Γuvu =
1

2
[guu(guu,v +0− 0) + 0(gvu,v + gvv,u − gvu,v)]

Γuvu = Γuuv = − a sin v

(c+ a cos v)

Γuvv =
1

2
[guu(guv,v + guv,v − gvv,u) + guv(gvv,v + gvv,v − gvv,v)]

Γuvv =
1

2
[guu(0 + 0− 0) + 0(gvv,v + gvv,v − gvv,v)]

Γuvv = 0

Γvuu =
1

2
[0(guu,u + guu,u − guu,u) + gvv(0 + 0− guu,v)]

Γvuu =
1

a
sin v(c+ acosv)

Γvuv =
1

2
[gvu(guv,u + guu,v − guv,u) + gvv(gvv,u + gvu,v − guv,v)]

Γvuv =
1

2
[0(guv,u + guu,v − guv,u) + gvv(0 + 0− 0)]

Γvuv = Γvvu = 0

2.6 Courbure

2.6.1 Tenseur de Courbure.

Dé�nition 2.6.1. Soit M une variété muni d'un connexion Linéaire ∇,on dé�nie le ten-
seur de courbure R : Γ(TM)× Γ(TM)× Γ(TM) −→ Γ(TM), associé a ∇ par :

R(X, Y )V = ∇X∇Y V −∇Y∇XV −∇[X,Y ]V

pour tout X, Y, V ∈ Γ(TM).

Propriété 2.6.1. on à les propriété suivants :

1) la courbure R est C∞(M)-3 Linéaire.
2) R(X, Y )V = −R(Y,X)V pour tout X, Y ∈ Γ(TM)etV ∈ Γ(TM) antisymétrique
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Dé�nition 2.6.2. Sur une variété Riemannienne (M, g) le tenseur de courbure de la
connexion Levi-Cevita est appelé tenseur de courbure Riemannienne. le tenseur de courbure
Riemannienne s'exprime en fonction des coe�cient de Christo�el.

R(∂i, ∂j)∂k =
n∑
l=1

Rl
ijk∂l

Rl
ijk = ∂i(Γ

l
jk)− ∂j(Γlik) +

n∑
m=1

{ΓlimΓmjk − ΓljmΓmik}.

ou (∂i)i=1...n est une base local de champs de vecteurs sur M.

Propriété 2.6.2. Soit (M, g) une variété Riemannienne. le tenseur de courbure Rieman-
nienne R a la propriété suivants :

1. R est un champ de tenseur de type (1,3).
2. g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z).
3. g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ).
4. R véri�e l'identité de Bianchi Algébrique.

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

5. R véri�e l'identité de Bianchi di�érentiel.

(∇X)R(Y, Z) + (∇Y )R(Z,X) + (∇Z)R(X, Y ) = 0

∀X, Y, Z,W, V ∈ Γ(TM).

preuve :
Montrons la premier identité de Bianchi(Algébrique) ∀X, Y, Z ∈ Γ(TM).

R(X, y)Z +R(Y, Z)X +R(Z,X)Y = ∇X +∇YZ −∇Y∇XZ −∇[X, Y ]Z

+∇Y∇ZX −∇Z∇YX −∇[Y, Z]X

+∇Z∇XY −∇X∇ZY −∇[Z,X]

= ∇X(∇YZ −∇ZY ) +∇Y (∇ZX −∇XZ)

+∇Z(∇XY −∇YX)−∇[X, Y ]Z −∇[Y, Z]X −∇[Z,X]

= ∇X [Y, Z] +∇Y [Z,X] +∇Z [X, Y ]

−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

Preuve :
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Montrons la douzième identité de Bianchi (di�érentiel)

(∇XR)(Y, Z)(W ) = ∇X(R(Y, Z)(W ))−R(∇XY, Z)(W )

−R(Y,∇XZ)(W )−R(Y, Z)(∇XW )...(1)

(∇YR)(Z,X)(W ) = ∇Y (R(Z,X)(W ))−R(∇YZ,X)(W )

−R(Z,∇YX)(W )−R(Z,X)(∇YW )...(2)

(∇ZR)(X, Y )(W ) = ∇Z(R(X, Y )(W ))−R(∇ZX, Y )(W )

−R(X,∇ZY )(W )−R(X, Y )(∇ZW )...(3)

(1) + (2) + (3) = (∇XR)(Y, Z)(W ) + (∇YR)(Z,X)(W ) + (∇ZR)(X, Y )(W )

+R(∇YX −∇XY, Z)(W ) +R(∇XZ −∇ZX, Y )(W )

+R(∇ZY −∇YZ,X)(W )−R(Y, Z)(∇XW )

−R(Z,X)(∇yW )−R(X, Y )(∇ZW )....(∗)
(∗) = ∇X(∇Y (∇ZW ))−∇X(∇Z(∇YW ))−∇X(∇[Y, Z]W )

+∇Y (∇z(∇XW ))−∇Y (∇X(∇ZW ))−∇Y (∇[Z,X]W )

+∇Z(∇X(∇YW ))−∇Z(∇Y (∇XW ))−∇Z(∇[X, Y ]W )

+R([Y,X], Z)(W ) +R([X,Z], Y )(W ) +R([Z,X], Y )(W )

−∇Y (∇Z(∇XW )) +∇Z(∇Y (∇XW )) +∇[Y, Z](∇XW )

−∇Z(∇X(∇YW )) +∇X(∇Z(∇YW )) +∇[Z,X](∇YW )

−∇X(∇Y (∇ZW )) +∇Y (∇X(∇ZW )) +∇[X, Y ](∇ZW )

= −∇X(∇[Y, Z]W )−∇Y (∇[Z,X]W )−∇Z(∇[X, Y ]W )

+∇[Y,X](∇ZW )−∇Z(∇[Y,X]W )− (∇[[Y,X], Z]W ) +∇[X,Z](∇YW )

−∇Y (∇[X,Z]W )−∇[[X,Z], Y ]W +∇[Z, Y ](∇XW )

−∇X(∇[Z, Y ]W )− (∇[Z, Y ], X)W +∇[Y, Z](∇XW ) +∇[Z,X](∇YW )

+∇[X, Y ](∇ZW )

= −∇[[Y,X],Z]W −∇[[X,Z],Y ]W −∇[[Z,Y ],X]W

= −∇[[Y,X],Z]+[[X,Z],Y ]+[[Z,Y ],X]W.

2.6.2 Courbure Sectionnelle

Dé�nition 2.6.3. Soient(M, g)une variété Riemannienne de dimension n > 2 et p un
2-plan de TxM de base X, Y on appelle Courbure Sectionnelle en x de p.

