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Résumé

Dans ce travail, on s’intéresse à l’étude de l’estimation de la moyenne
d’une loi normale multidimensionnelle à variance connue. On prend comme
critère adopté pour comparer deux estimateurs, le risque associé à une fonc-
tion de coût quadratique générale. On étudie plus particulièrement la mi-
nimaxité des estimateurs á rétrécisseurs de type James-Stein et de type la
partie positive de James-Stein. A la fin du mémoire, on illustre les résultats
théoriques par des représentations graphiques des fonctions des risques des
estimateurs considérés.

Mots clés : Estimateur de type James-Stein, estimateur de type la partie
positive de James-Stein, loi normale mutidimensionnelle.
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Introdution

Dans ce mémoire, nous nous intéressons à l’estimation paramétrique de
la moyenne d’une loi normale multidimentionnelle par deux formes d’esti-
mateurs à rétrécisseur, de type James-Stein et la partie positive de James-
Stein. Ce travail se présente en quatre chapitres, décrits successivement
comme suit :

Le chapitre un est introductif, on présente un panorama général sur la
théorie des éstimateurs paramétrique, vecteurs gaussiens, Modèle Statis-
tique, construction d’estimateurs, qualité d’un estimateur ect.

Dans le deuxième chapitre, nous introduisons les estimateurs de type
James-Stein et la partie positive de James-Stein. Sous des hypothèses de ré-
gularité nous établissons la minimaxité.

Le troisième chapitre constitue une suite du précédent où on étudier la
limites des rapports de risque des éstimateurs à rétrécisseurs de type James-
Stein et la partie positive de James-Stein.

Le dernier chapitre sera consacré à l’étude de simulation. En premier
temps, nous représentons graphiquement les rapport de risques des estima-
teurs δjs et δjs+ par rapport à X. En second temps, nous donnons un tableau
contients les valeurs des rapport de risques des estimateurs δjs et δjs+ par
rapport à X pour différentes valeurs de p et d.
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Finalement, le mémoire s’achève par une conclusion générale ainsi que
quelques perspectives.
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Chapitre 1
Introduction générale

Sommaire
1.1 Lois gaussiennes . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Vecteurs gaussiens . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Loi du χ2 (khi-deux) . . . . . . . . . . . . . . . . . . . . . 13

1.4 Le moment d’ordre k . . . . . . . . . . . . . . . . . . . . . 13

1.5 Loi du khi-deux décentrée . . . . . . . . . . . . . . . . . . 14

1.6 Estimation paramétrique . . . . . . . . . . . . . . . . . . 14

1.6.1 Modèle Statistique . . . . . . . . . . . . . . . . . . . 14

1.6.2 Construction d’estimateurs . . . . . . . . . . . . . . 15

1.6.3 Qualité d’un estimateur . . . . . . . . . . . . . . . . 17

1.6.4 Amélioration d’estimateurs . . . . . . . . . . . . . . 24

1.1 Lois gaussiennes

Définition 1.1. Soit X une variable aléatoire réelle. On dit que X est une
variable aléatoire gaussienne de paramètres (µ,σ2) avec µ ∈ R et σ ∈ R+ (on
note X ∼N (µ,σ2)) si X vérifie une des deux conditions suivantes :
• σ > 0 et X admet pour densité

fX(x) =
1

σ
√

2π
e−

1
2( x−µσ )2

, x ∈R

• σ = 0 et X est presque sûrement égale à µ.
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Remarque 1.1. Dans le deuxième cas, on parle de lois gaussiennes dégéné-
rées et donc la variable aléatoire X n’admet pas de densité par rapport à la
mesure de Lebesgue.

Proposition 1.1. Une variable aléatoire X de loi N (µ,σ2) a pour
• Espérance : E[X] = µ,
• Variance : V ar(X) = σ2,
• Fonction caractéristique

φX(t) = E(eitX) = eitµe−
t2σ2

2 , t ∈R.

Lorsque la moyenne µ vaut 0, et l’écart-type vaut 1, la loi sera notée N (0,1)

et sera appelée loi normale standard. Sa fonction caractéristique vaut e−
t2
2 .

Seule la loi N (0,1) est tabulée car les autres lois (c’està- dire avec d’autres
paramètres) se déduise de celle-ci à l’aide du théorème suivant :

Théorème 1.1. Si la variable aléatoire X suit une loi N (µ,σ2), alors Y :=
X −µ
σ

suit la loi N (0,1).

1.2 Vecteurs gaussiens

Définition 1.2. • Un vecteur aléatoire est un vecteur (X1, . . . ,Xn) com-
posé de n variables aléatoires définies sur le même espace.
• Un vecteur aléatoire (X1, . . . ,Xn) est dit L1 (resp. L2), si E[Xi] < +∞

(resp. E[X2
i ] < +∞), pour tout 1 ≤ i ≤ n.

• L’espérance d’un vecteur aléatoire X = (X1, . . . ,Xn) L1, est le vecteur
des espérances de ses marginales

E(X) = (E(X1), . . . ,E(Xn)).

• La matrice de covariance d’un vecteur aléatoire X = (X1, . . . ,Xn) L2,

est la matrice carrée symétrique, positive

Σ = (Cov(Xi ,Yj))1≤i,j≤n.

Définition 1.3. Un vecteur aléatoireX = (X1, . . . ,Xn)t est gaussien si et seule-
ment si toutes les combinaisons linéaires de ses coordonnées 〈a,X〉 = a1X1 +
. . .+ anXn suit une loi gaussienne dans R (pour tout a = (a1, . . . , an)t ∈Rn).
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Proposition 1.2. Si ψ est une application linéaire de Rn dans Rm et si X est
un vecteur gaussien de dimension n alors ψ(X) est aussi un vecteur gaussien
de dimension m.

Remarque 1.2. • Si X est un vecteur gaussien alors pour toute partie
{i1, . . . , ip} de {1, . . . ,n}, le vecteur (Xi1 , . . . ,Xip) est gaussien.
• Un vecteur gaussien est nécessairement L2 puisque, par définition,

chacune de ses marginales Xi est gaussienne donc L2.

Théorème 1.2. Un vecteur aléatoire X à valeurs dans Rn est un vecteur
gaussien si et seulement si X est L2 et il admet pour fonction caractéristique

φX(u) = E(eitX) = eiu
tµe−

1
2u

tΣu , u ∈Rn

avec µ = E(X) et Σ = V ar(X).

Proposition 1.3. Soit X ∼ Nn(µ,Σ) un vecteur gaussien de dimension n, de
moyenne µ et de covariance Σ. Les variables aléatoires X1, . . . ,Xn sont indé-
pendantes si et seulement si la matrice Σ est diagonale.

Proposition 1.4. Soit X un vecteur gaussien écrit de la forme (Y ,Z) avec
Y ∈ Rp et Z ∈ Rq. Les vecteurs Y et Z sont indépendants si et seulement si
la matrice de covariance de X est diagonale par blocs c’est a dire A 0p,q

0q,p B


avec A une matrice de dimension p × p et B une matrice de dimension q × q.

Proposition 1.5. La densité d’un vecteur gaussien X ∼ Nn(µ,Σ) non dégé-
néré (i.e detΣ , 0) est

fX(x) =
exp(−〈(x −µ),Σ−1(x −µ)〉/2)

((2π)ndetΣ)1/2
, x ∈Rn
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1.3 Loi du χ2 (khi-deux)

Définition 1.4. SoitZ1, . . . ,Zν une suite de variables aléatoires indépendantes

de même loi N (0,1). Alors la variable aléatoire
ν∑
i=1

Z2
i suit une loi appelée

loi du Khi-deux à ν degrés de liberté, notée χ2
ν .

Proposition 1.6. • La densité de la loi du χ2
ν est

fχ2
ν
(x) =

1
2ν/2Γ (ν/2)

xν/2−1e−x/2, x > 0

où Γ est la fonction Gamma d’Euler définie par Γ (r) =
∫ ∞

0
xr−1e−xdx.

