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Abstract

The concept of derivatives of non-integer order, known as fractional derivatives, first ap-
peared in the letter between L’Hopital and Leibniz in which the question of a half- order
derivative was posed. Since then, many formulations of fractional derivatives have ap-
peared. Recently, a new definition of fractional derivative, named "conformable fractional
derivative", has been introduced. This new fractional derivative is compatible with the
classical derivative and it has attracted attention in domains such as mechanics, electron-
ics and anomalous diffusion.

Motivated by the considerable attention and the wide resonance in the scientific com-
munity that conformable fractional derivative have received it. This master thesis is
devoted to the theory of conformable fractional calculus, it summarizes the most recent
contributions in this area, and vastly expands on them to create a comprehensive theory

conformable fractional calculus.

Key words: Fractional derivatives, Conformable fractional derivatives, Fractional

calculus, Conformable fractional calculus.



List Of Notations And Symbols &
Acronyms

List Of Notations And Symbols

E,, : The Mittag-Leffer function.

e I/, 5 : The Generalized Mittag-Leffer function in two arguments a and S.
e ['(a) : The Gamma function.

e B(z,y) : The Beta function of z and y.

e (2, F,P) : The probability space.

e 7, : The filtration on probability space.

o (Q,F,F,P): The filtered probability space.

e V(S,T) : The class of real measurable functions f (¢, w).

e L{f(.);s}: The Laplace transform of a function f.

e L7'F(s) : The transformation reversal of Laplace of a function f.

e (X,X, u): The measure space.

e [L>° : The associated Lebesgue oo—space.

o ,I2(f): The Riemann-Liouville left-sided fractional integral of order a.

o .I2(f): The Riemann-Liouville right-sided fractional integral of order .
e ,D¢(f): The Riemann-Liouville left-sided fractional derivative of order «.
e . D(f): The Riemann-Liouville right-sided fractional derivative of order a.
e “D%(f) : The Caputo left-sided fractional derivative of order a.

e UD2(f): The Caputo right-sided fractional derivative of order a.

e H?([0,7]) : The space of all the processes X which are measurable.

7



CONTENTS

H2([0,T], || - |lu2) : Banach space.

(p)5 . + The Pochhammer symbol.

o 'Y : The (a, k)—Gamma function.

B (p,q) : The (a, k)—Beta function.

By (p, k) : The k—Beta function.

T.(f) : The conformable fractional derivative of f of order .

I2(f) : The conformable fractional integral of f of order a.
o L3{f(.);s}: The («, k)—Laplace transform.

Acronyms

e M-L: Means "Mettag -Leffler".

e R-L: Means "Riemann-Liouville".

e G-L: Means "Grunwlad-Letnikov".

e H-ss: Means "Scaling exponent of self similar processes".

e H-sssi: Means "H-ss with stationary increments".

e FDE: Means "Fractional differential equation".

e FSDE: Means "Fractional stochastic differential equation".
e CFDE: Means "Conformable fractional derivative equation".

e CFSDE: Means "Conformable fractional stochastic derivative equation"



Introduction

ractional calculus is the field of mathematical analysis which deals with the inves-
F tigation and applications of integrals and derivatives of arbitrary order. The term

fractional is a misnomer, but it is retained following the prevailing use.

The fractional calculus may be considered an old and yet novel topic. It is an old
topic since, starting from some speculations of G.W. Leibniz (1695, 1697) and L. Euler
(1730), it has been developed up to nowadays. In fact the idea of generalizing the notion
of derivative to non integer order, in particular to the order 1/2, is contained in the cor-
respondence of Leibniz with Bernoulli, L’Hopital and Wallis. Euler took the first step by
observing that the result of the evaluation of the derivative of the power function has a a
meaning for non-integer order thanks to his Gamma function.

In the last few decades, fractional differentiation has been used applied scientists for solv-
ing several fractional differential equations and they proved that the fractional calculus is
very useful in several fields of applications with some restrictions such as: Physics (quan-
tum mechanics and thermodynamics), chemistry, biology, economics, engineering, signal
and image processing and control theory.

For Economics and Finance we mention the relation between fractional differencing and
long memory processes. The Grunwald-Letnikov fractional difference A of order o with

the step T' is defined by the equation of ARFIMA model, where o =d : .

() = (L= Lo)y(t) = Y (=1)".(5) y(t = m.T)

m=0

Where {y;,t = 1,2,...,T} is an ARFIM A(0, d,0) model if we have the following equation
of discrete time stochastic process (1 — L)%y, = €(t) is the fractional difference equation
with the Grunwald-Letnikov fractional difference of order ao = d.

For Continuum Mechanics: we mention some applications of related techniques in me-

chanics dealing with fractional kinematics, where the symmetric fractional derivative had
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been used in the definition of strain|6], namely

Ka<£(],t) = 1/2<0Dg T D%)“(l‘7t)

where K, is a fractional strain, D is a fractional derivative, x is a spatial coordinate, ¢
denotes time, and u is a displacement.

In Physics: for example the fractional differential equation for the RC' circuit has the

form
dq 1 C
—2 4 Zqt) = Zu(0).
G i = o)
Where 7, = is the time constant measured in seconds, R (resistance), C' (capac-

1—r
itance) and U(E-t) is the voltage source, ¢(t)(charge), the parameter o characterizes the
fractional structures.

The main advantage of fractional derivatives lies in that it is more suitable for describing
memory properties of various materials and processes in comparison with classical integer-
order derivative. However, some objection has been revealed for the slightly burdensome
mathematical formula of its definition and the resultant complexities in the solutions of

the differential equations of fractional order.

At present, there exist a number of definitions of fractional derivatives in the literature,
each depending on a given set of assumptions. But it is worth noting that these kinds
of derivatives do not satisfy the classical chain rule. The discrepancies between known
definitions can be solved in simple way by presenting a new fractional definition which
is called the "Conformable Fractional Derivative". Khalil and al. [18] proposed this new
fractional derivative that has some basic characteristics of the first-order derivative such
as the product rule and the chain rule which seems more appropriate to describe many
more models.

This new definition has attracted a great deal of attention from many researchers. see [13]
and references therein. For the basic properties of the conformable fractional derivative,
some results have been obtained |25, 33|. In [I], Abdeljawad proves chain rules, exponen-
tial functions, Gronwall’s inequality, fractional integration by parts, Taylor power series
expansions and Laplace transforms for the conformable fractional calculus. Furthermore,
linear differential systems are discussed [33]. In [2|, Batarfi and al. obtain the Green

function for a conformable fractional linear problem and then the study of nonlinear con-
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formable fractional differential equations, its several applications and generalizations were
also discussed in [33, 7].

In this master thesis a new kind of fractional derivative is introduced the most important
properties of the conformable fractional derivative and integral have been introduced,
some interesting results of ordinary fractional calculus are extended to conformable one.
Finally, using obtained results the conformable fractional stochastic differential equations
are established.

After this introduction, this master thesis is organized as follows.

In Chapter 1: "Preliminaries" we recall the most essential definitions from the clas-
sical calculus and remind some techniques which are necessary for the understanding of
our work. In particular, we introduce some basic concepts concerning continuous time
stochastic processes.

Chapter 2: "Fractional Calculus" gives the basic approaches to define a fractional
integral or derivative namely the Griinwald-Letnikov, Riemann-Liouville and the Caputo
integral and derivatives, their most important properties, composition rules, as well as
Laplace transforms. Then we start the study of differential equations containing frac-
tional derivatives, firstly the so called ordinary fractional differential equations (FDEs).
We restrict ourselves to linear FDEs because there is a more compact theory. We give
conditions for existence and uniqueness of solution for linear initial-value problems. Sec-
ondly stochastic fractional differential equations (SFDESs), we study a result on the global
existence and uniqueness of solution for Caputo fractional stochastic differential equations.

In chapter 3: " Conformable Fractional Calculus" we discuss the basic theory of
the conformable fractional calculus. We introduce, for the first time, this new concept of
derivatives, give some important properties and examples, introduce and prove some dis-
tinguishing features and basic theorems of these derivatives. Second we prove the existence
and uniqueness result on the solution of differential equations containing conformable frac-
tional derivatives. In the final section of this chapter existence and uniqueness results of
solution of a class of stochastic differential equations of the considered fractional deriva-
tive are discussed.

Finally, we give a conclusion. In witch we summarize the main results of this work.



Chapter 1

Preliminaries.

In this first chapter we gather some preliminary and basic notions used throughout the
course of this master thesis and has the object to be a library of basic results. In short,
we give here a quick reminder of the fundamental useful results. In particular, we first
introduce some basic concepts on stochastic processes theory, stochastic integration and
stochastic differential equations, finally recall the notion laplace transformation and fixed

point theory. For more details, see the following references |3, 9, 12, 16, 23].

1.1 Basics tools for stochastic calculus.

Let (2, F,P) be a probability space. A random variable X is a rule for assigning to
every outcome w of an experiment {2 a number X (w). A stochastic process X; is a rule
for assigning to every w € € a function X;(w). Thus, a stochastic process could be
seen as a family of time functions depending on the parameter w (a collection of paths or
trajectories) or, equivalently, a family of random variables depending on a time parameter

t, or a function of t and w as well.

1.1.1 Stochastic processes.

Definition 1.1.1. (Stochastic process). We define real valued (one — dimensional)

stochastic process a family of random variables {X;}ier defined on (2, F,P):

XtQHR,tGIQR_F

12



1.1.1 Stochastic processes. 13

We shall say that { X }ier is a discrete-state process if its values are countable. Otherwise,
it is a continuous-state process. The set S C R, whose elements are the values of the
process, is called state space. A stochastic process could be a discrete time or a continuous

time process, according as the set 1 is countable or continuous.

Definition 1.1.2. (Finite dimensional distributions). For any natural number k € N and
a "time" sequence {t;}i—1, 1, € 1, the finite-dimensional distributions of the real valued

stochastic process Xy = {Xi}1er are the measures p, 4, defined on R*, such that
Pty (A X oo X Ag) = P({XG, € Ay, Xy, € Ard), (1.1)
where {Ayq, ..., Ax} are Borel sets on R.

Theorem 1.1.1. (Kolmogorov extension theorem [10]). For all {t;};=1.. . €1, k € N let

Uty ...t be probability measures on R*, such that :

1. for all permutations = on {1,2,... k},

Vt?‘r(l)""7tﬂ'(k}) (Al X ... X Ak‘) = th,---,tk(Aﬂfl(l) X o X Aﬂ—*l(k))

2. for any m € N,

th,...,tk(Al X oo X Ak‘) - th,..., Al X - X Ak- X R X oo X R),

tkatk+1a---7tk+m(

where of course the set on the right side as a total of k + m factors. Then, there
exists a probability space (Q, F,P) and a real valued stochastic process X defined on

it, such that:
th,...,tk(Al X ... X Ak) = P({th € Al, ...,th € Ak}),
foranyt;el, ke N and A; € B.

Definition 1.1.3. (Filtration). An increasing family Fi = {Fi}er of complete sub o-
fields of F is said a filtration on (Q, F,P).

Consider a stochastic process X = {X; her and let:
Fr=0c({X;0<s<t}) =c({NU{X, (H);0 <s <t HeB}}),

where B is the Borel o-algebra and N indicates the class of null-sets. Clearly if 0 < s <t
one has

FXCFrfCF
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Therefore, FX = {FX }ier defines a filtration, termed natural filtration of {X; }er.

Definition 1.1.4. (Adapted process). A stochastic process {X;}ier is said adapted to the
filtration {F; }ier if for each t > 0:
FXCF.

In other words, for each t, the r.v. X(t) is JF;-measurable.

Definition 1.1.5. (Predictable). A stochastic process {X(t) :t € [0,T]} is predictable if
there ezists F;—adapted and left-continuous processes { X, (t) : t € [0,T]} such that
Xo(t) — X(t) as n — oo fort € [0,T].

