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Introduction

Les équations intégrales jouent un role important dans de nombreuses
recherches théoriques et appliquées, en raison de la possibilité d’exprimer
I’équation intégrales comme un opérateur intégrale continu ou discontinu
et modélisant ainsi certains problémes en recherche qui accepte 'opérateur
intégra-tif comme modéle pour la description mathématique du probléme
appliqué, et a partir de la nous voyons que les équations intégrales jouent
un role fondamental pour la modélisation mathématique. la mémoire longue
peut également étre exprimée par I'équation intégrales de Volterra.De plus, la
fonction du motif discontinu, qui peut appartenir aux espaces de Sobolev en
général, et nous voyons d’autres applications dans la construction architectu-
rale et d’autres domaines appliques, car il existe de nombreuses applications
qui utilisent le calcul de transformations dans la domaine de I’électronique,

de la mécanique analytique et d’autres domaines Physique.

Ce travail, est décomposé de quatre chapitres.
Dans le premier chapitre nous avons présenté des connaissances de base sur
les espaces fonctionnelles (L,,p = 1,2;C'/l € N). Ainsi nous présentons
quelques théorémes du point fixe (Le théoréme du point fixe de Banach, et

Schauder) dans des espaces de Banach.

Le deuziéme chapitre est consacré a la classification des équations inté-
grales linéaires et non-linéaires. Nous déterminons également la relation entre
les équations intégrales et les équations différentielles. Ainsi nous exposons la
théorie mathématique, essentiellement ’analyse fonctionnelle des équations
intégrales qui permet d’analyser et de connaitre 'existence et 'unicité de la

solution.
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Dans le troisiéme chapitre, on présente diverses méthodes de résolution
analytique des équations intégrales .
Dans le quatriéme chapitre nous présentons quelques méthodes de résolu-
tion de certaines équations intégrales singuliéres, comme I’équation intégrale
d’Abel, avec I'équation intégrale & noyau de Cauchy et Singularité logarith-

mique.



Chapitre 1

Préliminaires

1.1 Notations et Définitions

Définition 1.1.1 [1] Une fonction positive f est dite sommable sur 'inter-
valle [a, b] si fab f(z)dz est finie.

Une fonction f de signe arbitraire est sommable sur (a,b) si et seulement si
Iintégrale fab | f(z) | dx est finie .

Définition 1.1.2 (Espace L*([a,b])) : On dit qu’une fonction f est carré
intégrable sur [a,b] si Uintégrale fab f?(x)dx existe (est finie).
L’ensemble de toutes les fonctions de carré intégrable sur [a,b| sera noté L2

tout court .

1.1.1 L’espace CY([a,b])

Définition 1.1.4 Les éléments de 'espace C!)([a, b]) sont toutes les fonc-
tions continues sur |a,b] et possédant sur cet intervalle des dérivées continues

jusqu’a 'ordre 1

Définition 1.1.5 une fonction F' de la variable (z,t) est dite carré som-

mable si
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borb
//FQ(x,t)dxdt<+oo

avec (a < x,t < D).

1.2 Quelques théorémes de point fixe

Théoréme de point fixe de Banach

Définition 1.1.6  Soient (E,|.||) une espace de Banach et G : £ — F
une application de E dans FE.

On dit que G est une application contractante s’il existe une constante
0 <k <1 telle que

1G(w) = G(u)|| < Kflu—wv]|

pour tout u,v € E.

Théoréme 1.1.1 Soit G une application contractante sur E. Alors ’équa-
tion
G(u) =u

admet une solution unique dans F. Une telle solution est un point fixe de

I’application G.

Théoréme du point fixe de Schauder

Définition Soient F un espace de Banach. Un application G est dit com-
pact si et seulement si pour toute suite (¢,), bornée dans FE la suite (Gyy)y

admet une sous suite convergente.
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Théoréme 1.1.2(Théoréme du point fixe de Schauder) Soit £ un
espace de Banach, K un convexe et compact de F et G : K — K une

application continue, alors G admet au moins un point fixe dans K.
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1.2 Quelques théorémes de point fixe




Chapitre 2

Equations intégrales de Fredholm
et de Volterra

Dans ce chapitre, nous traiterons les équations intégrales linéaire et non
linéaire de Volterra et de Fredholm des premier et second types et aussi nous

considérons Pexistence et 'unicité de la solution.

Définition Une équation laquelle la fonction inconnue d’une ou plusieurs
variables figure sous le signe intégral est dite équation intégrale.

Cette définition générale tient compte de beaucoup de formes naturellement
issues de la modélisation des différents problémes de la mécanique et de la
physique mathématique ou par remaniement d’une importante classe de pro-

blémes formulés auparavant par des opérateurs différentiels.

2.1 Equations intégrales de Volterra

2.1.1 Equation intégrale linéaire de Volterra

Définition 2.1.1 [2] Une équations, a une inconnue ¢(z), de la forme

o(x) = f(z)+ )\/I K(z,t)p(t)dt, (2.1)
11
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ou f(x), K(z,t) sont des fonctions connues et \ est une paramétre numé-
rique, est appelée équation intégrale linéaire de Volterra de seconde espéce.
La fonction K (z,t) est le noyau de ’équation de Volterra.

Si f(z) = 0,’équation (2.1) s’écrit

o(z) = )\/z K(x,t)p(t)dt (2.2)

et s’appelle équation homogeéne de Volterra de seconde espéce .

Une équation, a une inconnue ¢(z), de la forme

[ K@oe0a = s 23)

est appelée équation intégrale de Volterra de premiére espeéce.

Exemple 2.1.1 L’¢quation intégrale o(z) = x* — [[(t + 2)p(t)dt. Est

2

une équation intégrale linéaire de Volterra de seconde espéce, f(x) = x*, et

A= —1, et le noyau K(x,t) =1t + z.

