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Résume

Dans ce travail, on s’intéresse a ’étude de l’estimation de la moyenne
d’une loi normale multidimensionnelle a variance connue. On prend comme
critére adopté pour comparer deux estimateurs, le risque associé a une fonc-
tion de colt quadratique générale. On étudie plus particulierement la mi-
nimaxité des estimateurs a rétrécisseurs de type James-Stein et de type la
partie positive de James-Stein. A la fin du mémoire, on illustre les résultats
théoriques par des représentations graphiques des fonctions des risques des

estimateurs considéreés.

Mots clés : Estimateur de type James-Stein, estimateur de type la partie

positive de James-Stein, loi normale mutidimensionnelle.
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Introdution

Dans ce mémoire, nous nous intéressons a l’estimation paramétrique de
la moyenne d’une loi normale multidimentionnelle par deux formes d’esti-
mateurs a rétrécisseur, de type James-Stein et la partie positive de James-
Stein. Ce travail se présente en quatre chapitres, décrits successivement

comme suit :

Le chapitre un est introductif, on présente un panorama général sur la
théorie des éstimateurs paramétrique, vecteurs gaussiens, Modele Statis-

tique, construction d’estimateurs, qualité d’un estimateur ect.

Dans le deuxieme chapitre, nous introduisons les estimateurs de type
James-Stein et la partie positive de James-Stein. Sous des hypotheses de ré-

gularité nous établissons la minimaxité.

Le troisieme chapitre constitue une suite du précédent ou on étudier la
limites des rapports de risque des éstimateurs a rétrécisseurs de type James-
Stein et la partie positive de James-Stein.

Le dernier chapitre sera consacré a I’étude de simulation. En premier
temps, nous représentons graphiquement les rapport de risques des estima-
teurs 6/° et 8/** par rapport a X. En second temps, nous donnons un tableau
contients les valeurs des rapport de risques des estimateurs &/ et 6/°* par

rapport a X pour différentes valeurs de p et d.
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Finalement, le mémoire s’achéve par une conclusion générale ainsi que

quelques perspectives.
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1.1 Lois gaussiennes

Définition 1.1. Soit X une variable aléatoire réelle. On dit que X est une
variable aléatoire gaussienne de paramétres (u,0°) avec u € R et ¢ € R™ (on
note X ~ N(y,az)) si X vérifie une des deux conditions suivantes :

e 0 >0 et X admet pour densité

]_ 2
fx(x) = e_%(T) ,xeR
oV21

e 0 =0et X est presque sirement égale a p.

10
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Remarque 1.1. Dans le deuxieme cas, on parle de lois gaussiennes dégéné-
rées et donc la variable aléatoire X n'admet pas de densité par rapport a la

mesure de Lebesgue.

Proposition 1.1. Une variable aléatoire X de loi N (4, 0?) a pour
e Espérance : [E[X] = p,

e Variance : Var(X) =02,
e Fonction caractéristique

t202

Pox(t) =E(eX)=eMe 2, teR

Lorsque la moyenne y vaut 0, et I’écart-type vaut 1, la loi sera notée N(0,1)
2

et sera appelée loi normale standard. Sa fonction caractéristique vaut e” 2.

Seule la loi N(0,1) est tabulée car les autres lois (c’esta- dire avec d’autres

parametres) se déduise de celle-ci a ’aide du théoréme suivant :

Théoréeme 1.1. Si la variable aléatoire X suit une loi N(/,t,az), alors Y :=

X —
¥ suit Ia loi N(0,1).

1.2 Vecteurs gaussiens

Définition 1.2. e Un vecteur aléatoire est un vecteur (Xi,...,X,,) com-
posé de n variables aléatoires définies sur le méme espace.
e Un vecteur aléatoire (Xi,...,X,,) est dit L' (resp. L?), si E[X;] < +oo
(resp. [E[X?] < +co), pour tout 1 <i <n.
e L'espérance d’un vecteur aléatoire X = (Xy,...,X,) L', est le vecteur

des espérances de ses marginales
E(X) = (E(X;),..., E(X,)).

e La matrice de covariance d’un vecteur aléatoire X = (Xy,...,X,) L?

est la matrice carrée symétrique, positive

Y =(Cov(X;, Yj))lsi,jsn-

Définition 1.3. Un vecteur aléatoire X = (X1,..., X,)" est gaussien si et seule-
ment si toutes les combinaisons linéaires de ses coordonnées {(a, X) = a; X; +

...+a,X, suit une loi gaussienne dans R (pour tout a = (ay,...,a,)" € R").

11
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Proposition 1.2. Si i est une application linéaire de R"” dans R" et si X est
un vecteur gaussien de dimension # alors ¢(X) est aussi un vecteur gaussien

de dimension m.

Remarque 1.2. e Si X est un vecteur gaussien alors pour toute partie
{iy,...,ip} de {1,...,n}, le vecteur (Xil,...,Xip) est gaussien.
e Un vecteur gaussien est nécessairement L? puisque, par définition,

chacune de ses marginales X; est gaussienne donc L.

Théoréme 1.2. Un vecteur aléatoire X a valeurs dans R" est un vecteur

gaussien si et seulement si X est L* et il admet pour fonction caractéristique
. . 1
(1) = E(e"X) = 120, 4y e R
avec y=E(X) et ¥ = Var(X).

Proposition 1.3. Soit X ~ N, (¢, X) un vecteur gaussien de dimension #, de
moyenne y et de covariance ¥. Les variables aléatoires Xj,..., X,, sont indé-

pendantes si et seulement si la matrice ¥ est diagonale.

Proposition 1.4. Soit X un vecteur gaussien écrit de la forme (Y, Z) avec
Y € RP et Z € RY. Les vecteurs Y et Z sont indépendants si et seulement si
la matrice de covariance de X est diagonale par blocs c’est a dire

( A 0,, ]
0,p B
avec A une matrice de dimension p x p et B une matrice de dimension g x q.

Proposition 1.5. La densité d’un vecteur gaussien X ~ N, (y,X) non dége-
néré (i.e dety = 0) est

_exp(((x—p), T (x - p))/2)

, xeR"
(2r)"dets) 12 e

fx(x)

12
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1.3 Loidu x° (khi-deux)

Définition 1.4. Soit Z;,...,Z, une suite de variables aléatoires indépendantes
v

de méme loi N(0,1). Alors la variable aléatoire Z‘Zl2 suit une loi appelée
i=1
loi du Khi-deux a v degrés de liberté, notée )(3.