Definition 1.1.6. (Martingale). A stochastic process M = {M,;}i>0 is a martingale with

respect to the filtration F; and the measure P if, for any t > 0, one has:
1. M; € L}Y(Q,P),

2. BE(M|Fs) = M, 0 <s<t.
This means that M, is Fi-adapted. Moreover, the expected value of My does not de-

pend on time. Indeed,

E(Mt) - E(E(Mt|~7:0)) = E(Mo)-

Definition 1.1.7. (Gaussian process). A real stochastic process { X, ier is Gaussian if

and only if, for every finite sequence {t1,ts,....tx} € I,

_____ t = (th’... 7th)

has a multivariate normal distribution.

Definition 1.1.8. (Stationary process). A stochastic process {X;}i>o is said a stationary
process if any collection {Xy,, Xy, ..., Xy, } has the same distribution of
{ Xty 47y Xtgtry oo, Xypar } for each 7 > 0. That is,

d
{thvth s 7th} = {Xt1+7'7 Xt2+7'7 s 7th+7'}-
Let X be a stationary process, then the following elementary properties hold:

e Varying t, all the random variables X; have the same low; i.e. X, 2 Xy, for any

t1, ta = 0.



1.1.1 Stochastic processes. 15

e All the moments, if they exist, are constant in time.

e The distribution of X;, and X;, depends only on the difference 7 = t; — t5 (time
lag).

Therefore, the autocovariance function 7(q,t2) = v(t; — t2) depends only on 7 = t; — t.
We write

V(1) = E(Xy — p)(Xir — ) = Cov(Xy, Xy ), (1.2)

where p = E(X(¢) and ~(7) indicates the autocovariance coefficient at the lag 7.

Definition 1.1.9. (Stationary increment process). A stochastic process { X} >0 is said

a stationary increment process, shortly si, if for any h > 0 :

{Xeen — Xnbizo = {Xi — Xo}izo. (1.3)

Definition 1.1.10. (Self-similar processes). A real valued stochastic process X = {X;}i>0

15 said self-similar with index H > 0, shortly H-ss, if for any a > 0 :
{Xat}tzo < {CLHXt}tzo-

We observe that the transformation scales differently "space" and "time", for this
reason one often prefers using the word self-affine process. The index H is said Hurst’s

exponent or scaling exponent of the process.

Remark 1.1.1. Observe that, if X is an H-ss process, then all the finite-dimensional
distributions of X in [0,00| are completely determined by the distribution in any finite

real interval.

Theorem 1.1.1. /23] For p € (0,00), let LP = LP(Q;RY) be the family of Ré—wvaleud
random variables X with E|X|P < oco. In L', we have |E(X)| < E|X|. Moreover, the

following three inequalities are very useful:

1. Holder’s inequality:

E(|XY]) < (E|X[P)» (E|Y|%)s

fp>1, +1=1,Xel’ YLy
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2. Minkovski’s inequality:

(E|X +Y|7)? < (EIX])> + (B|Y|?)»
ifp>1, XY e L»;

3. Chebyshev’s inequality:

P{w : | X (w)| > c} < cPE(|X]")
ifc>0,p>0, X € L.
4. A simple application of Hélder’s inequality implies
(E[X]')" < (B|X]")
if0<r<p<oo, X €L’

Theorem 1.1.2. (Monotonic convergence theorem [23]). If X is an increasing sequence

of nonnegative random variables, then
lim E(X)) = E( lim Xk).
k—o0 k—>00

Theorem 1.1.3. (Dominated convergence theorem [25]). Let p > 1, X C LP(2,R?) and
Y C LP(Q,R). Assume that | Xix| <Y a.s. and Xy converges to X in probability. Then
X € LP(Q,RY), X, converges to X in IL?, and

lim E(X;) = E(X).

k—o0

Definition 1.1.11. (Volterra integral equations [5]). For the first kind Volterra integral

equations, the unknown function u(x) occurs only under the integral sign in the form:

@) = /0 " K u(t)dt. (1.4)

However, Volterra integral equations of the second kind, the unknown function u(z) occurs

wside and outside the integral sign. The second kind is represented in the form:

w(w) = f(z)+ A /O " K (o, Dut)d. (1.5)

The kernel K(x,t) and the function f(x) are given real-valued functions, and \ is a

parameter.
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1.1.2 Brownian motion

Brownian motion is the name given to the irregular movement of pollen grains, sus-
pended in water, observed by the Scottish botanist Robert Brown in 1828. The motion
mathematically it is W () Let us now give the mathematical definition of Brownian mo-

tion.

Definition 1.1.12. (Brownian motion). A stochastic process W = {W;}i>o is an ordinary
(standart) Brownian motion (Bm) if:

(1) W(0) =0 a.s. and it is F;-adapted,

(1) it has independent increments, That is the random variables Wy, — Wy, and Wy, — W,
are independent for any 0 <ty <ty < tg < ty4, it has stationary increments,

(1ii) for each t > 0, W(t) has a Gaussian distribution with mean zero and variance t, and
covariance E(W (t)W(s)) = min(¢, s).

(iv) its sample paths are continuous a.s. (The Bm trajectories starts in zero a.s. and are

continuous).
Proposition 1.1.1. /23] The Brownian motion W (t) is an Fy-martingale.
Theorem 1.1.4. W is a H-ss process with H = 1/2

Proof: It is enough to show that for every a > 0, {a'/?W (at)} is also Brownia nmotion.
Conditions (i), (ii) and (iv) follow from the same conditions for {W(¢)}. As to (iii),
Gaussianity and mean-zero property also follow from the properties of {W(¢)}. As to the
variance, E [(a'/?W (at)?)] = t. Thus {a'/*W (at)} is a Brownian motion.

Proposition 1.1.1. [10]
1. Self-similarity: The Brownian motion is %-SSS].
2. Symmetry: {—B(t),t > 0} is also a Brownian motion.
3. Markov Property: Brownian motion is a Markov process.

4. Hélder continuous: A Brownian motion has paths a.s. locally v— Hoélder continuous

for vy €10,1/2).

5. Nondifferentiability of Paths: The Brownian motion’s sample paths are a.s. nowhere

differentiable.
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Theorem 1.1.2. [/6]. For a Gaussian sequence { Xy, k > 0} to be Markovian each of the

following condition is necessary and sufficient.

o Forany k <n
E(Xk| X1, .o, Xp1) = E(Xg| Xk_1). (1.6)

o forj<I<k<n

Pik = PjiPuk- (1.7)

Definition 1.1.13. (Markovian process). We say that X is Markovian if any finite col-
lection {X (t1), ..., X(tn)}, ti € I, is Markovian.

Let the process X be Gaussian and Markovian. In view of (1.6) we have the Markov

property:
E(X(t+h){X(s),s <t}) = E(X(t + h)[X(2)), (1.8)

for any h > 0. Moreover, by (1.7), one has:
p(s,t) = p(s,h)a(h,t),s < h <t, (1.9)
with p(s,t) = E(X(s)X(t))/o(s)o(t).

Definition 1.1.14. (H-sssi processes). A stochastic process X = {X;}ier, F-adapted,

which 1s H-ss with stationary increments, is said H-sssi process with exponent H .

1.2 Stochastic integration

let us consider the filtered probability space (2, F, F;, P), where {F;};>¢ is the natural
filtration of the Bm W (t), t > 0. We introduce the following class of functions.

Definition 1.2.1. Let V(S,T) be the class of real measurable functions f(t,w), defined
on [0,00) x €, such that:

1. f(t,w) is Fi-adapted.

2. E (/ST f(t,-)2dt) < 00.
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1.2.1 It6 integral

Let f € V(S,T). We want to define the It6 integral of f in the interval [S,T"). Namely:

I(f)(w) = / £t w)dWi(w), (1.10)

where W, is a standard (E(WW(1)?) = 1) one dimensional Brownian motion. We begin

defining the integral for a special class of functions:

Definition 1.2.2. (Simple functions). A function ¢ € V(S,T) is called simple function

(or elementary), if it can be expressed as a superposition of characteristic functions.
= en(@) gy b0 (D), (1.11)
k>0

Definition 1.2.3. Let ¢ € V(S,T) be a simple function of the form of (1.11), then we

define the stochastic integral:
/‘¢tde§ > en(w) (Wi, — Wi,)(w). (1.12)
k>0

Lemma 1.2.1. (Ito isometry [25]). Let ¢ € V(S,T) be a simple function, then:

(o) s([ara)

Remark 1.2.1. Observe that (1.13) is indeed an isometry. In fact, it can been written

as equality of norms in 1?2 spaces:

(t,-)dW; = |9llr2(s.7x0) -

L2(Q,P)

We have the following tmportant proposition.

Proposition 1.2.1. [10] Let f € V, then there exists a sequence of simple functions
¢n € V,n € N, which converges to f in the L?-norm. Namely,
T

lim E ((f(t,-) = ¢nlt,))?) dt = lim 1f = &l [F2((5.77x0) = O- (1.14)

n—aoo S

Given f € V(S,T), the proposition above, together with Ito isometry, implies that
T
the sequence {/ On(t, w)dWi(w),n € N} is Cauchy on L?(€2,P). So that, it converges
S
to a limit in L?(2, ). We call this limit the It6 integral of f .
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Definition 1.2.4. (Ito integral). Let f € V(S,T) The Ité integral from S to T of f is
defined as the 1L*(Q2,P) limit:

T() = [ f(t)IWiw) = Tim_6u(t.)dWi(e), (115

where ¢, € V, n € N, is a sequence of simple functions which converges to f € L2([S,T] x

Q).

Remark 1.2.2. Observe, in view of (1.14), that the definition above does not depend on
the actual choice of {¢,,n € N}.
By definition, we have that It isometry holds for Ito integrals:

Corollary 1.2.1. (Ité isometry for Ito integrals [10]). Let f € V(S,T), then:

E <(/STf(t, -)th)Q) =E (/: fA(t, -)dt> . (1.16)

Moreover,

Corollary 1.2.2. [10] If f.(t,w) € V(S,T) converges to f(t,w) € V(S,T) as n —» o0
in the L2([S, T] x Q)-norm, then:

T T
| atenawe — [ g jam, (1.17)
S s
in the L2(Q, P)-norm.

Proposition 1.2.2. [/6] Let f,g € V(0,T) and let 0 < S < U < T . Then:

T U T
z./ det:/ det+/ faw,.
S S U
T T

T
2. For some constant a € R,/ (af 4+ g)dW, = a/ fdW, +/ gdW,.
s s

S
T
S
T
4. / fdW, is Fr-measurable.
s

0
5. The process M(w) = / f(t,w)dWy(w) where f € V(0,T) for any t > 0, is a
T

martingale with respect to JFy.
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The construction of the Ito Integral can be extended to a class of function f(¢,w)
which satisfies a weak integration condition. This generalization is indeed necessary be-
cause it is not difficult to find functions which do not belong to V. For instance, take
a function of Bm which increase rapidly f(t,w) = exp(W;(w)?). Therefore, we introduce

the following class of functions:

Definition 1.2.5. Let W(S,T) be the class of real measurable functions f(t,w), defined
on [0,00) X §, such that

1. f(t,w) is Fi-adapted.

2. IP(/ST f(t,)?dt < 00) = 1.

Remark 1.2.3. Clearly, V C W.
In the construction of stochastic integrals for the class of functions belonging to 2 we can
no longer use the 1.2 notion of convergence, but rather we have to use convergence in

probability . In fact, for any f € W, one can show that there exists a sequence of simple

functions ¢, € W such that

/S |dn(t, ) — f(t,-)|Pdt — 0 (1.18)

T

in probability. For such a sequence one has that the sequence {/ |on(t, A)dW(w),n € N}
s

converges in probability to some random variable. Moreover, the limit does not depends

on the approximating sequence ¢,. Thus, we may define:

Definition 1.2.6. (It6 integral II). Let f € W(S,T). The Ité integral from S to T of f
is defined as the limit in probability:
T

/Sf(t,w)th(w): lim i On(t, w)dWy(w), (1.19)

n—aoo

where ¢, € W, n € N| is a sequence of simple functions which converges to f in probability.