Kx(P ) =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2

Remarquons que dans la dé�nition précédent, on peut remplacer X par λX pour λ deg 0 et
Y par Y − g(X, Y )X. On peut donc Supposer que X, Y est une base orthonormale. Dans
ce cas.

Kx(P ) = g(R(X, Y )Y,X)

On Véri�er que Kx(P ) ne dépend pas de la base orthonormés de P : En e�et, si Z, T est
une autre base orthonormale, il existe a, b ∈ R tels que a2 + b2 = 1 avec

Z = aX + bY, T = −bX + aY

Une simple véri�cation montre que
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2.6.3 Courbure de Ricci

Dé�nition 2.6.4. La courbure de Ricci d'un Variété Riemannienne (Mm, g) de dimension
m est un tenseur de type (0, 2) dé�ni par.

Ric(X, Y ) = traceR(∗, X)Y

=
m∑
i=1

g(R(ei, X)Y, ei)

pour toutX, Y ∈ Γ(TM) ou (ei) est un base orthonormé local sur M , et

R(∗, X)Y ; Γ(TM)→ Γ(TM)

Z 7→ R(Z,X)Y

On pose

Ric : Γ(TM)× Γ(TM)→ R
(X, Y ) 7→ Ric(X, Y )

La Courbure de Ricci,Ric est un forme bilinéaire symétrique,en e�et

R(X, Y ) =
m∑
i=1

g(R(ei, X)Y, ei)

=
m∑
i=1

g(R(Y, ei)ei, X)

=
m∑
i=1

g(R(ei, Y )X, ei)

= Ric(Y,X)

Relativement à la base (
∂

∂xi
)i=1...m, les composantes du tenseur de Ricci Sont donnée par ;

Ricij = Ric(
∂

∂xi
,
∂

∂xj
)

= traceR(∗, ∂

∂xi
)
∂

∂xj

= gklg(R(
∂

∂xk
,
∂

∂xi
)
∂

∂xj
,
∂

∂xl
)

= gklRs
kijgls

= δksR
s
kij

= Rk
kij

Dé�nition 2.6.5. Le tenseur de Ricci d'un variété Riemannienne (Mm, g), est un tenseur
de type (1, 1) dé�ni par

Ricci(X) =
m∑
i=1

R(X, ei)ei

pour tout X ∈ Γ(TM) et (ei)i=1...mest une base orthonormé local sur M .

Remarque 2.6.1. Soit (Mm, g)une variété Riemannienne, de dimension m pour tout
X, Y ∈ Γ(TM) on a

Ric(X, Y ) = g(Ricci(X), Y )

.
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2.7 Opérateur sur une Variété Riemannienne

2.7.1 Opérateur gradient

Dé�nition 2.7.1. Soit(M, g) une variété Riemannienne, on dé�nit l'opérateur gradient
par

grad;C∞(M)→ Γ(TM)

f 7→ gradf = ]df

ou la df est di�érentielle de f.

Propriété 2.7.1. (expression du gradient en coordonné locales)
Soient (M, g) une variété Riemannienne de dimension m, (U, φ) une carte sur M avec les

champs de base associé
∂

∂x1
, ...

∂

∂xm
alors pour tout f ∈ Cinfty(M)

(gradf)|U =
m∑

i,j=1

gij
∂f

∂xi
∂

∂xj

. Preuve :
On applique directement la dé�nition de l'application ] et la dé�nition de di�érentielle de
fonction f ∈ C∞(M) relativement a la carte (U, φ) sur M on a

df =
m∑
i=1

∂f

∂xi
dxi

]df =
m∑

i,j=1

gij(df)i
∂

∂xj

=
m∑

i,j=1

gij
∂f

∂xi
∂

∂xj

ou dx1, ..dxm la base duale.

Propriété 2.7.2. soit (M, g) une variété Riemannienne. pour tout champ des vecteur
X ∈ Γ(TM) et tout fonction f ∈ C∞(M), on a

df(X) = X(f) = g(gradf,X)

Propriété 2.7.3. Soit (M, g) une variété Riemannienne. pour touthf ∈ C∞(M) on a :
1). grad(f + h) = gradf + gradh
2). grad(fh) = hgradf + fgradh
3). (gradf)(h) = (gradh)(f)

Preuve :
Soit hf ∈ C∞(M) pour tout X ∈ Γ(TM) on a : 1).

g(grad(f + h), X) = X(f + h)

= X(f) +X(h)

= g(gradf,X) + g(gradh,X)

= g(gradf + gradh,X)
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2).

g(grad(fh), X) = X(fh)

= hX(f) + fX(h)

= hg(gradf,X) + fg(gradh,X)

= g(hgradf + fgradh,X)

3).

(gradf)(h) = g(gradf, gradh)

= g(gradh, gradf)

= (gradh)(f)

2.7.2 Divergence d'un champ de vecteurs

Soit X ∈ Γ(TM) un champ de vecteur sur une variété Riemannienne (M, g) on a

∇X : Γ(TM)→ Γ(TM)

Z 7→ ∇ZX

est une application C∞(M)Linéaire (∇X est une tenseur de type (1,1))
si x ∈M alors

(∇X)x : TxM →TxM
v 7→(∇vX)x

est une application linière d'espace vectoriel.

Dé�nition 2.7.2. Soient (M, g) une variété riemannienne. La divergence d'un champ de
vecteur X ∈ Γ(TM), notée divX est un fonction sur M dé�nie par :

divX = trg(∇X)

pour tout x ∈M , on a
(divX)(x) = trg((∇X)x)

en coordonnée local, on a :

divX = dxi(∇ ∂

∂xi
X)

= gijg(∇ ∂

∂xi
,
∂

∂xj
)

2.7.3 Hessienne d'une fonction

Dé�nition 2.7.3. Soient (M, g) une variété riemannienne et f ∈ C∞(M) La Hessienne
de la fonction f noté Hess(f), est une application C∞(M)-bilinéaire Symétrique dé�nie
par :

Hess(f) : Γ(TM)× Γ(TM)→ C∞(M)

(X, Y ) 7→ g(∇Xgrad(f), Y )
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Preuve :
L'application Hessienne est application bilinéaire Symétrique on a :

Hess(f) = g(∇Xgrad(f), Y )

= X(g(grad(f), Y ))− g(grad(f),∇XY )

= X(Y (f))−∇XY (f)

= [X, Y ] + Y (X(f))−∇XY (f)

= Y (X(f))−∇YX(f)

= Y g(grad(f), X)− g(grad(f),∇YX)

= g(∇Y grad(f), X)

= Hess(f)(Y,X)

2.7.4 Opérateur Laplacien

Dé�nition 2.7.4. Soient (M, g) une variété riemannienne, on dé�nit l'opérateur Lapla-
cien notée ∆ sur M par :

∆ : C∞(M)→ C∞(M)

f 7→ ∆(f) = div(gradf) = traceg(Hess(f))

appelé aussi opérateur de Laplace-Beltrami.

