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Introduction générale

LA théorie des files d’attente est principalement vue comme une branche de la théorie
des probabilités appliquées. Les applications sont dans différents domaines, par exemple :
les réseaux de transmission, les systémes informatiques, les réseaux urbains, les banques, la
gestion des avions au décollage ou a 'atterrissage, ....

Un systéme de files d’attente comprend donc un espace de service avec un ou plusieurs
dispositifs de service (serveurs) et un espace d’attente dans lequel se forme une éventuelle
file d’attente, le processus décrivant le fonctionnement d’un systéme de files d’attente est
processus aléatoire (stochastique).

Pour identifier un systéme de files d’attente, on a besoin de spécifier le flux d’entrée, le
mécanisme de service et la discipline d’attente.

Depuis les travaux d’Erlang [3] Un grand nombre d’applications dans tous les domaines ont
été mis en ceuvre et publiées. En 1953, David G. Kendall a introduit la notation de Kendall
[3] pour décrire les caractéristiques d’un systéme de file d’attente. en 1957 d’une maniére
particuliérement élégante et efficace Jackson a traité certains réseaux de files d’attente. En
1961, Thomas L. Saaty [12], auteur de I'un des premiers livres complets sur la théorie des
files d’attente. Ensuite c’est les contributions des mathématiciens Khintchine, Palm, Pollac-
zek et Kolmogorov |13] qui ont vraiment poussés la théorie des files d’attente.

Les systémes de file d’attente avec des vacances sur serveur ont attiré ’attention de nom-
breux chercheurs depuis que I'idée a été discutée pour la premiére fois dans l'article de Levy
et Yechiali [3]. Plusieurs enquétes sur ces modéles de vacances ont été réalisées par Doshi
[16], [18] et les livres de Takagi [26], Tian et Zhang [15] sont consacrés a ce sujet.

Zhang et Hou [29] ont analysé un M/G/1 file d’attente avec des vacances de travail et une

interruption de vacances. En utilisant la méthode d’une variable supplémentaire et la mé-
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thode d’analyse matricielle.

Altman et Yechiali n’ont considéré que I'impatience des clients lorsque les serveurs sont en
vacances et indisponibles pour le service. Selvaraju et Goswami analysés impatients clients
dans une file d’attente markovienne de serveur unique avec des vacances de travail uniques
et multiples.

Mon mémoire est composé de trois chapitres :

Dans le premier chapitre, nous présentons les notions de bases de ’étude des systémes
de files d’attente, a savoir les processus stochastiques (Processus de comptage, processus de
renouvellement, processus de Poisson, processus de naissance et de mort), et introduisons
certaines définitions et notations sur la théorie des files d’attente comme (Notation de Ken-
dall, la loi de Little,...etc.).

Dans le deuxiéme chapitre, nous étudions quelques modéles de files d’attente marko-
vienne et semi markovienne (M/M/1, M/M/c, M/M/c/K, M/G/1) et diverses mesures de
performance du systéme sont dérivées.

Dans le troisiéme chapitre, nous présentons une étude d’'un modeéle de file d’attente avec
distribution générale du temps de service, vacances du serveur et clients impatients. Nous

traitons le cas de files d’attente M/G/1 avec vacances multiples, et clients impatients.|10]



Chapitre 1

Introduction aux systémes de files

d’attente

DAns ce chapitre nous avons défini quelques concepts de base utilisée dans les chapitres
suivants. Nous avons présenté et défini les processus stochastiques utilisées en théorie

des files d’attente, nous avons donné quelques préliminaires sur les files d’attente.

1.1 Processus stochastique : quelques définitions

Définition 1.1.0.1. (Processus stochastiques)[50]

Un processus stochastique {X (t),t € T'} est une collection de variables aléatoires définies sur
un méme espace de probabilité (Q, F,P). Le paramétre t est généralement interprété comme
le temps et appartient & un ensemble ordonné T .

Généralement X (t) représente l’état du processus stochastique au temps t.

o Si T est dénombrable, i.e T C N, alors nous disons que {X (t),t € T'} est un processus a
temps discret. On le dénote par {X,,n > 0}.

e Si T est un intervalle de [0;00), alors le processus stochastique est dit un processus a temps
continu. On le dénote par {X(t),t > 0}.

L’ensemble des valeurs de X (t) est appelé lespace d’état, qui peut également étre soit discret

( fini ou infini dénombrable ) ou continu ( un sous-ensemble de R ou R™).
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1.1.1 Processus de comptage

Définition 1.1.1.1. (Processus de comptage)[75]

Un processus stochastiques {N(t),t > 0} est dit processus de comptage ou processus de
dénombrement si

N(t) représente le nombre d’événements se produisant dans l'intervalle [0,t] vérifiant :

e N(t) >0, ¥t >0.

oVt >s, N(t) > N(s).

e Pour s < t, N(t)— N(s) représente le nombre d’événements se produisant dans l’intervalle

(s,t].

1.1.2 Processus de renouvellement

Un processus de renouvellement a pour fonction le dénombrement des occurrences d’un
phénomeéne donné, lorsque les délais entre deux occurrences consécutives sont des variables

aléatoires indépendantes et identiquement distribuées.

Définition 1.1.2.1. [17]
Un processus de comptage pour lequel les temps entre deux arrivés consécutives sont des
variables aléatoires i.i.d, s’appelle processus de renouvellement. Les temps de renouvellement

(ou les temps de la n-ieme arrivée) sont :

n
An:Zai, n=12,...
=1

avec a;, 1t =1,2,... est le temps entre deux arrivées consécutives. Il est facile de voir que le

nombre d’arrivées avant le temps t, i.e. le processus

{N(t),t >0} = sup{k e N: A <t}
k
est un processus de comptage.

1.1.3 Processus de Poisson

Le processus de poisson est le plus utilisé dans la théorie des files d’attente. I1 modélisera

généralement le processus d’arrivée des clients dans un systéme.
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Définition 1.1.3.1. (Processus de poisson)[11]

On dit qu’un processus de comptage {N(t),t > 0} est un processus de Poisson s’il satisfait
auz trots conditions suivantes :

C1 » Le processus est homogéne dans le temps : La probabilité d’avoir k événements dans
un intervalle de longueur donné t ne dépend que de t et non pas de la position de l'intervalle

par rapport 'axe temporel :
pr(t) =P(N(t) = k) =P(N(t +s) — N(s) = k) pour tout s >0, t > 0.
C2» Le processus N(t) est a accroissement indépendants :
P(N(t+s)—N(s)=k,N(s)=j)=P(N(t+s)— N(s) =k)P(N(s) =)
= pr(t)p;(s)
pour tout s >0, ¢ > 0.

C3 » La probabilité py(At)

1—AAt) +o(At) sik=0
pr(At) = ¢ A(At) + o(At) sik=1
o(At) sik>2

A est appelé densité ou intensité du processus. C’est le nombre d’événements qui apparaissent

par unité de temps.

1.1.4 Loi exponentielle

Définition 1.1.4.1. (loi ezponentielle)[”]
Soit i > 0. On dit qu’une variable aléatoire réelle continue T suit la loi exponentielle de

parametre p (T ~ Exp(u)) si
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Distribution exponentielle :
La fonction de répartition de cette loi est :
1—e W) >0,
F(t) =

0 sinon.

L’espérance et la variance d’une loi exponentielle sont :

Théoréme 1.1.4.0.1. [25/

Soit T une variable aléatoire continue & valeurs dans R}. On a l’équivalence :
(1) il existe p > 0 tel que T' ~ Exp(p),

(ii) pour tout s,t >0, P(T > s+ t|T > t) =P(T > s).

C’est trés important. (ii) est une propriété qualitative (absence de mémoire). Donc toute
v.a. sans mémoire suit nécessairement une loi exponentielle.
Le temps d’attente T', avant la prise d’un premier poisson, d’'un pécheur totalement inexpé-
rimenté est une variable aléatoire sans mémoire (le temps d’attente résiduel ne dépend pas
du temps d’attente écoulé). Donc par nature, 7" suit une loi exponentielle.
La durée de vie D d’un objet qui ne s’use pas est une variable aléatoire sans mémoire. Donc
par nature, D suit une loi exponentielle. Etc.
Preuve :
(i) implique (ii), car

B(T>s+1) e h+)

P(T>s+tT >t) = PT > 1) =

e " =P(T > s).

Montrons maintenant que (ii) implique (i). Pour cela, introduisons G(t) = P(T > t).

C’est une fonction décroissante sur R*, on a G(0) = 1 et G(o0) = 0 par hypotheése.

De plus (ii) donne que G(t + s) = G(t)G(s) pour tous s,t > 0. On en déduit que pour tous
p,q € N, on a
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G(p) = G(p/q9)?, G(p) =GP, douG(p/q)=G(1)P/1.

En utilisant que Q est dense dans R™, que G est décroissante et que t — G(1)! est continue,
on en déduit que G(t) = G(1)! pour tout t € RT.