Proposition 1.6. e La densité de la loi du x2 est
f 2(X) — ;xv/z—le—x/z x>0
Xy 2V/2T(v/2) ’
ou I est la fonction Gamma d’Euler définie par I'(r) = J xle™dx.
0

e Lespérance de la loi du x2 est égale au nombre v de degrés de liberté

et sa variance est 2v.

e Sa fonction caractéristique est ¢ 2(f) = (1 - 2it)™V/?

e Pour 1> 30, 4/2x% — V21 — 1 suit approximativement une loi N(0,1).

1.4 Le moment d’ordre k

Deéfinition 1.5. Soit X une variable aléatoire qui suit la loi )(12,. On appelle
moment d’ordre k la quantité

+00
E(x¥) = j uk f(u)du
0
ou f(u) est la densité de X.

Proposition 1.7. Soit X une variable aléatoire qui suit la loi )(}2,. Alors

I(E+k
E(X*) = 2k 5 > )
['(5)
P P
D’apres la proposition précédente ]E()(g) = % =pet Var(xﬁ) = % =2p.
2 4

13
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1.5 Loi du khi-deux décentrée

Définition 1.6. Soit Xj,..., X, une suite de variables aléatoires indépen-

dantes suivent la loi N(Gi,af), i =1:v. Alors la variable aléatoire X =
v

2

X

Z(—l) suit la loi du Khi-deux décentrée, elle dépend de deux parametres:
0j

i=1

v : est le nombre de degrés de liberté.

2
O:
A : est le parameétre de décentrage, il est donné par A = Z(—I) et on note
- (OF]
X~ x3(A).

Proposition 1.8. e La densité de la loi du x2(A) est

e=A2 /\/2)
f)(%( z p+2k k! » x>0

e( 11—/‘2tzt)

(1-2it)/2

e Sa fonction caractéristique est ¢, 2 ,(t) =

Définition 1.7. Soit & une fonction mesurable et X ~ x2(1), on définit es-

pérence de h(X) par
T +00 -2 /2 k
E(h(X)) = ZUO h<x>x5+2kdx] L
k=0 '

ou )(;+2k est la loi de Khi-deux centrée a p + 2k degrés de liberté.

1.6 Estimation paramétrique

1.6.1 Modele Statistique

Définition 1.8. » Un échantillon d’une loi est une suite de v.a indépen-
dantes identiquement distribuées (i.i.d).

» Un modele statistique est la donnée de triplet (X, R, (Pg)geo) OU : X est
I’espace de réalisations, A tribu sur X, Py = Px loi de X et © I'’ensemble des
paramétres 6.

14
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Exemple 1.1. Soit un échantillonnage de N(m,o?), c’est a dire une suite
Xq,..., X, devaiidavecVi, X; <> N(m,02%), ¥ =R", A = Bga, By = N(m,0?)
et 0 = (m,0%)€©® = RxR™.

Définition 1.9. Une statistique est une application T mesurable (v.a) de

(¥, A) dans un espace mesurable (F, §).

T : (X, R) — (F,H)
(Xp, X)) — T(Xp...,X,).

Définition 1.10. On appelle estimateur de 6, toute statistique T de (¥, A) a

valeurs dans ©O.

1.6.2 Construction d’estimateurs
Méthode des moments

C’est une méthode naturelle dans la mesure ou elle est intuitive. Suppo-
sons que 'on doit estimer le paramétre 6, la méthode des moments consiste
a choisir comme estimateur 0,, la solution de I’équation obtenue en égalant

le moment théorique d’ordre k et le moment empirique d’ordre k.
1 n
ky= = k
E(x) =~ ;Xl
1=

1
Exemple 1.2. Soit X — G(1,0), donc [E(X) = 9

+ pour k = 1 la méthode des moments nous donne IE(X) = X,,, alors un esti-
mateur de O est

—

0, =

<) —

n

1 n
+ pour k = 2 la méthode des moments nous donne E(X?) = — E Xl.z, or
n
i=1

+00

2
1E(X2) = QI x2e 0% dx = 02’ alors un estimateur de 6 est
0

— / 2

0,=.|—
1 2
n 17'1:1 Xi

15
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Méthode du maximum de vraisemblance

Définition 1.11. Soient X = (Xj,...,X,,) une suite de v.a i.i.d, on appelle

fonction de vraisemblance pour X la fonction définie par :

n
l_[P(XZ-,Q) si les X; sont discretes
i=1

L(Xl,...,Xn,G) =

n
I_[f(Xl-, 0) si les X; sont continues
i=1

Définition 1.12. l'estimateur de 6 par la méthode du maximum de vrai-
semblance est la valeur 0, qui rend maximale la fonction de vraisemblance
L.

o , o dL
Les conditions requises pour assurer cette maximisation sont 0 =0 et
d’L
— <0.
402 . L : s
Il est par fois plus commode de maximiser le logarithme népérien de L

par rapport a 6 puisque cette fonction comporte souvent des puissances
dinL 0 et
=0e

ou des formes exponentielles, les conditions deviennent alors

d?InL
112 <0.

InL est une fonction croissante et elle aura sa valeur maximum pour la

méme valeur de 6 qu’aurait la fonction L.

Remarque 1.3. L'estimateur du maximum de vraisemblance peut ne pas

exister.

Exemple 1.3. Si les X; sont de loi N(m,az), la fonction de vraisemblance

est :
n n 2
1 _ Xj=m) 1 _LZ'? (X,_m)2
L(Xl,...,X ,m,o—z): (X.,m,gz): e 202 = o g2 L=l
' | 1o | (oV2r)"
D’ou

n

1
InL(Xy,..., X, m,o2) = —glnaz - gln2n 27 (X; —m)?

16
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On doit annuler les dérivées partielles de ce logarithme par rapport a m et

0%.0na
J 1 v 1 (v
%IWL(Xl,...,Xn,m,GZ):—ﬁ —2(Xi—m):p X,-—nm],
i=1 i=1
qui s’annule pour
N
i = E;Xi -X,.
d n 1 ¢
WIHL(XD...,X”,TI’Z,O2):—?4‘7‘4 (Xi—m)z,
i:
qui s’annule pour
B B
Z—E (Xz_Xn)ZZSeZ'

1.6.3 Qualité d’un estimateur
Biais d’un estimateur

Définition 1.13. Le biais d’un estimateur est la quantité
bg(T) =Eg(T)-6

ou [Eg espérance par rapport a Pp.
+Si bg(T)=0, T est dit estimateur sans biais.
+Si bg(T) =0, T est dit estimateur biaisé.

