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Introduction

En mathématiques, il y a plusieurs branches parmi les quelles a géométrie, cette der-
niére étudie les propriétés et les relations des formes et des figures dans un espace. La
géométrie se divise en deux types, la géométrie analytique et la géométrie différentielle :

1. La géométrie analytique : Partie de la géométrie ayant recours au calcul algébrique
et analytique. Elle facilité les Etude des propriétés géométriques des courbes et
des surfaces et de leurs présentations graphiques ou la recherche de "lieux géomé-
triques".

2. La géométrie différentielle : Est une continuité du calcul infinitésimal 2, elle permet
d’étudier

grace aux techniques du calcul différentiel, une nouvelle famille d’espaces topologiques ap-
pelées "variété différentiable", permettant la rénovation de la vieille géométrie des courbes
et des surfaces de R? la Gauss . Pendant de nombreux siécles, le cadre naturel de la géo-
métrie est la géométrie euclidienne du plan ou de I'espace. Les infructueuses tentatives
de démonstration du postulat des paralléles ont aidé les géométres & imaginer les moyens
de dépasser ce cadre. Ainsi Lobatchevski en 1829 et Bolyai en 1832 introduisent les pre-
miers exemples de géométrie non euclidienne. Les espaces a géométrie hyperbolique qu’ils
construisent sont maintenant vus comme des cas particuliers de variétés riemanniennes "a
courbure négative. Quelques années auparavant, Gauss étudie la géométrie différentielle
des surfaces de ’espace euclidien. Il introduit pour les décrire une quantité fondamentale,
la courbure de Gauss. Il réalise que cette courbure peut étre calculée sans faire intervenir
Iespace ambiant, directement & partir d’informations disponibles sur la surface, théoréme
qu’il qualifie de "remarquable" (théoréme egregium) 3. Gauss passe lui-méme tout preés de
la découverte de la géométrie hyperbolique Le premier pas de la géométrie riemannienne
proprement dite remonte aux travaux de Bernhard Riemann au dix-neuviéme siécle et en
particulier lors d’une conférence inaugurale intitulée "Uber die Hypothesen, welche der
Géomeétrie zu Grunde liegenl" (soit en frangais : Sur les hypothéses sous-jacentes a la
géométrie). C’est une généralisation directe de la géométrie différentielle des surfaces de
Gauss en n dimensions. Cette nouvelle démarche a largement étendu 1'idée de géométrie
non euclidienne, méme si son cadre conceptuel a mis plusieurs décennies a se mettre en
place

2. calcul infinitésimal c & d calcul différentiel et calcul intégral

3. En mathématiques, et plus précisément en géométrie, le theorema egregium (« théoréme remarquable
» en latin) est un important théoréme énoncé par Carl Friedrich Gauss et portant sur la courbure des
surfaces. Il énonce que celle-ci peut étre entiérement déterminée & partir de la métrique locale de la
surfacel, c’est-a-dire qu’elle ne dépend pas de la maniére dont la surface peut étre plongée dans I'espace
tridimensionnel.



TABLE DES MATIERES




Chapitre 1

Rappel et définition

1.1 Notion d’espace topologique

1.1.1 Espace topologie

Définition 1.1.1. Soit X un ensemble non vide une famille T de partie de X est une
topologie si et seulement si;
1) X, 0eT
2) VAL BeT, ANBeT
3) soit (A;)ier une famille quelque de X ,alors U;erA; € T
(i) les élément de T appelé les ouverts de T
(i1) le couple (X, T) est appelé un espace topologique sur X.

Exemple 1.1.1. Soit X = {1,2,3,4} T = {0, X,1,3,4,1,2,4} est une espace topologie
sur X puis qu’il vérifier les trois axiomes précédent.

Définition 1.1.2. Un espace topologie X est dit espace Ty ' si et seulement si Na,b € X
avec a # b alors v, € V(a),v, € V(b) V(a) design l'ensemble des voisinages de a V (b)
design l’ensemble des voisinages de b tel que b & v, et a ¢ vy .

Remarque 1.1.1. v,, v, nest pas nécessairement disjoint .

Définition 1.1.3. Un espace topologique X est un espace Ty si et seulement si les {x} C X
sont des fermés.

Preuve :
Supposons que X est un espace 71, il suffit de montre que {z} C X est fermé.
Soit y € {x}° on suppose que X plus qu’on point alors on peut choisir un ouvert V, C X
qui contient a y mais pas z = {z}° = JV, est un ouvert . donc = {z} est fermé
<) on suppose que V{z} est fermé, et on montre que X est un espace 17 .
Vo,y € X avec x # y = 3 un ouvertU tell que x ¢ U C {z}¢,(il est le mémé de y). Donc
X est un espace 7.

1. Un espace topologique E est T7 si pour tout couple (z,y) d’éléments de E distincts, il existe un
ouvert contenant x et pasy
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1.1.2 Espace Séparé

Définition 1.1.4. Un espace topologique X est un espace sépare ou Hausdorff* ou espace
Ty si et seulement si : Va,b € X et a # b Jv, € V(a) et v, € V(b) tell que v, Nvp, =10 .

Exemple 1.1.2. Tout espace métrique est un espace SEpare.

Preuve :

d(z,y)

Soit (X, d) un espace métrique. soit z,y € X |, x # y on pose 0 < 5 = r et

U = B(x,r),V = B(y,r).supposons que z € UNV . alorson a: d(x,y) < d(z, 2)+d(z,y) <
2r = d(x,y) contradiction. Donc U NV = () = X est Séparé .

Remarque 1.1.2. Un espace Séparé est toujours espace Ty mais la réciproque fauz .

Exemple 1.1.3. La topologie grossiére T, = {0, X} est un espace Ty En effet Vax,y € X
avec x #y et VB(x,r) = B(y,r) = X. Donc B(z,r)NB(y,r) = 0 = T, n’est pas Séparé .

1.1.3 Différentielle D’une application sur un espace vectoriel normé

Définition 1.1.5. Soit E un espace vectoriel sur un corps commutatif K(R ou C)
on appelle norme sur E tout application ||.|| :E — R vérifier les condition suivant :

(1) Ve € E,||lul| >0 et|ul| =0 u=0
(2) V(A z) € Kx E, |[Aul| = [A] |Ju]
(3) Y(wy) € E x B, |z +y] < llz] + Iyl
Un espace vectoriel munie d’une norme est appelé espace vectoriel normé.

Exemple 1.1.4. Les trois normes usuelles sur K(R ou C)
Soit n € N* considére Vo = (21, xa, ....x,) € K les réel ||x1|, ||z2|], [|[zo|| définie par :

1
> lzwl s ezl = (4o, 2712 [Jeeo || = maxi<pen |kl
Définition 1.1.6. Soient E,F deuz espace vectoriel normés U un ouvert de E et f :-u — F

une application, on dit que f est différentiable en xo € U s’il existe une application linéaire
g de E dans F telle que :

o @) = fa) =g =l

=0 [ = 2ol g

ou f(zo+h)— f(xzo) —g(h) = o(||h||)e(h)avec limyp— €(h) = Oet(h = x — x¢) On dit que
g est la différentielle de f en xg et est noté par D,, f
— on dit que f est différentiable sur U s’elle est différentiable en tout point x en U.
— fest de classe C' si d’application différentielle est continue.
— si f admet k-différentielle continues on dit que f est de classe C*(k > 1).

2. un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points
distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome
T5 au sein des axiomes de séparation.
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Exemple 1.1.5. Toute application constante est différentiable en tout point a de U et
Df =0.

Propriété 1.1.1. si f est différentiable au point xy alors Uapplication linéaire continue g
de la définition est unique.

Preuve :
Soient g; et go deux application linéaire continue de E dans F tell que VA € E avec
zo+h €U, onait; f(xo+h) = f(xo) + g1(h) +o([[h[D)er(h) = f(x0) + g2(h) + o([|h]])e2(R)
avec lime;(h) = 0 et limey(h) =0
alors on a [[(g1 — g2)(h)]| = o(||h||e(R) tell que € = €; — .
puis que lime; (h) = 0 et limey(h) = 0,il en est de méme de €
Donc Vr > 0, il excite o > 0 tells que pour tout h € E, ||h|| < a = [le(h)]| <r
on a alors

121l < a, [[(g1 = g2)(R)[| = o([|A]l)e(h) < r||A].
Il sien suite que ||(g1 — g2)|| < rVr > 0.
Donc||(g1 — g2)|| = 0, et obtient g; = go.

Propriété 1.1.2. Soient E F,G des espace vectoriel normés U un ouvert de E et V un
ouvert de F, f:U - V,g:V - Ga €U, f(a)=b€eV. sifest différentiable en a et g
différentiable en b alors g o f est différentiable en a et

D(go f)(a) = D(g(f(a)) o D(f(a))
Preuve :
Ona (go f)(al—i- h)—(go f)(a) =g(f(a+h)) —g(f(a)). puis que f est différentiable au
point a on a alors
{f(a +h) = f(a) = Df(a)(h) + e(h) |||
limy,_,o€e(h) =0
posons D f(a)(h)+e(h) ||h|| = [ donc g(f(a+h)) = g(f(a)+1). puis que g est différentiable

au point f(a) on a alors

{g(f(a)+l): 9(f(a)) + Dg(f(a))(1) +€0) 1]
lim; 0 €'(1) =0

1.1.4 Variété Différentiable

Soit M une espace topologique.