Propriété 2.7.4. on à les propriété suivants :

� ∆(f + h) = ∆(f) + ∆(h)
� ∆(fh) = h∆(f) + f∆(h) + 2g(gradf, gradh)

Preuve :
d'aprés le dé�nition

∆(f + h) = div(grad(f + h))

= div(gradf + gradh)

= div(gradf) + div(gradh)

= ∆(f) + ∆(h)

∆(fh) = div(grad(fh))

= div(fgradh+ hgradf)

= div(fgradh) + div(hgradf)

= fdiv(gradh) + (gradh)(f) + hdiv(gradf) + (gradf)(h)

= f∆(h) + h∆(f) + 2g(gradf, gradh)

Expression du Laplacien En Coordonnée locales

∆(f) = gij(
∂2f

∂xi∂j
− Γkij

∂f

∂xk
)

Exemple 2.7.1. soit Rm muni du produit scalaire standard g0, (gij = σij, alors pour tous
fonction di�érentiable f sur Rm et X = (X1, ...Xm) un champ de vecteurs sur Rm on à :
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�

gradf =
m∑
i=1

∂f

∂xi
∂

∂xi

= (
∂f

∂x1
...
∂f

∂xm
)

�

divf =
m∑
i=1

∂X i

∂xi

=
∂X1

∂x1
+ ...

∂Xm

∂xm

�

∆(f) =
m∑
i=1

∂2f

∂x2i

=
∂2f

∂x21
+ ...

∂2f

∂x2m

2.7.5 Formule de Bochner

Dé�nition 2.7.5. Soit (M, g) une variété Riemannienne. si f : M → R est une fonction
de classe C∞(M), alors f véri�é la formule suivants :

1

2
∆|grad(f)|2 = |Hess(f)|2 + g(grad(f), grad()) +Ric(grad(f), grad(f)) (2.1)

ou |Hess(f)|2 =
∑

i g(∇eigrad(f),∇eigrad(f)) relativement une base local orthonormale(e1, ...em).

Preuve :
soient x ∈ M et (e1, ...em) une base local orthonormale de champs de vecteurs telque
(∇eiej)x = 0, 1 6 i, j 6 m. En développant le calcul en x on trouve :

1

2
∆|grad(f)|2 =

1

2

∑
i

ei(eig(grad(f), grad(f)))

=
∑
i

ei(g(∇eigrad(f), grad(f)))

=
∑
i

ei(Hess(f)(ei, grad(f)))

=
∑
i

ei(Hess(f)(grad(f), ei))

=
∑
i

ei(g(∇grad(f)grad(f), ei))

=
∑
i

(
g(∇ei∇grad(f)grad(f), ei) + g(∇grad(f)grad(f),∇eiei)

)
=
∑
i

g(∇ei∇grad(f)grad(f), ei)

=
∑
i

{
g(R(ei, grad(f))grad(f), ei)) + g(∇grad(f)∇eigrad(f), ei)

+g(∇[ei,grad(f)]grad(f), ei).....(1)
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∑
i

g(R(ei, grad(f))grad(f), ei)) = Ric(grad(f), grad(f))....(2)

∑
i

g(∇grad(f)∇eigrad(f), ei) =
∑
i

grad(f)(g(∇eigrad(f), ei))

−
∑
i

g(∇eigrad(f),∇grad(f)ei)

=
∑
i

grad(f)g(∇eigrad(f), ei)

−
∑
i

g(∇eigrad(f), ei(f)∇eiei)

=
∑
i

grad(f)g(∇eigrad(f), ei)− 0

= grad(f)tracegHess(f)

= grad(f)(∆(f))

= g(grad(f), grad∆(f)).......(3)

g(∇[ei,grad(f)]grad(f), ei) =
∑
i

Hess(f)([ei, grad(f)], ei)

=
∑
i

Hess(f)(∇eigrad(f)−∇grad(f)ei, ei)

=
∑
i

Hess(f)(∇eigrad(f), ei)−
∑
i

Hess(f)(∇grad(f)ei, ei)

=
∑
i

Hess(f)(∇eigrad(f), ei)− 0

=
∑
i

Hess(f)(ei,∇eigrad(f))

=
∑
i

g(∇eigrad(f),∇eigrad(f))......(4)

En�n, en substituons les formule (1) et (2),(3),(4) dans la formule de Bochner



Chapitre 3

variété Riemannienne produit tordus

3.1 Variété Produit

Dé�nition 3.1.1. Soient M et N deux variétés de classe C∞. Le produit M ×N munie
de l'atlas W dé�ni par

W = {(U × V, ϕ× φ)/(U,ϕ) ∈ atl(M), (V, φ) ∈ atl(N)}

est dit variété produit.

Propriétés 3.1.1. On à les propriété suivants :

1. Les deux projections π : M×N −→M et η : M×N −→ N sont des submersions 1.

2. Pour tout (x, y) ∈M×N le sous-espaceM×{y} et {x}×N sont deux sous-variétés
de de la variété produit M ×N .

3. Pour tout (x, y) ∈M ×N on a :

T(x,y)M ×N ∼= TxM × TyN

4. Soient X et Y deux champs de vecteurs surM et N respectivement, le couple (X, Y )
dé�ni par

(X, Y ) : M ×N −→ TM × TN
(x, y) 7−→ (Xx, Yy)

est un champ de vecteurs sur la variété produit M ×N
Remarque 3.1.1. Les applications

H(M) −→ H(M ×N)

X 7−→ X̃ = (X, 0)

H(N) −→ H(M ×N)

Y 7−→ Ŷ = (0, Y )

dé�nissent des relèvements de champ de vecteurs à H(M ×N) tel que :

d(x,y)π(X̃) = X ◦ π et d(x,y)η(X̃) = 0

d(x,y)η(Ŷ ) = Y ◦ η et d(x,y)π(Ŷ ) = 0

1. soit n, p ∈ N∗ U est une ouvert de Rn, a ∈ U et f : U −→ Rp une application de classe C1 On dit
que f est une submersion en a si dfa est surjective
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Propriétés 3.1.2. [6] Soient X1, X2 ∈ H(M) deux champs de vecteurs sur
M et Y1, Y2 ∈ H(N) deux champs de vecteurs sur M . Si f ∈ C∞(M)
et g ∈ C∞(N) alors :