• L’espérance de la loi du χ2
ν est égale au nombre ν de degrés de liberté

et sa variance est 2ν.
• Sa fonction caractéristique est φχ2

ν
(t) = (1− 2it)−ν/2

• Pour n ≥ 30,
√

2χ2
ν −
√

2n− 1 suit approximativement une loi N (0,1).

1.4 Le moment d’ordre k

Définition 1.5. Soit X une variable aléatoire qui suit la loi χ2
p. On appelle

moment d’ordre k la quantité

E(Xk) =
∫ +∞

0
ukf (u)du

où f (u) est la densité de X.

Proposition 1.7. Soit X une variable aléatoire qui suit la loi χ2
p. Alors

E(Xk) = 2k
Γ (p2 + k)

Γ (p2 )
.

D’après la proposition précédente E(χ2
p) =

p
2
1
2

= p et V ar(χ2
p) =

p
2
1
4

= 2p.
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1.5 Loi du khi-deux décentrée

Définition 1.6. Soit X1, . . . ,Xν une suite de variables aléatoires indépen-
dantes suivent la loi N (θi ,σ

2
i ), i = 1 : ν. Alors la variable aléatoire X =

ν∑
i=1

(
Xi
σi

)2

suit la loi du Khi-deux décentrée, elle dépend de deux paramètres :

ν : est le nombre de degrés de liberté.

λ : est le paramètre de décentrage, il est donné par λ =
ν∑
i=1

(
θi
σi

)2

et on note

X ∼ χ2
ν(λ).

Proposition 1.8. • La densité de la loi du χ2
ν(λ) est

fχ2
ν(λ)(x) =

+∞∑
k=0

χ2
p+2k

e−λ/2(λ/2)k

k!
, x > 0

• Sa fonction caractéristique est φχ2
ν(λ)(t) =

e(
iλt

1−2it )

(1− 2it)ν/2

Définition 1.7. Soit h une fonction mesurable et X ∼ χ2
ν(λ), on définit l’es-

pérence de h(X) par

E(h(X)) =
+∞∑
k=0

[∫ +∞

0
h(x)χ2

p+2kdx

]
e−λ/2(λ/2)k

k!

où χ2
p+2k est la loi de Khi-deux centrée à p+ 2k degrés de liberté.

1.6 Estimation paramétrique

1.6.1 Modèle Statistique

Définition 1.8. I Un échantillon d’une loi est une suite de v.a indépen-
dantes identiquement distribuées (i.i.d).
I Un modèle statistique est la donnée de triplet (X,A, (Pθ)θ∈Θ) où : X est
l’espace de réalisations, A tribu sur X, Pθ = PX loi de X et Θ l’ensemble des
paramétres θ.
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Exemple 1.1. Soit un échantillonnage de N (m,σ2), c’est à dire une suite
X1, . . . ,Xn de v.a i.i.d avec ∀i, Xi ↪→N (m,σ2), X =Rn,A =B

R
n , Pθ =N (m,σ2)

et θ = (m,σ2) ∈Θ =R×R+∗.

Définition 1.9. Une statistique est une application T mesurable (v.a) de
(X,A) dans un espace mesurable (F ,H).

T : (X,A) −→ (F ,H)
(X1, . . . ,Xn) 7−→ T (X1, . . . ,Xn).

Définition 1.10. On appelle estimateur de θ, toute statistique T de (X,A) à
valeurs dans Θ.

1.6.2 Construction d’estimateurs

Méthode des moments

C’est une méthode naturelle dans la mesure où elle est intuitive. Suppo-
sons que l’on doit estimer le paramétre θ, la méthode des moments consiste
à choisir comme estimateur θ̂n la solution de l’équation obtenue en égalant
le moment théorique d’ordre k et le moment empirique d’ordre k.

E(Xk) =
1
n

n∑
i=1

Xki

Exemple 1.2. Soit X ↪→ G(1,θ), donc E(X) =
1
θ
.

∗ pour k = 1 la méthode des moments nous donne E(X) = Xn, alors un esti-
mateur de θ est

θ̂n =
1

Xn

∗ pour k = 2 la méthode des moments nous donne E(X2) =
1
n

n∑
i=1

X2
i , or

E(X2) = θ
∫ +∞

0
x2e−θxdx =

2
θ2 , alors un estimateur de θ est

θ̂n =

√
2

1
n

∑n
i=1X

2
i

15
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Méthode du maximum de vraisemblance

Définition 1.11. Soient X = (X1, . . . ,Xn) une suite de v.a i.i.d, on appelle
fonction de vraisemblance pour X la fonction définie par :

L(X1, . . . ,Xn,θ) =



n∏
i=1

P (Xi ,θ) si les Xi sont discrètes

n∏
i=1

f (Xi ,θ) si les Xi sont continues

Définition 1.12. l’estimateur de θ par la méthode du maximum de vrai-
semblance est la valeur θ̂n qui rend maximale la fonction de vraisemblance
L.

Les conditions requises pour assurer cette maximisation sont
dL
dθ

= 0 et

d2L

dθ2 < 0.
Il est par fois plus commode de maximiser le logarithme népérien de L
par rapport à θ puisque cette fonction comporte souvent des puissances

ou des formes exponentielles, les conditions deviennent alors
dlnL
dθ

= 0 et

d2lnL

dθ2 < 0.
lnL est une fonction croissante et elle aura sa valeur maximum pour la
même valeur de θ qu’aurait la fonction L.

Remarque 1.3. L’estimateur du maximum de vraisemblance peut ne pas
exister.

Exemple 1.3. Si les Xi sont de loi N (m,σ2), la fonction de vraisemblance
est :

L(X1, . . . ,Xn,m,σ
2) =

n∏
i=1

f (Xi ,m,σ
2) =

n∏
i=1

1

σ
√

2π
e
− (Xi−m)2

2σ2 =
1

(σ
√

2π)n
e
− 1

2σ2
∑n
i=1(Xi−m)2

D’où

lnL(X1, . . . ,Xn,m,σ
2) = −n

2
lnσ2 − n

2
ln2π − 1

2σ2

n∑
i=1

(Xi −m)2

16
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On doit annuler les dérivées partielles de ce logarithme par rapport à m et
σ2. On a

∂
∂m

lnL(X1, . . . ,Xn,m,σ
2) = − 1

2σ2

n∑
i=1

−2(Xi −m) =
1
σ2

 n∑
i=1

Xi −nm

 ,
qui s’annule pour

m̂ =
1
n

n∑
i=1

Xi = Xn.

∂

∂σ2 lnL(X1, . . . ,Xn,m,σ
2) = − n

2σ2 +
1

2σ4

n∑
i=1

(Xi −m)2,

qui s’annule pour

σ̂2 =
1
n

n∑
i=1

(Xi −Xn)2 = S2
e .

1.6.3 Qualité d’un estimateur

Biais d’un estimateur

Définition 1.13. Le biais d’un estimateur est la quantité

bθ(T ) = Eθ(T )−θ

où Eθ espérance par rapport à Pθ.
∗ Si bθ(T ) = 0, T est dit estimateur sans biais.
∗ Si bθ(T ) , 0, T est dit estimateur biaisé.

Définition 1.14. Un estimateur T (X) = (Tn(X))n∈N de θ, où Tn(X) est inté-
grable pour tout n, est dit asymptotiquement sans biais si E(Tn(X))−θ tend
vers 0 lorsque n tend vers l’infini et ce pour tout θ dans Θ.

Propriétés 1.1. ∗ La moyenne empirique Xn est un estimateur sans biais
pour m, en éffet

E(Xn) =
1
n

n∑
i=1

E(Xi) =
1
n
nm =m

17
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∗ La variance empirique S2
e est un estimateur biaisé pour σ2 mais il est

asymptotiquement sans biais, en éffet

E(S2
e ) = E(X2)−E(X

2
n)

= V (X) +E(X)2 −V (Xn)−E(Xn)2

=
n− 1
n

V (X)

=
n− 1
n

σ2→n→∞ σ
2.