Définition 1.1.7. Une carte local (U, ¢) de dimension n pour M consiste en un ouvert
UdeM appelé domaine de la carte,
et un homéomorphisme3¢ : U — ¢(U) C R™ appelé application de coordonnées.

Définition 1.1.8. Un atlas différentiable A de dimension n pour M est une collection
A={(U;,¢:)|i € I} des cartes locales de dimension n pour M tell que :

- UiealU; = M.

- siU;NU; # 0 pour i,j € I, alors Uapplication de changement de carte
gi 0 d; ' ¢i(U; NU;) — ¢;(U; N U;) est différentiable.

3. application ¢ : U — ¢ (U )est un homéomorphisme si ¢ est bijective, et si ¢ et ¢~ !sont continue
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Définition 1.1.9. Une variété topologique est un espace M muni d’une topologie pour
laquelle il est séparé?, qui est homéomorphe a R™,i.e pour tout x € M, il existe un homo-
morphisme.

¢:U— ¢(U) CR"™, ou U est un voisinage ouvert de x dans M et ¢p(U) est un ouvert
de R".

Exemple 1.1.6. L’espace euclidien R™ est une variété topologique de dimension n.

Définition 1.1.10. Deuz carte (Uy, ¢1) et(Us, ¢2) d’une variété topologique M, d’ordre K
compatible si Uy NUy # 0 ou si lapplication de changement de carte
p20¢7 o1 (UL NUz) — ¢o(Ur N Uy)

est CF difféomorphisme?.

Exemple 1.1.7. La sphére S? C R3, est une variété de dimension 2 : on peut construire
un atlas en utilisant la projection stéréographique. Les points N(0,0,1) et S = (0,0,—1)
désignant respectivement les poles nord et sud .

Définition 1.1.11. Un atlas différentiable A pour une variété différentiable M est dit
maximal st il n’est pas inclus strictement dans un autre atlas différentiable pour M.

Définition 1.1.12. Une variété différentiable de dimension n est un espace topologique
M muni d’un atlas différentiable maximal de dimension n.

Exemple 1.1.8. L’espace R™ est une variété différentiable de dimension n et de classe

Ce.

Exemple 1.1.9. La sphére S? est une variété différentiable de dimension 2.

4. Une espace topologique M est dit séparé si deux points distincts de M possédent des voisinages
disjoint

5. Un diffeomorphismes de classe C* est une application bijective de classe C* dont réciproque est
aussi de classe C*
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1.1.5 Théoréme d’inversion locale

Définition 1.1.13. Soit f : U — V une application ,ou U est un ouvert de E et V un
ouvert de F' et k € N*U{oco} On dit que f est un Ck-difféomorphisme de U sur V si
seulement si :

o [ est bijective.

o f~1 et f sont de classe C*.0On dit alors que U et V sont difféomorphes.

Propriété 1.1.3. Si f : U — F est un C*-difféomorphisme, alors ’image de tout ouvert
de U est un ouvert de V , et l'image réciproque de tout ouvert de V' est un ouvert de U

Définition 1.1.14. Soit f : U — F et 29 € U. f est un CF-difféomorphisme local en x
st seulement si il existe un voisinage Uy, de xo dans U , un voisinage Vi, dans F tel
que f: Ugy = Vo) s0it un C* difféomorphisme.

Définition 1.1.15. f : U — F est un CF difféomorphisme local sur U si seulement si
c’est un C* difféomorphisme local en tout point de U.

Théoréme 1.1.1. [}/ (d’inversion local 1)
Soit E et F deuz espace Banach® .Si f : U — F est C* en xg et d,, f € Iso(E; F) alors
f est un C* difféeomorphisme en x.

Théoréme 1.1.2. [}/ (d’inversion local 2)
Soit E et F deux espace Banach .Si f : U — F est C% sur U et d,,f € Iso(E; F) pour
tout © € U. Alors f est un C* difféomorphisme local sur U.

Théoréme de Rang

Définition 1.1.16. (Rang d’une application)

Soient (E,||.||g) et (F,||.||r) deuz espace de Banach et f : U C E — F une application
de classe C* Si Im(D,f) = D.f(h);h € E est une espace vectoriel de dimension fini.on
dit alors que [ est de rang fini en x et on note

rang,(f) = dim(Im(D,f))

Remarque 1.1.3. Soient (E, ||.||g) et (F,||.||r) deuz espace de Banach et f :U C E — F
une application de classe C1.Si E est de dimension fini ,alors

dim(E) = dim(ker(D, f)) + dim(Im(D,f))

d’on

reng.(f) = dim(Im(D,f)) = dim(E) — dim(ker(D,f))

Définition 1.1.17. (Immersion)

Soient (E,||.||g) et (F,||.||F) deux espace de Banach et f : U C E — F une application de
classe Ct.On dit que f est une immersion en v € U si D, f : E — F est une application
injective (i.e ker(D,f) = {0}.

f est dit immersion sur U si elle est immersion en tout point x € U.

6. Un espace vectoriel normé est un espace de Banach si et seulement si, dans cet espace, toute série
absolument convergente est convergente



14 Rappel et définition

Définition 1.1.18. (submersion)
Soient (E,||.||g) et (F,||.||r) deuz espace de Banach et f : U C E — F une application de
classe C*.On dit que f est une submersion en v € U si D,f : E — F est une application

surjective (i.e Im(D,f) = F.
f est dit submersion sur U si elle est submersion en toul point x € U.
Remarque 1.1.4. Si E et F' sont de dimension finis alors :

1. [ est une immersion en x si et seulement si rang,(f) = dim(E)

2. [ est une submersion en x si et seulement si rang,(f) = dim(F)

1.2 Espace tangent et fibré tangent

Soit M une variété différentielle de dimension n. On note C* [’ensemble des fonctions
réelles de classe C*° sur M.

Définition 1.2.1. L’ensemble C*(M) est un espace vectoriel sur R est une algébre as-
sociative et commutative avec le produit usuel (fg)(z) = f(x)g(x), ou f,g € C*(M) et
re M.

1.2.1 Espace tangent
Définition 1.2.2. Un vecteur tangent en un point p € M est l'application
v:C®(M) —R
telle que pour tout a,b € R, pour tout f,g € C*(M),on a
1. vest R-Linéaire : v(af + bg) = av(f) + bv(g).

2. v satisfait la regle de Leibniz - v(f.g)(p) = v(f)g(p) + v(9) f(p).

L’ensemble de vecteurs tangents au point p de M est noté par T,M et on Uappelle l’espace
tangent en p € M c’est un espace vectoriel de dimension n (dimM).
1l existe une autre notion de l’espace tangent .

Définition 1.2.3. On définit ’espace tangent a M en un de ses points comme [’ensemble
des vecteurs tangents a une courbe tracée dans M : un vecteur v de R" est dit tangent a
M en un point x de M s’il existe une courbe paramétrée de classe C*.

Exemple 1.2.1. L’espace tangent en tout point p d’un ouvert U de R" est T, U = R".

Propriété 1.2.1. L’espace tangent T,M est un espace vectoriel réel de dimension n. St
(U, ®) est une carte local en p avec coordonnées local (x!,...x™).

1.2.2 Fibré tangent

Définition 1.2.4. On appelle fibré tangent a M ,qu’on [’on désigne par T M, [’ensemble
de tout les vecteurs tangent de M en ses points, c’est donc la réunion de tout les espaces
tangents T,M en ses divers points :

T™ = | J TpM = | {(p.v)lp € M,v € T,M}.
pEM peEM

C’est une famille d’espace vectoriel paramétrisé par M. On peut le munir d’une projection
m:TM — M définie par m(T,M) = x.
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Exemple 1.2.2. 5i M = U est un ouvert de R", ’espace tangent a M en chaque point x
sidentifie canoniquement a R™, en utilisant ['atlas a un seul élément donné par l'inclusion
de M dans R™.

Le fibré tangent de U s’identifier alors a U x R™.

Exemple 1.2.3. Le fibré tangent au cercle
St ={(z,y) e R* 2> +¢* =1}
apparait ainsi comme la variété
{(z,y, X,Y) e R 2* + ¢* = 1,2 X + yY = 0}
il est difféeomorphe au cylindre S x R™.

Propriété 1.2.2. [/] Si M une variété différentiable de R", de dimension n et de classe
Ck,k > 1, alors son fibré tangent est une variété R x R™ de dimension 2n et de classe

cH.

1.2.3 Champ de vecteur

On désigne par T,M [espace tangent a une variété M en un point p. Les espace tan-
gents T, M ou p parcourt la variété M forment une variété différentiable de dimension 2n
(oun = dimM ), noté TM qui se projette canoniquement sur M la projection

m:TM— M

associé a tout vecteur X son point d’application, ¢ a d un point p € M tel que X € T,M de
sort que T,M = 7=%(p). les section de cette projection ¢ & d les application différentiable.

