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Abstract

The concept of derivatives of non-integer order, known as fractional derivatives, first ap-

peared in the letter between L’Hôpital and Leibniz in which the question of a half- order

derivative was posed. Since then, many formulations of fractional derivatives have ap-

peared. Recently, a new definition of fractional derivative, named "conformable fractional

derivative", has been introduced. This new fractional derivative is compatible with the

classical derivative and it has attracted attention in domains such as mechanics, electron-

ics and anomalous diffusion.

Motivated by the considerable attention and the wide resonance in the scientific com-

munity that conformable fractional derivative have received it. This master thesis is

devoted to the theory of conformable fractional calculus, it summarizes the most recent

contributions in this area, and vastly expands on them to create a comprehensive theory

conformable fractional calculus.

Key words: Fractional derivatives, Conformable fractional derivatives, Fractional

calculus, Conformable fractional calculus.
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List Of Notations And Symbols &
Acronyms

List Of Notations And Symbols

• Eα : The Mittag-Leffer function.

• Eα,β : The Generalized Mittag-Leffer function in two arguments α and β.

• Γ(α) : The Gamma function.

• B(x, y) : The Beta function of x and y.

• (Ω,F ,P) : The probability space.

• Ft : The filtration on probability space.

• (Ω,F ,Ft,P) : The filtered probability space.

• V(S, T ) : The class of real measurable functions f(t, w).

• L{f(.); s} : The Laplace transform of a function f .

• L−1F (s) : The transformation reversal of Laplace of a function f .

• (X,Σ, µ) : The measure space.

• L∞ : The associated Lebesgue ∞−space.

• aI
α
x (f) : The Riemann-Liouville left-sided fractional integral of order α.

• xI
α
b (f) : The Riemann-Liouville right-sided fractional integral of order α.

• aD
α
x (f) : The Riemann-Liouville left-sided fractional derivative of order α.

• xD
α
b (f) : The Riemann-Liouville right-sided fractional derivative of order α.

• C
aD

α
x (f) : The Caputo left-sided fractional derivative of order α.

• C
xD

α
b (f) : The Caputo right-sided fractional derivative of order α.

• H2([0, T ]) : The space of all the processes X which are measurable.
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• H2([0, T ], ‖ . ‖H2) : Banach space.

• (p)αn,k : The Pochhammer symbol.

• Γαk : The (α, k)−Gamma function.

• Bα
k (p, q) : The (α, k)−Beta function.

• Bk(p, k) : The k−Beta function.

• Tα(f) : The conformable fractional derivative of f of order α.

• Iaα(f) : The conformable fractional integral of f of order α.

• Lαk{f(.); s} : The (α, k)−Laplace transform.

Acronyms

• M-L: Means "Mettag -Leffler".

• R-L: Means "Riemann-Liouville".

• G-L: Means "Grunwlad-Letnikov".

• H-ss: Means "Scaling exponent of self similar processes".

• H-sssi: Means "H-ss with stationary increments".

• FDE: Means "Fractional differential equation".

• FSDE: Means "Fractional stochastic differential equation".

• CFDE: Means "Conformable fractional derivative equation".

• CFSDE: Means "Conformable fractional stochastic derivative equation"



Introduction

Fractional calculus is the field of mathematical analysis which deals with the inves-

tigation and applications of integrals and derivatives of arbitrary order. The term

fractional is a misnomer, but it is retained following the prevailing use.

The fractional calculus may be considered an old and yet novel topic. It is an old

topic since, starting from some speculations of G.W. Leibniz (1695, 1697) and L. Euler

(1730), it has been developed up to nowadays. In fact the idea of generalizing the notion

of derivative to non integer order, in particular to the order 1/2, is contained in the cor-

respondence of Leibniz with Bernoulli, L’Höpital and Wallis. Euler took the first step by

observing that the result of the evaluation of the derivative of the power function has a a

meaning for non-integer order thanks to his Gamma function.

In the last few decades, fractional differentiation has been used applied scientists for solv-

ing several fractional differential equations and they proved that the fractional calculus is

very useful in several fields of applications with some restrictions such as: Physics (quan-

tum mechanics and thermodynamics), chemistry, biology, economics, engineering, signal

and image processing and control theory.

For Economics and Finance we mention the relation between fractional differencing and

long memory processes. The Grunwald-Letnikov fractional difference ∆α
T of order α with

the step T is defined by the equation of ARFIMA model, where α = d : .

∆α
Ty(t) := (1− LT )αy(t) :=

∞∑
m=0

(−1)m.(dm).y(t−m.T )

Where {yt, t = 1, 2, ..., T} is an ARFIMA(0, d, 0) model if we have the following equation

of discrete time stochastic process (1 − L)dyt = ε(t) is the fractional difference equation

with the Grunwald-Letnikov fractional difference of order α = d.

For Continuum Mechanics: we mention some applications of related techniques in me-

chanics dealing with fractional kinematics, where the symmetric fractional derivative had

9
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been used in the definition of strain[6], namely

Kα(x, t) = 1/2(0D
α
x −x Dα

L)u(x, t)

where Kα is a fractional strain, Dα is a fractional derivative, x is a spatial coordinate, t

denotes time, and u is a displacement.

In Physics: for example the fractional differential equation for the RC circuit has the

form
dγq

dtγ
+

1

τγ
q(t) =

C

τγ
v(t).

Where τγ =
RC

σ1−γ is the time constant measured in seconds, R (resistance), C (capac-

itance) and v(t) is the voltage source, q(t)(charge), the parameter σ characterizes the

fractional structures.

The main advantage of fractional derivatives lies in that it is more suitable for describing

memory properties of various materials and processes in comparison with classical integer-

order derivative. However, some objection has been revealed for the slightly burdensome

mathematical formula of its definition and the resultant complexities in the solutions of

the differential equations of fractional order.

At present, there exist a number of definitions of fractional derivatives in the literature,

each depending on a given set of assumptions. But it is worth noting that these kinds

of derivatives do not satisfy the classical chain rule. The discrepancies between known

definitions can be solved in simple way by presenting a new fractional definition which

is called the "Conformable Fractional Derivative". Khalil and al. [18] proposed this new

fractional derivative that has some basic characteristics of the first-order derivative such

as the product rule and the chain rule which seems more appropriate to describe many

more models.

This new definition has attracted a great deal of attention from many researchers. see [18]

and references therein. For the basic properties of the conformable fractional derivative,

some results have been obtained [25, 33]. In [1], Abdeljawad proves chain rules, exponen-

tial functions, Gronwall’s inequality, fractional integration by parts, Taylor power series

expansions and Laplace transforms for the conformable fractional calculus. Furthermore,

linear differential systems are discussed [33]. In [2], Batarfi and al. obtain the Green

function for a conformable fractional linear problem and then the study of nonlinear con-
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formable fractional differential equations, its several applications and generalizations were

also discussed in [33, 7].

In this master thesis a new kind of fractional derivative is introduced the most important

properties of the conformable fractional derivative and integral have been introduced,

some interesting results of ordinary fractional calculus are extended to conformable one.

Finally, using obtained results the conformable fractional stochastic differential equations

are established.

After this introduction, this master thesis is organized as follows.

In Chapter 1: "Preliminaries" we recall the most essential definitions from the clas-

sical calculus and remind some techniques which are necessary for the understanding of

our work. In particular, we introduce some basic concepts concerning continuous time

stochastic processes.

Chapter 2: "Fractional Calculus" gives the basic approaches to define a fractional

integral or derivative namely the Grünwald-Letnikov, Riemann-Liouville and the Caputo

integral and derivatives, their most important properties, composition rules, as well as

Laplace transforms. Then we start the study of differential equations containing frac-

tional derivatives, firstly the so called ordinary fractional differential equations (FDEs).

We restrict ourselves to linear FDEs because there is a more compact theory. We give

conditions for existence and uniqueness of solution for linear initial-value problems. Sec-

ondly stochastic fractional differential equations (SFDEs), we study a result on the global

existence and uniqueness of solution for Caputo fractional stochastic differential equations.

In chapter 3: " Conformable Fractional Calculus" we discuss the basic theory of

the conformable fractional calculus. We introduce, for the first time, this new concept of

derivatives, give some important properties and examples, introduce and prove some dis-

tinguishing features and basic theorems of these derivatives. Second we prove the existence

and uniqueness result on the solution of differential equations containing conformable frac-

tional derivatives. In the final section of this chapter existence and uniqueness results of

solution of a class of stochastic differential equations of the considered fractional deriva-

tive are discussed.

Finally, we give a conclusion. In witch we summarize the main results of this work.



Chapter 1

Preliminaries.

In this first chapter we gather some preliminary and basic notions used throughout the

course of this master thesis and has the object to be a library of basic results. In short,

we give here a quick reminder of the fundamental useful results. In particular, we first

introduce some basic concepts on stochastic processes theory, stochastic integration and

stochastic differential equations, finally recall the notion laplace transformation and fixed

point theory. For more details, see the following references [8, 9, 12, 16, 23].

1.1 Basics tools for stochastic calculus.

Let (Ω,F ,P) be a probability space. A random variable X is a rule for assigning to

every outcome ω of an experiment Ω a number X(ω). A stochastic process Xt is a rule

for assigning to every ω ∈ Ω a function Xt(ω). Thus, a stochastic process could be

seen as a family of time functions depending on the parameter ω (a collection of paths or

trajectories) or, equivalently, a family of random variables depending on a time parameter

t, or a function of t and ω as well.

1.1.1 Stochastic processes.

Definition 1.1.1. (Stochastic process). We define real valued (one− dimensional)

stochastic process a family of random variables {Xt}t∈I defined on (Ω,F ,P):

Xt : Ω −→ R, t ∈ I ⊆ R+.

12



1.1.1 Stochastic processes. 13

We shall say that {Xt}t∈I is a discrete-state process if its values are countable. Otherwise,

it is a continuous-state process. The set S ⊆ R, whose elements are the values of the

process, is called state space. A stochastic process could be a discrete time or a continuous

time process, according as the set I is countable or continuous.

Definition 1.1.2. (Finite dimensional distributions). For any natural number k ∈ N and

a "time" sequence {ti}i=1,...,k ∈ I, the finite-dimensional distributions of the real valued

stochastic process Xt = {Xt}t∈I are the measures µt1,...,tk , defined on Rk, such that

µt1,...,tk(A1 × · · · × Ak) = P({Xt1 ∈ A1, · · · , Xtk ∈ Ak}), (1.1)

where {A1, . . . , Ak} are Borel sets on R.

Theorem 1.1.1. (Kolmogorov extension theorem [16]). For all {ti}i=1,...,k ∈ I, k ∈ N let

νt1,...,tk be probability measures on Rk, such that :

1. for all permutations π on {1, 2, . . . , k},

νtπ(1),...,tπ(k)(A1 × ...× Ak) = νt1,...,tk(Aπ−1(1) × · · · × Aπ−1(k))

2. for any m ∈ N,

νt1,...,tk(A1 × · · · × Ak) = νt1,...,tk,tk+1,...,tk+m(A1 × · · · × Ak × R× · · · × R),

where of course the set on the right side as a total of k + m factors. Then, there

exists a probability space (Ω,F ,P) and a real valued stochastic process X defined on

it, such that:

νt1,...,tk(A1 × ...× Ak) = P({Xt1 ∈ A1, ..., Xtk ∈ Ak}),

for any ti ∈ I, k ∈ N and Ai ∈ B.

Definition 1.1.3. (Filtration). An increasing family Ft = {Ft}t∈I of complete sub σ-

fields of F is said a filtration on (Ω,F ,P).

Consider a stochastic process X = {Xt}t∈I and let:

FXt = σ({Xs; 0 ≤ s ≤ t}) = σ({N ∪ {X−1
s (H); 0 ≤ s ≤ t,H ∈ B}}),

where B is the Borel σ-algebra and N indicates the class of null-sets. Clearly if 0 ≤ s ≤ t

one has

FXs ⊆ FXt ⊆ F .



1.1.1 Stochastic processes. 14

Therefore, FX = {FXt }t∈I defines a filtration, termed natural filtration of {Xt}t∈I .

Definition 1.1.4. (Adapted process). A stochastic process {Xt}t∈I is said adapted to the

filtration {Ft}t∈I if for each t ≥ 0:

FXt ⊆ Ft.

In other words, for each t, the r.v. X(t) is Ft-measurable.

Definition 1.1.5. (Predictable). A stochastic process {X(t) : t ∈ [0, T ]} is predictable if

there exists Ft−adapted and left-continuous processes {Xn(t) : t ∈ [0, T ]} such that

Xn(t) −→ X(t) as n −→∞ for t ∈ [0, T ].

Definition 1.1.6. (Martingale). A stochastic process M = {Mt}t≥0 is a martingale with

respect to the filtration Ft and the measure P if, for any t ≥ 0, one has:

1. Mt ∈ L1(Ω,P),

2. E(Mt|Fs) = Ms, 0 ≤ s ≤ t.

This means that Mt is Ft-adapted.Moreover, the expected value of Mt does not de-

pend on time. Indeed,

E(Mt) = E(E(Mt|F0)) = E(M0).

Definition 1.1.7. (Gaussian process). A real stochastic process {Xt}t∈I is Gaussian if

and only if, for every finite sequence {t1, t2, ..., tk} ∈ I,

Xt1,...,tk = (Xt1 , · · · , Xtk)

has a multivariate normal distribution.

Definition 1.1.8. (Stationary process). A stochastic process {Xt}t≥0 is said a stationary

process if any collection {Xt1 , Xt2 , . . . , Xtn} has the same distribution of

{Xt1+τ , Xt2+τ , . . . , Xtn+τ} for each τ ≥ 0. That is,

{Xt1 , Xt2 , . . . , Xtn}
d
= {Xt1+τ , Xt2+τ , . . . , Xtn+τ}.

Let X be a stationary process, then the following elementary properties hold:

• Varying t, all the random variables Xt have the same low; i.e. Xt1
d
= Xt2 for any

t1, t2 ≥ 0.
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• All the moments, if they exist, are constant in time.

• The distribution of Xt1 and Xt2 depends only on the difference τ = t1 − t2 (time

lag).

Therefore, the autocovariance function γ(t1, t2) = γ(t1 − t2) depends only on τ = t1 − t2.

We write

γ(τ) = E(Xt − µ)(Xt−τ − µ) = Cov(Xt, Xt−τ ), (1.2)

where µ = E(X(t) and γ(τ) indicates the autocovariance coefficient at the lag τ .

Definition 1.1.9. (Stationary increment process). A stochastic process {Xt}t≥0 is said

a stationary increment process, shortly si, if for any h ≥ 0 :

{Xt+h −Xh}t≥0
d
= {Xt −X0}t≥0. (1.3)

Definition 1.1.10. (Self-similar processes). A real valued stochastic process X = {Xt}t≥0

is said self-similar with index H ≥ 0, shortly H-ss, if for any a ≥ 0 :

{Xat}t≥0
d
= {aHXt}t≥0.