Définition 1.14. Un estimateur T(X) = (T,,(X)),en de 0, ou T, (X) est inté-
grable pour tout n, est dit asymptotiquement sans biais si [E(T,, (X)) -6 tend
vers 0 lorsque n tend vers 'infini et ce pour tout 6 dans ©.

Propriétés 1.1. » La moyenne empirique X, est un estimateur sans biais

pour m, en éffet
1

_ 1 &
E(X,) = ZIE(Xi) = —nm=m
i=1

17
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2

+ La variance empirique S? est un estimateur biaisé pour o mais il est

asymptotiquement sans biais, en éffet

E(S2) = E(X?) - E(X,)

= V(X)+E(X)2 - V(X,) - B(X,)
n—1

V(X
—V(X)

_n-1, 2

T h 0 —n-s00
En revanche, on voit que [E( 1 $2) = ! 1IE(S(?) = 2. On pose donc

— n_
1 v -
Sz_n—l (Xz_Xn)z

i=1
Par conséquent S? (appelée variance estimée) est un estimateur sans biais

pour o2,

Estimateur convergent

Définition 1.15. Un estimateur T est dit convergent si [E(T) tend vers 6
lorsque n tend vers I'infini. Il sera dit consistant si T converge en probabilité

vers 0 lorsque n tend vers l'infini.

Théoreme 1.3. Si T est convergent et de variance tendant vers 0 lorsque n

tend vers l'infini alors T est consistant.

Si T et 0 sont dans R, la définition de la convergence de I’estimateur signifie
que l'on a, pour tout € >0 :

P(IT - 6| >€) — 0,

quand n — +oo.

— 1y
Exemple 1.4. Siles X; sont de loi B(0) alors I'estimateur X, = — > X; converge
n
i=1

en probabilité vers 0 lorsque n tend vers l'infini. En effet, soit € > 0

Var(X,) 11
Tn = g;e(l —0) 2ps400 0

On peut considérer d’autres types de convergence, comme la convergence

P(X,-0]|>¢€)<

p.s. ou la convergence dans L?, pour p fixé. Dans ces cas, on dira respective-

ment que l'estimateur est fortement consistant ou LP-consistant.

18
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Risque d’un estimateur

On se donne en premier lieu un critéere mesurant et pénalisant 1’écart

entre l'estimateur 6 et la vraie valeur 6. On parle de fonction de cott.

Définition 1.16. On appelle fonction de cott (ou de perte) toute fonction L
mesurable de © x © dans R”.

L: Ox0 — R*
(6,0) > L(6,0).

Quelques fonctions de cotlt classiques sont :

1- La fonction de cout valeur absolue : L(5,0) = |5 — 0|
2- La fonction de cotit quadratique : L(,0) = (6 — 6)?
Le role de chaque fonction de cott est :

» de mesurer la qualité de l’estimation,

» d’aboutir a une solution en minimisant la fonction de cott.

Définition 1.17. On appelle risque d’un estimateur ¢ de 6 associé a la fonc-

tion de colt L, la fonction R de © vers R* définie par
R(o,0) = E(L(0,0)),
pour tout 6 de O, sous réserve que cette espérance existe.

Remarque 1.4. Quand la fonction de cott est quadratique on parle de risque

quadratique.

Proposition 1.9. Soit T un estimateur de 6, si la fonction de cout L(9, 0) est

quadratique on a :
R(T,0) = Vy(T) + b3(T)

Remarque 1.5. Entre deux estimateurs sans biais, le "meilleur" sera celui

dont la variance est minimale (on parle d’efficacité).
Exemple 1.5. Soient X; et X, deux variables aléatoires i.i.d de moyenne 6
et de variance o2. Soient §;et 8, deux estimateurs non biasés de O telle que:

X1+X2
2

_ aXl +bX2
B +b

01 = et 0, ouabelR

19
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Var(o,)—Var(d,) = Var(m)—\/ar(m)
) 2c1+l7
= %Var(Xﬁer)—%Var(Xl)
1 a?+b%\ ,
i (5‘<a+b>2)“
(a+b)?-2a%-2b%\ ,
( 2(a+b)? )

Comme 2(a+b)* >0 et (a+b)* —2a* —2b> = —(a—b)* < 0, alors
Var(61) < Var(6,).
Donc 6; est meilleur que 9.

Définition 1.18. Soient 9, et 0, deux estimateurs de 6. On dit que 9; est

préférable (domine) a 6, si l'on a:
R(61,0) < R(6,,0)
pour tout 6 de O et avec une inégalité stricte pour au moins un 6 de ©.

Définition 1.19. Un estimateur T de 6 est dit admissible s’il n’existe pas
d’estimateur de 6 qui lui soit préférable.

Définition 1.20. Un estimateur T,, de O est appelé minimax s’il atteint le
plus petit risque maximum pour tout autre estimateurs T, ce qui signifie
qu’il satisfait

supgeoR(Ty, 0) = infrepsupoee R(T, 0)
avec D ={T/ T estimateur de 60}

Information de Fisher

Au vu d’un échentillon X = (Xy,...,X,,) on peut obtenir une certain in-
formation sur le parametre 6, il s’agit de contifier cette information et de

montrer qu’il a un intérét pour les statistiques.

20
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Définition 1.21. L'information de Fisher (Ix(6)) apporté par X sur le para-

metre O est définie par :

a 2
Ix(0) = E((%lnL(X,()))

On peut établir une autre écriture de I'information de Fisher.

Proposition 1.10. L'information de Fisher est aussi égale a

2

0
Ix(6) = —IE(WlnL(X,Q)).

Proposition 1.11. Soit T une statistique de 6. Alors

I7(x)(0) < Ix(0)

» Cas vectoriel 6 = (0y,...0,)

On définit L'information de Fisher par la matrice suivantes
Ix(0) = (Ii,j(e))l-yjzl'wp

ou
82
96,96

I,-,]-(G):—IE( lnL(X,G))

Borne de Cramer-Rao

Le resultat suivant affirme l’existence d’une borne inférieure pour la va-
riance de n'importe qu’el estimateure. Dans la suite on supposera les hypo-
theses suivantes.

H; :Le domaine des réalisation de X = (Xy,..., X,,) ne dépent pas de 6.

H, :La densité de X est 2 fois dérivable par rapport a 6.

Hj : On peut dériver par rapport a 6 sou le signe d’integrale.