De plus, G(1) > 0. Sinon, on aurait G(t) = 0 pour tout ¢ > 0, et donc T'= 0 p.s.

(or on a supposé T a valeurs dans R}).

Aussi, G(1) < 1. Sinon, on aurait G(t) = 1 pour tout ¢ > 0, et donc 7' = o0 p.s.

(or on a supposé¢ T a valeurs dans R;").

On pose = —InG(1) >0 et on a G(t) = e ie. T ~ Exp(u). O

1.1.5 Processus de Markov

Définition 1.1.5.1. Soit (Q, F,P), un espace probabilisé, E un ensemble fini ou dénombrable
et T C R* un intervalle .

E : Espace des états. T : Espace de temps.

Soit {X (t),t > 0} un processus défini sur Q0 a valeurs dans E, on dit que {X(t),t > 0} est
un processus de Markov si :

Vs, t,u € T, avec (u < s <t) etVi,j,x € F,

on a:
PX;=j/Xs=1,Xu=2)=P(X;=j/Xs=1) = Pij(t,s) (*).
(* : Propriété d’absence de mémoire ou propriété de Markov).

Remarque 1.1.5.1. Si dans la propriété (*), on a en plus Pyj(s,t) = Pij(t—s), on dira que
le processus de Markov est homogéne. Dans ce qui suit, on ne considérera que les processus
de Markov homogénes.

On note P;j(t) = P(Xqs = j/Xs = 1), s,t € Ts4,j € E et P(t) = (Pi;(t))ijcexe est la

matrice de transition du processus de Markov {X (t),t € T'}.

Proposition 1.1.5.1. /28]

Pour s,teT etic E;P(Xs=1)>0,o0na:
1) > epbijt) =1, Vi€ E.

2) Pir(t +s) =3 ep Pij () Pjr(t).

(Equations de Chapman-Kolmogorov associées au processus ).
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Remarque 1.1.5.2. La matrice de transition P(t) caractérise le processus de Markov
{X(t),t € T}, c’est-a-dire :

A toute matrice stochastique P(t), on peut associer un processus de Markov {X (t),t € T},
de loi initiale (P(Xo =1),i € E) = Il qui va admettre P(t) comme matrice de transition.
En effet, construire ce processus revient a évaluer juste ses lois fini-dimensionnelles en fonc-

tion de P(t) et I1y. C’est-a-dire o évaluer :

L= ]P)[th = an,Xth = Gp—1, ....,th = al,XtO = ao], Yto,t1,t2, ey tn_1,tn € T, Va; € E.
L= P[th = an/Xt%l = anp—1, XO = ao] X P[thl = an,l/thﬁ = ap—2, XO = ao]

X ... X P[th = al/X(] = ao] X P[XO = ao].

= ]P[th = an/th_l = CLn_l] X P[th—l = an_l/th_Q = an_g] X .. X ]P)[th = CLQ/th = al]

x P[Xy, = a1/ X, = ao] x P[Xo = ag]

= Pan_1an (tn_tn—l) X Pan_zan_1 (tn—l —tn_Q) X... X Pa1a2 (tQ —tl) X Paoal (tl —to) X Ho(ao)
avec Iy = (P[Xo = i],i € E).
On note I, = (P[X; = i],i € E) la loi t-instantanée du processus {X (t),t € T}. On a :
I, = Iy x P(t).

En effet, pouri € £

(i) = P[Xy =] = 325ep P [ X = 1, Xo = J]
= jep P[Xi =i/Xo = j] x P[Xo = j
= er Ho(j) x Pji(t).

= IL(i) = > ep Ho(j) x Pi(1)

< II(t) =1I1(0) x P(t).

Génerateur infinitisimal d’un processus de Markov :[25]

On suppose que ¥(i,j) € E x E, la fonction Py;(t) est continue en 0, c’est-a-dire :
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= F;;(0).

Soit alors i > j,

e i#j,q;= lim Pijt(t) = lim <%OP“(O)> = P/;(0), (si P;;(t) est dérivable en 0).

t—0t

. . Pii(t)—1 . Pij()—Py; (0 . ;.
®1=),q; = tl_lgl+ <+t)> = t1_1>r(1)r1Jr (M) = P/.(0), (si Py(t) est dérivable en 0 ).
On pose q; = —q;; > 0.
On appelle alors la matrice générateur infinitésimal du processus de Markov la matrice sui-
vante :
Q= (ql'j)(i,j)eExE :

On a

qi;it +o(t St 1 ]

1+ gjt+o(t) sii=j

= 1-Py(t) = —qut+o(t) = 1— Py(t)=qt+o(t).

Remarque 1.1.5.3.
Z qij = 0, VieFE.

jEE
En effet
Yier i = 2 jer(LPii(0) lt=0 = (X ep i () lt=0 = (1)’ = 0.
Ainst

Gii + 2 (jemigy) G = 0= @i = —Gi = D2 Gij-
- qij est appelé le tauz de transition de i vers j.

- q; est appelé le tauz de transition a partir de 1.

Equations de Chapman-Kolmogorov au processus de Markov :[39]

On a Py(s+1t) = ,cp Pij(s) x P(t), donc

0 (e Psls) P(®)) S ) o
= = ij(8) X Qjk

- ot ,

ot
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= Pp(s) =2 iep Pij(s) X qjk,  Vi,k € Eet Vst eT.

iy Alsh) = VientiPir(t) = Pt = epaiPu(t), VikeEetVsteT.

On a alors ’écriture matricielle suivante :
P'(t) = Q x P(t).

Proposition 1.1.5.2. [/1]

L’équation différentielle matricielle admet la solution qui s’écrit comme
P(0) =Igxp

suit :

P(t)=)_ (Q:n) = Ipxp+ ) <(Cif!)n> = e9'( notation ).

n>0 n>1

Proposition 1.1.5.3. [90]
Si E est fini et Q (qui est donc finie) est diagonalisable (c’est-a-dire 3B inversible et D
diagonale telles que Q = BDB™!) ou

A0 0
0 A2 0
0 0 0 X\,

avec \;, 1 = 1,n sont les valeurs propres de Q) et B la matrice des vecteurs propres associés
aux valeurs propres \;.

Alors

P(t) = BA(t)B™!, avec A(t) = eP*
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Lois stationnaires d’un processus de Markov
On dit que II(¢) = II est une loi (solution) stationnaire du processus de Markov {X (¢),t €

T}, si elle est solution du systéme d’équations :

1Q = 0,

ZjeE =1

avec Q : générateur infinitésimal de {X(¢),t € T'}.

1.1.6 Processus de naissance et de mort

Les processus de naissance et de mort sont des processus stochastiques & temps continu et
a espace d’états discrets n = 0,1,2... Ils sont sans mémoire, et & partir d'un état donné n,

seules les transitions vers I'un des états voisins (n + 1) et (n — 1) avec n > 1 sont possibles.

n "

On parle alors de " naissances " et de " morts ". Ces processus sont utilisés pour modéliser
les systémes d’attente et I’évolution de populations.
Les files d’attente de type Markovien (M /M) sont des cas particuliers trés importants de

processus de naissance et de mort. Leur étude compléte sera effectuée dans le chapitre 2.

Définition 1.1.6.1. [79/
Soit un processus stochastique {N(t),t > 0} a états discrets n € N, et homogéne dans le

temps, c’est a dire :
P(N(t+s) =j/N(s) =1) = p;ij(t), ne dépend pas de s.

Le processus {N(t),t > 0} est un processus de naissance et de mort s’il satisfait les conditions

Suivantes :
piiv1(A) = N At + o(At), i >0,
Pii-1(At) = p; At + o(At), i> 1,
pii(At) =1 — (N + i) At + o(At), i > 0,
| pij(At) = o(At) si|i—j) > 2,
pii(0) = iy = b
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Les coeffcients positifs A; > 0 et u; > 0, (ug = 0), sont appelés taux de transition, plus
particuliérement taur de naissance (ou de croissance) pour \; et tauxr de mort (ou de dé-

croissance) pour fi;.

Régime transitoire :

Soient p, = P(N(t) =n),n > 0, les probabilités d’état

A.dt+o(dt)

Aqdt+o(dt) A, ,dt+o(dt)

dt+o(dt) pdt+o(dt) . dt+o(dt)

La matrice des transitions correspondante est :

1— NoAt oAt 0 0
1At 1— ()\1 + ul)At M AL 0
Q= 0 oAt L — (A2 + p2)At AaAt
0 0

En appliquant P(¢t + At) = P(¢) x @, on trouve

po(t + At) = (1 — NoAt)po(t) + p1Atpi(t);

(1.1)
pn(t + At) = )\n—lAtpn—l(t) + (1 - ()\n + Mn)At)pn(t> + ,un—i-lAtpn—i-l(t)v n > 1.
(AL — (¢
b ( Ai P ( ) = An—lpn—l(t) - ()\n + ﬂn)pn(t) + /jfn+1pn+1(t)~
On faisant tendre At vers 0, on trouve :
p;(t) = M—1Pn-1(t) — (An + pn)pn(t) + pinr1pnsa1(t), n > 1 (1.2)

Pour n =0 :

Po(t) = —Xopo(t) + pip1(t). (1.3)
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Donc :

po(t) = =Xopo(t) + pap1(t);
p%(t) = An—lpn—l(t) - ()\n + Mn)pn(t) + Mn+1pn+1(t), n > 1.