En revanche, on voit que E(
n

n− 1
S2
e ) =

n
n− 1

E(S2
e ) = σ2. On pose donc

S2 =
1

n− 1

n∑
i=1

(Xi −Xn)2.

Par conséquent S2 (appelée variance estimée) est un estimateur sans biais
pour σ2.

Estimateur convergent

Définition 1.15. Un estimateur T est dit convergent si E(T ) tend vers θ
lorsque n tend vers l’infini. Il sera dit consistant si T converge en probabilité
vers θ lorsque n tend vers l’infini.

Théorème 1.3. Si T est convergent et de variance tendant vers 0 lorsque n
tend vers l’infini alors T est consistant.

Si T et θ sont dansR, la définition de la convergence de l’estimateur signifie
que l’on a, pour tout ε > 0 :

P(|T −θ| > ε)→ 0,

quand n→ +∞.

Exemple 1.4. Si lesXi sont de loi B(θ) alors l’estimateurXn =
1
n

n∑
i=1

Xi converge

en probabilité vers θ lorsque n tend vers l’infini. En effet, soit ε > 0

P(|Xn −θ| > ε) ≤ V ar(Xn)
ε2 =

1
ε2

1
n
θ(1−θ)→n→+∞ 0

On peut considérer d’autres types de convergence, comme la convergence
p.s. ou la convergence dans Lp, pour p fixé. Dans ces cas, on dira respective-
ment que l’estimateur est fortement consistant ou Lp-consistant.
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Risque d’un estimateur

On se donne en premier lieu un critère mesurant et pénalisant l’écart
entre l’estimateur δ et la vraie valeur θ. On parle de fonction de coût.

Définition 1.16. On appelle fonction de coût (ou de perte) toute fonction L
mesurable de Θ ×Θ dans R+.

L : Θ ×Θ −→ R
+

(δ,θ) 7−→ L(δ,θ).

Quelques fonctions de coût classiques sont :
1− La fonction de coût valeur absolue : L(δ,θ) = |δ −θ|
2− La fonction de coût quadratique : L(δ,θ) = (δ −θ)2

Le rôle de chaque fonction de coût est :
I de mesurer la qualité de l’estimation,
I d’aboutir à une solution en minimisant la fonction de coût.

Définition 1.17. On appelle risque d’un estimateur δ de θ associé à la fonc-
tion de coût L, la fonction R de Θ vers R+ définie par

R(δ,θ) = E(L(δ,θ)),

pour tout θ de Θ, sous réserve que cette espérance existe.

Remarque 1.4. Quand la fonction de coût est quadratique on parle de risque
quadratique.

Proposition 1.9. Soit T un estimateur de θ, si la fonction de coût L(δ,θ) est
quadratique on a :

R(T ,θ) = Vθ(T ) + b2
θ(T )

Remarque 1.5. Entre deux estimateurs sans biais, le "meilleur" sera celui
dont la variance est minimale (on parle d’efficacité).

Exemple 1.5. Soient X1 et X2 deux variables aléatoires i.i.d de moyenne θ
et de variance σ2. Soient δ1et δ2 deux estimateurs non biasés de θ telle que :

δ1 =
X1 +X2

2
et δ2 =

aX1 + bX2

a+ b
où a,b ∈R

19



1.6. ESTIMATION PARAMÉTRIQUE TABLE DES MATIÈRES

V ar(δ1)−V ar(δ2) = V ar(
X1 +X2

2
)−V ar(aX1 + bX2

a+ b
)

=
1
4
V ar(X1 +X2)− a

2 + b2

(a+ b)2V ar(X1)

=
(

1
2
− a

2 + b2

(a+ b)2

)
σ2

=
(

(a+ b)2 − 2a2 − 2b2

2(a+ b)2

)
σ2.

Comme 2(a+ b)2 > 0 et (a+ b)2 − 2a2 − 2b2 = −(a− b)2 < 0, alors

V ar(δ1) < V ar(δ2).

Donc δ1 est meilleur que δ2.

Définition 1.18. Soient δ1 et δ2 deux estimateurs de θ. On dit que δ1 est
préférable (domine) à δ2 si l’on a :

R(δ1,θ) ≤ R(δ2,θ)

pour tout θ de Θ et avec une inégalité stricte pour au moins un θ de Θ.

Définition 1.19. Un estimateur T de θ est dit admissible s’il n’existe pas
d’estimateur de θ qui lui soit préférable.

Définition 1.20. Un estimateur Tm de θ est appelé minimax s’il atteint le
plus petit risque maximum pour tout autre estimateurs T , ce qui signifie
qu’il satisfait

supθ∈ΘR(Tm,θ) = infT ∈Dsupθ∈ΘR(T ,θ)

avec D = {T / T estimateur de θ}

Information de Fisher

Au vu d’un échentillon X = (X1, . . . ,Xn) on peut obtenir une certain in-
formation sur le paramètre θ, il s’agit de contifier cette information et de
montrer qu’il a un intérêt pour les statistiques.
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Définition 1.21. L’information de Fisher (IX(θ)) apporté par X sur le para-
mètre θ est définie par :

IX(θ) = E

( ∂∂θ lnL(X,θ)
)2 .

On peut établir une autre écriture de l’information de Fisher.

Proposition 1.10. L’information de Fisher est aussi égale à

IX(θ) = −E
(
∂2

∂θ2 lnL(X,θ)
)
.

Proposition 1.11. Soit T une statistique de θ. Alors

IT (X)(θ) ≤ IX(θ)

I Cas vectoriel θ = (θ1, . . .θp)
On définit L’information de Fisher par la matrice suivantes

IX(θ) =
(
Ii,j(θ)

)
i,j=1,...,p

où

Ii,j(θ) = −E
(

∂2

∂θi∂θj
lnL(X,θ)

)
.

Borne de Cramer-Rao

Le resultat suivant affirme l’existence d’une borne inférieure pour la va-
riance de n’importe qu’el estimateure. Dans la suite on supposera les hypo-
thèses suivantes.

H1 : Le domaine des réalisation de X = (X1, . . . ,Xn) ne dépent pas de θ.
H2 : La densité de X est 2 fois dérivable par rapport à θ.
H3 : On peut dériver par rapport à θ sou le signe d’integrale.

Théorème 1.4. Soit T un estimateur sans biais de θ. Alors sou les hypo-
thèses H1, H2 et H3, on a :

V ar(T ) ≥ 1
IX(θ)

.
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La borne
1

IX(θ)
est la borne de Cramer-Rao

Définition 1.22. (Estimateur efficace) Un estimateur sans biais T est dit
efficace s’il atteint la borne de Cramer-Rao, c’est-à-dire si

V ar(T ) =
1

IX(θ)
.

Il est dit asymptotiquement efficace si

limn→+∞
1

IX(θ)V ar(T )
= 1

1.6.4 Amélioration d’estimateurs

Statistique exhaustive

Il s’agie de construire une statistique T (X) à partire d’un échantillon
X = (X1, . . . ,Xn) qui vont nous renseigner sur le paramètre θ, sans entraîner
de perte d’information.

Définition 1.23. Soit (X,A, (Pθ)θ∈Θ) un modèle paramétrique etX = (X1, . . . ,Xn)
un échantillon dans ce modèle. Une statistique T (X) est dite exhaustive
pour le paramètre θ si la loi de X conditionnelle à T (X) est indépendante
du paramètre θ.

Le calcul de la loi conditionnelle n’étant pas toujours facile, on utilisera
souvent le théorème suivant qui donne un moyen plus aisé pour prouver
l’exhaustivité d’une statistique.