Théoréeme 1.4. Soit T un estimateur sans biais de 6. Alors sou les hypo-
theses H;, Hy et H3,on a :
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La borne est la borne de Cramer-Rao

Ix(0)
Définition 1.22. (Estimateur efficace) Un estimateur sans biais T est dit

efficace s’il atteint la borne de Cramer-Rao, c’est-a-dire si

Var(T) =

Ix(0)
I1 est dit asymptotiquement efficace si

1
li -
Hhnteo T (0)Var(T)

1.6.4 Ameélioration d’estimateurs
Statistique exhaustive

Il s’agie de construire une statistique T(X) a partire d’un échantillon
X =(Xy,...,X,) qui vont nous renseigner sur le parametre 0, sans entrainer

de perte d’information.

Deéfinition 1.23. Soit (X, A, (Py)geo) un modele paramétrique et X = (Xy,..., X}))
un échantillon dans ce modele. Une statistique T(X) est dite exhaustive
pour le parametre O si la loi de X conditionnelle a T(X) est indépendante

du parametre 6.

Le calcul de la loi conditionnelle n’étant pas toujours facile, on utilisera
souvent le théoréme suivant qui donne un moyen plus aisé pour prouver

I’exhaustivité d’une statistique.

Théoreme 1.5. Soit (X, A, (Py)geo) un modeéle paramétrique et X = (Xy,...,X,) ~
f(X,0) un échantillon dans ce modele. Une statistique T(X) est exhaustive

si et seulement si, la densité f(X,0) s’ecrit :
f(X,0)=g(X)h(T(X),0)

ou g et h sont des fonction mesurable et positive.
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n
Exemple 1.6. soit X = (X4,...,X,,)~ f(X,0) = l_[f(XZ-,G) ouVvVi=1:n,
i=1

1
X; ~Ujo,9) and f(X;,0) = 5]1[0,9](x), ona

fxo=[ |rxi6) = 2] [moe)
i=1

[= 0
MR

= on Mio<x;<0)

|= T
N

1 n
= gnl [Tz ]_[H{xizm
i=1 i=1

n 1 n
= I_[H{xizO}al_[H{xise}
i=1 i=1
1
= H{inﬁxl—ZO}mH{sup,—xiSG}

= 8(X)M(T(x),0).

Danc la statistique T(Xj,...,X,,) = supi<j<,X; est une statistique exhaustive

pour 6.

La statistique T(X) = X est toujours une statistique exhaustive. Mais elle
n’est pas d’un grand intérat et ne réduit absolument pas I'information. Il ne
s’agit donc pas seulement de trouver une statistique exhaustive mais plu-
tot de trouver parmi les statistiques exhaustives celle(s) qui réduit(sent) au
maximum l'information. En d’autres termes, le probleme est de trouver une

statistique exhaustive qui soit minimale.

Définition 1.24. On dit qu’une statistique exhaustive est minimale, si elle

est une fonction mesurable de toutes les autres statistiques exhaustives.

Autrement dit, la statistique T est minimale si pour toute statistique ex-

haustive S il existe une fonction h telle que T = h(S).

Théoreme 1.6. (Théoréeme de Rao-Blackwell) Soit (¥, A, (Pg)gco) un mo-
dele paramétrique et X = (Xy,...,X,) un échantillon dans ce modéle. Soit
T(X) un estimateur de 6 de carré intégrable. Si le modéle posséde une statis-

tique exhaustive S(X) pour le paramétre 6, alors I'estimateur [Eg(T (X)|S(X))
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de 0 a un risque quadratique inférieur a T(X), c’est a dire que l'on a :
R(Ey(T(X)IS(X)),0) < R(T(X),0),

pour tout O dans ©. De plus cette inégalité est stricte pour au moins un 6 de
0, 1i.e. Eg(T(X)|S(X)) est préférable a T(X), sauf si T(X) est sans biais et une
fonction de la statistique exhaustive S(X). Si T(X) est un estimateur sans
biais de 0 alors [Eg(T(X)|S(X)) est également sans biais pour 0 et I'inégalité

sur les risques quadratiques se traduit également sur les variances.

Le théoreme précédent nous permet déja d’améliorer la qualité d’un esti-
mateur. Mais il ne nous assure pas de tomber sur un estimateur optimal.
L'obtention directe d’un estimateur optimal sera possible grace au Théo-
reme de Lehmann-Scheffé donné ci-dessous. Mais il nous faut auparavant

introduire la notion de statistique complete qu’il utilise.

Statistique complete

Deéfinition 1.25. Soit (X, A, (Py)geo) un modele paramétrique et X = (Xy,..., X}))
un échantillon dans ce modele. Une statistique T(X) est dite compléete (ou
totale) si toute fonction borélienne ¢ vérifiant

Eglp(T(X))| < +co et Eg(p(T(X))) =0
pour tout 6 de O est nécessairement telle que
P(T(X))=0, Pp—p.s.
pour tout 6 de ©
Théoreme 1.7. Toute statistique exhaustive et compléte est minimale.

Théoreme 1.8. (Théoréme de Lehmann-Scheffé) Soit (X, R, (Pg)gee) un mo-
dele paramétrique et X = (Xy,...,X,) un échantillon dans ce modele. Soit
T(X) un estimateur de 0 de carré intégrable et S(X) une statistique ex-
haustive et compléte de 6. Alors l'estimateur amélioré de Rao-Blackwell
[Eg(T(X)|S(X)) est optimal dans la classe des estimateurs sans biais de 0.
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Cas des familles exponentielles

Définition 1.26. Soit (X, R, (Py)geo) un modeéle paramétrique et X = (Xy,..., X))
un échantillon dans ce modele. La famille des loi (Py)gee est dit famille ex-
ponentielle si Py admet une densité f(x,0) et f(x,0) admet la représentation
suivante :

f(x,0)=expla(x)a(0)+b(x)+B(O)] xR

| [Fexi0)=exp| ) atxa(@)+) bix)+np@)| xeRr"
i=1 i=1 i=1
oua, b, a et f sont des fonction mesurables.
Exemple 1.7. Soit X ~ pg = b(m,0), i.e:
po(k) = p(X = k) = C,0"(1-0)",

on a

Inp(X =k) = In(CLO*(1-0)""F)

Inck +kln( )+ min(1-6).

0
1-6

Donc (b(m, 0))ge(o,1] est une famille exponentielle avec a(k) = k, a(0) = ln( 1 6_96 ),
b(k) = InCk et B(6) = mIn(1-0).