X:M—-TM
pr— X,

tel que mo X =1id c a d X, € T,M s’appellent champ de vecteurs sur M. Ces champs
des vecteurs engendrent canoniquement un espace vectoriel de dimension infinie qui sera
désigné H(M).

Définition 1.2.5. soit M est une variété différentiable.
Le crochet de Lie noté [,] est définie par [X,Y] = XY — Y X pour tout X, Y € H(M)
vérifient les propriété suivants :

.| est bilinéaire et antisymétrique
(X, Y], 2] + [V, 2], X] + [[Z, X], Y] = 0 pour X, Y € H(M).
X, 9Y] = folX,)Y]+ fX(9)Y —gY(f)X pour X, Y €eH(M) et f,geC>®

[
[
[
(X, Y] = X790 —yioXl oy X = X120y =Yi 2

1
2
3
4
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Définition 1.2.6. Soient Vi, Vs, ..., Vi et W des espaces vectoriels, soit F une application
de Vi X ... x Vjy = W. On dit que Uapplication F est k-linéaire ou (multilinéaire aire) si
elle est linéaire sur chaque variable i.e

F(vy, .o, avy, 4+ By, oy Ug) = aF (01, ooy Uiy ooy V) + BF (U1, 0y Vigy ooy Ug)

Pourtouta,8 € Keti=1,...,k. Soit V un espace vectoriel sur R, l'application w : V — R
est applée un covecteur, [’ensemble des covecteurs est appelé le dual de V noté V*.
On va considérer que (w,v) = (v,w) =w(v) eR, v eV, we V*.

Propriété 1.2.3. Si (v1,...,v,) est une base de V' espace vectoriel de dimension n, alors
(w',...,w™) est une base de V* et on a w?(v;) = 0;;. En particulier, dim V = dim V*.

Définition 1.2.7. 1. Un k-tenseur covariant sur V est une application k-linéaire
VE — R tel que VE = V x ... x V. On note T*(V) Uensemble des tenseurs k-

k foi

018

covariante sur'V

2. Un l-tenseur contravariant est une application linéaire sur V' — R. On note
Ti(V) lensemble des tenseurs l-contravariant sur V

3. Un k-tenseur covariant et l-tenseur contravariante est une application (k + 1)-
linéaire sur VExV* — R. un tenseur de type (k, 1) est k-covariante et l-contravariante.
On note TF(V) Uensemble des tenseurs de type (k,1).

4. Par convention T°(V) = Ty(V) = R.

Définition 1.2.8. Le produit tensoriel de deus tenseurs F € T}(V) et G € TP(V) est le

. k+
tenseur noté '@ G € T/ P(V)

1 I I+q) _

F @ G1y oy Uiy eooy Uy W oy 0t =

1 I 1+1 I+
F(up, ., vg,w'y oo, )G (Vg1 oy Vg, 0T w9,

Lemme 1.2.1. Si (vy,...,v,) est la base de V' et (wy,...,w,) la base duale correspondante
aV (i.e. w'(v;) = 08}), alors le tenseur :

W R ... Qw* vy @ Quy, 1< g, 145N

forme une base de T*(V'). Par conséquent, dim TF(V) = n*™! Tenseurs sur une variété.
Pour tout p € M, définissons [’espace vectoriel

Tp(s,r)M — TPM R..® TM{@@M ®..0T,M

J/

~"~ ~~
s fois r fois

Un élément T € Tp(S’T)M est un tenseur de type (s,r) au dessus de p. Dans une base
associée o des coordonnées (x;) au voisinage de p, il s’écrit

0 J Jr
(p) @ dap, ® ... @ dx),

81...0 a
Ty =T33 P g~ () ® .. ® 5

J1--Jr axz
1

s



Chapitre 2

Introduction a La géométrie
Riemannienne

2.1 Notion de Tenseur

2.2 Meétrique Riemannienne sur une variété

Définition 2.2.1. Une métrique Riemannienne g sur une variété M est une application,
g : T(TM) x T(TM) — C®(M)

C>®(M) bilinéaire,symétrique,non dégénéré et définie positif .

Remarque 2.2.1. Soit g une métrique Riemannienne sur M pour tout V,W € T'(TM)
on a :

— g(V, W) =g(W, V). (symétrique)
— g(V,V)=0=V =0 (non dégénéré)
— g(V, V) > 0 (définie positif)

2 gel(TM*)@T(TM*) si (U, ¢) une carte sur M alors

k
g= Z gijdxi ® da’

,j=1

ou g;; sont des fonction différentiable sur U appelé composantes de tenseur métrique rela-
tivement a la carte (U, ¢).

localement, si V =V'0; et W = W79, on a
g(V, W) = glJVZW]
3 pour tout x € M on a
e T, M x T, M — R
est une forme bilinéaire, symétrique non dégénéré et définie positif ou T, M désigne [’espace

tangent en x.

Définition 2.2.2. Une variété riemannienne est un couple (M, g) ou M est une variété
différentiable et g une métrique Riemannienne sur le fibré tangent (T M, 7, M).
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Exemple 2.2.1. L’espace R™ muni du produit scalaire standard

n

go(v,w) = Z V;W;

i=1
ou v = (v1,...0,), et w=(wy,..wy,), € T,R*et x € R”.

Exemple 2.2.2. L’espace R™ muni du produit scalaire standard

n

go(v,w) = Z V;W;

i=1

ou v = (v, ...0,), €t w=(wy,..wy), € T,R et z € R".
sur M =R® on pose g = de @ do + dy ® dy + dz @ dz = da® + dy* + d2*
la matrice associé a g est

1 00
0 0 1
g est bilinéaire car soit Vi, Vo, Wi, Wy € I(TM)et f,h € C*(M)
g(fVi + hVo, W) = dz®(fVi + hVa, W) 4+ dy?(fVi + hVa, W) + d2*(fVi + hVa, W)
= dx(fVi + hVa)de(W) + dy(fVi + hVa)dy(W) + dz(fVi + hVa)dz(W)
= fdz(V})dz(W) 4+ hdz(Va)dx(W) + fdz(Vy)dy(W) + hdy(Va)dy(W)

+ fdz(V1)dz(W) + hdz(V2)dz(W)
= fg(Vi, W) + hg(Va, W)

g(V, fWh + hWa) = da*(V, fW1 + hWa) + dy?(V, fWh + hWa) + d2*(V, fWy + hWs)
= fg(V,W1) + hg(V, W>)

det (9i;) =1 # 0 non dégénéré

Gr2 = Ga1, 913 = G31, Y23 = ga2 alors g est syméirique
det g;; =1 > 0 définie positif

donc g une métrique Riemannienne.

2.3 Connexion Linéaire

Définition 2.3.1. Une connexion linéaire sur une variété M est une application

V :T(TM) x T(TM) — T(TM)
(X, V) —> VXV

vérifiant :
I Vx(V+W)=VxV+VxW

2 Vx(fV) = X(f)V + fVxV
3 Vipy = VaV + fVyV
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pour tout X, Y, VW € I(T'M) et f € C*(M).

Définition 2.3.2. Soient V une connexion sur une variété M de dimension n et (0, ....0y,)
resp(dazt, ...dz™) une base local de section de T'(TM)respl(T*M) on définie les coefficient
de Christoffel par :

Définition 2.3.3. Une section V € I'(T'M) est dite paralléle par rapport & la connexion
V si:
VxV =0

pour tout X € I'(T'M).
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2.4 Tenseur de Torsion

Définition 2.4.1. Soient M une variété différentiable et V la connexion linéaire sur M le
tenseur de torsion associé a V est une application vectorielle C*°(M)-bilinéaire définie par

D(TM) xI'(TM) — I(TM)
(x,y) — T(X,Y)=VxY —-VyX —[X,Y]
pour tout X,Y € I(T'M) la connexion V est dite sans torsion si T = 0.
Remarque 2.4.1. on a les propriélé suivants :
1. T une champ de tenseur de type (1,2).
2. T(X,Y)=-T(Y, X) pour tout
3. la connexion V est sans torsion ssi pour tout X, Y € I'(TM) on a
(X, Y] =VxY —VyX
4. pour tout x € M le tenseur de torsion T induit une application bilinéaire vectoriel
T, :T,MxT,M —T,Muvw) —T,Muvw)=(VxY),—(VyX),—[X,Y],

ou X, Y € I(TM),telle que X, =v,Y, = w indépendamment du choiz X,Y .

Théoréme 2.4.1. [8] Soit V une connexion linéaire sur M si p € M tel que T, = 0 alors

il existe une carte (u,x',...x™) telle que pour tout i,j,k =1,..n, on a

I(p) =0

2.5 Connexion Levi-Cevita
Théoréme 2.5.1. Soit (M,g) une variété Riemannienne,l’application
V:I(TM)xT'(TM) — T'(TM)
définie par la formule de kozul
QQ(Vva Z) = Xg(Y> Z) + Yg(X’ Z) + Zg(X, Y)
est une connexion linéaire sur M,appelé connexion de Levi-Cevita.