1) X̃1(f ◦ π) = (X1(f)) ◦ π et X̃1(g ◦ η) = 0

2) Ŷ1(g ◦ η) = (Y1(g)) ◦ η et Ŷ1(f ◦ π) = 0

3)


[X̃1, X̃2] = ([X1, X2], 0)

[Ŷ1, Ŷ2] = (0, [Y1, Y2])

[X̃1, Ŷ1] = 0

4) [(X1, X2), (Y1, Y2)] = ([X1, Y1], [X2, Y2])

5) f̃X1 = (f ◦ π)X̃1 et ĝY1 = (g ◦ η)Ŷ1

Remarque 3.1.2. Soient (U,ϕ) ∈ atl(M) une carte de la variété M et (V, φ) ∈ atl(N)

une carte de la variété N . Si
(

∂
∂x1
.... ∂

∂xm

)(
resp

(
∂
∂y1
.... ∂

∂yn

))
désigne la base locale de

champ de vecteurs relativement à la carte (U,ϕ) (resp (V, φ)) , alors(
∂̃

∂x1
....

∂̃

∂xm
....

∂̂

∂y1
....

∂̂

∂yn

)
est la base locale de champ de vecteurs sur M ×N relativement à la carte (U ×V, ϕ×φ) ∈
atl(M ×N)

Propriété 3.1.1. Soient M et N deux variétés. Si S1 et S2 sont deux tenseurs sur la
variété produit M ×N de type (0, r) ou (1, r), alors S1 = S2, si et seulement si, pour tout
champs de vecteurs X1, .., Xr ×H(M) et Y1, .., Yr ×H(N), on a

S1(X̃1....X̃r) = S2(X̃1....X̃r)

et
S1(Ŷ1....Ŷr) = S2(Ŷ1....Ŷr)

3.1.1 Connexion linéaire produit

Propriété 3.1.2. [1] Soient M et N deux variétés. Si ∇M et ∇N sont deux connexions
linéaires sur M et N respectivement, alors il existe une unique connexion linéaire ∇ sur
M ×N telle que pour tous X1, X2 ∈ H(M) et Y1, Y2 ∈ H(N), on a

∇(X1,Y1)(X2, Y2) = (∇M
X1
X2, 0) + (0,∇N

Y1
Y2)

∇X̃1
X̃2 = (∇M

X1
X2, 0)

∇Ŷ1
Ŷ2 = (0,∇N

Y1
Y2)

∇X̃1
Ŷ2 = ∇Ŷ1

X̃2 = 0

∇ est appelé connexion linéaire produit.
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3.1.2 Tenseur de Torsion produit

Propriété 3.1.3. Soient ∇M une connexion linéaire sur M et ∇N une connexion linéaire
sur N . Si TM et TN désignent les tenseurs de torsions sur M et N respectivement, alors
le tenseur de torsion produit sur M ×N est donné par

T = (TM , 0) + (0, TN) = (TM , TN)

Preuve :
De la Proposition [1] on a :

T (X̃1, X̃2) = ∇X̃1
X̃2 −∇X̃2

X̃1 − [X̃1, X̃2]

=
(
∇M
X1
X2, 0

)
−
(
∇M
X2
X1, 0

)
− ([X1, X2], 0)

=
(
∇M
X1
X2 −∇M

X2
X1 − [X1, X2], 0

)
= (TM(X1, X2), 0)

= (TM , TN)(X̃1, X̃2)

pour tout X1, X2 ∈ H(M), et

T (Ŷ1, Ŷ2) = ∇Ŷ1
Ŷ2 −∇Ŷ2

Ŷ1 − [Ŷ1, Ŷ2]

= (0, TN(Y1, Y2))

= (TM , TN)(Ŷ1, Ŷ2)

pour tout Y1, Y2 ∈ H(N)

3.1.3 Tenseur de courbure produit

Propriété 3.1.4. [3] Soient M une variété munie d'une connexion linéaire ∇M et N
une variété munie d'une connexion linéaire ∇N . Si RM et RN désignent les tenseurs de
courbures sur M et N respectivement, alors le tenseur de courbure produit sur la variété
produit M ×N est donné par

R = (RM , RN)

Remarque 3.1.3. On à

1. La variété produit M × N est sans torsion si et seulement si les variétés M et N
sont sans torsion.

2. La variété produit M ×N est localement plate si et seulement si les variétés M et
N sont localement plates.

3.1.4 Métrique produit (diagonal)

Dé�nition 3.1.2. Soient (M, g) et (N, h) deux variétés Riemanniennes de dimension m
et n respectivement. On dé�nie la métrique Riemannienne produit sur M ×N par
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G = π∗g + η∗h

π : M × N −→ M et η : M × N −→ N désignent la première et la deuxième projection
canonique.

Propriété 3.1.5. pour tout X1, Y1 ∈ H(M) et X2, Y2 ∈ H(N) on a :

G(X, Y ) = g(X1, Y1) + h(X2, Y2)

G(X̃1, X̃2) = g(X1, X2)

G(Ŷ1, Ŷ2) = h(Y1, Y2)

G(X̃1, Ŷ2) = 0

où X = (X1, X2) et Y = (Y1, Y2).

Propriété 3.1.6. Soient (M, g) et (N, h) deux variétés Riemanniennes. Si ∇M (resp ∇N)
désigne la connexion de Levi-Civita sur M (resp N), alors la connexion de levi-civita sur
la variété M ×N associée à la métrique produit G = π∗g+ η∗h conicide avec la connexion
linéaire produit dé�nie par :


∇X̃1

Ỹ1 = (∇X1Y1, 0)

∇X̂2
Ŷ2 = (0,∇X2Y2)

∇X̃1
X̂2 = ∇X̂2

X̃1 = 0

pour tout X1, Y1 ∈ H(M) et X2, Y2 ∈ H(N).