Théoréme 1.9. (Théoréme de Darmois-Koopmans) Soit (X, R, (Pg)geo) un
modéle paramétrique dont le domaine des valeurs ne dépend pas de O et
X = (Xy,...,X,,) un échantillon dans ce modéle. Alors : il existe une statis-

tique exhaustive de 0 si et seulement si la famille (Py)gce est exponentielle.
n

De plus T(X) = Za(Xi) est la statistique exhaustive.
i=1

Exemple 1.8. Soit X ~ pg = b(m,0), i.e:

po(k) = p(X =k) = Cko*(1 - )"+

n
onaT(X)= Z.Xi est une statistique exhaustive de 6.
i=1
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Sommaire
2.1 Inadmissibilité de I’stimateurusuel . . . ... ... ... 28
2.2 Estimateur de James-Stein . .. .............. 29

2.3 Estimateur la partie positive de l’estimateur de James-
Stein . ... ... e e 34

2.1 Inadmissibilité de I’stimateur usuel

Soit X une variable aléatoire qui suit une loi normale multidimentionelle
N,(6,1,), avec 0 € RP. Pour tout estimateur o(X) de 0, on définit la fonction
de coluit quadratique par :

L(5(X),0) = [l5(X) -6l
ou [|.[, est la norme usuelle dans RP : Ainsi son risque quadratique est :

R(6(X),0)

Eo(L(5(X),6))
Eo (15(X) - 02)

5(X) - 0|3
- uexp(—1||x—9||2)alx.
R (2m)P/2 2 P

On sait que l'estimateur usuel de 6 est 0p(X) = X, il est minimax et son

risque quadratique est :

R(80(X),0) = E(ll60(X) - 611%) = p
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en effet :
X -8 ~N,(0,1,)

donc

p
IX-0l> =(X-6,X-0)= ) (X;—0:)>~ X}
i=1

car pour tout i € {1,...,,p} la variable aléatoire réelle X; —0; ~ N(0,1) et les
variables X; sont indépendantes. Donc

E(5(X)) = B(X;) =p

I1 est clair que l'estimateur usuel X est admisible pour p < 2. Stein [7] a
anoncé que quand p > 3 I'estimateur de la forme :

S ={1-—% __\|x
00 =1 5

a un risque uniformément inférieur au risque de 6y(X), pour a suffisamment

petit et b suffisamment grand.

2.2 Estimateur de James -Stein

Lemme 2.1. (Stein[8]) Si Y ~ N(0,1), alors pour toute fonction dérivable h,
telle que |IE(h'(Y))| < oo alors :

E[Yh(Y)] =E[/'(Y)]

Démonstration : On pose

1 1,

fr(v) = Eexp(—zy )
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la densité de la loi normale centrée réduite, et par dérivation on trouve
fr(¥) ==y fy(y) Alors

E[W(Y)] = f @) )y

= _J:mh’(y)(J:m —zf(z)dz)dy+f0 h’(?)(ﬁ —Zf(Z)dZ)dy

r+oo +00 0 %
- | h(y)(fy Zf(z)dZ)dy—J:mh(y)( _ zf(z)dz)dy

(00

= zf(z)(Lzh'(y)dy)dz—I zf (z) (jo )dy)dz(dapres Fubini)

0

C

(100

- [ zf@me- >1dz+f_ 2f (2 (=)~ h(0))dz

JO

([ o

[o0]

= [ am@)f o >f 2f (2)dz

J—00 %
(00

= zh(z)f(z)dz — h(0)E(Y)

J =00

= ™ zh(z)f(z)dz (car[E(Y) = 0).

J—00

D’ou
E(h'(Y)) =E(Yh(Y)).
]
Corollaire 2.1. Si X ~ N (u,1), alors pour toute fonction dérivable h, telle
que |E(h'(X))|<coona:
E((X - p)h(X)) = B(h' (X))

Démonstration : On pose Y = X — y, alors Y ~ N(0,1), et donc d’aprés le

lemme 2.1 on trouve

E((X - wh(X))

E(Yh(Y + p))

d
(aY (Y + ﬂ))
E(h'(Y + ) = E(h'(X)).
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Lemme 2.2. Soit X ~ N,(6,1,), alors

e

1
12l

1
p-2+2K

lel*

oﬁK~77(

Démonstration : On pose U = 1X||%. 11 est clair qu

+

8

/\k

+00 1
J; Z)(;ﬁkdul exp(—/\)ﬁ

=l
[

1
Posons t = Eu S 2t=uetdu=2dtalorsona:

=
o
r

+

[\\’1 1

8

+001

~
=
| T

-1

Sl

N
=~

~

=
+

u

P

.
o
1T

B
T
N
>~

+
8

L]

—_~~
=

~

=1 p2k
exp(7u)u 2

N
P

p+
2

o

)

=

:Oh

) est la loi de Poisson du parametre

p+2k
—e><p(7u)uT

|

el

eU ~ )(z(/\ = |16||?), alors :

;\k

-1
du]exp(—/\)ﬁ

;\k

-2
du]exp(/\)ﬂ.

p+2k
1 =i (y) 7 pizk_ k
IE(E) = ok J exp(—t)(2t) 2 ~22dt exp(—/\)F
k=0 F( ) ) 0
- p+2k
T 1) 2 . +00 . k
= Z (22+2k 2p22k 22J exp(—t)tpTzk_zdt exp(—/\)F
k=0 F( ) ) 0
+00 1 k
B 5 p+2k A
= 1“(”+2k F( 5 —1)]exp(—/\)F
k=0 L 2
oo 11+ (p+2k
= i Er(zkz _1) exp(—/\)/\—:(
| T(EE-1+1) k
ol 2k
N (5 -1) ‘exp( A)/\k
- 2k—2 2k Yy
k:o_p+2 1“(erz _1) k
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+00 k
1 A
B ;lp ~2+ 2klexp(—/\)ﬁ

1
Ef—— .
(p—2+2K)

2 2
uk~P %) est la loi de Poisson de parametre I 2” . |
On considere la classe d’estimateurs introduite par James et Stein [4] :
5£5(X):(1—L2)X (2.1)
Xl

oua>0.