Relation entre les équations différentielles linéaires et les équations
intégrales de Volterra

Lemme 2.1.1 [2| Pour tout fonction ¢(x),

/: / o(t)dtdz :/jx_t)@(t)dt

Démonstration. posons

Glz) = / “(o = D(t)dt, (2.4)

ou G(0) = 0. La différenciation des deux membres de (2.4) donne

G'(z) = [T o(t)dt.

En intégrant les deux membres de la derniére équation de a a x, nous obtenons
G(z) = [ [T o(t)dtdx, O
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Théoréme 2.1.1

T T Tp_1 1 T
/a /a /a o(zp)depdr,_y...dry = m/a (z — )" o(t)dt,

cette formule sera utilisée pour convertir les équations différentielle en équa-

tions intégrales de Volterra.

Corollaire 2.1.1
X X X 1 xT
/ / / (x — t)p(t)dtdt...dt = —'/ (x —t)"p(t)dt.
a a a n' a

C’est une formule essentielle et utile qui a beaucoup d’applications dans les

problémes d’équations intégrales.

Définition 2.1.2 une équation différentielle linéaire

Y™ (@) + ar(2)y" V(@) + .+ an(@)y (@) = g(2) (2.5)

Ou y(z) fonction inconnu, est une équation différentielle ordinaire d’ordre n
linéaire.

Nous supposons que les fonctions a;(x), 1 < ¢ < n sont analytiques a lorigine
et la fonction g(x) est continue sur U'intervalle de discussion. Soit ¢(z) une
fonction continue sur Uintervalle de discussion.

Nous fixons : les conditions initiales y(0) = cg, ¥°(0) = ¢;, 1 <i < n

y™(2) = o() (2.6)

[’intégration des deux membres de (2.6) par rapport & = donne

Y@ = () + / " o(t)dt

= Cp1+ /x o(t)dt. (2.7)
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De nouveau intégrons les deux membres de (2.7) de 0 & z, nous obtenons

Yy D(z) = cn_2+cn_1x+/ / (t)dtdt
o Jo
= Cn2+cnlx+/ (‘/E—t%p(t)dta
0

procédons comme avant, nous trouvons

2 2

1 L[
y () = g + oo + sCnyz® + —/ (z —t)%p(t)dt.
0

En continuant le processus d’intégration, nous obtenons

(2.8)

(2.9)

(2.10)

oa) = ole) =03 e ) = [ e =0 e

(2.11)

C’est une équation intégrale linéaire de Volterra du seconde espéce non

homogeéne.

Exemple 2.1.2 Soit ’équation différentielle ordinaire suivante :

y'+ay' +y=0

et aux conditions initiales : y(0) =1, ¢/(0) = 0.
Posons y" = ¢(x).

Alors Déquation différentielle : y” 4+ 2y’ +y = ¢(z) + 1+ [ (2z — t)¢(t)dt.
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Inversement On résout certaines équations de Volterra de premiére et de

seconde espéce en les ramenant a des équations différentielles

Exemple 2.1.3 Soit I'équation intégrale : o(z) = x(1 4 [ to(t)dt)
posons y(x) =14 [ tp(t)dt.

Dérivons la derniére égalité : y/(x) = zp(z).

Donc ¢(z) = zy(z),nous obtenons une équation différentielle par rapport a
y(x) :

(@) = a%ya) 3 3

Sa solutions générale s’écrit /(z) = Ce’s . p(x) = ves

2.1.2 Equation intégrale non linéaire de Volterra

Définition 2.1.3 [2] On appelle équation intégrale non linéaire de Volterra

de seconde espéce une équation de la forme

o) = f(x) + A / "R (ot plt))dt

ou ¢ est une fonction inconnue et K et f sont des fonctions connues et A un
parameétre réel.

Une équation de la forme

/ " K (ot plt)d = £(2)

est appelle équation intégrale non linéaire de Volterra de premiére espéce.
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2.2 Equations intégrales de Fredholm

2.2.1 Equation intégrale linéaire de Fredholm

Définition 2.2.1 [3] On appelle équation intégrale linéaire de Fredholm de

seconde espéce une équation de la forme

o) = () + A / K (e, ) (t)dt (2.12)

ou () est la fonction inconnue, K (x,t) et f(x) des fonctions données, = et t
deux variables réelles parcourant 'intervalle [a, b] et A un facteur numérique.
On suppose que le noyau K (x,t) est défini dans le carré Q = {a <z < b,a <

t < b} du plan (x,t) et continu dans €2, ou bien présente des discontinuités

b b
// K () 2 dadt

Si f(z) # 0, équation (2.12) est dit non homogéne d’ou I’équation de la

telles que l'intégrale

soit finie.

forme
o(x) = )\/ K(x,t)p(t)dt (2.13)

est dit homogéne

Définition 2.2.2 [1] On appelle une équation de la forme

/ K(z,t)p(t)dt = f(x) (2.14)

une équation intégrale linéaire de Fredholm de premiére espéce .
Les bornes a et b dans les équations (2.12), (2.13) et (2.14) peuvent étre fines

ou infinies.

Remarque 2.2.1 L’équation intégrale de Volterra est un cas particulier de
I’équation intégrale de Fredholm : il suffit de prendre le noyau K qui vérifie

la condition

K(z,t) = 0,pourxz <t
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Définition 2.2.3 On appelle solution des équations intégrales (2.12), (2.13)
t (2.14) tout fonction p(z) telle gu'aprs sa substitution dans I’équation,

celle-ci devient une identité en x € [a, b].