We observe that the transformation scales differently "space" and "time", for this

reason one often prefers using the word self-affine process. The index H is said Hurst’s

exponent or scaling exponent of the process.

Remark 1.1.1. Observe that, if X is an H-ss process, then all the finite-dimensional

distributions of X in [0,∞] are completely determined by the distribution in any finite

real interval.

Theorem 1.1.1. [23] For p ∈ (0,∞), let Lp = Lp(Ω;Rd) be the family of Rd−valeud

random variables X with E|X|p < ∞. In L1, we have |E(X)| ≤ E|X|. Moreover, the

following three inequalities are very useful:

1. Hölder’s inequality:

E(|XY |) ≤ (E|X|p)
1
p (E|Y |q)

1
q

if p > 1, 1
p

+ 1
q

= 1, X ∈ Lp, Y ∈ Lq;
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2. Minkovski’s inequality:

(
E|X + Y |P

) 1
p ≤ (E|X|p)

1
p + (E|Y |p)

1
p

if p > 1, X, Y ∈ Lp;

3. Chebyshev’s inequality:

P{w : |X(w)| ≥ c} ≤ c−pE(|X|p)

if c > 0, p > 0, X ∈ Lp.

4. A simple application of Hölder’s inequality implies

(E|X|r)
1
r ≤ (E|X|p)

1
p

if 0 < r < p <∞, X ∈ Lp.

Theorem 1.1.2. (Monotonic convergence theorem [23]). If Xk is an increasing sequence

of nonnegative random variables, then

lim
k−→∞

E(Xk) = E
(

lim
k−→∞

Xk

)
.

Theorem 1.1.3. (Dominated convergence theorem [23]). Let p ≥ 1, Xk ⊂ Lp(Ω,Rd) and

Y ⊂ Lp(Ω,R). Assume that |Xk| ≤ Y a.s. and Xk converges to X in probability. Then

X ∈ Lp(Ω,Rd), Xk converges to X in Lp, and

lim
k−→∞

E(Xk) = E(X).

Definition 1.1.11. (Volterra integral equations [8]). For the first kind Volterra integral

equations, the unknown function u(x) occurs only under the integral sign in the form:

f(x) =

∫ x

0

K(x, t)u(t)dt. (1.4)

However, Volterra integral equations of the second kind, the unknown function u(x) occurs

inside and outside the integral sign. The second kind is represented in the form:

u(x) = f(x) + λ

∫ x

0

K(x, t)u(t)dt. (1.5)

The kernel K(x, t) and the function f(x) are given real-valued functions, and λ is a

parameter.
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1.1.2 Brownian motion

Brownian motion is the name given to the irregular movement of pollen grains, sus-

pended in water, observed by the Scottish botanist Robert Brown in 1828. The motion

mathematically it is W (t) Let us now give the mathematical definition of Brownian mo-

tion.

Definition 1.1.12. (Brownian motion). A stochastic processW = {Wt}t≥0 is an ordinary

(standart) Brownian motion (Bm) if:

(i) W (0) = 0 a.s. and it is Ft-adapted,

(ii) it has independent increments, That is the random variables Wt2−Wt1 and Wt4−Wt3

are independent for any 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4, it has stationary increments,

(iii) for each t > 0, W (t) has a Gaussian distribution with mean zero and variance t, and

covariance E(W (t)W (s)) = min(t, s).

(iv) its sample paths are continuous a.s. (The Bm trajectories starts in zero a.s. and are

continuous).

Proposition 1.1.1. [23] The Brownian motion W (t) is an Ft-martingale.

Theorem 1.1.4. W is a H-ss process with H = 1/2

Proof: It is enough to show that for every a > 0, {a1/2W (at)} is also Brownia nmotion.

Conditions (i), (ii) and (iv) follow from the same conditions for {W (t)}. As to (iii),

Gaussianity and mean-zero property also follow from the properties of {W (t)}. As to the

variance, E
[(
a1/2W (at)2

)]
= t. Thus {a1/2W (at)} is a Brownian motion.

Proposition 1.1.1. [10]

1. Self-similarity: The Brownian motion is 1
2
-SSSI.

2. Symmetry: {−B(t), t ≥ 0} is also a Brownian motion.

3. Markov Property: Brownian motion is a Markov process.

4. Hölder continuous: A Brownian motion has paths a.s. locally γ−Hölder continuous

for γ ∈ [0, 1/2).

5. Nondifferentiability of Paths: The Brownian motion’s sample paths are a.s. nowhere

differentiable.
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Theorem 1.1.2. [16]. For a Gaussian sequence {Xk, k ≥ 0} to be Markovian each of the

following condition is necessary and sufficient.

• For any k ≤ n

E(Xk|X1, ..., Xk−1) = E(Xk|Xk−1). (1.6)

• For j ≤ l ≤ k ≤ n

ρjk = ρjlρlk. (1.7)

Definition 1.1.13. (Markovian process). We say that X is Markovian if any finite col-

lection {X(t1), ..., X(tn)}, ti ∈ I, is Markovian.

Let the process X be Gaussian and Markovian. In view of (1.6) we have the Markov

property:

E(X(t+ h)|{X(s), s ≤ t}) = E(X(t+ h)|X(t)), (1.8)

for any h > 0. Moreover, by (1.7), one has:

ρ(s, t) = ρ(s, h)σ(h, t), s ≤ h ≤ t, (1.9)

with ρ(s, t) = E(X(s)X(t))/σ(s)σ(t).

Definition 1.1.14. (H-sssi processes). A stochastic process X = {Xt}t∈I , F-adapted,

which is H-ss with stationary increments, is said H-sssi process with exponent H.

1.2 Stochastic integration

let us consider the filtered probability space (Ω,F ,Ft,P), where {Ft}t≥0 is the natural

filtration of the Bm W (t), t ≥ 0. We introduce the following class of functions.

Definition 1.2.1. Let V(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that:

1. f(t, ω) is Ft-adapted.

2. E
(∫ T

S

f(t, ·)2dt

)
<∞.
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1.2.1 Itô integral

Let f ∈ V(S, T ). We want to define the Itô integral of f in the interval [S, T ). Namely:

I(f)(ω) =

∫ T

S

f(t, ω)dWt(ω), (1.10)

where Wt is a standard (E(W (1)2) = 1) one dimensional Brownian motion. We begin

defining the integral for a special class of functions:

Definition 1.2.2. (Simple functions). A function φ ∈ V(S, T ) is called simple function

(or elementary), if it can be expressed as a superposition of characteristic functions.

φ(t, ω) =
∑
k≥0

ek(ω)1[tk,tk+1)(t), (1.11)

Definition 1.2.3. Let φ ∈ V(S, T ) be a simple function of the form of (1.11), then we

define the stochastic integral:∫ T

S

φ(t, ω)dWt =
∑
k≥0

ek(ω)(Wtk+1
−Wtk)(ω). (1.12)

Lemma 1.2.1. (Itô isometry [23]). Let φ ∈ V(S, T ) be a simple function, then:

E
(

(

∫ T

S

φ(t, ·)dWt)
2

)
= E

(∫ T

S

φ(t, ·)2dt

)
. (1.13)

Remark 1.2.1. Observe that (1.13) is indeed an isometry. In fact, it can been written

as equality of norms in L2 spaces:∥∥∥∥∫ T

S

φ(t, ·)dWt

∥∥∥∥
L2(Ω,P)

= ‖φ‖L2([S,T ]×Ω) .

We have the following important proposition.

Proposition 1.2.1. [10] Let f ∈ V , then there exists a sequence of simple functions

φn ∈ V , n ∈ N, which converges to f in the L2-norm. Namely,

lim
n−→∞

∫ T

S

E
(
(f(t, ·)− φn(t, ·))2

)
dt = lim

n−→∞
||f − φn| |2L2([S,T ]×Ω) = 0. (1.14)

Given f ∈ V(S, T ), the proposition above, together with Ito isometry, implies that

the sequence
{∫ T

S

φn(t, ω)dWt(ω), n ∈ N
}

is Cauchy on L2(Ω,P). So that, it converges

to a limit in L2(Ω,P). We call this limit the Itô integral of f .
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Definition 1.2.4. (Itô integral). Let f ∈ V(S, T ) The Itô integral from S to T of f is

defined as the L2(Ω,P) limit:

I(f) =

∫ T

S

f(t, ω)dWt(ω) = lim
n−→∞

φn(t, ω)dWt(ω), (1.15)

where φn ∈ V, n ∈ N, is a sequence of simple functions which converges to f ∈ L2([S, T ]×

Ω).

Remark 1.2.2. Observe, in view of (1.14), that the definition above does not depend on

the actual choice of {φn, n ∈ N}.

By definition, we have that Itô isometry holds for Itô integrals:

Corollary 1.2.1. (Itô isometry for Itô integrals [10]). Let f ∈ V(S, T ), then:

E
(

(

∫ T

S

f(t, ·)dWt)
2

)
= E

(∫ T

S

f 2(t, ·)dt
)
. (1.16)

Moreover,

Corollary 1.2.2. [10] If fn(t, ω) ∈ V(S, T ) converges to f(t, ω) ∈ V(S, T ) as n −→ ∞

in the L2([S, T ]× Ω)-norm, then:∫ T

S

fn(t, ·)dWt −→
∫ T

S

f(t, ·)dWt, (1.17)

in the L2(Ω,P)-norm.

Proposition 1.2.2. [16] Let f, g ∈ V(0, T ) and let 0 ≤ S < U < T . Then:

1.
∫ T

S

fdWt =

∫ U

S

fdWt +

∫ T

U

fdWt.

2. For some constant a ∈ R,
∫ T

S

(af + g)dWt = a

∫ T

S

fdWt +

∫ T

S

gdWt.

3. E
[∫ T

S

fdWt

]
= 0.

4.
∫ T

S

fdWt is FT -measurable.

5. The process Mt(ω) =

∫ 0

T

f(t, ω)dWs(ω) where f ∈ V(0, T ) for any t > 0, is a

martingale with respect to Ft.



1.2.1 Itô integral 21

The construction of the Itô Integral can be extended to a class of function f(t, ω)

which satisfies a weak integration condition. This generalization is indeed necessary be-

cause it is not difficult to find functions which do not belong to V . For instance, take

a function of Bm which increase rapidly f(t, ω) = exp(Wt(ω)2). Therefore, we introduce

the following class of functions:

Definition 1.2.5. Let W(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that

1. f(t, ω) is Ft-adapted.

2. P(

∫ T

S

f(t, ·)2dt <∞) = 1.

Remark 1.2.3. Clearly, V ⊂ W .

In the construction of stochastic integrals for the class of functions belonging to Ω we can

no longer use the L2 notion of convergence, but rather we have to use convergence in

probability . In fact, for any f ∈ W, one can show that there exists a sequence of simple

functions φn ∈ W such that

∫ T

S

|φn(t, ·)− f(t, ·)|2dt −→ 0 (1.18)

in probability. For such a sequence one has that the sequence {
∫ T

S

|φn(t,∆)dWt(ω), n ∈ N}

converges in probability to some random variable. Moreover, the limit does not depends

on the approximating sequence φn. Thus, we may define:

Definition 1.2.6. (Itô integral II). Let f ∈ W(S, T ). The Itô integral from S to T of f

is defined as the limit in probability:∫ T

S

f(t, ω)dWt(ω) = lim
n−→∞

∫ T

S

φn(t, ω)dWt(ω), (1.19)

where φn ∈ W , n ∈ N, is a sequence of simple functions which converges to f in probability.

Remark 1.2.4. Note that this integral is not in general a martingale. However, it is a

local martingale.
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1.2.2 One dimentionel Ito formula

Definition 1.2.7. (Itô processes). Let Xt be a stochastic process, defined on (Ω,F ,P),

such that for any t ≥ 0 :

Xt = X(0) +

∫ t

0

usds+

∫ t

0

vsdWs, (1.20)

where u, v ∈ W. Then, Xt is called (one-dimensional) Itô process.

Theorem 1.2.1. (Itô formula [10]). Let g(t, x) ∈ C2(R+×R) and let Xt be an Itô process

of the form:

dXt = utdt+ vtdWt.

Then, the process

Yt = g(t,Xt), t ≥ 0,

is again an Itô process, and the following Itô formula holds:

dYt = dg(t,Xt) =

(
∂tg(t,Xt) + ut∂xf(t,Xt) +

1

2
v2
t ∂xxf(t,Xt)

)
dt+ vt∂xf(t,Xt)dWt, (1.21)

or equivalently:

dg(t,Xt) = ∂tg(t,Xt)dt+ ∂xg(t,Xt)dXt +
1

2
∂xxg(t,Xt)d〈X〉t, (1.22)

where 〈X〉t =

∫ t

0

v2
sds is the quadratic variation of the Itô diffusion.

Theorem 1.2.2. (Gronwall’s inequality [16]). Let T > 0, c > 0 and u(·) be a Borel

measurable bounded nonnegative function on [0, T ], let v(·) be a nonnegative integrable

function on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds, 0 ≤ t ≤ T, (1.23)

then

u(t) ≤ c exp

(∫ t

0

v(s)ds

)
, 0 ≤ t ≤ T. (1.24)

1.2.3 Stochastic differential equations

The equation has to be interpreted as

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

σ(s,Xs)dWs, t0 ≤ t ≤ T, (1.25)

where the first integral is a Lebesgue (or Riemann) integral for each sample path and the

second is an Itô integral.



1.2.3 Stochastic differential equations 23

As with deterministic ordinary and partial differential equations, it is important to know

whether a given SDE has a solution, and whether or not it is unique.

Definition 1.2.8. (Strong and weak solutions). If the version Wt of Brownian motion

defined in the filtered probability space (Ω,F ,Ft,P) is given in advance and the solution

Xt constructed from it is Ft-adapted, the solution is called a strong solution. If we are

only given the functions a(t, x) and σ(t, x) and ask for a pair of processes (Xt,Wt), then

the solution Xt (or more precisely (Xt,Wt)) is called a weak solution.

The hypothesis of an existence and uniqueness theorem are usually sufficient but

not necessary, conditions. Some are quite strong, but can be weakened in several ways.

Most of the assumptions concern the coefficients a, σ : [t0, T ]× R −→ R.

Existence and uniqueness conditions

• A1. Measurability: a(t, x) and σ(t, x) are L2-measurable in [t0, T ]× R.