Preuve :
pour tout X,Y,7Z € T(TM)etf € C>'M) on a
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20(VixY, 2) = fXg(Y, 2) +Yg(Z, fX) = Zg(f X,Y) + g(Z,[f X, Y])
+9(Y.[Z, fX]) — g([X,[Y, Z])
=[Xg(Y,Z2)+Y()g9(Z, X)+ fY(9(Z, X)) — Z(f)g(X,Y)
— fZ(g(X,Y)) =Y (f)9(Z, X) + f9(Z,[X,Y])
+Z(f)g(Y. X) + fg(Y,[Z, X]) — fg(X,[Y, Z])
= fXg(Y,2) +ng( X) = [Zg(X,Y)+ fg(Z,[X,Y])
+ f9(Y.[Z,X]) — fg(X,[Y, Z])
=2fg(VxY, Z)
a et comme g non dégénéré VixY = fVxY
2.
29(VxswY, 2) = (X +W)g(Y,Z) + yg(Z, X + W) — Zg(X + W Y)
+ 9(Z,[X + W, Y]) + gV, [Z, X + W]) — g(X + W, [Y, Z])
=X(g(Y.2))+Y(9(Z,X)) - Z(9(X,Y)) + 9(Z, [X,Y])

+9(Y,[Z, X]) —g(X, [Y, Z]) + Wyg(Y, Z) + Y (9(Z, W))
= Z(gW,Y)) +g(Z, W, Y]) + g(Y, [Z,W]) — g(W, Y, Z])
=29(VxY,Z)+2¢9(VwY, Z)
=2¢(VxY + VY, Z)
d'ou VxiwY = VyY + Vi Y.
3.
29(Vx 1Y, Z) = X(g(fY, 2)) + fYg(Z, X) - Z(g(X, [Y)) + 9(Z,[X, fY])
+9(fY.[Z,X]) — (X, [fY, Z])
=X(fg(Y.Z)+ fXqg(Z,Y)+ fY9(Z,X) = Z(f)g(X,Y)
— fZ9(X,Y)+ X(f)9(Z,Y) + f9(Z,[X,Y]) + fg(Y,[Z, X])
+Z(f)g(X,Y) = f9(X,[Y, Z])
=2X(f)g(Y,2)+ fXq(Y.Z) + [Y9(Z,X) — [Zg(X.Y)
+ f9(Z,[X.Y]) + f9(Y,[Z, X]) — f9(X,[Y, Z])
=2X(f)g(Y,Z) +2f9(VxY, 2)
=29(X(fly+ fVxY,Z)

Aot VyfY = X(f)Y + fVxY

De méme maniére on obtient,Vx (Y + Z) =

sur M.

Vxy+ VxZ.Donc V une connexion linéaire

Théoréme 2.5.2. (théoréme fondamental sur la géométrie Riemannienne)

si (M,g) est une variété Riemannienne,

alors la connexion de Levi-Civita est 'unique

connexion linéaire sans torsion et compatible avec g.
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Preuve :

o(VxY,2) ~ g(Vy X, 2) = - {g(Z, [X.V]) - g(Z,[Y, X))}
= g(Zv [Xv YD

d’ou la connexion de Levi-Civita est sans torsion.FEt;

o(VxY,2) = o(Vy 2,Y) = S {Xg(Y. 2) + Xg(Z,Y)}
= Xg(Y,2)

cela prouve que la connexion de Levi-Civita est compatible avec la métrique g sur M comme
est non dégénéré cette relation détermine complétement la connexion V, Ce qui donne
['unicité.

Propriété 2.5.1. soient (M™,g) une variété Riemannienne de dimension m et V la

0

connexion de Levi-Cevita. si (U, ¢) est une carte sur M avec les champs de bases (F’ W)
x x

associé alors les coefficient de Christoffel Ffj sont donné par :

0g;l 091 8ng
FZ D) Z gl{ 8‘52 j }

)
=1

g /?‘:1 dg;l agil_agij}
ME = oVop " gpi - ol )

ou g;; sont les coordonnée de g relativement a la carte (U, ¢).

Preuve : 5
comme [0;,0;] = 0,pour tout i,j = 1,...m,ou 0; = 51 P0UT touti=1,..m on a
LE'L
29(V,0;,01) = 229 0y, )
=2 Tl
s=1
9;(9(0;, 1)) + 0;(9(01, 9;)) + 0i(9(9;, 0;))
donc
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d’ot
l 1 l . .
Z [gslg'k = 59'k{0igjl + 9; 911 — Dugij}
et

1 . .
Z F”gslglk; =3 Zglk{@gjl + 011 — 0,9:7 }
=1

s,l=1

et comme (g'j) est la matrice inverse de (g;j) on a Y -, gslg'k = ds oudys le symbol de
Kronecker d’ou

dg;l  Ogil 8921
o= 5 Yo+ 5 - Sy

) ]
l_

Exemple 2.5.1. Nous paramétrons la surface du Tore X par

x = (c+acosv)cosu
X(u,v) =< y = (c+acosv)sinu
Z =asinv

Nous commencgons par calculer
1/la métrique induite : Soit g., = dx* + dy* + dz* la métrique Euclidienne sur R3

dr = —(c+ acosv)sinudu — acosusinvdv
dy = (¢+ acosv)cosudu — asinusin vdv
dz = 0du + acosvdv

(c+ acosv)sinu)?du?® 4+ (—a cos usin v)dv?
(c + acosv) cosu)?du? + (—asin usin v)?dv?
du® + (a cosv)?dv?

(—
(
dz2 0

Alors, gey = (¢ + acosv)?du® + a*dv?. La matrice et son inverse sont données par Gij =

g G2 | _ (c+acosv)> 0 |, gi = gt g" _ (c+aiosv)2 0
go1 22 0 a* |’ 9 g 0 %
00 } [ —2acosv(c+acosv) 0 }
et Gijv = .

les dérivées partielles : gij. = [ 0 0 0 0
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2/ les symbole de Christoffel :

1
Fgu - 5 [g““ (guu,u + Guuu — guu,u) + guo (gvu,u + Gouu — guu,v)]
u ]' uu
Fuu = é[g (0 +0—- O) + O(QUu,u + Gouu — guu,v)]
1
FZU - §[guu(guv,u + Guupw — guv,u) + guU (gmf»u + Gouw = guv,v)]
u 1 uu
Fuv = §[g (O + Guuw — O) + 0<gm},u + Goupw — guv,’v)]
oo sy
(c+ acosv)
1
Fgu - §[guu(guu,v + Guvu — gvu,u) + guv (gvu,v + Govu = gvu,v)]
U ]' uu
Fvu - 5[9 (guuw +0 — O) + 0<gvu,v + Govu — gvu,v)]
[e g oo __asimo
(¢ + acosv)
1
FZ’U - §[guu(guv,v + Guow — gvv,u) + guv (gvvvv + Jovw — g””?”)]
u ]' uu
Fvv = 5[9 (0 +0— 0) + 0(9@@,1; + oo — gvv,v)]
M, = 0
v 1 v
Fuu = 5 [O(guu,u + guu,u - guu,u) + g (O + 0— guu,v)]
1
re, = —sinv(c+ acosv)
a
1
FZ’U - §[gvu(9uv,u + Guup — guv,u) + gm} (gvuu + Gouw — guv,v)]
1
Tow = 5009w+ Guuo = Guvu) + 97 (0+0—0)]

Py = o =0

2.6 Courbure

2.6.1 Tenseur de Courbure.

Définition 2.6.1. Soit M une variété muni d’un connexion Linéaire V,on définie le ten-
seur de courbure R:T(TM) x T'(TM) x T'(TM) — T'(TM), associé a ¥V par :

R(X,)Y)V =VxVyV = VyVxV = VixyV
pour tout X,Y,V € T'(TM).

Propriété 2.6.1. on a les propriété suivants :

1) la courbure R est C*°(M)-3 Linéaire.
2) R(X,Y)V = —R(Y, X))V pour tout X, Y € T'(TM)etV € T'(TM) antisymétrique
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Définition 2.6.2. Sur une variété Riemannienne (M,g) le tenseur de courbure de la
connexion Levi-Cevita est appelé tenseur de courbure Riemannienne. le tenseur de courbure
Riemannienne s’exprime en fonction des coefficient de Christoffel.

R(D;,0;)0), = Z R0,

ot (0;)i=1..n est une base local de champs de vecteurs sur M.

Propriété 2.6.2. Soit (M, g) une variété Riemannienne. le tenseur de courbure Rieman-
nienne R a la propriété suivants :

1. R est un champ de tenseur de type (1,3).
2. g(R(X,Y)Z, W) = —g(R(X, Y)W, Z).

3. g(R(X,Y)Z,W) = g(R(Z, W)X, Y).

4. R vérifie lidentité de Bianchi Algébrique.

RX,Y)Z +R(Y,2)X + R(Z,X)Y =0

B

R vérifie l'identité de Bianchi différentiel.

VX,Y,Z,W,V € I(TM).

preuve :
Montrons la premier identité de Bianchi(Algébrique) VX,Y,Z € T(TM).