Conversion du probléme des valeurs limites en équation intégrale
de Fredholm

On considére le probléme suivant
y'(x) + g(x)y(z) = h(z),0 < x < 1, (2.15)

et

nous posons
y'(x) = (x). (2.16)

Intégrons les deux membres de (2.16) de 0 a z, nous obtenons

/0 Yt = /0 "ot (2.17)

y(2) = (0) + / "oty (2.18)

ce qui donne

la condition 3'(0) sera déterminée plus tard en utilisant la condition limite

en x = 1 . Intégrons les deux membres de (2.18) de 0 a x, cela donne

y(z) = y(0) + zy'(0 // t)dtds, (2.19)

y(z) = a+zy'(0) + /0 (x —t)p(t)dt. (2.20)
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Pour déterminer y'(0), nous substituons = 1 dans les membres de (2.20) et

en utilisant la condition au bord y(1) = £, nous trouvons

y(1) =a+y'(0) + /0 (1 —t)p(t)dt, (2.21)
ce qui donne X
y'(0)=8—a— /0 (1 —t)p(t)dt. (2.22)
la substitutions de (2.22) dans (2.20) donne
y(x)=a+ (B —a)r — /0 (1 —t)p(t)dt + /Ox(m — t)p(t)dt. (2.23)

La substitutions de (2.16) et (2.23) dans (2.15) conduit &
h(x) = p(2)+ag(x) + (8- a)rg(z) +9(z) / (—t)p(t)dt —zg(z) / (1-t)dt

o(2) = h(z) — ag(x) — (B — a)zg(z) — g(x) / " — t)plt)dt

—i—:Cg(x)[/Ox(l ()t + / (1= )p(t)dt].
d’ol

o(@) = fla) + / K (. t)plt)dt

2.2.2 Equation intégrale non linéaire de Fredholm

Définition 2.2.4 [1] L’équation intégrale

(@) = fla) + A / K (.1, o(t))dt

est dite équation intégrale non linéaire de Fredholm de second espéce.

Equation intégrale

(@) +)\/ K(z,t,0(t))dt = 0

est dite equation intégrale non linéaire de Fredholm de premiére espéce.
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2.3 Existence et unicité des solutions des équa-

tions intégrales

Dans cette section, on a étudie 'existence et 'unicité des équations inté-
grales linéaires et non linéaires dans les espaces de Banach par le théorie du

point fixe.

2.3.1 Existence et unicité des solutions des équations

intégrales linéaire

Proposition 2.3.1 Le noyau itéré de I’équation intégrale est donné par
Koes(ot) = [ Ko 2K (21 0)d:
t

Théoréme 2.3.1 Soit 'équation intégrale linéaire de Volterra de seconde

espece
o(x) = f(x) + )\/0 K(x,t)p(t)dt (2.24)

on suppose que K (z,t) une fonction continue sur le carré Q = {0 < z,t < 1}.

Alors , I'équation (2.24) admet une solution unique .

Preuve . On counsidére
Sp=f+ ATy,
ou

To(x) = /Ox K(x,t)p(t)dt

. Maintenant nous allons prouver que S™ est contractant, il s’agit de prouver

Pexistence d’un point fixe pour S.

Soit )
k=0
avec

T p(x) = /Or K, (x,t)p(t)dt
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Donc,
1501 — S™pal| = W"H/ Ko (2, 1) (p1(t) — @2(t))dt||
0
Pour déterminer K, (x,t), on pose
Kl('rvt) = K(;L’,t)
et calculer
K, (z,t) = / K(z,2)K,—1(z,t)dz,n = 2.34...
t

Comme K (z,t) est continue sur Q = {0 < x,t < 1}, Alors IM € R tel que
| K (z,t)] < M

Donc

Pour n + 1, o na

Ko (01)] < / K (2, 2) | (2 )| dt
t

Mn+1 T
oy G

Mn+1(33 _ t)n

= n!

Donc, [[5"p1 = 5" < IA,':%?H Jo (pr(t) — w2(t))dt]| < %H% — ol <
|1 —p2l|. Donc S™ est contractant, alors l équation (2.24) admet une solution

unique.

Théoréme 2.3.2 Soit ’équation intégrale linéaire de Fredholm suivant

o) = () + A / K(z, )p(t)dt (2.25)

Si le noyau K(z,t) est définie sur le carré Q = {a < z,t < b}, avec [\ < &

W/WMM

. Alors I'équation de (2.25) admet une solution unique ¢(z) € L*([a, b)].

telle que
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Preuve On pose 'opérateur

Pmﬂ=ﬂ@+A/lﬂLMWﬂt

Et maintenant nous prouvons que T'p € L*[a, b] car o(z) € L? [a b]
[2(Tp)2de = [P f2(x)dz+2X [ F@)([7 K (,t)p(t)dt)de+ X [2([0 K (2
En utilisant I'inégalité de Cauchy- Schwarz, on obtient

/abf(x)(/ab[((x,t)go(t)dt)dx — //th (2)dwdt
%LK%WMMMN

< oo. (2.26)

N

Donc T'¢ € L*([a, b]).
Et maintenant nous prouvons que T est contractant, soient (z),p(z) €
L?([a, b)),

b 1
[T =1ol = ([ [T¢~ToPdn)!

=|MVX/z«amﬂw—amﬁywp

|A|//K2xtdg:dt%/ lp(t) — (1) [2dt)?

< [ABlle =4l

N

Alors T est contractant. Donc I’équation (2.25) admet unique solution ¢(z).

Théoréme 2.3.3 Soit K et f deux fonctions continues .Alors si A est suffi-
samment petit ; ’équation 'intégrale linéaire de Fredholm admet une unique

solution qui sera de plus continue sur [a, b].

Preuve

IT(p) =Tl < T(p)(x) = T(D)(2)]
< K oolb = allle = ¢l oo

(t)dt)?dzx.
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Donc admet un unique point fixe (point fixe est une solution de I’équation
intégrale de Fredholm).

