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Introduction générale

La théorie des files d’attente est principalement vue comme une branche de la théorie

des probabilités appliquées. Les applications sont dans différents domaines, par exemple :

les réseaux de transmission, les systèmes informatiques, les réseaux urbains, les banques, la

gestion des avions au décollage ou à l’atterrissage, ....

Un système de files d’attente comprend donc un espace de service avec un ou plusieurs

dispositifs de service (serveurs) et un espace d’attente dans lequel se forme une éventuelle

file d’attente, le processus décrivant le fonctionnement d’un système de files d’attente est

processus aléatoire (stochastique).

Pour identifier un système de files d’attente, on a besoin de spécifier le flux d’entrée, le

mécanisme de service et la discipline d’attente.

Depuis les travaux d’Erlang [3] Un grand nombre d’applications dans tous les domaines ont

été mis en œuvre et publiées. En 1953, David G. Kendall a introduit la notation de Kendall

[3] pour décrire les caractéristiques d’un système de file d’attente. en 1957 d’une manière

particulièrement élégante et efficace Jackson a traité certains réseaux de files d’attente. En

1961, Thomas L. Saaty [42], auteur de l’un des premiers livres complets sur la théorie des

files d’attente. Ensuite c’est les contributions des mathématiciens Khintchine, Palm, Pollac-

zek et Kolmogorov [43] qui ont vraiment poussés la théorie des files d’attente.

Les systèmes de file d’attente avec des vacances sur serveur ont attiré l’attention de nom-

breux chercheurs depuis que l’idée a été discutée pour la première fois dans l’article de Levy

et Yechiali [8]. Plusieurs enquêtes sur ces modèles de vacances ont été réalisées par Doshi

[16], [18] et les livres de Takagi [26], Tian et Zhang [45] sont consacrés à ce sujet.

Zhang et Hou [29] ont analysé un M/G/1 file d’attente avec des vacances de travail et une

interruption de vacances. En utilisant la méthode d’une variable supplémentaire et la mé-
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thode d’analyse matricielle.

Altman et Yechiali n’ont considéré que l’impatience des clients lorsque les serveurs sont en

vacances et indisponibles pour le service. Selvaraju et Goswami analysés impatients clients

dans une file d’attente markovienne de serveur unique avec des vacances de travail uniques

et multiples.

Mon mémoire est composé de trois chapitres :

Dans le premier chapitre, nous présentons les notions de bases de l’étude des systèmes

de files d’attente, à savoir les processus stochastiques (Processus de comptage, processus de

renouvellement, processus de Poisson, processus de naissance et de mort), et introduisons

certaines définitions et notations sur la théorie des files d’attente comme (Notation de Ken-

dall, la loi de Little,...etc.).

Dans le deuxième chapitre, nous étudions quelques modèles de files d’attente marko-

vienne et semi markovienne (M/M/1, M/M/c, M/M/c/K, M/G/1) et diverses mesures de

performance du système sont dérivées.

Dans le troisième chapitre, nous présentons une étude d’un modèle de file d’attente avec

distribution générale du temps de service, vacances du serveur et clients impatients. Nous

traitons le cas de files d’attente M/G/1 avec vacances multiples, et clients impatients.[16]



Chapitre 1

Introduction aux systèmes de files

d’attente

Dans ce chapitre nous avons défini quelques concepts de base utilisée dans les chapitres

suivants. Nous avons présenté et défini les processus stochastiques utilisées en théorie

des files d’attente, nous avons donné quelques préliminaires sur les files d’attente.

1.1 Processus stochastique : quelques définitions

Définition 1.1.0.1. (Processus stochastiques)[36]

Un processus stochastique {X(t), t ∈ T} est une collection de variables aléatoires définies sur

un même espace de probabilité (Ω, F,P). Le paramètre t est généralement interprété comme

le temps et appartient à un ensemble ordonné T .

Généralement X(t) représente l’état du processus stochastique au temps t.

• Si T est dénombrable, i.e T ⊆ N, alors nous disons que {X(t), t ∈ T} est un processus à

temps discret. On le dénote par {Xn, n ≥ 0}.

• Si T est un intervalle de [0;∞), alors le processus stochastique est dit un processus à temps

continu. On le dénote par {X(t), t ≥ 0}.

L’ensemble des valeurs de X(t) est appelé l’espace d’état, qui peut également être soit discret

( fini ou infini dénombrable ) ou continu ( un sous-ensemble de R ou Rn).



1.1 Processus stochastique : quelques définitions 11

1.1.1 Processus de comptage

Définition 1.1.1.1. (Processus de comptage)[33]

Un processus stochastiques {N(t), t ≥ 0} est dit processus de comptage ou processus de

dénombrement si

N(t) représente le nombre d’événements se produisant dans l’intervalle [0, t] vérifiant :

• N(t) ≥ 0, ∀t ≥ 0.

• ∀t > s, N(t) ≥ N(s).

• Pour s < t, N(t)−N(s) représente le nombre d’événements se produisant dans l’intervalle

(s, t].

1.1.2 Processus de renouvellement

Un processus de renouvellement a pour fonction le dénombrement des occurrences d’un

phénomène donné, lorsque les délais entre deux occurrences consécutives sont des variables

aléatoires indépendantes et identiquement distribuées.

Définition 1.1.2.1. [17]

Un processus de comptage pour lequel les temps entre deux arrivés consécutives sont des

variables aléatoires i.i.d, s’appelle processus de renouvellement. Les temps de renouvellement

(ou les temps de la n-ième arrivée) sont :

An =

n∑
i=1

ai, n = 1, 2, . . .

avec ai, i = 1, 2, . . . est le temps entre deux arrivées consécutives. Il est facile de voir que le

nombre d’arrivées avant le temps t, i.e. le processus

{N(t), t ≥ 0} = sup
k
{k ∈ N : Ak ≤ t}

est un processus de comptage.

1.1.3 Processus de Poisson

Le processus de poisson est le plus utilisé dans la théorie des files d’attente. Il modélisera

généralement le processus d’arrivée des clients dans un système.
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Définition 1.1.3.1. (Processus de poisson)[11]

On dit qu’un processus de comptage {N(t), t ≥ 0} est un processus de Poisson s’il satisfait

aux trois conditions suivantes :

C1 I Le processus est homogène dans le temps : La probabilité d’avoir k évènements dans

un intervalle de longueur donné t ne dépend que de t et non pas de la position de l’intervalle

par rapport l’axe temporel :

pk(t) = P(N(t) = k) = P(N(t+ s)−N(s) = k) pour tout s > 0, t > 0.

C2 I Le processus N(t) est à accroissement indépendants :

P(N(t+ s)−N(s) = k,N(s) = j) = P(N(t+ s)−N(s) = k)P(N(s) = j)

= pk(t)pj(s)

pour tout s > 0, t > 0.

C3 I La probabilité pk(∆t)

pk(∆t) =


1− λ(∆t) + o(∆t) si k = 0

λ(∆t) + o(∆t) si k = 1

o(∆t) si k ≥ 2

λ est appelé densité ou intensité du processus. C’est le nombre d’évènements qui apparaissent

par unité de temps.

1.1.4 Loi exponentielle

Définition 1.1.4.1. (loi exponentielle)[2]

Soit µ > 0. On dit qu’une variable aléatoire réelle continue T suit la loi exponentielle de

paramètre µ (T ∼ Exp(µ)) si

f(t) =

 µe−(µt) t ≥ 0,

0 sinon.
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Distribution exponentielle :

La fonction de répartition de cette loi est :

F (t) =

 1− e−(µt) t ≥ 0,

0 sinon.

L’espérance et la variance d’une loi exponentielle sont :

E(T ) =
1

µ
.

V ar(T ) =
1

µ2
.

Théorème 1.1.4.0.1. [25]

Soit T une variable aléatoire continue à valeurs dans R+
∗ . On a l’équivalence :

(i) il existe µ > 0 tel que T ∼ Exp(µ),

(ii) pour tout s, t ≥ 0, P(T > s+ t|T > t) = P(T > s).

C’est très important. (ii) est une propriété qualitative (absence de mémoire). Donc toute

v.a. sans mémoire suit nécessairement une loi exponentielle.

Le temps d’attente T , avant la prise d’un premier poisson, d’un pêcheur totalement inexpé-

rimenté est une variable aléatoire sans mémoire (le temps d’attente résiduel ne dépend pas

du temps d’attente écoulé). Donc par nature, T suit une loi exponentielle.

La durée de vie D d’un objet qui ne s’use pas est une variable aléatoire sans mémoire. Donc

par nature, D suit une loi exponentielle. Etc.

Preuve :

(i) implique (ii), car

P(T > s+ t|T > t) =
P(T > s+ t)

P(T > t)
=
e−µ(s+t)

e−µt
= e−µs = P(T > s).

Montrons maintenant que (ii) implique (i). Pour cela, introduisons G(t) = P(T > t).

C’est une fonction décroissante sur R+, on a G(0) = 1 et G(∞) = 0 par hypothèse.

De plus (ii) donne que G(t+ s) = G(t)G(s) pour tous s, t ≥ 0. On en déduit que pour tous

p, q ∈ N, on a
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G(p) = G(p/q)q, G(p) = G(1)p, d’où G(p/q) = G(1)p/q.

En utilisant que Q est dense dans R+, que G est décroissante et que t 7→ G(1)t est continue,

on en déduit que G(t) = G(1)t pour tout t ∈ R+.

De plus, G(1) > 0. Sinon, on aurait G(t) = 0 pour tout t > 0, et donc T = 0 p.s.

(or on a supposé T à valeurs dans R+
∗ ).

Aussi, G(1) < 1. Sinon, on aurait G(t) = 1 pour tout t > 0, et donc T =∞ p.s.

(or on a supposé T à valeurs dans R+
∗ ).

On pose µ = −lnG(1) > 0 et on a G(t) = e−µt, i.e. T ∼ Exp(µ). 2

1.1.5 Processus de Markov

Définition 1.1.5.1. Soit (Ω, F,P), un espace probabilisé, E un ensemble fini ou dénombrable

et T ⊂ R+ un intervalle .