Preuve : Soient X1, Y1, Z1 ∈ Γ(TM) et X2, Y2, Z2 ∈ Γ(TN) on pose X = (X1, X2)etY =
(Y1, Y2)etZ = (Z1, Z2)des champ des vecteurs sur M ×f2 N de la formule Koszule on ob-
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tient :

•G(∇X̃1
Ỹ1, Z̃1) =

1

2
{X̃1

(
G(Ỹ1, Z̃1)

)
+ Ỹ1

(
G(X̃1, Z̃1)

)
− Z̃1

(
G(X̃1, Ỹ1)

)
+G

(
Z̃1, [X̃1, Ỹ1]

)
+G

(
Ỹ1, [Z̃1, X̃1]

)
−G

(
X̃1, [Ỹ1, Z̃1]

)}
=

1

2
{X1 (g(Y1, Z1)) + Y1 (g(X1, Z1))− Z1 (g(X1, Y1))

+g (Z1, [X1, Y1]) + g (Y1, [Z1, X1])− g (X1, [Y1, Z1])}
= g

(
∇M
X1
Y1, Z1

)
= G

(
(∇M

X1
Y1, 0), Z̃1

)
•G(∇X̃1

Ỹ1, Ẑ2) = 0

•G(∇X̂2
Ŷ2, Z̃1) = 0

•G(∇X̂2
Ŷ2, Z2) =

1

2
{X̂2

(
G(Ŷ2, Ẑ2)

)
+ Ŷ2

(
G(X̂2, Ẑ2)

)
− Ẑ2

(
G(X̂2, Ŷ2)

)
+G

(
Ẑ2, [X̂2, Ŷ2]

)
+G

(
Ŷ2, [Ẑ2, X̂2]

)
−G

(
X̂2, [Ŷ2, Ẑ2]

)}
=

1

2
{X2 (h(Y2, Z2)) + Y2 (h(X2, Z2))− Z2 (h(X2, Y2))

+h (Z2, [X2, Y2]) + h (Y1, [Z1, X1])− h (X1, [Y1, Z1])}
= g

(
∇N
X2
Y2, Z2

)
= G

(
(0,∇N

X2
Y2), Ẑ2

)
•G(∇X̃1

Ŷ2, Z̃1) = G(∇X̃1
Ŷ2, Ẑ2) = G(∇X̂2

Ỹ1, Z̃1) = G(∇X̂2
Ỹ1, Ẑ2) = 0

Des Proposition 3.5 et 3.6, on déduit.

Propriété 3.1.7. Soient (M, g) et (N, h) deux variétés Riemanniennes. alors le tenseur
et la courbure de Ricci ainsi que la courbure scalaire sur la variété Riemannienne produit
(M ×N,G = π∗g + η∗h) sont donnés par :

Ricci(X) = (RicciM(X1), RicciN(X2))

Ric(X, Y ) = RicM(X1, Y1) +RicN(X2, Y2)

S = SM + SN

Pour tout X = (X1, X2) et Y = (Y1, Y2).

3.1.5 Opérateur Laplacien produit

Dé�nition 3.1.3. On à

1. Si l1 ∈ C∞(M), alors l1 ◦ π ∈ C∞(M ×N)
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2. Si l2 ∈ C∞(N), alors l2 ◦ η ∈ C∞(M ×N)

3. Si α ∈ C∞(M ×N), alors

αy : M −→ R
x 7−→ α(x, y)

et

αx : N −→ R
y 7−→ α(x, y)

sont des applications de classe C∞.

Propriétés 3.1.3. Soient (M, g) et (N, h) des variétés Riemanniennes, alors

∆(l1 ◦ π) = ∆M(l1) ◦ π
∆(l2 ◦ η) = ∆N(l2) ◦ η
∆α(x, y) = (∆Mαy)(x) + (∆Nαx)(y)

Preuve :
Si (e1, .., em) (resp (em+1, ..., em+n) ) une base orthonormale locale de champ de vecteurs
sur la variété Riemannienne (M, g) (resp (N, h)), alors (ẽ1, ..., ẽm, êm+1, ..., êm+n) une base
orthonormale locale de la variété Riemannienne produit (M ×N,G) , et on a

∆(α) = trace(∇dα)

=
m∑
i=1

(∇ẽidα)(ẽi) +
m+n∑
i=m+1

(∇êidα)(êi)

=
m∑
i=1

(ẽi(ẽi(α)))−
m∑
i=1

(dα(∇ẽi ẽi)) +
m+n∑
i=m+1

(êi(êi(α)))−
m+n∑
i=m+1

(dα(∇êi êi))

=
m∑
i=1

(ei(ei(αy)))− (dαy(∇M
ei
ei)) +

m+n∑
i=m+1

(ei(ei(αx)))− (dαx(∇N
ei
ei))

= ∆M(αy)∆N(αx)
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3.2 Produit Tordu de Variété Riemannienne

Dé�nition 3.2.1. Soient (M, g) et (N, h) deux variétés riemanniennes de dimension m
et n respectivement et f ∈ C∞(M) une fonction strictement positive. La variété produit
tordu M ×f2 N est dé�nie comme étant la variété M ×N munie de la métrique Gf2 telle
que

Gf2 = π∗g + (f ◦ π)2η∗h

où π : M × N −→ M et η : M × N −→ N désignent les projections canoniques. si
X, Y ∈ H(M ×N)

Gf2 = g (dπ(X), dπ(Y )) + (f ◦ π)2h (dη(X), dη(Y ))

Remarque 3.2.1. Relativement à des cartes locales (U, xi) ∈ atl(M) et (V, yi) ∈ atl(N)
,la matrice associée à Gf2 est donnée par

A =

(
gij 0
0 f 2hlk

)

et la matrice inverse

A =

(
gij 0
0 f−2hlk

)
La connexion de levi-civita de M ×f2 N peut être maintenant rapprochée à celle de M et
de N comme suit.

3.2.1 Connexion de Levi-Civita de la Variété Produit Tordu

Propriété 3.2.1. Soient (M, g) et (N, h) deux variétés riemanniennes. Si ∇ désigne la
connexion de Levi-Civita associé à la variété produit (M ×N,G) , alors la connexion de
Levi-Civita ∇̃ asoociée à la variété produit tordu (M ×f2 N,Gf2) est donnée par

∇̃XY = ∇XY +
1

2f 2
X1(f

2)(0, Y2) +
1

2f 2
Y1(f

2)(0, X2)

−1

2
h(X2, Y2)(grad(f 2), 0)

por tout X1, Y1 ∈ H(M) et X2, Y2 ∈ H(N) , X = (X1, X2) et Y = (Y1, Y2).

