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Introduction

Les équations intégrales jouent un rôle important dans de nombreuses

recherches théoriques et appliquées, en raison de la possibilité d'exprimer

l'équation intégrales comme un opérateur intégrale continu ou discontinu

et modélisant ainsi certains problèmes en recherche qui accepte l'opérateur

intégra-tif comme modèle pour la description mathématique du problème

appliqué, et à partir de là nous voyons que les équations intégrales jouent

un rôle fondamental pour la modélisation mathématique. la mémoire longue

peut également être exprimée par l'équation intégrales de Volterra.De plus, la

fonction du motif discontinu, qui peut appartenir aux espaces de Sobolev en

général, et nous voyons d'autres applications dans la construction architectu-

rale et d'autres domaines appliques, car il existe de nombreuses applications

qui utilisent le calcul de transformations dans la domaine de l'électronique,

de la mécanique analytique et d'autres domaines Physique.

Ce travail, est décomposé de quatre chapitres.

Dans le premier chapitre nous avons présenté des connaissances de base sur

les espaces fonctionnelles (Lp, p = 1, 2;C l, l ∈ N). Ainsi nous présentons

quelques théorèmes du point �xe (Le théorème du point �xe de Banach, et

Schauder) dans des espaces de Banach.

Le deuxième chapitre est consacré à la classi�cation des équations inté-

grales linéaires et non-linéaires. Nous déterminons également la relation entre

les équations intégrales et les équations di�érentielles. Ainsi nous exposons la

théorie mathématique, essentiellement l'analyse fonctionnelle des équations

intégrales qui permet d'analyser et de connaitre l'existence et l'unicité de la

solution.
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Dans le troisième chapitre, on présente diverses méthodes de résolution

analytique des équations intégrales .

Dans le quatrième chapitre nous présentons quelques méthodes de résolu-

tion de certaines équations intégrales singulières, comme l'équation intégrale

d'Abel, avec l'équation intégrale à noyau de Cauchy et Singularité logarith-

mique.



Chapitre 1

Préliminaires

1.1 Notations et Dé�nitions

Dé�nition 1.1.1 [1] Une fonction positive f est dite sommable sur l'inter-

valle [a, b] si
∫ b
a
f(x)dx est �nie.

Une fonction f de signe arbitraire est sommable sur (a, b) si et seulement si

l'intégrale
∫ b
a
| f(x) | dx est �nie .

Dé�nition 1.1.2 (Espace L2([a, b])) : On dit qu'une fonction f est carré

intégrable sur [a,b] si l'intégrale
∫ b
a
f 2(x)dx existe (est �nie).

L'ensemble de toutes les fonctions de carré intégrable sur [a,b] sera noté L2

tout court .

1.1.1 L'espace C(l)([a, b])

Dé�nition 1.1.4 Les éléments de l'espace C(l)([a, b]) sont toutes les fonc-

tions continues sur [a,b] et possédant sur cet intervalle des dérivées continues

jusqu'à l'ordre l

Dé�nition 1.1.5 une fonction F de la variable (x, t) est dite carré som-

mable si
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∫ b

a

∫ b

a

F 2(x, t)dxdt < +∞

avec (a 6 x, t 6 b).

1.2 Quelques théorèmes de point �xe

Théorème de point �xe de Banach

Dé�nition 1.1.6 Soient (E, ‖.‖) une espace de Banach et G : E −→ E

une application de E dans E.

On dit que G est une application contractante s'il existe une constante

0 6 k < 1 telle que

‖G(u)−G(v)‖ 6 k‖u− v‖

pour tout u,v ∈ E.

Théorème 1.1.1 Soit G une application contractante sur E. Alors l'équa-

tion

G(u) = u

admet une solution unique dans E. Une telle solution est un point �xe de

l'application G.

Théorème du point �xe de Schauder

Dé�nition Soient E un espace de Banach. Un application G est dit com-

pact si et seulement si pour toute suite (ϕn)n bornée dans E la suite (Gϕn)n

admet une sous suite convergente.
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Théorème 1.1.2(Théorème du point �xe de Schauder) Soit E un

espace de Banach, K un convexe et compact de E et G : K −→ K une

application continue, alors G admet au moins un point �xe dans K.
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Chapitre 2

Équations intégrales de Fredholm

et de Volterra

Dans ce chapitre, nous traiterons les équations intégrales linéaire et non

linéaire de Volterra et de Fredholm des premier et second types et aussi nous

considérons l'existence et l'unicité de la solution.

Dé�nition Une équation laquelle la fonction inconnue d'une ou plusieurs

variables �gure sous le signe intégral est dite équation intégrale.

Cette dé�nition générale tient compte de beaucoup de formes naturellement

issues de la modélisation des di�érents problèmes de la mécanique et de la

physique mathématique ou par remaniement d'une importante classe de pro-

blèmes formulés auparavant par des opérateurs di�érentiels.

2.1 Équations intégrales de Volterra

2.1.1 Équation intégrale linéaire de Volterra

Dé�nition 2.1.1 [2] Une équations, à une inconnue ϕ(x), de la forme

ϕ(x) = f(x) + λ

∫ x

a

K(x, t)ϕ(t)dt, (2.1)
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12 2.1.1 Équation intégrale linéaire de Volterra

ou f(x), K(x, t) sont des fonctions connues et λ est une paramètre numé-

rique, est appelée équation intégrale linéaire de Volterra de seconde espèce.

La fonction K(x, t) est le noyau de l'équation de Volterra.

Si f(x) = 0,l'équation (2.1) s'écrit

ϕ(x) = λ

∫ x

a

K(x, t)ϕ(t)dt (2.2)

et s'appelle équation homogène de Volterra de seconde espèce .

Une équation, à une inconnue ϕ(x), de la forme∫ x

a

K(x, t)ϕ(t)dt = f(x) (2.3)

est appelée équation intégrale de Volterra de première espèce.

Exemple 2.1.1 L'équation intégrale ϕ(x) = x2 −
∫ x
0

(t + x)ϕ(t)dt. Est

une équation intégrale linéaire de Volterra de seconde espèce, f(x) = x2, et

λ = −1, et le noyau K(x, t) = t+ x.

Relation entre les équations di�érentielles linéaires et les équations

intégrales de Volterra

Lemme 2.1.1 [2] Pour tout fonction ϕ(x),∫ x

a

∫ x1

a

ϕ(t)dtdx1 =

∫ x

a

(x− t)ϕ(t)dt

.

Démonstration. posons

G(x) =

∫ x

a

(x− t)ϕ(t)dt, (2.4)

ou G(0) = 0. La di�érenciation des deux membres de (2.4) donne

G′(x) =
∫ x
a
ϕ(t)dt.

En intégrant les deux membres de la dernière équation de a à x, nous obtenons

G(x) =
∫ x
a

∫ x1
a
ϕ(t)dtdx1
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Théorème 2.1.1∫ x

a

∫ x1

a

...

∫ xn−1

a

ϕ(xn)dxndxn−1...dx1 =
1

(n− 1)!