2.3.2 Existence et unicité des solutions des équations

intégrales non linéaires

Théoréme 2.3.4 Soit K(z,t,¢) une fonction continue sur le carré Q =

{0 <zt < S} . Et on pose la condition suivant

1K (2,8, 01) = K (2,1, 2) || < Ml[o1 — 2

Alors, 'équation intégrale non linéaire de Volterra

o(x) = f(z)+ /Ox K(xz,t,p(t))dt, (2.27)

admet une solution unique continue pour tout f € C([0,S]).

Preuve . Soit I'espace C([0,.S]) muni de la norme, ||¢|| = maz|p(z)| pour
tout = € [0, 5.

On pose lopérateur T', telle que

To(x) = f(x) + / "R (o, plt))dt

et maintenant nous prouvons que 7™ est contractant. Soient 1, o deux élé-
ments de C([0, S])
pour tout 1 < n

MnmSn
n!

[T7%p1(x) = T pa()]| < l1 = o]

pour n =1on a

x

Tp1(x) = Tipa(2)] {K (2,1, 01(1)) = K (2,1, 02(t)) }dt

< M | Jpi(t) — po(t)|dt
0

< MH%—SOQHx

< MH<P1—%02HS-
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Finalement

Tp1 — Twa|| < MS|[p1 — @a|.

Pourn=m+1

174 1(z) = T ala)] = [T(T)ir(a) = T(T)ala)
- IZZ{Ktatmeﬂﬂ)—1¥@atTm¢ﬂﬂﬂdﬂ

< [ M) - Tt
0

T Mm m
< [ B e - gl
0 .

m
Mm+1sm+1
Wl“ﬁl - 802H

M

Comme la suit Z,Sn tend vers 0. Alors 7™ est contractant.

Théoréme 2.3.5 Soit I’équation intégrale non linéaire de Fredholm sui-

vante

b
o(x) = f(z) + )\/ K(x,t,o(t))dt, (2.28)

ou f € L?[a,b] et K(x,t,¢) vérifie
b
L1 [, K(x,t,o(t))dt] < Mllp®)].

2. |K(z,t,1) — K(x,t,092)| < L(x,t)|¢1 — a2l

b b
B = \// / |L(z, £)2|dzdt < oo.

Si |A| < %. alors 'équation (2.28) admet une solution unique.

ou
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Preuve . On pose I'opérateur

Sp=f+ ATy,

ou

_ /bK(a:,t, (1))t

[Sp1 = Swal| = [Al[[Tor — Tes

- IAIH/ Kot o1t dt—/Ka:t,wz( )t

N

|M{/ /\th,gol ) — K(,t, 05(1))|dt)*dz} 2
N 1010 - eaolarany?

< [ABller = el

N

S est contractant. Alors 'équation(2.28) admet une solution unique.

Exemple 2.3.1 On considére le probléme avec condition initial suivant :

() + AM (2, () = ()

p(0) = (1) =0
On pose
1M (z, o(x)[| < Nl ()|
|M (2, (1)) — M(2,(22))| < L(z)[1(x) — pa()|

1
B2 :/ IL()2dt < oo,
0
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Ce probléme peut étre transformé a I’équation intégrale
1 1
p0) =\ [ Kle Mt o)t - [ K s
0 0

. Comme |K(z,t)] < 1 et M(z, p(x)) satisfait. Donc [A\|B < 4.

Alors le probléme admet unique solution.

Théoréme 2. 3. 6 Soit ’équation intégrale non linéaire de Volterra sui-

vant :

o(x) = f(z) + /Ox K(x,t,o(t))dt (2.29)

Telle que K : [a,b] X [a,b] — R une fonction continue vérifie les condi-

tions suivantes :

1. K(z,t,0) =0 pour tout : z,t € [a, b

dK (x,t,z)
2. T

(il
b—a

<|

alors pour tout f € C([a,b]) telles que ||f|| < 1 I'équation (2.29) admet une
solution ¢ € C([a, b]).

preuve On va montrer que 7(B(0,1)) C B(0,1) i.e pour si ||¢|| < 1, alors
ITel| < 1.
En effet :
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7ol = 1)+ [ " K(at, 0(0)d|
< If@)+ | Oxmx,t, o (1)) |
<lf@l+ [ Kt lt) | de

0

< /(@) + / T Kt o) — K(z,1,0) | di
<If@)l+ [ ' LilGula0)

(o — O)T dt
< 1@+ el 5 ) <1

D’aprés le Théoréme Schauder T" admet un point fixe. d’ott ’équation admet

une solution.



Chapitre 3

Méthodes élémentaires

3.1 Résolution a I’aide des noyaux itérés

On considére une équation intégrale linéaire de seconde espéce.

b
o(x) = f(z) + )\/ K(z,t)p(t)dt, (3.1)

ou’ les fonctions f et K sont carrés intégrables. Cherchons la solution de

cette équation sous la forme de la série entiére suivante :

p(x) = o() + Ap1(x) + N@a(2) + - - - + N () (3.2)

Portons cette série dans I’équation (3, 1) ,il vient

b
D N () :f(x)+)\/ K(z,t)Y X' (t)dt

n>0 n=0

En procédant par identifications nous obtenons

or(x) = / K (2, O)po(t)dt = / K (e, 1) f(t)dt

27
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?

oa(x) = / Kz, )1 (£)dt = / K(z,1) / Kt 1) f(t)dtrdt — / Ko, ) (),

b b
gon(a:):/ K(:v,t)gon_l(t)dt:/ K(z,t)f(t)dt (3.3)

Ki(z,t) = K(x,t)

b
KQ(.T,f)Z/ K(ﬁ,tl)Kl(tl,t)dtl

b
Ko(,t) = / K (2, t) K1 (t, t)dty (3.4)

Compte tenu de (3.3) et (3.4) 'égalité (3.2)) peut s’écrire

b
o(x) = f() + 34" / Ko, t)f(£)dt

n=1
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Définition 3.1.1 Les fonctions
b
Ko, 1) = / K(z, 2) K1 (2, 1)

avec (n > 1) s’appellent les noyauz itérés du noyau K(z,t) avec Ki(z,t) =
K(z,t) .