Remark 1.2.4. Note that this integral is not in general a martingale. However, it is a

local martingale.
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1.2.2 One dimentionel Ito formula

Definition 1.2.7. (Ito processes). Let X; be a stochastic process, defined on (2, F,P),
such that for any t >0 :

t t
X = X(0) +/ usds+/ vsdW, (1.20)
0 0
where u,v € W. Then, X, is called (one-dimensional) Ité process.

Theorem 1.2.1. (Ité formula [10]). Let g(t,z) € C?*(R. xR) and let X; be an Ité process
of the form:
dXt = Utdt + /Utth'

Then, the process
Y, =g(t, Xy),t >0,

is again an Ito process, and the following It6 formula holds:
1
dYy = dg(t, X;) = <8tg(taXt) + w0y f (¢, Xi) + 51}?811]"(75, Xt)) dt + vi0y f (t, X¢)dWy,  (1.21)
or equivalently:

1

t
where (X); = / v2ds is the quadratic variation of the It6 diffusion.
0

Theorem 1.2.2. (Gronwall’s inequality [10]). Let T > 0, ¢ > 0 and u(-) be a Borel
measurable bounded nonnegative function on [0,T], let v(-) be a nonnegative integrable
function on [0,T). If
u(t) <c+ /tv(s)u(s)ds,o <t<T, (1.23)
0

then

u(t) < cexp (/Otv(s)ds) 0<t<T. (1.24)

1.2.3 Stochastic differential equations

The equation has to be interpreted as
t t
X, =Xy, +/ a(s, Xs)ds +/ o(s, Xg)dWg,to <t <T, (1.25)
to to
where the first integral is a Lebesgue (or Riemann) integral for each sample path and the

second is an [t6 integral.
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As with deterministic ordinary and partial differential equations, it is important to know

whether a given SDE has a solution, and whether or not it is unique.

Definition 1.2.8. (Strong and weak solutions). If the version W; of Brownian motion
defined in the filtered probability space (2, F, Fy,P) is given in advance and the solution
X, constructed from it is Fi-adapted, the solution is called a strong solution. If we are
only given the functions a(t,z) and o(t,z) and ask for a pair of processes (X¢, Wy), then

the solution X; (or more precisely (X, Wy)) is called a weak solution.

The hypothesis of an existence and uniqueness theorem are usually sufficient but
not necessary, conditions. Some are quite strong, but can be weakened in several ways.
Most of the assumptions concern the coefficients a, o : [tg, T] x R — R.

Existence and uniqueness conditions
e Al. Measurability: a(t,z) and o(t,r) are L?>-measurable in [tg, T] X R.

e A2. Lipschitz condition: there exists a constant K > 0 such that for any t € [ty, T
and xr,y € R:
la(t, z) — a(t,y)| < K|z -y, (1.26)
and

lo(t,x) —o(t,y)| < K|z —yl. (1.27)

e A3. Linear growth bound: there exists a constant K > 0 such that for any ¢t € [t, T
and x,y € R:
ja(t, 2)* < K2(1+ af), (1.28)

and
o(t,2)? < K2(1 + [xf2). (1.29)

e A4. Initial value: Xy, is F,-measurable with E(|X;,|*) < oc.

Theorem 1.2.3. (Ezistence and uniqueness theorem for stochastic differential equations

[10]).
Let T > 0 and a(-,-) : [0,T] x R* — R", o(-,-) : [0,T] x R™ — R™™ be measurable

functions satisfying

la(t, ) | +|o(t,z) |< C(1+|z|),x € R",t € [0,T]. (1.30)
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for some constant C, (where |o| = Z | 045 |?) and such that
| a(t,2) — alt,y) | + | o(t,2) —o(ty) [< K | o —y [y €R%t€0,T)  (L31)

for some constant K. Let Z be a random variable which is independent of the o—algebra

F generated by W(+), s > 0 and such that
E[|Z]*] < oo.

Then the stochastic differential equation

dXt = CL(t, Xt)dt + O'(t,Xt)dM/t, 0 S t S T,
XO == Z

(1.32)

has a unique t—continuous solution X;(w) with the property that  X,(w) is adapted to

the filtration FZ generated by Z and W,(+); s <t and

T
EU X, 2 dt
0

Remark 1.2.5. Conditions (1.30) and (1.51) are natural in view of the following two

< 00. (1.33)

simple examples from deterministic differential equations (i.e.c =0):  The equation
dX.
d—tt = X2 X,=1 (1.34)

corresponding to a(x) = x? (which does not satisfy (1.50)) has the (unique) solution
1
Xy=1— 0<t<l

Thus it s impossible to find a global solution (defined for allt) in this case. More generally,
condition (1.50) ensures that the solution X;(w) of (1.32) does not explode, i.e. that
| X¢(w) | does not tend to oo in a finite time. Thus condition (1.31) guarantees that
equation (1.32) has a unique solution. Here uniqueness means that if X1(t,w) and Xs(t, w)

are two t—continuous processes satisfying (1.32) and (1.33) then

Xi(t,w) = Xs(t,w),t <T, a.s. (1.35)

1.3 Laplace Transform

The Laplace Transform is a function transformation commonly used in the solution of
complicated differential equations. With the Laplace transform it is frequently possible
to avoid working with equations of different differential order directly by translating the

problem into a domain where the solution presents itself algebraically.
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Definition 1.3.1. The Laplace transform of a function f of the real variable t € R, s
defined by:
C{f(s): s} = / e F(t)dt, s € R (1.36)
0
f(t) is called the original of Lf(s).

Definition 1.3.2. The transformation reversal of Laplace is carried out by means of an
integral in the complex plan, pure and positive:
1 [t
fit)=LHF(s)} = —/ e F(s)ds
270 )y oo
where 7y is chosen to ensure that the integral is convergent.which implies that 7y is greater

than the actual singularity part of F(s).

Proposition 1.3.1. Suppose that f(t) and g(t) are two functions, which are equal to
zero for t < 0 and for which the Laplace transforms F(t) and G(t) exist. The following
statements hold (see [17]):

(a) The Laplace transform and its inverse are linear operators, suppose that A\ € R,

then :
L{Nf(t) +g(t); s} = ALLS(); s} + L{g(t); s} = AF(s) + G(s)
LTHAF() + G(t); s} = ALTHE(t); s} + L7HG(t); s} = Af(s) + g(s)

(b) For the Laplace transform of the convolution of f(t) and g(t) is follows:

LLF() * g(t); s} = F(s)G(s)

where the convolution is defined by:

= — dr = —7)d
10 <9t = [ s =riayir = [ f)gle = ryir
(c) The limit of the function sF(s) for s — oo is given by

lim sF(s) = f(0)

§—00

(d) The Laplace transform of the n — th derivative (n € N) of f(t) is given by:

n—1

LU0} = 7 F(s) = 3287 H(0) = F(s) = 38R0

k=0
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Definition 1.3.3. The derivative of a function f is defined as

D f(w) — fin F@) = S = 1)

h—0 h

Iterating this operation yields an expression for the n — th derivative of a function. As

can be easily seen for any natural number n:

m=0
or equivalently,
D" f(x) = lim B 37 (1) () = mh) (1.37)
m=0

1.4 Some Results from Nonlinear Analysis

Definition 1.4.1. (Banach space) A normed space X is called a Banach space if it is

complete, i.e., if every Cauchy sequence is convergent. That is

{fn}nen is cauchy in X = 3f € X such that f, — f

Definition 1.4.2. [12](Contractive function) Let (X,d) be a complete metric space.
A function f: X — X 1is called a contractive function if there exists k < 1 such that for
any x,y € X,

d(f(x), f(y)) < kd(z,y).

Definition 1.4.3. [12/(Fixzed point) A fized point of a mapping T : X — X of a set

X into itself is an x € X which is mapped onto itself, that is
Tr =ux.

Definition 1.4.4. [/12/(Banach’s fized point theorem) Let (X, d) be a complete metric
space and let T : X — X be a contraction on X. Then T has a unique fixed point x € X
(such that T'(z) = x).



Chapter 2

Fractional Calculus

This Chapter mainly introduces definitions and basic properties of fractional deriva-
tives, including Riemann-Liouville fractional derivative, Caputo fractional derivative and
some basics properties of these derivatives are discussed. The difference between Caputo
and Riemann-Liouville formulas for the fractional derivatives also is mentioned. Some
basic tools of fractional differential equations are introduced, such as existence results of
fractional ordinary equations are obtained and those of stochastic fractional equations are
given at the end of the chapter. See |3, 17, 20, 21, 20] and their references for details on

the fractional calculus.

2.1 Fractional Calculus

In this section, we shall give some basic formulas and techniques which are necessary

to better understand the rest of this work. We start off with the Gamma function.

2.1.1 Special Functions
The Gamma Function

The most basic interpretation of the Gamma function is simply the generalization of

the factorial for all real numbers.

Definition 2.1.1. [ts definition is given by

[(z) = / et at € RT (2.1)
0

27
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The Gamma function has some unique properties. By using its recursion relations we
can obtain formulas:

[(z+1)=2zl(z),r € R"
[(z)=(x—1),z e R"

Example 2.1.1.

L(1/2) = V7

VT

Pin+1/2) =%

(2n—1)neN

The Beta Function

Like the Gamma function, the Beta function is defined by a definite integral.

Definition 2.1.2. [It’s given by :

1
Blz,y) = / 1 — )Yt a,y € RY (2.2)
0
The Beta function can also be defined in terms of the Gamma function:

L@)C(y) ,z,y € RT (2.3)

By =161y

The Mittag-Lefler Function

The Mittag-Leffler function is named after a Swedish mathematician who defined and
studied it in (1903, [21]). The function is a direct generalization of the exponential

function, exp(z), and it plays a major role in fractional calculus.

Definition 2.1.3. The standard definition of the Mittag-Leffler is given by :

>0 2.4
RZ:OFak—i-l @ ’ (2.4)

It is also common to represent the Mittag-Leffler function in two arguments o and f3.

Such that

Zrak+ﬁ B>0a>0. (2.5)

k=0
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The exponential series defined by (2.5) generalization of (2.4).

As a result of the definition given in (2.5), the following relations hold:

1
Eas(z) = T8 + 2Eq,a+5(2) (2.6)
and
d
Eq(2) = BEap+1(z) + OW%Ea,ﬂH(x) (2.7)
Example 2.1.2.
E,5(0) =1
Buald) =2 rgrny ~ 2w =
k=0 k=0
=~ 2t 1 = zktt e’ —1
E — - — — pu—
12(%) ;F(k+2) x;@:ﬂ)! z

2.2 Basic fractional approche

2.2.1 Grunwald-Letnikov derivative

Grunwald-Letnikov derivative or also named Grunwald-Letnikov differintegral, is a di-
rect generalization of the classical derivative. The idea behind is that h should approach

0 as n approaches infinity,

flz) = lim /() _£<x— h)
) = i LS
TN et 1 Y A e Y A Gt U,
—  lim 27 hy ha—0 ho
h1—0 hl

when hl = h2 =h
) — i =20 = 26— B) + (@)

h—0 h?

continuing for n times we have
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I'(a+1)

T a—miD) for non-integer n, a. Therefore,

This can be replaced by Gamma functions as

differentiation in fractional order is

!f(:r; —mbh).

For negative «, the process will be integration. Therefore, for integration we write

[zfa

h

D™ f(z) = limh* 3 Dlatm) yo ) (2.8)

h—0 m!T(«)

or equivalently,

o= (F5) RN (o (5)) e

2.2.2 Riemann-Liouville approche

2.1.3.1 Riemann-Liouville fractional integrals

We begin by introducing a fractional integral of integer order n in the form of Cauchy

formula.
D5 f(x) = ﬁ / (o — 0" f (1)t (2.10)

It will be shown that the above integral can be expressed in terms of n-multiple integral,

:/ d:r;l/ dxg/ d:cg.../ ()t (2.11)
0 a a a

When n = 2, by using the well-known Dirichlet formula, namely

/abdx/:f(x,y)dy:/abdy/ybf(x,y)dx (2.12)
/:dscl / FOdt = /azdtf(t) /jdml

_ /m(x (bt

This shows that the two-fold integral can be reduced to a single integral with the help of

that is

(2.11) becomes

Dirichlet formula. For n = 3, the integral in (2.11) gives

D3 f(x) = /dxl/ de/ f(t)
_ / day U s / f(t)dt} |

(2.13)
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By using the result in (2.13) the integrals within big brackets simplify to yield

D f(z) = / " day [ / R f(t)dt] | (2.14)

If we use (2.12), then the above expression reduces to

025 = [ag) [ = [T (2.15)

Continuing this process, we finally obtain

D) = o [ o= (2.16)

It is evident that the integral in (2.16) is meaningful for any number n provided its real

part is greater than zero.