E : Espace des états. T : Espace de temps.

Soit {X(t), t ≥ 0} un processus défini sur Ω à valeurs dans E, on dit que {X(t), t ≥ 0} est

un processus de Markov si :

∀s, t, u ∈ T , avec (u < s < t) et ∀i, j, x ∈ E,

on a :

P(Xt = j/Xs = i,Xu = x) = P(Xt = j/Xs = i) = Pij(t, s) (*).

(* : Propriété d’absence de mémoire ou propriété de Markov).

Remarque 1.1.5.1. Si dans la propriété (*), on a en plus Pij(s, t) = Pij(t−s), on dira que

le processus de Markov est homogène. Dans ce qui suit, on ne considérera que les processus

de Markov homogènes.

On note Pij(t) = P(Xt+s = j/Xs = i), s, t ∈ T ; i, j ∈ E et P (t) = (Pij(t))i,j∈E×E est la

matrice de transition du processus de Markov {X(t), t ∈ T}.

Proposition 1.1.5.1. [28]

Pour s, t ∈ T et i ∈ E ; P(Xs = i) > 0, on a :

1)
∑

j∈E Pij(t) = 1, ∀i ∈ E.

2) Pik(t+ s) =
∑

j∈E Pij(s)Pjk(t).

(Equations de Chapman-Kolmogorov associées au processus ).
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Remarque 1.1.5.2. La matrice de transition P (t) caractérise le processus de Markov

{X(t), t ∈ T}, c’est-à-dire :

A toute matrice stochastique P (t), on peut associer un processus de Markov {X(t), t ∈ T},

de loi initiale (P(X0 = i), i ∈ E) = Π0 qui va admettre P (t) comme matrice de transition.

En effet, construire ce processus revient à évaluer juste ses lois fini-dimensionnelles en fonc-

tion de P (t) et Π0. C’est-à-dire à évaluer :

L = P[Xtn = an, Xtn−1 = an−1, ...., Xt1 = a1, Xt0 = a0], ∀t0, t1, t2, ..., tn−1, tn ∈ T, ∀ai ∈ E.

L = P[Xtn = an/Xtn−1 = an−1, ...X0 = a0]× P[Xtn−1 = an−1/Xtn−2 = an−2, ...X0 = a0]

× ...× P[Xt1 = a1/X0 = a0]× P[X0 = a0].

= P[Xtn = an/Xtn−1 = an−1]× P[Xtn−1 = an−1/Xtn−2 = an−2]× ..× P[Xt2 = a2/Xt1 = a1]

× P[Xt1 = a1/Xt0 = a0]× P[X0 = a0]

= Pan−1an(tn−tn−1)×Pan−2an−1(tn−1−tn−2)×...×Pa1a2(t2−t1)×Pa0a1(t1−t0)×Π0(a0)

avec Π0 = (P[X0 = i], i ∈ E).

On note Πt = (P[Xt = i], i ∈ E) la loi t-instantanée du processus {X(t), t ∈ T}. On a :

Πt = Π0 × P (t).

En effet, pour i ∈ E

Πt(i) = P [Xt = i] =
∑

j∈E P [Xt = i,X0 = j]

=
∑

j∈E P [Xt = i/X0 = j]× P [X0 = j]

=
∑

j∈E Π0(j)× Pji(t).

⇒ Πt(i) =
∑

j∈E Π0(j)× Pij(t)

⇔ Π(t) = Π(0)× P (t).

Génerateur infinitisimal d’un processus de Markov :[25]

On suppose que ∀(i, j) ∈ E × E, la fonction Pij(t) est continue en 0, c’est-à-dire :

lim
t→0+

Pij(t) =

 1 si i = j,

0 sinon



1.1 Processus stochastique : quelques définitions 16

= Pij(0).

Soit alors i ≥ j,

• i 6= j, qij = lim
t→0+

Pij(t)
t = lim

t→0+

(
Pij(t)−Pij(0)

t−0

)
= P ′ij(0), (si Pij(t) est dérivable en 0).

• i = j, qij = lim
t→0+

(
Pij(t)−1

t

)
= lim

t→0+

(
Pij(t)−Pij(0)

t

)
= P ′ii(0), (si Pii(t) est dérivable en 0 ).

On pose qi = −qii ≥ 0.

On appelle alors la matrice générateur infinitésimal du processus de Markov la matrice sui-

vante :

Q = (qij)(i,j)∈E×E .

On a

Pij(t) =

 qijt+ o(t) si i 6= j

1 + qijt+ o(t) si i = j
.

⇒ 1− Pii(t) = −qiit+ o(t) ⇒ 1− Pii(t) = qit+ o(t).

Remarque 1.1.5.3. ∑
j∈E

qij = 0, ∀i ∈ E.

En effet∑
j∈E qij =

∑
j∈E(Pij(t))

′|t=0 = (
∑

j∈E Pij(t))
′|t=0 = (1)′ = 0.

Ainsi

qii +
∑

(j∈E,i 6=j) qij = 0⇒ qi = −qii =
∑

i 6=j qij.

- qij est appelé le taux de transition de i vers j.

- qi est appelé le taux de transition a partir de i.

Equations de Chapman-Kolmogorov au processus de Markov :[39]

On a Pik(s+ t) =
∑

j∈E Pij(s)× Pjk(t), donc

i)
∂(Pik(s+ t))

∂t

∣∣∣∣
t=0

=
∂
(∑

j∈E Pij(s)Pjk(t)
)

∂t

∣∣∣∣∣∣
t=0

=
∑
j∈E

Pij(s)× qjk
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⇒ P ′ik(s) =
∑

j∈E Pij(s)× qjk, ∀i, k ∈ E et ∀s, t ∈ T.

ii) ∂(Pik(s,t))
∂s

∣∣∣
t=0

=
∑

j∈E qijPjk(t) ⇐⇒ P ′k(t) =
∑

j∈E qijPjk(t), ∀i, k ∈ E et ∀s, t ∈ T.

On a alors l’écriture matricielle suivante :

P ′(t) = Q× P (t).

Proposition 1.1.5.2. [11]

L’équation différentielle matricielle

 P ′(t) = QP (t)

P (0) = IE×E
admet la solution qui s’écrit comme

suit :

P (t) =
∑
n≥0

(
Qntn

n!

)
= IE×E +

∑
n≥1

(
(Qt)n

n!

)
= eQt( notation ).

Proposition 1.1.5.3. [30]

Si E est fini et Q (qui est donc finie) est diagonalisable (c’est-à-dire ∃B inversible et D

diagonale telles que Q = BDB−1) où

D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 0 λn


avec λi, i = 1, n sont les valeurs propres de Q et B la matrice des vecteurs propres associés

aux valeurs propres λi.

Alors

P (t) = B∆(t)B−1, avec ∆(t) = eDt

∆(t) = eDt =


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...

0 0 0 eλnt


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Lois stationnaires d’un processus de Markov

On dit que Π(t) = Π est une loi (solution) stationnaire du processus de Markov {X(t), t ∈

T}, si elle est solution du système d’équations :

(S)


ΠQ = 0,∑

j∈E πj = 1

avec Q : générateur infinitésimal de {X(t), t ∈ T}.

1.1.6 Processus de naissance et de mort

Les processus de naissance et de mort sont des processus stochastiques à temps continu et

à espace d’états discrets n = 0, 1, 2 . . . Ils sont sans mémoire, et à partir d’un état donné n,

seules les transitions vers l’un des états voisins (n+ 1) et (n− 1) avec n ≥ 1 sont possibles.

On parle alors de " naissances " et de " morts ". Ces processus sont utilisés pour modéliser

les systèmes d’attente et l’évolution de populations.

Les files d’attente de type Markovien (M/M) sont des cas particuliers très importants de

processus de naissance et de mort. Leur étude complète sera effectuée dans le chapitre 2.

Définition 1.1.6.1. [39]

Soit un processus stochastique {N(t), t ≥ 0} à états discrets n ∈ N, et homogène dans le

temps, c’est à dire :

P(N(t+ s) = j/N(s) = i) = pij(t), ne dépend pas de s.

Le processus {N(t), t ≥ 0} est un processus de naissance et de mort s’il satisfait les conditions

Suivantes : 

pi,i+1(∆t) = λi∆t+ o(∆t), i ≥ 0,

pi,i-1(∆t) = µi∆t+ o(∆t), i ≥ 1,

pi,i(∆t) = 1− (λi + µi)∆t+ o(∆t), i ≥ 0,

pi,j(∆t) = o(∆t) si |i− j| ≥ 2,

pi,j(0) = δi,j =

 1 i=j

0 i 6= j
.
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Les coeffcients positifs λi > 0 et µi > 0, (µ0 = 0), sont appelés taux de transition, plus

particulièrement taux de naissance (ou de croissance) pour λi et taux de mort (ou de dé-

croissance) pour µi.

Régime transitoire :

Soient pn = P(N(t) = n), n ≥ 0, les probabilités d’état

La matrice des transitions correspondante est :

Q =



1− λ0∆t λ0∆t 0 0

µ1∆t 1− (λ1 + µ1)∆t λ1∆t 0

0 µ2∆t 1− (λ2 + µ2)∆t λ2∆t
...

...
...

...

0 0 . .


.

En appliquant P(t+ ∆t) = P(t)×Q, on trouve

p0(t+ ∆t) = (1− λ0∆t)p0(t) + µ1∆tp1(t);

pn(t+ ∆t) = λn−1∆tpn−1(t) + (1− (λn + µn)∆t)pn(t) + µn+1∆tpn+1(t), n ≥ 1.

(1.1)

pn(t+ ∆t)− pn(t)

∆t
= λn−1pn−1(t)− (λn + µn)pn(t) + µn+1pn+1(t).

On faisant tendre ∆t vers 0, on trouve :

p′n(t) = λn−1pn−1(t)− (λn + µn)pn(t) + µn+1pn+1(t), n ≥ 1. (1.2)

Pour n = 0 :

p′0(t) = −λ0p0(t) + µ1p1(t). (1.3)
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Donc :  p′0(t) = −λ0p0(t) + µ1p1(t);

p′n(t) = λn−1pn−1(t)− (λn + µn)pn(t) + µn+1pn+1(t), n ≥ 1.
(1.4)

Les équations (1.4) sont connues sous le nom "équations différentielles de Kolmogorov " elles

permettent de calculer les probabilités d’état pn(t) si l’on connait les conditions initiales du

processus.