Proposition 3.1.1 Une fonction R(x,t;\) définie par la série

Rz, t;\) =Y Ky(z, )\ (3.5)

n=1

est la résolvante de I'équation intégrale (3.1) .

La solution de I’équation (3.1) en fonction de la résolvante s’écrit comme suit :

o) = f(x) + A / R, t; ) f(£)dt

Lemme 3.1.1 La résolvant R(x,t; \) vérifie 'équation suivant

R(xz,t;\) = K(x,t) + A /I K(x,z)R(z,t; \)dz

3.1.1 Pour ’équation intégrale de Volterra

On considére une ’équation intégrale linéaire de Volterra de seconde es-

péce

o) = 1)+ A [ K typlar (3.6)
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ou K(z,t) est une fonction continu pour 0 < x < a, 0 < t < z, et f(x) est

continu lorsque 0 < z < a.

Proposition 3.1.2 La solution de I’équation intégrale (3,6) en fonction

de la résolvante s’écrit comme suit :
p() = f(@) 4 [ Rt (o (3.7

Exemple Soit I’équation intégrale de Volterra a noyau K(z,t) = 1.
On pose Ki(x,t) = K(z,t) = 1.Conformément aux formules K, (z,t) =
[P K(z,2) Ky (2, t)dz

t

Ky(z,t) = /tx K(z,2)Ki(z,t)dz=x —t

Alors,

R(z,t; \) = X0
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Le noyau est un polynoéme de degré (n — 1)

Supposons que le noyau K (z,t) est un polynéme de degré (n—1) en t et

qu’il peut donc s’écrire

an_1(x)
(n—1)!

K(z,t) =ao(z) + ar(z)(x —t) + ...+ (x —t)"

les coeflicients ay(x) étant continus dans [0, a]. En définissant une fonction

g(x,t; \) comme solution de I’'équation différentielle

ang an—lg an—Qg
Oz - )\{CLQ(.I)W + al(ﬂf)m +...+ an_l(x)g} =0

qui vérifie les conditions

ag 8”729 anflg
g|z:t - 8_x|m:t — ... = W|m:t = 0, W|m:t =1 (38)
la résolvante sera définie par :
10"g(z,t; \)
Rz, t; \) = —————=
(z,5) A O
Si
bn_1(t
K(z,t) =bo(t) + by(t)(t — )+ ...+ 1) (t— )" 1,

la résolvante définie par

_10g(t, @ N

Rz, tA) = —y— 5

ou g(z,t; \) est la solution de I’équation

n n—1

d"g " g _
% + )\{bo(t)W + ...+ bn_l(t)g} =0

que vérifie les conditions (3, 8).
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Exemple Résoudre ’équation intégrale suivant
o) = @)+ [ (@~ telt)as
0

est une equation intégrale de Volterra linéaire du seconde espéce .
K(z,t) = —t est un polynome de degré 1 avec ap = 0 et a; = 1.
(n—1)=1=n=2donc g(z,t) est une solution de I’équation :
g”(l’,t) - g(l’,t) =0
d’ou
g(x,t) = c1(t)e” + cot)e™™

avec les condition initiales

g/‘x:t = 1>g‘x:t =0

3.1.2 Pour I’équation intégrale de Fredholm

On considére ’équation intégrale de Fredholm de seconde espéce
b
o) = fla) 4 [ Ko thott)at

ou K (x,t) noyau continu et f € [a,b].

Proposition 3.1.3 La solution de I’équation intégrale de Fredholm de se-

conde espéce est

o) = Fla) 43 [ Rt 00
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Et R(x,t; \) elle est convergente pour

b b
A < B-letB = ¢ / / K (x, 1)2ddt

Définition 3.1.2 Soient K (z,t) et L(z,t) deux noyaux . On dit que le deux

noyaux K et L sont orthogonaux si

/abK(x, 2)L(z,t)dz = /abL(x, DK (2, 0)dz = 0

Proposition 3.1.4 Si un noyau est orthogonal a lui méme alors il coincide

avec sa résolvante.

Proposition 3.1.5 Soient N(x,t) et L(z,t) deux noyaux orthogonaux et
Ry(z,t; \), Ro(x,t; \) leurs résolvantes associées respectivement . Alors la ré-

solvante R(x,t; \) relativement au noyau

K(x,t) = N(x,t) + L(x,t)

est la résolvante
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Exemple Les noyaux K(z,t) = xt et L(x,t) = 22t? sont orthogonaux , en
effet

1 1

K(z,2)L(z,t)dz = xt2/ 2dz =0

-1 -1

1 1
/ L(z,2)K(z,t)dz = x2t/ 2dz =0

1 -1

On remarque que
2w 2m
/ K(z,2)K(z,t)dz = / sin(x — 2z) sin(z — 2t)dz
0 0
or sin(z — 2z) sin(z — 2t) = $(cos(z + 2t — 3z) — cos(z — 2t — z)), d’on

2m 1 2m
/ K(x,2)K(z,t)dz = 5 / (cos(z + 2t — 3z) — cos(x — 2t — 2))dz =0
0 0

Alors le noyau K(x,t) est orthogonal a lui méme, ainsi il coincide avec la

résolvante

R(z,t; \) = sin(x — 2t)

3.2 Résolution au cas d’un noyau dégénéré

Soit I’équation intégrale linéaire de Fredholm du second espéce

o) = fla) 4 [ Ko thottyat (39)
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Définition 3.2.1 Le noyau K(z,t) d’une équation intégrale linéaire de
Fredholm du second espéce est dit dégénéré s’il est la somme finie de produit

de fonctions de x par de fonctions de t,
K(x,t) =) ar(x)bg(t)
k=1

ou les fonctions ay, b, sont continues dans le carré fondamental a < x,t < b

et linéairement libres.