Proposition 2.1. Le risque quadratique de l’estimateur donné en (2.1) est

1 1
RSP (X),0) = p+a21E(m)—2(p—2)ﬂIE(m) (2.2)

Démonstration: On a :
R(5E°(X),0) = E(16)°(X) -0l

o X -0

2
H e
2
= (HX o-— ”ZX)
11X

- IE<X o- 2 XX-@-LX>

1X112 [1X112

2 a
X|| =2(X-06, X
< X2 >]
2
2E{X -6,
) < ||X||2 >
a
= +1E X,—X 2E(X -0, —X
P <||X||2 X2 > < ||X||2 >

] -2x| |
||X||4”X” XX -0X)

p
- 2E )
pra ||X||2 ak Z ||X||2

=1
30

- m[nx—en%

= E(IX-6l%) (

||X||2

= p+E
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D’aprés le Corollaire 2.1, on a :

p r X,
E|(X;-0;)—=
_Z ||X||2 ) _E|X; l)nxnzl
0o | X
- Y (5 e
ox; | IIX]]
; ,
— dX; _Xf+X22+....+X§
P TIX])? - 2x2
= ) Bl
Il
p r 2
- ZIE 12_2X1‘4]
L IXIE X
Z||X||4
1 [ X2
= pE —2E | X?
P ||X||2l ||X||4; ]
[ 1

1

D’ou
R(615(X),0) = p + @ ———— | 2(p - 2)a B ———
s WEHEI=P p—2+2k) P p—2+2K

Théoréeme 2.1. i)Une condition nécessaire et suffisante pour que l'estima-
teur 5£S(X) définie en (2.1), domine 0¢(X) est que 0 <a < 2(p —2).
ii) Le meilleur estimateur, au sens du risque quadratique dans la classe

des estimateurs 6{15 (X) est I'estimateur primitif de James-Stein défini, pour

-2
3%, (x :(1—p )X
R W

a=p-2,cest-a-dire

Démonstration : i) En utilisant la formule (2.2) de la Proposition 2.1, une

condition nécessaire et suffisante pour que ’estimateur 6{15 (X) domine 64(X)
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est que
1

1
||X||2)‘2(” _2)”1E(||X||2) =0

aZIE(

c’est-a-dire
ala-2(p-2)]<0

Ainsi une condition nécessaire et suffisante pour que l’estimateur s1° (X)
domine 9((X) est que
0<a<2(p-2).

ii) Comme la fonction de risque donnée en (2.2), est convexe par rapport a
a, donc la valeur optimale de a pour que la fonction de risque soit minimale

est
a=(p-2).

2.3 Estimateur la partie positive de 1’estimateur

de James-Stein

Baranchik [1] a introduit I'estimateur qui s’appelle I'estimateur la partie
positive de I'estimateur de James-Stein définie par :

p-2\"

I (X) = (1 - —) X (2.3)
[1X112

ou pour tout fonction réelle f, f* = sup(f,0) qui s’appelle 1’envellope su-

perieure de la fonction f. L'envellope inférieure de la fonction f est définie

par: f~ =sup(—f,0) et donc, on peut déduire les égalitées suivantes :
f=f"=f" et Ifl=f"+f"

Baranchik a démontré que pour tout p > 3, le risque de I’estimateur la partie
positive de l’estimateur de James-Stein &/5*(X) est uniformément inférieur
au risque de l’estimateur de James-Stein 61135_2()(), ainsi l’estimateur la par-
tie positive de l’estimateur de James-Stein &5 (X) domine l'estimateur de
James-Stein 6{75_2()() et donc &5 (X) est minimax.
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Proposition 2.2. Le risque quadratique de 'estimateur donné en (2.3) est
1
R(&/5%(X),0) = R(5)°,(X),0) + IE{[HXHZ -2 Zp]H[o,p_2]<||X||2>}

lel*
5

2
u K ~ 77(” 2” ) est la loi de Poisson du parametre

(g >

_ _(p-2 P2\ x_
} IE( (1 ‘||X||2))X+(1 (||X||2)) X0
}

p- 2)
1- X
( 1X1]2

alpthoelo )

’ p-2 p-2\" 2
} ] E[(l IIXIP) Mg O(X”(l_nqu) Mo O(X)l

Démonstration :

R(&°(X),0) = E

|

= R(5),(X),0) +IE{

Et comme, on a

- =

et
p—2) .. p-2
- —1-—=] sil--—=<0
(1_P‘§) _ ( IXIP IXT2
I 0 sit-2—> 5.
X1l
Alors,

p-2 ’
]E (W - 1)XII||X||2SP—2(X)

(o 0)2 .,
(I|)|X||4) +1- Z(fﬁ)] ”XHZHHXHZSp—z(X)}
X112

(p-2)°

{05

I
sl

Il
&
—N— N

+ X117 - 2(p - 2)

II||X||2sza—2(X)}

e AP <P—2>]H[o,p_z]<||><||2>},<z.4>
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’]E{<X_9’(1 ) X>} - ]E(<X o/ i )H”""”(”X”Z)»

= ZIE (Xi—Qi)(lﬁ)X#—1)Xi11[0,p—2[(||X||2))

_ Z]E (%—Xi)XiH[o,p_z[(||X”2))

_ 2_(p— DX,
-y (R PN

-2 X2
= Y E(B 22 - 1)11[0,,,_2[<||X||2>

-2 1X?
IE(p p-2(p-2) = p | Tjo, -2 (IIXI?)

l1X11? X4
p-2 2
IE(”X”2<p—2>—p)11[o,p_2[<||xu ) (2.5)

et

p-2 p-2 p-2, (p-2
g < 11X1|? ( ||X||2) > < I1X]12 (||X||2 Ix|2<p-2(X)

— )2
2IE{[_(II)IXII2) +(p_z)ln[o,p—z](llelz)}. (2.6)

Combinant les formules (2.4), (2.5) et (2.6) on trouve :

R(6/5(X),0) = R(6)° ,(X),0) + IE{lIIXIIZ +(p- 2)"'@ - 2pl H[o,p—ﬂ(llX”z)}
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Chapitre 3

Limites des rapports de risque

Sommaire
3.1 Etudedurapportderisque del’estimateur de James-Stein
.................................. 37
3.2 Rapport de risque de I’estimateur la Partie positive de
I’estimateur de James-Stein . . . . ... .......... 40

Dans ce chapitre nous présentons le travail de Casella, G and Hwang,
J.T. (1982)[3], ils ont considéré le modele suivant : soit X ~ N,(6,1,) ou O est
un parametre inconnu. Le but est d’étudier le comportement asymptotique
R(8)°5(X),0)  R(5/5+(x),6)

e
R(60(X),0) ~ R(60(X),0) .
ces rapports quand p tend vers I'nfini. Pour la suite, on note l’estimateur

des rapports de risque c’est-a-dire ’étude de

primitif de James-Stein par &/°(X).