Régime stationnaire :

Soit pn = lim
t→+∞

pn(t), qui est la distribution stationnaire du processus étudié. Ces probabi-

lités satisfont le système d’équations de balance suivant :

λ0p0 = µ1p1;

(λn + µn)pn = λn−1pn−1 + µn+1pn+1, n ≥ 1

(1.5)

avec l’équation de normalisation
∞∑
n=0

pn = 1.

De (1.5), on obtient :

p1 =
λ0

µ1
p0.

Pour n = 1 :

(λ1 + µ1)p1 = λ0p0 + µ2p2 ⇒ p2 =
λ0λ1

µ1µ2
p0

...

pn =
λ0λ1 . . . λn−1

µ1µ2 . . . µn
p0.

Pour déduire p0, on utilise l’équation de normalisation. On obtient le résultat suivant :

p0 =

[
1 +

λ0

µ1
+
λ0λ1

µ1µ2
+ . . .+

λ0λ1 . . . λn−1

µ1µ2 . . . µn
+ . . .

]−1

.

Pour que le régime existe il faut que la somme ci-dessus converge.
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1.2 Analyse mathématique d’un système de files d’attente

I L’étude mathématique d’un système de files d’attente se fait le plus souvent par l’intro-

duction d’un processus stochastique, défini de façon appropriée.

En premier lieu, on s’intéresse principalement au nombre de clients N(t), se trouvant dans

le système à l’instant t (t ≥ 0).

En fonction des quantités qui définissent le système, on cherche à calculer :

? Les probabilités d’état pn(t) = P(N(t) = n), qui définissent le régime transitoire du

processus stochastique {N(t), t ≥ 0}. Il est évident que les fonctions pn(t) dépendent de

l’état initial ou de la distribution initiale du processus.

? Le régime stationnaire du processus stochastique est défini par :

pn = lim
t→+∞

pn(t) = lim
t→+∞

P(N(t) = n), n = 0, 1, 2, . . .

Où, {pn}n≥0 est appelée distribution stationnaire du processus {N(t), t ≥ 0}.

1.2.1 Modèle file d’attente simple

Le modèle général d’un système de files d’attente peut être résumé comme suit.

Les demandes de service (clients) arrivent à un certain endroit et réclament un certain

service. Si un dispositif de service (serveur) est libre, le client qui arrive se dirige vers ce

dernier où il est servi. Dans le cas contraire, on a deux possibilités : soit le client quitte

le système, soit il prend une place dans une file d’attente. A un moment donné, le client

est sélectionné pour le service selon une discipline donnée. Une représentation graphique est

donnée par la figure (1.1)

Figure 1.1 – Représentation d’une file d’attente.
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1.2.2 Structure et discipline de la file

File d’attente : "Lieu" où les clients font la queue avant d’être servis.[4]

Système d’attente : la file d’attente + service en cours.

• Le processus des arrivées des clients :

Les arrivées des clients sont caractérisées par l’ensemble des instants d’arrivées de chaque

client ou d’un groupe de clients dans le système. La collection de ces instants forment un

processus des arrivées. Souvent, on suppose que les temps entre deux arrivées consécutives

sont indépendants et identiquement distribués.

• La source des clients :

La population source, d’où proviennent les clients, peut être finie ou infinie, unique ou mul-

tiples.

• Nombre de serveurs :

Une station peut disposer de plusieurs serveurs en parallèle. Soit C (Voire FIG (1.2)) le

nombre de serveurs. Dès qu’un client arrive à la station, soit il y a un serveur de libre et le

client entre instantanément en service, soit tous les serveurs sont occupés et le client se place

dans la file en attente de libération d’un des serveurs. La plupart du temps, les serveurs sont

supposés identiques (ils possèdent donc la même distribution) et indépendants les uns des

autres.

Une station particulière est la station IS (infinité servers) dans laquelle le nombre de serveurs

est infini. Cette station ne comporte donc pas de file d’attente.

Dès qu’un client s’y présente, il trouve en effet instantanément un serveur disponible et

entre donc directement en service. Elle permet de représenter des systèmes pour lesquels le

nombre de serveurs est toujours supérieur au nombre de clients qui peuvent s’y trouver.
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Figure 1.2 – File d’attente avec plusieurs serveurs.

• Capacité de la file :

Elle représente le nombre maximal de clients dans le système. Un client arrivant et trouvant

ce nombre de clients présents dans le système sera perdu.

Figure 1.3 – Capacité d’une file d’attente.

1.2.3 Discipline de service

Elle spécifie la manière avec laquelle le serveur sélectionne le prochain client à servir.

Cependant, plusieurs possibilités existent quant à l’ordre selon lequel les clients seront servis.

Les principales disciplines de service sont :

FIFO (first in, first out) : Cette discipline est la plus usuelle. Les clients quittent le

système dans l’ordre suivant lequel ils sont entrés.

LIFO (last in, first out) : Le dernier client dans la file est le premier à être servi.

RANDOM (aléatoire) : Le prochain client qui sera servi est choisi aléatoirement dans

la file d’attente :

Prioritaire : Les clients sont servis suivant un attribut qui leur est associé.

PS (Processor Sharing) : les clients sont servis de manière égale. La capacité du système
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est partagée entre les clients.

1.2.4 Classification des systèmes d’attente

Pour la classification des systèmes de files d’attente, on a recours à une notation symbo-

lique (notation de Kendall) comprenant six symboles rangés dans l’ordreA/B/c/m/n/Z

où A et B décrivent respectivement la distribution des temps entre deux arrivées successives

et la distribution des temps de service, c est le nombre de serveurs (montés en parallèle), m

est la capacité du système. Le dernier symbole peut être supprimé si m =∞.

n : population des usagers.

Z : discipline de service c’est la façon dont les clients sont ordonnés pour être servi.

• Pour spécifier les distributions A et B, on introduit les symboles suivants :

M : inter-arrivées des clients sont indépendamment, identiquement distribuées selon une loi

exponentielle. Il correspond à un processus de Poisson ponctuel (propriété sans mémoire).

Ek : Ce symbole désigne un processus où les intervalles de temps entre deux arrivées succes-

sives sont des variables aléatoires indépendantes et identiquement distribuées suivant une

loi d’Erlang d’ordre k.

Hk : distribution hyperexponentielle de degré k .

D : les temps inter-arrivées des clients ou les temps de service sont constants et toujours les

mêmes.

G : Inter-arrivées de clients ont une distribution générale et peuvent être dépendantes.

1.2.5 Loi de Little

La loi de Little est une relation très générale qui s’applique à une grande classe de sys-

tèmes.

Elle ne concerne que le régime permanent du système. Aucune hypothèse sur les variables

aléatoires qui caractérisent le système (temps d’inter - arrivées, temps de service,. . . ) n’est

nécessaire. La seule condition d’application de la loi de Little est que le système soit stable.

Le débit du système est alors indifféremment, soit le débit d’entrée, soit le débit de sortie :

λs = λe = λ. La loi de Little s’exprime telle que dans la propriété suivante :
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Théorème 1.2.5.0.2. [4](Formule de Little)

Le nombre moyen de clients, le temps moyen passé dans le système et le débit moyen d’un

système stable en régime permanent se relient de la façon suivante :

n = λeW s .

Où λe est le taux d’entrée dans le système (λe = λ pour une file(M/M/1)).

1.2.6 Mesures de performance

On note λ le taux d’arrivée des clients. Cela signifie que l’espérance mathématique de la

durée séparant deux arrivées successives est E(A) = 1
λ .

On note µ le taux de service des clients. Cela signifie que l’espérance de la durée de service

est E(S) = 1
µ .

L’intensité du trafic s’exprime de la manière suivante :

ρ = λ
µ = E(S)

E(A) = temps moyen de service / temps moyen entre deux arrivées successives.

La distribution stationnaire du processus stochastique introduit permet d’obtenir les carac-

téristiques d’exploitation du système, telles que :

Le temps d’attente d’un client W, le temps de séjour d’un client dans le système Ws, le taux

d’occupation des dispositifs de service, la durée de la période d’activité, le nombre de clients

dans le système N, nombre de clients dans la files d’attente Nf .

Les mesures de performance sont :

- Le nombre moyen de clients dans le système n ;

- Le nombre moyen de clients dans la file d’attente nf ;

- Le temps moyen d’attente d’un client W ;

- Le temps moyen de séjour d’un client dans le système W s ;

Soient encore des relations (formules de Little) :

n = λW s ; nf = λW ; W s = W + 1/µ ; W =
nf
λ ; n = nf + λ

µ .
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1.3 Types de files d’attente

1.3.1 Modèles markoviens :

Les modèles markoviens caractérisent les systèmes dans lesquels les deux quantités sto-

chastiques principales, qui sont le temps inter-arrivées et la durée de service, sont des va-

riables aléatoires indépendantes et exponentiellement distribuées. La propriété d’absence de

mémoire de la loi exponentielle facilite l’étude de ces modèles. L’étude mathématique de tels

systèmes se fait par l’introduction d’un processus stochastique approprié. Ce processus est

souvent le processus de naissance et de mort {N(t), t ≥ 0} qui défini comme étant le nombre

de clients dans le système à l’instant t. L’évolution temporelle du processus markovien est

complètement définie grâce à la propriété d’absence de mémoire.

1.3.2 Modèles semi markoviens :

En l’absence de l’exponentialité c’est à dire lorsque l’on s’écarte de l’hypothèse d’expo-

nentialité de l’une des deux quantités stochastiques :

Le temps des inter-arrivées et la durée de service, ou en prenant en compte certaines spé-

cificités des problèmes par l’introduction de paramètres supplémentaires, on aboutit à un

modèle semi markovien. La combinaison de tous ces facteurs rend l’étude mathématique

du modèle très délicate, voire impossible. On essaye alors de se ramener à un processus de

Markov judicieusement choisi à l’aide de l’une des méthodes d’analyse suivantes :

1. Méthode des étapes d’Erlang :

Son principe est d’approximer toute loi de probabilité ayant une transformée de Laplace

rationnelle par une loi de Cox (mélange de lois exponentielles). Cette dernière possède la

propriété d’absence de mémoire par étapes.