R(X,9)Z + R(Y,Z)X + R(Z,X)Y =Vx +VyZ - VyVxZ - VX,Y]Z
+VyVzX = VyVy X — VY, Z]X
+VVXY = VxVY - ViZ,X]
= Vx(VyZ = V,Y)+ Vy (VX — VyZ)
+V2(VxY = VyX) - VX, Y]Z - VY, Z|X —VZ, X]
=Vx[Y, Z]+ Vy[Z,X]+ Vz[X,Y]
— Vixy)iz = Vivzix — ViZ, X]
=X, [V, Z]| + [V, [Z2, X]] + [Z,[X, Y]] =0

Preuve :
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Montrons la douziéme identité de Bianchi (différentiel)

(VxR)(Y, Z)(W) = Vx(R(Y, Z2)(W)) — R(VxY, Z)(W)
- R(Y VZ)(W) — R(Y, Z)(VxW)...(1)

(VyR)(Z, X)(W) = Vy(R(Z, X)(W)) = R(Vy Z, X)(W)
- R(Z VyX)(W) = R(Z, X)(VyW)...(2)
(VZR)(X,Y)(W) = Vz(R(X,Y)(W)) = R(V2X,Y)(W)

R(
— R(X,VzY)(W) = R(X,Y)(VzW)...(3)

(1) +(2)+3) = (VxR)(Y, Z)(W) + (VyR)(Z, X)(W) + (VzR)(X, Y )(W)
+R(Vy X — VY, 2) (W) + R(VxZ — V2 X, Y)(W)
+R(VZY—VyZ,X)(W) (Y Z)(VXW)

- R(Z, X)(V,IW) = R(X,Y)(VZW)....(% )
(*) = Vx(Vy(VzW)) = Vx(Vz(VyW)) = Vx(VY, Z]W)
+ Vy(VA(VXW)) = Vy (Vx (VW) — Vy(V[Z X|W)
V(Y

+ V2 (Vx(VyW)) = V2(Vy (VW) = V2(V X, Y]W)
+R([Y, X], 2)(W) + R([X, 2], Y)(W) + R([Z, X], Y)(W)
— Vy(V2(VxW)) + V2(Vy (VxW)) + VY, Z|(Vx V)
— V2 (Vx(VyW)) + Vx(V2(Vy W) + Vi Z, X|(Vy W)
— Vx(Vy(VzW)) + Vy (Vx(VZW)) + VX, Y(VZWV)

= —Vx(VY, ZIW) = Vy(ViZ, X]W) = V4(V X, Y]W)

+ VY, X](V W) = V(VY, XIW) — (V{[Y, X], ZIW) + VX, Z)(Vy W)
— Yy (VIX, Z]W) = V([X, Z),Y]W + V| Z,Y](Vx W)

- VX(V[Z YIW) = (ViZ,Y], X)W + VY, Z)(VxW) + VZ, X|(Vy W)
+ VX, Y(V W)

= —VivxzaW = VixzyW = Vizy,xW

= —V(iv,x],21+[x.2, Y]+ y],x]W-

2.6.2 Courbure Sectionnelle

Définition 2.6.3. Soient(M, g)une variété Riemannienne de dimension n > 2 et p un
2-plan de T, M de base X,Y on appelle Courbure Sectionnelle en x de p.

g(R(X, Y)Y, X)

KalP) = SR X )g(V,7) — g X,V )2

Remarquons que dans la définition précédent, on peut remplacer X par A\X pour Adeg0 et
Y parY — g(X,Y)X. On peut donc Supposer que X, Y est une base orthonormale. Dans
ce cas.

K.(P) = g(R(X, Y)Y, X)

On Vérifier que K,(P) ne dépend pas de la base orthonormés de P : En effet, si Z,Test
une autre base orthonormale, il existe a,b € R tels que a® + b* = 1 avec

Z =aX +bY, T = —-bX 4+ aY

Une simple vérification monitre que
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2.6.3 Courbure de Ricci

Définition 2.6.4. La courbure de Ricci d’un Variété Riemannienne (M™, g) de dimension
m est un tenseur de type (0,2) défini par.

Ric(X,Y) = tmceR(* XY

= Zg (e;, X)Y,€;)

pour toutX,Y € I'(TM) ou (e;) est un base orthonormé local sur M, et
R(x, X)Y;D(TM) — T(TM)
Z — R(Z,X)Y
On pose
Ric: T(TM) x T(TM) — R
(X,Y) — Ric(X,Y)

La Courbure de Ricci,Ric est un forme bilinéaire symétrique,en effet

Zg ela Yel)
—Zg (Y,e;)e;, X)
_Zg 617 X,@i)

= RZC(Y, X)

Relativement a la base (= )i=1..m, les composantes du tenseur de Ricci Sont donnée par;

0 8>
ozt Oxi

= traceR(,

oxt
Ric;; = Ric(+—

Définition 2.6.5. Le tenseur de Ricci d’un variété Riemannienne (M™, g), est un tenseur
de type (1,1) défini par

Ricci(X) = Z R(X,e;)e

pour tout X € T(TM) et (e;)i=1..mest une base orthonormé local sur M.
Remarque 2.6.1. Soit (M™, g)une variété Riemannienne, de dimension m pour tout
X, Y el'(TM) on a

Ric(X,Y) = g(Ricci(X),Y)
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2.7 Opérateur sur une Variété Riemannienne

2.7.1 Opérateur gradient

Définition 2.7.1. Soit(M, g) une variété Riemannienne, on définit l'opérateur gradient
par
grad; C*(M) — I'(TM)
[ = gradf = ydf
ou la df est différentielle de f.

Propriété 2.7.1. (expression du gradient en coordonné locales)
Soient (M, g) une variété Riemannienne de dimension m, (U, @) une carte sur M avec les

champs de base associé —,...——alors pour toul f € C"™W(M)
Ozl Oxz™
= Of 0
— E v
(gradf)lv = g ozt OxI

ij=1
Preuve :

On applique directement la définition de Uapplication § et la définition de différentielle de
fonction f € C®°(M) relativement a la carte (U, ¢) sur M on a

N
df = Zl it
=S gy
i,7=1 813]
ozt OxJ

ij=1

ou dxt,..dz™ la base duale.

Propriété 2.7.2. soit (M,g) une variété Riemannienne. pour tout champ des vecteur
X € T(TM) et tout fonction f € C°(M), on a

df (X) = X(f) = g(gradf, X)

Propriété 2.7.3. Soit (M, g) une variété Riemannienne. pour touthf € C*°(M) on a :
1). grad(f + h) = gradf + gradh
2). grad(fh) = hgradf + fgradh
3). (gradf)(h) = (gradh)(f)
Preuve :
Soit hf € C*(M) pour tout X € I'(T'M) on a : 1).

g(grad(f +h),X) = X(f +h)
= X(f)+ X(h)
= g(gradf, X) + g(gradh, X)
= g(gradf + gradh, X)
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g(grad(fh), X) = X(fh)
— WX (f)+ X (h)
= hg(gradf, X) + fg(gradh, X)
= g(hgradf + fgradh, X)

(gradf)(h) = g(gradf, gradh)
= g(gradh, gradf)

= (gradh)(f)

2.7.2 Divergence d’un champ de vecteurs

Soit X € I'(TM) un champ de vecteur sur une variété Riemannienne (M, g) on a

VX :T(TM) = T(TM)
7 VX

est une application C°° (M) Linéaire (Vx est une tenseur de type (1,1))
st x € M alors

(VX)y : ToM —T,M
v —=>(V,X),

est une application liniéere d’espace vectoriel.

Définition 2.7.2. Soient (M, g) une variété riemannienne. La divergence d’un champ de
vecteur X € I'(T'M), notée divX est un fonction sur M définie par :

divX =try(VX)

pour tout x € M, on a

(divX)(x) = try(VX).)

en coordonnée local, on a :

divX = dz'(V o X)

ox

=g"9(V o 0

B2l %)

2.7.3 Hessienne d’une fonction

Définition 2.7.3. Soient (M, g) une variété riemannienne et f € C>°(M) La Hessienne
de la fonction [ noté Hess(f), est une application C°(M)-bilinéaire Symétrique définie
par :

Hess(f) :T(TM) x T(TM) — C*(M)
<X7 Y) = g(ngrad(f)vy)
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Preuve :
L’application Hessienne est application bilinéaire Symétrique on a :

Hess(f) = g(Vxgrad(f),Y)
= X(g(grad(f),Y)) — g(grad(f), VxY)
= X(Y(f)) - VXY(f)

= [X, Y]+ Y(X(f)) = VxY(f)

=Y(X(f)) — VYX(f)
=Yyg(grad(f), X) — g(grad(f), Vy X)
= g(Vygrad(f), X)
= Hess(f)(Y,X)

2.7.4 Opérateur Laplacien

Définition 2.7.4. Soient (M, g) une variété riemannienne, on définit l'opérateur Lapla-
cien notée A sur M par :
A:C®(M) — C*(M)
[ = A(f) = div(gradf) = trace,(Hess(f))

appelé aussi opérateur de Laplace-Beltrams.