3.1 Etude durapport de risque de I’estimateur de

James-Stein

Lemme 3.1. Soit Y une variable aléatoire gaussienne multidimensionelle

N, ~(11,1,), et IY]1? ~ )(f,(||17||2), soit h: [0,+00[—] — 00, +00[ : Alors pour

N=(11tln) et Y =(Y,..,Y,)

on a
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i) E{h(IIY1I*) Y7}

ii) B{h(IYIP)IY 1)

Démonstration :

DE{R(Y]?)Y?)

+

ZYz]Y2|ZY2
]il ]il
E{ exp R Dl U/ WGt Y Y xhal) V7
2 kl 1+2k 1+2k
k=0 j#i j#i
7\ () )
Efexp|-=-|) ——(1+2KE|h| x50+ ) Y7 {1) Y,
k=0 ) j=i j=i
’7'2 ()" 2 2 2
E{exp|-=- R Xk ) Y1) Y
k=0 ji =i
i\ v 1) ) )
E{exp|-=- Z o (2K)E x3+2k+ZY |ZY].
k=0 j=i j::i
2 2 2 ’7'2 . (’7'2)k_1 2
1 1
E|h X3+;Yj 1 eXP(_j)k_ (k_l)!IE X5+2k 1) ;Y

E{h(x2., (I117)

E(h(x 2 (117)) + 17 Eh (g2 (I11)))-

E(h(x(Iln1%)
PE( o Il + InlIPE R (x4 (ll)))-

)+ 07 (xp.a (I1F)))

la derniére égalité découle du fait que ZYJ2 ~ )(;_1(217].2) et de I'indépen-

j#i j#i

dance des deux variables aléatoires ZY]?' et Yiz.

j#i

De i) on peut déduire immédiatement ii) c’est-a-dire :

E{n(IYI?)YI?) =

Efi(xd.

(I712)) -+ P { B (12,4 (1))}
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Proposition 3.1. Soit X ~ N,(0,1,):Sip>3,0na

1 1 1 p )
<E < .
p-2+llel? (||X||2) P—Z(P—”@H2

Démonstration : Soit X ~ N,(0,1,), alors IX|1> ~ )(;(HQHZ) et d’aprés le

Lemme 2.2, 0n a
1 1
El—=|=FE|—————
[1X]? p—-2+2K

o|? o\
avec K ~P % la loi de Poisson de parametre 161

. En utilisant I'inéga-

lité de Jensen 4.1, on obtient

E ! > !
p—-2+2K) p-2+]0|>

Pour établir la borne supérieure, on utilise le Lemme 3.1, pour h(y) =

)

v

2
A= g on trouve :
1 1
(P—Z)IE(—)HI@IIZIE ———— =1
x5 (16112) X§+2(|I9||2)
d’ou
1 1 1
IE( > 5 ]: 1—||9||2E 2—2 .
xp(1e112)) p-=2 Xy 1611%)

Ainsi

(i) spi2[1—||e||2(p+ﬁ9”2)]

<! ( p 2).
p-2\p+|6]

Cette inégalité découle de Lemme 2.2 et de I'inégalité de Jensen 4.1. D’aprés

la Proposition 3.1, on déduit immédiatement le théoreme suivant qui montre
R(9/°(X),0)

une borne inférieure et une borne supérieure du rapport de risque R(X,0)
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Théoreme 3.1.

P2 <615<X>,9>S1_<p—2>2( 1 )
p+16I7 = R(X,6) P \p-2+I6I7

2
Théoréeme 3.2. Si lim ” ”

¢,(c>0). Alors :
p—too p

. R(5(X),0) c
lim = .
p—+co  R(X,0) 1+c

Démonstration : D’aprés le Théoreme 3.1, 0n a :

_ p-2 <R<6’$<X>,6><1_<p—2>2( 1 )
p+l6II> ~ R(X,0) p \p-2+l61?)

En passant a la limite, on trouve :

— JS _7)2
lim |1--2 2 < lim w < lim |1- (p-2) ( ! ) ,
potoo|  p+|l0f7 | T ot R(X,0) p—too p \p-2+|0|?

donc

1- lim [(p—z)[ L ]]< lim ROPX).0) [(p—Z)Z( 1
1+ p—too )

I p II9I|2 R(X,0 p—+co p? p=2 6112
p p
1611%
sous la condition lim —— =¢, on trouve
p—too D
R(&/5(X),0 1
1- < lim (07°(X) )Sl—
+c po+eo R(X,0) l+c¢
Ainsi

3.2 Rapport derisque de l’estimateur la Partie po-

sitive de I’estimateur de James-Stein

D’aprés Baranchik [1],ona R(&/5%(X),0) < R(6/°(X),0) pour tout 0. Ainsi
R(°(X),0)

est une borne supérieure du
R(X,0) P

la borne supérieure du rapport
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rapport —R(5]S+(X)'6)
PP R(X, 0)
R(6/°*(X),0)

Pour étudier la limite du rapport T R(X,0)

quand p tend vers l'infini,

R(6/°*(X),0
il suffit alors de trouver une borne inférieure du rapport % ten-
dant vers la méme limite de la borne supérieure. }
R(&/°*(X),0)

Une borne inférieure du rapport R(X,0)

est donnée par la proposition

suivante :

Proposition 3.2.

RE¥(X),0) 2 R@(X),0)+pP (x5, (1017) < p=2) +10IPP (x5 (I017) <

— (p+2P(x3(lI01) < p-2).

Démonstration :
_1 2 1 5
IE[”X”2]I[O,}7—2](”X” )] > Elp—_zﬁ[o’p_z](”X” )]
1
> 5[l 1XIP)]
1 2
> — < _ .
= p—ZIP(”X” <p-2), (3.1)

et d’aprés le Lemme 3.1, 0n a:

E(IX T, (IXIP)} = pP(x2,,(61%) <p-2)
+ 160IPP (x4 (l6OIP)<p-2).  (3.2)

D’aprés les formules (3.1) et (3.2), on trouve :

R(@%(X),0) 2 R(O"(X),0)+pP(xp. (I01F) < p=2) + 10IPP (x5, (161 <

- (p+2P(x2(l01?)<p-2).

u
2
Théoréeme 3.3. Si lirp @ =¢,(c>0). Alors
p% (o)
JS+
lim R(6°7(X),0) _ ¢
p—+eo  R(X,0) 1+c
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Démonstration : Nous remarquons que si p tend vers l'infini, alors P ()(12, (||9||2) <p

tend vers zéro. En effet :(Voir Casella et Hwang [3]) soit 7(p) une fonction vé-
r(p)

rifiant la condition suivante : lim T =1 et soient 21,5 2p des variables
p—+co
&) 2
aléatoires indépendantes de méme loi N(0,1) et 7 = %
alors :
2 & )
Jim P(xp(r) <r(p) = lim Pofz+ (20)7] + § 27 <r(p)