Théorème 1.5. Soit (X,A, (Pθ)θ∈Θ) un modèle paramétrique etX = (X1, . . . ,Xn) ∼
f (X,θ) un échantillon dans ce modèle. Une statistique T (X) est exhaustive
si et seulement si, la densité f (X,θ) s’ecrit :

f (X,θ) = g(X)h(T (X),θ)

où g et h sont des fonction mesurable et positive.
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Exemple 1.6. soit X = (X1, . . . ,Xn) ∼ f (X,θ) =
n∏
i=1

f (Xi ,θ) où ∀i = 1 : n,

Xi ∼ U[0,θ] and f (Xi ,θ) =
1
θ
I[0,θ](x), on a

f (X,θ) =
n∏
i=1

f (Xi ,θ) =
1
θn

n∏
i=1

I[0,θ](xi)

=
1
θn

n∏
i=1

I{0≤xi≤θ}

=
1
θn

n∏
i=1

I{xi≤θ}

n∏
i=1

I{xi≥0}

=
n∏
i=1

I{xi≥0}
1
θn

n∏
i=1

I{xi≤θ}

= I{infixi≥0}
1
θn
I{supixi≤θ}

= g(x)h(T (x),θ).

Danc la statistique T (X1, . . . ,Xn) = sup1≤i≤nXi est une statistique exhaustive
pour θ.

La statistique T (X) = X est toujours une statistique exhaustive. Mais elle
n’est pas d’un grand intérât et ne réduit absolument pas l’information. Il ne
s’agit donc pas seulement de trouver une statistique exhaustive mais plu-
tôt de trouver parmi les statistiques exhaustives celle(s) qui réduit(sent) au
maximum l’information. En d’autres termes, le problème est de trouver une
statistique exhaustive qui soit minimale.

Définition 1.24. On dit qu’une statistique exhaustive est minimale, si elle
est une fonction mesurable de toutes les autres statistiques exhaustives.

Autrement dit, la statistique T est minimale si pour toute statistique ex-
haustive S il existe une fonction h telle que T = h(S).

Théorème 1.6. (Théorème de Rao-Blackwell) Soit (X,A, (Pθ)θ∈Θ) un mo-
dèle paramétrique et X = (X1, . . . ,Xn) un échantillon dans ce modèle. Soit
T (X) un estimateur de θ de carré intégrable. Si le modèle possède une statis-
tique exhaustive S(X) pour le paramètre θ, alors l’estimateurEθ(T (X)|S(X))
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de θ a un risque quadratique inférieur à T (X), c’est à dire que l’on a :

R(Eθ(T (X)|S(X)),θ) ≤ R(T (X),θ),

pour tout θ dansΘ. De plus cette inégalité est stricte pour au moins un θ de
Θ, i.e. Eθ(T (X)|S(X)) est préférable à T (X), sauf si T (X) est sans biais et une
fonction de la statistique exhaustive S(X). Si T (X) est un estimateur sans
biais de θ alors Eθ(T (X)|S(X)) est également sans biais pour θ et l’inégalité
sur les risques quadratiques se traduit également sur les variances.

Le théorème précédent nous permet déjà d’améliorer la qualité d’un esti-
mateur. Mais il ne nous assure pas de tomber sur un estimateur optimal.
L’obtention directe d’un estimateur optimal sera possible grâce au Théo-
rème de Lehmann-Scheffé donné ci-dessous. Mais il nous faut auparavant
introduire la notion de statistique complète qu’il utilise.

Statistique complète

Définition 1.25. Soit (X,A, (Pθ)θ∈Θ) un modèle paramétrique etX = (X1, . . . ,Xn)
un échantillon dans ce modèle. Une statistique T (X) est dite complète (ou
totale) si toute fonction borélienne ϕ vérifiant

Eθ |ϕ(T (X))| < +∞ et Eθ(ϕ(T (X))) = 0

pour tout θ de Θ est nécessairement telle que

ϕ(T (X)) = 0, Pθ − p.s.

pour tout θ de Θ

Théorème 1.7. Toute statistique exhaustive et complète est minimale.

Théorème 1.8. (Théorème de Lehmann-Scheffé) Soit (X,A, (Pθ)θ∈Θ) un mo-
dèle paramétrique et X = (X1, . . . ,Xn) un échantillon dans ce modèle. Soit
T (X) un estimateur de θ de carré intégrable et S(X) une statistique ex-
haustive et complète de θ. Alors l’estimateur amélioré de Rao-Blackwell
Eθ(T (X)|S(X)) est optimal dans la classe des estimateurs sans biais de θ.
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Cas des familles exponentielles

Définition 1.26. Soit (X,A, (Pθ)θ∈Θ) un modèle paramétrique etX = (X1, . . . ,Xn)
un échantillon dans ce modèle. La famille des loi (Pθ)θ∈Θ est dit famille ex-
ponentielle si Pθ admet une densité f (x,θ) et f (x,θ) admet la représentation
suivante :

f (x,θ) = exp [a(x)α(θ) + b(x) + β(θ)] x ∈R
n∏
i=1

f (xi ,θ) = exp

 n∑
i=1

a(xi)α(θ) +
n∑
i=1

b(xi) +nβ(θ)

 x ∈Rn

où a, b, α et β sont des fonction mesurables.

Exemple 1.7. Soit X ∼ pθ = b(m,θ), i.e :

pθ(k) = p(X = k) = Ckmθ
k(1−θ)m−k .

on a

lnp(X = k) = ln
(
Ckmθ

k(1−θ)m−k
)

= lnCkm + kln
( θ
1−θ

)
+mln(1−θ).

Donc (b(m,θ))θ∈[0,1] est une famille exponentielle avec a(k) = k, α(θ) = ln
( θ
1−θ

)
,

b(k) = lnCkm et β(θ) =mln(1−θ).

Théorème 1.9. (Théorème de Darmois-Koopmans) Soit (X,A, (Pθ)θ∈Θ) un
modèle paramétrique dont le domaine des valeurs ne dépend pas de θ et
X = (X1, . . . ,Xn) un échantillon dans ce modèle. Alors : il existe une statis-
tique exhaustive de θ si et seulement si la famille (Pθ)θ∈Θ est exponentielle.

De plus T (X) =
n∑
i=1

a(Xi) est la statistique exhaustive.

Exemple 1.8. Soit X ∼ pθ = b(m,θ), i.e :

pθ(k) = p(X = k) = Ckmθ
k(1−θ)m−k .

on a T (X) =
n∑
i=1

Xi est une statistique exhaustive de θ.
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Chapitre 2
Minimaxité

Sommaire
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2.1 Inadmissibilité de l’stimateur usuel

SoitX une variable aléatoire qui suit une loi normale multidimentionelle
Np(θ,Ip), avec θ ∈Rp. Pour tout estimateur δ(X) de θ, on définit la fonction
de coût quadratique par :

L(δ(X),θ) = ‖δ(X)−θ‖2p

où ‖.‖p est la norme usuelle dans Rp : Ainsi son risque quadratique est :

R(δ(X),θ) = Eθ(L(δ(X),θ))

= Eθ(‖δ(X)−θ‖2p)

=
∫
R
p

‖δ(X)−θ‖2p
(2π)p/2

exp
(
−1

2
‖x −θ‖2p

)
dx.

On sait que l’estimateur usuel de θ est δ0(X) = X, il est minimax et son
risque quadratique est :

R(δ0(X),θ) = E(‖δ0(X)−θ‖2) = p
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en effet :
X −θ ∼Np(0, Ip)

donc

‖X −θ‖2 = 〈X −θ,X −θ〉 =
p∑
i=1

(Xi −θi)2 ∼ X 2
p

car pour tout i ∈ {1, ...,p} la variable aléatoire réelle Xi − θi ∼ N (0,1) et les
variables Xi sont indépendantes. Donc

E(δ0(X)) = E(X 2
p ) = p

Il est clair que l’estimateur usuel X est admisible pour p ≤ 2. Stein [7] a
anoncé que quand p ≥ 3 l’estimateur de la forme :

δJSa,b(X) =
(
1− a

b+ ‖X‖2

)
X

a un risque uniformément inférieur au risque de δ0(X), pour a suffisamment
petit et b suffisamment grand.