2. Méthode des variable supplémentaires :

Elle consiste à compléter l’information sur le processus {N(t), t ≥ 0} en lui donnant un

caractère Markovien, ce qui nous ramène à l’étude du processus {N(t), ξ(t), t ≥ 0}, où ξ(t)

sont dites alors variables supplémentaires.
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3. Méthode de la chaîne de Markov induite :

Elle consiste à choisir une séquence d’instants 1, 2, 3, . . . , n (déterministes ou aléatoires) telle

que la chaîne induite {qn, n ≥ 0}, où qn est le nombre de clients dans le système à l’instant

n ≥ 0, soit markovienne et homogène.



Chapitre 2

Systèmes de files d’attente classiques

Dans ce chapitre nous avons étudié la file d’attentes Markoviennes (M/M/1, M/M/c,

M/M/c/K) et les mesures de performance de chaque file, ensuite, nous avons étudié le

système de files d’attentes non Markoviennes m/G/1 par la méthode de la chaîne induite.

2.1 Systèmes de files d’attente régis par un modèle markovien

de naissance et de mort

Les modèles Markoviens sont des systèmes où les temps entre deux arrivées successives

et les durées de service sont des variables aléatoires indépendantes et exponentiellement

distribuées.

On s’intéresse au nombre N(t) de clients se trouvant dans le système à l’instant t. On

introduit donc le processus stochastique

{N(t), t ≥ 0}. (2.1)

2.1.1 Système de files d’attente M/M/1

Description du modèle :

Le système d’attente M/M/1 est un système formé d’une file de capacité infinie, d’un unique

serveur et la discipline d’attente est FIFO. Les clients arrivent vers le système selon un

processus de Poisson de taux λ > 0 (nombre moyen de clients arrivant pendant une unité

de temps), le taux de service est µ (nombre moyen de clients servis pendant une unité de
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temps)

Figure 2.1 – File d’attante M/M/1.

La file peut être considérée comme un processus de naissance et de mort, pour lequel :

Les taux des arrivés λn et de service µn sont :

λn = λ, ∀n ≥ 0,

µn =

 µ n 6= 0

0 n = 0
.

Le système est stable si :

ρ =
λ

µ
< 1.

- Si ρ > 1 le nombre de client tend vers l’infini donc le système n’est pas stable.

Analyse du modèle :

L’état du système à la date t peut être décrit par le processus stochastique (2.1). Grâce aux

propriétés fondamentales du processus de Poisson et de la loi exponentielle, on a pour un

petit intervalle du temps ∆t les probabilités suivantes :

P(exactement une arrivée pendant ∆t )= λ∆t+ o(∆t) ;

P(aucune arrivée pendant ∆t )=1− λ∆t+ o(∆t) ;

P(deux arrivées ou plus pendant ∆t )= o(∆t) ;

P(exactement un départ pendant ∆t / N (t) > 0)= µ∆t+ o(∆t) ;

P(aucun départ pendant ∆t / N (t) > 0)= 1− µ∆t+ o(∆t) ;

P(deux départs ou plus pendant ∆t )=o(∆t).

• Ces probabilités ne dépendent ni de temps t ni de l’état N(t) dans lequel le système se

trouve.

Soient pij(∆t) = P(N(t+ ∆t) = j/N(t) = i) ;i,j =0,1,2,. . . Ces probabilités de transition ne
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dépendent pas de l’instant t. On suppose que les arrivées et les départs sont mutuellement

indépendants.

Régime transitoire :

Soit pn(t) = P(N(t) = n). Le graphe des transitions se présente de la manière suivante

Figure 2.2 – Diagramme de transition d’état M/M/1.

A partir du graphe des transitions, on obtient :

 p0(t+ ∆t) = µ(∆t)p1(t) + (1− λ∆t)p0(t);

pn(t+ ∆t) = µ(∆t)pn+1(t) + λ(∆t)pn−1(t) + (1− (λ+ µ)∆t)pn(t), n ≥ 1.

Puis, les équations de Kolmogorov :

 p′0(t) = −λp0(t) + µp1(t);

p′n(t) = −(λ+ µ)pn(t) + λpn−1(t) + µpn+1(t), n ≥ 1.
(2.2)

Ces équations permettent, en principe, de calculer les probabilités d’état pn(t), si l’on connaît

en plus les conditions initiales du processus, c’est-à-dire la distribution de N(0).

Régime stationnaire :

Il est démontré que lim
t→∞

pn(t) = pn, n ≥ 0, existent et sont indépendantes de l’état initial

du processus (2.1), et lim
t→∞

p′n(t) = 0, n ≥ 0. De (2.2), on obtient le système d’équations de

balance suivant :  µp1 = λp0,

λpn−1 + µpn+1 = (λ+ µ)pn, n ≥ 1,
(2.3)
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avec
∞∑
n=0

pn = 1.

La résolution du système (2.3) (la résolution du modèle) s’effectue de la manière suivante :

p1 =
λ

µ
p0.

Pour n = 1 :

λp0 + µp2 = (λ+ µ)p1 =⇒ p2 =

(
λ

µ

)2

p0.

Pour n > 1 :

pn =

(
λ

µ

)n
p0.

Pour trouver la probabilité p0, on utilise l’équation de normalisation.

En effet :
∞∑
n=0

pn = 1 =⇒ p0 + λ
µp0 +

(
λ
µ

)2
p0 + . . . = 1;

p0 =
1

1 + λ
µ +

(
λ
µ

)2
+ . . .

,

où 1+ λ
µ +
(
λ
µ

)2
+ . . . est une progression géométrique de raison λ

µ . Elle convergente si
λ
µ < 1,

et est égale à 1
1−λ

µ

. Alors

p0 = 1− λ

µ
.

D’où

pn =

(
1− λ

µ

)(
λ

µ

)n
.

ρ = λ
µ est l’intensité du trafic. ρ < 1 est la condition d’existence du régime stationnaire.

Encore, pn = (1− ρ)ρn, n ≥ 0, est la distribution stationnaire du nombre de clients dans le

système M/M/1.

Caractéristiques du système M/M/1 :

I Le nombre moyen de clients dans le système n :
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Soit N = lim
t→∞

N(t).

n = E(N) =

∞∑
n=0

npn

= (1− ρ)
∞∑
n=0

nρn

= (1− ρ)ρ

∞∑
n=1

d

dρ
(ρ)n

= (1− ρ)ρ
d

dρ

∞∑
n=1

(ρ)n

= (1− ρ)ρ
d

dρ

(
1

1− ρ

)

= (1− ρ)ρ

(
1

(1− ρ)2

)
=

ρ

1− ρ
.

Donc

n =
ρ

1− ρ
=

λ

µ− λ
.

I Le nombre moyen de clients dans la file d’attente nf :

Soit Nf= lim
t→∞

Nf (t), où Nf (t) est le nombre de clients dans la file d’attente à la date t. La

variable Nf est définie de la manière suivante : Nf =


0 N = 0

N − 1 N ≥ 1

.

nf = E(Nf ) =
∞∑
n=1

(n− 1)pn

=
ρ2

1− ρ

=
λ2

µ(µ− λ)
.

Ou bien

nf = n− ρ.
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I Le temps moyen de séjour d’un client dans le système :

Le temps moyen d’attente W et le temps moyen de séjour W s peuvent être calculé soit à

l’aide de formules de Little, soit à partir de la distribution stationnaire du système. Soit W s

la durée de séjour d’un client dans le système.

W s = E(Ws) =

∞∑
n=0

E(Ws/An)P(An).

Où An est l’événement tel qu’il y a n ≥ 0 clients dans le système à l’instant d’arrivée d’un

nouveau client. On a que E(Ws/An) = n+1
µ et P(An) = P(N = n) = (1− ρ)ρn. Alors

W s =

∞∑
n=0

(n+ 1)(1− ρ)
ρn

µ
=

1− ρ
µ

∞∑
n=0

(n+ 1)ρn

=
1− ρ
µ

∞∑
n=0

nρn +
1− ρ
µ

∞∑
n=0

ρn

=
1− ρ
µ

ρ

(1− ρ)2
+

1− ρ
µ

1

(1− ρ)

=
ρ

µ(1− ρ)
+

1

µ

=
1

µ− λ
.

I Le temps moyen d’attente d’un client :W

W = E(W ) =
∞∑
n=0

E(W/An)P(An)

et

E(W/An) =
n

µ
;

W =

∞∑
n=0

n

µ
(1− ρ)ρn

=
1− ρ
µ

∞∑
n=0

nρn

=
1− ρ
µ

ρ

(1− ρ)2

=
λ

µ(µ− λ)
.
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2.1.2 Système de files d’attente M/M/c

Description du modèle :

les clients arrivent vers le système selon un processus de Poisson de taux λ > 0 . Le service est

assuré par c ≥ 1 serveurs montés en parallèle. A l’arrivée d’un client, si l’un des serveurs est

libre, le client commence immédiatement son service. Dans le cas contraire (tous les serveurs

sont occupés par le service), le client prend place dans la file d’attente, commune pour tous

les serveurs. La capacité d’attente est illimitée (le nombre de positions d’attente est infini).

Lorsqu’un serveur se libère, le client en tête de la file d’attente occupe le serveur libéré. Par

conséquent, la discipline d’attente est FIFO. Les temps de service sont exponentiellement

distribués de moyenne finie 1/µ . Les durées entre deux arrivées consécutives et les durées

de service sont mutuellement indépendantes.

Figure 2.3 – File d’attante M/M/c.

Nous avons donc un modèle de file d’attente ou les arrivées et les départs sont modélisés par

un processus de naissance et de mort où :

λn = λ, ∀n ≥ 0,

µn =


0 si n = 0 ;

nµ si n < c ;

cµ si n ≥ c.
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Stabilité du système :

La condition de stabilité de cette file est λ < cµ, et exprime le fait que le nombre moyen

de clients qui arrivent à la file par unité de temps doit être inferieur au nombre moyen de

clients que les serveurs de la file sont capables de traiter par unité de temps.