∫ x

a

(x− t)n−1ϕ(t)dt,

cette formule sera utilisée pour convertir les équations di�érentielle en équa-

tions intégrales de Volterra.

Corollaire 2.1.1∫ x

a

∫ x

a

...

∫ x

a

(x− t)ϕ(t)dtdt...dt =
1

n!

∫ x

a

(x− t)nϕ(t)dt.

C'est une formule essentielle et utile qui a beaucoup d'applications dans les

problèmes d'équations intégrales.

Dé�nition 2.1.2 une équation di�érentielle linéaire

y(n)(x) + a1(x)y(n−1)(x) + ...+ an(x)y(x) = g(x) (2.5)

Ou y(x) fonction inconnu, est une équation di�érentielle ordinaire d'ordre n

linéaire.

Nous supposons que les fonctions ai(x), 1 6 i 6 n sont analytiques à l'origine

et la fonction g(x) est continue sur l'intervalle de discussion. Soit ϕ(x) une

fonction continue sur l'intervalle de discussion.

Nous �xons : les conditions initiales y(0) = c0, yi(0) = ci, 1 6 i 6 n

y(n)(x) = ϕ(x) (2.6)

L'intégration des deux membres de (2.6) par rapport à x donne

y(n−1)(x) = y(n−1)(0) +

∫ x

0

ϕ(t)dt

= cn−1 +

∫ x

0

ϕ(t)dt. (2.7)
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De nouveau intégrons les deux membres de (2.7) de 0 à x, nous obtenons

y(n−2)(x) = cn−2 + cn−1x+

∫ x

0

∫ x

0

ϕ(t)dtdt

= cn−2 + cn−1x+

∫ x

0

(x− t)ϕ(t)dt, (2.8)

procédons comme avant, nous trouvons

y(n−3)(x) = cn−3 + cn−2x+
1

2
cn−1x

2 +
1

2

∫ x

0

(x− t)2ϕ(t)dt. (2.9)

En continuant le processus d'intégration, nous obtenons

y(x) =
n−1∑
i=0

ci
i!
xi +

1

(n− 1)!

∫ x

0

(x− t)n−1ϕ(t)dt. (2.10)

La substitution de (2.6)-(2.10) dans (2.5) donne

ϕ(x) = g(x)−
n∑
j=1

aj(

j∑
i=1

cn−i
(j − i)!

xj−i)−
∫ x

0

n∑
i=0

ak
(k − 1)!

(x− t)k−1ϕ(t)dt

= f(x)−
∫ x

0

K(x, t)ϕ(t)dt. (2.11)

C'est une équation intégrale linéaire de Volterra du seconde espèce non

homogène.

Exemple 2.1.2 Soit l'équation di�érentielle ordinaire suivante :

y′′ + xy′ + y = 0

et aux conditions initiales : y(0) = 1, y′(0) = 0.

Posons y′′ = ϕ(x).

Alors l'équation di�érentielle : y′′ + xy′ + y = ϕ(x) + 1 +
∫ x
0

(2x− t)ϕ(t)dt.
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Inversement On résout certaines équations de Volterra de première et de

seconde espèce en les ramenant à des équations di�érentielles

Exemple 2.1.3 Soit l'équation intégrale : ϕ(x) = x(1 +
∫ x
0
tϕ(t)dt)

posons y(x) = 1 +
∫ x
0
tϕ(t)dt.

Dérivons la dernière égalité : y′(x) = xϕ(x).

Donc ϕ(x) = xy(x),nous obtenons une équation di�érentielle par rapport à

y(x) :

y′(x) = x2y(x).

Sa solutions générale s'écrit y′(x) = Ce
x3

3 . ϕ(x) = xe
x3

3 .

2.1.2 Équation intégrale non linéaire de Volterra

Dé�nition 2.1.3 [2] On appelle équation intégrale non linéaire de Volterra

de seconde espèce une équation de la forme

ϕ(x) = f(x) + λ

∫ x

a

K(x, t, ϕ(t))dt

ou ϕ est une fonction inconnue et K et f sont des fonctions connues et λ un

paramètre réel.

Une équation de la forme

∫ x

a

K(x, t, ϕ(t))dt = f(x)

est appelle équation intégrale non linéaire de Volterra de première espèce.



16 2.2 Équations intégrales de Fredholm

2.2 Équations intégrales de Fredholm

2.2.1 Équation intégrale linéaire de Fredholm

Dé�nition 2.2.1 [3] On appelle équation intégrale linéaire de Fredholm de

seconde espèce une équation de la forme

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t)dt (2.12)

ou ϕ(x) est la fonction inconnue, K(x, t) et f(x) des fonctions données, x et t

deux variables réelles parcourant l'intervalle [a, b] et λ un facteur numérique.

On suppose que le noyau K(x, t) est dé�ni dans le carré Ω = {a 6 x 6 b, a 6

t 6 b} du plan (x, t) et continu dans Ω, ou bien présente des discontinuités

telles que l'intégrale ∫ b

a

∫ b

a

| K(x, t) |2 dxdt

soit �nie.

Si f(x) 6= 0, l'équation (2.12) est dit non homogène d'où l'équation de la

forme

ϕ(x) = λ

∫ b

a

K(x, t)ϕ(t)dt (2.13)

est dit homogène

Dé�nition 2.2.2 [1] On appelle une équation de la forme∫ b

a

K(x, t)ϕ(t)dt = f(x) (2.14)

une équation intégrale linéaire de Fredholm de première espèce .

Les bornes a et b dans les équations (2.12), (2.13) et (2.14) peuvent être �nes

ou in�nies.

Remarque 2.2.1 L'équation intégrale de Volterra est un cas particulier de

l'équation intégrale de Fredholm : il su�t de prendre le noyau K qui véri�e

la condition

K(x, t) = 0, pourx < t
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.

Dé�nition 2.2.3 On appelle solution des équations intégrales (2.12), (2.13)

et (2.14) tout fonction ϕ(x) telle qu′aprs sa substitution dans l'équation,

celle-ci devient une identité en x ∈ [a, b].