Propriété 2.7.4. on a les propriété suivants :

— A(f+h)=A(f) + A(h)
— A(fh) = hA(f) + fA(R) 4+ 2g(gradf, gradh)
Preuve :

d’aprés le définition

A(f+ h) = div(grad(f + h))
= div(gradf + gradh)
= dw(gradf) + div(gradh)
A(f) + A(h)

A(fh) = div(grad(fh))
= div(fgradh + hgradf)
= div(fgradh) + div(hgradf)
= fdiv(gradh) + (gradh)(f) + hdiv(gradf) + (gradf)(h)
= fA(h) + hA(f) + 29(gradf, gradh)

Ezxpression du Laplacien En Coordonnée locales

*f . O0f
02,0, _Fiﬂ'a—m)

A(f) = g"(

Exemple 2.7.1. soit R™ muni du produit scalaire standard go, (9;j = 05, alors pour tous
fonction différentiable f sur R™ et X = (X', ...X™) un champ de vecteurs sur R™ on a :
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af o
gradf = Zay o
0 or
- ozl 9m
" oX!
divf = ; I
B oX*! N oxm
9zl T Oam
AN=353
orr, or
oz 02,

2.7.5 Formule de Bochner

Définition 2.7.5. Soit (M, g) une variété Riemannienne. si f : M — R est une fonction

de classe C°(M
1
- Algrad( ) =

ou |Hess(f)|? =

Preuve :

sotent v € M et (eq,...

[Hess(f)* + g(grad(f). grad()) + Ric(grad(f), grad(f))

), alors f vérifié la formule suivants :

(2.1)

> 9(Ve,grad(f), Ve, grad(f)) relativement une base local orthonormale(ey, ...

em) une base local orthonormale de champs de vecteurs telque

(Ve€j)e =0, 1 < 0,5 <m. En développant le calcul en x on trouve :

* Algrad ()P =

+9(Vies grad(pygrad(f), e:

2

= Z ei(g(Ve,grad(f), grad(f)))

= Z ei(Hess(f

= Zei(g(v

= Z (g(veivgrad(f)gTad(f)a 67;) + g(vgrad(f)grad(f)a Veiei))

(grad(f),

ygrad(f),

grad(f

3 3 eieiglgrad(), grad( )

)(ei, grad(f)))

= Zei(Hess(f)

ei))
ei))

= Zg Ve,Vraapygrad(f), e;)

_Z{g

(€;, grad(

f)grad(f),

ez)) + g(vgrad(f)vfiigra'd(f)a

em)-

ei)
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> 9(Rlei,grad(f))grad(f),e;)) = Ric(grad(f), grad(f))....(2)

)

> 9(VgraapVegrad(f),e)) = > grad(f)(g(Ve,grad(f), e:))

_ Z 9(Ve,grad(f), ¥V graar)€:)
= Z grad(f)g(V.,grad(f),e;)
— Zg(veigmd(f)a ei(f>v6i€i>

= grad(f)g(Ve,grad(f),e;) — 0

)

= grad(f)tracegHess(f)

= grad(f)(A(f))
= g(grad(f), gradA(f))....... (3)

g(V[@i,gmd(f)]gTad(f), 61-) = Z Hess(f)([eia grad(f)]’ 6,‘)

)

= Z Hess(f)(Ve,grad(f),e;) —0
- Z Hess(f)(es, Ve,grad(f))

Enfin, en substituons les formule (1) et (2),(3),(4) dans la formule de Bochner



Chapitre 3

variété Riemannienne produit tordus

3.1 Variété Produit
Définition 3.1.1. Soient M et N deux variétés de classe C°. Le produit M x N munie
de Uatlas W défini par
W ={(UxV,ox9¢)/(U ) € atl(M),(V,9) € atl(N)}
est dit variété produit.

Propriétés 3.1.1. On a les propriété suivants :

1. Les deuz projections m: M x N — M etn: M x N — N sont des submersions?®.

2. Pour tout (x,y) € M XN le sous-espace M x{y} et {x} x N sont deuz sous-variétés
de de la variété produit M x N.

3. Pour tout (z,y) € M x N on a :
TizgyM x N =T, M x T,N

4. Soient X etY deux champs de vecteurs sur M et N respectivement, le couple (X,Y)
défini par

(X,Y): MxN — TMxTN
(r,y) — (Xs,Y))
est un champ de vecteurs sur la variété produit M x N

Remarque 3.1.1. Les applications

H(M) — H(M x N)
X — X =(X,0)
H(N) — H(M x N)
Y — Y =(0,Y)

définissent des relévements de champ de vecteurs & H(M x N) tel que :

d(Ly)ﬂ'(X) =XorT et d(x,y)n(X) =0

deyn(Y)=Yon et dgym(Y)=0
1. soit n,p € N* U est une ouvert de R", a € U et f : U — RP une application de classe C' On dit
que f est une submersion en a si df, est surjective
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Propriétés 3.1.2. [6] Soient X1, Xo € H(M) deur champs de vecteurs sur
M et Y1,Ys € H(N) deux champs de vecteurs sur M. Si f € C(M)
et g € C°(N) alors :

1) Xi(form)=(Xi(f))or et Xi(gon) =0
2)Yi(gon) = (Yi(g))on et Yi(fom) =0

X1, X3] = ([X1, X5],0)
3) 3 MLYa] = (0,1, Y3])
[X1,Y1] =0

4) [(leXQ)v (Y1>Y2)] - ([Xlayl]v [X27Y2])

5) [X, = (fom)X, et g¥i = (gon)Vy

Remarque 3.1.2. Soient (U, ) € atl(M) une carte de la variété M et (V,¢) € atl(N)

une carte de la variété N. Si (6%1....%) ( resp <8%1....%>) désigne la base locale de

champ de vecteurs relativement a la carte (U, ) (resp (V,¢)) , alors

99 9 9
TR TR T
est la base locale de champ de vecteurs sur M x N relativement a la carte (U XV, p X ¢) €

atl(M x N)

Propriété 3.1.1. Soient M et N deuzx variétés. Si S7 et Sy sont deux tenseurs sur la
variété produit M x N de type (0,7) ou (1,7), alors Sy = Ss, si et seulement si, pour tout

champs de vecteurs Xy, .., X, X H(M) et Y1,..,Y, Xx H(N), on a
S (X1 X)) = Sy(X:.... X,)
et R R
S1(Y1...Yy) = So(Yr...Yy)

3.1.1 Connexion linéaire produit

Propriété 3.1.2. [1] Soient M et N deuz variétés. Si VM et VYN sont deuz connexions
linéaires sur M et N respectivement, alors il existe une unique connexion linéaire V sur
M x N telle que pour tous X1, Xs € H(M) et Y1,Ys € H(N), on a

V(X17Y1)<X27Y2) = (v)]\({X%O)_'_(O?v%Y?)
V;{l}(vg = (VX X5,0)
VeYe = (0, VYY)
Vele = VgX;=0

V est appelé connezion linéaire produil.
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3.1.2 Tenseur de Torsion produit

Propriété 3.1.3. Soient VM une connexion linéaire sur M et VY une connezion linéaire
sur N . St Ty et Ty désignent les tenseurs de torsions sur M et N respectivement, alors
le tenseur de torsion produit sur M X N est donné par

T = (T, 0) + (0, Ty) = (Tar, Ty)

Preuve :
De la Proposition [1] on a :

T(X1,X2) =VgXe— VX — [X1, Xo]
(T, 0) — (T4,1,0) — (%0, X,],0
= (V¥ X2 — VI X1 — [X1, X5),0)
= (T (X1, X2),0)

pour tout Xy, Xy € H(M), et

T(V1,Ya) =VgYs—VgYi - [,V
= (0, Tn (Y1, Y2))

pour tout Y1,Ys € H(N)

3.1.3 Tenseur de courbure produit

Propriété 3.1.4. [3] Soient M wune variété munie d’une connexion linéaire VM et N
une variété munie d’une connexion linéaire VY. Si Ry et Ry désignent les tenseurs de
courbures sur M et N respectivement, alors le tenseur de courbure produit sur la variété
produit M x N est donné par

R = (Ry, Ry)
Remarque 3.1.3. On a

1. La variété produit M x N est sans torsion si et seulement si les variétés M et N
sont sans torsion.

2. La variété produit M x N est localement plate si et seulement si les variétés M et
N sont localement plates.

3.1.4 Meétrique produit (diagonal)

Définition 3.1.2. Soient (M, g) et (N, h) deux variétés Riemanniennes de dimension m
et n respectivement. On définie la métrique Riemannienne produit sur M x N par
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G=n"g+n"h

mT:MXN— Metn: Mx N — N désignent la premiére el la deuxieme projection
Canonique.

Propriété 3.1.5. pour tout X;1,Y; € H(M) et Xo,Ys € H(N) on a :

G(X,Y) =g(Xy, Y1)+ h(Xe,Y2)
G(X1, X)) =g(X1,Xy)

GV Y2) = h(Y1,Y2)

G(X1,Y2) =0

ot X = (X1,X,) et Y = (Y1, Ya).

Propriété 3.1.6. Soient (M, g) et (N, h) deux variétés Riemanniennes. Si VM (resp VV)
désigne la connexion de Levi-Civita sur M (resp N ), alors la connexion de levi-civita sur
la variété M x N associée a la métrique produit G = w*g+n*h conicide avec la connezxion
linéaire produit définie par :

VY= (Vi Y1,0)
Ve Ys = (0,Vy,Ya)

VEE ZV@E =0

pour tout X1,Y1 € H(M) et Xo,Ys € H(N).