(1.4)

Les équations (1.4) sont connues sous le nom "équations différentielles de Kolmogorov " elles
permettent de calculer les probabilités d’état p,,(t) si I'on connait les conditions initiales du
processus.

Régime stationnaire :

Soit p, = tli+m pn(t), qui est la distribution stationnaire du processus étudié. Ces probabi-
—+00

lités satisfont le systéme d’équations de balance suivant :

Aopo = p1p1;
(1.5)

()\n + Mn)pn = )\n—lpn—l + Hn+1Pn+1, n > 1

oo
avec I’équation de normalisation Z pn = 1.

n=0

De (1.5), on obtient :

Ao
b1 = —Po
M1
Pourn=1":
AoA1
(A1 + p1)p1 = Aopo + pap2 = p2 = Po
M1 2

_ oM A
" s e

Po-

Pour déduire pg, on utilise I’équation de normalisation. On obtient le résultat suivant :

-1
A AoA AOATL - Ap
0 01 01 1

p1o pape M2 - - - i

po= |1+

Pour que le régime existe il faut que la somme ci-dessus converge.
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1.2 Analyse mathématique d’un systéme de files d’attente

» L’étude mathématique d’un systéme de files d’attente se fait le plus souvent par I'intro-
duction d’un processus stochastique, défini de fagon appropriée.

En premier lieu, on s’intéresse principalement au nombre de clients N(¢), se trouvant dans
le systéme a l'instant ¢ (¢ > 0).

En fonction des quantités qui définissent le systéme, on cherche & calculer :

* Les probabilités d’état p,(t) = P(N(t) = n), qui définissent le régime transitoire du
processus stochastique {N(¢),t > 0}. Il est évident que les fonctions py(t) dépendent de
I’état initial ou de la distribution initiale du processus.

* Le régime stationnaire du processus stochastique est défini par :

pn = lim py(t) = lim P(N(t)=n), n=0,1,2,...

t—+00 t——+o00

O, {pn}n>0 est appelée distribution stationnaire du processus {N(t),t > 0}.

1.2.1 Modéle file d’attente simple

Le modéle général d’un systéeme de files d’attente peut étre résumé comme suit.
Les demandes de service (clients) arrivent & un certain endroit et réclament un certain
service. Si un dispositif de service (serveur) est libre, le client qui arrive se dirige vers ce
dernier ou il est servi. Dans le cas contraire, on a deux possibilités : soit le client quitte
le systéme, soit il prend une place dans une file d’attente. A un moment donné, le client
est sélectionné pour le service selon une discipline donnée. Une représentation graphique est
donnée par la figure (1.1)

Files d'attente

A

La source e N Carvails
Ordre de traitement
O Arrivées des clients ! Départ des clients
OO0l— _0000, |@®@})——
oQ '
O \ | )
Y

Systéme d’attente

FIGURE 1.1 — Représentation d’une file d’attente.
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1.2.2 Structure et discipline de la file

File d’attente : "Lieu" ou les clients font la queue avant d’étre servis.|/]

Systéeme d’attente : la file d’attente + service en cours.

e Le processus des arrivées des clients :

Les arrivées des clients sont caractérisées par ’ensemble des instants d’arrivées de chaque
client ou d’'un groupe de clients dans le systéme. La collection de ces instants forment un
processus des arrivées. Souvent, on suppose que les temps entre deux arrivées consécutives
sont indépendants et identiquement distribués.

e La source des clients :

La population source, d’ott proviennent les clients, peut étre finie ou infinie, unique ou mul-
tiples.

e Nombre de serveurs :

Une station peut disposer de plusieurs serveurs en paralléle. Soit C (Voire FIG (1.2)) le
nombre de serveurs. Dés qu’un client arrive a la station, soit il y a un serveur de libre et le
client entre instantanément en service, soit tous les serveurs sont occupés et le client se place
dans la file en attente de libération d’un des serveurs. La plupart du temps, les serveurs sont
supposés identiques (ils possédent donc la méme distribution) et indépendants les uns des
autres.

Une station particuliére est la station IS (infinité servers) dans laquelle le nombre de serveurs
est infini. Cette station ne comporte donc pas de file d’attente.

Dés qu’un client s’y présente, il trouve en effet instantanément un serveur disponible et
entre donc directement en service. Elle permet de représenter des systémes pour lesquels le

nombre de serveurs est toujours supérieur au nombre de clients qui peuvent s’y trouver.
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Systéme d’attente

File d’attente

el [ 1111

Départs D

\(

o
&
§
a
7

FIGURE 1.2 — File d’attente avec plusieurs serveurs.

e Capacité de la file :
Elle représente le nombre maximal de clients dans le systéme. Un client arrivant et trouvant

ce nombre de clients présents dans le systéme sera perdu.

Le client K+1 est perdu |:|
>

‘ Attente Service

I )——

K clients présents dans la file

Processus d’arrivée Processus deservice ~ Processus de départ

FIGURE 1.3 — Capacité d’une file d’attente.

1.2.3 Discipline de service

Elle spécifie la maniére avec laquelle le serveur sélectionne le prochain client & servir.
Cependant, plusieurs possibilités existent quant & I’ordre selon lequel les clients seront servis.
Les principales disciplines de service sont :

FIFO (first in, first out) : Cette discipline est la plus usuelle. Les clients quittent le
systéme dans ’ordre suivant lequel ils sont entrés.

LIFO (last in, first out) : Le dernier client dans la file est le premier a étre servi.
RANDOM (aléatoire) : Le prochain client qui sera servi est choisi aléatoirement dans
la file d’attente :

Prioritaire : Les clients sont servis suivant un attribut qui leur est associé.

PS (Processor Sharing) : les clients sont servis de maniére égale. La capacité du systéme
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est partagée entre les clients.

1.2.4 Classification des systémes d’attente

Pour la classification des systémes de files d’attente, on a recours a une notation symbo-
lique (NOTATION DE KENDALL) comprenant six symboles rangés dans 'ordre A /B /c/m/n/Z
ou A et B décrivent respectivement la distribution des temps entre deux arrivées successives
et la distribution des temps de service, c est le nombre de serveurs (montés en paralléle), m
est la capacité du systéme. Le dernier symbole peut étre supprimé si m =oc.

n : population des usagers.

Z : discipline de service c’est la facon dont les clients sont ordonnés pour étre servi.

e Pour spécifier les distributions A et B, on introduit les symboles suivants :

M : inter-arrivées des clients sont indépendamment, identiquement distribuées selon une loi
exponentielle. Il correspond & un processus de Poisson ponctuel (propriété sans mémoire).
E}, : Ce symbole désigne un processus ot les intervalles de temps entre deux arrivées succes-
sives sont des variables aléatoires indépendantes et identiquement distribuées suivant une
loi d’Erlang d’ordre k.

Hj, : distribution hyperexponentielle de degré k .

D : les temps inter-arrivées des clients ou les temps de service sont constants et toujours les
mémes.

G : Inter-arrivées de clients ont une distribution générale et peuvent étre dépendantes.

1.2.5 Loi de Little

La loi de Little est une relation trés générale qui s’applique & une grande classe de sys-
témes.
Elle ne concerne que le régime permanent du systéme. Aucune hypothése sur les variables
aléatoires qui caractérisent le systéme (temps d’inter - arrivées, temps de service,. .. ) n’est
nécessaire. La seule condition d’application de la loi de Little est que le systéme soit stable.
Le débit du systéme est alors indifféremment, soit le débit d’entrée, soit le débit de sortie :

As = Ae = A. La loi de Little s’exprime telle que dans la propriété suivante :
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Théoréme 1.2.5.0.2. [//(Formule de Little)
Le nombre moyen de clients, le temps moyen passé dans le systeme et le débit moyen d’un

systeme stable en régime permanent se relient de la facon suivante :
n=ANWs .

Ou A est le taux d’entrée dans le systéme (A = \ pour une file(M/M/1)).