2.2 Estimateur de James -Stein

Lemme 2.1. (Stein[8]) Si Y ∼N (0,1), alors pour toute fonction dérivable h,
telle que |E(h′(Y ))| <∞ alors :

E[Yh(Y )] = E[h′(Y )]

Démonstration : On pose

fY (y) =
1

2π
exp(−1

2
y2)
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la densité de la loi normale centrée réduite, et par dérivation on trouve
f ′Y (y) = −yfY (y) Alors

E[h′(Y )] =
∫ +∞

−∞
h′(y)f (y)dy

= −
∫ +∞

0
h′(y)

(∫ +∞

y
−zf (z)dz

)
dy +

∫ 0

−∞
h′(y)

(∫ y

−∞
−zf (z)dz

)
dy

=
∫ +∞

0
h′(y)

(∫ +∞

y
zf (z)dz

)
dy −

∫ 0

−∞
h′(y)

(∫ y

−∞
zf (z)dz

)
dy

=
∫ +∞

0
zf (z)

(∫ z

0
h′(y)dy

)
dz −

∫ 0

−∞
zf (z)

(∫ 0

z
h′(y)dy

)
dz (d’aprés Fubini)

=
∫ +∞

0
zf (z)[h(z)− h(0)]dz+

∫ 0

−∞
zf (z)[h(z)− h(0)]dz

=
(∫ +∞

0
+
∫ 0

−∞

)
{zf (z)[h(z)− h(0)]}dz

=
∫ +∞

−∞
zh(z)f (z)dz − h(0)

∫ +∞

−∞
zf (z)dz

=
∫ +∞

−∞
zh(z)f (z)dz − h(0)E(Y )

=
∫ +∞

−∞
zh(z)f (z)dz (carE(Y ) = 0).

D’où
E(h′(Y )) = E(Yh(Y )).

Corollaire 2.1. Si X ∼ N (µ,1), alors pour toute fonction dérivable h, telle
que |E(h′(X))| <∞ on a :

E((X −µ)h(X)) = E(h′(X))

Démonstration : On pose Y = X − µ, alors Y ∼ N (0,1), et donc d’aprés le
lemme 2.1 on trouve

E((X −µ)h(X)) = E(Yh(Y +µ))

= E

(
∂
∂Y

h(Y +µ)
)

= E(h′(Y +µ)) = E(h′(X)).
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Lemme 2.2. Soit X ∼Np(θ,Ip), alors

E

(
1
‖X2‖

)
= E

(
1

p − 2 + 2K

)

où K ∼ P
(
‖θ‖2

2

)
est la loi de Poisson du paramètre

‖θ‖2

2
.

Démonstration : On pose U = ‖X‖2. Il est clair que U ∼ χ2
p(λ = ‖θ‖2), alors :

E

( 1
U

)
=

+∞∑
k=0

[∫ +∞

0

1
u
χ2
p+2kdu

]
exp(−λ)

λk

k!

=
+∞∑
k=0

 (1
2 )

p+2k
2

Γ (p+2k
2 )

∫ +∞

0

1
u

exp(
−1
2
u)u

p+2k
2 −1du

exp(−λ)
λk

k!

=
+∞∑
k=0

 (1
2 )

p+2k
2

Γ (p+2k
2 )

∫ +∞

0
exp(

−1
2
u)u

p+2k
2 −2du

exp(−λ)
λk

k!
.

Posons t =
1
2
u⇔ 2t = u et du = 2dt alors on a :

E

( 1
U

)
=

+∞∑
k=0


(

1
2

) p+2k
2

Γ
(
p+2k

2

) ∫ +∞

0
exp(−t)(2t)

p+2k
2 −22dt

exp(−λ)
λk

k!

=
+∞∑
k=0


(

1
2

) p+2k
2

Γ
(
p+2k

2

)2
p+2k

2 −22
∫ +∞

0
exp(−t)t

p+2k
2 −2dt

exp(−λ)
λk

k!

=
+∞∑
k=0

 1
2

Γ (p+2k
2 )

Γ

(
p+ 2k

2
− 1

)exp(−λ)
λk

k!

=
+∞∑
k=0

 1
2Γ

(
p+2k

2 − 1
)

Γ
(
p+2k

2 − 1 + 1
)exp(−λ)

λk

k!

=
+∞∑
k=0

 1
2Γ

(
p+2k

2 − 1
)

p+2k−2
2 Γ

(
p+2k

2 − 1
)exp(−λ)

λk

k!
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=
+∞∑
k=0

[
1

p − 2 + 2k

]
exp(−λ)

λk

k!

= E

(
1

p − 2 + 2K

)
.

où K ∼ P
(
‖θ‖2

2

)
est la loi de Poisson de paramètre

‖θ‖2

2
.

On considère la classe d’estimateurs introduite par James et Stein [4] :

δJSa (X) =
(
1− a

‖X‖2

)
X (2.1)

où a > 0.

Proposition 2.1. Le risque quadratique de l’estimateur donné en (2.1) est

R(δJSa (X),θ) = p+ a2
E

(
1

p − 2 + 2K

)
− 2(p − 2)aE

(
1

p − 2 + 2K

)
(2.2)

Démonstration : On a :

R(δJSa (X),θ) = E(‖δJSa (X)−θ‖2)

= E

∥∥∥∥∥∥
(
1− a

‖X‖2

)
X −θ

∥∥∥∥∥∥2

= E

(∥∥∥∥∥X −θ − a

‖X‖2
X

∥∥∥∥∥2)
= E

〈
X −θ − a

‖X‖2
X,X −θ − a

‖X‖2
X

〉
= E

[
‖X −θ‖2 +

∥∥∥∥∥ a

‖X‖2
X

∥∥∥∥∥2
− 2

〈
X −θ, a

‖X‖2
X

〉]
= E(‖X −θ‖2) +E

(∥∥∥∥∥ a

‖X‖2
X

∥∥∥∥∥2)
− 2E

〈
X −θ, a

‖X‖2
X

〉
= p+E

〈
a

‖X‖2
X,

a

‖X‖2
X

〉
− 2E

〈
X −θ, a

‖X‖2
X

〉
= p+E

[
a2

‖X‖4
‖X‖2

]
− 2E

[
a

‖X‖2
〈X −θ,X〉

]
= p+ a2

E

(
1
‖X‖2

)
− 2aE

 p∑
i=1

(Xi −θi)
Xi
‖X‖2

 .
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D’aprés le Corollaire 2.1, on a :

E

 p∑
i=1

(Xi −θi)
Xi
‖X‖2

 =
p∑
i=1

E

[
(Xi −θi)

Xi
‖X‖2

]

=
p∑
i=1

E

(
∂
∂Xi

[
Xi
‖X‖2

])

=
p∑
i=1

E

 ∂
∂Xi

 Xi
X2

1 +X2
2 + ....+X2

p


=

p∑
i=1

E

[
‖X‖2 − 2X2

i

‖X‖4

]

=
p∑
i=1

E

[
1
‖X‖2

−
2X2

i

‖X‖4

]

= E

p∑
i=1

1
‖X‖2

− 2E

 p∑
i=1

X2
i

‖X‖4


= pE

[
1
‖X‖2

]
− 2E

 X2
i

‖X‖4

p∑
i=1

X2
i


= pE

[
1
‖X‖2

]
− 2E

[
1
‖X‖2

]
= (p − 2)E

[
1
‖X‖2

]
.