Conversion du problème des valeurs limites en équation intégrale

de Fredholm

On considère le problème suivant

y′′(x) + g(x)y(x) = h(x), 0 < x < 1, (2.15)

et

y(0) = α, y(1) = β

nous posons

y′′(x) = ϕ(x). (2.16)

Intégrons les deux membres de (2.16) de 0 à x, nous obtenons∫ x

0

y′′(t)dt =

∫ x

0

ϕ(t)dt, (2.17)

ce qui donne

y′(x) = y′(0) +

∫ x

0

ϕ(t)dt, (2.18)

la condition y′(0) sera déterminée plus tard en utilisant la condition limite

en x = 1 . Intégrons les deux membres de (2.18) de 0 à x, cela donne

y(x) = y(0) + xy′(0) +

∫ x

0

∫ s

0

ϕ(t)dtds, (2.19)

ou

y(x) = α + xy′(0) +

∫ x

0

(x− t)ϕ(t)dt. (2.20)
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Pour déterminer y′(0), nous substituons x = 1 dans les membres de (2.20) et

en utilisant la condition au bord y(1) = β, nous trouvons

y(1) = α + y′(0) +

∫ 1

0

(1− t)ϕ(t)dt, (2.21)

ce qui donne

y′(0) = β − α−
∫ 1

0

(1− t)ϕ(t)dt. (2.22)

la substitutions de (2.22) dans (2.20) donne

y(x) = α + (β − α)x−
∫ 1

0

x(1− t)ϕ(t)dt+

∫ x

0

(x− t)ϕ(t)dt. (2.23)

La substitutions de (2.16) et (2.23) dans (2.15) conduit à

h(x) = ϕ(x)+αg(x)+(β−α)xg(x)+g(x)

∫ x

0

(x−t)ϕ(t)dt−xg(x)

∫ 1

0

(1−t)dt

ϕ(x) = h(x)− αg(x)− (β − α)xg(x)− g(x)

∫ x

0

(x− t)ϕ(t)dt

+xg(x)[

∫ x

0

(1− t)ϕ(t)dt+

∫ 1

x

(1− t)ϕ(t)dt].

d'où

ϕ(x) = f(x) +

∫ 1

0

K(x, t)ϕ(t)dt

2.2.2 Équation intégrale non linéaire de Fredholm

Dé�nition 2.2.4 [1] L'équation intégrale

ϕ(x) = f(x) + λ

∫ b

a

K(x, t, ϕ(t))dt

est dite équation intégrale non linéaire de Fredholm de second espèce.

Équation intégrale

f(x) + λ

∫ b

a

K(x, t, ϕ(t))dt = 0

est dite equation intégrale non linéaire de Fredholm de première espèce.
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2.3 Existence et unicité des solutions des équa-

tions intégrales

Dans cette section, on a étudie l'existence et l'unicité des équations inté-

grales linéaires et non linéaires dans les espaces de Banach par le théorie du

point �xe.

2.3.1 Existence et unicité des solutions des équations

intégrales linéaire

Proposition 2.3.1 Le noyau itéré de l'équation intégrale est donné par

Kn+1(x, t) =

∫ x

t

K(x, z)Kn(z, t)dz

Théorème 2.3.1 Soit l'équation intégrale linéaire de Volterra de seconde

espèce

ϕ(x) = f(x) + λ

∫ x

0

K(x, t)ϕ(t)dt (2.24)

on suppose que K(x, t) une fonction continue sur le carré Ω = {0 6 x, t 6 1}.
Alors , l'équation (2.24) admet une solution unique .

Preuve . On considère

Sϕ = f + λTϕ,

ou

Tϕ(x) =

∫ x

0

K(x, t)ϕ(t)dt

. Maintenant nous allons prouver que Sn est contractant, il s'agit de prouver

l'existence d'un point �xe pour S.

Soit

Snϕ = λnT nϕ+
n−1∑
k=0

λkT kf

avec

T nϕ(x) =

∫ x

0

Kn(x, t)ϕ(t)dt
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linéaire

Donc,

‖Snϕ1 − Snϕ2‖ = |λ|n‖
∫ x

0

Kn(x, t)(ϕ1(t)− ϕ2(t))dt‖

Pour déterminer Kn(x, t), on pose

K1(x, t) = K(x, t)

et calculer

Kn(x, t) =

∫ x

t

K(x, z)Kn−1(z, t)dz, n = 2.3.4...

Comme K(x, t) est continue sur Ω = {0 6 x, t 6 1}, Alors ∃M ∈ R tel que

|K(x, t)| < M

Donc

|Kn(x, t)| 6 Mn(x− t)n−1

(n− 1)!

Pour n+ 1, o na

|Kn+1(x, t)| 6
∫ x

t

|K(x, z)||Kn(z, t)|dt

6
Mn+1

(n− 1)!

∫ x

t

(z − t)n−1dz

6
Mn+1(x− t)n

n!
.

Donc, ‖Snϕ1 − Snϕ2‖ 6 |λ|nMn

(n−1)! ‖
∫ x
0

(ϕ1(t) − ϕ2(t))dt‖ 6 |λ|nMn

(n−1)! ‖ϕ1 − ϕ2‖ 6
‖ϕ1−ϕ2‖. Donc Sn est contractant, alors l'équation (2.24) admet une solution

unique.

Théorème 2.3.2 Soit l'équation intégrale linéaire de Fredholm suivant

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t)dt (2.25)

Si le noyau K(x, t) est dé�nie sur le carré Ω = {a 6 x, t 6 b}, avec |λ| < 1
B

telle que

B =

√∫ b

a

∫ b

a

|K(x, t)|2dxdt

. Alors l'équation de (2.25) admet une solution unique ϕ(x) ∈ L2([a, b)].
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Preuve On pose l'opérateur

Tϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t)dt

Et maintenant nous prouvons que Tϕ ∈ L2[a, b] car ϕ(x) ∈ L2[a, b]∫ b
a
(Tϕ)2dx =

∫ b
a
f 2(x)dx+2λ

∫ b
a
f(x)(

∫ b
a
K(x, t)ϕ(t)dt)dx+λ2

∫ b
a
(
∫ b
a
K(x, t)ϕ(t)dt)2dx.

En utilisant l'inégalité de Cauchy-Schwarz, on obtient

∫ b

a

f(x)(

∫ b

a

K(x, t)ϕ(t)dt)dx =

∫ b

a

∫ b

a

K(x, t)ϕ(t)f(x)dxdt

6 (

∫ b

a

∫ b

a

K2(x, t)dxdt)
1
2‖ϕ‖‖f‖

< ∞. (2.26)

Donc Tϕ ∈ L2([a, b]).

Et maintenant nous prouvons que T est contractant, soient ϕ(x), φ(x) ∈
L2([a, b]),

‖Tϕ− Tφ‖ = (

∫ b

a

|Tϕ− Tφ|2dx)
1
2

= |λ|[
∫ b

a

(

∫ b

a

K(x, t)[ϕ(t)− φ(t)]dt)2dx]
1
2

6 |λ|(
∫ b

a

∫ b

a

K2(x, t)dxdt)
1
2 (

∫ b

a

|ϕ(t)− φ(t)|2dt)
1
2

6 |λ|B‖ϕ− φ‖.

Alors T est contractant. Donc l'équation (2.25) admet unique solution ϕ(x).

Théorème 2.3.3 Soit K et f deux fonctions continues .Alors si λ est su�-

samment petit ; l'équation l'intégrale linéaire de Fredholm admet une unique

solution qui sera de plus continue sur [a, b].

Preuve .

‖T (ϕ)− T (φ)‖∞ 6 ‖T (ϕ)(x)− T (φ)(x)‖
6 |λ|‖K‖∞|b− a|‖ϕ− φ‖∞.
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non linéaires

Donc admet un unique point �xe (point �xe est une solution de l'équation

intégrale de Fredholm).