ρ =
λ

cµ
< 1.

Graphe de transition :

Figure 2.4 – Diagramme de transition d’état M/M/c.

Régime transitoire :

Le système d’équations de Kolmogorov pour les probabilités d’état pn(t) = P(N(t) = n),

n ≥ 0, se présente de la manière suivante :


p′0(t) = −λp0(t) + µp1(t);

p′n(t) = λpn−1(t)− (λ+ nµ)pn(t) + (n+ 1)µpn+1(t), 1 ≤ n < c;

p′n(t) = λpn−1(t)− (λ+ cµ)pn(t) + cµpn+1(t), n ≥ c.

Régime stationnaire :

Soit lim
t→∞

pn(t) = pn, n ≥ 0. Cette distribution stationnaire satisfait les équations de balance

Si : n < c 

n = 0 : λp0 = µp1;

n = 1 : λp1 + µp1 = λp0 + 2µp2;
...

n = (c− 1) : λpc−1 + (c− 1)µpc−1 = λpc−2 + cµpc.
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Donc : 

p1 = (λµ)p0

p2 = ( λ2µ)p1 = 1
2

(
λ
µ

)2
p0

p3 = ( λ3µ)p2 = 1
3×2

(
λ
µ

)3
p0

...

pc = 1
c!(

λ
µ)cp0.

Si : n ≥ c 

λpc + cµpc = λpc−1 + cµpc+1

λpc+1 + cµpc+1 = λpc + cµpc+2

...

...



pc = 1
c!

(
λ
µ

)c
p0

pc+1 = 1
c!c

(
λ
µ

)c+1
p0

pc+2 = 1
c!c2

(
λ
µ

)c+2
p0

...

pn = 1
c!cn−c

(
λ
µ

)n
p0.

D’où

pn =


1
n!

(
λ
µ

)n
p0, si 1 ≤ n ≤ c;

1
c!cn−c

(
λ
µ

)n
p0, si n ≥ c.

On remarque que pour n = c, les deux formules donnent la même valeur.

Pour calculer la probabilité pour que le système est vide p0, on applique l’équation de

normalisation
∞∑
n=0

pn = 1.

En effet :

p0 =


c−1∑
n=0

1

n!

(
λ

µ

)n
+
∞∑
k=0

1

c!ck

(
λ

µ

)c+k
︸ ︷︷ ︸

?


−1

.
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La deuxième somme (?) peut être réécrite de la manière suivante

1

c!

(
λ

µ

)c1 +
λ

µc
+

(
λ

µc

)2

+ . . .︸ ︷︷ ︸
??

 .

La somme (??) possède une limite égale à 1
1− λ

µc

si λ
µc < 1. Par conséquent, le système

considéré est en régime stationnaire si ρ = λ
µc < 1,

ρ est l’intensité globale du trafic. On obtient ainsi

p0 =

(
c−1∑
n=0

1

n!

(
λ

µ

)n
+

(λ/µ)c

c!(1− λ
µc)

)−1

.

Encors,

p0 =

(
c−1∑
n=0

1

n!

(
λ

µ

)n
+

1

c!

(
λ

µ

)c ∞∑
n=c

ρn−c

)−1

,

et

pn =
1

c!

(
λ

µ

)c( λ

µc

)n−c
p0 = ρn−cpc.

Remarque 2.1.2.1. la distribution stationnaire peut s’obtenir rapidement en appliquant la

relation établie pour les processus de naissance et de mort.

En effet

pn = λ0λ1...λn−1

µ1µ2...µn
p0, pour n ≤ c il vient

pn =
λ× λ× . . . λ× λ× λ× . . .× λ

µ× 2µ× . . .× (c− 1)µ× cµ× cµ× cµ . . .× cµ
p0 =

λc

c!µc

(
λ

cµ

)n−c
p0 =

1

c!cn−c

(
λ

µ

)n
p0.

Caractéristiques du système M/M/c :

I Le nombre moyen de clients dans le système n

n =
∞∑
n=0

npn =
c−1∑
n=1

n(λ/µ)n

n!
p0 +

∞∑
n=c

n(λ/µ)n

c!cn−c
p0

n =
λ

µ
+

(λ/µ)c+1

c!c
(

1− λ
µc

)2 p0.
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I Le nombre moyen de clients dans la file d’attente nf

nf =
∞∑
k=0

kpc+k =
(λ/µ)c

c!

∞∑
k=0

k

(
λ

µc

)k
p0

nf =
(λ/µ)c+1

c!c
(

1− λ
µc

)2 p0.

I Le temps moyen de séjour d’un client dans le système W s

W s =
n

λ
=

1

µ
+

(λ/µ)c

c!cµ
(

1− λ
µc

)2 p0.

I Le temps moyen d’attente d’un client W

W =
nf
λ

=
cµ(λ/µ)c

c!(cµ− λ)2
p0.

2.1.3 Système de files d’attente M/M/c/K

Description du modèle :

A présent, supposons que dans le système M/M/c, le nombre de positions d’attente est li-

mité (égal à K). A l’arrivée d’un client, si tous les serveurs et toutes les positions d’attente

sont occupées, le client quitte le système définitivement sans recevoir le service.

λn = λ, 0 ≤ n ≤ K,

µn = µ×min{n, c}, 1 ≤ n ≤ K.

Graphe de transition :
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Figure 2.5 – Diagramme de transition d’état M/M/c/K.

Régime transitoire :

Soient pn(t) = P(N(t) = n), 0 ≤ n ≤ K. Le système d’équations de Kolmogorov pour les

probabilités s’états s’obtient à partir du graphe des transitions ci-dessus. En effet,



p′0(t) = −λp0(t) + µp1(t);

p′n(t) = λpn−1(t)− (λ+ nµ)pn(t) + (n+ 1)µpn+1(t), 1 ≤ n < c;

p′n(t) = λpn−1(t)− (λ+ cµ)pn(t) + cµpn+1(t), c ≤ n < K;

p′K(t) = λpK−1(t)− cµpK(t).

Régime stationnaire :

Soient pn = lim
t→∞

pn(t), 0 ≤ n ≤ K. La distribution stationnaire pn satisfait le système

d’équations de balance suivant :

0 = −λp0 + µp1;

0 = λpn−1 − (λ+ nµ)pn + (n+ 1)µpn+1, 1 ≤ n < c;

0 = λpn−1 − (λ+ cµ)pn + cµpn+1, c ≤ n < K;

0 = λpK−1 − cµpK .

La résolution de ce système, nous donne :

pn =


1
n!

(
λ
µ

)n
p0, 1 ≤ n < c;

1
c!cn−c

(
λ
µ

)n
p0 = 1

c!

(
λ
µc

)n−c (
λ
µ

)c
p0, c ≤ n ≤ K.

La mesure importante de ce système est la probabilité de perte, qui est la probabilité pour

que le système se trouve dans l’état K :

pK =
1

c!

(
λ

µc

)K−c(λ
µ

)c
p0.



2.2 Système de files d’attente M/G/1 40

La probabilité p0 s’obtient à partir de l’équation de normalisation
K∑
n=0

pn = 1 :

p0 =

(
c−1∑
n=1

1

n!

(
λ

µ

)n
+

K∑
n=c

1

c!

(
λ

µ

)c( λ

µc

)n−c)−1

.

Dans le cas particulier où K = c (système à demandes refusées), la distribution stationnaire

du processus {N(t), t ≥ 0} correspondant (formule d’Erlang) est

pn = 1
n!

(
λ
µ

)n
p0, 0 ≤ n ≤ c, où p0 =

(
c∑

n=0

1

n!

(
λ

µ

)n)−1

.

On a également

P(perte) =
1

c!

(
λ

µ

)c
p0.

Caractéristiques du système :

I Le nombre moyen de clients dans la file d’attente nf

On démontre que

nf =

K−c∑
n=1

npc+n =
λ

µ

(λ/µ)c

c!c
p0

(
1 + 2

(
λ

µc

)
+ 3

(
λ

µc

)2

+ . . .+ (K − c)
(
λ

µc

)K−c−1
)

=
(λ/µ)c+1

(c− 1)!

1−
(
λ
µc

)K−c (
1 + (K − c)(1− λ

µc)
)

(
c− λ

µ

)2 p0.

L’application des relations de Little fournit d’autres mesures de performance

W =
nf
λ ; W s = n

λ ; n = nf + λ
µ .

2.2 Système de files d’attente M/G/1

Pour décrire l’état d’un système de type M/G/1 à la date t, il faut connaître non seulement

le nombre de clients qui se trouvent dans le système à la date t, mais également le temps de

service, déjà écoulé R(t) du client qui est en train d’être servi. On peut alors montrer que le

processus bidimensionnel {N(t), R(t), t ≥ 0} est à nouveau du type markovien, cependant,

le calcul de son régime transitoire ferait intervenir des équations aux dérivées partielles. Par

conséquent, on choisit une autre méthode qui ramène l’étude du processus non markovien
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{N(t), t ≥ 0} à celle d’une chaîne de Markov à temps discret associée au processus considéré

dont elle permet de calculer le régime stationnaire.

Description du modèle :

Le système d’attente M/G/1 est un système d’une file d’attente capacité illimitée de disci-

pline FIFO et d’un seule serveur. Les clients arrivent dans le système selon un processus de

Poisson (λ > 0). Les durées de service sont des variables aléatoires positives mutuellement

indépendantes noté Se, et distribuées selon une loi générale de fonction de répartition B(x),

de moyenne finie E(Se) = 1
µ et de E(Se2). Les durées entre deux arrivées consécutives et les

durées de service sont également mutuellement indépendantes.

Analyse du modèle :

Soit {N(t), t ≥ 0}. Montrons que {N(t)(t≥0)} ne définit pas une chaîne de Markov. Soient

td et tf les dates de début et de fin d’un service, ta l’instant d’arrivée d’un nouveau client.