Preuve :
Soient X1, Y1, Z1 ∈ H(M) et X2, Y2, Z3 ∈ H(N) , on pose X = (X1, X2) et Y = (Y1, Y2)
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et Z = (Z1, Z2) des champs de vecteurs sur M ×f2N . De la formule de Koszule on obtient

2Gf2(∇̃XY, Z) = X (Gf2(Y, Z)) + Y (Gf2(X,Z))− Z (Gf2(X, Y ))

+Gf2 (Z, [X, Y ]) +Gf2 (Y, [Z,X])−Gf2 (X, [Y, Z])

= X (g(Y1, Z1) ◦ π + f 2 ◦ π.h(Y2, Z2) ◦ η)

+Y (g(X1, Z1) ◦ π + f 2 ◦ π.h(X2, Z2) ◦ η)

−Z (g(X1, Y1) ◦ π + f 2 ◦ π.h(X2, Y2) ◦ η)

+g (Z1, [Y1, X1]) ◦ π + f 2 ◦ π.h (Z2, [X2, Y2]) ◦ η
+g (Y1, [Z1, X1]) ◦ π + f 2 ◦ π.h (Y2, [Z2, X2]) ◦ η
−g (X1, [Y1, Z1]) ◦ π − f 2 ◦ π.h (X2, [Y2, Z2]) ◦ η

2Gf2(∇̃XY, Z) = 2g(∇M
X1
Y1, Z1) ◦ π + 2f 2 ◦ π.h(∇N

X2
Y2, Z2) ◦ η

+X1(f
2) ◦ π.h(Y2, Z2) ◦ η + Y1(f

2) ◦ π.h(X2, Z2) ◦ η
−Z(f 2) ◦ π.h(X2, Z2) ◦ η

= 2Gf2

(
(∇M

X1
Y1,∇N

X2
Y2), Z

)
+ h
(
X1(f

2) ◦ π.Y2

+Y1(f
2) ◦ π.X2, Z2

)
◦ η − g

(
h(X2, Z2) ◦ η.grad(f 2), Z1

)
◦ π

= 2Gf2

(
(∇M

X1
Y1,∇N

X2
Y2), Z

)
+Gf2

(
X1(f

2)

f 2
◦ π.Y2 +

Y1(f
2)

f 2
◦ π.X2, Z

)
−Gf2

(
h(X2, Z2) ◦ η.grad(f 2), Z

)
d'où

2Gf2(∇̃XY, Z) =
(

2Gf2((∇M
X1
Y1,∇N

X2
Y2) +

X1(f
2)

f 2
◦ π.Y2 +

Y1(f
2)

f 2
◦ π.X2

−1

2
h(X2, Z2) ◦ η · grad(f 2), Z)

)
Exemple 3.2.1. Le Tore T 2 est la variété produit S1 × S1 avec gu =

4

(1 + u2)2
du2 une

métrique Riemannienne sur la sphère unité S1 alors,

g̃ = gu + f 2gv

est une métrique Riemannienne tordu sur le Tore T 2 ou f une fonction de classe C∞ sur
S1 strict positive.

Exemple 3.2.2. Le Tore T 3 aussi la variété produit S1×S1×S1 et le métrique Rieman-
nienne

g̃1 = gu + f 2(gv + gw)

et
g̃2 = (gu + gv) + f 2

2 gw

ou f1 fonction de classe C∞ sur S1 et f2 fonction de classe C∞ sur S1×S1 stict positive.
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3.2.2 Tenseur de Courbure du Produit Tordu

Propriété 3.2.2. Soient (M, g) et (N, h) deux variétés Riemanniennes. Si R et R̃ dési-
gnent les tenseurs de courbures de la variété Riemannienne produit (M × N,G) et de la
variété Riemannienne produit (M ×f2 N,Gf2) respectivement, alors :

R̃(X, Y )−R(X, Y ) =
1

2

{
(∇M

Y1
grad(f 2)− 1

f 2
Y2(f

2)gradf 2, 0) ∧Gf2
(0, X2)

−∇M
X1
grad(f 2)− 1

2f 2
Y2(f

2)gradf 2, 0) ∧Gf2
(0, Y2)

− 1

2f 2
|gradf 2|2(0, X2) ∧Gf2

(0, Y2)
}

où

(X ∧Gf2
Y )Z = Gf2(Z, Y )X −Gf2(Z,X)Y

pour tout X1, Y1 ∈ H(M) , X2, Y2 ∈ H(N) , X = (X1, X2) et Y = (Y1, Y2).

Preuve :
Soient X1, Y1, Z1 ∈ H(M) et X2, Y2, Z2 ∈ H(N), on pose X = (X1, X2), Y = (Y1, Y2) et
Z = (Z1, Z2)

R̃(X, Y )Z = R̃ ((X1, X2), (Y1, Y2))Z

= R̃(X̃1, Ỹ1)Z + R̃(X̃1, Ŷ2)Z + R̃(X̂2, Ỹ1)Z + R̃(X̂2, Ŷ2)Z

Développant chaque terme de la dernière équation

1 ) R̃(X̃1, Ỹ1)Z = R̃(X̃1, Ỹ1)Z̃1 + R̃(X̃1, Ỹ1)Z̃2

a)R̃(X̃1, Ỹ1)Z̃1 = ∇̃X̃1
∇̃Ỹ1

Z̃1 − ∇̃Ỹ1
∇̃X̃1

Z̃1 − ∇̃[X̃1,Ỹ1]
Z̃1

= ∇M
X1
∇M
Y1
Z1 −∇M

Y1
∇M
X1
Z1 −∇M

[X1,Y1]
Z1

= (RM(X1, Y1)Z1, 0)

b)R̃(X̃1, Ỹ1)Ẑ2 = ∇̃X̃1
∇̃Ỹ1

Ẑ2 − ∇̃Ỹ1
∇̃X̃1

Ẑ2 − ∇̃[X̃1,Ỹ1]
Ẑ2

= ∇̃X̃1

Y1(f
2)

2f 2
Ẑ2 − ∇̃Ỹ1

X1(f
2)

2f 2
Ẑ2 −

[X1, Y1](f
2)

2f 2
Ẑ2

= [X1
Y1(f

2)

2f 2
+
Y1(f

2)X1(f
2)

4f 2
− Y1

X1(f
2)

2f 2

−Y1(f
2)X1(f

2)

4f 2
− [X1, Y1](f

2)

2f 2
]Ẑ2

= 0

de a) et b) on déduit que :

R̃(X̃1, Ỹ1)Z = (RM(X1, Y1)Z1, 0) (3.3)
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2 )R̃(X̃1, Ŷ2)Z = R̃(X̃1, Ŷ2)Z̃1 + R̃(X̃1, Ŷ2)Ẑ2

a)R̃(X̃1, Ŷ2)Z̃1 = ∇̃X̃1
∇̃Ŷ2

Z̃1 − ∇̃Ŷ2
∇̃X̃1

Z̃1 − ∇̃[X̃1,Ŷ2]
Z̃1

= ∇̃X̃1

Z1(f
2)