Definition 2.2.1. Let f(z) € L(a,b), a > 0, then

2 F(0) =0 D2 0) = 18 0) = s [ Dt (2.17)
and
I 15) =2 D (0 = B f0) = s [ o s (218)

for x > a s called Riemann-Liouville left-sided and right-sided fractional integral of order

«, respectively.

Theorem 2.2.1. [5] Let f € Ly[a,b] and o > 0. Then, the integral 12 f(x) exists for
almost every x € [a,b]. Moreover, the function IS f itself is also an element of Li[a, b].
Proof: We write the integral in question as

—+00

/ a0 it = [ b — Oba(t)dt,

where
u*t for O<u<b-—a
¢1(u) =
0 else
and
flw) for a<u<b
P2(u) =

0 else

By construction, ¢; € L(R) for j € {1,2} and thus by a classical result on Lebesgue

ntegration.
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Example 2.2.1. If f(x) = (x — a)’!, then find the value of 1% f(z).

Soultion: We have

T f () = ﬁ / (o= 10— )Pt

If we substitute t = a + y(x — a) in the above integral, it reduces to

&(ZE _ a)a-i-ﬁ—l
I'(a+pB)

where 5 > 0. Thus

T (@) = %(as )

Proposition 2.2.1. Fractional integrals obey the following properties:
Afal}o = I3 0 = o050
N R P T (e (2.19)

Proof: By virtue of the definition (2.17), it follows that

X S x dt 1 t gb(u)du
a]xa]f(b - F(la)/a (x_t)l—aF(ﬁ)/a (t_u)l_ﬁ

z z dt
= W/@ du¢(u)/u (I‘ _t>1—a(t _u)ﬁ'

If we use the substitution y = i_T“ the value of the second integral is

u’

(2.20)

1 T — u)aJrﬁfl

1
B—1 1 — afld _ ( )
F(a)ﬂﬁ)(m—u)l—a—ﬂ/o ey (o + B)
which, when substituted in (2.20) yields the first part of (2.19). The second part can be

simalarly established. In particular,
JJNOf = 0 I fneNa>0 (2.21)

which shows that the n-fold differentiation

4"
T L) = I3 € Nya > 0 (2.22)
T q

for all x. When o =0, we obtain

JO(@) = fla); WL (@) = o f(a) = f) () (2.23)

dx™

The property given in (2.19) is called semigroup property of fractional integration.
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2.1.3.2 Riemann-Liouville fractional derivative

Having established these fundamental properties of Riemann-Liouville integral opera-

tors, we now come to the corresponding differential operators.

Definition 2.2.2. Let (n — 1) < a < n. The operator ,DS, defined by

15 called the Riemann-Liouville left-sided and right-sided fractional differential operator of

and

order «, respectively.

For oo =0, we set D° := I, the identity operator.

2.2.3 Caputo fractional derivative

The Caputo fractional derivative is considered to be an alternative definition for Riemann-

Liouville definition, it is introduced by the Italian Mathematician Caputo in 1967.

Definition 2.2.3. Let a > 0, the Caputo left-sided and right-sided fractional differential

operator of order a is given by:

C o _ 1 A0
aDa:f(x)_ )/a ( dt

I'(n—a x — )t

and

C Nna _ 1 ’ f(n)(t>

I'(n—« t— )t

2.2.4 Main properties of fractional operator

Lemma 2.2.1. (Representation [1/])

e The Riemann Liouville fractional derivative is equivalent to the composition of the
same operator ((n—a)-fold integration and n—th ordre differentiation) but in reverse

ordre i.e

D7 f(2) = D" f ()
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e Letn—1<a<n,neN, acR and f(x) be such that “ D f(x) exists. Then,
S DY f(a) = 137D f(x).
Proposition 2.2.1. In general the two operators, Riemann-Liouville and Caputo, do not

coincide, 1i.€,

D3 f(2) # D3 f(2)

Proof: The well-known Taylor series expansion about the point 0 is

fl@) = 0 +2500)+ r2f<2><o>+§f<3><o>+...+ L FD(0) + Ry

- Zrk+ (0)+ oy

= f7s) — )nl —L ' M (s)(z — s)" 'ds
Ru _/ Pt = s [ )= s

= I"f0(x).

Using the linearity property of R-L and representation property of Caputo

o Dgf(x) =1""D" f(x).

and
n—1 k
af(r — «a (k) 1
D2f(a) = D ( Or<k+1)f (0 >+Rn_>
- Z[‘ )+aDaRn 1
- ZF< )f(’“( 0) 4+, D" f " )
k=0
n—1 k
_ (k) n—a ¢(n) T
kg; F/ MO+ 0w

S o) 4 Do),
kZ:oW’fH)f (0) +5 D3 f(x)

This means that

D3 f(2) £ D3 f(2)

Proposition 2.2.2. The relation between the Riemann-liouville and Caputo fractional

derivatives is given by:

n—1
CD2 (@) = D (f(:v) -3 %f(k)(())) -
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Proof: The proof result of Proposition 2.2.1 is

i
L

k—a

mf(k) (0) +¢ D3 f ()

oDy f(x) =

i

0

n—1
CD3 () = ( k el )
=0

Lemma 2.2.2. (Interpolation)

This means that

o Letn—1<a<n,neN, aecR and f(t) be such that D*f(t) exists. Then the

following properties for the R-L operator hold

lim D*f(t) = f™ (1),
a—m (2.24)
lim Df(E) = fOT0(1).

o Letn—1<a<n,neN,acR and f(t) be such that “D*f(t) exists. Then the

following properties for the Caputo operator hold

lim D f(t) = fO(1),
a—m (2.25)
lim “Def(t) = fo=b(t) — f"(0).

a—mn—1

Proof: The proof uses integration by parts.

cNo ' f(n)
D f(t> = F(nla)/o (t_s)gj-)l—nds

- 1 (_fm)(s)w t /t _f("l)(s)wds)

I'(n—a) n—a 1s=0 n— o

n—a (n+1) n—ao

Now, by taking the limit for o« — n and o« — n — 1, respectively, it follows

lim “Df(t) = (f™(0) + f"(s)) [ing = F (1)

a—mn
and
im0 = (OO OG- ) o~ [ 10
FrD(s) )iz
FmD(E) = f(0).
For the Riemann-Liouville fractional differential operator the corresponding interpola-

tion property reads

lim D*f(t) = f™ (1),

a—rn

lim Df(t) = f™=V(1).

a—mnm—1
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Lemma 2.2.3. (Linearity)

o Letn—1<a<n,neN, a,\eR and the function f(zx) and g(z) be such that
both DS f(x) and ,D%g(x) exist. The Riemann-Liouville fractional derivative is a

linear operator i.e,
DA\ f(z) + g(x)) = AD f(x) + Dg(x)

o Letn—1<a<n,neN, a, A € R and the function f(x) and g(x) be such that both
“Daf(x) and ED2g(z) exist. The Caputo fractional derivative is a linear operator
i.e,

o DI (Af(x) +g(2)) = \g DL f(2) +5 Dyglx) (2.26)

Proof: The proof follows straight forwardly from the definition of fractional integration

and the fact that the integral and the classical integer-ordre derivative are linear operator.

Lemma 2.2.4. (Non-commutation)

e Letn—1<a<n, mnéeN, acR and the function f(x) is such that ,DS f(x)
exists. Then in general Riemann Liouville operator is also non-commutative and

satisfies

D™ (D3 f(x)) =a DY f(x) #4 D (D™ f(2)) (2.27)

o Letn—1<a<n, mn€N, a€R and the function f(z) is such that YD f(z)

exists. Then in general

oDy (D™ f(x)) =¢ DI f(x) # D™ (( Dy f (=) (2.28)
Proof: Let a = %, f(z) =1, m = 1 using the definition of D2,
1

2/(m)

1 _3
D:D'(1) =0+ D, >.

e

Di(1) = -

'ZL‘_ Y

That means
DzDY(1) # D'Dz(1)

The same proof of Caputo.
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Corollary 2.2.1. (Leibniz Rule [5])

o Lett >0, e R, n—1<a<mn,neN. If f() and g(1) are C>*([0,z]) . The

Riemann-Liouville fractional derivative of Leibniz rule is given by

o0

D)) = 3 (5) (D5 £ ()g® () (2:29)

k=0

o Lett >0, aeR n—1<a<n,neN. If f(r) and g(T) are C>([0,z]). The
Caputo fractional derivative of Leibniz rule is given by

00 n—1

ED(f @) = X 6) (P @) o0~ =g _a> ((F@g@)™ ().
- - (2.30)

Lemma 2.2.5. (Laplace transforms for the basic fractional operators) Suppose that p >
0 and F(s) is the Laplace transform of f(t). Then the following statements hold(see
Podlubny [27]):

(a) The Laplace transform of the fractional integral of order « is given by:

L{If(t);s} = s “F(s). (2.31)

(b) The Laplace transform of R-L of order « is given by

LD f(tys) = sF(s)— 3 D F(1)],,

—_

= s%F(s)— Yy s" DI (t)],,, n—1<a<n
0

3

B
Il

(¢) The Laplace transform of the Caputo fractional derivative of order o is given by

n—1

L{°Df(t);s} = s“F(s) — Z L), n—l<a<n (2.32)

k=0
Proof: To show the validity of (2.32). Using representation formula of Caputo,
D2 f(a) = [ D" f(x).
Let g(z) = D" f(z). Then (2.32) becomes

CDg‘f(x) =17"%(x).
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By the Laplace transform of the fractional integral and the representation formula of

Caputo

L{ODg f(x); s} = L{I;g(x); s} = s~ "G (s).

where G(s) = L{g(z); s} and

3
—

G(s) = s"F(s) —

B
Il

0

Finally, substituting (2.34) in (2.33), we have

L{OD} f(x); s} = s~ (s“F(s) -y s““f““(@)

is proved.

k=0

Sn—k—lf(k:) (O) )

(2.33)

(2.34)

n—1

= $"F(s) = > s (o).

k=0

To summarize all this results. A comparison between the Caputo and Riemann-Liouville

fractional derivatives is given in the following table (see [12]).

Property Riemann-Liouville Caputo
Representation Def(t) = DI f(t) CDf(t) = I""*D"f(t)
Interpolation lim Df(t) = f(1) lim “Df(1) = (1)
lim Def(t) = fO7U(1) lim CDf() = V() - F0(0)
Linearity D(Af(t) + g(t)) = ADf(t) + Dg(t) CDY(Af(t) + g(t))

— ACDf(t) + CD%g(t)

Non-commutation

D™MDf(t) = D™ f(t) # D*D™ f(t)

CD* (D™ f(1) = “D™" f (1)
# D™ (D[ (1))

Laplace transform

1
s* DL ()]

n

sYF(s) —

X
o

n—1

sYF(s) — Z safkflf(k)(O)

k=0

Leibniz rule

D(f(t)g(t)) =

Nk

(&) = Fr@)g® )

Ed

=0

“D(f(t)g(t))

f(t) =r = const

D% = ﬁto‘ #0, r=-const

Tablel: The comparison between the Caputo and Riemann-Liouville derivative fractional
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2.3 Ordinary fractional differential equation

Fractional order differential equations have become an important tool in mathematical
modeling. Although there are many possible generalizations of CZ—Z f(t), the most com-
monly used definitions are Riemann—Liouville and Caputo fractional derivatives.