D’où

R(δJSa (X),θ) = p+ a2
E

(
1

p − 2 + 2K

)
− 2(p − 2)aE

(
1

p − 2 + 2K

)

Théorème 2.1. i)Une condition nécessaire et suffisante pour que l’estima-
teur δJSa (X) définie en (2.1), domine δ0(X) est que 0 ≤ a ≤ 2(p − 2).
ii) Le meilleur estimateur, au sens du risque quadratique dans la classe
des estimateurs δJSa (X) est l’estimateur primitif de James-Stein défini, pour
a = p − 2, c’est-à-dire

δJSp−2(X) =
(
1−

p − 2
‖X‖2

)
X.

Démonstration : i) En utilisant la formule (2.2) de la Proposition 2.1, une
condition nécessaire et suffisante pour que l’estimateur δJSa (X) domine δ0(X)
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est que

a2
E

(
1
‖X‖2

)
− 2(p − 2)aE

(
1
‖X‖2

)
≤ 0.

c’est-à-dire
a[a− 2(p − 2)] ≤ 0

Ainsi une condition nécessaire et suffisante pour que l’estimateur δJSa (X)
domine δ0(X) est que

0 ≤ a ≤ 2(p − 2).

ii) Comme la fonction de risque donnée en (2.2), est convexe par rapport à
a, donc la valeur optimale de a pour que la fonction de risque soit minimale
est

a = (p − 2).

2.3 Estimateur la partie positive de l’estimateur

de James-Stein

Baranchik [1] a introduit l’estimateur qui s’appelle l’estimateur la partie
positive de l’estimateur de James-Stein définie par :

δJS+(X) =
(
1−

p − 2
‖X‖2

)+

X (2.3)

où pour tout fonction réelle f , f + = sup(f ,0) qui s’appelle l’envellope su-
pèrieure de la fonction f . L’envellope infèrieure de la fonction f est définie
par : f − = sup(−f ,0) et donc, on peut déduire les égalitées suivantes :

f = f + − f − et |f | = f + + f −

Baranchik a démontré que pour tout p ≥ 3, le risque de l’estimateur la partie
positive de l’estimateur de James-Stein δJS+(X) est uniformément inférieur
au risque de l’estimateur de James-Stein δJSp−2(X), ainsi l’estimateur la par-
tie positive de l’estimateur de James-Stein δJS+(X) domine l’estimateur de
James-Stein δJSp−2(X) et donc δJS+(X) est minimax.
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Proposition 2.2. Le risque quadratique de l’estimateur donné en (2.3) est

R(δJS+(X),θ) = R(δJSp−2(X),θ) +E
{[
‖X‖2 + (p − 2)2 1

‖X‖2
− 2p

]
I[0,p−2](‖X‖2)

}

où K ∼ P
(
‖θ‖2

2

)
est la loi de Poisson du paramètre

‖θ‖2

2
.

Démonstration :

R(δJS+(X),θ) = E


∥∥∥∥∥∥
(
1−

p − 2
‖X‖2

)+

X −θ
∥∥∥∥∥∥

2
= E

∥∥∥∥∥∥
(
1− (

p − 2
‖X‖2

)
)
X +

(
1− (

p − 2
‖X‖2

)
)−
X −θ

∥∥∥∥∥∥2
= R(δJSp−2(X),θ) +E


∥∥∥∥∥∥
(
1−

p − 2
‖X‖2

)−
X

∥∥∥∥∥∥2


+ 2E
〈(

1−
p − 2
‖X‖2

)
X −θ,

(
1−

p − 2
‖X‖2

)−
X

〉
.

Et comme, on a

E


∥∥∥∥∥∥
(
1−

p − 2
‖X‖2

)−
X

∥∥∥∥∥∥2
 = E

[(
1−

p − 2
‖X‖2

)−
XI1− p−2

‖X‖2
≥0(X) +

(
1−

p − 2
‖X‖2

)−
XI1− p−2

‖X‖2
≤0(X)

]2

et

(
1−

p − 2
‖X‖2

)−
=


−
(
1−

p − 2
‖X‖2

)
si 1−

p − 2
‖X‖2

≤ 0

0 si 1−
p − 2
‖X‖2

> 0.

Alors,

I E


∥∥∥∥∥∥
(
1−

p − 2
‖X‖2

)−
X

∥∥∥∥∥∥2
 = E

[(
p − 2
‖X‖2

− 1
)
XI‖X‖2≤p−2(X)

]2

= E

{[
(p − 2)2

‖X‖4
+ 1− 2

(
p − 2
‖X‖2

)]
‖X‖2I‖X‖2≤p−2(X)

}
= E

{[
(p − 2)2

‖X‖2
+ ‖X‖2 − 2(p − 2)

]
I‖X‖2≤p−2(X)

}
= E

{[
(p − 2)2 1

‖X‖2
+ ‖X‖2 − 2(p − 2)

]
I[0,p−2](‖X‖2)

}
, (2.4)
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JAMES-STEIN TABLE DES MATIÈRES

I E

{〈
X −θ,

(
1−

p − 2
‖X‖2

)−
X

〉}
= E

(〈
X −θ,

(
p − 2
‖X‖2

− 1
)
I[0,p−2[(‖X‖2)

〉)
=

∑
i

E

(
(Xi −θi)

(
p − 2
‖X‖2

− 1
)
XiI[0,p−2[(‖X‖2)

)
=

∑
i

E

((
(p − 2)Xi
‖X‖2

−Xi
)
XiI[0,p−2[(‖X‖2)

)
=

∑
i

E

(
(p − 2)‖X‖2 − (p − 2)Xi2Xi

‖X‖4
− 1

)
I[0,p−2[(‖X‖2)

=
∑
i

E

(
p − 2
‖X‖2

− 2(p − 2)
X2
i

‖X‖4
− 1

)
I[0,p−2[(‖X‖2)

= E

(
p − 2
‖X‖2

p − 2(p − 2)
‖X‖2

‖X‖4
− p

)
I[0,p−2[(‖X‖2)

= E

(
p − 2
‖X‖2

(p − 2)− p
)
I[0,p−2[(‖X‖2) (2.5)

et

I 2E
〈
−
p − 2
‖X‖2

X,

(
1−

p − 2
‖X‖2

)−
X

〉
= 2E

〈
−
p − 2
‖X‖2

X,

(
p − 2
‖X‖2

− 1
)
XI‖X‖2≤p−2(X)

〉
= 2E

{[
−

(p − 2)2

‖X‖2
+ (p − 2)

]
I[0,p−2](‖X‖2)

}
. (2.6)

Combinant les formules (2.4), (2.5) et (2.6) on trouve :

R(δJS+(X),θ) = R(δJSp−2(X),θ) +E
{[
‖X‖2 + (p − 2)2 1

‖X‖2
− 2p

]
I[0,p−2](‖X‖2)

}
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Chapitre 3
Limites des rapports de risque

Sommaire
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Dans ce chapitre nous présentons le travail de Casella, G and Hwang,
J.T. (1982)[3], ils ont considéré le modèle suivant : soit X ∼Np(θ,Ip) où θ est
un paramètre inconnu. Le but est d’étudier le comportement asymptotique

des rapports de risque
R(δJSp−2(X),θ)

R(δ0(X),θ)
et
R(δJS+(X),θ)
R(δ0(X),θ)

c’est-à-dire l’étude de

ces rapports quand p tend vers l’nfini. Pour la suite, on note l’estimateur
primitif de James-Stein par δJS(X).

3.1 Etude du rapport de risque de l’estimateur de

James-Stein

Lemme 3.1. Soit Y une variable aléatoire gaussienne multidimensionelle
Np ∼ (η,Ip), et ‖Y ‖2 ∼ χ2

p(‖η‖2), soit h : [0,+∞[→]−∞,+∞[ : Alors pour

η = (η1, ....,ηn) et Y = (Y1, ....,Yp)

on a
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i) E{h(‖Y ‖2)Y 2
i } = E{h(χ2

p+2(‖η‖2))}+ η2
i E{h(χ2

p+2(‖η‖2))}.

ii) E{h(‖Y ‖2)‖Y ‖2} = E(h(χ2
p(‖η‖2)))

= pE{h(χ2
p+2(‖η‖2))}+ ‖η‖2E{h(χ2

p+4(‖η‖2))}.