221 2"[ 2

H
M-UN
Ny

lim
p—>+o0 p p

d’aprés la loi forte des grands nombres 4.2 et du fait que 127 tend vers %, alors

r(p)

le terme a gauche tend vers c+ 1, or ¢ > 0 et — tend vers 1, on trouve :

p

lim P(xy(t)<r(p)) = O (3.4)

p—>+oo

En utilisant le résultat 3.4 dans la formule 3.3, on trouve que sous la condi-

lel>

tion lim —— =c¢,ona
p—+ p

JS+
i REHX0,0) c
p—+eo  R(X,0) c+1

40



Chapitre I

Résultats de simulation

Dans ce chapitre, nous prenons le modele X ~ N, (6, Ip) et on rappelle
les estimateurs de type James-Stein et la partie positive de I'estimateur de

James-Stein, i.e.,

7S B p-2
oT(x) = (1 ||X||2)X

et

p-2\'
I (X) = (1— ) X.

[1X11?
On représente graphiquement les rapport de risques des estimateurs cités
ci-dessus, par rapport au MLE associé aux fonctions de pertes L noté respec-
R(&'5,0) . R(&/5%,0)
R(X,0)’ R(X,0)
valeurs de p.

en fonction de d = ||0]|? pour différentes

tivement :
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Résultats de simulation TABLE DES MATIERES

.4

R(&/%,0)  R(8/5+,0)
R(X,0) S “R(X,0)

Ficure 4.1 — Graphique des rapport de risques en

fonction de d = ||9||? pour p = 6.

04

0.2

—  JamesStem
——— posiive pat ol Stem

R(8'5,8)  R(8/5%,0)

Froure 4.2 - Graphique des rapport de risques -3 =% et —p =gy

fonction de d = ||0]|? pour p = 10.
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0.4

0.2

R(&/%,0)  R(8/5+,0)
R(X,0) S "R(X,0)

Ficure 4.3 — Graphique des rapport de risques en

fonction de d = ||9||? pour p = 14.

En Figure 4.1, Figure 4.2 et Figure 4.3, on note que les rapport de risques
R(&/%,0) . R(&5+,0)
, e
R(X,0) R(X,0)
sont minimax pour p = 6, p = 10 et p = 14. Nous remarquons aussi que,

sont inférieurs a 1, ainsi les estimateurs &S et /5

d’une part, plus p augment plus le gain augmente et d’autre part, plus la

valeur de d augmente plus, le gain diminue.

Dans le tableau suivants, nous donnons les valeurs des rapport de risques

R 15, R ]S+,
R((éX, 66)), e I(QTX, 6?) pour les différentes valeurs de p et d. La premiére en-

M et la deusiéeme entrée est M
R(X,0) R(X,0)

trée est
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Résultats de simulation TABLE DES MATIERES

TaBLe 4.1 — Les valeurs des rapport de risques R(8/°,0)/R(X,0) et
R(&'°*,0)/R(X,0) comme fonctions de d.

d rapport de risques | p=26 p=10 p=14
oS 0.3792 | 0.2336 | 0.1688

0.4359 s
oI5+ 0.2794 | 0.1628 | 0.1155
JS 101 42 281
37523 5}5 0,610 0,4266 | 0,328
&S+ 0,5629 | 0,3850 | 0,2924
&S 0,6625 | 0,4784 | 0,3745

5.002 s
&5+ 0,6287 | 0,4461 | 0,3455
&S 0,7931 | 0,6298 | 0,5218

10.43 s
&5+ 0,7863 | 0,6208 | 0,5120

Dans le tableau précédent, on note que : si d et p sont petits, le gain des
rapports de risques R(&°,0)/R(X,0) et R(5/°F,0)/R(X, 0) est trés important.
On observe également que, si les valeurs de p augmentent, le gain dimi-
nue et ce pour chaque valeur fixe de d. On voit aussi que, si les valeurs de
d augmentent et p et fixée, les rapports de risques augmentent et le gain

diminue.
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Annexe

Proposition 4.1. 1. Soit Xl,...,Xp une suites de variables aléatoires in-

dépendantes et identiquement distrbuées, de loi N(0, 1) alors

1=

X2 2
i~ Xp
i=1

et la loi du Chi-Deux (centré) a p degré de liberté.

2. SiYy,..., Y, des variables aléatoires indépendantes telleque Vi = 1,...,p
,Y; ~N(0;,1) alors :

-

Y2 ~ x2(1012)

=1
et la loi du Chi-Deux décentré a p degré de liberté et de paramere de
décentrage I6|I>.

Théoréeme 4.1. (Inégalité de Jensen) Soit f une fonction convexe sur un

intervalle réel I, et X une variable aléatoire réel dont I’'espérance [E(X) existe.
Alors :

SEX)) < E[f(X)]

loi forte des grands nombres

Théoreme 4.2. Soit (X,,),~¢ une suite de variables aléatoires indépendantes
et identiquement distrbuées. On note S, = X; +...+ X, ona:

.S .
{la suite—"est convergente presque surement} < {E[X;] < +oo}.
n
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De plus, si I'une de ces deux conditions éqivalentes est remplie, on a :

Su(w)

Plw e Q/lim =E[X;]]=1.



conclusion

Dans ce travail, nous avons étudié les estimateurs de type James-Stein
de la moyenne 6, d’une loi normale multidimensionelle N,(0,1,). Premie-
rement nous avons discuté I'inadmissibilité de 1’estimateur usuel X quand
la dimension de ’espace des parametres p > 3. Ensuite nous avons présenté
la classe des estimateurs de type James-Stein qui est une classe trés impor-
tantes des estimateurs biaisés bien siir mais a un risque quadratique, uni-
formément meilleurs que celui de I'estimateur usuel X. Enfin nous avons
montré que les rapports des risques de I’estimateur de James-Stein et de l’es-

timateur la partie positive de l’estimateur de James-Stein a celui de risque

de l'estimateur usuel X tend vers (c > 0) quand la dimension de l’espace
des parametres p tend vers l'infini. Ainsi, nous avons assurer qu’il y a une
stabilité de la domination de 1’estimateur de James-Stein et de I’estimateur
la partie positive de ’estimateur de James-Stein a celui de I’estimateur usuel
X méme si la dimension de I'espace des parametres p tend vers 'infni.

Une extension de ce travail est de faire la méme étude dans le cas ou le

coeficient de la variance o2 est un paramétre inconnu.
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