Méthode de résolution On suppose que I’équation (3.9) a un noyau
K(z,t) dégénéré. Alors équation (3.9) devient

o) = f(z) + A / S (o) by (1) (1)t (3.10)

permutons l'intégrale avec la somme on aura

o(2) = f2) + A an(x) / (1) (1) dt (3.11)

définissons les constantes suivantes
b
Ck = / bk(t)g0<t)dt, k= 1, 2, .o, n
qui donne par equation. (3.11)

p(x) = f2) + 1) Cra(x) (3.12)

les constantes C sont maintenant les inconnus a déterminer pour déterminer
la solution de I’équation (3.9).

Portons ’équation (3.12) dans I’équation (3.9) et par un calcul, on trouve

n

3 [Cm —/ b (£) (f(t) + Azn:Ckak(t)> dt] am(z) = 0

m=1
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or les fonctions a,,(z) (m = 1,2,...,n) sont supposées linéairement libre,

alors

Cm - /b bm(t> <f(t) + )\zn: C’kak(t)> dt =0

ce qui donne

n

Co =AY _Ci /b () by (t)dt = /b by () f ()t

k=1

Posons
b b
oon = [ @®balt)it, £ = [ ba(OF @)t
on aura le systéme a résoudre

C’m—)\ZCkakm:fm,mzl,...,n
k=1

qui se développe comme suit

C1(1 = Aayy) — AappCs — ... — Aay,, Gy = fi

(9) —Aag1C1 + Co(1 — Aagg) — ... — Xag,Cp, = fo (3.13)
—Aap1Cy — AapoCy ...+ Ch(1 = Aapy) = fo

Pour trouver les constantes Cy (k = 1,...,n) , il faut résoudre le systéme

(S) . le déterminant de (S) est

(]_ — /\CLH) —/\a12 cee —)\aln

A(}\) _ —)\agl (1 — )\CLQQ) R —)\(Ign

— a1 —Aapz o (1= Aagy)
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le systéme (S) admet une seule solution que si A(A) # 0 et est donnée par

(1 - )\CL11) o =g fi — A o —Aaiy
c 1 —Aagr - —Aagpfo — Aaggyr o —Aagy
= ——
A(N)
_)\anl e _)\ankfl - )\ank+1 e (1 - )\ann)
avec k=1,...,n.

En portant ces constantes dans 1’équation (3.12), on trouve la solution de

I’équation intégrale de Fredholm du second espéce.

3.2.1 Nombres caractéristiques et fonctions propres

Soit I’équation intégrale linéaire homogéne de Fredholm du second espéce

o(x) — )\/ K(x,t)p(t)dt =0 (3.14)

cette équation admet toujours une solution nulle ¢(x) = 0, elle s’appelle une

solution triviale.

Définition 3.2.2 Un nombre A tel que I’équation Eq.(3.14) admet une so-
lution non triviale s’appelle un nombre (ou une valeur) caractéristique de
Eq.(3.14) ou du noyau K (z,t), et toute solution non triviale de I’équation
Eq.(3.14) est une fonction propre, correspond au nombre caractéristique A.

La valeur A = 0 n’est pas une valeur caractéristique car elle correspond a la

solution triviale ¢(z) = 0.

Exemple 1’équation
o(x) = )\/ (cos?(x) cos(2t) + cos(3z) cos®(t))p(t)dt,
0

C’est une équation intégrale linéaire homogéne de Fredholm du second es-

péce ou ¢(x) est la fonction inconnue, A un facteur numérique, K(z,t) =
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cos?(x) cos(2t) + cos(3z) cos®(t) est le noyau et l'intervalle (0, 7) est le carré
fondamental.
On remarque que le noyau K(x,t) est dégénéré, alors on utilise la méthode

des noyaux dégénérés.
o(z) = /\COSQ(ZL‘)/ cos(2t)(t)dt + /\COS(Sx)/ Cos3(t)gp(t)dt
0 0

posons

Ch = / cos(2t)p(t)dt, Cy — / cos®(£) (£ dt (3.15)
0 0
Alors

o(x) = C1 X cos®(z) + Ca) cos(3z) (3.16)
substituons I’ Eq.(3, 16), dans I’ Fq.(3, 15), on aura un systéme linéaire d’équa-
tions homogénes

C1(1— X [y cos?(t) cos(2t)dt) — CoA [ cos(3t) sin(2t)dt = 0
—CyA [y cos?(t)dt + Co(1 — X [ cos®(t) cos(3t)dt = 0

par calcul d’intégrale, en utilisant les formules trigonométriques, le systéme

se réduit a

Cy(1—AT) =0

d’ou les nombres caractéristiques se déduisent de

{ Cy(1—AZ) =0

1-AT 0

AN =
) 0 1-Af

ce qui donne \; = % et Ay = %.

Calculons maintenant leurs fonctions propres correspondantes. Si A = A\; =

C’1><0:0
CQX%:O

1 ona
s
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donc Cy = 0 est (' arbitraire d’ou la fonction propre correspondante et

¢(r) = C1 A cos®(x) + Codcos(3x)
= C1 A cos?(z)

si on pose pour C; = A™!, on aura
©1(x) = cos?(x)
De méme pour A = \y = %, on aura
Cl X —=1=0
CQ x0=0
d’ouC; = 0 est (5 arbitraire, ainsi

¢(x) = C1 A cos®(x) + Co) cos(3z)
= Cy\ cos(3x)

pour Cy = \~!, on aura
pa(x) = cos(3x)

Finalement. Nombres caractéristiques fonctions propres correspondants

A= ©1(7) = cos®(z)

A

N0 | a

a(x) = cos(3x)
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Remarque 3.2.1 Une équation intégrale linéaire homogeéne de Fredholm
du second espéce peut de ne pas avoir de nombres caractéristiques et de
fonctions propres correspondantes ou sans nombres caractéristiques réels et
fonctions propres correspondantes.