2f 2
Ŷ2 − ∇̃Ŷ2

∇̃M
X1
Z1

= X1
Z1(f

2)

2f 2
Ŷ2 +

Z1(f
2)X1(f

2)

4f 2
Ŷ2 −

1

2f 2
∇M
X1
Z1(f

2)Ŷ2

=
1

2f 2

[
X1(Z1(f

2))−∇M
X̃1
Z̃1(f

2)− Z1(f
2)X1(f

2)

2f 2

]
Ŷ2

=
1

2

[
g(∇M

X1
gradf 2, Z1)−

X1(f
2)

2f 2
g(gradf 2, Z1)

]
Ŷ2

= g

(
1

2

[
∇M
X1
gradf 2 − X1(f

2)

2f 2
gradf 2

]
, Z1

)
Ŷ2

= Gf2

((
1

2

[
∇M
X1
gradf 2 − X1(f

2)

2f 2
gradf 2

]
, 0

)
, (Z1, 0)

)
(0, Y2)

b)R̃(X̃1, Ŷ2)Ẑ2 = ∇̃X̃1
∇̃Ŷ2

Ẑ2 − ∇̃Ŷ2
∇̃X̃1

Ẑ2 − ∇̃[X̃1,Ŷ2]
Ẑ2

= ∇̃X̃1
(0,∇N

Y2
Z2)−

h(Y2, Z2)

2
(gradf 2, 0)− ∇̃Ŷ2

X1(f
2)

2f 2
Ẑ2

=
X1(f

2)

f 2
∇N
Y2
Z2 −

h(Y2, Z2)

2
∇M
X1
gradf 2

−X1(f
2)

f 2

[
∇N
Y2
Z2 −

h(Y2, Z2)

2
gradf 2

]
= −h(Y2, Z2)

2
∇M
X1
gradf 2 +

X1(f
2)

2f 2

h(Y2, Z2)

2
gradf 2

= −h(Y2, Z2)

2

[
∇M
X1
gradf 2 − X1(f

2)

2f 2
gradf 2

]
= −Gf2 ((0, Y2), (0, Z2))

(
1

2f 2

[
∇M
X1
gradf 2 − X1(f

2)

2f 2
gradf 2

]
, 0

)

de a) et b) on déduit

R̃(X̃1, Ŷ2)Z = Gf2

((
1

2f 2

[
∇M
X1
gradf 2 − X1(f

2)

2f 2
gradf 2

]
, 0

)
, (Z1, 0)

)
(0, Y2)

−Gf2

(
(0, Y2), (0, Z2)

)( 1

2f 2

[
∇M
X1
gradf 2 − X1(f

2)

2f 2
gradf 2

]
, 0

)

R̃(X̃1, Ŷ2)Z = − 1

2f 2

(
∇M
X1
gradf 2 − 1

2f 2
Y1(f

2)gradf 2, 0

)
∧Gf2

(0, Y2) (3.4)
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3 )R̃(X̂2, Ŷ2)Z = R̃(X̂2, Ŷ2)Z̃1 + R̃(X̂2, Ŷ2)Ẑ2

a)R̃(X̂2, Ŷ2)Z̃1 = ∇̃X̂2
∇̃Ŷ2

Z̃1 − ∇̃Ŷ2
∇̃X̂2

Z̃1 − ∇̃[X̂2,Ŷ2]
Z̃1

= ∇̃X̂2

1

2f 2
Z1(f

2)Ŷ2 − ∇̃Ŷ2

1

2f 2
Z1(f

2)X̂2

− 1

2f 2
Z1(f

2)[X2, Y2]

=
1

2f 2
Z1(f

2)

[
(0,∇N

X2
Y2)−

h(Y2, X2)

2
(gradf 2, 0)

]
− 1

2f 2
Z1(f

2)

[
(0,∇N

Y2
X2)−

h(Y2, X2)

2
(gradf 2, 0)

]
− 1

2f 2
Z1(f

2)(0, [X2, Y2])

=
1

2f 2
Z1(f

2)
(
0, (∇N

X2
Y2 −∇N

Y2
X2 − [X2, Y2])

)
= 0

b)R̃(X̂2, Ŷ2)Ẑ2 = ∇̃X̂2
∇̃Ŷ2

Ẑ2 − ∇̃Ŷ2
∇̃X̂2

Ẑ2 − ∇̃[X̂2,Ŷ2]
Ẑ2

= (0, R(X2, Y2)Z2)−
|gradf 2|2

4f 2
[Gf2 ((0, Y2), (0, Z2)) (0, X2)

−Gf2 ((0, Z2), (0, X2)) (0, Y2)]

= (0, R(X2, Y2)Z2)−
1

4f 2
|gradf 2|2(0, X2) ∧Gf2

(0, Y2)

∇̃X̂2
∇̃Ŷ2

Ẑ2 = ∇̃X̂2

(
(0,∇N

Y2
Z2)−

h(Y2, Z2)

2
(gradf 2, 0)

)
= (0,∇N

X2
∇N
Y2
Z2)−

h(X2,∇N
Y2
Z2)

2
(gradf 2, 0)

−h(Y2, Z2)

2
∇̃X̂2

(gradf 2, 0)− X2(h(Y2, Z2)

2
(gradf 2, 0)

∇̃Ŷ2
∇̃X̂2

Ẑ2 = ∇̃Ŷ2
((0,∇N

X2
Z2)−

h(X2, Z2)

2
(gradf 2, 0))

= (0,∇N
Y2
∇N
X2
Z2)−

h(Y2,∇N
X2
Z2)

2
(gradf 2, 0)

−h(X2, Z2)

2
∇̃Ŷ2

(gradf 2, 0)− Y2(h(X2, Z2))

2
(gradf 2, 0)
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−∇̃[X̂2,Ŷ2]
Ẑ2 = −(0,∇N

[X2,Y2]
Z2) +

h([X2, Y2], Z2)

2
(gradf 2, 0)

∇̃X̂2
(gradf 2, 0) =

gradf 2(f 2)

2f 2
(0, X2) =

1

2f 2
|gradf 2|2(0, X2)

∇̃Ŷ2
(gradf 2, 0) =

gradf 2(f 2)

2f 2
(0, Y2) =

1

2f 2
|gradf 2|2(0, Y2)

−h(X2,∇N
Y2
Z2)−X2(h(Y2, Z2)) + Y2(h(X2, Z2)) + h(Y2,∇N

X2
Z2) + h([X2, Y2], Z2) = 0

D'où
R̃(X̂2, Ŷ2)Z = (0, R(X2, Y2)Z2)−

1

4f 2
|gradf 2|2(0, X2) ∧Gf2

(0, Y2) (3.5)