1.2.6 Mesures de performance

On note A le taux d’arrivée des clients. Cela signifie que ’espérance mathématique de la
durée séparant deux arrivées successives est E(A) = 1.
On note u le taux de service des clients. Cela signifie que 'espérance de la durée de service
est E(S) = %
L’intensité du trafic s’exprime de la maniére suivante :
p= % = % = temps moyen de service / temps moyen entre deux arrivées successives.
La distribution stationnaire du processus stochastique introduit permet d’obtenir les carac-
téristiques d’exploitation du systéme, telles que :
Le temps d’attente d’un client W, le temps de séjour d’un client dans le systéme Wy, le taux
d’occupation des dispositifs de service, la durée de la période d’activité, le nombre de clients
dans le systéme N, nombre de clients dans la files d’attente Ny.
Les mesures de performance sont :
- Le nombre moyen de clients dans le systéme 7 ;
- Le nombre moyen de clients dans la file d’attente ny ;
- Le temps moyen d’attente d’un client W ;
- Le temps moyen de séjour d’un client dans le systéme W, ;

Soient encore des relations (formules de Little) :

n=AW,; ny=AW; W,=W+1/u; W=75; ﬁ:ﬁf+%.
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1.3 Types de files d’attente

1.3.1 Modéles markoviens :

Les modéles markoviens caractérisent les systémes dans lesquels les deux quantités sto-
chastiques principales, qui sont le temps inter-arrivées et la durée de service, sont des va-
riables aléatoires indépendantes et exponentiellement distribuées. La propriété d’absence de
mémoire de la loi exponentielle facilite I’étude de ces modéles. L’étude mathématique de tels
systémes se fait par I'introduction d’un processus stochastique approprié. Ce processus est
souvent le processus de naissance et de mort {N(t),t > 0} qui défini comme étant le nombre
de clients dans le systéme a l'instant t. L’évolution temporelle du processus markovien est

complétement définie grace & la propriété d’absence de mémoire.

1.3.2 Modéles semi markoviens :

En I’absence de 'exponentialité c’est a dire lorsque 'on s’écarte de I'hypothése d’expo-
nentialité de I'une des deux quantités stochastiques :
Le temps des inter-arrivées et la durée de service, ou en prenant en compte certaines spé-
cificités des problémes par l'introduction de paramétres supplémentaires, on aboutit a un
modéle semi markovien. La combinaison de tous ces facteurs rend I’étude mathématique
du modéle trés délicate, voire impossible. On essaye alors de se ramener a un processus de

Markov judicieusement choisi & ’aide de 'une des méthodes d’analyse suivantes :

1. Méthode des étapes d’Erlang :

Son principe est d’approximer toute loi de probabilité ayant une transformée de Laplace
rationnelle par une loi de Cox (mélange de lois exponentielles). Cette derniére posséde la

propriété d’absence de mémoire par étapes.

2. Méthode des variable supplémentaires :

Elle consiste a compléter I'information sur le processus {N(¢),¢ > 0} en lui donnant un
caractére Markovien, ce qui nous raméne & ’étude du processus {N(t),£(t),t > 0}, ou &(¢)

sont dites alors variables supplémentaires.
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3. Méthode de la chaine de Markov induite :

Elle consiste a choisir une séquence d’instants 1,2,3, ..., n (déterministes ou aléatoires) telle
que la chaine induite {g,,n > 0}, ou g, est le nombre de clients dans le systéme & 'instant

n > 0, soit markovienne et homogeéne.



Chapitre 2

Systémes de files d’attente classiques

DAnS ce chapitre nous avons étudié la file d’attentes Markoviennes (M/M/1, M/M/c,
M/M/c/K) et les mesures de performance de chaque file, ensuite, nous avons étudié le

systéme de files d’attentes non Markoviennes m/G/1 par la méthode de la chaine induite.

2.1 Systémes de files d’attente régis par un modéle markovien

de naissance et de mort

Les modéles Markoviens sont des systémes ol les temps entre deux arrivées successives
et les durées de service sont des variables aléatoires indépendantes et exponentiellement
distribuées.

On s’intéresse au nombre N(t) de clients se trouvant dans le systéme & l'instant ¢. On

introduit donc le processus stochastique

(N(t),t >0} (2.1)

2.1.1 Systéme de files d’attente M /M /1

Description du modéle :

Le systéeme d’attente M/M /1 est un systéme formé d’une file de capacité infinie, d’'un unique
serveur et la discipline d’attente est FIFO. Les clients arrivent vers le systéme selon un
processus de Poisson de taux A > 0 (nombre moyen de clients arrivant pendant une unité

de temps), le taux de service est p (nombre moyen de clients servis pendant une unité de
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temps)

FIGURE 2.1 — File d’attante M/M/1.

La file peut étre considérée comme un processus de naissance et de mort, pour lequel :

Les taux des arrivés A, et de service p,, sont :

Ap =27, Vn >0,

w n#0
n — .
0 n=0
Le systéme est stable si :
A
p=—<1

- Si p > 1 le nombre de client tend vers I'infini donc le systéme n’est pas stable.

Analyse du modéle :

L’état du systéme a la date t peut étre décrit par le processus stochastique (2.1). Grace aux
propriétés fondamentales du processus de Poisson et de la loi exponentielle, on a pour un
petit intervalle du temps At les probabilités suivantes :

P(exactement une arrivée pendant At )= AAt + o(At) ;

P(aucune arrivée pendant At )=1 — AAt + o(At) ;

P(deux arrivées ou plus pendant At )= o(At);

P(exactement un départ pendant At / N(t) > 0)= uAt + o(At);

P(aucun départ pendant At / N(t) > 0)= 1 — pAt + o(At);

P(deux départs ou plus pendant At )=o(At).

e Ces probabilités ne dépendent ni de temps ¢ ni de 'état N(¢) dans lequel le systéme se
trouve.

Soient pyi(At) = P(N(t + At) = j/N(t) = i);i,j =0,1,2,...Ces probabilités de transition ne
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dépendent pas de I'instant t. On suppose que les arrivées et les départs sont mutuellement
indépendants.
Régime transitoire :

Soit pp(t) = P(N(t) = n). Le graphe des transitions se présente de la maniére suivante

A 3 A A A
" 1 1 1

FIGURE 2.2 — Diagramme de transition d’état M/M/1.

A partir du graphe des transitions, on obtient :

po(t + At) = p(At)p1(t) + (1 — AMAt)po(t);
pn(t + At) = N(At)pn-i-l (t) + )‘(At)pn—l(t) + (1 - (>\ + M)At)pn(t)7 n > 1.

Puis, les équations de Kolmogorov :

Po(t) = =Apo(t) + pp1(t);
p;l(t) = _()‘ + :U’)pn(t) + )‘pnfl(t) + UPn+1 (t)7 n > 1.

(2.2)

Ces équations permettent, en principe, de calculer les probabilités d’état p,(t), si l’'on connait
en plus les conditions initiales du processus, c’est-a-dire la distribution de N(0).
Régime stationnaire :

Il est démontré que 1tlim Pn(t) = pp, n > 0, existent et sont indépendantes de 1’état initial
—00
du processus (2.1), et tlim P, (t) =0, n > 0. De (2.2), on obtient le systéme d’équations de
—00

balance suivant :

=\ ,
mp1 Po (2.3)

APp—1 + Wont1 = A+ p)pn, n>1,
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o
avec an =1.
n=0

La résolution du systéme (2.3) (la résolution du modéle) s’effectue de la maniére suivante :

A
b1 = —Do-
1
Pour n=1":
A 2
Apo + pp2 = (A + p)p1 = p2 = (u) Po-
Pour n > 1:

<A>n
Pn=1\— bo-
U

Pour trouver la probabilité py, on utilise I’équation de normalisation.

En effet :

[e.9]

A A 2
an:1:>po+;po+(ﬁ) pot+...=1
n=0

1
bo = \ \ P ’
1+7;+(ﬁ) + ...

2
oul+ % + (%) + ... est une progression géométrique de raison % Elle convergente si % <1,

et est égale & 1_1A' Alors

m

po=1——.
I

S8

p= % est I'intensité du trafic. p < 1 est la condition d’existence du régime stationnaire.