We use a transformation in the equivalent fractional Volterra integral equation of given
fractional differential equation (FDE) and obtain its exact solution in terms of the solu-

tion of an integer order differential equation.

2.3.1 The main results

Consider the condition initial with Caputo type FDE given by

“DX(t) = f(t,X(t))
X(0) = X,

(2.35)

where f € C([0,7] x R,R), 0 < aw < 1.
Since f is assumed to be a continuous function, every solution of (2.35) is also a solution

of the following Volterra fractional integral equation.

X(t) =X+ ﬁ/@ (t — 1) f(r, X(7))dr, te][0,T). (2.36)

Furthermore, every solution of(2.36) is a solution of (2.35).

We note that (2.35) is equivalent to the following system

DHX(t) = Xo) = [f(t, X(1))

The following existence theorem is given for (2.35).

Theorem 2.3.1. [/[/Assume that f € C([Ry, R]).

Where Ry = [(t,X) : 0 < t < a and |X — Xo| < b and let |[f(t,X)] < M on
Ro. Then there exists at least one solution for FDE (2.35) on 0 < t < ~ where v =
min <a, [2T(a + 1)]§>, 0<a<l.

Theorem 2.3.2. Consider the FDE given by (2.35). Let

g0, X.(0) = f (= (1* = oT(a +1))%, X(t - (1" — vT(a +1))%))
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and assume that the conditions of Theorem 2.5.1 hold. Then, a solution of (2.35), X (t),
15 given by

X(t) = X.(t*/T(a+1))
where X,(v) is a solution of the integer order differential equation

Lo = 9. X)) 2,37
X.(0) = X

Proof: The existence of the solution of (2.55) follows from Theorem 2.3.1. If X(t) is a
solution of (2.35) then, it is also a solution of (2.536).
Let 7 =t — (t* — ol(av + 1))a. So, Volterra fractional integral equation (2.56) can be

written as

t*/T(a+1) ) L
X(t) = Xo + /0 flt— (@ =l (a+ 1), X(t— (t* — vl (a+1))))dv

t*/T(a+1)
X(t) =Xo+ /0 g(v, Xi(v))do. (2.38)

On the other hand, consider the system of FDE given by (2.37). Every solution of (2.37)

1s also a solution of the Volterra integral equation given below and vice versa.
X.(v) = X, +/ g(s, X.(s))ds, 0<v<a®/T(atl). (2.39)
0

Since 0 < t*/I'(a+ 1), the right-hand side of equation (2.58) is equal to
X (t*/T(a+1)). The theorems given below are simple generalizations of Theorems 2.3.1
and 2.5.2, respectively.

Theorem 2.3.3. [/] Let || - ||denote any convenient norm on R"™. Assume that f €
C([Ry,R"]), where Ry = [(t,X): 0 <t <a and || X — Xo [[< O], f = (f1, for o fu) T,
X = (z1,29,...;xy)" and let | f(t,X) || M on Ry. Then, there exists at least one

solution for system of FDE’s given by

“DX(t) = [f(t.X(1))
X(0) = X,

(2.40)

on 0 <t < [ where f = min (a, [%F(a—l—l)}é), 0<a<l.

Theorem 2.3.4. [/] Consider the system of FDE given by (2.40) of order a, 0 < o < 1.
Let
90, X,(0)) = f (t = (#* = oD (@ + 1), X(t = (t* = vT(a + 1)7))
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and assume that the conditions of Theorem 2.53.3 hold. Then, a solution of (2.35), X (t),
can be given by

X(t) = X.(t*/T(a+1))
where X, (v) is a solution of the system of integer order differential equations

) = g(v, X.(v))

X.(0) = X
Remark 2.3.1. Although the Caputo derivative is more commonly used in applied prob-

lems, also exist the models with Riemann Liouville type derivative. Theorem 2.5.2 also
holds if
Doa(t) —w0) = f(t,a(t))
z(0) = zo
Riemann Liouville for system of FDE’s is considered. But, generally the system of FDE
are given in the form
Dea(t) = f(t x(t))
z(0) = zo

To apply the given solution technique to these kind of problems,one should set

l‘ot_a

h(t,z(t)) = f(t,z(t)) — T(l—a)

and solve the problem

Dz (t) = h(t, z(t)).

Most of the fractional differential equations of order a, 0 < a < 1, are given in the

following form
D(x(t)) = f(t, (1)) (2.41)
In order to use Theorem 2.3.2 to solve (2.41) with the initial condition x(0) = xq, set

h(t,z(t)) = f(t,z(t)) — lf(olt:z) and solve

D®(x(t) — xo) = h(t, z(1))

2.3.2 Examples

In this subsection two examples are chosen such that the exact solutions can be evalu-

ated analytically to show that the technique given a works properly.
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Example 2.3.1. Consider the system of fractional order given by
CD3g(t) =t
x(0) = zg

g(v) = 2ViT @) v — 2?2 (;) :

The solution of the corresponding integer order of FDE given in Theorem 2.5.2 is

21 (v) = VT (g) v? — IQ(T%UB) + .

(2.42)

For this example,

So, the solution of the given fractional order of FDE is

z(t) = o <Ft(2§

Indeed, it can be shown that (2.43) is a solution of (2.42), by using the fractional

derivative.

Example 2.3.2. Consider the system of linear fractional differential equation given by

CDrx(t) = t+a(t)
z(0) = x

(2.44)

The corresponding differential equation of this FDFE is
—dxéév) = fi(v) = z1(v) + 2T (3)v =202 (3)
z(0) = xo

The solution of this system of (2.44) is

21 (v) = —2v/1T (;) (v41) +T? (g) (v +2042) +¢° (xo +2V/tT (g) —or? (;)) .

Consequently, the solution of the system of (2.44) is

)= (ﬁ) o T P (Vi = D). (2.45)

2.4 Stochastic fractional differential equation

Several forms of fractional stochastic differential equations have been proposed in stan-
dard models and there has been significant interest in studying their solution.
In this section we shall discuss the the global existence and uniqueness of solution of a
class of a Caputo fractional stochastic differential equations. Using a temporally weighted

norm and whose coefficients satisfy a standard Lipschitz condition.
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2.4.1 Preliminary

Consider a Caputo fractional stochastic differential equation (for short Caputo FSDE)

of order a € (%, 1) of the following form

aw,

“D2 X(t) =b(t, X(t)) + ot X(t))ﬂ, (2.46)

where b,o : [0,00) xR* — R?, are measurable and (W,),c0 ) Is a standard scalar Brown-
ian motion on an underlying complete filtered probability space (€2, F,F := (F,)ici0.00), P)-
For each t € [0,00), let X, := L%(Q, F,,P) denote the space of all F,— measurable, mean
square integrable functions f = (f,,..., fo)" : @ — R* with

) = VEIIP,

fi

/]

ms *

2

where R? is endowed with the standard Euclidean norm.

A process X : [0,00) — L(€2, F,P) is said to be F— adapted if X (¢) € X, for all t > 0. For

each n € X, a F—adapted process X is called a solution of (2.46) with the initial condition
X (0) = n if the following equality holds for ¢ € [0, c0)
X(t) =+ P(la) </ (t =700 = X(r))dr + [ (= 1ol - X(r))dWT> L (247)
0 0

where I'(«) is the Gamma function.

2.4.2 The main results

In the remaining of this section, we assume that the coefficients b and o satisfy the fol-

lowing standard conditions:

e (H1) There exists L > 0 such that for all z,y € R, ¢ € [0, c0)

16, 2) = bt y)|| + llo(t, ) — ot y)|| < Lllz -y

e (H2) o(.,0) is essentially bounded, i.e.

lo(-,0)]| s := €S88UP,cp0.00) || (T, 0)]| < 00
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and b(.,0) is L? integrable, i.e.

/ |6(7, 0)||*dr < o0
0
Theorem 2.4.1. Suppose that (H1) and (H2) hold. Then

e (i) for any n € Xy, the initial value problem (2.46) with the initial condition
X (0) = n has a unique global solution on the whole interval [0, 00) denoted by (., n);

e (ii) on any bounded time interval [0,T], where T > 0, the solution ¢(.,n) depends

continuously on n, i.e.

lim sup || ¢(¢,¢) = ¢(t,n) [[ms= 10
=1 ¢ef0,1)

2.4.3 Proof of the main result

In order to prove the theorem 2.4.1 it is equivalent to show the existence and unique-
ness solutions on an arbitrary interval [0, 7], where T" > 0 is arbitrary. In what follows
we choose and fix a T" > 0 arbitrarily.

Let H?([0,T]) be the space of all the processes X which are measurable, F,—adapted,
where F; := {F, }icor), and satisfies that

ms << 00O

| X [lso=: sup || X(¢) |

0<t<T

Obviously, H?([0, 7], . |ls2), is a Banach space. For any n € X,, we define an operator
7,  H*([0,7]) — H*([0,77]) by
1 t t
ne® =0+ g ([0 ne e = gonar s [0 notr-gonaw.) - @as
I'(e) \Jo 0
The following lemma is devoted to showing that this operator is well-defined.

Lemma 2.4.1. For any n € X,, the operator T, is well-defined.

Proof: Let ¢ € H?([0,T]) be arbitrary. From the definition of 7,£ as in (2.48) and
the inequality ||z +y + 2[|* < 3(||z]|* + ||y||* + ||z]|?) for all z,y, z € R?, we have for all

t €[0,T]

2) (2.49)

[ =t eoyr

3
2 < 2 —=E
IO s < 130010 + o) <‘

b (H [ t=nr ot gmaw,
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By the Holder inequality, we obtain

E( 2) < /t(t—ﬂm QdTE(/ Ib(r, ()| dT)

t20¢ 1
- (/ 16(r, £(7))] dT> (2.50)
From (H1), we derive

/ (= )b () dr

Ib(r, &NI* < 2(l[b(7,£(7)) — b7, 0)[I* + [Ib(7, 0)[|*)
2L%1€(m)|I* + 2[[b(r, 0)[1*

IA

Therefore,

E (/Ot Hb(T,f(T))HQdT> < 2L°E (/t &(m H%lr) + 2/t [ECANIR

< 2L°T sup E(|[€()]]?) +2/ |b(7, 0)||2d

te[0,T]

which together with (2.50) implies that

E ( /Ot(t ) b(r £(F))dr

Now, using [t6’s isometry, we obtain

“

2 220 2a—1 T
20T 2T
) H§H2 _1/ 1b(7,0)|*dr (2.51)
0

2>: ) ([e=n ot snaw )
_ ( [w-rr|5 )

= E( [ lotrlr >>||2df)

[ = totn g

| /\

o.(m,¢(7))

From (H1), we also have

lo(r, &(EDI* < 2L%IE(T)I1* + 2]lo (7, 0)[* < 2L%I€(7)|I* + 2[|o (-, )%

) 278 [ (=7 sleliar)
+ 2oL 0)LE (/Ot(t - T)M?dT)

T2a 1 2T2a 1
< 20— [l¢] TlloC 0%

Therefore, for all £ € [0,T] we have

“

IN

[ = totm g
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This together with (2.49) and (2.51) implies that ||7,{]ls2 < co. Hence, the map 7, is
well-defined.

To prove existence and uniqueness of solutions,we will show that the operator 7, defined
as above is contractive under a suitable temporally weighted norm ( for the same method
to prove the existence and uniqueness of solutions of stochastic differential equations).

Here, the weight function is the Mittag-Leffler function F,, ,(.) defined as:

]

tk

Ezafl(‘) = Z F((Qa — 1)]6 + 1)

forall teR

Lemma 2.4.2. For any o > % and v > 0, the following inequality holds:

1_‘(207/_ 1) A (t _ 7_)20472E2a71<,y7_2a71)d7_ S E2a71(7t2a71).

Proof: Let v > 0 be arbitrary. Consider the corresponding linear Caputo fractional

differential equation of the following form
Dy a(t) = ya(t). (2.52)

The Mittag-Leffler function FE,, ,(yt**7") is a solution of (2.52). Hence, the following

equality holds:

E2a71(7t20¢71) =1+ ﬁ/{) (t _ 7-)2&72E2a71(’)/7'2a71)d7',

which completes the proof.