Démonstration :

i)E{h(‖Y ‖2)Y 2
i } = E

E

Y 2
i +

∑
j,i

Y 2
j

Y 2
i |

∑
j,i

Y 2
j




= E

exp
(
−
η2
i

2

) ∞∑
k=0

(η2
i )k

k!
E

h
χ2

1+2k +
∑
j,i

Y 2
j

χ2
1+2k |

∑
j,i

Y 2
j




= E

exp
(
−
η2
i

2

) ∞∑
k=0

(η2
i )k

k!
(1 + 2k)E

h
χ2

3+2k +
∑
j,i

Y 2
j

 |∑
j,i

Y 2
j




= E

exp
(
−
η2
i

2

) ∞∑
k=0

(η2
i )k

k!
E

h
χ2

3+2k +
∑
j,i

Y 2
j

 |∑
j,i

Y 2
j




+ E

exp
(
−
η2
i

2

) ∞∑
k=0

(η2
i )k

k!
(2k)E

h
χ2

3+2k +
∑
j,i

Y 2
j

 |∑
j,i

Y 2
j




= E

h
χ2

3 +
∑
j,i

Y 2
j


+ η2

i exp
(
−
η2
i

2

) ∞∑
k=0

(η2
i )k−1

(k − 1)!
E

h
χ2

5+2(k−1) +
∑
j,i

Y 2
j




= E

{
h
(
χ2
p+2

(
‖η‖2

))}
+ η2

i E
{
h
(
χ2
p+4

(
‖η‖2

))}
.

la dernière égalité découle du fait que
∑
j,i

Y 2
j ∼ χ

2
p−1(

∑
j,i

η2
j ) et de l’indépen-

dance des deux variables aléatoires
∑
j,i

Y 2
j et Y 2

i .

De i) on peut déduire immédiatement ii) c’est-à-dire :

E

{
h(‖Y ‖2)‖Y ‖2

}
= pE

{
h
(
χ2
p+2

(
‖η‖2

))}
+ ‖η‖2E

{
h
(
χ2
p+4

(
‖η‖2

))}
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Proposition 3.1. Soit X ∼Np(θ,Ip) : Si p ≥ 3, on a

1
p − 2 + ‖θ‖2

≤ E
(

1
‖X‖2

)
≤ 1
p − 2

(
p

p − ‖θ‖2

)
.

Démonstration : Soit X ∼ Np(θ,Ip), alors ‖X‖2 ∼ χ2
p

(
‖θ‖2

)
et d’aprés le

Lemme 2.2, on a

E

(
1
‖X‖2

)
= E

(
1

p − 2 + 2K

)
avec K ∼ P

(
‖θ‖2

2

)
la loi de Poisson de paramètre

‖θ‖2

2
. En utilisant l’inéga-

lité de Jensen 4.1, on obtient

E

(
1

p − 2 + 2K

)
≥ 1
p − 2 + ‖θ‖2

Pour établir la borne supérieure, on utilise le Lemme 3.1, pour h(y) =
1
y

,

λ =
‖θ‖2

2
on trouve :

(p − 2)E

 1

χ2
p (‖θ‖2)

+ ‖θ‖2E

 1

χ2
p+2 (‖θ‖2)

 = 1

d’où

E

 1

χ2
p (‖θ‖2)

 =
1

p − 2

1− ‖θ‖2E
 1

χ2
p+2 (‖θ‖2)


 .

Ainsi

E

(
1
‖X‖2

)
≤ 1
p − 2

[
1− ‖θ‖2

(
1

p+ ‖θ‖2

)]
≤ 1
p − 2

(
p

p+ ‖θ‖2

)
.

Cette inégalité découle de Lemme 2.2 et de l’inégalité de Jensen 4.1. D’aprés
la Proposition 3.1, on déduit immédiatement le théorème suivant qui montre

une borne inférieure et une borne supérieure du rapport de risque
R(δJS(X),θ)
R(X,θ)

.
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Théorème 3.1.

1−
p − 2

p+ ‖θ‖2
≤ R(δJS(X),θ)

R(X,θ)
≤ 1−

(p − 2)2

p

(
1

p − 2 + ‖θ‖2

)
.

Théorème 3.2. Si lim
p→+∞

‖θ‖2

p
= c, (c > 0). Alors :

lim
p→+∞

R(δJS(X),θ)
R(X,θ)

=
c

1 + c
.

Démonstration : D’aprés le Théorème 3.1, on a :

1−
p − 2

p+ ‖θ‖2
≤ R(δJS(X),θ)

R(X,θ)
≤ 1−

(p − 2)2

p

(
1

p − 2 + ‖θ‖2

)
.

En passant à la limite, on trouve :

lim
p→+∞

[
1−

p − 2
p+ ‖θ‖2

]
≤ lim
p→+∞

[
R(δJS(X),θ)
R(X,θ)

]
≤ lim
p→+∞

[
1−

(p − 2)2

p

(
1

p − 2 + ‖θ‖2

)]
,

donc

1− lim
p→+∞

(p − 2)
p

 1

1 + ‖θ‖
2

p


 ≤ lim

p→+∞

R(δJS(X),θ)
R(X,θ)

≤ 1− lim
p→+∞

(p − 2)2

p2

 1
p−2
p + ‖θ‖

2

p


 ,

sous la condition lim
p→+∞

‖θ‖2

p
= c, on trouve

1− 1
1 + c

≤ lim
p→+∞

R(δJS(X),θ)
R(X,θ)

≤ 1− 1
1 + c

.

Ainsi

lim
p→+∞

R(δJS(X),θ)
R(X,θ)

=
c

1 + c
.

3.2 Rapport de risque de l’estimateur la Partie po-

sitive de l’estimateur de James-Stein

D’aprés Baranchik [1], on aR(δJS+(X),θ) ≤ R(δJS(X),θ) pour tout θ. Ainsi

la borne supérieure du rapport
R(δJS(X),θ)
R(X,θ)

est une borne supérieure du
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rapport
R(δJS+(X),θ)
R(X,θ)

.

Pour étudier la limite du rapport
R(δJS+(X),θ)
R(X,θ)

quand p tend vers l’infini,

il suffit alors de trouver une borne inférieure du rapport
R(δJS+(X),θ)
R(X,θ)

ten-

dant vers la même limite de la borne supérieure.

Une borne inférieure du rapport
R(δJS+(X),θ)
R(X,θ)

est donnée par la proposition

suivante :

Proposition 3.2.

R(δJS+(X),θ) ≥ R(δJS(X),θ) + pP
(
χ2
p+2

(
‖θ‖2

)
≤ p − 2

)
+ ‖θ‖2P

(
χ2
p+4

(
‖θ‖2

)
≤ p − 2

)
− (p+ 2)P

(
χ2
p

(
‖θ‖2

)
≤ p − 2

)
.