• A2. Lipschitz condition: there exists a constant K > 0 such that for any t ∈ [t0, T ]

and x, y ∈ R :

|a(t, x)− a(t, y)| ≤ K|x− y|, (1.26)

and

|σ(t, x)− σ(t, y)| ≤ K|x− y|. (1.27)

• A3. Linear growth bound: there exists a constant K > 0 such that for any t ∈ [t0, T ]

and x, y ∈ R :

|a(t, x)|2 ≤ K2(1 + |x|2), (1.28)

and

|σ(t, x)|2 ≤ K2(1 + |x|2). (1.29)

• A4. Initial value: Xt0 is Ft0-measurable with E(|Xt0|2) <∞.

Theorem 1.2.3. (Existence and uniqueness theorem for stochastic differential equations

[16]).

Let T > 0 and a(·, ·) : [0, T ] × Rn −→ Rn, σ(·, ·) : [0, T ] × Rn −→ Rn×m be measurable

functions satisfying

| a(t, x) | + | σ(t, x) |≤ C(1 + |x|), x ∈ Rn, t ∈ [0, T ]. (1.30)
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for some constant C, (where |σ| =
∑
| σij |2) and such that

| a(t, x)− a(t, y) | + | σ(t, x)− σ(t, y) |≤ K | x− y |;x, y ∈ Rn, t ∈ [0, T ]. (1.31)

for some constant K. Let Z be a random variable which is independent of the σ−algebra

F (m)
∞ generated by Ws(·), s ≥ 0 and such that

E[|Z|2] <∞.

Then the stochastic differential equation dXt = a(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T,

X0 = Z.
(1.32)

has a unique t−continuous solution Xt(w) with the property that Xt(w) is adapted to

the filtration FZt generated by Z and Ws(·); s ≤ t and

E
[∫ T

0

| Xt |2 dt
]
<∞. (1.33)

Remark 1.2.5. Conditions (1.30) and (1.31) are natural in view of the following two

simple examples from deterministic differential equations (i.e.σ = 0): The equation

dXt

dt
= X2

t , X0 = 1 (1.34)

corresponding to a(x) = x2 (which does not satisfy (1.30)) has the (unique) solution

Xt =
1

1− t
; 0 ≤ t < 1.

Thus it is impossible to find a global solution (defined for all t) in this case. More generally,

condition (1.30) ensures that the solution Xt(w) of (1.32) does not explode, i.e. that

| Xt(w) | does not tend to ∞ in a finite time. Thus condition (1.31) guarantees that

equation (1.32) has a unique solution. Here uniqueness means that if X1(t, w) and X2(t, w)

are two t−continuous processes satisfying (1.32) and (1.33) then

X1(t, w) = X2(t, w), t ≤ T, a.s. (1.35)

1.3 Laplace Transform

The Laplace Transform is a function transformation commonly used in the solution of

complicated differential equations. With the Laplace transform it is frequently possible

to avoid working with equations of different differential order directly by translating the

problem into a domain where the solution presents itself algebraically.
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Definition 1.3.1. The Laplace transform of a function f of the real variable t ∈ R+ is

defined by:

L{f(s); s} =

∫ ∞
0

e−stf(t)dt, s ∈ R (1.36)

f(t) is called the original of Lf(s).

Definition 1.3.2. The transformation reversal of Laplace is carried out by means of an

integral in the complex plan, pure and positive:

f(t) = L−1{F (s)} =
1

2πi

∫ γ+∞

γ−∞
estF (s)ds

where γ is chosen to ensure that the integral is convergent.which implies that γ is greater

than the actual singularity part of F (s).

Proposition 1.3.1. Suppose that f(t) and g(t) are two functions, which are equal to

zero for t < 0 and for which the Laplace transforms F (t) and G(t) exist. The following

statements hold (see [13]):

(a) The Laplace transform and its inverse are linear operators, suppose that λ ∈ R,

then :

L{λf(t) + g(t); s} = λL{f(t); s}+ L{g(t); s} = λF (s) +G(s)

L−1{λF (t) +G(t); s} = λL−1{F (t); s}+ L−1{G(t); s} = λf(s) + g(s)

(b) For the Laplace transform of the convolution of f(t) and g(t) is follows:

L{f(t) ∗ g(t); s} = F (s)G(s)

where the convolution is defined by:

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ =

∫ t

0

f(τ)g(t− τ)dτ

(c) The limit of the function sF (s) for s→∞ is given by

lim
s−→∞

sF (s) = f(0)

(d) The Laplace transform of the n− th derivative (n ∈ N) of f(t) is given by:

L{f (n)(t); s} = snF (s)−
n−1∑
k=0

ss−k−1fk(0) = snF (s)−
n−1∑
k=0

skf s−k−1(0)

.



1.4 Some Results from Nonlinear Analysis 26

Definition 1.3.3. The derivative of a function f is defined as

D1f(x) = lim
h→0

f(x)− f(x− h)

h

Iterating this operation yields an expression for the n − th derivative of a function. As

can be easily seen for any natural number n:

Dnf(x) = lim
h→0

h−n
n∑

m=0

(−1)m(nm)f(x+ (n−m)h)

or equivalently,

Dnf(x) = lim
h→0

h−n
n∑

m=0

(−1)m(nm)f(x−mh) (1.37)

1.4 Some Results from Nonlinear Analysis

Definition 1.4.1. (Banach space) A normed space X is called a Banach space if it is

complete, i.e., if every Cauchy sequence is convergent. That is

{fn}n∈N is cauchy in X ⇒ ∃f ∈ X such that fn → f

Definition 1.4.2. [12](Contractive function) Let (X, d) be a complete metric space.

A function f : X −→ X is called a contractive function if there exists k < 1 such that for

any x, y ∈ X,

d (f(x), f(y)) ≤ kd(x, y).

Definition 1.4.3. [12](Fixed point) A fixed point of a mapping T : X −→ X of a set

X into itself is an x ∈ X which is mapped onto itself, that is

Tx = x.

Definition 1.4.4. [12](Banach’s fixed point theorem) Let (X, d) be a complete metric

space and let T : X −→ X be a contraction on X. Then T has a unique fixed point x ∈ X

(such that T (x) = x).



Chapter 2

Fractional Calculus

This Chapter mainly introduces definitions and basic properties of fractional deriva-

tives, including Riemann-Liouville fractional derivative, Caputo fractional derivative and

some basics properties of these derivatives are discussed. The difference between Caputo

and Riemann-Liouville formulas for the fractional derivatives also is mentioned. Some

basic tools of fractional differential equations are introduced, such as existence results of

fractional ordinary equations are obtained and those of stochastic fractional equations are

given at the end of the chapter. See [3, 17, 20, 21, 26] and their references for details on

the fractional calculus.

2.1 Fractional Calculus

In this section, we shall give some basic formulas and techniques which are necessary

to better understand the rest of this work. We start off with the Gamma function.

2.1.1 Special Functions

The Gamma Function

The most basic interpretation of the Gamma function is simply the generalization of

the factorial for all real numbers.

Definition 2.1.1. Its definition is given by

Γ(x) =

∫ ∞
0

e(−t)tx−1dt, x ∈ R+ (2.1)

27
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The Gamma function has some unique properties. By using its recursion relations we

can obtain formulas:

Γ(x+ 1) = xΓ(x), x ∈ R+

Γ(x) = (x− 1)!, x ∈ R+

Example 2.1.1.

Γ(1) = Γ(2) = 1

Γ(1/2) =
√
π

Γ(n+ 1/2) =

√
π

2n
(2n− 1), n ∈ N

The Beta Function

Like the Gamma function, the Beta function is defined by a definite integral.

Definition 2.1.2. It’s given by :

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y ∈ R+ (2.2)

The Beta function can also be defined in terms of the Gamma function:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y ∈ R+ (2.3)

The Mittag-Leffler Function

The Mittag-Leffler function is named after a Swedish mathematician who defined and

studied it in (1903, [21]). The function is a direct generalization of the exponential

function, exp(x), and it plays a major role in fractional calculus.

Definition 2.1.3. The standard definition of the Mittag-Leffler is given by :

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
, α > 0, (2.4)

It is also common to represent the Mittag-Leffler function in two arguments α and β.

Such that

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
, β > 0, α > 0. (2.5)
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The exponential series defined by (2.5) generalization of (2.4).

As a result of the definition given in (2.5), the following relations hold:

Eα,β(x) =
1

Γ(β)
+ xEα,α+β(x) (2.6)

and

Eα,β(x) = βEα,β+1(x) + αx
d

dx
Eα,β+1(x) (2.7)

Example 2.1.2.

Eα,β(0) = 1

E1,1(x) =
∞∑
k=0

xk

Γ(k + 1)
=
∞∑
k=0

xk

k!
= ex

E1,2(x) =
∞∑
k=0

xk

Γ(k + 2)
=

1

x

∞∑
k=0

xk+1

(k + 1)!
=

ex − 1

x

2.2 Basic fractional approche

2.2.1 Grunwald-Letnikov derivative

Grunwald-Letnikov derivative or also named Grunwald-Letnikov differintegral, is a di-

rect generalization of the classical derivative. The idea behind is that h should approach

0 as n approaches infinity,

f 1(x) = lim
h→0

f(x)− f(x− h)

h

f 2(x) = lim
h→0

f 1(x)− f 1(x− h)

h

= lim
h1→0

lim
h2→0

f(x+ h2)− f(x)

h2

− lim
h2→0

f(x− h1 − h2)− f(x− h1)

h2

h1

when h1 = h2 = h

f 2(x) = lim
h→0

f(x− 2h)− 2f(x− h) + f(x)

h2

continuing for n times we have

fn(x) = Dnf(x) = lim
h→0

1

hn

n∑
m=0

(−1)m(mn )f(x−mh).

(nm) =
n!

m!(n−m)!
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This can be replaced by Gamma functions as Γ(α+1)
m!Γ(α−m+1)

for non-integer n, α. Therefore,

differentiation in fractional order is

aD
αf(x) = lim

h→0

1

hα

[x−a
h

]∑
m=0

(−1)m
(α− 1)!

m!(α−m+ 1)!
f(x−mh).

For negative α, the process will be integration. Therefore, for integration we write

aD
−αf(x) = lim

h→0
hα

[x−a
h

]∑
m=0

Γ(α +m)

m!Γ(α)
f(x−mh) (2.8)

or equivalently,

aD
−αf(x) = lim

n→∞

(
n

x− a

)α n∑
m=0

Γ(α +m)

m!Γ(α)
f

(
x−m

(
x− a
n

))
(2.9)

2.2.2 Riemann-Liouville approche

2.1.3.1 Riemann-Liouville fractional integrals

We begin by introducing a fractional integral of integer order n in the form of Cauchy

formula.

aD
−n
x f(x) =

1

Γ(n)

∫ x

a

(x− t)n−1f(t)dt (2.10)

It will be shown that the above integral can be expressed in terms of n-multiple integral,

that is

aD
−n
x f(x) =

∫ x

0

dx1

∫ x1

a

dx2

∫ x2

a

dx3...

∫ xn−1

a

f(t)dt (2.11)

When n = 2, by using the well-known Dirichlet formula, namely∫ b

a

dx

∫ x

a

f(x, y)dy =

∫ b

a

dy

∫ b

y

f(x, y)dx (2.12)

(2.11) becomes ∫ x

a

dx1

∫ x1

a

f(t)dt =

∫ x

a

dtf(t)

∫ x

t

dx1

=

∫ x

a

(x− t)f(t)dt.

This shows that the two-fold integral can be reduced to a single integral with the help of

Dirichlet formula. For n = 3, the integral in (2.11) gives

aD
−3
x f(x) =

∫ x

a

dx1

∫ x1

a

dx2

∫ x2

a

f(t)dt,

=

∫ x

a

dx1

[∫ x1

a

dx2

∫ x2

a

f(t)dt

]
.

(2.13)
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By using the result in (2.13) the integrals within big brackets simplify to yield

aD
−3
x f(x) =

∫ x

a

dx1

[∫ x1

a

(x1 − t)f(t)dt

]
. (2.14)

If we use (2.12), then the above expression reduces to

aD
−3
x f(x) =

∫ x

a

dtf(t)

∫ t

x

(x1 − t)dx1 =

∫ x

a

(x− t)2

2!
f(t)dt. (2.15)

Continuing this process, we finally obtain

aD
−n
x f(x) =

1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt. (2.16)

It is evident that the integral in (2.16) is meaningful for any number n provided its real

part is greater than zero.

Definition 2.2.1. Let f(x) ∈ L(a, b), α > 0, then

aI
α
x f(x) =a D

−α
x f(x) = Iαa+f(x) =

1

Γ(α)

∫ x

a

f(t)

(x− t)1−αdt. (2.17)

and

xI
α
b f(x) =x D

−α
b f(x) = Iαb−f(x) =

1

Γ(α)

∫ b

x

f(t)

(t− x)1−αdt. (2.18)

for x > a is called Riemann-Liouville left-sided and right-sided fractional integral of order

α, respectively.

Theorem 2.2.1. [5] Let f ∈ L1[a, b] and α > 0. Then, the integral Iαa f(x) exists for

almost every x ∈ [a, b]. Moreover, the function Iαa f itself is also an element of L1[a, b].

Proof: We write the integral in question as∫ x

a

(x− t)α−1f(t)dt =

∫ +∞

−∞
φ1(x− t)φ2(t)dt,

where

φ1(u) =

 uα−1 for 0 < u ≤ b− a

0 else

and

φ2(u) =

 f(u) for a < u ≤ b

0 else

By construction, φj ∈ L(R) for j ∈ {1, 2} and thus by a classical result on Lebesgue

integration.
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Example 2.2.1. If f(x) = (x− a)β−1, then find the value of aIαx f(x).

Soultion: We have

aI
α
x f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1(t− a)β−1dt.

If we substitute t = a+ y(x− a) in the above integral, it reduces to

Γ(β)

Γ(α + β)
(x− a)α+β−1

where β > 0. Thus

aI
α
x f(x) =

Γ(β)

Γ(α + β)
(x− a)α+β−1

Proposition 2.2.1. Fractional integrals obey the following properties:

aI
α
x aI

β
xφ = aI

α+β
x φ = aI

β
x aI

α
x φ

xI
α
b xI

β
b φ = xI

α+β
b φ = xI

β
b xI

α
b φ (2.19)

Proof: By virtue of the definition (2.17), it follows that

aI
α
x aI

β
xφ = 1

Γ(α)

∫ x

a

dt

(x− t)1−α
1

Γ(β)

∫ t

a

φ(u)du

(t− u)1−β

= 1
Γ(α)Γ(β)

∫ x

a

duφ(u)

∫ x

u

dt

(x− t)1−α(t− u)β
.