4 ) R̃(X̂2, Ỹ1)Z = R̃(X̂2, Ỹ1)Z̃1 + R̃(X̂2, Ỹ1)Ẑ2

a)R̃(X̂2, Ỹ1)Z̃1 = ∇̃X̂2
∇̃Ỹ1

Z̃1 − ∇̃Ŷ2
∇̃X̃1

Z̃1 − ∇̃[X̂2,Ỹ1]
Z̃1

= ∇̃X̂2
(∇M

Y1
Z1, 0)− ∇̃Ỹ1

Z1(f
2)

2f 2
X̂2

=
∇M
Y1
Z1(f

2)

2f 2
X̂2 − Y1

Z1(f
2)

2f 2
X̂2 −

Z1(f
2)

2f 2

Y1(f
2)

2f 2
X̂2

=

[∇M
Y1
Z1(f

2)

2f 2
+
Y1(f

2)Z1(f
2)

2f 2
− Y1(Z1(f

2))

2f 2
− Y1(f

2)Z1(f
2)

4f 2

]
X̂2

=
1

2f 2

[
∇M
Y1
Z1(f

2)− Y1(Z1(f
2)) +

Y1(f
2)Z1(f

2)

2f 2

]
X̂2

=
1

2f 2

[
−g(∇M

Y1
gradf 2, Z1) +

Y1(f
2)

2f 2
g(gradf 2, Z1)

]
X̂2

= −Gf2

(
1

2f 2

[
∇M
Y1
gradf 2 +

Y1(f
2)

2f 2
gradf 2

]
, Z1

)
(0, X2)

b)R̃(X̂2, Ỹ1)Ẑ2 = ∇̃X̂2
∇̃Ỹ1

Ẑ2 − ∇̃Ŷ2
∇̃X̃1

Ẑ2 − ∇̃[X̂2,Ỹ1]
Ẑ2

= ∇̃X̂2

Y1(f
2)

2f 2
Ẑ2 − ∇̃Ỹ1

(
(0,∇N

X2
Z2)−

h(X2, Z2)

2
(gradf 2, 0)

)
=
Y1(f

2)

2f 2

[
∇N
X2
Z2 −

h(X2, Z2)

2
gradf 2

]
− Y1(f

2)

2f 2
∇N
X2
Z2

+
h(X2, Z2)

2
∇M
Y1
gradf 2

=
h(X2, Z2)

2

[
∇M
Y1
gradf 2 − Y1(f

2)

2f 2
gradf 2

]
= Gf2 ((0, X2), (0, Z2))

(
1

2f 2

[
∇M
Y1
gradf 2 − Y1(f

2)

2f 2
gradf 2

]
, 0

)
De a) et b) on déduit

R̃(X̂2, Ỹ1)Z =
1

2f 2

(
∇M
Y1
gradf 2 − 1

2f 2
Y1(f

2)gradf 2, 0

)
∧Gf2

(0, X2) (3.6)
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On obtient la résultat suivant :

R̃(X, Y )−R(X, Y ) =
1

2f 2
{(∇M

Y1
gradf 2 − 1

2f 2
Y1(f

2)gradf 2, 0

)
∧Gf2

(0, X2)

−
(
∇M
X1
gradf 2 − 1

2f 2
Y1(f

2)gradf 2, 0

)
∧Gf2

(0, Y2)

− 1

2f 2
|gradf 2|2(0, X2) ∧Gf2

(0, Y2)}
3.2.3 Opérateur Laplacien dans le Produit Tordu

Propriétés 3.2.1. Soient (M, g) , (N, h) deux variétés riemanniennes. ∆M , ∆N dési-
gnent les opérateurs laplaciens sur M et N respectivement. Si

α : M ×f2 N −→ R
(x, y) 7−→ α(x, y)

est une application de classe C∞ , alors

∆̃(α) = (∆M(αy), 0) +

(
0,

1

2f 2
∆N(αx)

)
+ n (dαy(grad lnf), 0)

où ∆̃ désigne l'operateur laplacien sur la variété produit tordu M ×f2 N .

Pour simpli�er, on écrit

∆̃(α) = ∆M(α) +
1

2f 2
∆N(α) + n.dMα(grad lnf)

Preuve :
Soit {e1, ..., em} (resp {bm+1, ...., bn+m}) une base locale orthonormale sur M (resp N). On
pose  ẽi = (e1, 0) i = 1, ....,m

1

f
b̃i−m = (0,

1

f
b̃i−m) i = m+ 1, ...., n+m

Alors {h1, ..., hm+n} est une base locale orthonormale sur la variété produit tordueM×f2N .
On a

∆̃(α) = Σn+m
i=1 hi(hi(α))− (∇hihi)(α)

Remarquons que b̃i(f) = 0, on a

∆̃(α) =
m∑
i=1

{
(ẽi(ẽi(α)))− (∇̃ẽi ẽi)(α)

}
+

n+m∑
i=m+1

{
1

f 2
b̃i(b̃i(α))− 1

f 2
∇̃b̃i

b̃i(α)

}

=
m∑
i=1

{
(ei(ei(αy)), 0)− ((∇M

ei
ei)(αy), 0)

}
+

1

f 2

n+m∑
i=m+1

{
(0, bi(bi(αx)))− (0, (∇N

bi
bi)(αx))

}
+

1

2f 2

n+m∑
i=m+1

h(bi, bi)((gradf
2)(αy), 0)

= (∆M(αy), 0) +
1

f 2
(0,∆N(αx)) +

n

2f 2
((gradf 2)(αy), 0)

= (∆M(αy), 0) +
1

f 2
(0,∆N(αx)) +

n

2f 2
(dαy(gradf

2), 0)

= (∆M(αy), 0) +
1

f 2
(0,∆N(αx)) + n(dαy(grad lnf), 0)
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De la Proposition 3.12, on déduit.

Corollaire 3.2.1. � α harmonique si et seulement si{
• αx, αy( sont harmoniques )
• dαy(grad lnf) = 0

� Si f est constante, alors α harmonique si et seulement si αx et αy sont harmoniques.
i.e

(∆̃(α) = 0)⇐⇒ (∆M(α) = 0 et ∆N(α) = 0)

pour tout x ∈M et y ∈ N .



Conclusion

La Géométrie Riemannienne est une grand branche et essentiel pour les physicien
par example relativité général et théorème d'Albert Einstein et appliqué sur trous noirs et
voyage à travers le temps c'est la théorie de la physicien surtout mécanique quantique donc
Le développement de la physique et de la science est lié par développement de math.
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