Preuve : Soient X1,Y1, 7, € U(TM) et Xy,Ys,Z5 € T(T'N) on pose X = (X1, Xo)etY =
1, Ys)etZ = (Zy, Zy)des champ des vecteurs sur M x ;2 N de la formule Koszule on ob-
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tient :
SO 1 ~ SO ~ — — —
G(Ve Vi, Z) = §{X1 (607, 20) + 71 (G(X1,20)) - 7 (G(X0. 1))
+6 (7% Ti) + G (T 2. 50) - 6 (R, Z) |
1
= §{X1 (Y1, 21)) + Y1 (g(X4, Z1)) — Z1 (9(X1, 7))
+9 (Zh [Xla Yl]) +9 (Yb [ZlaXl]) -9 (Xh [Yl, Zl]) }
=G ((V¥11,0), 7))
‘G(V;{lﬁ,/Z\z) =0
oG(VgYa, Zy) =0
~ 1~ o~ ~ — — -
(VT Z) — A% (GO T0) + T2 (6% ) - % (6% V)
+6(Z0.%0,72) + 6 (Ta 70 %) - G (R 7 }
1
~ 5{)@ (h(Ys, Z)) + Ya (W( X2, Z5)) — Zo (h( X, Y5))
+h (Zy, [X2,Y3]) + h (Y1, [Z1, X1]) — h (X4, [Y1, Z1]) }
=g (VX,Y2, Z)
e ((o,v%QYQ),Z)
G(VgYaZ) =G(Vg Ve Zo) =GV, 1) = G(Vg Vi, Z) =0
Des Proposition 3.5 et 3.6, on déduit.

Propriété 3.1.7. Soient (M, g) et (N,h) deur variélés Riemanniennes. alors le tenseur
et la courbure de Ricci ainsi que la courbure scalaire sur la variété Riemannienne produil
(M x N,G =7m*g+n*h) sont donnés par :

Ricci(X) = (Riccip(Xy), Ricciy(X2))
Ric(X,Y) = Ricy(X1,Y1)+ Ricy(Xa,Ys)
S = Su+ Sy

Pour tout X = (X1, Xy) et Y = (Y1, Y5).

3.1.5 Opérateur Laplacien produit
Définition 3.1.3. On a

1. Sily € C®°(M), alors lyom € C°(M x N)
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2. Sily € C®°(N), alorslyon € C®°(M x N)
3. Siae C®(M x N), alors

oy : M — R
r — a(z,y)

et

a,: N — R
y — o(z,y)

sont des applications de classe C°.

Propriétés 3.1.3. Soient (M, g) et (N,h) des variétés Riemanniennes, alors

Allyom) = Apy(ly)om
A(lyon) = An(la)on
Aa(z,y) = (Apoy)(z) + (Anag)(y)

Preuve :
Si (€1, .yem) (1€sp (€maity s €min) ) une base orthonormale locale de champ de vecteurs

—

sur la variété Riemannienne (M, g) (resp (N, h)), alors (€1, ..., €m, Emily - Emin) Une base
orthonormale locale de la variété Riemannienne produit (M x N,G) , et on a

A(a) = trace(Vda)

m m+n
= Y (Vada)(@) + Y (Vada)(@)
i=1 i=m+1
m m m-+n m-+n
= Y (@) =Y ([da(Vae) + > (@@E(@) = Y (da(Vea))
i=1 i=1 i=m41 i=m+1
m m+n
= Z(ei(ei(%))) — (day, (VY er)) + Z (ei(ei(aw))) = (day(Vies))

= Aup(ay)An(ay)
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3.2 Produit Tordu de Variété Riemannienne

Définition 3.2.1. Soient (M, g) et (N,h) deuz variétés riemanniennes de dimension m
et n respectivement et f € C°(M) une fonction strictement positive. La variété produit
tordu M X2 N est définie comme étant la variété M x N munie de la métrique G2 telle
que

Gpa =79+ (fom)n'h

oum™: MXN — Metn: MxN — N désignent les projections canoniques. i
X,Y € H(M x N)

G2 = g (dn(X),dn(Y)) + (f o 7)2h (dn(X), dn(Y)

Remarque 3.2.1. Relativement & des cartes locales (U, ) € atl(M) et (V,y') € atl(N)
,la matrice associée o G2 est donnée par

(9 0
A( 0 f2h5k>

¥ O
A= ( 90 f72hlk )

La connexion de levi-civita de M X 2 N peul élre maintenant rapprochée a celle de M et
de N comme suit.

et la maitrice inverse

3.2.1 Connexion de Levi-Civita de la Variété Produit Tordu

Propriété 3.2.1. Soient (M, g) et (N, h) deux variétés riemanniennes. Si V désigne la
connezion de Levi-Civita associé a la variété produit (M x N,G) , alors la connexion de
Levi-Civita V asoociée & la variété produit tordu (M X2 N,Gy2) est donnée par

- 1 1
VxY =VxY + 2—f2X1(f2)(Oa Ya) + z—fzyl(fz)(QXz)

— Sh(X, Ya) (grad(f?),0)

por tout X1,Y, € H(M) et Xo,Yo € H(N) , X = (X1,Xy) et Y = (Y7,Y5).

Preuve :
Soient X1,Y1,7Z1 € H(M) et X5,Y5,Z3 € H(N) , on pose X = (X1,Xs) et Y = (Y1,Y5)



40 variété Riemannienne produit tordus

et Z = (Z1,Zs) des champs de vecteurs sur M x g2 N. De la formule de Koszule on obtient

26p(VxY,Z) =X (Gp(Y,Z)) +Y (Gp(X,2) = Z(Gp(X,Y))
+Gp (4, X Y]) +Gp (Y, [2,X]) - Gp (X, [Y, Z])
=X (g(Y1,Z1) o+ f2om.h(Ya, Z3) on)

4 (g(X0, Z1) o7 + f2 0 mh(Xa, Zo) o 1)

—Z (g(X1,Y1) o+ f2omh(Xs,Ys)0n)

+g (Z1,[Y1, X1])om + fPom.h(Zs, [ X2, Y3]) o

+g (Y1, [Z1, X1]) o + fPom.h(Ys, [Zy, Xs]) o1

—g (X1, [Y1,Z1)) o — fRomh (X, [Ya, Zs]) on

2G12(VxY,Z) =29(VMYL, Z)) o+ 2f2 o mh(VY, Ya, Za) o
+X1(f?) om.h(Ya, Zy) o+ Yi(f?) om.h(Xs, Zs) o
—Z(f*) om.W( Xy, Zy) on
= 2G 2 ((V%Yl, VYY), Z) + h(Xl(fQ) or.Ys
+Y1(f?) o 7. Xy, Z2> on— g(h(Xg, Z3) o n.grad(f?), Z1> o

Xi(f?) Yi(f?)
f? f?

om.Ys +

=26 (VA Y, VA, Y), 2) + Gpe (

@) 7'('.)(27 Z)
_G(f2 (h(X27 ZQ) © n'gr&d(f2)a Z)

d’on

2G(VxY, Z) = (2Gf2 (VA v, VY, Ya) + Xl}g ) onyy+ Ylj(f) e
—%h(Xg, Zy) on - grad(f?), Z))

4
Exemple 3.2.1. Le Tore T? est la variété produit S* x S' avec g, = 2du2 une

(1+u?)
métrique Riemannienne sur la sphére unité S' alors,

gzgu‘l']dgv

est une métrique Riemannienne tordu sur le Tore T? ou f une fonction de classe C* sur
St strict positive.

Exemple 3.2.2. Le Tore T? aussi la variété produit S* x S' x St et le métriqgue Rieman-
nienne

g1 = gu+ fQ(gv +gw)
et
g2 = (gu +gv) + f229w

ou fi fonction de classe C™ sur S* et f, fonction de classe C* sur S' x St stict positive.
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3.2.2 Tenseur de Courbure du Produit Tordu

Propriété 3.2.2. Soient (M, g) et (N,h) deux variétés Riemanniennes. Si R et R dési-
gnent les tenseurs de courbures de la variété Riemannienne produit (M x N,G) et de la
variété Riemannienne produit (M X g2 N, G p2) respectivement, alors :

ROCY) = RIXY) = 3 { (9grad(f?) = 5%a()grad?.0) A, (0.2)
— V¥, grad(f?) = 3o Plgrad®.0) A, (0.32)

~ 3 laradP?0,X) g, (0.2}

ol
(X /\Gf2 Y)Z = sz(Z, Y)X — sz(Z, X)Y

pour tout X1,Y1 € H(M) , Xo, Yo € H(N) , X = (X1, Xs) et Y = (Y1, Y2).