Définition 3.2.3 Un noyau K(z,t) d’une équation intégrale linéaire ho-

mogene de Fredholm du second espéce est dit symétrique si

K(z,t) = K(t,z)

avec
a<xz,t<b

Théoréme 3.2.1 Si une équation intégrale linéaire homogéne de Fredholm
du second espéce a un noyau symétrique alors elle admet au mois un nombre

caractéristique réel.

Théoréme 3.2.2 A chaque nombre caractéristique A correspond un nombre

fini p de fonctions propres linéairement indépendantes et
b b

p < \?B? B? :/ / K?*(z,t)dxdt
a a

p s’appelle la multiplicité du nombre caractéristique.

Théoréme 3.2.3 Deux fonctions propres o, et @, correspondant & deux

nombres caractéristiques A\; et Ay sont orthogonales i.e.

[ et =0
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Théoréme 3.2.4 Tout intervalle fini de 'axe A contient un nombre fini
m de nombres caractéristiques. Le nombre m de 'intervalle —] < A\ < [ est

défini par l'inégalité

m < I°B?

Théoréme 3.2.5 (de Mercer) Si le noyau symétrique K(z,t) € Lo est
continu et a tous ses nombres caractéristiques positifs (ou au plus un nombre

fini de nombres caractéristiques négatifs), la série

- 907L(x)90n(x)
2

converge absolument et uniformément vers K (z,t) de sorte qu’on a
- @n(2)on(T)
K(x,t) = —_—
( ) ) ; )\n

w converge en
n

o0
En général, pour K(z,t) € Lo, symétrique, la série

n=1
moyenne vers K (z,t).

3.3 Reésolution a I’aide des déterminants de Fred-

holm

Soit 'équation intégrale linéaire de Fredholm du second espéce

o(x) = f(z) + )\/ K(z,t)p(t)dt (3.17)
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On suppose que le noyau K(z,t) est une fonction définie ou l'intégrale sui-

/ab /:K(I,t)dedt (3.18)

Maintenant on définit les fonctions B, (z,t),en par

vante

est finie.

Bo(z,t) = K(x,t),

K(z,t) K(z,ty) - K(z,t,)

K(tl,t) K(tl,tl) K(tl,tn
b YIK(ty,t) Kl(ta,t;) - - Kl(tg,t,
a f - a

Kty t) K(tn,t1) - K(tn, tn)

et les coeflicients C,, par

K(t,t) - K(t,t)

K t) e Kt t)
Cn:/ / ceoldty---dty, (3.20)

"Rt t) o K(tat)

d’on la définition suivante

Définition 3.3.1 On appelle de déterminant mineur de Fredholm de I’équa-

tion intégrale Fq.(3.17) la fonction définie par

D(z,t;\) = K(2,t) + i (_i)an(x,t))\" (3.21)

n=1
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et le déterminant de Fredholm par la fonction

D) =1+ i %mn (3.22)

Remarque 3.3.1 Les séries entiéres données par Fq.(3.21) et Fq.(3.22) en
puissances de A sont des séries convergentes pour toute valeurs de A sous les
hypothéses du noyau donnée par les condition Eq.(3.18) , d’ou elle sont des
fonctions analytiques en \.

Maintenant on définit le noyau résolvant ou la résolvantes de 'équation in-
tégrale Fq.(3.17).

Définition 3.3.2 |2| La résolvantes de I'équation intégrale Eq.(3.17) est

donné par

D(z,t; \)

R(z,t; \) = DOV

(3.23)

ou on suppose que D(\) # 0.

Remarque 3.3.2 La résolvantes est une fonction analytique de A, a I'ex-
ception des valeurs de A qui sont des zéros de la fonction D()). Ces derniers
sont les poles du noyau résolvant R(x,t, \).

Finalement, on peut exprimer la solution de I’équation intégrale Eq.(3.17) par
b
o(x) = f(z) + )\/ Rz, t, \) f(t)dt (3.24)
Exemple L’équation

o(x) = f(z) + )\/0 zelo(t)dt (3.25)

est une équation intégrale linéaire de Fredholm du second espéce non homo-

géne .Pour déterminer les déterminants de Fredholm , on calcule d’abord les
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fonctions B, (x,t) et les coefficients C,,. On a

xel  xel

Bo(z,t) = K(x,t) = '
tlet tletl
t

1
By(a,t) = /
0
Lo |zet et xe
Bg(x,t):// tiel tiett tyet?|dtydty =0
0 70 toel toelt  toel?

car les déterminants deux a deux sont symétriques et par suite tous les fonc-

dty

tions B, (x,t) pour n > 2 sont nulles. De méme pour les coefficients C),, on a
1
01 :/ tletldtl =1
0
et

Cy=0

et toujours par la symétrie on montre que les coefficients C,, = 0, pour n > 2.
Et par les équations (3.21) et (3.22) les déterminantes de Fredholm sont

D(z,t;\) = ze'
et

D(A)=1- )

Finalement, par I'Eq.(3.23). La résolvant est

R(z,t; \) =

t
xe

sAFE 1
LA
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La valeur 1 est un péle de la résolvante.
D’aprés Fq.(3.24) la solution de I'Eq.(3.25) est

o) = fla) + 7, [ erioya

Remarque 3.3.3 Dans des situations particuliéres, il est possible de cal-
culer les fonctions B, (z,t) et les coefficients C,, par les formules récurrentes

suivantes

C10 = 1730(1’,” = K(I,t)

b b
Bn(z,t) = C, K (x,t) — n/ K(x,s)Bn_1(s,t)ds; C,, = / Bn_1(s,s)ds

Alors on trouve les successions Cy, By (z,t), Cs, Ba(z,t), Cs ...
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Chapitre 4
Equations intégrales singuliéres

On dit qu’une équation intégrale est singuliére si 'une ou les deux limites
d’intégration sont infinies, ou bien le noyau devient infini au voisinage des

limites de I'intégration.