Proof of The theorem: Let 7" > 0 be arbitrary. Choose and fix a positive constant

such that
3L2(T + 1)T(2a — 1)
P (2.53)
On the space H?([0,T]), we define a weighted norm |||, as below
EQX®I?) 2
X|[5 = su ————— forall X € H*(|0,T]). 2.54
X = s \/ B i (0.7) (2.54)

Obviously, two norms ||.|[g2 and ||.||, are equivalent. Thus, (H?(0,T),].]|,) is also a Ba-

nach space.

e Choose and fix n € Xy. By virtue of Lemma 2.4.1, the operator 7, is well defined.

We will prove that the map 7, is contractive with respect to the norm ||.||,.
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For this purpose, let &, & € H?([0,T]) be arbitrary. From (2.48) and the inequality
lz+yll> <2(] = || 2+ || y || ?) for all z,y € R?, we derive the following inequalities

for all t € [0,T]:
2 5 2

: (
L t -7 a—1 olr —olr N
+ r(a)2E (‘ /O(t )* 7 (o(1,€(t)) — o(7,£(¢)))dW-

Using the Hélder inequality and (H1), we obtain

On the other hand, by Itd’s isometry and (H1), we have

£ (‘ ) = & [ (6= otretr)

— o(r ()P
< I / (t — )2 2E(|l6(r) — £(r))[2)dr
0

Ty€(t) — T (2) / (t =) (b7, (1) — b7, E(1)))dr
0

)

t 2 t .
/ (t = 7)1 (b(r, £(7)) — b, (7)) dr ) < 1% / (t — )2 2E(€(r) — £(r)|2)dr
0 0

/O (t — 1) Yo (7, (7)) — o(r,E(r)))aW,

Thus, for all ¢t € [0, 7] we have

. ( 2) 2t + 1)

t
202 2 2
< S | =) — ElPar
which together with the definition of .||, as in (2.54) implies that
2
TyE(t) — Thg(t)
Ui n - 2L2 t+1 fo t_T)Qa 2E2a 1(7t2a 1)d7’

]E (
Epar(yt?*71) - w2 Eoaa(yt?*71)
In light of Lemma 2.4.2, we have for all ¢ € [0, T]]

“

Consequently,

Th&(t) — To&(t)

1€ — €JI2,.

2
T B REEELREE

o (20 — 1) L2(T + 1)
[(a)*y

”Tnf - Tné”v < K[lE - é“w where k = \/

By (2.53), we have £ < 1 and therefore the operator 7, is a contractive map on
(H*([0,77), |.l)- Using the Banach fixed point theorem, there exists a unique fixed
point of this map in (H?([0,77])). This fixed point is also the unique solution of
(2.46) with the initial condition X (0) = n. The proof of this part is complete.
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e Choose and fix T' > 0 and 7, ¢ € X,. Since ¢(.,n) and ¢(., () are solutions of (2.46)
it follows that

oltm) — ot ) =n—C + ﬁ / (t — 1) (bl g, m)) — b o(r, O)))dr

1

r /0 (t — )2 Yo (r o(rm)) — (. o7, C))dWV,

Hence, using the inequality ||z + vy + z||> < 3(||z||* + ||ly]|* + || z||?) for all x,y, 2 € R,
(H1), the Hélder inequality and Ito’s isometry, we obtain

) 3L2(t+1) [ 20-2 2
E(lle(t,n) — ot Q%) < W/O(t_T) E(lle(t,n) — o(t, Ol%)dr

+ 3E([ln —¢I).

By definition of .||, we have

E(lle(t,m) = ot OIP) E(le(t.n) — ot OI7)  _ 3L +1) Jot = 7)22 2By (yr22L)dr
E2a71(7t2a71) E2a71(’7t2a71) - F(Oé)Q E2a71(77-20*1)

*[leCm) =@ Ol + 3E(lln — ¢|1%)

By virtue of Lemma 2.4.2, we have

3L3(T 4+ 1)I(2a — 1)

Ty e = e Iy =+ 3ln = e

le(,m) — (., Oy <

Thus, by (2.53) we have

<1 BLA(T + 120 —

1) ) )
I o) = e Ol < 31 = €l

Hence,

lim sup [|o(t,n) — @(t,¢)|lms = 0.

=€ te[0,T)

The proof is complete.



Chapter 3

Conformable Fractional Calculus

This chapter is devoted to conformable fractional calculus theory. A new definition
of the fractional derivative was proposed and found wide resonance in the scientific com-
munity interested in fractional calculus. it was laid out by Khalil and al(2014, [18] ). and
called the conformable fractional derivative. Then developed in Abdeljawad (2015, [1]),
and is currently under intensive investigations. More information about that theory can

be found in [18, 24, 1, 25, 15].

3.1 Conformable Fractional Calculus

In this section, we present some necessary definitions and essentials results from the
conformable fractional calculus theory, see [15], [1] and their references for more details

on conformable fractional derivatives.

3.1.1 Special Functions

Definition 3.1.1. Let p € (0,00), k > 0, a € (0,1], and n € N Pochhammer symbol

(p)5y 1 is given by
Por=@+a-1p+a—1+ka)p+a—1+2ka)..(p+a—1+(n—1)ka).

Proposition 3.1.1. [29] Let o € (0,1] and I'} : (0,00) — R. For 0 < p < oc.

Conformable gamma function I'{ is given by

o0 ko la"k™ (nka) a1
2 (p) :/ trle " ka dot = lim nla”k" (n 3)
0 n—oo (p)n,k

49
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Proposition 3.1.2. [29] The (a, k)— Gamma function I'¢(p) satisfies the following iden-

tities
LTR(p+k)=(p+a—1IYp)
2. If(p + nka) = (p)5 % (p)

3. T¢(p) = (ka) ™ —'T (22

ka

b TE(p) = ()% 1T, (2re=t)

5 I'(ka+1—a)=1

Definition 3.1.2. Let o € (0,1]. The (o, k)—Beta function Bg(p,q) is given by the

formula

| .
B (p,q) = 5/0 tra (1 —t)katdut, p,g k> 0.

Proposition 3.1.3. The («a, k)—Beta function satisfies the following identities

1. Bl(:(p7 k?Oé) = m7

2. BY(ka(2 — a),q) =

Q=

Proof: From the definition of the (o, k)—Beta function Bg(p, q), we have

| Y 1
B%p. ka) = — tha ‘gt = ———
e(p, ka) ko /0 ' p+kala—1)

and similarly,

@ 1 ! —a £ - 1
B(ka(2 — a),q) = E/0 AIEUERI R
This completes the proof.

Remark 3.1.1. From the Proposition 5.1.3, we have
B (ka, ka) = —

o, ka) = —.

k ) ka2

Remark 3.1.2. By the Proposition 3.1.5 with o = 1, we have the following properties for

k— Beta function

1 1
By(p, k) = —, DBilk,p)=—.
k(p, k) ; k(k,p) .

Proposition 3.1.4. [29] The following property holds for (o, k)—Beta function By (p,q)

p+ ka(a — 2)
B(p, q) = B (p — ka, q).
) = hala — 2y DR (P k)
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Proposition 3.1.5. [29] The following identity holds

1
Bi(p.q) = Bulp + kala = 1),9) = -—B(= +a— 1)

where By(x,y) is k— Beta function and B(x,y) is classical Beta function.

Proposition 3.1.6. [29] The following property holds for (a, k)— Beta function in terms

of (o, k)—gamma function

Bg‘(p + ]{504(1 — 01)7 Q) = Fg(;ég];)igiqz Oé)'

Remark 3.1.3. By the Proposition 3.1.6 with o = 1, we have the following property

B = 10

3.1.2 Conformable Fractional Derivative

The definition of fractional derivative don’t have a standard form. But the basic defi-
nitions are Riemann-Liouville definition and Caputo definition. The fractional derivative
can also be seen as an approximation of the classical derivative. This is not the case in

general. This is due to the setbacks of these definitions and from them:

e When « is not a natural number. The derivative of constant is difficult (Riemann-

Liouville derivative is: , D& # 0 but ¢ D} = 0 for Caputo derivative).

e All precedent definitions do not satisfy the known formula of the derivative of the

product of two functions:
D*(fg) = fD%(g) + gD (f)-

e The same problem of the derivative of the quotient of two functions:

(1) - U120

e The same problem of the chain rule:
D*(fog)(t) = f(g(t)g' ().
e The same problem of commutation:

D*DP f = DA ¥,
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Therefore. ( Khalil and al [18]) was presented a new definition called conformable frac-

tional derivative with a € (0, 1) and it satisfies classical properties mentioned above.

Definition 3.1.3. Let a € (0,1), t > 0. Given a function f : [0,00) — R. Then the

"conformable fractional deriwative” of f of order a is defined by

T.(F)(t) = lim L) = SO

e—0 g

(3.1)

If f is a—differentiable in some (0,a), a > 0, and lim+ () exists, then define:
t—0
F@(0) = lim f(1).
t—0t+
We can write f)(t) for T,(f)(t) to denote the conformable fractional derivatives of f of
order a. Moreover, if the conformable fractional derivative of f of order a exists, then

we simply say f is a—differentiable.
Definition 3.1.4. The conformable fractional derivative starting from a of a function
f:la,00) — R of order « is defined by

T () — i LS =) 1 1)

e—0 £

If TOf(t) exists on (a,b), then T*f(a) = %gn T2f(t).

Theorem 3.1.1. Let o € (0,1] and f : [0,00) — R s differentiable function at t > 0
then f is a—differentiable function att > 0, then

£ = - < f() 32

Proof: Let h = et~ in (3.1), and then we have & = t*"'h. Therefore,
flt+et™) — f(t)
e—0 h g
t — J(t
U reen = o

h—0 hte—1

ft+h) - ft)
h

To(f)(t) = lim

= I lim
h—0

= ol f(e).

Theorem 3.1.2. If a function [ :[0,00) — R is a—differentiable at to > 0, a € (0, 1],

then f is continuous at tg.

et
Proof: Since f(t, + ety ) — f(to) = f(t0+€t°5 J=J{0) - Then,

L[/ (to + etg™*) — f(to)] = lim fto +ety™®) = f(to) lim &

e—0 g e—0
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Let h = et;~®. Then,
lim|[f(to + h) — f(to)] = [ (t0).0

h—0

which implies that
h—0
Hence, f is continuous at .
Properties 3.1.1. Let o € (0,1] and f, g be a—differentiable at a point t > 0. Then
1. T, (t?) = ptP=«, for allp € R.
2. T,(c) =0, for all constant functions f(t) = c.

3. Tolaf +bg) = aTo(f) +bTo(g), for alla,beR.

4. Ta(fg) = fTu(g) + gTa(f).

5. T, (i) _ gTa(f)g—QfTa(g)

6. To(fog)(t) = f (9(t)Tulg)(t).

Proof: Using (3.2), all properties will be proven consecutively.
Now, for a € (0,1],
T,(tr) = ti-odgp
— prloegp-l
= ptr~e,

This is prove of property 1. Secondly, for property number two,

Then, for property 3,

Tulaf +09)(t) = t'=Z(af +bg)(t)
= " (af (t) + by (1))
= at'™ L (1) + bt' > Lg(t)
= aT(f)(t) + bTu(g)(t).
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And from it the linear property is verified for this definition. Then the property 4 is prove

by
Tou(fo)(t) = t5(f9)(t)
= t"(ggf+ f59)(@)
=t (t)g(t) + g (O f(2)
= gMTa(f)() + F(1)Tal9) ().
Then, for 5

Finally, for property 6 is prove by

To(fog)t) = tl_o‘( fo )/(t)

The proof is complete.