Si td < ta < tf , la probabilité qu’un départ s’effectue dans ]ta, ta + ∆t], ne dépend pas

seulement de ∆t, mais de la date td à la quelle le service en cours a commencé. Comme

le temps résiduel du service (tf − ta) dépend du passé, alors la chaîne {N(t)(t≥0)} n’est

pas markovienne. Par conséquent, on utilise la méthode de la chaîne de Markov in-

duite. A cet effet, on considère N(t) aux instants ξ1, ξ2, . . . , ξn, . . . où les clients terminent

leur service et quittent le système. On définit ainsi un processus stochastique à temps discret

{Nn = N(ξn), n ≥ 1}. (2.4)

Pour vérifier que cette suite de variables aléatoires est une chaîne de Markov à temps discret,

on considère le nombre An de clients qui entrent dans le système pendant que le n-ème client

est servi. Les variables An sont indépendantes entre elles, leur distribution commune est

P(An = k) = ak =

∫ ∞
0

e−λt
(λt)k

k!
dB(t) , où ak > 0 et k > 0. Alors

Nn+1 =


Nn − 1 +An+1 Nn ≥ 1

An+1 Nn = 0

,n ≥ 1.

L’équation fondamentale de la chaîne vaut donc

Nn+1 = Nn − δn +An+1, (2.5)
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où δn =


1 Nn > 0

0 Nn = 0

.

Nn+1 ne dépend que de Nn et de An+1 et non pas des valeurs prises par Nn−1, Nn−2, . . .

La suite {Nn, n ≥ 1} est une chaîne de Markov induite du processus {N(t), t ≥ 0}. Ses

probabilités de transition pij = P(Nn+1 = j/Nn = i) se calcule par
p0j = aj pour j ≥ 0

pij = aj−i+1 pour 1 ≤ i ≤ j + 1

pij = 0 ailleurs

.

La matrice des transitions est

M =



a0 a1 a2 a3 . . .

a0 a1 a2 a3 . . .

0 a0 a1 a2 . . .

0 0 a0 a1 . . .

. . . . . . .

. . . . . . .



Figure 2.6 – Diagramme de transition d’état M/G/1.

Vu qu’on peut passer de chaque état vers n’importe quel autre état, il s’agit d’une chaîne

de Markov irréductible. De plus, la matrice n’est pas décomposable (est apériodique). La

chaîne est donc ergodique. La distribution stationnaire de la chaîne existe si ρ = λ
µ < 1 .

Pour les variables aléatoires An, nous disposons de quelques résultats importants :
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E(An) = λE(Se) = λ
µ = ρ.

La fonction génératrice

A(z) =

∞∑
k=0

akz
k =

∞∑
k=0

zk
∫ ∞

0

(λt)k

k!
e−λtdB(t)

=

∫ ∞
0

e−λt

( ∞∑
k=0

(λtz)k

k!

)
dB(t)

=

∫ ∞
0

e−λteλtzdB(t)

=

∫ ∞
0

e−(λ−λz)tdB(t).

Soit B̃(s) =

∫ ∞
0

e−stdB(t). Alors A(z) = B̃(λ − λz). Encore, la série A(z) converge pour

|z| ≤ 1 :

1) |z| ≤ 1 ; 0 < ak < 1 ∀k, on a |akzk| < |zk| ;

2) |z| = 1 ; A(1) = 1.

Remarque 2.2.0.1. 1. Théorème des probabilités totales :

Cas discret : P(A) =
∑
k

P(A/Y = yk)P(Y = yk).

Cas continu : P(A) =
∫
P(A/Y = y)g(y)dy.

2. Probabilité que le nombre d’événements N qui ont lieu pendant un intervalle U = u dont

la densité de probabilité f(u) est connue, est égal à n :

P(N = n/U = u) = e−λu (λu)n

n! .

D’où

P(N = n) =

∫ ∞
0

P(N = n/U = u)f(u)du =
1

n!

∫ ∞
0

e−λu(λu)nf(u)du.

E(N) = λE(U) ; V ar(N) = λ2V ar(U) + λE(U).

Supposons que ρ < 1. Le système se trouve dans un régime stationnaire. Soit Π = [π0, π1, . . .]

la distribution stationnaire de la chaîne de Markov induite (πj = lim
n→∞

P(N(ξn) = j)). Par
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conséquent, Π = Π×M , ou πj =
∞∑
i=0

πipij , j ≥ 0.

πj = ajπ0 +

j+1∑
i=1

aj−i+1πi = ajπ0 +

j+1∑
i=0

aj−i+1πi − aj+1π0, j ≥ 0.

A présent, on applique la méthode des fonctions génératrices. En effet,

∞∑
j=0

πjz
j = π0

∞∑
j=0

ajz
j +

1

z

∞∑
j=0

cj+1z
j+1 − π0

z

∞∑
j=0

aj+1z
j+1,

où cj+1 =

j+1∑
i=0

aj−i+1πi.

On introduit les fonctions génératrices suivantes :

Π(z) =
∞∑
i=0

πiz
i ; A(z) =

∞∑
i=0

aiz
i ; C(z) =

∞∑
j=0

cjz
j = Π(z)A(z).

Finalement, on obtient

Π(z) = π0A(z) +
1

z
(C(z)− c0)− π0

z
(A(z)− a0),

ou bien

Π(z) = π0A(z)(z−1)
z−A(z) pour |z| < 1 et |z| 6= 0.

On a que Π(1) = 1, Cependant, Π(1) = lim
z→1

Π(z) = 0/0. En appliquant la règle de l’Hôpital,

on obtient π0
1−A′(1) = 1. Alors π0 = 1−A′(1) = 1− λE(Se) = 1− ρ.

Le résultat final est la première équation de Pollaczek-Khintchine pour le nombre de clients

dans le système :

Π(z) =
(1− ρ)A(z)(z − 1)

z −A(z)
=

(1− ρ)B̃(λ− λz)(z − 1)

z − B̃(λ− λz)
. (2.6)

La condition d’existence d’un régime stationnaire est ρ = λ
µ < 1.

Remarque 2.2.0.2. La probabilité π0 peut être trouvée d’une autre manière. De l’équation

fondamentale de la chaîne de Markov induite (2.5), on a E(Nn+1) = E(Nn) − E(δn) +
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E(An+1). Vu que E(Nn+1) = E(Nn),E(An+1) = E(δn) = P(δn > 0) = P(Nn > 0) =

1− P(Nn = 0). D’où π0 = 1− ρ .

Considérons les probabilités suivantes :

pj = lim
t→∞

P(N(t) = j), j ≥ 0 ;

πj = lim
n→∞

P(N(ξn) = j), j ≥ 0 ;

rj = lim
n→∞

P(N(ςn) = j), j ≥ 0 ; ςn est l’instant d’arrivée de n-ème client.

Vu que le processus des arrivées est poissonien, et le nombre N(t) subit des changements

discontinus de taille 1 (±1), on obtient pj = rj = πj . Comme suite logique, la distribution

stationnaire du processus à temps continu {N(t), t ≥ 0} est identique à celle de la chaîne de

Markov induite. Par conséquent Q(z) =

∞∑
j=0

pjz
j = Π(z).

Caractéristiques du système M/G/1 :

I Le nombre moyen de clients dans le système n

Formule de Pollaczek-Khintchine pour le nombre moyen de clients dans le système :

Considérons l’équation fondamentale (2.5). Vu que δ2
n = δn et δnNn = Nn, on trouve

N2
n+1 = N2

n + δn +A2
n+1 − 2Nn − 2δnAn+1 + 2NnAn+1.

On a que : An+1 est indépendante de Nn et de δn.

E(N2
n+1) = E(N2

n) ; E(An) = ρ = λ
µ .

Alors,

E(N2
n+1) = E(N2

n) + E(δn) + E(A2
n+1)− 2E(Nn) + 2E(An+1)E(Nn − δn),

ou bien :

2E(Nn) = ρ+ E(A2
n+1) + 2ρ(E(Nn)− ρ).

D’où

E(Nn) =
ρ+ E(A2

n+1) + 2ρ2

2(1− ρ)
. (2.7)

Pour trouver E(A2
n+1), considérons le régime stationnaire.

lim
n→∞

E(A2
n+1) = E(A2) =

∫ ∞
0

E(A2/T = t)dB(t)

= λ

∫ ∞
0

tdB(t) + λ2

∫ ∞
0

t2dB(t)

= λ
µ + λ2(V ar(Se) + (1/µ)2).
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Enfin, la formule (2.7) devient

n = lim
n→∞

E(Nn) = E(N) = ρ+
ρ2 + λ2V ar(Se)

2(1− ρ)
.

Le nombre moyen de clients dans le système peut être également trouvé à partir de la

fonction génératrice Π(z) : E(N) = n = lim
z→1

Π′(z). Ici, le calcul de la limite donne une

indétermination. Par conséquent, il est nécessaire d’appliquer la règle de l’Hôpital deux fois.

I Le nombre moyen de client dans la file d’attente :

nf = n− ρ =
ρ2 + λ2V ar(Se)

2(1− ρ)
.

I Temps moyen de séjour d’un client dans le système :

W s =
1

µ
+
λ(V ar(Se) + 1

µ2
)

2(1− ρ)
.

I Temps moyen d’attente d’un client :

W =
λ(V ar(Se) + 1

µ2
)

2(1− ρ)
.

Période d’activité

Soit J la durée de la période d’activité du système M/G/1 (l’intervalle de temps pendant

lequel le dispositif de service est continuellement occupée). Admettons que pendant une

longue durée t, le système d’attente passe par n cycles d’exploitation complets dont chacun

est composé d’une période d’activité J et d’une période d’inactivité V . Pour les grandes

valeurs de t (t→∞), on a t ≈ n(E(J) + E(V )). D’autre part, la probabilité que le système

soit vide est

π0 = p0 = E(V )
E(J)+E(V ) . Mais p0 = 1− ρ et E(V ) = 1

λ . Il en résulte que E(J) = 1
µ−λ , si λ < µ.

Ce résultat est valable et pour le système de files d’attente M/M/1.