2.3.2 Existence et unicité des solutions des équations

intégrales non linéaires

Théorème 2.3.4 Soit K(x, t, ϕ) une fonction continue sur le carré Ω =

{0 6 x, t 6 S} . Et on pose la condition suivant

‖K(x, t, ϕ1)−K(x, t, ϕ2)‖ 6M‖ϕ1 − ϕ2‖

Alors, l'équation intégrale non linéaire de Volterra

ϕ(x) = f(x) +

∫ x

0

K(x, t, ϕ(t))dt, (2.27)

admet une solution unique continue pour tout f ∈ C([0, S]).

Preuve . Soit l'espace C([0, S]) muni de la norme, ‖ϕ‖ = max|ϕ(x)| pour
tout x ∈ [0, S].

On pose l'opérateur T , telle que

Tϕ(x) = f(x) +

∫ x

0

K(x, t, ϕ(t))dt

et maintenant nous prouvons que Tm est contractant. Soient ϕ1, ϕ2 deux élé-

ments de C([0, S])

pour tout 1 ≤ n

‖T nϕ1(x)− T nϕ2(x)‖ ≤ MnSn

n!
‖ϕ1 − ϕ2‖

pour n = 1 on a

|Tϕ1(x)− Tϕ2(x)| =

∣∣∣∣∫ x

0

{K(x, t, ϕ1(t))−K(x, t, ϕ2(t))}dt
∣∣∣∣

6 M

∫ x

0

|ϕ1(t)− ϕ2(t)|dt

6 M‖ϕ1 − ϕ2‖x
6 M‖ϕ1 − ϕ2‖S.
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Finalement

‖Tϕ1 − Tϕ2‖ 6MS‖ϕ1 − ϕ2‖.

Pour n = m+ 1

|Tm+1ϕ1(x)− Tm+1ϕ2(x)| = |T (Tm)ϕ1(x)− T (Tm)ϕ2(x)|

= |
∫ x

0

{K(x, t, Tmϕ1(t))−K(x, t, Tmϕ2(t))}dt|

6
∫ x

0

M |Tmϕ1(t)− Tmϕ2(t)|dt

6
∫ x

0

M
MmSm

m!
‖ϕ1 − ϕ2‖dt

6
Mm+1Sm+1

(m+ 1)!
‖ϕ1 − ϕ2‖

Comme la suit MnSn

n!
tend vers 0. Alors Tm est contractant.

Théorème 2.3.5 Soit l'équation intégrale non linéaire de Fredholm sui-

vante

ϕ(x) = f(x) + λ

∫ b

a

K(x, t, ϕ(t))dt, (2.28)

ou f ∈ L2[a, b] et K(x, t, ϕ) véri�e

1. ‖
∫ b
a
K(x, t, ϕ(t))dt‖ 6M‖ϕ(t)‖.

2. |K(x, t, ϕ1)−K(x, t, ϕ2)| 6 L(x, t)|ϕ1 − ϕ2|.

ou

B =

√∫ b

a

∫ b

a

|L(x, t)2|dxdt <∞.

Si |λ| < 1
B
. alors l'équation (2.28) admet une solution unique.
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non linéaires

Preuve . On pose l'opérateur

Sϕ = f + λTϕ,

ou

Tϕ(x) =

∫ b

a

K(x, t, ϕ(t))dt.

‖Sϕ1 − Sϕ2‖ = |λ|‖Tϕ1 − Tϕ2‖

= |λ|‖
∫ b

a

K(x, t, ϕ1(t))dt−
∫ b

a

K(x, t, ϕ2(t))dt‖

6 |λ|{
∫ b

a

(

∫ b

a

|K(x, t, ϕ1(t))−K(x, t, ϕ2(t))|dt)2dx}
1
2

6 |λ|{
∫ b

a

(

∫ b

a

L(x, t)|ϕ1(t)− ϕ2(t)|dt)2dx}
1
2

6 |λ|B‖ϕ1 − ϕ2‖.

S est contractant. Alors l'équation(2.28) admet une solution unique.

Exemple 2.3.1 On considère le problème avec condition initial suivant :

ϕ′′(x) + λM(x, ϕ(x)) = f(x)

avec

ϕ(0) = ϕ(1) = 0

On pose

‖M(x, ϕ(x))‖ 6 N‖ϕ(x)‖

|M(x, ϕ(x1))−M(x, ϕ(x2))| 6 L(x)|ϕ1(x)− ϕ2(x)|

avec

B2 =

∫ 1

0

|L(t)|2dt <∞.
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Ce problème peut être transformé à l'équation intégrale

ϕ(x) = λ

∫ 1

0

K(x, t)M(t, ϕ(t))dt−
∫ 1

0

K(x, t)f(t)dt

. Comme |K(x, t)| 6 1
4
et M(x, ϕ(x)) satisfait. Donc |λ|B < 4.

Alors le problème admet unique solution.

Théorème 2. 3. 6 Soit l'équation intégrale non linéaire de Volterra sui-

vant :

ϕ(x) = f(x) +

∫ x

0

K(x, t, ϕ(t))dt (2.29)

Telle que K : [a, b] × [a, b] −→ R une fonction continue véri�e les condi-

tions suivantes :

1. K(x, t, 0) = 0 pour tout : x, t ∈ [a, b]

2. dK(x,t,z)
dz

<
∣∣∣1−‖f‖b−a

∣∣∣
alors pour tout f ∈ C([a, b]) telles que ‖f‖ < 1 l'équation (2.29) admet une

solution ϕ ∈ C([a, b]).

preuve On va montrer que T (B(0, 1)) ⊂ B(0, 1) i.e pour si ‖ϕ‖ ≤ 1, alors

‖Tϕ‖ ≤ 1.

En e�et :
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non linéaires

‖Tϕ‖ = ‖f(x) +

∫ x

0

K(x, t, ϕ(t))dt‖

≤ |f(x)|+ ‖
∫ x

0

K(x, t, ϕ(t))dt‖

≤ |f(x)|+
∫ x

0

| K(x, t, ϕ(t)) | dt

≤ |f(x)|+
∫ x

0

| K(x, t, ϕ(t))−K(x, t, 0) | dt

≤ |f(x)|+
∫ x

0

∣∣∣∣(ϕ− 0)
dK(x, t, ϕ(t))

dϕ

∣∣∣∣ dt
≤ |f(x)|+ ‖ϕ‖1− ‖f‖

b− a
(b− a) 6 1

D'après le Théorème Schauder T admet un point �xe. d'où l'équation admet

une solution.



Chapitre 3

Méthodes élémentaires

3.1 Résolution à l'aide des noyaux itérés

On considère une équation intégrale linéaire de seconde espèce.