D’ou

Encore, p, = (1 — p)p™, n > 0, est la distribution stationnaire du nombre de clients dans le
systéme M/M /1.
Caractéristiques du systéme M/M/1 :

» Le nombre moyen de clients dans le systéme 7 :
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Soit N = lim N ().
t—o00

n=E(N)= Z nPn
n=0
= (1=p) ) np"
n=0
> d
=(1-pp>_ "
n=1
d oo
=(1-rp > ()"
n=1

Donc
) A

n=-——

L—p p—X\
» Le nombre moyen de clients dans la file d’attente 7y :

Soit Nf:tlim Ng(t), out N¢(t) est le nombre de clients dans la file d’attente a la date t. La
— 00

0 N=0
variable Ny est définie de la maniére suivante : Ny = .
N—-1 N>1
oo
ny=E(Ny) => (n—1)pn
n=1

Ou bien
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» Le temps moyen de séjour d’un client dans le systéme :
Le temps moyen d’attente W et le temps moyen de sé¢jour W peuvent étre calculé soit a
'aide de formules de Little, soit & partir de la distribution stationnaire du systéme. Soit W

la durée de séjour d’un client dans le systéme.
We=EW.) =Y E(W./A,)P(Ap).
n=0

Ou A, est I’événement tel qu’il y a n > 0 clients dans le systéme & l'instant d’arrivée d’un

nouveau client. On a que E(W;/A,) = "T'H et P(A,) = P(N =n) = (1 —p)p". Alors

oo n o<
W= Z(n—i—l)(l —p)p— S (n+1)p"
n=0 H n=0
o0
:ﬂznpmrl LS
n=0 n=0
1l=p p 1—p 1
o (1=p? w (1-p)
p
wi—p)
1
=

» Le temps moyen d’attente d’un client :W
W=E(W) = 3 E(W/A,)P(4,)
n=0

et

E(W/A,) = g;
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2.1.2 Systéme de files d’attente M /M /c

Description du modéle :

les clients arrivent vers le systéme selon un processus de Poisson de taux A > 0 . Le service est
assuré par ¢ > 1 serveurs montés en paralléle. A I'arrivée d’un client, si 'un des serveurs est
libre, le client commence immédiatement son service. Dans le cas contraire (tous les serveurs
sont occupés par le service), le client prend place dans la file d’attente, commune pour tous
les serveurs. La capacité d’attente est illimitée (le nombre de positions d’attente est infini).
Lorsqu’un serveur se libére, le client en téte de la file d’attente occupe le serveur libéré. Par
conséquent, la discipline d’attente est FIFO. Les temps de service sont exponentiellement
distribués de moyenne finie 1/ . Les durées entre deux arrivées consécutives et les durées

de service sont mutuellement indépendantes.

C Serveurs

FIGURE 2.3 — File d’attante M/M/c.

Nous avons donc un modéle de file d’attente ou les arrivées et les départs sont modélisés par

un processus de naissance et de mort ot :

A=A, Vn >0,

0 sin=0;
Bn =94 nu sin<c;

cu sin>c.
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Stabilité du systéme :
La condition de stabilité de cette file est A < cu, et exprime le fait que le nombre moyen
de clients qui arrivent & la file par unité de temps doit étre inferieur au nombre moyen de

clients que les serveurs de la file sont capables de traiter par unité de temps.

A
p=—<1
cp

Graphe de transition :

FIGURE 2.4 — Diagramme de transition d’état M/M /c.

Régime transitoire :
Le systéme d’équations de Kolmogorov pour les probabilités d’état p,(t) = P(N(t) = n),

n > 0, se présente de la maniére suivante :

t) = A+ np)pa(t) + (n+ Dppnia(t), 1<n <g

t) = A+ cp)pn(t) + cppnsa(t), n=c

Régime stationnaire :

Soit tllglo Pn(t) = pn, n > 0. Cette distribution stationnaire satisfait les équations de balance
Si:n<ec

n=0: Apo = p1p1;

n=1: Ap1 + pp1 = Apo + 2up2;

n=(c—1):Ape—1+ (¢ = 1)ppe—1 = Ape—2 + cupe.
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Donc :
b1 = (%)Po
2
p2 = (ﬁ)pl = % (%) Po
A

Rt
p3 = (302 = 333 <;> Po

pe = 5 (3) po.
Si:n>c
)‘pc + cupe = )\pc—l + cuper1
)\pc—I—l + CUPc+1 = )\pc + CUPcH-2
Cc
De = % %) Po
c+1
Pe+1 = i (%) Po
c+2
1%+2——5%§<%) Po
n
Pn = o= <ﬁ) Po
D’ou

n
%(ﬂ po,  sil<n<g

Pn = n
1 A :
clen—c (;) p07 S1n Z C.

On remarque que pour n = ¢, les deux formules donnent la méme valeur.

Pour calculer la probabilité pour que le systéme est vide pg, on applique 1’équation de

(o ¢]
normalisation Z P = 1.

n=0

En effet :

c—1 n 00 ct+k
1 /A 1 /A
w135 R (i)

n=0 k

*
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La deuxiéme somme (%) peut étre réécrite de la maniére suivante

N o, <1 Y , N
La somme (xx) posséde une limite égale a —x st < 1. Par conséquent, le systéme
pe

considéré est en régime stationnaire si p = ﬁ <1,

p est l'intensité globale du trafic. On obtient ainsi

(S ey, )
= (S5 () ail)

e
Encors,
c—1 n c OO -1
1 /A 1 /A
w= (S5 C) A6 T)
(n:O n! \ p cd\p) ~=
et

() Ge) omer
pn:j - - Po=p De-
'\ p e

Remarque 2.1.2.1. la distribution stationnaire peut s’obtenir rapidement en appliquant la

relation établie pour les processus de naissance et de mort.

En effet
Pn = %po, pour n < c il vient
B AXAX . AXAXAX..oX A SN Y| A\"
bn = X2 X ... X (e—1)u X e X cp X cp. .. xcupo_ cluc \ cp Po= Cren=c I po-
Caractéristiques du systéme M/M/c :
» Le nombre moyen de clients dans le systéme 7
e’} c—1
_ n(A/p)" n(A/p)"
n=) me =) = D eion—e
n=0 n=1 =c
A A c+1
N Y/ -



2.1 Systémes de files d’attente régis par un modéle markovien de naissance et
de mort 38

» Le nombre moyen de clients dans la file d’attente 1y

R M=, (AN
pu— k c pu— k —
ng E Pe+k ol . e Po

k=0 k=

» Le temps moyen de séjour d’un client dans le systéme W,

LIS SN Y/

H clep <1 — ﬁ)

s

> 3

» Le temps moyen d’attente d’un client W

oA p)°
W=-1=—""""Tp
A (ep— A)on

2.1.3 Systéme de files d’attente M /M /c/K

Description du modéle :
A présent, supposons que dans le systéme M/M/c, le nombre de positions d’attente est li-
mité (égal a K). A Parrivée d'un client, si tous les serveurs et toutes les positions d’attente

sont occupées, le client quitte le systéme définitivement sans recevoir le service.

M= 0<n<K,

pn = p x min{n,c}, 1<n<K.

Graphe de transition :
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NN N N
@ @ @ ____________ @ @ @

LA IR N IR N I~
M 24 "3y cy cy cy cy

FIGURE 2.5 — Diagramme de transition d’état M/M/c/K.

Régime transitoire :
Soient p,(t) = P(N(t) = n), 0 < n < K. Le systéme d’équations de Kolmogorov pour les

probabilités s’états s’obtient & partir du graphe des transitions ci-dessus. En effet,

po(t) = =Apo(t) + ppi(t);
Pp(t) = Apn—1(t) = (A + np)pna(t) + (n+ Dppnyr(t), 1<n<c
Pp(t) = Apn-1(t) — (A + cp)pn(t) + cupni1(t), c<n < Kj;

Régime stationnaire :

Soient p, = tlim pn(t), 0 < n < K. La distribution stationnaire p,, satisfait le systéme
— 00
d’équations de balance suivant :

;

0 = —Apo + up1;
0=Apn—1— A+nu)p,+ (n+Duppr1, 1<n<g
0=Apn—1— (A+cu)pn +cupny1, c<n<K;

0= ApK—1 — CPK.

La résolution de ce systéme, nous donne :

n
%(ﬁ) Po, 1<n<g

n n—c c
C.C%(ﬁ) poz%(ﬁ) (ﬁ) po, ¢c<n<K.

La mesure importante de ce systéme est la probabilité de perte, qui est la probabilité pour

Pn =

que le systéme se trouve dans I’état K :
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K
La probabilité py s’obtient & partir de ’équation de normalisation Z pn=1:

ne (& (2R @)

Dans le cas particulier oi K = ¢ (systéme a demandes refusées), la distribution stationnaire
du processus {N(t),t > 0} correspondant (formule d’Erlang) est

1 )\n \ c 1 )\ n —

n=0

On a également
IO
P(perte) = — <> Po-
c \ p

Caractéristiques du systéme :
» Le nombre moyen de clients dans la file d’attente 1y

On démontre que
K—c 2 K—c—-1
A (AN )€ A A A
ny= E npc+n:—( /',u,) p0<1+2(>+3(> +...+(K—C)<> )
— u cle e e e

o1 = () ,
(c—1)! (c-2) "

L’application des relations de Little fournit d’autres mesures de performance
W="5; We=%; n=ns+2

>3

2.2 Systéme de files d’attente M /G /1

Pour décrire I'état d’un systéme de type M/G/1 a la date t, il faut connaitre non seulement
le nombre de clients qui se trouvent dans le systéme & la date ¢, mais également le temps de
service, déja écoulé R(t) du client qui est en train d’étre servi. On peut alors montrer que le
processus bidimensionnel {N(t), R(t),t > 0} est & nouveau du type markovien, cependant,
le calcul de son régime transitoire ferait intervenir des équations aux dérivées partielles. Par

conséquent, on choisit une autre méthode qui rameéne 1’étude du processus non markovien
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{N(t),t > 0} a celle d’une chaine de Markov a temps discret associée au processus considéré
dont elle permet de calculer le régime stationnaire.