4.1 Equation intégrale d’Abel

Définition 4.1.1 On appelle équation intégrale d’Abel une équation de la

forme

oelt)
/O At = f(a) (A1)

On remarque que I'Fq.(4.1) est une équation intégrale de Volterra de pre-

miére espéce.

Définition 4.1.2 On appelle équation intégrale d’Abel généralisée tout

équations de la forme

v ()

————dt = f(x),0<a<1 (4.2)
/0 (x—t)*

La fonction f sera supposée possédant une dérivée continue sur [0, a]. Notons

que pour o > %, le noyau de I'équation (4.2) n’est pas de carré intégrable

47
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(K (x,t) n’est pas une fonction de Lo). Cependant I’équation (4.2) admet une

solution .

Méthode d’Abel Admettons que 1’équation (4.2) posséde bien une solu-

ds
(z—s)t—o

tion. Substituons s & x dans (4.2), multiplions membre & membre par

et intégrons par rapport a s entre 0 et x :

/Oa: . _d;la /OS (;p_(tz)adt _ /Ox ﬂ%d&

Intervertissons 1’ordre d’intégration dans le premier membre, il vient

/Ox (t)dt /j = S)lc_ii(s — e = F(x), (4.3)

ou

Faisons la substitution s = ¢ 4+ y(x — t) dans l'intégrale intérieure :

/tx (z - S)lc‘li(s —t)e /01 ye(1 iyy)l‘c“ - SinETOﬂT)'

L’équation (4.3) entraine alors

ou

xT

Ainsi, la solution unique de (4.3) est donnée par la formule (4.4) que I'on

récrit en intégrant par parties :

o) = sin(ar) [f(O) +/O$ (fids}. (4.5)

T pl-o r— )l
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4.2 Equations intégrales 4 noyau de Cauchy

On considére

o(1)

go(x):f(m)+/\/01 dt,a <z <b (4.6)

qui est une équation intégrale singuliére & noyau de Cauchy non homogéne.
Cette intégrale est prise au sens de la valeur principale de Cauchy. Pour ré-

soudre cette équation on fait appelle a I'identité

7 cot (o)
/y dt _ (y_x)‘17a$a7 O <z < y (47)
o WD e(l—a) | | ESen <y

et on définit la fonction ¢(x,y) comme suit

¢($,y) ( )l_aﬂfa’() <z < y (48)
ou a est tel que —7 cot(am) = . Alors ¢(z, y) est une solution de I'équation
intégrale

Y o(t
o [T ) 0<m <y (4.9)
o t—x
En outre
Yy
OLY) gy —L(fm),ym: (4.10)
o t—a T Ty
Si, on multiple (4.6) par x, on obtient
t
)\/ t@( Vit = wip(w) — o f () + ¢ (4.11)
) L—
ouc =\ fo t)dt. Maintenant, on multiplie les deux cotés de la relation

(4.11) par ¢(z, y) et on inteégre de 0 & y et en échangeant ’ordre d’intégration,

on trouve

LA [V tp(t)dt [ 22 dy

t

2. Afy to(t)dt [ ¢9(fy de =[] vo(x)o(x,y)da— [ v f(x)p(x,y)da+c [ ¢(x,y)du.
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En utilisant les relations (4.9) et (4.10) et que [ ¢(x,y)dz = 7 csc(am), on

obtient la relation

bttt
AT CSC(OHT)/y W

Qui est une équation intégrale d’Abel dont la solution s’écrit sous la forme

dt = — /Oy zf(x)o(z,y)dr + cmese(am).  (4.12)

() = BB T oy = tar= (o] + 22207

Maintenant, on utilise la relation —7 cot(am) = i, et aprés certains calculs,

on obtient
f(x) A /1 (1 -t f(?)
_ dt
#() 1+ m2)\2 * (1 4+ m2A2)zt=>(1 — x)~ Jo t—z
c
+ .
zl=o(1 — z)2/1 4 72\2
4.3 Singularité logarithmique
On considére 1’équation intégrale
1
/ Injz—t|e(t)dt=1-1<z<1 (4.13)
-1

En posant x = cosa, et t = cos 3, I'équation (4.13) devient

/W1n|cosoz—cosﬁ\w(ﬂ)dﬁ—1,0<o¢<7r. (4.14)
0

ouw(f) = po(cosp)sin . Soit maintenant le développement w(f) = >, b, cos(nf3),

alors

a) cos(nf3)

n

In | cosa—cosf |= —ln2—22008<n

n=1

(4.15)

L’équation (4.14) devient
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I SR S

De l'orthogonalité des fonctions cosinus, il en résulte,

—7byIln2 — Zwbn cos(na) =1
n=1
ainsi, by = —(m), b, = 0,n > 1, et on trouve que la solution de I’équation
(4.13) est donnée par
1 1
wo(t) = (4.16)
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Conclusion

Dans ce mémoire, nous avons présenté quelques résultats sur les équa-
tions intégrales. On a appliqué quelques théorémes du point fixe (principe
de contraction de Banach qui garantit ’existence et I'unicité de la solution,
Schauder assure ’existence) sur quelques équations intégrales de type Fred-
holm et de Volterra, et aussi on a présenté quelques méthodes de résolutions
de ces équations, des méthodes analytiques comme la méthode de noyaux ité-
rés, noyau dégénéré et déterminants de Fredholm (qui s’applique seulement
sur les équations intégrales linéaire).

Nous prévoyons dans le futur d’essayer d’améliorer certains résultats afin de

pouvoir les appliquer & ’étude d’équations intégrales non linéaires.
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