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t)dt, (3.1)

ou' les fonctions f et K sont carrés intégrables. Cherchons la solution de

cette équation sous la forme de la série entière suivante :

ϕ(x) = ϕ0(x) + λϕ1(x) + λ2ϕ2(x) + · · ·+ λnϕn(x) (3.2)

Portons cette série dans l'équation (3, 1) ,il vient

∑
n>0

λnϕn(x) = f(x) + λ

∫ b

a

K(x, t)
∑
n>0

λnϕn(t)dt

.

En procédant par identi�cations nous obtenons

ϕ0(x) = f(x)

ϕ1(x) =

∫ b

a

K(x, t)ϕ0(t)dt =

∫ b

a

K(x, t)f(t)dt

27
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,

ϕ2(x) =

∫ b

a

K(x, t)ϕ1(t)dt =

∫ b

a

K(x, t)

∫ b

a

K(t, t1)f(t1)dt1dt =

∫ b

a

K2(x, t)f(t)dt,

...

ϕn(x) =

∫ b

a

K(x, t)ϕn−1(t)dt =

∫ b

a

Kn(x, t)f(t)dt (3.3)

Ou

K1(x, t) = K(x, t)

K2(x, t) =

∫ b

a

K(x, t1)K1(t1, t)dt1

...

Kn(x, t) =

∫ b

a

K(x, t1)Kn−1(t1, t)dt1 (3.4)

Compte tenu de (3.3) et (3.4) l'égalité (3.2)) peut s'écrire

ϕ(x) = f(x) +
∑
n>1

λn
∫ b

a

Kn(x, t)f(t)dt

.
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Dé�nition 3.1.1 Les fonctions

Kn(x, t) =

∫ b

a

K(x, z)Kn−1(z, t)dz

avec (n > 1) s'appellent les noyaux itérés du noyau K(x, t) avec K1(x, t) =

K(x, t) .

Proposition 3.1.1 Une fonction R(x, t;λ) dé�nie par la série

R(x, t;λ) =
∑
n>1

Kn(x, t)λn−1 (3.5)

est la résolvante de l'équation intégrale (3.1) .

La solution de l'équation (3.1) en fonction de la résolvante s'écrit comme suit :

ϕ(x) = f(x) + λ

∫ b

a

R(x, t;λ)f(t)dt

.

Lemme 3.1.1 La résolvant R(x, t;λ) véri�e l'équation suivant

R(x, t;λ) = K(x, t) + λ

∫ x

t

K(x, z)R(z, t;λ)dz

.

3.1.1 Pour l'équation intégrale de Volterra

On considère une l'équation intégrale linéaire de Volterra de seconde es-

pèce

ϕ(x) = f(x) + λ

∫ x

a

K(x, t)ϕ(t)dt (3.6)
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ou K(x, t) est une fonction continu pour 0 6 x 6 a, 0 6 t 6 x, et f(x) est

continu lorsque 0 6 x 6 a.

Proposition 3.1.2 La solution de l'équation intégrale (3, 6) en fonction

de la résolvante s'écrit comme suit :

ϕ(x) = f(x) + λ

∫ x

a

R(x, t;λ)f(t)dt (3.7)

Exemple Soit l'équation intégrale de Volterra à noyau K(x, t) = 1.

On pose K1(x, t) = K(x, t) = 1.Conformément aux formules Kn(x, t) =∫ x
t
K(x, z)Kn−1(z, t)dz

K2(x, t) =

∫ x

t

K(x, z)K1(z, t)dz = x− t

K3(x, t) =

∫ x

t

(z − t)dz =
(x− t)2

2!
,

.......................................................

Kn(x, t) =
(x− t)n−1

(n− 1)!
,

Alors,

R(x, t;λ) = eλ(x−t)

.
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Le noyau est un polynôme de degré (n− 1)

Supposons que le noyau K(x, t) est un polynôme de degré (n− 1) en t et

qu'il peut donc s'écrire

K(x, t) = a0(x) + a1(x)(x− t) + . . .+
an−1(x)

(n− 1)!
(x− t)n−1,

les coe�cients ak(x) étant continus dans [0, a]. En dé�nissant une fonction

g(x, t;λ) comme solution de l'équation di�érentielle

∂ng

∂xn
− λ{a0(x)

∂n−1g

∂xn−1
+ a1(x)

∂n−2g

∂xn−2
+ . . .+ an−1(x)g} = 0

qui véri�e les conditions

g|x=t =
∂g

∂x
|x=t = . . . =

∂n−2g

∂xn−2
|x=t = 0,

∂n−1g

∂xn−1
|x=t = 1 (3.8)

la résolvante sera dé�nie par :

R(x, t;λ) =
1

λ

∂ng(x, t;λ)

∂xn

.

Si

K(x, t) = b0(t) + b1(t)(t− x) + . . .+
bn−1(t)

(n− 1)!
(t− x)n−1,

la résolvante dé�nie par

R(x, t;λ) = −1

λ

∂ng(t, x;λ)

∂tn

.

ou g(x, t;λ) est la solution de l'équation

∂ng

∂tn
+ λ{b0(t)

∂n−1g

∂tn−1
+ . . .+ bn−1(t)g} = 0

que véri�e les conditions (3, 8).
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Exemple Résoudre l'équation intégrale suivant

ϕ(x) = f(x) +

∫ x

0

(x− t)ϕ(t)dt

est une equation intégrale de Volterra linéaire du seconde espèce .

K(x, t) = x− t est un polynôme de degré 1 avec a0 = 0 et a1 = 1.

(n− 1) = 1⇒ n = 2 donc g(x, t) est une solution de l'équation :

g′′(x, t)− g(x, t) = 0

d'où

g(x, t) = c1(t)e
x + c2(t)e

−x

avec les condition initiales

g′|x=t = 1, g|x=t = 0

.

3.1.2 Pour l'équation intégrale de Fredholm

On considère l'équation intégrale de Fredholm de seconde espèce

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t)dt

ou K(x, t) noyau continu et f ∈ [a, b].

Proposition 3.1.3 La solution de l'équation intégrale de Fredholm de se-

conde espèce est

ϕ(x) = f(x) + λ

∫ b

a

R(x, t;λ)f(t)dt.
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Et R(x, t;λ) elle est convergente pour

|λ| < B−1etB =

√∫ b

a

∫ b

a

K(x, t)2dxdt

Dé�nition 3.1.2 SoientK(x, t) et L(x, t) deux noyaux . On dit que le deux

noyaux K et L sont orthogonaux si

∫ b

a

K(x, z)L(z, t)dz =

∫ b

a

L(x, z)K(z, t)dz = 0

Proposition 3.1.4 Si un noyau est orthogonal a lui même alors il coïncide

avec sa résolvante.