(2.20)

If we use the substitution y = t−u
x−u , the value of the second integral is

1

Γ(α)Γ(β)(x− u)1−α−β

∫ 1

0

yβ−1(1− y)α−1dy =
(x− u)α+β−1

Γ(α + β)
.

which, when substituted in (2.20) yields the first part of (2.19). The second part can be

similarly established. In particular,

aI
n+α
x f = aI

n
x aI

α
x f, n ∈ N, α > 0 (2.21)

which shows that the n-fold differentiation

dn

dxn a
In+α
x f(x) =a I

α
x f, n ∈ N, α > 0 (2.22)

for all x. When α = 0, we obtain

aI
0
xf(x) = f(x); aI

−n
x f(x) =

dn

dxn
f(x) = f (n)(x) (2.23)

The property given in (2.19) is called semigroup property of fractional integration.
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2.1.3.2 Riemann-Liouville fractional derivative

Having established these fundamental properties of Riemann-Liouville integral opera-

tors, we now come to the corresponding differential operators.

Definition 2.2.2. Let (n− 1) ≤ α < n. The operator aD
α
x , defined by

aD
α
xf(x) =

1

Γ(n− α)

(
d

dt

)n ∫ x

a

f(t)

(x− t)α−n+1
dt,

and

xD
α
b f(x) =

1

Γ(n− α)

(
d

dt

)n ∫ b

x

f(t)

(t− x)α−n+1
dt.

is called the Riemann-Liouville left-sided and right-sided fractional differential operator of

order α, respectively.

For α = 0, we set D0 := I, the identity operator.

2.2.3 Caputo fractional derivative

The Caputo fractional derivative is considered to be an alternative definition for Riemann-

Liouville definition, it is introduced by the Italian Mathematician Caputo in 1967.

Definition 2.2.3. Let α > 0, the Caputo left-sided and right-sided fractional differential

operator of order α is given by:

C
aD

α
xf(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt,

and
C
xD

α
b f(x) =

1

Γ(n− α)

∫ b

x

f (n)(t)

(t− x)α−n+1
dt.

2.2.4 Main properties of fractional operator

Lemma 2.2.1. (Representation [14])

• The Riemann Liouville fractional derivative is equivalent to the composition of the

same operator ((n−α)-fold integration and n−th ordre differentiation) but in reverse

ordre i.e

aD
α
xf(x) = DnIn−αa f(x)
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• Let n− 1 < α < n, n ∈ N, α ∈ R and f(x) be such that CDα
a f(x) exists. Then,

C
aD

α
xf(x) = In−αa Dnf(x).

Proposition 2.2.1. In general the two operators, Riemann-Liouville and Caputo, do not

coincide, i.e,

aD
α
xf(x) 6= C

aD
α
xf(x)

Proof: The well-known Taylor series expansion about the point 0 is

f(x) = f(0) + xf (1)(0) + x2

2!
f (2)(0) + x3

3!
f (3)(0) + ...+ xn−1

(n−1)!
f (n−1)(0) +Rn−1

=
n−1∑
k=0

xk

Γ(k + 1)
f (k)(0) +Rn−1

Rn−1 =

∫ x

0

f (n)(s)(x− s)n−1

(n− 1)!
ds =

1

Γ(n)

∫ x

0

f (n)(s)(x− s)n−1ds

= Inf (n)(x).

Using the linearity property of R-L and representation property of Caputo

C
aD

α
xf(x) = In−αDnf(x).

and

aD
α
xf(x) = aD

α
x

(
n−1∑
k=0

xk

Γ(k + 1)
f (k)(0) +Rn−1

)

=
n−1∑
k=0

aD
α
xx

k

Γ(k + 1)
f (k)(0) +a D

α
xRn−1

=
n−1∑
k=0

xk−α

Γ(k + 1)
f (k)(0) +a D

α
xI

nf (n)(x)

=
n−1∑
k=0

xk−α

Γ(k + 1)
f (k)(0) + In−αf (n)(x)

=
n−1∑
k=0

xk−α

Γ(k + 1)
f (k)(0) +C

a D
α
xf(x).

This means that

aD
α
xf(x) 6=C

a D
α
xf(x)

Proposition 2.2.2. The relation between the Riemann-liouville and Caputo fractional

derivatives is given by:

C
aD

α
xf(x) =a D

α
x

(
f(x)−

n−1∑
k=0

tk

k!
f (k)(0)

)
.



2.2.4 Main properties of fractional operator 35

Proof: The proof result of Proposition 2.2.1 is

aD
α
xf(x) =

n−1∑
k=0

xk−α

Γ(k + 1)
f (k)(0) +C

a D
α
xf(x)

This means that
C
aD

α
xf(x) =a D

α

(
f(x)−

n−1∑
k=0

xk

k!
f (k)(0)

)
.

Lemma 2.2.2. (Interpolation)

• Let n − 1 < α < n, n ∈ N, α ∈ R and f(t) be such that Dαf(t) exists. Then the

following properties for the R-L operator hold

lim
α−→n

Dαf(t) = f (n)(t),

lim
α−→n−1

Dαf(t) = f (n−1)(t).
(2.24)

• Let n − 1 < α < n, n ∈ N, α ∈ R and f(t) be such that CDαf(t) exists. Then the

following properties for the Caputo operator hold

lim
α−→n

CDαf(t) = f (n)(t),

lim
α−→n−1

CDαf(t) = f (n−1)(t)− f (n−1)(0).
(2.25)

Proof: The proof uses integration by parts.

cDαf(t) = 1
Γ(n−α)

∫ t

0

f (n)(s)

(t− s)α+1−nds

= 1
Γ(n−α)

(
−f (n)(s) (t−s)n−α

n−α |
t
s=0 −

∫ t

0

−f (n−1)(s)
(t− s)n−α

n− α
ds

)
= 1

Γ(n−α+1)

(
f (n)(0)tn−α +

∫ t

0

f (n+1)(s)(t− s)n−αds
)
.

Now, by taking the limit for α −→ n and α −→ n− 1, respectively, it follows

lim
α−→n

CDαf(t) =
(
f (n)(0) + f (n)(s)

)
|ts=0 = f (n)(t)

and

lim
α−→n−1

CDαf(t) =
(
f (n)(0) + f (n)(s)(t− s)

)
|ts=0 −

∫ t

0

−f (n)(s)ds

= f (n−1)(s)|ts=0

= f (n−1)(t)− f (n−1)(0).

For the Riemann-Liouville fractional differential operator the corresponding interpola-

tion property reads

lim
α−→n

Dαf(t) = f (n)(t),

lim
α−→n−1

Dαf(t) = f (n−1)(t).
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Lemma 2.2.3. (Linearity)

• Let n − 1 < α < n, n ∈ N, α, λ ∈ R and the function f(x) and g(x) be such that

both aD
α
xf(x) and aD

α
xg(x) exist. The Riemann-Liouville fractional derivative is a

linear operator i.e,

Dα(λf(x) + g(x)) = λDαf(x) +Dαg(x)

• Let n−1 < α < n, n ∈ N, α, λ ∈ R and the function f(x) and g(x) be such that both
C
aD

α
xf(x) and C

aD
α
xg(x) exist. The Caputo fractional derivative is a linear operator

i.e,
C
aD

α
x (λf(x) + g(x)) = λCaD

α
xf(x) +C

a D
α
xg(x) (2.26)

Proof: The proof follows straight forwardly from the definition of fractional integration

and the fact that the integral and the classical integer-ordre derivative are linear operator.

Lemma 2.2.4. (Non-commutation)

• Let n − 1 < α < n, m,n ∈ N, α ∈ R and the function f(x) is such that aD
α
xf(x)

exists. Then in general Riemann Liouville operator is also non-commutative and

satisfies

Dm (aD
α
xf(x)) =a D

α+m
x f(x) 6=a D

α
x (Dmf(x)) (2.27)

• Let n − 1 < α < n, m,n ∈ N, α ∈ R and the function f(x) is such that C
aD

α
xf(x)

exists. Then in general

C
aD

α
x (Dmf(x)) =C

a D
α+m
x f(x) 6= Dm

(
C
aD

α
xf(x)

)
(2.28)

Proof: Let α = 1
2
, f(x) = 1, m = 1 using the definition of Dα

x ,

D
1
2
xD

1(1) = D
1
2 (0) = 0,

D
3
2
x (1) = − 1

2
√

(π)
x−

3
2 ,

D
1
2
xD

1(1) = 0 6= D
− 3

2
x .

That means

D
1
2D1(1) 6= D1D

1
2 (1)

The same proof of Caputo.
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Corollary 2.2.1. (Leibniz Rule [5])

• Let t > 0, α ∈ R, n − 1 < α < n, n ∈ N. If f(τ) and g(τ) are C∞([0, x]) . The

Riemann-Liouville fractional derivative of Leibniz rule is given by

aD
α
x (f(x)g(x)) =

∞∑
k=0

(
k
α

)
(aD

α−k
x f(x))g(k)(x) (2.29)

• Let t > 0, α ∈ R, n − 1 < α < n, n ∈ N. If f(τ) and g(τ) are C∞([0, x]). The

Caputo fractional derivative of Leibniz rule is given by

C
aD

α
x (f(x)g(x)) =

∞∑
k=0

(αk )
(
aD

α−k
x f(x)

)
g(k)(x)−

n−1∑
k=0

xk−α

Γ(k + 1− α)

(
(f(x)g(x))(k) (0)

)
.

(2.30)

Lemma 2.2.5. (Laplace transforms for the basic fractional operators) Suppose that p >

0 and F (s) is the Laplace transform of f(t). Then the following statements hold(see

Podlubny [27]):

(a) The Laplace transform of the fractional integral of order α is given by:

L{Iαf(t); s} = s−αF (s). (2.31)

(b) The Laplace transform of R-L of order α is given by

L{Dαf(t); s} = sαF (s)−
n−1∑
k=0

sk[Dα−k−1f(t)]t=0

= sαF (s)−
n−1∑
k=0

sn−k−1[DkIn−αf(t)]t=0, n− 1 < α < n

(c) The Laplace transform of the Caputo fractional derivative of order α is given by

L{CDα
xf(t); s} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α < n (2.32)

Proof: To show the validity of (2.32). Using representation formula of Caputo,

CDα
xf(x) = In−αa Dnf(x).

Let g(x) = Dnf(x). Then (2.32) becomes

CDα
xf(x) = In−αa g(x).
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By the Laplace transform of the fractional integral and the representation formula of

Caputo

L{CDα
xf(x); s} = L{In−αa g(x); s} = s−(n−α)G(s). (2.33)

where G(s) = L{g(x); s} and

G(s) = snF (s)−
n−1∑
k=0

sn−k−1f (k)(0). (2.34)

Finally, substituting (2.34) in (2.33), we have

L{CDα
xf(x); s} = s−(n−α)

(
snF (s)−

n−1∑
k=0

sn−k−1f (k)(0)

)
= sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0).

is proved.

To summarize all this results. A comparison between the Caputo and Riemann-Liouville

fractional derivatives is given in the following table (see [12]).

Property Riemann-Liouville Caputo

Representation Dαf(t) = DnIn−αf(t) CD
α
f(t) = In−αDnf(t)

Interpolation lim
α→n

Dαf(t) = f (n)(t) lim
α→n

CD
α
f(t) = f (n)(t)

lim
α→n−1

Dαf(t) = f (n−1)(t) lim
α→n−1

CD
α
f(t) = f (n−1)(t)− f (n−1)(0)

Linearity Dα(λf(t) + g(t)) = λDαf(t) +Dαg(t) CD
α
(λf(t) + g(t))

= λCD
α
f(t) + CD

α
g(t)

Non-commutation DmDαf(t) = Dα+mf(t) 6= DαDmf(t) CD
α

(Dmf(t)) = CD
α+m

f(t)

6= Dm
(
CD

α
f(t)

)
Laplace transform sαF (s)−

n−1∑
k=0

sk[Dα−k−1f(t)]t=0 sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0)

Leibniz rule Dα(f(t)g(t)) =

∞∑
k=0

(
k
α

)
(Dα−kf(t))g(k)(t) CD

α
(f(t)g(t))

=
∞∑
k=0

(
k
α

)
(Dα−kf(t))g(k)(t)

−
n−1∑
k=0

tk−α

Γ(k + 1− α)

(
(f(t)g(t))(k)(0)

)
f(t) = r = const Dαr = r

Γ(1−α) t
α 6= 0, r = const CD

α
r = 0, r = const

Table1: The comparison between the Caputo and Riemann-Liouville derivative fractional
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2.3 Ordinary fractional differential equation

Fractional order differential equations have become an important tool in mathematical

modeling. Although there are many possible generalizations of dn

dtn
f(t), the most com-

monly used definitions are Riemann−Liouville and Caputo fractional derivatives.

We use a transformation in the equivalent fractional Volterra integral equation of given

fractional differential equation (FDE) and obtain its exact solution in terms of the solu-

tion of an integer order differential equation.

2.3.1 The main results

Consider the condition initial with Caputo type FDE given by CDαX(t) = f(t,X(t))

X(0) = X0,
(2.35)

where f ∈ C([0, T ]× R,R), 0 < α < 1.

Since f is assumed to be a continuous function, every solution of (2.35) is also a solution

of the following Volterra fractional integral equation.

X(t) = X0 +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ,X(τ))dτ, t ∈ [0, T ]. (2.36)

Furthermore, every solution of(2.36) is a solution of (2.35).

We note that (2.35) is equivalent to the following system Dα(X(t)−X0) = f(t,X(t))

X(0) = X0

The following existence theorem is given for (2.35).

Theorem 2.3.1. [4]Assume that f ∈ C([R0,R]).

Where R0 = [(t,X) : 0 ≤ t ≤ a and |X − X0| ≤ b] and let |f(t,X)| ≤ M on

R0. Then there exists at least one solution for FDE (2.35) on 0 ≤ t ≤ γ where γ =

min
(
a, [ b

M
Γ(α + 1)]

1
α

)
, 0 < α < 1.

Theorem 2.3.2. Consider the FDE given by (2.35). Let

g(v,X∗(v)) = f
(
t− (tα − vΓ(α + 1))

1
α , X(t− (tα − vΓ(α + 1))

1
α )
)
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and assume that the conditions of Theorem 2.3.1 hold. Then, a solution of (2.35), X(t),

is given by

X(t) = X∗(t
α/Γ(α + 1))

where X∗(v) is a solution of the integer order differential equation
d(X∗(v))

dv
= g(v,X∗(v))

X∗(0) = X0

(2.37)

Proof: The existence of the solution of (2.35) follows from Theorem 2.3.1. If X(t) is a

solution of (2.35) then, it is also a solution of (2.36).

Let τ = t − (tα − vΓ(α + 1))
1
α . So, Volterra fractional integral equation (2.36) can be

written as

X(t) = X0 +

∫ tα/Γ(α+1)

0

f(t− (tα − vΓ(α + 1))
1
α , X(t− (tα − vΓ(α + 1))

1
α ))dv

X(t) = X0 +

∫ tα/Γ(α+1)

0

g(v,X∗(v))dv. (2.38)

On the other hand, consider the system of FDE given by (2.37). Every solution of (2.37)

is also a solution of the Volterra integral equation given below and vice versa.