Corollary 3.1.1. [2/] Let o € (0,1] and f, g be a—differentiable at a pointt > 0. Then

e Quotient Property: T, (L) — LN

e Product Property: — To(f(£))? = 2(f()T.(f)(1))

Theorem 3.1.3. (Rolle’s Theorem for Conformable Fractional Differentiable Functions)

Let a >0 and f : [a,b] — R be a given function that satisfies
1. f is continuous on [a,b],

2. f is a—differentiable for some a € (0,1),
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Then, there exist ¢ € (a,b), such that f(*)(c) =0
Proof: Since f is continuous on |a,b] and f(a) = f(b), there exists ¢ € (a,b) at which is
a point of local extrema. With no loss of generality, assume c is a point of local minimum.

So

F@(c) = lim fletec™) — fle) _ lim fletec™) - f(C)'

e—0t € e—0— 15

But, the two limits have opposite sign, so f(®(c) = 0.

Theorem 3.1.4. (Mean Value Theorem for Conformable Fractional Differentiable Func-

tions) Let a > 0 and f : [a,b] — R be a given function that satisfies

1. fis continuous on [a, ],

2. fis a—differentiable for some a € (0,1).
f(b) — f(a)

Then, there exists ¢ € (a,b), such that f(*)(c) = Tpo 1
= hHa __ _aa

Proof: Consider the function

4(z) = f(z) - f(a) - LO=S@ (196& - 1aa) .

Lpe — Lgo \a o
Then, the function g satisfies the conditions of the fractional Rolle’s theorem. Hence there

exists ¢ € (a,b), such that g (c) = 0. Using the fact that T,(22*) = 1, the result follows.

Definition 3.1.5. Let « € (n,n + 1], and f be an n—differentiable at t, where t > 0.

Then the conformable fractional derivative of f of order o is defined as

To(F)() = lim S 2+ et (7) — fE ()

e—0 £

Where [a] is the smallest integer greater than or equal to .

Remark 3.1.4. As a consequence of definition 3.1.5, one can easily show that
T (f)(t) = ¢ plel(e)

Where a € (n,n + 1], and f is (n + 1)—differentiable att > 0.

Theorem 3.1.5. (Conformable fractional derivative of Known functions)
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1. T,(e") = ct' et

2. T,(sin(at)) = at'~*cos(at), a€R
3. Ty(cos(at)) = —at'*sin(at), a €R
4. T,(tan(at)) = at'~*sec*(at), a €R

5. To(2t*) =1

cetl—@

—1

e—0 A

Proof:
1).
11—« l-—a
. ec(t+z—:t ) ect . ecet -1
To(e) = lim = ¢ lim
e—0 £ e—0 g
l—aecatlfo‘ _ tl—a
= ¢“lim = et lim
e—0 ctl—«a
Let h = et'=. Then by using L’Hépital rule, we get
ch __ ch
=t lim = ct! 7% lim —
h—0 h—0
— Ctl—aect

2),

, .. sin(a(t 4 et'™*)) — sin(at)
T, (sin(at)) = ll_r)% .

= lim

sin(at) cos(agt'™*) + cos(at) sin(ast'~*) — sin(at)

e—0 g

= limsin(at) {

e—0

cos(ast! ) — 1
£

cos(ast! =) — 1

+ lim

cos(at) sin(agt'~*)

e—0 g

= t'7*sin(at) lim [

e—0 ctl—«a

Let h = et~ then we get

= t'"*sin(at)

. [cos(ah) - 1}

1
h—0 h
By using L’Hoépital Rule, we get

—asinl(ah
= t'“sin(at) lim Zasmiah) sin(ah)
h—0

= at'™*cos(at).

+ ' cos(at) lim

h—0

+ 1% cos(at).a

] + 17 cos(at) lim

e—0

h

sin(ast! )

Etlfa

sin(ah)
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3).Similar to (2)

)
T,(tan(at)) = T, (%)
cos(at)Tq (sin(at))—sin(at)Tw (cos(at))
cos?(at)
cos(at)(atlfo‘ Cos(at))—sin(at)(—atlfo‘ sin(at))
cos?(at)
at' = cos?(at)+at!— sin?(at)

cos?(at)

= at'=*(1 + tan?(at))

= at'"*sec?(at).

5).

Ta(ltoz) — tl—ailt‘l

« dt o

— l-al to—1
= t7%2al

tlfatozfl

= 1.

3.1.3 Conformable fractional integral

When it comes to integration, the most important class of functions to define the integral
is the space of continuous functions. The conformable fractional integral is discussed as

follows.

Definition 3.1.6. Let a > 0 and o € (0,1). Also, let f be a continuous function such

that I*f exists. Then:

@),

xl—a

L(f() = (1) =

(3.3)

a

If the Riemann improper integral exists.

Definition 3.1.7. The fractional integral starting from a of a function f : [a,00) — R

of order « is defined by:
1) = [ =0 (s)as

Theorem 3.1.6. (Inverse Property) T, I12(f)(t) = f(t), for t > a, where f is any contin-

wous function in the domain of I,.
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Proof: Since f is continuous, then I2(f)(t) is clearly differentiable. Hence,

To(Ia(f) (1) = tgIa(f ()

— tl ad/

_ tl af(t)

tla

= f().

Theorem 3.1.7. (Conformable Fractional Integral of Conformable Fractional Derivative)

Let f: (a,b) — R be a—differentiable and o € (0,1]. For all x > a then

LIT.(NHW] = [ a* ' Ta(f)()dz

h

= /axa_lzvl_o‘%f(a:)dx
/at
i

C%f(a:)da:

Definition 3.1.8. (Conformable Fractional Integral as a Limit of a Sum) If f is a function
defined for a < x < b. Then the definite fractional integral of f from a to be b is

17 -
a X

Where Ax = (b—a)/n and x; = a + iAx.

Theorem 3.1.8. (Mean Value Theorem for Conformable Fractional Integral)

If f: ]a,b] — R is a continuous function on |a,b]. Then, there exists ¢ in |a,b] such

b

/a xl_adx = f(c) ab - —at ).
Proof: Using (3.3). Since f(t) is continuous and recall that from theorem 3.1.6 I3(f(t))
is continuous on |a,b], a—differentiable on (a,b) and T, (12f(t)) = f(t). Now, from the

that,

theorem it can be stated that there is a number ¢ such that ¢ € (a,b) and

19 () — 1% f(a) = Tu [T () (1ba - —) |

0% «
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However, it is known that T, [1,af(c)] = f(c) and

I°f(b) = RGP bfl(%dt, Igf(a):/af(x)dwzo

2710‘

a a

Thus
fl( 2d = f(c) (lba - laa) .

“ a !
Theorem 3.1.9. (Second Mean Value Theorem for Conformable Fractional Integral) Let
f and g be functions satisfying the following continuous on [a,b]. Bounded and integrable

on [a,b], m = inf{f(z),z € [a,b]} and M = sup{f(z),z € [a,b]}. Then, there ezists a

/b —f(xl)i(f)d:c < c/b %daz.

Proof: If m =inf f, M =sup f and g(x) > 0 in [a,b], then

number ¢ € (a,b) such that

mg(x) < f(x)g(x) < Mg(z) (3.4)

Divide (3.4) by '~ and integrate (3./) with respect to x over (a,b), resulting

/1d</f dx<M/1x.
o T e

Then there ezists a number ¢ € [m, M| such that

/fxl d < /;—@dx

Theorem 3.1.10. (Extended Mean Value Theorem for Conformable Fractional Differen-

tiable Functions) Let a > 0 and f, g : [a,b] — R be functions that satisfy
e f,g is continuous on |a,b|,
e f.g is a—differentiable for some a € (0,1).

Then, there exist ¢ € (a,b), such that




3.1.3 Conformable fractional integral 60

Proof: Consider the function

f(b) = f(a)
9(b) — g(a)

Since F' is continuous on [a, b], a—differentiable on (a,b), and F(a) = 0 = F(b), then by

Fla) = f(x) - fla)+ ( ) (9(z) — g(a)

Theorem 3.1.3, there exist a ¢ € (a,b) such that F(®)(c) = 0 for some a € (0,1). Using
the linearity of T, and the fact that the a—derivative of a constant is zero, our result

follows.

Theorem 3.1.11. Let a > 0 and f : [a,b] — R be a given function that satisfies
e [ is continuous on |a, b,
e [ is a—differentiable for some o € (0,1)

If £ (x) =0 for all x € (a,b), then f is a constant on [a,b].
Proof: Suppose [ (z) =0 for all x € (a,b). Let x1, x5 be in [a,b] with 11 < 5. So, the
closed interval [x1, xo] is contained in [a,b], and the open interval (x1,x3) is contained in

(a,b).
Hence, f is continuous on [r1, x5] and a—differentiable on (x1,23). So, by Theorem 3.1./,

there exist ¢ between x1 and xo with

L) = J) _ gy = o,

Therefore, f(x2) — f(z1) =0 and f(x2) = f(x1).

Since x1 and xo are arbitrary numbers in [a, b] with x1 < xq, then f is a constant on |a, b].
Theorem 3.1.12. Let a > 0 and f : [a,b] — R be a given function that satisfies

e f is continuous on |a, b,

o [ is a—differentiable for some o € (0,1).
Then we have the following:

1. If f(x) > 0 for all v € (a,b), then f is increasing on [a,b].

2. If f(z) <0 for all x € (a,b), then f is decreasing on [a,b].
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Proof: Following similar line of argument as given in the proof of Theorem 5.1.11, there

exist ¢ between x1 and xo with

flzal = Jn) _ e,

1. If f(c) > 0, then f(zy) > f(x1) for v < y.

Therefore, f is increasing on |a,b] since x1 and x5 are arbitrary numbers of [a,b].

2. If f@(c) <0, then f(x2) < f(x1) for 1 < 1y.

Therefore, f is decreasing on [a,b] since 1 and x5 are arbitrary numbers of |a, b].

Now we give an example to illustrate Theorem 3.1.12.

Example 3.1.1. Let f :[0.5,3] — R be defined by f(z) = 2* — 3x + 2. Find where f is

increasing and decreasing.

Solution: We first compute f(®(x) for any a € (0,1). By definition, we have
f@(z) =3z (2% - 1).

So, ) (x) =0 if and only if v = —1,0 or 1.
All numbers less than 0 will not be considered since they do not lie in the domain under

consideration.

To this end, we will consider all positive numbers less than one (in particular,z € [0.5,1))

and all numbers greater or equal to one (in particular,x € [1,3]).

e Forxz € [0.5,1), 2 — 1 <0 and x + 1 > 0. This implies that for all « € (0,1),
f@(x) <0 for all x € [0.5,1). So, f is decreasing on [0.5,1).

e Forxz € [1,3], x—1 >0 and x + 1 > 0. This implies that for all « € (0,1),
f(z) >0 for all x € [1,3]. So, f is increasing on [1,3].

Theorem 3.1.13. Let 0 < a < b and f : [a,b] — R be continuous function. Then for
ae(0,1)

| 15(H)(@) [< I5(] f (@)
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Proof: The result follows directly since

)| = / @m
§/ )dx
-
a0

Corollary 3.1.2. Let f : [a,b] — R be continuous function such that

=sup | f].

[a,]

Then for any t € [a,b], o € (0,1),

|mﬁWSM(f_f)

« «

Proof: From Theorem 5.1.13, we have that for any t € [a,b], a € (0, 1),

| La(HE) | < ISEI

Definition 3.1.9. ((«a, k)—Laplace transform)Let o € (0,1], k> 0, and f : [0,00) — R
be a function. Then the fractional Laplace transform of order o of f defined by

o tha
L0 = @ = [ e, (35
Which is called (o, k)— Laplace transform. Some properties of the («, k)— Laplace Trans-
form
1. £8{0;s} =0

2. LS (0) +g(t); s} = Li{f(t); s} + Li{g(1); s}
3. LY cf(t);s} =cLY{f(t);s}, cis a constant.

Properties 2) and 3) together means that the Laplace transform is linear.
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Theorem 3.1.14. [20](Laplace transform for conformable fractional derivative) — Let
a€ (0,1, k>0, and f: (0,00) — R be differentiable function. Then

LHATL(f)(); s} = sL{t* "V f(2); s} = £(0). (3.6)

Theorem 3.1.15. [20/Let a € (0,1], ¢ € R and k > 0. Then we have the following

results
1 L{1; s} = sTRTR(1),
2. Li{t; st = 7 TR(2),
3. LO{tP; s} = s T T (p+ 1),
4 Lp{eis) = (s— oy,
5. Lo{f (D) s sy = F(s — o),
0. LR f(ct);s} = ZFP (%),

Example 3.1.2. Let us consider the function f(t) = sin v%, then by using the property

o

{e% .
= 2 we can write

o
. B L
Ly<sinv—;s, = e “ka sinv—d,t
a 0 a

Therefore, using integration by part for conformable integral, we have

1 0 tka to‘ 1 tka 1o © ta ko
—= e "R T, | cosv— | dot = —2<e "k cosvi |5° — cosv—1T, <e_s ka ) dt
v o v (0% 0 o
0

& k tha t
P YT ke cosv—d,t
0 o

o0 k tha ta
— v%/ "% R T, <sin v—) dut.
0 Q@
Stmilarly, we get

e 1 k— e 2 te
Ly {sinv—; S} =—+ ‘9(—20‘)@ {tk_m sinv—; s} - S—Eg {tk_o‘ sinv—; s} (3.7)
a v a

T, (cosvt) = —vsinw

< =
[SHIV

< =

v « v?