Description du modéle :

Le systéme d’attente M/G/1 est un systéme d’une file d’attente capacité illimitée de disci-
pline FIFO et d’un seule serveur. Les clients arrivent dans le systéme selon un processus de
Poisson (A > 0). Les durées de service sont des variables aléatoires positives mutuellement
indépendantes noté Se, et distribuées selon une loi générale de fonction de répartition B(x),
de moyenne finie E(Se) = i et de E(Se?). Les durées entre deux arrivées consécutives et les
durées de service sont également mutuellement indépendantes.

Analyse du modéle :

Soit {N(t),t > 0}. Montrons que {N(t)>0y} ne définit pas une chaine de Markov. Soient
tq et ty les dates de début et de fin d’un service, ¢, I'instant d’arrivée d’un nouveau client.
Sity <ty <ty , la probabilité qu'un départ s’effectue dans |t,,t, + At], ne dépend pas
seulement de At, mais de la date t; & la quelle le service en cours a commencé. Comme
le temps résiduel du service (t; —t,) dépend du passé, alors la chaine {N(t);>0)} n’est
pas markovienne. Par conséquent, on utilise la méthode de la chaine de Markov in-
duite. A cet effet, on considére N(¢) aux instants &1,&a,...,&y,... ou les clients terminent

leur service et quittent le systéme. On définit ainsi un processus stochastique & temps discret

{Nn = N(&),n =1} (2.4)

Pour vérifier que cette suite de variables aléatoires est une chaine de Markov & temps discret,
on considére le nombre A, de clients qui entrent dans le systéme pendant que le n-éme client

est servi. Les variables A,, sont indépendantes entre elles, leur distribution commune est

> e (A)F
P(A, =k)=a; = / e~ TdB(t) ,ou ag > 0et k> 0. Alors
0 .
Np—14+App1 Np21
Npy1 = n> 1.
An+1 N, =0

L’équation fondamentale de la chaine vaut donc

Npi1 =Ny — 6p+ Any1, (2.5)
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1 N,>0

ol 0, = )
0 N,=0
Np11 ne dépend que de N, et de A,y1 et non pas des valeurs prises par Ny_1, Np_o, ...
La suite {IN,,n > 1} est une chaine de Markov induite du processus {N(t),¢ > 0}. Ses
probabilités de transition p;; = P(N,41 = j/Np = i) se calcule par

Poj = aj pour j >0

pij = aj_iy1 pour 1 <7< j+1-

pij =0 ailleurs

La matrice des transitions est

ap aip az as

ap a1 az as

FIGURE 2.6 — Diagramme de transition d’état M/G/1.

Vu qu’on peut passer de chaque état vers n’importe quel autre état, il s’agit d’une chaine
de Markov irréductible. De plus, la matrice n’est pas décomposable (est apériodique). La
chaine est donc ergodique. La distribution stationnaire de la chaine existe si p = % <1.

Pour les variables aléatoires A,,, nous disposons de quelques résultats importants :
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E(A,) = AE(Se) = % = p.

La fonction génératrice

A(z) = Zakzk = sz/ x e MdB(t)
k=0 k=0 70
00 e k
_ / e_>‘t< (Atz) )dB(t)
0 !
k=0
— / e—)\te/\tde(t)
0
o
= / e A=A B(1).
0

Soit B(s) = / e *'dB(t). Alors A(z) = B()\ — \z). Encore, la série A(z) converge pour
0

|z| <1:

1) 2] <1; 0<agp<1Vk, on a |apz®| < |2F|;

2) |z]=1; AQ)=1.

Remarque 2.2.0.1. 1. Théoréeme des probabilités totales :

Cas discret : P(A) = Z]P’(A/Y = yi)P(Y = yp).
k

Cas continu : P(A) = [P(A)Y =y)g(y)dy.
2. Probabilité que le nombre d’événements N qui ont lieu pendant un intervalle U = u dont
la densité de probabilité f(u) est connue, est égal a n :

P(N =n/U =u) = e~ 2w

Dot
P(N = n) = /OOO PN = n/U = u)f(u)du = ~ /OOO X ()™ f () du.

Tl

E(N) = AE(U) ; Var(N) = M2Var(U) + ME(U).

Supposons que p < 1. Le systéme se trouve dans un régime stationnaire. Soit II = [mg, 71, . . .]

la distribution stationnaire de la chaine de Markov induite (7; = ILm P(N(&,) = j)). Par
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o0
conséquent, II =II x M, ou m; = Zﬂipz‘j, J=0.
=0

j+1 J+1
T = ;T + E aj_jy1T = a;T + E aj—i417; — aj17m0, J = 0.
i—1 i=0

A présent, on applique la méthode des fonctions génératrices. En effet,

. 4 - 0 -
g w2 =T E a;z? + 2 g cjp120 T — ~ E aj127
=0 =0 =0 =0

Jj+1

ou ¢jt1 = Zaj—i+17ri-
1=0
On introduit les fonctions génératrices suivantes :
o0 o0 [e.e]
II(z) = Zmzi; A(z) = Zaizi; C(z) = chzj =T1I(2)A(z).
i=0 i=0 j=0

Finalement, on obtient

ou bien
(=) = 22EE pour [2] < Let [2] # 0.

On a que II(1) = 1, Cependant, II(1) = lim1 I1(z) = 0/0. En appliquant la régle de I’'Hopital,
z—

on obtient #9(1) =1 Alors mp=1—A'(1) =1 - XE(Se) =1 — p.

Le résultat final est la premiére équation de Pollaczek-Khintchine pour le nombre de clients

dans le systéme :

C(1-pAR)-1) _ (1-pBA-A)(=-1)
O [ SO (2.6)

La condition d’existence d’un régime stationnaire est p = % <1.

Remarque 2.2.0.2. La probabilité my peut étre trouvée d’une autre maniére. De [’équation

fondamentale de la chaine de Markov induite (2.5), on a E(Npt1) = E(N,) — E(d,) +
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E(An+1). Vu que E(Npy1) = E(N,),E(Any1) = E(0,) = P(6, > 0) = P(N, > 0) =
1-P(N,=0). Doumg=1—p.
Considérons les probabilités suivantes :
o i
pj tlifgop(N(t) ])7]_07
m; = lm B(N(€) =), j > 0
rj = nh_}rﬁlo P(N(s,) =J), j > 0; g, est Uinstant d’arrivée de n-éme client.
Vu que le processus des arrivées est poissonien, et le nombre N (t) subit des changements
discontinus de taille 1 (£1), on obtient p; = r; = m;. Comme suite logique, la distribution

stationnaire du processus a temps continu {N(t),t > 0} est identique a celle de la chaine de
[o.¢]

Markov induite. Par conséquent Q(z) = ijzj =TII(2).
§=0

Caractéristiques du systéme M/G/1
» Le nombre moyen de clients dans le systéme n
Formule de Pollaczek-Khintchine pour le nombre moyen de clients dans le systéme :

Considérons I’équation fondamentale (2.5). Vu que (5% =9, et 6,N,, = N,,, on trouve
N2, =N245, 4+ A2, — 2N, — 20, Apy1 + 2Ny Ay

On a que : A,41 est indépendante de N, et de dy,.
E(NZ,) =E(N2); E(4,) =p=3.

o
Alors,
E(N3y 1) = E(N2) + E(6n) + E(A2 1) — 2E(Ny) + 2E(An1)E(N, — 6y),
ou bien :
2E(N,) = p+E(A7 ) + 2p(E(Ny) — p).
D’ou

_ P+ EATL) +20°
2(1-p)

Pour trouver E(A2 ), considérons le régime stationnaire.

E(Nn) (2.7)

lim E(A% ;) =E(4?) = /OO E(A?/T = t)dB(t)

n—oo
:/\/ tdB(t)+)\2/ t2dB(t)
0 0

— % + A2(Var(Se) + (1/u)?).
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Enfin, la formule (2.7) devient

2 2
o B B P+ A VCLT(SB)
n= nll_?;oE(N") =EN)=p+ 2(1 —p)

Le nombre moyen de clients dans le systéme peut étre également trouvé a partir de la
fonction génératrice II(z) : E(N) = 7 = l1—>m1 IT'(z). Ici, le calcul de la limite donne une
indétermination. Par conséquent, il est nécessaire d’appliquer la régle de I’Hopital deux fois.
» Le nombre moyen de client dans la file d’attente :

0%+ \2Var(Se)
2(1-p)

» Temps moyen de séjour d’un client dans le systéme :

W 1 N A(Var(Se) + %)
I 2(1=p)

» Temps moyen d’attente d’un client :

_ AVar(Se) + ﬁ)
"= 2(1—p)

Période d’activité

Soit J la durée de la période d’activité du systéme M/G/1 (I'intervalle de temps pendant
lequel le dispositif de service est continuellement occupée). Admettons que pendant une
longue durée ¢, le systéme d’attente passe par n cycles d’exploitation complets dont chacun
est composé d’'une période d’activité J et d’une période d’inactivité V. Pour les grandes
valeurs de t (t — 00), on a t = n(E(J) + E(V)). D’autre part, la probabilité que le systéme
soit vide est

1

Ty = Ppo = %. Mais pg = 1 — p et E(V) = 1. I en résulte que E(J) = T SEA < .