X∗(v) = X0 +

∫ v

0

g(s,X∗(s))ds, 0 ≤ v ≤ aα/Γ(α + 1). (2.39)

Since 0 ≤ tα/Γ(α + 1), the right-hand side of equation (2.38) is equal to

X∗(t
α/Γ(α+ 1)). The theorems given below are simple generalizations of Theorems 2.3.1

and 2.3.2, respectively.

Theorem 2.3.3. [4] Let ‖ · ‖denote any convenient norm on Rn. Assume that f ∈

C([R1,Rn]), where R1 = [(t,X) : 0 ≤ t ≤ a and ‖ X −X0 ‖≤ b], f = (f1, f2, ..., fn)T ,

X = (x1, x2, ..., xn)T and let ‖ f(t,X) ‖≤ M on R1. Then, there exists at least one

solution for system of FDE’s given by CDαX(t) = f(t,X(t))

X(0) = X0

(2.40)

on 0 ≤ t ≤ β where β = min
(
a,
[
b
M

Γ(α + 1)
] 1
α

)
, 0 < α < 1.

Theorem 2.3.4. [4] Consider the system of FDE given by (2.40) of order α, 0 < α < 1.

Let

g(v,X∗(v)) = f
(
t− (tα − vΓ(α + 1))

1
α , X(t− (tα − vΓ(α + 1))

1
α )
)
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and assume that the conditions of Theorem 2.3.3 hold. Then, a solution of (2.35), X(t),

can be given by

X(t) = X∗(t
α/Γ(α + 1))

where X∗(v) is a solution of the system of integer order differential equations
d(X∗(v))

dv
= g(v,X∗(v))

X∗(0) = X0

Remark 2.3.1. Although the Caputo derivative is more commonly used in applied prob-

lems, also exist the models with Riemann Liouville type derivative. Theorem 2.3.2 also

holds if  Dα(x(t)− x0) = f(t, x(t))

x(0) = x0

Riemann Liouville for system of FDE’s is considered. But, generally the system of FDE

are given in the form  Dαx(t) = f(t, x(t))

x(0) = x0

To apply the given solution technique to these kind of problems,one should set

h(t, x(t)) = f(t, x(t))− x0t
−α

Γ(1− α)

and solve the problem

Dαx(t) = h(t, x(t)).

Most of the fractional differential equations of order α, 0 < α < 1, are given in the

following form

Dα(x(t)) = f(t, x(t)) (2.41)

In order to use Theorem 2.3.2 to solve (2.41) with the initial condition x(0) = x0, set

h(t, x(t)) = f(t, x(t))− x0t−α

Γ(1−α)
and solve

Dα(x(t)− x0) = h(t, x(t))

2.3.2 Examples

In this subsection two examples are chosen such that the exact solutions can be evalu-

ated analytically to show that the technique given a works properly.
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Example 2.3.1. Consider the system of fractional order given by CD
1
2x(t) = t

x(0) = x0

(2.42)

For this example,

g(v) = 2
√
tΓ

(
3

2

)
v − v2Γ2

(
3

2

)
.

The solution of the corresponding integer order of FDE given in Theorem 2.3.2 is

x1(v) =
√
tΓ

(
3

2

)
v2 −

Γ2(3
2
v3)

3
+ x0.

So, the solution of the given fractional order of FDE is

x(t) = x1

(
t
1
2

Γ(3
2
)

)
=

4t
3
2

3
√
π

+ x0. (2.43)

Indeed, it can be shown that (2.43) is a solution of (2.42), by using the fractional

derivative.

Example 2.3.2. Consider the system of linear fractional differential equation given by CD
1
2x(t) = t+ x(t)

x(0) = x0

(2.44)

The corresponding differential equation of this FDE is
dx1(v)
dv

= f1(v) = x1(v) + 2
√
tΓ
(

3
2

)
v − v2Γ2

(
3
2

)
x(0) = x0

The solution of this system of (2.44) is

x1(v) = −2
√
tΓ

(
3

2

)
(v+ 1) + Γ2

(
3

2

)
(v2 + 2v+ 2) + ev

(
x0 + 2

√
tΓ

(
3

2

)
− 2Γ2

(
3

2

))
.

Consequently, the solution of the system of (2.44) is

x(t) = x1

(
t
1
2

Γ(3
2
)

)
= −t+

π

2
+ e2

√
t/
√
π
(
x0 +

√
tπ − π

2

)
. (2.45)

2.4 Stochastic fractional differential equation

Several forms of fractional stochastic differential equations have been proposed in stan-

dard models and there has been significant interest in studying their solution.

In this section we shall discuss the the global existence and uniqueness of solution of a

class of a Caputo fractional stochastic differential equations. Using a temporally weighted

norm and whose coefficients satisfy a standard Lipschitz condition.
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2.4.1 Preliminary

Consider a Caputo fractional stochastic differential equation (for short Caputo FSDE)

of order α ∈ (1
2
, 1) of the following form

CDα

0+X(t) = b(t,X(t)) + σ(t,X(t))
dWt

dt
, (2.46)

where b,σ : [0,∞)×Rd → Rd, are measurable and (Wt)t∈[0,∞) is a standard scalar Brown-

ian motion on an underlying complete filtered probability space (Ω,F ,F := (Ft)t∈[0,∞),P).

For each t ∈ [0,∞), let Xt := L2(Ω,Ft,P) denote the space of all Ft− measurable, mean

square integrable functions f = (f1, , ..., fd)
T : Ω→ Rd with

‖f‖ms :=

√√√√ d∑
i=1

E(|fi|2) =
√
E‖f‖2,

where Rd is endowed with the standard Euclidean norm.

A process X : [0,∞)→ L(Ω,F ,P) is said to be F− adapted if X(t) ∈ Xt for all t ≥ 0. For

each η ∈ X0 a F−adapted process X is called a solution of (2.46) with the initial condition

X(0) = η if the following equality holds for t ∈ [0,∞)

X(t) = η +
1

Γ(α)

(∫
t

0

(t− τ)α−1b(τ −X(τ))dτ +

∫
t

0

(t− τ)α−1σ(τ −X(τ))dWτ

)
, (2.47)

where Γ(α) is the Gamma function.

2.4.2 The main results

In the remaining of this section, we assume that the coefficients b and σ satisfy the fol-

lowing standard conditions:

• (H1) There exists L > 0 such that for all x, y ∈ Rd, t ∈ [0,∞)

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ L‖x− y‖.

• (H2) σ(., 0) is essentially bounded, i.e.

‖σ(., 0)‖∞ := esssupτ∈[0,∞)‖σ(τ, 0)‖ <∞
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and b(., 0) is L2 integrable, i.e.

∫ ∞

0

‖b(τ, 0)‖2dτ <∞

Theorem 2.4.1. Suppose that (H1) and (H2) hold. Then

• (i) for any η ∈ X0, the initial value problem (2.46) with the initial condition

X(0) = η has a unique global solution on the whole interval [0,∞) denoted by ϕ(., η);

• (ii) on any bounded time interval [0, T ], where T > 0, the solution ϕ(., η) depends

continuously on η, i.e.

lim
ζ→η

sup
t∈[0,T ]

‖ ϕ(t, ζ)− ϕ(t, η) ‖ms= 0

2.4.3 Proof of the main result

In order to prove the theorem 2.4.1 it is equivalent to show the existence and unique-

ness solutions on an arbitrary interval [0, T ], where T > 0 is arbitrary. In what follows

we choose and fix a T > 0 arbitrarily.

Let H2([0, T ]) be the space of all the processes X which are measurable, FT−adapted,

where FT := {Ft}t∈[0,T ], and satisfies that

‖ X ‖H2=: sup
0≤t≤T

‖ X(t) ‖ms<∞

Obviously, H2([0, T ], ‖ . ‖H2), is a Banach space. For any η ∈ X0, we define an operator

τη : H2([0, T ])→ H2([0, T ]) by

τηξ(t) = η +
1

Γ(α)

(∫
t

0

(t− τ)α−1b(τ − ξ(τ))dτ +

∫
t

0

(t− τ)α−1σ(τ − ξ(τ))dWτ

)
(2.48)

The following lemma is devoted to showing that this operator is well-defined.

Lemma 2.4.1. For any η ∈ X0, the operator τη is well-defined.

Proof: Let ξ ∈ H2([0, T ]) be arbitrary. From the definition of τηξ as in (2.48) and

the inequality ‖x + y + z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all x, y, z ∈ Rd, we have for all

t ∈ [0, T ]

‖τηξ(t)‖2
ms ≤ ‖3η‖2

ms +
3

Γ(α)2
E

(∥∥∥∥∫ t

0

(t− τ)α−1b(τ, ξ(τ))dτ

∥∥∥∥2
)

+
3

Γ(α)2
E

(∥∥∥∥∫ t

0

(t− τ)α−1σ(τ, ξ(τ))dWτ

∥∥∥∥2
)

(2.49)
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By the Hölder inequality, we obtain

E

(∥∥∥∥∫ t

0

(t− τ)α−1b(τ, ξ(τ))dτ

∥∥∥∥2
)
≤

∫
t

0

(t− τ)2α−2dτE
(∫

t

0

‖b(τ, ξ(τ))‖2dτ

)
=

t2α−1

2α− 1
E
(∫

t

0

‖b(τ, ξ(τ))‖2dτ

)
(2.50)

From (H1), we derive

‖b(τ, ξ(τ))‖2 ≤ 2(‖b(τ, ξ(τ))− b(τ, 0)‖2 + ‖b(τ, 0)‖2)

≤ 2L2‖ξ(τ)‖2 + 2‖b(τ, 0)‖2

Therefore,

E
(∫

t

0

‖b(τ, ξ(τ))‖2dτ

)
≤ 2L2E

(∫
t

0

‖ξ(τ)‖2dτ

)
+ 2

∫
t

0

‖b(τ, 0)‖2dτ

≤ 2L2T sup
t∈[0,T ]

E(‖ξ(t)‖2) + 2

∫
T

0

‖b(τ, 0)‖2dτ

which together with (2.50) implies that

E

(∥∥∥∥∫ t

0

(t− τ)α−1b(τ, ξ(τ))dτ

∥∥∥∥2
)
≤ 2L2T 2α

2α− 1
‖ξ‖2H2 +

2T 2α−1

2α− 1

∫
T

0

‖b(τ, 0)‖2dτ (2.51)

Now, using Itô’s isometry, we obtain

E

(∥∥∥∥∫ t

0

(t− τ)α−1σ(τ, ξ(τ))dWτ

∥∥∥∥2
)

=
∑
1≤i≤d

E
(∫

t

0

(t− τ)α−1σi(τ, ξ(τ))dWτ

)2

= E

∫ t

0

(t− τ)2α−2

∣∣∣∣∣∑
i

σi(τ, ξ(τ))

∣∣∣∣∣
2

dτ


= E

(∫
t

0

(t− τ)2α−2‖σ(τ, ξ(τ))‖2dτ

)
From (H1), we also have

‖σ(τ, ξ(τ))‖2 ≤ 2L2‖ξ(τ)‖2 + 2‖σ(τ, 0)‖2 ≤ 2L2‖ξ(τ)‖2 + 2‖σ(., 0)‖2∞.

Therefore, for all t ∈ [0, T ] we have

E

(∥∥∥∥∫ t

0

(t− τ)α−1σ(τ, ξ(τ))dWτ

∥∥∥∥2
)
≤ 2L2E

(∫
t

0

(t− τ)2α−2‖ξ(τ)‖2dτ

)
+ 2‖σ(., 0)‖2∞E

(∫
t

0

(t− τ)2α−2dτ

)
≤ 2L2 T

2α−1

2α− 1
‖ξ‖2

H2 +
2T 2α−1

2α− 1
‖σ(., 0)‖2∞
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This together with (2.49) and (2.51) implies that ‖τηξ‖H2 < ∞. Hence, the map τη is

well-defined.

To prove existence and uniqueness of solutions,we will show that the operator τη defined

as above is contractive under a suitable temporally weighted norm ( for the same method

to prove the existence and uniqueness of solutions of stochastic differential equations).

Here, the weight function is the Mittag-Leffler function E2α−1(.) defined as:

E2α−1(.) =
∞∑
k=0

tk

Γ((2α− 1)k + 1)
for all t ∈ R

Lemma 2.4.2. For any α > 1
2
and γ > 0, the following inequality holds:

γ

Γ(2α− 1)

∫
t

0

(t− τ)2α−2E2α−1(γτ
2α−1)dτ ≤ E2α−1(γt

2α−1).

Proof: Let γ > 0 be arbitrary. Consider the corresponding linear Caputo fractional

differential equation of the following form

CD2α−1

0+ x(t) = γx(t). (2.52)

The Mittag-Leffler function E2α−1(γt
2α−1) is a solution of (2.52). Hence, the following

equality holds:

E2α−1(γt
2α−1) = 1 +

γ

Γ(2α− 1)

∫
t

0

(t− τ)2α−2E2α−1(γτ
2α−1)dτ,

which completes the proof.

Proof of The theorem: Let T > 0 be arbitrary. Choose and fix a positive constant

such that

γ >
3L2(T + 1)Γ(2α− 1)

Γ(α)2
(2.53)

On the space H2([0, T ]), we define a weighted norm ‖.‖γ as below

‖X‖γ := sup
t∈[0,T ]

√
E(‖X(t)‖2)

E2α−1(γt2α−1)
for all X ∈ H2([0, T ]). (2.54)

Obviously, two norms ‖.‖H2 and ‖.‖γ are equivalent. Thus, (H2(0, T ), ‖.‖γ) is also a Ba-

nach space.

• Choose and fix η ∈ X0. By virtue of Lemma 2.4.1, the operator τη is well defined.