Proposition 3.1.5 Soient N(x, t) et L(x, t) deux noyaux orthogonaux et

R1(x, t;λ), R2(x, t;λ) leurs résolvantes associées respectivement . Alors la ré-

solvante R(x, t;λ) relativement au noyau

K(x, t) = N(x, t) + L(x, t)

est la résolvante

R(x, t;λ) = R1(x, t;λ) +R2(x, t;λ)
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Exemple Les noyaux K(x, t) = xt et L(x, t) = x2t2 sont orthogonaux , en

e�et

∫ 1

−1
K(x, z)L(z, t)dz = xt2

∫ 1

−1
z3dz = 0

∫ 1

−1
L(x, z)K(z, t)dz = x2t

∫ 1

−1
z3dz = 0

On remarque que

∫ 2π

0

K(x, z)K(z, t)dz =

∫ 2π

0

sin(x− 2z) sin(z − 2t)dz

or sin(x− 2z) sin(z − 2t) = 1
2
(cos(x+ 2t− 3z)− cos(x− 2t− z)), d'où

∫ 2π

0

K(x, z)K(z, t)dz =
1

2

∫ 2π

0

(cos(x+ 2t− 3z)− cos(x− 2t− z))dz = 0

Alors le noyau K(x, t) est orthogonal a lui même, ainsi il coïncide avec la

résolvante

R(x, t;λ) = sin(x− 2t)

3.2 Résolution au cas d'un noyau dégénéré

Soit l'équation intégrale linéaire de Fredholm du second espèce

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t)dt (3.9)
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Dé�nition 3.2.1 Le noyau K(x, t) d'une équation intégrale linéaire de

Fredholm du second espèce est dit dégénéré s'il est la somme �nie de produit

de fonctions de x par de fonctions de t,

K(x, t) =
n∑
k=1

ak(x)bk(t)

ou les fonctions ak, bk sont continues dans le carré fondamental a 6 x, t 6 b

et linéairement libres.

Méthode de résolution On suppose que l'équation (3.9) a un noyau

K(x, t) dégénéré. Alors l'équation (3.9) devient

ϕ(x) = f(x) + λ

∫ b

a

n∑
k=1

ak(x)bk(t)ϕ(t)dt (3.10)

permutons l'intégrale avec la somme on aura

ϕ(x) = f(x) + λ
n∑
k=1

ak(x)

∫ b

a

bk(t)ϕ(t)dt (3.11)

dé�nissons les constantes suivantes

Ck =

∫ b

a

bk(t)ϕ(t)dt, k = 1, 2, . . . , n

qui donne par equation. (3.11)

ϕ(x) = f(x) + λ
n∑
k=1

Ckak(x) (3.12)

les constantes Ck sont maintenant les inconnus à déterminer pour déterminer

la solution de l'équation (3.9).

Portons l'équation (3.12) dans l'équation (3.9) et par un calcul, on trouve

n∑
m=1

[
Cm −

∫ b

a

bm(t)

(
f(t) + λ

n∑
k=1

Ckak(t)

)
dt

]
am(x) = 0
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or les fonctions am(x) (m = 1, 2, . . . , n) sont supposées linéairement libre,

alors

Cm −
∫ b

a

bm(t)

(
f(t) + λ

n∑
k=1

Ckak(t)

)
dt = 0

ce qui donne

Cm − λ
n∑
k=1

Ck

∫ b

a

ak(t)bm(t)dt =

∫ b

a

bm(t)f(t)dt

Posons

akm =

∫ b

a

ak(t)bm(t)dt, fm =

∫ b

a

bm(t)f(t)dt

on aura le système à résoudre

Cm − λ
n∑
k=1

Ckakm = fm,m = 1, . . . , n

qui se développe comme suit

(S)


C1(1− λa11)− λa12C2 − . . .− λa1nCn = f1

−λa21C1 + C2(1− λa22)− . . .− λa2nCn = f2

...................................................................

−λan1C1 − λan2C2 . . .+ Cn(1− λann) = fn

(3.13)

Pour trouver les constantes Ck (k = 1, . . . , n) , il faut résoudre le système

(S) . le déterminant de (S) est

∆(λ) =

∣∣∣∣∣∣∣∣∣
(1− λa11) −λa12 · · · −λa1n
−λa21 (1− λa22) · · · −λa2n
· · · · · · · · · · · ·
−λan1 −λan2 · · · (1− λann)

∣∣∣∣∣∣∣∣∣
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le système (S) admet une seule solution que si ∆(λ) 6= 0 et est donnée par

Ck =
1

∆(λ)

∣∣∣∣∣∣∣∣∣
(1− λa11) · · · −λa1kf1 − λa1k+1 · · · −λa1n
−λa21 · · · −λa2kf2 − λa2k+1 · · · −λa2n
· · · · · · · · · · · · · · ·
−λan1 · · · −λankf1 − λank+1 · · · (1− λann)

∣∣∣∣∣∣∣∣∣
avec k = 1, . . . , n.

En portant ces constantes dans l'équation (3.12), on trouve la solution de

l'équation intégrale de Fredholm du second espèce.

3.2.1 Nombres caractéristiques et fonctions propres

Soit l'équation intégrale linéaire homogène de Fredholm du second espèce

ϕ(x)− λ
∫ b

a

K(x, t)ϕ(t)dt = 0 (3.14)

cette équation admet toujours une solution nulle ϕ(x) ≡ 0, elle s'appelle une

solution triviale.

Dé�nition 3.2.2 Un nombre λ tel que l'équation Eq.(3.14) admet une so-

lution non triviale s'appelle un nombre (ou une valeur) caractéristique de

Eq.(3.14) ou du noyau K(x, t), et toute solution non triviale de l'équation

Eq.(3.14) est une fonction propre, correspond au nombre caractéristique λ.

La valeur λ = 0 n'est pas une valeur caractéristique car elle correspond à la

solution triviale ϕ(x) ≡ 0.

Exemple l'équation

ϕ(x) = λ

∫ π

0

(cos2(x) cos(2t) + cos(3x) cos3(t))ϕ(t)dt,

C'est une équation intégrale linéaire homogène de Fredholm du second es-

pèce ou ϕ(x) est la fonction inconnue, λ un facteur numérique, K(x, t) =
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cos2(x) cos(2t) + cos(3x) cos3(t) est le noyau et l'intervalle (0, π) est le carré

fondamental.

On remarque que le noyau K(x, t) est dégénéré, alors on utilise la méthode

des noyaux dégénérés.

ϕ(x) = λ cos2(x)

∫ π

0

cos(2t)ϕ(t)dt+ λ cos(3x)

∫ π

0

cos3(t)ϕ(t)dt

posons

C1 =

∫ π

0

cos(2t)ϕ(t)dt, C2 =

∫ π

0

cos3(t)ϕ(t)dt (3.15)

Alors

ϕ(x) = C1λ cos2(x) + C2λ cos(3x) (3.16)

substituons l′Eq.(3, 16), dans l′Eq.(3, 15), on aura un système linéaire d'équa-

tions homogènes{
C1(1− λ

∫ π
0

cos2(t) cos(2t)dt)− C2λ
∫ π
0

cos(3t) sin(2t)dt = 0

−C1λ
∫ π
0

cos5(t)dt+ C2(1− λ
∫ π
0

cos3(t) cos(3t)dt = 0

par calcul d'intégrale, en utilisant les formules trigonométriques, le système

se réduit à {
C1(1− λπ4 ) = 0

C2(1− λπ4 ) = 0

d'où les nombres caractéristiques se déduisent de

∆(λ) =

∣∣∣∣∣1− λπ4 0

0 1− λπ
8

∣∣∣∣∣ = 0

ce qui donne λ1 = 4
π
et λ2 = 8

π
.