Démonstration :

E

[
1
‖X‖2

I[0,p−2](‖X‖2)
]
≥ E

[
1

p − 2
I[0,p−2](‖X‖2)

]
≥ 1

p − 2
E

[
I[0,p−2](‖X‖2)

]
≥ 1

p − 2
P(‖X‖2 ≤ p − 2), (3.1)

et d’aprés le Lemme 3.1, on a :

E{‖X‖2I[0,p−2](‖X‖2)} = pP
(
χ2
p+2

(
‖θ‖2

)
≤ p − 2

)
+ ‖θ‖2P

(
χ2
p+4

(
‖θ‖2

)
≤ p − 2

)
. (3.2)

D’aprés les formules (3.1) et (3.2), on trouve :

R(δJS+(X),θ) ≥ R(δJS(X),θ) + pP
(
χ2
p+2

(
‖θ‖2

)
≤ p − 2

)
+ ‖θ‖2P

(
χ2
p+4

(
‖θ‖2

)
≤ p − 2

)
− (p+ 2)P

(
χ2
p

(
‖θ‖2

)
≤ p − 2

)
. (3.3)

Théorème 3.3. Si lim
p→+∞

‖θ‖2

p
= c, (c > 0). Alors

lim
p→+∞

R(δJS+(X),θ)
R(X,θ)

=
c

1 + c
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Démonstration : Nous remarquons que si p tend vers l’infini, alorsP
(
χ2
p

(
‖θ‖2

)
≤ p

)
tend vers zéro. En effet :(Voir Casella et Hwang [3]) soit r(p) une fonction vé-

rifiant la condition suivante : lim
p→+∞

r(p)
p

= 1 et soient z1, . . . , zp des variables

aléatoires indépendantes de même loi N (0,1) et τ =
‖θ‖2

2
alors :

lim
p→+∞

P(χ2
p(τ) ≤ r(p)) = lim

p→+∞
P

[z1 + (2τ)
1
2
]2

+
p∑
i=2

z2
i ≤ r(p)


= lim

p→+∞


2z1(2τ)

1
2 + 2τ +

p∑
i=1

z
p
i

p
≤
r(p)
p


d’aprés la loi forte des grands nombres 4.2 et du fait que

τ
p

tend vers
c
2

, alors

le terme à gauche tend vers c+ 1, or c > 0 et
r(p)
p

tend vers 1, on trouve :

lim
p→+∞

P(χ2
p(τ) ≤ r(p)) = 0. (3.4)

En utilisant le résultat 3.4 dans la formule 3.3, on trouve que sous la condi-

tion lim
p→+∞

‖θ‖2

p
= c, on a

lim
p→+∞

R(δJS+(X),θ)
R(X,θ)

=
c

c+ 1
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Chapitre 4
Résultats de simulation

Dans ce chapitre, nous prenons le modèle X ∼ Np
(
θ,Ip

)
et on rappelle

les estimateurs de type James-Stein et la partie positive de l’estimateur de
James-Stein, i.e.,

δJS(X) =
(
1−

p − 2
‖X‖2

)
X

et

δJS+(X) =
(
1−

p − 2
‖X‖2

)+

X.

On représente graphiquement les rapport de risques des estimateurs cités
ci-dessus, par rapport au MLE associé aux fonctions de pertes L noté respec-

tivement :
R(δJS ,θ)
R(X,θ)

, et
R(δJS+,θ)
R(X,θ)

en fonction de d = ‖θ‖2 pour différentes

valeurs de p.

41



Résultats de simulation TABLE DES MATIÈRES

Figure 4.1 – Graphique des rapport de risques
R(δJS ,θ)
R(X,θ)

, et
R(δJS+,θ)
R(X,θ)

en

fonction de d = ‖θ‖2 pour p = 6.

Figure 4.2 – Graphique des rapport de risques
R(δJS ,θ)
R(X,θ)

, et
R(δJS+,θ)
R(X,θ)

en

fonction de d = ‖θ‖2 pour p = 10.
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Figure 4.3 – Graphique des rapport de risques
R(δJS ,θ)
R(X,θ)

, et
R(δJS+,θ)
R(X,θ)

en

fonction de d = ‖θ‖2 pour p = 14.

En Figure 4.1, Figure 4.2 et Figure 4.3, on note que les rapport de risques
R(δJS ,θ)
R(X,θ)

, et
R(δJS+,θ)
R(X,θ)

sont inférieurs á 1, ainsi les estimateurs δJS et δJS+

sont minimax pour p = 6, p = 10 et p = 14. Nous remarquons aussi que,
d’une part, plus p augment plus le gain augmente et d’autre part, plus la
valeur de d augmente plus, le gain diminue.

Dans le tableau suivants, nous donnons les valeurs des rapport de risques
R(δJS ,θ)
R(X,θ)

, et
R(δJS+,θ)
R(X,θ)

pour les différentes valeurs de p et d. La première en-

trée est
R(δJS ,θ)
R(X,θ)

et la deusième entrée est
R(δJS+,θ)
R(X,θ)

.
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Table 4.1 – Les valeurs des rapport de risques R(δJS ,θ)/R(X,θ) et
R(δJS+,θ)/R(X,θ) comme fonctions de d.

d rapport de risques p = 6 p = 10 p = 14

0.4359
δJS

δJS+
0.3792
0.2794

0.2336
0.1628

0.1688
0.1155

3.7523
δJS

δJS+
0,6101
0,5629

0,4266
0,3850

0,3281
0,2924

5.002
δJS

δJS+
0,6625
0,6287

0,4784
0,4461

0,3745
0,3455

10.43
δJS

δJS+
0,7931
0,7863

0,6298
0,6208

0,5218
0,5120

Dans le tableau précédent, on note que : si d et p sont petits, le gain des
rapports de risques R(δJS ,θ)/R(X,θ) et R(δJS+,θ)/R(X,θ) est très important.
On observe également que, si les valeurs de p augmentent, le gain dimi-
nue et ce pour chaque valeur fixe de d. On voit aussi que, si les valeurs de
d augmentent et p et fixée, les rapports de risques augmentent et le gain
diminue.
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Annexe

Proposition 4.1. 1. Soit X1, . . . ,Xp une suites de variables aléatoires in-
dépendantes et identiquement distrbuées, de loi N (0,1) alors

p∑
i=1

X2
i ∼ χ

2
p

et la loi du Chi-Deux (centré) à p degré de liberté.

2. Si Y1, . . . ,Yp des variables aléatoires indépendantes telle que ∀i = 1, . . . ,p
,Yi ∼N (θi ,1) alors :

p∑
i=1

Y 2
i ∼ χ

2
p(‖θ‖2)

et la loi du Chi-Deux décentré à p degré de liberté et de paramère de
décentrage ‖θ‖2.

Théorème 4.1. (Inégalité de Jensen) Soit f une fonction convexe sur un
intervalle réel I , etX une variable aléatoire réel dont l’espéranceE(X) existe.
Alors :

f (E(X)) ≤ E[f (X)]

loi forte des grands nombres

Théorème 4.2. Soit (Xn)n>0 une suite de variables aléatoires indépendantes
et identiquement distrbuées. On note Sn = X1 + . . .+Xn, on a :{

la suite
Sn
n

est convergente presque sûrement
}
⇔ {E[X1] < +∞}.
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De plus, si l’une de ces deux conditions éqivalentes est remplie, on a :

P

(
ω ∈Ω/ lim

n

Sn(ω)
n

= E[X1]
)

= 1.



conclusion

Dans ce travail, nous avons étudié les estimateurs de type James-Stein
de la moyenne θ, d’une loi normale multidimensionelle Np(θ,Ip). Premiè-
rement nous avons discuté l’inadmissibilité de l’estimateur usuel X quand
la dimension de l’espace des paramètres p ≥ 3. Ensuite nous avons présenté
la classe des estimateurs de type James-Stein qui est une classe trés impor-
tantes des estimateurs biaisés bien sûr mais a un risque quadratique, uni-
formément meilleurs que celui de l’estimateur usuel X. Enfin nous avons
montré que les rapports des risques de l’estimateur de James-Stein et de l’es-
timateur la partie positive de l’estimateur de James-Stein à celui de risque
de l’estimateur usuelX tend vers

c
1 + c

(c > 0) quand la dimension de l’espace
des paramètres p tend vers l’infini. Ainsi, nous avons assurer qu’il y a une
stabilité de la domination de l’estimateur de James-Stein et de l’estimateur
la partie positive de l’estimateur de James-Stein à celui de l’estimateur usuel
X même si la dimension de l’espace des paramètres p tend vers l’infni.
Une extension de ce travail est de faire la même étude dans le cas où le
coeficient de la variance σ2 est un paramètre inconnu.
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