We will prove that the map τη is contractive with respect to the norm ‖.‖γ.
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For this purpose, let ξ, ξ̂ ∈ H2([0, T ]) be arbitrary. From (2.48) and the inequality

‖x+ y‖2 ≤ 2(‖ x ‖ 2+ ‖ y ‖ 2) for all x, y ∈ Rd, we derive the following inequalities

for all t ∈ [0, T ]:

E

(∥∥∥∥τηξ(t)− τη ξ̂(t)∥∥∥∥2
)
≤ 2

Γ(α)2
E

(∥∥∥∥∫ t

0
(t− τ)α−1(b(τ, ξ(t))− b(τ, ξ̂(t)))dτ

∥∥∥∥2
)

+
2

Γ(α)2
E

(∥∥∥∥∫ t

0
(t− τ)α−1(σ(τ, ξ(t))− σ(τ, ξ̂(t)))dWτ

∥∥∥∥2
)

Using the Hölder inequality and (H1), we obtain

E

(∥∥∥∥∫ t

0
(t− τ)α−1(b(τ, ξ(τ))− b(τ, ξ̂(τ)))dτ

∥∥∥∥2
)
≤ L2t

∫ t

0
(t− τ)2α−2E(‖ξ(τ)− ξ̂(τ)‖2)dτ

On the other hand, by Itô’s isometry and (H1), we have

E

(∥∥∥∥∫ t

0
(t− τ)α−1(σ(τ, ξ(τ))− σ(τ, ξ̂(τ)))dWτ

∥∥∥∥2
)

= E
∫ t

0
(t− τ)2α−2‖σ(τ, ξ(τ))

− σ(τ, ξ̂(τ))‖2dτ

≤ L2

∫ t

0
(t− τ)2α−2E(‖ξ(τ)− ξ̂(τ))‖2)dτ

Thus, for all t ∈ [0, T ] we have

E

(∥∥∥∥Tηξ(t)− Tη ξ̂(t)∥∥∥∥2
)
≤ 2L2(t+ 1)

Γ(α)2

∫ t

0

(t− τ)2α−2E(‖ξ(τ)− ξ̂(τ))‖2)dτ,

which together with the definition of ‖.‖γ as in (2.54) implies that

E

(∥∥∥∥Tηξ(t)− Tη ξ̂(t)∥∥∥∥2
)

E2α−1(γt2α−1)
≤ 2L2(t+ 1)

Γ(α)2

∫ t
0
(t− τ)2α−2E2α−1(γt2α−1)dτ

E2α−1(γt2α−1)
‖ξ − ξ̂‖2

γ.

In light of Lemma 2.4.2, we have for all t ∈ [0, T ]

E

(∥∥∥∥Tηξ(t)− Tη ξ̂(t)∥∥∥∥2
)

E2α−1(γt2α−1)
≤ 2Γ(2α− 1)L2(T + 1)

Γ(α)2γ
‖ξ − ξ̂‖2

γ.

Consequently,

‖Tηξ − Tη ξ̂‖γ ≤ κ‖ξ − ξ̂‖γ, where κ :=

√
2Γ(2α− 1)L2(T + 1)

Γ(α)2γ

By (2.53), we have κ < 1 and therefore the operator τη is a contractive map on

(H2([0, T ]), ‖.‖γ). Using the Banach fixed point theorem, there exists a unique fixed

point of this map in (H2([0, T ])). This fixed point is also the unique solution of

(2.46) with the initial condition X(0) = η. The proof of this part is complete.
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• Choose and fix T > 0 and η, ζ ∈ X0. Since ϕ(., η) and ϕ(., ζ) are solutions of (2.46)

it follows that

ϕ(t, η)− ϕ(t, ζ) = η − ζ +
1

Γ(α)

∫ t

0

(t− τ)α−1(b(τ, ϕ(τ, η))− b(τ, ϕ(τ, ζ)))dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1(σ(τ, ϕ(τ, η))− σ(τ, ϕ(τ, ζ)))dWτ

Hence, using the inequality ‖x+ y+ z‖2 ≤ 3(‖x‖2 +‖y‖2 +‖z‖2) for all x, y, z ∈ Rd,

(H1), the Hölder inequality and Itô’s isometry, we obtain

E(‖ϕ(t, η)− ϕ(t, ζ)‖2) ≤ 3L2(t+ 1)

Γ(α)2

∫ t

0

(t− τ)2α−2E(‖ϕ(t, η)− ϕ(t, ζ)‖2)dτ

+ 3E(‖η − ζ‖2).

By definition of ‖.‖γ, we have

E(‖ϕ(t, η)− ϕ(t, ζ)‖2)

E2α−1(γt2α−1)

E(‖ϕ(t, η)− ϕ(t, ζ)‖2)

E2α−1(γt2α−1)
≤ 3L2(t+ 1)

Γ(α)2

∫ t
0 (t− τ)2α−2E2α−1(γτ2α−1)dτ

E2α−1(γτ2α−1)

×‖ϕ(., η)− ϕ(., ζ)‖2γ + 3E(‖η − ζ‖2)

By virtue of Lemma 2.4.2, we have

‖ϕ(., η)− ϕ(., ζ)‖2
γ ≤

3L2(T + 1)Γ(2α− 1)

γΓ(α)2
‖ϕ(., η)− ϕ(., ζ)‖2

γ + 3‖η − ζ‖2
ms.

Thus, by (2.53) we have(
1− 3L2(T + 1)Γ(2α− 1)

γΓ(α)2

)
‖ϕ(., η)− ϕ(., ζ)‖2

γ ≤ 3‖η − ζ‖2
ms.

Hence,

lim
η→ζ

sup
t∈[0,T ]

‖ϕ(t, η)− ϕ(t, ζ)‖ms = 0.

The proof is complete.



Chapter 3

Conformable Fractional Calculus

This chapter is devoted to conformable fractional calculus theory. A new definition

of the fractional derivative was proposed and found wide resonance in the scientific com-

munity interested in fractional calculus. it was laid out by Khalil and al(2014, [18] ). and

called the conformable fractional derivative. Then developed in Abdeljawad (2015, [1]),

and is currently under intensive investigations. More information about that theory can

be found in [18, 24, 1, 25, 15].

3.1 Conformable Fractional Calculus

In this section, we present some necessary definitions and essentials results from the

conformable fractional calculus theory, see [18], [1] and their references for more details

on conformable fractional derivatives.

3.1.1 Special Functions

Definition 3.1.1. Let p ∈ (0,∞), k > 0, α ∈ (0, 1], and n ∈ N+ Pochhammer symbol

(p)αn,k is given by

(p)αn,k = (p+ α− 1)(p+ α− 1 + kα)(p+ α− 1 + 2kα)...(p+ α− 1 + (n− 1)kα).

Proposition 3.1.1. [29] Let α ∈ (0, 1] and Γαk : (0,∞) −→ R. For 0 < p < ∞.

Conformable gamma function Γαk is given by

Γαk (p) =

∫ ∞
0

tp−1e−
tkα

kα dαt = lim
n→∞

n!αnkn(nkα)
p+α−1
α
−1

(p)αn,k
.

49
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Proposition 3.1.2. [29] The (α, k)−Gamma function Γαk (p) satisfies the following iden-

tities

1. Γαk (p+ k) = (p+ α− 1)Γαk (p)

2. Γαk (p+ nkα) = (p)αn,kΓ
α
k (p)

3. Γαk (p) = (kα)
p+α−1
kα

−1Γ
(
p+α−1
kα

)
4. Γαk (p) = (α)

p+α−1
kα

−1Γk
(
p+α−1
α

)
5. Γαk (kα + 1− α) = 1

Definition 3.1.2. Let α ∈ (0, 1]. The (α, k)−Beta function Bα
k (p, q) is given by the

formula

Bα
k (p, q) =

1

kα

∫ 1

0

t
p
kα
−1(1− t)

q
kα
−1dαt, p, q, k > 0.

Proposition 3.1.3. The (α, k)−Beta function satisfies the following identities

1. Bα
k (p, kα) = 1

p+kα(α−1)
,

2. Bα
k (kα(2− α), q) = 1

q
.

Proof: From the definition of the (α, k)−Beta function Bα
k (p, q), we have

Bα
k (p, kα) =

1

kα

∫ 1

0

t
p
kα
−1dαt =

1

p+ kα(α− 1)

and similarly,

Bα
k (kα(2− α), q) =

1

kα

∫ 1

0

t1−α(1− t)
q
kα
−1dαt =

1

q
.

This completes the proof.

Remark 3.1.1. From the Proposition 3.1.3, we have

Bα
k (kα, kα) =

1

kα2
.

Remark 3.1.2. By the Proposition 3.1.3 with α = 1, we have the following properties for

k−Beta function

Bk(p, k) =
1

p
, Bk(k, p) =

1

q
.

Proposition 3.1.4. [29] The following property holds for (α, k)−Beta function Bα
k (p, q)

Bα
k (p, q) =

p+ kα(α− 2)

p+ q + kα(α− 2)
Bα
k (p− kα, q).
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Proposition 3.1.5. [29] The following identity holds

Bα
k (p, q) = Bk(p+ kα(α− 1), q) =

1

kα
B(

p

kα
+ α− 1,

q

kα
)

where Bk(x, y) is k−Beta function and B(x, y) is classical Beta function.

Proposition 3.1.6. [29] The following property holds for (α, k)−Beta function in terms

of (α, k)−gamma function

Bα
k (p+ kα(1− α), q) =

Γαk (p)Γαk (q)

Γαk (p+ q + 1− α)
.

Remark 3.1.3. By the Proposition 3.1.6 with α = 1, we have the following property

Bk(p, q) =
Γk(p)Γk(q)

Γk(p+ q)
.

3.1.2 Conformable Fractional Derivative

The definition of fractional derivative don’t have a standard form. But the basic defi-

nitions are Riemann-Liouville definition and Caputo definition. The fractional derivative

can also be seen as an approximation of the classical derivative. This is not the case in

general. This is due to the setbacks of these definitions and from them:

• When α is not a natural number. The derivative of constant is difficult (Riemann-

Liouville derivative is: aD
α
t 6= 0 but C

aD
α

t = 0 for Caputo derivative).

• All precedent definitions do not satisfy the known formula of the derivative of the

product of two functions:

Dα(fg) = fDα(g) + gDα(f).

• The same problem of the derivative of the quotient of two functions:

Dα

(
f

g

)
=
gDα(f)− fDα(g)

g2
.

• The same problem of the chain rule:

Dα (f ◦ g) (t) = f (α)(g(t))g(α)(t).

• The same problem of commutation:

DαDβf = Dα+βf.
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Therefore. ( Khalil and al [18]) was presented a new definition called conformable frac-

tional derivative with α ∈ (0, 1) and it satisfies classical properties mentioned above.

Definition 3.1.3. Let α ∈ (0, 1), t > 0. Given a function f : [0,∞) → R. Then the

"conformable fractional derivative" of f of order α is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
(3.1)

If f is α−differentiable in some (0, a), a > 0, and lim
t→0+

f (α)(t) exists, then define:

f (α)(0) = lim
t→0+

f (α)(t).

We can write f (α)(t) for Tα(f)(t) to denote the conformable fractional derivatives of f of

order α. Moreover, if the conformable fractional derivative of f of order α exists, then

we simply say f is α−differentiable.

Definition 3.1.4. The conformable fractional derivative starting from a of a function

f : [a,∞) −→ R of order α is defined by

T aαf(t) = lim
ε→0

f(t+ ε(t− a)1−α)− f(t)

ε
.

If T aαf(t) exists on (a, b), then T aαf(a) = lim
t→a

T aαf(t).

Theorem 3.1.1. Let α ∈ (0, 1] and f : [0,∞) → R is differentiable function at t > 0

then f is α−differentiable function at t > 0, then

f (α)(t) = t1−α
d

dt
f(t) (3.2)

Proof: Let h = εt1−α in (3.1), and then we have ε = tα−1h. Therefore,

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

= lim
h→0

f(t+ h)− f(t)

htα−1

= t1−α lim
h→0

f(t+ h)− f(t)

h

= t1−α d
dt
f(t).

Theorem 3.1.2. If a function f : [0,∞) −→ R is α−differentiable at t0 > 0, α ∈ (0, 1],

then f is continuous at t0.

Proof: Since f(t0 + εt1−α0 )− f(t0) =
f(t0+εt1−α0 )−f(t0)

ε
ε. Then,

lim
ε→0

[f(t0 + εt1−α0 )− f(t0)] = lim
ε→0

f(t0 + εt1−α0 )− f(t0)

ε
lim
ε→0

ε
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Let h = εt1−α0 . Then,

lim
h→0

[f(t0 + h)− f(t0)] = f (α)(t0).0

which implies that

lim
h→0

f(t0 + h) = f(t0).

Hence, f is continuous at t0.

Properties 3.1.1. Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then

1. Tα(tp) = ptp−α, for all p ∈ R.

2. Tα(c) = 0, for all constant functions f(t) = c.

3. Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

4. Tα(fg) = fTα(g) + gTα(f).

5. Tα
(
f
g

)
=
gTα(f)− fTα(g)

g2
.

6. Tα(f ◦ g)(t) = f
′
(g(t))Tα(g)(t).

Proof: Using (3.2), all properties will be proven consecutively.

Now, for α ∈ (0, 1],

Tα(tp) = t1−α d
dt
tp

= pt1−αtp−1

= ptp−α.

This is prove of property 1. Secondly, for property number two,

Tα(c) = t1−α
d

dt
c = 0.

Then, for property 3,

Tα(af + bg)(t) = t1−α d
dt

(af + bg)(t)

= t1−α(af
′
(t) + bg

′
(t))

= at1−α d
dt
f(t) + bt1−α d

dt
g(t)

= aTα(f)(t) + bTα(g)(t).
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And from it the linear property is verified for this definition. Then the property 4 is prove

by
Tα(fg)(t) = t1−α d

dt
(fg)(t)

= t1−α(g d
dt
f + f d

dt
g)(t)

= t1−αf
′
(t)g(t) + t1−αg

′
(t)f(t)

= g(t)Tα(f)(t) + f(t)Tα(g)(t).

Then, for 5

Tα

(
f
g

)
(t) = t1−α

(
f
g

)′
(t)

= t1−α
(g(t)f

′
(t)− f(t)g

′
(t))

(g(t))2

=
g(t)t1−αf

′
(t)− f(t)t1−αg

′
(t)

(g(t))2

=
g(t)Tα(f)(t)− f(t)Tα(g)(t)

(g(t))2
.

Finally, for property 6 is prove by

Tα(f ◦ g)(t) = t1−α(f ◦ g)
′
(t)

= t1−αf
′
(g(t))g

′
(t)

= f
′
(g(t))t1−αg

′
(t)

= f
′
(g(t))Tα(g)(t).

The proof is complete.

Corollary 3.1.1. [24] Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then

• Quotient Property: Tα

(
1
f(t)

)
= −Tα(f)(t)

(f(t))2
.

• Product Property: Tα(f(t))2 = 2(f(t)Tα(f)(t))

Theorem 3.1.3. (Rolle’s Theorem for Conformable Fractional Differentiable Functions)

Let a > 0 and f : [a, b] −→ R be a given function that satisfies

1. f is continuous on [a, b],

2. f is α−differentiable for some α ∈ (0, 1),
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3. f(a) = f(b).

Then, there exist c ∈ (a, b), such that f (α)(c) = 0

Proof: Since f is continuous on [a, b] and f(a) = f(b), there exists c ∈ (a, b) at which is

a point of local extrema. With no loss of generality, assume c is a point of local minimum.

So

f (α)(c) = lim
ε→0+

f(c+ εc1−α)− f(c)

ε
= lim

ε→0−

f(c+ εc1−α)− f(c)

ε
.

But, the two limits have opposite sign, so f (α)(c) = 0.