Chapitre 3

Système de files d’attente avec

distribution générale du temps de

service, vacances du serveur et clients

impatients

Dans ce chapitre nous avons étudié le système M/G/1 avec vacances du serveur et clients

impatients, et le cas des temps d’impatience à distribution exponentielle.

Vacances : dans un contexte de file d’attente représente une période pendant laquelle

le serveur est absent ou indisponible pour offrir un service. Les situations qui conduisent à

des vacances sont diverses, à savoir les pannes du système, la maintenance du système ou

uniquement pour une pause. Au cours des dernières décennies, les modèles de files d’attente

de vacances ont été largement étudiés, soit pour résoudre des problèmes particuliers dans de

nombreuses situations pratiques, telles que les centres d’appels, les ordinateurs, les industries

en croissance, les services Web, etc.

L’impatience : est une caractéristique très importante de la théorie des files d’attente. Les

modèles de files d’attente de vacances avec l’impatience des clients sont considérés comme

des outils très appropriés pour analyser divers systèmes de services complexes et industries

importantes. Dans la littérature traditionnelle sur les files d’attente de vacances avec des
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clients impatients, les études sur le comportement des clients ont toujours été basées sur

l’hypothèse que l’impatience des clients ne se produit que lorsque le serveur est en vacances.

C’est le cas où les clients peuvent voir l’état du serveur. Cependant, dans de nombreuses

situations réelles, y compris les centres d’appels et les systèmes de production, il peut ne pas

être possible d’obtenir des informations sur l’état du serveur. De plus, une longue attente

dans la file d’attente est un autre facteur qui conduit à l’impatience des clients quel que soit

l’état du système (actif ou en vacances).

3.1 Description et notations du modèle

Dans cette section, nous considérons le cas des temps de services généralement distribués,

c’est-à-dire que le processus sous-jacent est la file d’attente M/G/1 avec vacances multiples

de serveur.

Le processus d’arrivée est Poissonnien avec taux λ. Les temps de service sont des variables

aléatoires i.i.d, tous distribués comme B, ayant le premier moment E(B), deuxième moment

E(B2) et Transformée de Laplace-Stieltjes (T L-S) B∗(s) = E(e−sB).

A la fin d’une période occupé le serveur prend des vacances U , ayant le premier moment

E(U), et deuxième moment E(U2) et Transformée de Laplace-Stieltjes (T L-S) U∗(s) =

E(e−sU ).

Si le système est vide à la fin des vacances, le serveur prend de nouvelles vacances. S’il y a

n ≥ 1 client à la fin des vacances, le serveur démarre immédiatement une période d’activité.

Lorsque le serveur est en vacances et n’est pas disponible pour le service, les clients qui

arrivent sont impatients. Une arrivée qui constate que le serveur est en vacances, active

un " minuteur d’impatience ", T . Si le temps impatience T expire le client abandonne le

système. Chaque client active sa propre minuterie et les Ti sont i.i.d. variables aléatoires,

indépendantes du nombre de clients en attente.

Soit t = 0 l’instant de début des vacances. Ensuite, une observation clé est que, au sein

de U , l’évolution du système est la même que celle d’une file M/G/∞ avec des temps de

service tous distribués en T . Pour le temps t ≤ U , il est bien connu [16] (Takacs, 1962) que
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le nombre de clients dans le système a une distribution de Poisson avec le paramètre :

Λ(t) = λ

∫ t

0
(1− P(T ≤ y))dy, t ≤ U. (3.1)

3.2 Caractéristiques du modèle

3.2.1 Durée d’une période de vacances τ

Considérons l’instant t = 0 lorsque le serveur part pour la première fois en vacances de durée

U1. Si à l’instant t = U1 la file d’attente est vide, le serveur prend une autre vacance U2,

et bientôt. Cette séquence d’événements se termine au premier instant lorsque le serveur

retourne et trouve un système non vide. Nous appelons cette durée entière, τ . une période

de vacances.

En utilisant l’analogie M/G/∞, la probabilité d’un système vide au temps U est e−Λ(U).

Ainsi,

τ=
k∑
i=1

Ui + Uk+1 avec probabilité (
k∏
i=1

e−Λ(Ui))(1− e−Λ(Uk+1)).

Par conséquent, le TLS, τ̃(s), de la Période de vacances est donné par :

τ∗(s) = E(e−sτ )

=
∞∑
k=0

E(e−s(
∑k
i=1 Ui)e−sUk+1(e−

∑k
i=1 Λ(Ui))(1− e−Λ(Uk+1)))

=
∞∑
k=0

(E(e−(sU+Λ(U)))k(E(e−sU )− E(e−(sU+Λ(U))))

=
U∗(s)− E(e−(sU+Λ(U)))

1− E(e−(sU+Λ(U)))
. (3.2)

Donc la durée moyenne d’une période de vacances est :

E(τ) =
E(U)

1− E(e−Λ(U))
. (3.3)

3.2.2 Nombre de clients en début de période occupé

Une période occupé commence avec N(τ) ≥ 1 client. Nous dérivons maintenant la fonction

génératrice de probabilité (FGP) de N(τ). Il est à noter que N(τ) n’est pas distribué comme
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une variable de Poisson de paramètre Λ(·). Il s’ensuit que les dernières vacances U en τ (dans

lesquelles il y a au moins une arrivée) ne sont pas régulières. En effet

U∗(s)|N(U)≥1 = E(e−sU |N(U) ≥ 1)

=
E(e−sU1{N(U)≥1})

E(P(N(U) ≥ 1)

=
U∗(s)− E(e−(sU+Λ(U)))

1− E(e−Λ(U))
.

Cela résulte dans

E(U |N(U)≥1) =
E(U)− E(Ue−Λ(U))

1− E(e−Λ(U))
.

Nous écrivons N(τ) =


N(U1) si N(U1) ≥ 1,

N ′(τ ′) si N(U1) = 0.

Où N ′(τ ′) et τ ′ sont i.i.d, répliques de N(τ) et τ , respectivement. Alors, le FGP de N(τ)

est donné par

GN(τ)(z) = E(zN(τ))

= E(E(zN(U)|N(U) ≥ 1)P(N(U) ≥ 1)) + E(E(zN(τ)|N(U) = 0)P(N(U) = 0))

= E(
∞∑
n=1

zne−Λ(U) (Λ(U))n

n!
) + E(zN(τ))E(e−Λ(U)).

Ainsi,

GN(τ)(z) =
E(e−(1−z)Λ(U))− E(e−Λ(U))

1− E(e−Λ(U))

=

∞∑
n=1

1

n!
E(e−Λ(U)(Λ(U)n)zn

1− E(e−Λ(U))
. (3.4)

On trouve facilement

P(N(τ) = n) =
1
n!E(e−Λ(U)(Λ(U)n))

1− E(e−Λ(U))
, (n = 1, 2, 3, . . .) (3.5)

et

E(N(τ)) =
E(Λ(U))

1− E(e−Λ(U))
. (3.6)
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3.2.3 Période d’occupation

Soit Γ la durée d’une période d’occupation.

Une période occupé commence avecN(τ) ≥ 1 clients, est donc égal à la somme de θ1,θ2,. . . ,θN(τ),

périodes régulières M/G/1, sont i.i.d, tous distribués comme θ, où θ∗(s) = B∗(s + Λ(1 −

θ∗(s))). Ainsi, le (TL-S) de Γ est donné par :

Γ∗(s) = E(e−sΓ) = E(e−s(
∑N(τ)
i=1 θi))

= E((θ∗(s))N(τ)) = GN(τ)(θ
∗(s)).

En utilisant (3.4) on obtient

Γ∗(s) =
E(e−(1−θ∗(s))Λ(U))− E(e−Λ(U))

1− E(e−Λ(U))
. (3.7)

Avec ρ = λE(B)

E(Γ) = E(N(τ))E(θ) =
E(Λ(U))

1− E(e−Λ(U))

E(B)

1− ρ
. (3.8)

Maintenant, la proportion de temps pendant laquelle le serveur est occupé, P(occup), est

donnée par

P(occup) =
E(Γ)

E(Γ) + E(τ)
=

E(Λ(U))E(B)

E(Λ(U))E(B) + (1− ρ)E(U)
. (3.9)

3.2.4 Probabilité que le système est vide et le serveur en vacences

Soit D la somme des intervalles de temps, dans τ , où le système est vide. C’est-à-dire

D =

∫ τ

0
1{N(t)=0}dt. (3.10)

En raison de la propriété régénérative du système, nous pouvons écrire

D =

∫ U1

0
1{N(t)=0}dt+D′1{N(U1)=0}

où D′ a la même distribution que D. Puisque E(1{N(t)=0}) = e−Λ(t) on a

E(D) =
E(
∫ U

0 e−Λ(t)dt)

1− E(e−Λ(U))
. (3.11)
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Maintenant, puisque P00 est la fraction de temps pendant laquelle à la fois le système est

vide et le serveur est en vacances, nous avons

P00 =
E(D)

E(Γ) + E(τ)
. (3.12)

En utilisant (3.11), (3.8) et (3.3) nous obtenons finalement

P00 =
E(
∫ U

0 e−Λ(t)dt)

E(Λ(U))E(θ) + E(U)

P00 = (1− ρ)
E(
∫ U

0 e−Λ(t)dt)

E(Λ(U))E(B) + (1− ρ)E(U)
. (3.13)

Pour le cas où la variable d’impatience T est distribuée exponentiellement avec le paramètre

ξ.

P00 =
(1− ρ)E(

∫ U
0 e
−λ
ξ

(1−ξt)
dt)

ρ
ξ (1− U∗(ξ)) + (1− ρ)E(U)

. (3.14)

Notez que lorsque ξ → 0 nous obtenons

P00 =
1− ρ
E(U)

1− U∗(λ)

λ
.

Si U est distribué exponentiellement avec le paramètre γ alors cela se simplifie en

P00 =
1− ρ

E(U)(λ+ γ)
= (1− ρ)

γ

λ+ γ
.

3.2.5 Temps de vacances et d’impatience distribués de façon exponen-

tielle

En supposant que U ∼ Exp(γ), l’équation (3.14) donne

P00 =
(1− ρ)

∫∞
u=0 γe

−γu(
∫ u
t=0 e

−λ
ξ

(1−e−ξt)
dt)du

ρ
ξ (1− γ

γ+ξ ) + (1− ρ) 1
γ

.