Preuve :
Soient X1,Y1, 71 € H(M) et Xo,Ys,Zy € H(N), on pose X = (X1,Xs), Y = (Y1,Y3) et
7 = (21, Z5)
R(X,Y)Z = R((X1,X2),(Y1,Ys))Z
= R(X1,V1)Z + R(X,,Y2)Z + R(X2,Y1)Z + R(X,Y2)Z
Développant chaque terme de la derniere équation
1) R(X,,Y1)Z = R(X1,Y1)Z + R(X, Y1) Z,

OR(X1,Y1)21 =VgVyZi— VeV Zi— Vg 2
= VY VY Z — VUV Z -V 2

= (RM<X17}/1)ZDO>
DR(X\,Y))Zy =VgVsZo—VyVgZo—Viz

NP e N5

(X1 YﬂZQ

(X1, Y1](f?) =
212 Z2 = 212
Yi(f?) | (f)Xau(f?) X1(f?)
off T ap g
YAHXA) Xl

1p 2/

Zy

|z

=0
de a) et b) on déduit que :

R(X,,Y1)Z = (Ry(X1,Y1)Z1,0) (3:3)
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2 )R(X1,Y2)Z = R(X1,Y2) 21 + R(X,, V) Zs

JR(X,Y2)Z) =V Vg2~ VeV Zi - Vg nZ
_ N
=V, Z;(fé )y, - Ve VY Z)
Z0(f? Z(f) X1 (f2)
=Xi ;(f2>Y2 x 4)f21( )Y2_2_f2v Zl(fQ)
1 ~ ZU(fAHX(A] &
— o @y - vz - 200 g,
2 A~
= % lg(v%lgmdf27 Zy) = %g(gmdf{ Zl)} Yy
2 A~
— g( {V gradf? — ;53; >gmdf2] ,Zl> Y,
= Gp ((5 [Vg(/[lgrade - %Jj)gradﬂ} ,O) ,(Zl,O)) (0,Y53)

~ o~ ~ o~~~ ~ —

b)ﬁ(k\;, 5//\2)2 = 6;’5’1V{/EZ2 - VEV)ZZQ - V[)’{hg]z2

= 950.942) - "B i 0) - 9525007,

_ Xl )vgz2 —h(YZ’ ZQ)V)]‘égradF

—leg ) |:V¥2Z2 — —h(YQQ’ ZQ)grade}
= _—h(Y22, 22) Vﬁ‘égmde + X;yj) h(Y22’ Zz)gmde
= ——h<Y22’ 22) {Vé\égradfz - lef]j)grade}

2
=G (012, (0.22) (577 | PWograas? - 5 P gradr] o)
de a) et b) on déduit
Xi(f?)

{V gradf? — 2 gradf2] 0 (Zl,O)) (0,Y5)

[V% radf? — XQ(ff;)g adF] ,0)

e R AV ((2f2

Gy ((O,Yz)a (0, Z2>> (2f2

R(XI,}/}Q)Z = —2—;2 (V)]\égmdf - ?Yl(fz)grade,O) NG o (0,Y3) (3.4)
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3 )R(X2,Y2)Z = R(X3,Ya)Z1 + R(Xa, Ya) 2,

= Vfizingl(fQ)?z - szzifQZl(f )Xo
—2—P21(f2)[X2,Yz]

= 2ifzzl(f2) {(O,V)Aéyz) — h(YQQ’XZ)(gmdf?,O)]
—2%221(]‘2) {(0, V¥ X5) — h(Y22’ 2>(gmdf2,0)]
5 A0, X V)

= S Al (0.(VY: - VX, - X3, 15)

=0

~ ~ —

b)R(X5,Y5)Zy = V@VgZQ — VEV@ZQ — V[)?zy;]ZQ

|gradf?[?
4—f2 [sz ((O, Y2)a (07 ZZ)) (07 XQ)

—Gf2 ((0, ZQ)y (07 XQ)) (07 }/2)]

= (0, R(X2,Ys)Zs) —

1
= (07 R(X27}/2)Z2) - 4_f2‘gradf2|2(0’ X?) /\sz (07 }/2)

Vi, Vi

2 2

—h(YQQ’ %) (gradf?, 0))

h( X2, VY Z5)

Zy = Ve ((O,V%Zz) -

= (0, VY, Vi, %) — (gradf?,0)
hYs, Z5) ~ Xo(h(Ys. Z
PTG (gradge,0) - X022 (g2 )
= = > = hXa, Z
VEVEZQ = Vg((o, V%QZQ) — %(gr@df{()))
h(Ys, VY Z
= (0, Vi, VX, Zs) — M(def?, 0)

MK DG (a0 - Yg(h();% 7))

5 (gradf?,0)
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= = h([X2,Ys], Z5)

mnZe =0,V v, Z2) + 5 (gradf?,0)

~ d 2( £2
Vg, (grad®,0) gm;}ff D0, = f2|gmdf2| (0, X2)
~ d 2( £2
Vs: (gradf?,0) gra;; gradf (1) (g, v,) = g f2 —=|gradf?*(0, Ys)

—h(X5, V5, Zs) = Xo(h(Ya, Z2)) + Ya(h(Xa, Za)) + h(Ya, VX, Zs) + h([X2, Ya], Z5) = 0
D’ou

E()/(\Q,?z)z = (0, R(X2,Y2)Z2) — |gmdf2] (0, X>5) NG 1 (0,Y3) (3.5)

4f2
1) R(X2,Y1)Z = R(X5,Y1)Z1 + R(X5,Y1) Z
Q)R V)2 =V VeZi— VeV 2~ Vg2

[X2,1]
~ 2 —
=V (V¥21,0) - v/ﬁzlz(]{;))(z
_ VL) ¢ A AN ¢
I IRl Tl T
_[WiaU?)  mUAZ4) ) H(F)Zl(ﬁ)] e
- 212 212 212 4f2 2
Yi(fH)Z:(fH)] <
— 3 | - v + 2RO 7
2 —
= ZLf? {—g(V%grade, Z) + Y12(ffz >g(g7“adf2, Zl)] X
(/)

=—Gp <2f2 {V%W df? + gmde] Zl) (04

f2

1

~ V()= = h(Xs, Z

~ Ve 0 % - Ty (093,20 - P22 graap0))
Yi(f?) MX2, Zs) Yi(f?)

— 272 V%Zg—Tgmde BT V)]¥2Z2
+—h(X22, Z2) V{\//{gr’adf2

_ h’<X27ZQ)

[v@,{ radf? — Y(f;)gmdfﬂ

lV% radf? — YQ(]CJ;Q) Tade} ,0)

2
= Gy ((0, X3), (0, Z5)) (

De a) et b) on déduit

272

R(X2,V)Z = % (Vylgmdf — 7m<f2>gmdf2,0> e, (0,X2) (3.6)
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On obtient la résultat suivant :

§<X7 Y) - R<X7 Y) = 2f2{ (V gmdf2 - 2—f2Y'1(f2)g7"adf2, O) /\GfZ (O7X2>

(v gradf? = Vi Parad?.0) A 0.2

2f2 —lgradf?[2(0, X2) Ag,, (0,Y2)
3.2.3 Opérateur Laplacien dans le Produit Tordu

Propriétés 3.2.1. Soient (M,g) , (N,h) deux variétés riemanniennes. Ay , Ayx dési-
gnent les opérateurs laplaciens sur M et N respectivement. Si

a:Mxp N — R
(z,y) +— a(z,y)

est une application de classe C* |, alors
X 1
Ay = (An(ay),0) + (0, Q—fQAN(Oéx)> + n (day(gradinf),0)

oir A désigne loperateur laplacien sur la variété produit tordu M X y2 N.

Pour simplifier, on écrit

- 1
Ay = Ap(a) +

Z—JQAN(Q) + n.dya(gradinf)
Preuve :
Soit {e1,...,em} (1€sp {bmi1, -y buim } ) une base locale orthonormale sur M (resp N ). On

pose

gi:(el,O) Z:1,,m

1~ 1~

—bi—m = (0, =b;_p, i=m+1,....n+m
i = (0 i)

Alors {h1, ..., himyn} est une base locale orthonormale sur la variété produit tordue M x p2 N .
On a B
Aer) = S hi(hi(e)) = (Vi hi) (@)

Remarquons que E(f) =0, on a
~ LA - e 1~ ~
e = S {@Ee) - Faw+ Y {ﬁbxbxa» - Fvb;bz-(m}

m n+m

= D {(eilei(ay)), 0) = (Vifei) (e Z {(0.:(Bi(e))) = (0, (T5bi) () }

n+m

Z h(bi, b;) ((gradf?)(ay), 0)

i=m+1

L ((gradf?)(ay), 0)

(0 AN(O[m)) ‘I’ 2f2

f2
1

f2 (0, An(az)) +

5 2 oy (grads®). 0)

+ ﬁm, Ax(az)) +n(day(gradinf), 0)
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De la Proposition 3.12, on dédust.

Corollaire 3.2.1. — « harmonique st et seulement si

{ ° aw,ay( sont harmoniques )

o doy(gradinf) =0

— Si f est constante, alors o harmonique si et seulement si o, et oy, sont harmoniques.
i€
(A(a) =0) <= (Ay(a) =0 et Apy(a)=0)
pour tout v € M ety € N.



Conclusion

La Géométrie Riemannienne est une grand branche et essentiel pour les physicien
par example relativité général et théoreme d’Albert Einstein et appliqué sur trous noirs et
voyage a travers le temps c’est la théorie de la physicien surtout mécanique quantique donc
Le développement de la physique et de la science est lié par développement de math.
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