Theorem 3.1.4. (Mean Value Theorem for Conformable Fractional Differentiable Func-

tions) Let a > 0 and f : [a, b] −→ R be a given function that satisfies

1. f is continuous on [a, b],

2. f is α−differentiable for some α ∈ (0, 1).

Then, there exists c ∈ (a, b), such that f (α)(c) =
f(b)− f(a)
1
α
bα − 1

α
aα

Proof: Consider the function

g(x) = f(x)− f(a)− f(b)− f(a)
1
α
bα − 1

α
aα

(
1

α
xα − 1

α
aα
)
.

Then, the function g satisfies the conditions of the fractional Rolle’s theorem. Hence there

exists c ∈ (a, b), such that g(α)(c) = 0. Using the fact that Tα( 1
α
xα) = 1, the result follows.

Definition 3.1.5. Let α ∈ (n, n + 1], and f be an n−differentiable at t, where t > 0.

Then the conformable fractional derivative of f of order α is defined as

Tα(f)(t) = lim
ε→0

f ([α]−1)(t+ εt([α]−α))− f ([α]−1)(t)

ε

Where [α] is the smallest integer greater than or equal to α.

Remark 3.1.4. As a consequence of definition 3.1.5, one can easily show that

Tα(f)(t) = t([α]−α)f [α](t)

Where α ∈ (n, n+ 1], and f is (n+ 1)−differentiable at t > 0.

Theorem 3.1.5. (Conformable fractional derivative of Known functions)
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1. Tα(ect) = ct1−αect

2. Tα(sin(at)) = at1−α cos(at), a ∈ R

3. Tα(cos(at)) = −at1−α sin(at), a ∈ R

4. Tα(tan(at)) = at1−α sec2(at), a ∈ R

5. Tα( 1
α
tα) = 1

Proof:

1).

Tα(ect) = lim
ε→0

ec(t+εt
1−α) − ect

ε
= ect lim

ε→0

ecεt
1−α − 1

ε

= ect lim
ε→0

t1−αecεt
1−α − t1−α

εt1−α
= ectt1−α lim

ε→0

ecεt
1−α − 1

εt1−α

Let h = εt1−α. Then by using L’Hôpital rule, we get

= t1−αect lim
h→0

ech − 1

h
= ct1−αect lim

h→0

ech

1

= ct1−αect

2).

Tα(sin(at)) = lim
ε→0

sin(a(t+ εt1−α))− sin(at)

ε

= lim
ε→0

sin(at) cos(aεt1−α) + cos(at) sin(aεt1−α)− sin(at)

ε

= lim
ε→0

sin(at)

[
cos(aεt1−α)− 1

ε

]
+ lim

ε→0

cos(at) sin(aεt1−α)

ε

= t1−α sin(at) lim
ε→0

[
cos(aεt1−α)− 1

εt1−α

]
+ t1−α cos(at) lim

ε→0

sin(aεt1−α)

εt1−α

Let h = εt1−α then we get

= t1−α sin(at) lim
h→0

[
cos(ah)− 1

h

]
+ t1−α cos(at) lim

h→0

sin(ah)

h

By using L’Hôpital Rule, we get

= t1−α sin(at) lim
h→0

−a sin(ah)

1
+ t1−α cos(at).a

= at1−α cos(at).
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3).Similar to (2)

4).

Tα(tan(at)) = Tα

(
sin(at)
cos(at)

)
= cos(at)Tα(sin(at))−sin(at)Tα(cos(at))

cos2(at)

= cos(at)(at1−α cos(at))−sin(at)(−at1−α sin(at))
cos2(at)

= at1−α cos2(at)+at1−α sin2(at)
cos2(at)

= at1−α(1 + tan2(at))

= at1−α sec2(at).

5).

Tα( 1
α
tα) = t1−α d

dt
1
α
tα

= t1−α 1
α
αtα−1

= t1−αtα−1

= 1.

3.1.3 Conformable fractional integral

When it comes to integration, the most important class of functions to define the integral

is the space of continuous functions. The conformable fractional integral is discussed as

follows.

Definition 3.1.6. Let a ≥ 0 and α ∈ (0, 1). Also, let f be a continuous function such

that Iαf exists. Then:

Iaα(f(t)) = Ia1 (t1−αf(t)) =

∫ t

a

f(x)

x1−αdx (3.3)

If the Riemann improper integral exists.

Definition 3.1.7. The fractional integral starting from a of a function f : [a,∞) −→ R

of order α is defined by:

Iaαf(t) =

∫ t

a

(s− a)α−1f(s)ds.

Theorem 3.1.6. (Inverse Property) TαIaα(f)(t) = f(t), for t ≥ a, where f is any contin-

uous function in the domain of Iα.
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Proof: Since f is continuous, then Iaα(f)(t) is clearly differentiable. Hence,

Tα (Iaα(f)) (t) = t1−α d
dt
Iaα(f)(t)

= t1−α d
dt

∫ t

a

f(x)

x1−αdx

= t1−α f(t)
t1−α

= f(t).

Theorem 3.1.7. (Conformable Fractional Integral of Conformable Fractional Derivative)

Let f : (a, b) −→ R be α−differentiable and α ∈ (0, 1]. For all x > a then

Iaα [Tα(f)(t)] = f(t)− f(a).

Proof: Using (3.3), it is easily seen that

Iaα [Tα(f)(t)] =

∫ t

a

xα−1Tα(f)(x)dx

=

∫ t

a

xα−1x1−α d

dx
f(x)dx

=

∫ t

a

d

dx
f(x)dx

= f(t)− f(a).

Definition 3.1.8. (Conformable Fractional Integral as a Limit of a Sum) If f is a function

defined for a < x ≤ b. Then the definite fractional integral of f from a to be b is∫ b

a

f(x)

x1−αdx = lim
n→∞

n∑
i=1

f(xi)

x1−α
i

∆x.

Where ∆x = (b− a)/n and xi = a+ i∆x.

Theorem 3.1.8. (Mean Value Theorem for Conformable Fractional Integral)

If f : [a, b] −→ R is a continuous function on [a, b]. Then, there exists c in [a, b] such

that, ∫ b

a

f(x)

x1−αdx = f(c)

(
1

α
bα − 1

α
aα
)
.

Proof: Using (3.3). Since f(t) is continuous and recall that from theorem 3.1.6 Iaα(f(t))

is continuous on [a, b], α−differentiable on (a, b) and Tα (Iaαf(t)) = f(t). Now, from the

theorem it can be stated that there is a number c such that c ∈ (a, b) and

Iaαf(b)− Iaαf(a) = Tα [Iaαf(t)]

(
1

α
bα − a

α
aα
)
.
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However, it is known that Tα [Iαaf(c)] = f(c) and

Iaαf(b) =

∫ b

a

f(x)

x1−αdx =

∫ b

a

f(t)

t1−α
dt, Iaαf(a) =

∫ a

a

f(x)

x1−αdx = 0

Thus ∫ b

a

f(x)

x1−αdx = f(c)

(
1

α
bα − 1

α
aα
)
.

Theorem 3.1.9. (Second Mean Value Theorem for Conformable Fractional Integral) Let

f and g be functions satisfying the following continuous on [a, b]. Bounded and integrable

on [a, b], m = inf{f(x), x ∈ [a, b]} and M = sup{f(x), x ∈ [a, b]}. Then, there exists a

number c ∈ (a, b) such that ∫ b

a

f(x)g(x)

x1−α dx ≤ c

∫ b

a

g(x)

xa−α
dx.

Proof: If m = inf f , M = sup f and g(x) ≥ 0 in [a, b], then

mg(x) < f(x)g(x) < Mg(x) (3.4)

Divide (3.4) by x1−α and integrate (3.4) with respect to x over (a, b), resulting

m

∫ b

a

g(x)

x1−αdx ≤
∫ b

a

f(x)G(x)

x1−α dx ≤M

∫ b

a

g(x)

x1−αdx.

Then there exists a number c ∈ [m,M ] such that∫ b

a

f(x)g(x)

x1−α dx ≤ c

∫ b

a

g(x)

x1−αdx.

Theorem 3.1.10. (Extended Mean Value Theorem for Conformable Fractional Differen-

tiable Functions) Let a > 0 and f, g : [a, b] −→ R be functions that satisfy

• f, g is continuous on [a, b],

• f, g is α−differentiable for some α ∈ (0, 1).

Then, there exist c ∈ (a, b), such that

f (α)(c)

g(α)(c)
=
f(b)− f(a)

g(b)− g(a)
.

Remark 3.1.5. Observe that Theorem 3.1.4 is a special case of this Theorem 3.1.10 for

g(x) = xα

α



3.1.3 Conformable fractional integral 60

Proof: Consider the function

F (x) = f(x)− f(a) +

(
f(b)− f(a)

g(b)− g(a)

)
(g(x)− g(a))

Since F is continuous on [a, b], α−differentiable on (a, b), and F (a) = 0 = F (b), then by

Theorem 3.1.3, there exist a c ∈ (a, b) such that F (α)(c) = 0 for some α ∈ (0, 1). Using

the linearity of Tα and the fact that the α−derivative of a constant is zero, our result

follows.

Theorem 3.1.11. Let a > 0 and f : [a, b] −→ R be a given function that satisfies

• f is continuous on [a, b],

• f is α−differentiable for some α ∈ (0, 1)

If f (α)(x) = 0 for all x ∈ (a, b), then f is a constant on [a, b].

Proof: Suppose f (α)(x) = 0 for all x ∈ (a, b). Let x1, x2 be in [a, b] with x1 < x2. So, the

closed interval [x1, x2] is contained in [a, b], and the open interval (x1, x2) is contained in

(a, b).

Hence, f is continuous on [x1, x2] and α−differentiable on (x1, x2). So, by Theorem 3.1.4,

there exist c between x1 and x2 with

f(x2)− f(x1)
xα2
α
− xα1

α

= f (α)(c) = 0.

Therefore, f(x2)− f(x1) = 0 and f(x2) = f(x1).

Since x1 and x2 are arbitrary numbers in [a, b] with x1 < x2, then f is a constant on [a, b].

Theorem 3.1.12. Let a > 0 and f : [a, b] −→ R be a given function that satisfies

• f is continuous on [a, b],

• f is α−differentiable for some α ∈ (0, 1).

Then we have the following:

1. If f (α)(x) > 0 for all x ∈ (a, b), then f is increasing on [a, b].

2. If f (α)(x) < 0 for all x ∈ (a, b), then f is decreasing on [a, b].
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Proof: Following similar line of argument as given in the proof of Theorem 3.1.11, there

exist c between x1 and x2 with

f(x2)− f(x1)
xα2
α
− xα1

α

= f (α)(c).

1. If f (α)(c) > 0, then f(x2) > f(x1) for x1 < x2.

Therefore, f is increasing on [a, b] since x1 and x2 are arbitrary numbers of [a, b].

2. If f (α)(c) < 0, then f(x2) < f(x1) for x1 < x2.

Therefore, f is decreasing on [a, b] since x1 and x2 are arbitrary numbers of [a, b].

Now we give an example to illustrate Theorem 3.1.12.

Example 3.1.1. Let f : [0.5, 3] −→ R be defined by f(x) = x3 − 3x+ 2. Find where f is

increasing and decreasing.

Solution: We first compute f (α)(x) for any α ∈ (0, 1). By definition, we have

f (α)(x) = 3x1−α(x2 − 1).

So, f (α)(x) = 0 if and only if x = −1, 0 or 1.

All numbers less than 0 will not be considered since they do not lie in the domain under

consideration.

To this end, we will consider all positive numbers less than one (in particular,x ∈ [0.5, 1))

and all numbers greater or equal to one (in particular,x ∈ [1, 3]).

• For x ∈ [0.5, 1), x − 1 < 0 and x + 1 > 0. This implies that for all α ∈ (0, 1),

f (α)(x) < 0 for all x ∈ [0.5, 1). So, f is decreasing on [0.5, 1).

• For x ∈ [1, 3], x − 1 ≥ 0 and x + 1 > 0. This implies that for all α ∈ (0, 1),

f (α)(x) > 0 for all x ∈ [1, 3]. So, f is increasing on [1, 3].

Theorem 3.1.13. Let 0 < a < b and f : [a, b] −→ R be continuous function. Then for

α ∈ (0, 1)

| Iaα(f)(t) |≤ Iaα(| f |)(t).
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Proof: The result follows directly since

| Iaα(f)(t) | =

∣∣∣∣∫ t

a

f(x)

x1−αdx

∣∣∣∣
≤

∫ t

a

∣∣∣∣f(x)

x1−α

∣∣∣∣ dx
=

∫ t

a

| f(x) |
x1−α dx

= Iaα(| f |)(t).

Corollary 3.1.2. Let f : [a, b] −→ R be continuous function such that

M = sup
[a,b]

| f | .

Then for any t ∈ [a, b], α ∈ (0, 1),

|Iaα(f)(t)| ≤M

(
tα

α
− aα

α

)
.

Proof: From Theorem 3.1.13, we have that for any t ∈ [a, b], α ∈ (0, 1),

| Iaα(f)(t) | ≤ Iaα(| f |)(t)

=

∫ t

a

| f(x) |
x1−α dx

≤ M

∫ t

a

xα−1dx

= M
(
tα

α
− aα

α

)
.

Definition 3.1.9. ((α, k)−Laplace transform)Let α ∈ (0, 1], k > 0, and f : [0,∞) −→ R

be a function. Then the fractional Laplace transform of order α of f defined by

Lαk{f(t); s} = Fα
k (s) =

∫ ∞
0

e−s
tkα

kα f(t)dαt (3.5)

Which is called (α, k)−Laplace transform. Some properties of the (α, k)−Laplace Trans-

form

1. Lαk{0; s} = 0

2. Lαk{f(t) + g(t); s} = Lαk{f(t); s}+ Lαk{g(t); s}

3. Lαk{cf(t); s} = cLαk{f(t); s}, c is a constant.

Properties 2) and 3) together means that the Laplace transform is linear.
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Theorem 3.1.14. [29](Laplace transform for conformable fractional derivative) Let

α ∈ (0, 1], k > 0, and f : (0,∞) −→ R be differentiable function. Then

Lαk{Tα(f)(t); s} = sLαk{tα(k−1)f(t); s} − f(0). (3.6)

Theorem 3.1.15. [29]Let α ∈ (0, 1], c ∈ R and k > 0. Then we have the following

results

1. Lαk{1; s} = s−
1
kΓαk (1),

2. Lαk{t; s} = s−
1+α
kα Γαk (2),

3. Lαk{tp; s} = s−
p+α
kα Γαk (p+ 1),

4. Lαk
{
ec

tkα

kα ; s
}

= (s− c)− 1
kΓαk (1),

5. Lαk{f(t)ec
tkα

kα ; s} = Fα
k (s− c),

6. Lαk{f(ct); s} = 1
cα
Fα
k ( s

ckα
).