Calculons maintenant leurs fonctions propres correspondantes. Si λ = λ1 =
4
π
, on a {

C1 × 0 = 0

C2 × 1
2

= 0
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donc C2 = 0 est C1 arbitraire d'où la fonction propre correspondante et

ϕ(x) = C1λ cos2(x) + C2λcos(3x)

= C1λ cos2(x)

si on pose pour C1 = λ−1, on aura

ϕ1(x) = cos2(x)

De même pour λ = λ2 = 8
π
, on aura{

C1 ×−1 = 0

C2 × 0 = 0

d'oùC1 = 0 est C2 arbitraire, ainsi

ϕ(x) = C1λ cos2(x) + C2λ cos(3x)

= C2λ cos(3x)

pour C2 = λ−1, on aura

ϕ2(x) = cos(3x)

Finalement. Nombres caractéristiques fonctions propres correspondants

λ1 =
4

π
ϕ1(x) = cos2(x)

λ2 =
8

π
ϕ2(x) = cos(3x)
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Remarque 3.2.1 Une équation intégrale linéaire homogène de Fredholm

du second espèce peut de ne pas avoir de nombres caractéristiques et de

fonctions propres correspondantes ou sans nombres caractéristiques réels et

fonctions propres correspondantes.

Dé�nition 3.2.3 Un noyau K(x, t) d'une équation intégrale linéaire ho-

mogène de Fredholm du second espèce est dit symétrique si

K(x, t) = K(t, x)

avec

a 6 x, t 6 b

Théorème 3.2.1 Si une équation intégrale linéaire homogène de Fredholm

du second espèce a un noyau symétrique alors elle admet au mois un nombre

caractéristique réel.

Théorème 3.2.2 A chaque nombre caractéristique λ correspond un nombre

�ni p de fonctions propres linéairement indépendantes et

p 6 λ2B2, B2 =

∫ b

a

∫ b

a

K2(x, t)dxdt

p s'appelle la multiplicité du nombre caractéristique.

Théorème 3.2.3 Deux fonctions propres ϕ1 et ϕ2 correspondant à deux

nombres caractéristiques λ1 et λ2 sont orthogonales i.e.∫ b

a

ϕ1(x)ϕ2(x)dx = 0
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Théorème 3.2.4 Tout intervalle �ni de l'axe λ contient un nombre �ni

m de nombres caractéristiques. Le nombre m de l'intervalle −l < λ < l est

dé�ni par l'inégalité

m 6 l2B2

Théorème 3.2.5 (de Mercer) Si le noyau symétrique K(x, t) ∈ L2 est

continu et a tous ses nombres caractéristiques positifs (ou au plus un nombre

�ni de nombres caractéristiques négatifs), la série

∞∑
n=1

ϕn(x)ϕn(x)

λn

converge absolument et uniformément vers K(x, t) de sorte qu'on a

K(x, t) =
∞∑
n=1

ϕn(x)ϕn(x)

λn

En général, pour K(x, t) ∈ L2, symétrique, la série
∞∑
n=1

ϕn(x)ϕn(x)
λn

converge en

moyenne vers K(x, t).

3.3 Résolution à l'aide des déterminants de Fred-

holm

Soit l'équation intégrale linéaire de Fredholm du second espèce

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)ϕ(t)dt (3.17)
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On suppose que le noyau K(x, t) est une fonction dé�nie ou l'intégrale sui-

vante

∫ b

a

∫ b

a

K(x, t)2dxdt (3.18)

est �nie.

Maintenant on dé�nit les fonctions Bn(x, t)n∈N par

B0(x, t) = K(x, t),

Bn(x, t) =

∫ b

a

· · ·
∫ b

a︸ ︷︷ ︸
n fois

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K(x, t) K(x, t1) · · · K(x, tn)

K(t1, t) K(t1, t1) · · · K(t1, tn)

K(t2, t) K(t2, t1) · · · K(t2, tn)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

K(tn, t) K(tn, t1) · · · K(tn, tn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dt1 · · · dtn (3.19)

et les coe�cients Cn par

Cn =

∫ b

a

· · ·
∫ b

a︸ ︷︷ ︸
n fois

∣∣∣∣∣∣∣∣∣∣∣∣

K(t1, t1) · · · K(t1, tn)

K(t2, t1) · · · K(t2, tn)

· · · · · · · · ·
· · · · · · · · ·

K(tn, t1) · · · K(tn, tn)

∣∣∣∣∣∣∣∣∣∣∣∣
dt1 · · · dtn (3.20)

d'où la dé�nition suivante

Dé�nition 3.3.1 On appelle de déterminant mineur de Fredholm de l'équa-

tion intégrale Eq.(3.17) la fonction dé�nie par

D(x, t;λ) = K(x, t) +
∞∑
n=1

(−1)n

n
Bn(x, t)λn (3.21)
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et le déterminant de Fredholm par la fonction

D(λ) = 1 +
∞∑
n=1

(−1)n

n
Cnλ

n (3.22)

Remarque 3.3.1 Les séries entières données par Eq.(3.21) et Eq.(3.22) en

puissances de λ sont des séries convergentes pour toute valeurs de λ sous les

hypothèses du noyau donnée par les condition Eq.(3.18) , d'où elle sont des

fonctions analytiques en λ.

Maintenant on dé�nit le noyau résolvant ou la résolvantes de l'équation in-

tégrale Eq.(3.17).

Dé�nition 3.3.2 [2] La résolvantes de l'équation intégrale Eq.(3.17) est

donné par

R(x, t;λ) =
D(x, t;λ)

D(λ)
(3.23)

ou on suppose que D(λ) 6= 0.

Remarque 3.3.2 La résolvantes est une fonction analytique de λ, à l'ex-

ception des valeurs de λ qui sont des zéros de la fonction D(λ). Ces derniers

sont les pôles du noyau résolvant R(x, t, λ).

Finalement, on peut exprimer la solution de l'équation intégrale Eq.(3.17) par

ϕ(x) = f(x) + λ

∫ b

a

R(x, t, λ)f(t)dt (3.24)

Exemple L'équation

ϕ(x) = f(x) + λ

∫ 1

0

xetϕ(t)dt (3.25)

est une équation intégrale linéaire de Fredholm du second espèce non homo-

gène .Pour déterminer les déterminants de Fredholm , on calcule d'abord les
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fonctions Bn(x, t) et les coe�cients Cn. On a

B0(x, t) = K(x, t) = xet

B1(x, t) =

∫ 1

0

∣∣∣∣∣xet xet1

t1e
t t1e

t1

∣∣∣∣∣ dt1
B2(x, t) =

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
xet xet1 xet2

t1e
t t1e

t1 t1e
t2

t2e
t t2e

t1 t2e
t2

∣∣∣∣∣∣∣ dt1dt2 = 0

car les déterminants deux a deux sont symétriques et par suite tous les fonc-

tions Bn(x, t) pour n > 2 sont nulles. De même pour les coe�cients Cn, on a

C1 =

∫ 1

0

t1e
t1dt1 = 1

et

C2 = 0

et toujours par la symétrie on montre que les coe�cients Cn = 0, pour n > 2.