If we take k = o in (5.7), we have

t® v
LESsinv—;sp =
{ a } 452

which is proved by Abdeljawad in [1]
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3.2 Ordinary Conformable Fractional Differential equa-
tions

In this section, we establish some criteria for the global existence of solutions to the
local initial value problem by means of some fixed point theorems and by the use of the

conformable fractional calculus. More details can be found, e.g. in [15].

3.2.1 Preliminary
Tox(t) = f(t,z(t), tela,00), 0<a<l, (3.8)

subject to the initial conditions

z(a) =z, (3.9)

where T%x(t) denotes the conformable fractional derivative starting from a of a function
x of order a, f : [a,00) x R — R is continuous. The condition (3.9) are often called

local initial condition.

Lemma 3.2.1. [95] If f : [a,b] — R is continuous on the subinterval [c,d] of |a,b] and
if TOf(t) exists on (c,d). Then there exists a point £ in (c,d) such that

£(d) ~ £(€) = ~T2(E) [(d — )" — (c — a)].

Lemma 3.2.2. [73] Let f and g be continuous, nonnegative functions on [a,b] and X a

nonnegative constant such that

f@) <A+ L(fg)(t)  for te€la,b],

then
f(t) < Aelas® for te€lab].

We first make the following hypotheses, which will be adopted in the following discus-
sion.
Let D = [a,00) x R.
(H1) The function f: D — R is continuous.

(H2) There exists a positive constant L such that, for any (¢,u), (t,v) in D,

‘f(t,U) - f(t,?))‘ < L]u—v].
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3.2.2 The main results

In this subsection, we establish some criteria for the global existence, extension, bound-
edness, and stabilities of solutions to the local initial value problem. By Theorems 3.1.6
and 3.1.7, the initial value problem (3.8) — (3.9) is easily transformed into an equivalent

integral equation.

Lemma 3.2.3. [75] If (H1) holds, then a function x in C([a,b]) is a solution of the initial
value problem (3.8)-(3.9) if and only if it is a continuous solution of the following integral
equation:

2(t) = xa + I3 f(t, x(1))

Now, we are in a position to present a result of existence and uniqueness of the solution

to the initial value problem (3.8)-(3.9).

3.2.3 Proof of the main results

Theorem 3.2.1. If (H1)-(H2) hold, then the initial value problem (3.8)-(3.9) has exactly
one solution defined on [a,b].
Proof: Write I = [a,b]. The assertion will be proven by Banach’s contraction principle on
C(I) equipped with an appropriate weighted maximum norm. To this end, given a positive
number 8 in (L, 00), define a function e(t) by

e(t)=e’ e
and then, for x in C(I), define

I ls=I e()z() I,

where || . || denotes the mazimum norm on C(I). It is easy to verify that || . ||5 is also a

norm on C(I), which is equivalent to the maximum norm || .|| since

e@) |- 1<l <l 1l
Hence (C(1),|| - ||g) is a Banach space. Define next an operator

T (€, |- Mlg) — (€, I - [ls)

Ta(t) =x0 + / f(s,2(s))(s — a)* ds,
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and then Lemma 5.2.3 ensures that the fixed points of the operator T are the solutions of
the problem (3.8)-(3.9). We now show that T is a contraction on (C(I),| . ||3). Indeed,

let x,y € C(I) and observe

Ta(t) - Ty(t) = / F(s,a(s)) — F(sy(s)] (s — a)*ds.

Thus, by (H2), a direct calculation gives, for everyt in I,

[Tx(t) = Tyl < Le(t) /t e~ (s)e(s) z(s) —y(s)ll (s —a)*ds

< 1) [ -0 s |- |
< Le)Ie(0) | 2y |

< Lo ()~ 1) |2y

< Lle—yl.

Hence
L
| Tx =Ty IISE fz—y] -

Since 0 < % < 1, the Banach contraction principle ensures that there is a unique x in
C(I) with x = Cx, and equivalently the problem (3.8) — (3.9) has a unique solution x in
C(I). The proof is complete.

3.3 Stochastic Conformable Fractional Differential equa-

tions

In this section, we prove the existence and uniqueness result on the solution of a

class of conformable fractional stochastic equation.

T3 u(w,t) = o(u(z,t)W;, z€R0<a<t<T <o00,0<a<l. (3.10)

with an initial condition u(z,0) = ug(r); where T, is a conformable fractional derivative,
o0 : R — R is a Lipschitz continuous function and W, is a generalized derivative of

Wiener process (Gaussian white noise).

Definition 3.3.1. Given that g(t) is any smooth and compactly supported function, then

we define the generalized derivative w(t) of w(t) (not necessarily differentiable) as

/0 " i)t = — /0 st
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Similarly, the generalized deriative W, of Wiener process with a smooth function g(t) as

follows
t t
/ g(s)Wds = g(t)W, —/ g(s)Wds.
0 0
Theorem 3.3.1. [25]. The following inequalities

—axr a 1
< — < . ) < .
exp(a+1> —mlﬂ(a,x) <i Fi(a;a+ 1; x)_—a+1(1+ae )

hold, where 1Fy(a;a + 1;—x) is a confluent hypergeometric (Kummer) function.

Also, for 0 <a <1,

1—¢e7" a
< —9(a,z)
x xe

where (z, z) is an incomplete gamma function given by

v(z, x) :/ ettt x>0
0

3.3.1 Main Results

Assume the following condition on o; that is, o is globally Lipschitz:
Condition 1. There exist a finite positive constant, Lip, such that for all z,y € R, we
have

| o(z) —a(y) |< Lip, | v =y |,

with ¢(0) = 0 for convenience.
Also, the assumption on u:
Condition 2. The random solution v : D — R is L?—continuous (or continuous in
probability).
Define the following IL?(PP) norm

N|=

I lzmsi= { supacicrsupeee 20" E | ua.t) 1}
Following similar idea in [33], we give the following results:
Lemma 3.3.1. /7] Given that Condition 2 holds, then a function u in L*(P) is a solution
of Equation (3.10) if and only if it is a solution of the integral equation
u(z,t) = ug(z) + I o (u(z, )W)
Thus, the solution to Equation (3.10) is given as follows

w(z,t) = wug(x)+ u(x, s))Wds
uo(z) + u(z, s))dWs.

[ 5= ar=at
[ 5= arat
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3.3.2 Proof of the main results

Theorem 3.3.2. Suppose Copr < for positive constant Lip, together with both

1
Lip2

Conditions 1 and 2. Then there exists solution u that is unique up to modification, with

(T — a)?*!

Copr =
AT 2020 — 1)

(1 + (20— 1)e§<T—a>) .
We start by defining the operator
t
Au(z,t) = ug(x) + / (s —a)* o(u(z, s))dws,
and the fized point of the operator gives the solution of Equation (5.10).
The proof of the theorem is based on the following lemmas:

Lemma 3.3.2. Suppose u is a predictable random solution such that || u ||2,,,5< 00 and

Conditions 1 and 2 hold. Then there exists a positive constant Co g1 such that
I Au [150,5< €1+ CaprLipg || w504 -
Proof: By the assumption that ug is bounded, we obtain
t
E | Au(z,t) P< e1 + Lip?,/ (5 — a)2@DE | u(z, s) 2 ds.

t—a)®

Multiply through by el to obtain

e~ alt-a)°g | Au(z,t) > < cle_g(t_a)a
i

+ Lipge_g(t_“)a ft(s — a)Q(O‘_l)eg(s_“)ae_a(s_“)aﬂi | u(z,s) |? ds

a

t
i a 8 o 8 «
< cpem a0 4 LipZemat-a) Hu][%7a’6/(s—a)Q(o‘_l)ea(S_“) ds
a

t
B o
< ¢+ Lip? | u H%aﬂ / (s — a)Q(O‘_l)eE(S_a) ds
a

smcee’g(t’“)agl,agth, thatis,0§t—a§T—az>—§(t—a)<0
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Thus taking sup over t € [a,T] and x € R and evaluating the integral we have

t
| AulZ,, < e+ Lig? |l / (s — )XoV g
a

IN

—2a
e+ Lipd w3 x = Bt = (£) (-t

«

X [F(2a R (za —1,%(a— t))}

IN

. ﬁ 1—2« 5
e1+ Lipl || w2y 5 x — (~1) 72 (a) [r(za —1)-T (m —1,8(a- t))]

1—2a
< a+Lin(2)  T(20-12@=1) lulE.-
By the estimate on the incomplete gamma function in Theorem 3.3.1, we obtain
B

(5)20471 (a — {)2! <1 + (20— 1>e§(tfa)>

F(20—1,2(a—1t)) < 202 — 1)

(g)mil 2a—1 S(t—a

and therefore, since 0 <t —a < T — a, we have

Lip? a— Bli—a
| Au 3,5 < a+ ngl)(t — a)?! (1 + (20 — 1)eat )) | u

2
2,&,6

Lip? a— 2(T-a
< ot (T =)™ (1420 = D) [ u 3,

Lemma 3.3.3. [7] Suppose u and v are predictable random solutions such that
| w208 + || v ll2as< 00 and Conditions 1 and 2 hold. Then there exists a positive

constant Co g1 such that
I Au = Av (I3 5< CaprLipy | w—v 505 -
Remark 3.3.1. By Fized point theorem we have u(x,t) = Au(z,t) and
I l30,5=I1 Au 130,55 1 + CaprLivg | w30,

which follows that

1
Lip2’

| w305 [1— CaprLipl] < oo = u|2as< 00 <= Capr <
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Similarly,

=0 (13,0 5=l Au = Av [I3 4 s< CaprLipy || = v |50,

thus || v —v [15,5 [I = CaprLipi] < 0 and therefore || u — v ||3, 5< 0 if and only if

1
Ca,ﬁ,T < TipZ -

The existence and uniqueness result follows by Banach’s contraction principle.



Conclusion

this master thesis a new kind of fractional derivative is introduced, the most im-
In portant properties of the conformable fractional derivative and integral were given
and proved, some interesting results of ordinary fractional calculus are extended to con-

formable one.

We first review the basic definitions and properties of fractional integral and deriva-
tive for the purpose of acquainting with sufficient fractional calculus theory. Many def-
initions and studies of fractional calculus have been proposed in the past two centuries.
These definitions include Griinwald-Letnikov and the two most commonly used definitions
Riemann-Liouville and Caputo fractional operators and with the help of them solution of
differential equations are discussed.

Secondly the new derivative is introduced, important properties and examples are
given, distinguishing features and basic theorems of these derivative and integral are
introduced and proved.

Finally, using obtained results the conformable fractional ordinary differential equa-
tions were established. The existence and uniqueness result were obtained under some

precise conditions for class of conformable time-fractional stochastic equation.

In the end, we hope and predict that researches in this subject will be active and
promising since there are different questions which is still without any accurate answer.
For example, it is possible to extend this new definition for many class of stochastic

fractional differential equations which will be considered by others as a future work.
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