Ce résultat est valable et pour le systéme de files d’attente M/M/1.



Chapitre 3

Systéme de files d’attente avec
distribution générale du temps de
service, vacances du serveur et clients

impatients

DAns ce chapitre nous avons étudié le systéme M/G/1 avec vacances du serveur et clients

impatients, et le cas des temps d’impatience a distribution exponentielle.

VACANCES : dans un contexte de file d’attente représente une période pendant laquelle
le serveur est absent ou indisponible pour offrir un service. Les situations qui conduisent a
des vacances sont diverses, & savoir les pannes du systéme, la maintenance du systéme ou
uniquement pour une pause. Au cours des derniéres décennies, les modéles de files d’attente
de vacances ont été largement étudiés, soit pour résoudre des problémes particuliers dans de
nombreuses situations pratiques, telles que les centres d’appels, les ordinateurs, les industries
en croissance, les services Web, etc.

L’IMPATIENCE : est une caractéristique trés importante de la théorie des files d’attente. Les
modéles de files d’attente de vacances avec I'impatience des clients sont considérés comme
des outils trés appropriés pour analyser divers systémes de services complexes et industries

importantes. Dans la littérature traditionnelle sur les files d’attente de vacances avec des
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clients impatients, les études sur le comportement des clients ont toujours été basées sur
I’hypothése que I'impatience des clients ne se produit que lorsque le serveur est en vacances.
C’est le cas ou les clients peuvent voir I'état du serveur. Cependant, dans de nombreuses
situations réelles, y compris les centres d’appels et les systémes de production, il peut ne pas
étre possible d’obtenir des informations sur ’état du serveur. De plus, une longue attente
dans la file d’attente est un autre facteur qui conduit & I'impatience des clients quel que soit

létat du systéme (actif ou en vacances).

3.1 Description et notations du modéle

Dans cette section, nous considérons le cas des temps de services généralement distribués,
c’est-a-dire que le processus sous-jacent est la file d’attente M/G/1 avec vacances multiples
de serveur.

Le processus d’arrivée est Poissonnien avec taux A. Les temps de service sont des variables
aléatoires i.i.d, tous distribués comme B, ayant le premier moment E(B), deuxiéme moment
E(B?) et Transformée de Laplace-Stieltjes (T L-S) B*(s) = E(e~*B).

A la fin d’une période occupé le serveur prend des vacances U, ayant le premier moment
E(U), et deuxiéme moment E(U?) et Transformée de Laplace-Stieltjes (T L-S) U*(s) =
E(e~*Y).

Si le systéme est vide & la fin des vacances, le serveur prend de nouvelles vacances. S’il y a
n > 1 client & la fin des vacances, le serveur démarre immédiatement une période d’activité.
Lorsque le serveur est en vacances et n’est pas disponible pour le service, les clients qui

arrivent sont tmpatients. Une arrivée qui constate que le serveur est en vacances, active

n !

un " minuteur d’impatience ", T. Si le temps impatience 1" expire le client abandonne le
systéme. Chaque client active sa propre minuterie et les T; sont i.i.d. variables aléatoires,
indépendantes du nombre de clients en attente.

Soit ¢ = 0 l'instant de début des vacances. Ensuite, une observation clé est que, au sein
de U, I’évolution du systéme est la méme que celle d'une file M/G /oo avec des temps de

service tous distribués en T'. Pour le temps ¢ < U, il est bien connu [16] (Takacs, 1962) que
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le nombre de clients dans le systéme a une distribution de Poisson avec le paramétre :

A(t) = )\/Ot(l ~P(T < y))dy, t<U. (3.1)

3.2 Caractéristiques du modéle

3.2.1 Durée d’une période de vacances 7

Considérons I'instant ¢ = 0 lorsque le serveur part pour la premiére fois en vacances de durée
Uy. Si a linstant ¢t = Uy la file d’attente est vide, le serveur prend une autre vacance Us,
et bientdt. Cette séquence d’événements se termine au premier instant lorsque le serveur
retourne et trouve un systéme non vide. Nous appelons cette durée entiére, 7. UNE PERIODE

DE VACANCES.

En utilisant I'analogie M /G/oo, la probabilité d'un systéme vide au temps U est e AU),
Ainsi,

k k
T:Z Ui 4+ Uk41 avec probabilité (H e MUY (1 — MUk,

i=1 i=1

Par conséquent, le TLS, 7(s), de la Période de vacances est donné par :

7(s) = E(e™™")

- Z E(G*S(Zle Ui) g=5Uk+1 (e~ PO A(Ui))(l _ B*A(UkJrl)))
k=0

= i(E(e—(SU-i-A(U)))k(E(e—sU) _ E(e—(sU-i-A(U))))

o

U* (S) . E(e—(sU+A(U)))

T 1—E(eGUHAD)) (3.2)
Donc la durée moyenne d’une période de vacances est :
_ k@)
E(r) = T g eamy- (3.3)

3.2.2 Nombre de clients en début de période occupé

Une période occupé commence avec N(7) > 1 client. Nous dérivons maintenant la fonction

génératrice de probabilité (FGP) de N (7). Il est & noter que N(7) n’est pas distribué comme
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une variable de Poisson de paramétre A(-). Il s’ensuit que les derniéres vacances U en 7 (dans

lesquelles il y a au moins une arrivée) ne sont pas réguliéres. En effet

U*(s)|nwys1 = E(e*YIN(U) > 1)

B ivw)>1y)
- ERWNU)>1)

_U*(S) - E(e—(sUJrA(U)))
B 1 —E(e M)

Cela résulte dans
E(U) — E(Ue 2U))

E(U|nw)>1) = 1— E(e-A0)

N(Ul) si N(Ul) Z 1,
Nous écrivons N(7) =
N'(t") st N(Uy) =0.
Ou N'(7') et 7/ sont i.i.d, répliques de N(7) et 7, respectivement. Alors, le FGP de N(r)

est donné par

Grn(z) = E(zN0)
=EEEOINU) = DP(N(U) > 1)) + EEEYD|N(U) = 0)P(N(U) = 0))
— (Y et BOD) g pe-an),
n=1
Ainsi,

GN(T)( )_ 1—E(€7A(U))
> %E@‘A(U)(A(U)")z"

== 1 —E(e-A0)) (3.4)

On trouve facilement

LR~ A (AU
P(N(r) =n) = n'Ef—E(e—(M(U[{)) )), (n=1,2,3,...) (3.5)
et

E(N(r)) = —r D)) (36)
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3.2.3 Période d’occupation

Soit I' la durée d’une période d’occupation.

Une période occupé commence avec N (7) > 1 clients, est donc égal & la somme de 01,05, . . ,0n (1),
périodes réguliéres M/G/1, sont i.i.d, tous distribués comme 6, ou 6*(s) = B*(s + A(1 —
0*(s))). Ainsi, le (TL-S) de I' est donné par :

I(s) = B(e~T) = B(e~*E0 0
=E((6"(5)V7) = Gy (0°(5))-
En utilisant (3.4) on obtient

. E(e—(l—G*(s))A(U)) — E(e—A(U))
I“(s) = 1~ R (A0 . (3.7)

Avec p = \E(B)

B() = B(V()B() = 1= T (3.9)

Maintenant, la proportion de temps pendant laquelle le serveur est occupé, Pyecyp), est

donnée par
E(T) E(A(U))E(B)

Flocewn) = E0) 1 B(r) ~ EGAD)E®) + (1 - p)ED) (3.9)

3.2.4 Probabilité que le systéme est vide et le serveur en vacences

Soit D la somme des intervalles de temps, dans 7, ou le systéme est vide. C’est-a-dire

D= / Ly n()=oydt. (3.10)
0
En raison de la propriété régénérative du systéme, nous pouvons écrire
Uy ,
D= /O Livw=0ydt + Dl wn=o}
ott D" a la méme distribution que D. Puisque E(1{x)—0y) = e M on a

E(fOU e MV at)

ED) = T geamny -

(3.11)
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Maintenant, puisque Pyg est la fraction de temps pendant laquelle a la fois le systéme est

vide et le serveur est en vacances, nous avons
Poo =

En utilisant (3.11), (3.8) et (3.3) nous obtenons finalement

E( OU e~ MV at)

Fo0 = B U))E®) + EOD)
Ue—A(t)
Poo = (1 —p) Ely %)