Example 3.1.2. Let us consider the function f(t) = sin v t
α

α
, then by using the property

Tα(cos v t
α

α
) = −v sin v t

α

α
, we can write

Lαk
{

sin v
tα

α
; s

}
=

∫ ∞
0

e−s
tkα

kα sin v
tα

α
dαt

Therefore, using integration by part for conformable integral, we have

− 1
v

∫ ∞
0

e−s
tkα

kα Tα

(
cos v

tα

α

)
dαt = − 1

v

{
e−s

tkα

kα cos v t
α

α
|∞0 −

∫ ∞
0

cos v
tα

α
Tα

(
e−s

tkα

kα

)
dαt

}
= 1

v
− s

v

∫ ∞
0

tkα−αe−s
tkα

kα cos v
tα

α
dαt

= 1
v
− s

v2

∫ ∞
0

tkα−αe−s
tkα

kα Tα

(
sin v

tα

α

)
dαt.

Similarly, we get

Lαk
{

sin v
tα

α
; s

}
=

1

v
+
s(k − α)

v2
Lαk
{
tk−2α sin v

tα

α
; s

}
− s2

v2
Lαk
{
tk−α sin v

tα

α
; s

}
(3.7)

If we take k = α in (3.7), we have

Lαα
{

sin v
tα

α
; s

}
=

v

1 + s2

which is proved by Abdeljawad in [1]
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3.2 Ordinary Conformable Fractional Differential equa-

tions

In this section, we establish some criteria for the global existence of solutions to the

local initial value problem by means of some fixed point theorems and by the use of the

conformable fractional calculus. More details can be found, e.g. in [15].

3.2.1 Preliminary

T aαx(t) = f(t, x(t)), t ∈ [a,∞), 0 < α < 1, (3.8)

subject to the initial conditions

x(a) = xa (3.9)

where T aαx(t) denotes the conformable fractional derivative starting from a of a function

x of order α, f : [a,∞) × R −→ R is continuous. The condition (3.9) are often called

local initial condition.

Lemma 3.2.1. [33] If f : [a, b] −→ R is continuous on the subinterval [c, d] of [a, b] and

if T aαf(t) exists on (c, d). Then there exists a point ξ in (c, d) such that

f(d)− f(c) =
1

α
T aαf(ξ) [(d− a)α − (c− a)α] .

Lemma 3.2.2. [33] Let f and g be continuous, nonnegative functions on [a, b] and λ a

nonnegative constant such that

f(t) ≤ λ+ Iaα(fg)(t) for t ∈ [a, b],

then

f(t) ≤ λeI
a
αg(t) for t ∈ [a, b].

We first make the following hypotheses, which will be adopted in the following discus-

sion.

Let D = [a,∞)× R.

(H1) The function f : D −→ R is continuous.

(H2) There exists a positive constant L such that, for any (t, u), (t, v) in D,

|f(t, u)− f(t, v)| ≤ L|u− v|.
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3.2.2 The main results

In this subsection, we establish some criteria for the global existence, extension, bound-

edness, and stabilities of solutions to the local initial value problem. By Theorems 3.1.6

and 3.1.7, the initial value problem (3.8)− (3.9) is easily transformed into an equivalent

integral equation.

Lemma 3.2.3. [33] If (H1) holds, then a function x in C([a, b]) is a solution of the initial

value problem (3.8)-(3.9) if and only if it is a continuous solution of the following integral

equation:

x(t) = xa + Iaαf(t, x(t))

Now, we are in a position to present a result of existence and uniqueness of the solution

to the initial value problem (3.8)-(3.9).

3.2.3 Proof of the main results

Theorem 3.2.1. If (H1)-(H2) hold, then the initial value problem (3.8)-(3.9) has exactly

one solution defined on [a, b].

Proof: Write I = [a, b]. The assertion will be proven by Banach’s contraction principle on

C(I) equipped with an appropriate weighted maximum norm. To this end, given a positive

number β in (L,∞), define a function e(t) by

e(t) = e−β
(t−a)α
α ,

and then, for x in C(I), define

‖ x ‖β=‖ e(.)x(.) ‖,

where ‖ . ‖ denotes the maximum norm on C(I). It is easy to verify that ‖ . ‖β is also a

norm on C(I), which is equivalent to the maximum norm ‖ . ‖ since

e(b) ‖ . ‖≤‖ . ‖β≤‖ . ‖ .

Hence (C(I), ‖ . ‖β) is a Banach space. Define next an operator

T : (C(I), ‖ . ‖β) −→ (C(I), ‖ . ‖β)

by

T x(t) = x0 +

∫ t

a

f(s, x(s))(s− a)α−1ds,
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and then Lemma 3.2.3 ensures that the fixed points of the operator T are the solutions of

the problem (3.8)-(3.9). We now show that T is a contraction on (C(I), ‖ . ‖β). Indeed,

let x, y ∈ C(I) and observe

T x(t)− T y(t) =

∫ t

a

[f(s, x(s))− f(s, y(s))] (s− a)α−1ds.

Thus, by (H2), a direct calculation gives, for every t in I,

‖T x(t)− T y(t)‖ ≤ Le(t)

∫ t

a

e−1(s)e(s) ‖x(s)− y(s)‖ (s− a)α−1ds

≤ Le(t)

∫ t

a

e−1(s)(s− a)α−1ds ‖ x− y ‖

≤ Le(t)Iaαe
−1(t) ‖ x− y ‖

≤ L
β
e(t) (e−1(t)− 1) ‖ x− y ‖

≤ L
β
‖ x− y ‖ .

Hence

‖ T x− T y ‖≤ L

β
‖ x− y ‖ .

Since 0 < L
β
< 1, the Banach contraction principle ensures that there is a unique x in

C(I) with x = Cx, and equivalently the problem (3.8) − (3.9) has a unique solution x in

C(I). The proof is complete.

3.3 Stochastic Conformable Fractional Differential equa-

tions

In this section, we prove the existence and uniqueness result on the solution of a

class of conformable fractional stochastic equation.

T aα,tu(x, t) = σ(u(x, t))Ẇt, x ∈ R, 0 < a < t ≤ T <∞, 0 < α < 1. (3.10)

with an initial condition u(x, 0) = u0(x); where T aα,t is a conformable fractional derivative,

σ : R −→ R is a Lipschitz continuous function and Ẇt is a generalized derivative of

Wiener process (Gaussian white noise).

Definition 3.3.1. Given that g(t) is any smooth and compactly supported function, then

we define the generalized derivative ẇ(t) of w(t) (not necessarily differentiable) as∫ ∞
0

g(t)ẇ(t)dt = −
∫ ∞

0

ġ(t)w(t)dt.
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Similarly, the generalized derivative Ẇt of Wiener process with a smooth function g(t) as

follows ∫ t

0

g(s)Ẇsds = g(t)Wt −
∫ t

0

ġ(s)Wsds.

Theorem 3.3.1. [25]. The following inequalities

exp

(
−ax
a+ 1

)
≤ a

xa
γ(a, x) ≤1 F1(a; a+ 1;−x) ≤ 1

a+ 1

(
1 + ae−x

)
hold, where 1F1(a; a+ 1;−x) is a confluent hypergeometric (Kummer) function.

Also, for 0 < a ≤ 1,
1− e−x

x
≤ a

xa
γ(a, x)

where γ(z, x) is an incomplete gamma function given by

γ(z, x) =

∫ x

0

e−ttz−1dt, x > 0

3.3.1 Main Results

Assume the following condition on σ; that is, σ is globally Lipschitz:

Condition 1. There exist a finite positive constant, Lipσ such that for all x, y ∈ R, we

have

| σ(x)− σ(y) |≤ Lipσ | x− y |,

with σ(0) = 0 for convenience.

Also, the assumption on u:

Condition 2. The random solution u : D −→ R is L2−continuous (or continuous in

probability).

Define the following L2(P) norm

‖ u ‖2,α,β:=
{
supa≤t≤T supx∈Re

− β
α

(t−a)αE | u(x, t) |2
} 1

2
.

Following similar idea in [33], we give the following results:

Lemma 3.3.1. [7] Given that Condition 2 holds, then a function u in L2(P) is a solution

of Equation (3.10) if and only if it is a solution of the integral equation

u(x, t) = u0(x) + Iaα,t[σ(u(x, t))Ẇt].

Thus, the solution to Equation (3.10) is given as follows

u(x, t) = u0(x) +

∫ t

a

(s− a)α−1σ(u(x, s))Ẇsds

= u0(x) +

∫ t

a

(s− a)α−1σ(u(x, s))dWs.
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3.3.2 Proof of the main results

Theorem 3.3.2. Suppose Cα,β,T < 1
Lip2σ

for positive constant Lipσ together with both

Conditions 1 and 2. Then there exists solution u that is unique up to modification, with

Cα,β,T :=
(T − a)2α−1

2α(2α− 1)

(
1 + (2α− 1)e

β
α

(T−a)
)
.

We start by defining the operator

Au(x, t) = u0(x) +

∫ t

a

(s− a)α−1σ(u(x, s))dws,

and the fixed point of the operator gives the solution of Equation (3.10).

The proof of the theorem is based on the following lemmas:

Lemma 3.3.2. Suppose u is a predictable random solution such that ‖ u ‖2,α,β< ∞ and

Conditions 1 and 2 hold. Then there exists a positive constant Cα,β,T such that

‖ Au ‖2
2,α,β≤ c1 + Cα,β,TLip2

σ ‖ u ‖2
2,α,β .

Proof: By the assumption that u0 is bounded, we obtain

E | Au(x, t) |2≤ c1 + Lip2
σ

∫ t

a

(s− a)2(α−1)E | u(x, s) |2 ds.

Multiply through by e−
β
α

(t−a)α to obtain

e−
β
α

(t−a)αE | Au(x, t) |2 ≤ c1e
− β
α

(t−a)α

+ Lip2
σe
− β
α

(t−a)α
∫ t
a(s− a)2(α−1)e

β
α

(s−a)αe−
β
α

(s−a)αE | u(x, s) |2 ds

≤ c1e
− β
α

(t−a)α + Lip2
σe
− β
α

(t−a)α ‖ u ‖22,α,β
∫ t

a
(s− a)2(α−1)e

β
α

(s−a)αds

≤ c1 + Lip2
σ ‖ u ‖22,α,β

∫ t

a
(s− a)2(α−1)e

β
α

(s−a)αds

since e−
β
α

(t−a)α ≤ 1, a ≤ t ≤ T , that is, 0 ≤ t− a ≤ T − a =⇒ −β
α

(t− a) ≤ 0.
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Thus taking sup over t ∈ [a, T ] and x ∈ R and evaluating the integral we have

‖ Au ‖22,α,β ≤ c1 + Lip2
σ ‖ u ‖22,α,β

∫ t

a
(s− a)2(α−1)e

β
α

(s−a)αds

≤ c1 + Lip2
σ ‖ u ‖22,α,β ×−

β
α(t− a)2α

(
β
α

)−2α
(a− t)−2α

×
[
Γ(2α− 1)− Γ

(
2α− 1, βα(a− t)

)]

≤ c1 + Lip2
σ ‖ u ‖22,α,β ×− (−1)−2α

(
β
α

)1−2α [
Γ(2α− 1)− Γ

(
2α− 1, βα(a− t)

)]

≤ c1 + Lip2
σ

(
β
α

)1−2α
Γ
(

2α− 1, βα(a− t)
)
‖ u ‖22,α,β .

By the estimate on the incomplete gamma function in Theorem 3.3.1, we obtain

Γ
(
2α− 1, β

α
(a− t)

)
≤

(
β
α

)2α−1

2α(2α− 1)
(a− t)2α−1

(
1 + (2α− 1)e

β
α

(t−a)
)

≤
(
β
α

)2α−1

2α(2α− 1)
(t− a)2α−1

(
1 + (2α− 1)e

β
α

(t−a)
)

and therefore, since 0 < t− a < T − a, we have

‖ Au ‖2
2,α,β ≤ c1 + Lip2σ

2α(2α−1)
(t− a)2α−1

(
1 + (2α− 1)e

β
α

(t−a)
)
‖ u ‖2

2,α,β

≤ c1 + Lip2σ
2α(2α−1)

(T − a)2α−1
(

1 + (2α− 1)e
β
α

(T−a)
)
‖ u ‖2

2,α,β

Lemma 3.3.3. [7] Suppose u and v are predictable random solutions such that

‖ u ‖2,α,β + ‖ v ‖2,α,β< ∞ and Conditions 1 and 2 hold. Then there exists a positive

constant Cα,β,T such that

‖ Au−Av ‖2
2,α,β≤ Cα,β,TLip2

σ ‖ u− v ‖2
2,α,β .

Remark 3.3.1. By Fixed point theorem we have u(x, t) = Au(x, t) and

‖ u ‖2
2,α,β=‖ Au ‖2

2,α,β≤ c1 + Cα,β,TLip2
σ ‖ u ‖2

2,α,β

which follows that

‖ u ‖2
2,α,β

[
1− Cα,β,TLip2

σ

]
≤ ∞ =⇒‖ u ‖2,α,β≤ ∞⇐⇒ Cα,β,T <

1

Lip2
σ

.
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Similarly,

‖ u− v ‖2
2,α,β=‖ Au−Av ‖2

2,α,β≤ Cα,β,TLip2
σ ‖ u− v ‖2

2,α,β,

thus ‖ u − v ‖2
2,α,β [1− Cα,β,TLip2

σ] ≤ 0 and therefore ‖ u − v ‖2
2,α,β< 0 if and only if

Cα,β,T < 1
Lip2σ

.

The existence and uniqueness result follows by Banach’s contraction principle.



Conclusion

In this master thesis a new kind of fractional derivative is introduced, the most im-

portant properties of the conformable fractional derivative and integral were given

and proved, some interesting results of ordinary fractional calculus are extended to con-

formable one.

We first review the basic definitions and properties of fractional integral and deriva-

tive for the purpose of acquainting with sufficient fractional calculus theory. Many def-

initions and studies of fractional calculus have been proposed in the past two centuries.

These definitions include Grünwald-Letnikov and the two most commonly used definitions

Riemann-Liouville and Caputo fractional operators and with the help of them solution of

differential equations are discussed.

Secondly the new derivative is introduced, important properties and examples are

given, distinguishing features and basic theorems of these derivative and integral are

introduced and proved.

Finally, using obtained results the conformable fractional ordinary differential equa-

tions were established. The existence and uniqueness result were obtained under some

precise conditions for class of conformable time-fractional stochastic equation.

In the end, we hope and predict that researches in this subject will be active and

promising since there are different questions which is still without any accurate answer.

For example, it is possible to extend this new definition for many class of stochastic

fractional differential equations which will be considered by others as a future work.
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