En changeant l’ordre d’intégration et en appliquant le changement de variable :s = 1− e−ξt

dans le numérateur ci-dessus, on obtient

∫ 1

s=0
e
−λ
ξ
s
(1− s)γ/ξ ds

ξ(1− s)
=

∫ 1

s=0

1

ξ
(1− s)

γ
ξ
−1
e
−λ
ξ
s
ds =

K

ξ
,
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(pour définir K, voir [16])

où la dernière égalité provient de l’équation (2.10)(voir le [16]). Ainsi,

P00 =
(1− ρ)ρξ
ρ

γ+ξ + 1−ρ
γ

=
γK

ξ

(γ + ξ)(µ− λ)

γλ+ (γ + ξ)(µ− λ)
,

qui est l’expression de P00 donnée par l’éq (2.19)(voir le [16]).

3.2.6 Nombre de clients à un instant de fin de service

Soit Xn le nombre de clients présents après l’achèvement du n-ème service. On a

Xn+1 =d


Xn − 1 +A(B) si Xn ≥ 1,

N(τ)− 1 +A(B) si Xn = 0

où A(t) est le nombre d’arrivées de Poisson dans (0, t]. Le symbole =d signifie "égal en

distribution". Par conséquent, en régime permanent, le FGP de X = lim
n→∞

Xn est donné par

X̂(z) = E(zX) = E(zX |X > 0)z−1E(zA(B))(1− P0) + E(zN(τ))z−1E(zA(B))P0

=z−1B∗(λ(1− z))((X̂(z)− P0) + E(zN(τ))P0)

où P0 = (X = 0). Ainsi,

X̂(z) = P0
E(zN(τ))− 1

z −B∗(λ(1− z))
B∗(λ(1− z)) (3.15)

où E(zN(τ)) = GN(τ)(z) est donné par (3.4).

Pour calculer P0, nous substituons z = 1 dans (3.15) et appliquons la règle de L’Hôpital

pour obtenir

P0 = P(X = 0) =
1− ρ

E(N(τ))
= (1− ρ)

1− E(e−Λ(U))

E(Λ(U))
. (3.16)

Où ρ = λE(B) et E(N(τ)) est donné par (3.6).

Notez que P0 6= P00 puisque P00 est la fraction de temps pendant laquelle le système est

vide, tandis que P0 est la fréquence relative des occurrences, parmi les instants de fin de

service, lorsque le système devient vide.

Pour terminer

X̂(z) = (1− ρ)
(GN(τ)(z)− 1)B∗(λ(1− z))
E(N(τ))(z −B∗(λ(1− z)))
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= (1− ρ)
(E(e(1−z)λ(U))− 1)B∗(λ(1− z))
E(Λ(U))(z −B∗(λ(1− z)))

. (3.17)

Lorsque T =∞, le processus se transforme en file d’attente M/G/1 avec plusieurs vacances

de serveur. Puis Λ(U) = λU et (GN(τ)(z)− 1)/E(N(τ))=(U∗(λ(1− z))− 1)/(λE(U)).

L’équation (3.17) conduit alors à l’expression connue (voir Levy et Yechiali (1975)[16] et

Boxma[9])

X̂(z) = (1− ρ)
U∗(λ(1− z))− 1

λE(U)(z −B∗(λ(1− z)))
B∗(λ(1− z)). (3.18)

3.2.7 Décomposition stochastique

L’équation (3.17) peut être écrite sous une forme de décomposition, c’est-à-dire,

X̂(z) = L̂M/G/1(z)
GN(τ)(z)− 1

(z − 1)E(N(τ))
(3.19)

où L̂M/G/1(z) est le (FGP) de l’état du système (occupation) à un moment arbitraire dans

la file d’attente régulière M/G/1 correspondante, donné par

L̂M/G/1(z) = (1− ρ)
(z − 1)B∗(λ(1− z))
z −B∗(λ(1− z))

. (3.20)

Autrement dit, X est la somme de deux variables aléatoires indépendantes, LM/G/1 et Y ,

où le FPG de Y est donné par

Ŷ (z) =
GN(τ)(z)− 1

(z − 1)E(N(τ))
.

Maintenant, à partir de (3.19) et en utilisant (3.4), il s’ensuit que

E(X) = E(LM/G/1) + E(Y )

=

(
λ2E(B2)

2(1− ρ)
+ ρ

)
+

E(Λ(U)2)

2E(Λ(U))
. (3.21)

Lorsque T →∞, E(Λ(U)2)
2E(Λ(U)) = λE(U2)

2E(U) =ΛE(RU ), où RU est la durée de vie résiduelle de U .
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3.2.8 Nombre moyen de clients dans le système

Nous calculons maintenant E(L), (n = E(L)), le nombre moyen de clients dans le système.

Nous écrivons

E(L) = E(L|P.V )(1− P(occup)) + E(L|occup)P(occup). (3.22)

(P.V : Période de Vacances)

Considérez la période de vacances τ . Soit N(t) le nombre de clients dans le système au temps

t ∈ [0, τ ]. Soit ∆ =

∫ τ

0
N(t)dt. Puis,

∆ =

∫ U1

0
N(t)dt+ ∆′1{N(U1)=0}

où ∆′ a la même distribution que ∆, et N(t) a une distribution de Poisson avec le paramètre

Λ(t). On calculé l’espérance on trouve :

E(∆) =
E(
∫ U

0 N(t)dt)

1− E(e−Λ(U))
.

Ensuite, en utilisant (3.3),

E(L|P.V ) =
E(∆)

E(τ)
=

E(
∫ U

0 N(t)dt)

E(U)
.

Maintenant, E(
∫ U

0 N(t)dt) = E(Λ(t)), ce qui implique que :

E(L|P.V ) =
E(
∫ U

0 Λ(t)dt)

E(U)
. (3.23)

En particulier, lorsque T ∼ Exp(ξ) et U ∼ Exp(γ), alors E(L|P.V ) = λ
γ+ξ . Considérons

maintenant une période occupé (qui commence avec N(τ) ≥ 1 clients). Puis,

E(L|occup) = EN(τ)

N(τ)∑
n=1

(E(LM/G/1|occup) + (N(τ)− n)



= E(N(τ))E(LM/G/1|occup) +
1

2
EN(τ)(N(τ)(N(τ)− 1)). (3.24)
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Clairement, E(LM/G/1|occup) = E(LM/G/1)/ρ. En collectant les termes, on obtient

E(L) = E
(∫ U

0
∆(t)dt

)
1− ρ

(1− ρ)E(U) + E(Λ(U))E(B)

+ (E(N(τ))E(LM/G/1)/ρ+
1

2
E((N(τ)(N(τ)− 1)))

E(Λ(U))E(B)

(1− ρ)E(U) + E(Λ(U))E(B)
.

(3.25)

Où E(N(τ)) est donné par (3.6), E(LM/G/1) est donné par le premier terme du membre de

droite de (3.21) et

E(N(τ)(N(τ)− 1)) =
E(Λ(U)2)

1− E(e−λ(U))
, (3.26)

qui est dérivé en différenciant (3.4) deux fois à z = 1. lorsque T ∼ Exp(ξ) et U ∼ Exp(γ).

Alors

•(i) E(Λ(U)2) = λ2

ξ2
(1− 2γ

ξ+γ + γ
2ξ+γ ),

•(ii) E(e−Λ(U)) = γ
ξK,

•(iii) E
(∫ U

0
∆(t)dt

)
= λ

ξ

(
E(U)− 1

ξ + γ
ξ(ξ+γ)

)
= λ

γ(ξ+γ) .

La substitution de ce qui précède dans (3.25), avec E(Λ(U)) = λ/(ξ+γ) (que nous établirons

en (3.28)), donne une solution explicite pour E(L) lorsque T et U sont distribué de façon

exponentielle. Notons en outre qu’on peut facilement montrer que dans le cas exponentiel,

et avec E(B) = 1/µ, le premier terme de (3.25) coïncide avec E(L0) donné dans la section

2.4(voir [16]).

3.2.9 Proportion de clients servis

Une mesure de performance importante est la proportion de clients servis, notée P(servi).

Nous pouvons écrire :

P(servi) =Nombre attendu de clients servis au cours d’un cycle/Nombre d’arrivées prévu

au cours d’un cycle.

En utilisant (3.9) puis (3.3) et (3.6), on obtient

P(servi) =
E(Γ)/E(B)

λ(E(Γ) + E(τ))
=

P(occup)

ρ
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=
1

ρ+ λ(1− ρ) E(U)
E(Λ(U))

. (3.27)

Clairement, P(servi) → 1 quand ρ → 1. Pour des vacances et des temps d’impatience à

distribution exponentielle, où U ∼ Exp(γ) et T ∼ Exp(ξ), on a :

λ(U) = λ

∫ U

y=0
e−ξydy =

λ

ξ
(1− e−ξU )

menant à

E(Λ(U)) =

∫ ∞
u=0

λ

ξ
(1− e−ξu)γe−γudu =

λ

ξ + γ
. (3.28)

Donc

P(servi) =
1

ρ+ (1− ρ) ξ+γγ
=

γ

γ + (1− ρ)ξ
. (3.29)



Conclusion

Dans ce travail, nous avons analysé d’un système de fils d’attente M/G/1 avec distribution

générale du temps de service, vacances du serveur et clients impatients.

En premier lieu, nous avons passé un rappel des processus stochastiques qui sont un outil

dans l’analysé de files d’attente, et introduit quelques notions de base de la théorie des files

d’attente.

En deuxième lieu, nous avons étudié le système de files d’attentes classiques, et système

M/G/1 avec distribution générale du temps de service, et le mesure de performance du sys-

tème.

Ensuite, nous avons étudié le système de files d’attente M/G/1 avec distribution générale du

temps de service, vacances multiples du serveur et client impatient. Nous obtenons les fonc-

tions génératrices des diverses caractéristiques du système (Durée d’une période de vacances,

Nombre de clients en début de période occupé, La période d’occupation,. . . ).
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