E(AU))E(B) + (1 = p)E(U)

(3.12)

(3.13)

Pour le cas ot la variable d’impatience T est distribuée exponentiellement avec le paramétre

&.
(1 p)E(fY e <Dy

0= 200 e) + (1= DEW)

Notez que lorsque & — 0 nous obtenons

b _1=pl=U'(
WTEW) A

Si U est distribué exponentiellement avec le paramétre v alors cela se simplifie en

B 1—0p B o
Fo= gy - Ty

(3.14)

3.2.5 Temps de vacances et d’impatience distribués de fagcon exponen-

tielle

En supposant que U ~ Ezp(7y), 'équation (3.14) donne

_A

o —yu( [U —e— ¢t
(L=p) [umgre "™(fmge e )dt)du

Poo =

21— )+ (1- )}

En changeant I’ordre d’intégration et en appliquant le changement de variable :s = 1 — =&

dans le numérateur ci-dessus, on obtient

boa d T 1q _a
/ e 23(1—3)“’/5 i :/ (1—3)g lem 8%

=0 5(1 - 8) s=0 g
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(pour définir K, voir [16])

ou la derniére égalité provient de I’équation (2.10)(voir le [16]). Ainsi,

L-Pg K (1+8@-N
2L L A+ (- N

qui est l'expression de Pgp donnée par 1'éq (2.19)(voir le [16]).

3.2.6 Nombre de clients 4 un instant de fin de service

Soit X, le nombre de clients présents aprés I'achévement du n-éme service. On a

Xo—1+AB)  siX,>1,
Xnt1 =d
N(t)—14+ A(B) siX,=0
ot A(t) est le nombre d’arrivées de Poisson dans (0,t¢]. Le symbole =, signifie "égal en

distribution". Par conséquent, en régime permanent, le FGP de X = lim X, est donné par
n—oo

X(2) = E(z%) = EX|X > 0)2'E(zAP)(1 = P) + E(zN )21 E(z4B) P,
="' B* (M1 = 2))((X(2) — Po) + E(zN7)Py)
ot Py = (X = 0). Ainsi,

N B E(ZN(T)) -1
X =P —moa =)

B*(\1 - 2)) (3.15)

ot E(zN(M) = G n(r)(2) est donné par (3.4).
Pour calculer Py, nous substituons z = 1 dans (3.15) et appliquons la régle de L’Hopital

pour obtenir

_ _R(e—AU)
1—p (- )1 E( )

o= P =0 = gy EAD)

(3.16)

Ou p = AE(B) et E(N(7)) est donné par (3.6).

Notez que Py # Pgg puisque Py est la fraction de temps pendant laquelle le systéme est
vide, tandis que Py est la fréquence relative des occurrences, parmi les instants de fin de
service, lorsque le systéme devient vide.

Pour terminer

o Gxp() — DB - )
X(z)=(1- p)]E(N ™)) (z — B*(\(1 — 2)))
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(B( =) — 1B (A1 - 2))

EAD) B (1~ 2)) (3.17)

=(1-p)

Lorsque T' = oo, le processus se transforme en file d’attente M/G/1 avec plusieurs vacances
de serveur. Puis A(U) = AU et (Gy(r)(2) — 1)/E(N(7))=(U*(A(1 - 2)) = 1)/(AE(U)).
L’équation (3.17) conduit alors a Iexpression connue (voir Levy et Yechiali (1975)[16] et

Boxmal[9])
L Ur(AM1-2)) -1
X(z)=(1-p) ME(U)(z — B*(\(1 — 2)))

B*(\1 — 2)). (3.18)

3.2.7 Décomposition stochastique

L’équation (3.17) peut étre écrite sous une forme de décomposition, c’est-a-dire,

5 7 GN(T)(z)_l
Z_

(=~ DE(N(T) (3.19)

ou L myc(2) est le (FGP) de I'état du systéme (occupation) a un moment arbitraire dans

la file d’attente réguliére M/G/1 correspondante, donné par

Euents) =1 - pE= 0 RIS (3.20)

Autrement dit, X est la somme de deux variables aléatoires indépendantes, Ly g/ et Y,

ou le FPG de Y est donné par

~ . GN(T) (Z) -1
Y = RN ()

Maintenant, & partir de (3.19) et en utilisant (3.4), il s’ensuit que

E(X) = E(Lagjg 1) + E(Y)
([ NE(B?) E(A(U)?)
- <2<1—p> * >+2E<A<U>>‘ (3.21)

Lorsque T' — oo, gé%?&;% = )‘Q]IEE(([(]]? =AE(Ry), ot Ry est la durée de vie résiduelle de U.
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3.2.8 Nombre moyen de clients dans le systéme

Nous calculons maintenant E(L), (7 = E(L)), le nombre moyen de clients dans le systéme.
Nous écrivons

E(L) =E(LIPV)(1 - P(occup)) + E(L]occup)[?’(occup). (3.22)
(P.V : Période de Vacances)
Considérez la période de vacances 7. Soit N () le nombre de clients dans le systéme au temps
T
£ [0,7]. Soit A — / N(t)dt. Puis,
0
U

A= i N(t)dt + A"y )=o)

ou A’ a la méme distribution que A, et N(¢) a une distribution de Poisson avec le paramétre

A(t). On calculé 'espérance on trouve :

Ensuite, en utilisant (3.3),

Maintenant, E(fOU N(t)dt) = E(A(t)), ce qui implique que :

E(fy A(t)dt)

E(L|P.V) = D)

(3.23)

En particulier, lorsque T' ~ Exzp(§) et U ~ Exp(vy), alors E(L|P.V) = ﬁ Considérons

maintenant une période occupé (qui commence avec N(7) > 1 clients). Puis,
N(r)

E(Lloccup) = En(r) Z (E(Laryayiloccup) + (N(7) —n)

n=1

= B(N(r)E(Lasscploceun) + 5Ex( (N(r)(N(7) 1), (3:24)
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Clairement, E(Ls/q/1]occup) = E(Lyr/q/1)/p- En collectant les termes, on obtient

U 1-p
E(L)=E (/0 A(t)dt> (1—p)E(U) +E(A(U))E(B)

+ (EN)ELaryop)/p+ BN DN - 1) (1— p)E(U) + E(A(U)E(B)’

(3.25)

Ot E(N(7)) est donné par (3.6), E(Lpz/c/1) est donné par le premier terme du membre de
droite de (3.21) et

2
E(N(r)(V(r) - 1)) = — = 0))

= Oy (3.26)

qui est dérivé en différenciant (3.4) deux fois a z = 1. lorsque T' ~ Exp(§) et U ~ Exp(7).
Alors

o(i) EAW)?) = %(1— 2% + 520),

o(ii) E(e ) = 1K,

et 2 [ A)ir) = 3 (50) - £+ ) = sy

La substitution de ce qui précéde dans (3.25), avec E(A(U)) = A/(£+7) (que nous établirons

en (3.28)), donne une solution explicite pour E(L) lorsque T et U sont distribué de fagon
exponentielle. Notons en outre qu’on peut facilement montrer que dans le cas exponentiel,
et avec E(B) = 1/pu, le premier terme de (3.25) coincide avec E(Lg) donné dans la section

2.4(voir [16]).

3.2.9 Proportion de clients servis

Une mesure de performance importante est la proportion de clients servis, notée P(servi).
Nous pouvons écrire :

P(servi) =Nombre attendu de clients servis au cours d’un cycle/Nombre d’arrivées prévu
au cours d’un cycle.

En utilisant (3.9) puis (3.3) et (3.6), on obtient
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1
_ . (3.27)
p+ A1 - P)ﬁ%\(i(%)))

Clairement, P(servi) — 1 quand p — 1. Pour des vacances et des temps d’impatience a

distribution exponentielle, ot U ~ Exzp(v) et T' ~ Exp(§), on a :

v A
AU) = A / e~y = 21— V)
y=0 5
menant a

E(A(U)) = /O:O 2(1 — e ) ye M duy = A (3.28)

Donc

P(servi) = ! = 7 . (3.29)



Conclusion

Dans ce travail, nous avons analysé d’un systéme de fils d’attente M/G/1 avec distribution
générale du temps de service, vacances du serveur et clients impatients.

En premier lieu, nous avons passé un rappel des processus stochastiques qui sont un outil
dans 'analysé de files d’attente, et introduit quelques notions de base de la théorie des files
d’attente.

En deuxiéme lieu, nous avons étudié le systéme de files d’attentes classiques, et systéme
M/G/1 avec distribution générale du temps de service, et le mesure de performance du sys-
téme.

Ensuite, nous avons étudié le systéme de files d’attente M /G /1 avec distribution générale du
temps de service, vacances multiples du serveur et client impatient. Nous obtenons les fonc-
tions génératrices des diverses caractéristiques du systéme (Durée d’une période de vacances,

Nombre de clients en début de période occupé, La période d’occupation,. . .).
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