Et par les équations (3.21) et (3.22) les déterminantes de Fredholm sont

D(x, t;λ) = xet

et

D(λ) = 1− λ

Finalement, par l′Eq.(3.23). La résolvant est

R(x, t;λ) =
xet

1− λ
;λ 6= 1
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La valeur 1 est un pôle de la résolvante.

D'après Eq.(3.24) la solution de l′Eq.(3.25) est

ϕ(x) = f(x) +
λx

1− λ

∫ 1

0

etf(t)dt

Remarque 3.3.3 Dans des situations particulières, il est possible de cal-

culer les fonctions Bn(x, t) et les coe�cients Cn par les formules récurrentes

suivantes

C0 = 1;B0(x, t) = K(x, t)

Bn(x, t) = CnK(x, t)− n
∫ b

a

K(x, s)Bn−1(s, t)ds;Cn =

∫ b

a

Bn−1(s, s)ds

Alors on trouve les successions C1, B1(x, t), C2, B2(x, t), C3 . . .
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Chapitre 4

Équations intégrales singulières

On dit qu'une équation intégrale est singulière si l'une ou les deux limites

d'intégration sont in�nies, ou bien le noyau devient in�ni au voisinage des

limites de l'intégration.

4.1 Équation intégrale d'Abel

Dé�nition 4.1.1 On appelle équation intégrale d'Abel une équation de la

forme ∫ x

0

ϕ(t)√
x− t

dt = f(x) (4.1)

On remarque que l′Eq.(4.1) est une équation intégrale de Volterra de pre-

mière espèce.

Dé�nition 4.1.2 On appelle équation intégrale d'Abel généralisée tout

équations de la forme∫ x

0

ϕ(t)

(x− t)α
dt = f(x), 0 < α < 1 (4.2)

La fonction f sera supposée possédant une dérivée continue sur [0, a]. Notons

que pour α > 1
2
, le noyau de l'équation (4.2) n'est pas de carré intégrable

47
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(K(x, t) n'est pas une fonction de L2). Cependant l'équation (4.2) admet une

solution .

Méthode d'Abel Admettons que l'équation (4.2) possède bien une solu-

tion. Substituons s à x dans (4.2), multiplions membre à membre par ds
(x−s)1−α

et intégrons par rapport à s entre 0 et x :∫ x

0

ds

(x− s)1−α

∫ s

0

ϕ(t)

(s− t)α
dt =

∫ x

0

f(s)

(x− s)1−α
ds.

Intervertissons l'ordre d'intégration dans le premier membre, il vient∫ x

0

ϕ(t)dt

∫ x

t

ds

(x− s)1−α(s− t)α
= F (x), (4.3)

ou

F (x) =

∫ x

0

f(s)

(x− s)1−α
ds.

Faisons la substitution s = t+ y(x− t) dans l'intégrale intérieure :∫ x

t

ds

(x− s)1−α(s− t)α
=

∫ 1

0

dy

yα(1− y)1−α
=

π

sin(απ)
.

L'équation (4.3) entraine alors∫ x

0

ϕ(t)dt =
sin(απ)

π
F (x)

ou

ϕ(x) =
sin(απ)

π
F ′(x) =

sin(απ)

π

(∫ x

0

f(s)

(x− s)1−α
ds

)′
x

. (4.4)

Ainsi, la solution unique de (4.3) est donnée par la formule (4.4) que l'on

récrit en intégrant par parties :

ϕ(x) =
sin(απ)

π

[
f(0)

x1−α
+

∫ x

0

f ′(s)

(x− s)1−α
ds

]
. (4.5)
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4.2 Équations intégrales à noyau de Cauchy

On considère

ϕ(x) = f(x) + λ

∫ 1

0

ϕ(t)

t− x
dt, a < x < b (4.6)

qui est une équation intégrale singulière à noyau de Cauchy non homogène.

Cette intégrale est prise au sens de la valeur principale de Cauchy. Pour ré-

soudre cette équation on fait appelle à l'identité

∫ y

0

dt

(y − t)α−1tα(t− x)
=

{
π cot(απ)

(y−x)1−αxα , 0 < x < y
−π csc(απ)
(x−y)1−αxα , y < x

(4.7)

et on dé�nit la fonction φ(x, y) comme suit

φ(x, y) =
1

(y − x)1−αxα
, 0 < x < y (4.8)

ou α est tel que −π cot(απ) = 1
λ
. Alors φ(x, y) est une solution de l'équation

intégrale

− λ
∫ y

0

φ(t, y)

t− x
dt = φ(x, y), 0 < x < y (4.9)

En outre ∫ y

0

φ(t, y)

t− x
dt = − π csc(απ)

(x− y)1−αxα
, y < x (4.10)

Si, on multiple (4.6) par x, on obtient

λ

∫ 1

0

tϕ(t)

t− x
dt = xϕ(x)− xf(x) + c (4.11)

ou c = λ
∫ 1

0
ϕ(t)dt. Maintenant, on multiplie les deux cotés de la relation

(4.11) par φ(x, y) et on intègre de 0 à y et en échangeant l'ordre d'intégration,

on trouve

1. λ
∫ y
0
tϕ(t)dt

∫ y
0
φ(x,y)
x−t dx

2. λ
∫ 1

y
tϕ(t)dt

∫ y
0
φ(x,y)
x−t dx =

∫ y
0
xϕ(x)φ(x, y)dx−

∫ y
0
xf(x)φ(x, y)dx+c

∫ y
0
φ(x, y)dx.
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En utilisant les relations (4.9) et (4.10) et que
∫ y
0
φ(x, y)dx = π csc(απ), on

obtient la relation

λπ csc(απ)

∫ 1

y

t1−αϕ(t)

(t− y)1−α
dt = −

∫ y

0

xf(x)φ(x, y)dx+ cπ csc(απ). (4.12)

Qui est une équation intégrale d'Abel dont la solution s'écrit sous la forme

λt1−αϕ(t) =
sin2(απ)

π2

d

dt

[∫ 1

t

∫ y

0

(y − t)−α(y − x)α−1x1−αf(x)dxdt

]
+
c sin(απ)

π(1− t)α

Maintenant, on utilise la relation −π cot(απ) = 1
λ
, et après certains calculs,

on obtient

ϕ(x) = − f(x)

1 + π2λ2
+

λ

(1 + π2λ2)x1−α(1− x)α

∫ 1

0

(1− t)αt1−αf(t)

t− x
dt

+
c

x1−α(1− x)α
√

1 + π2λ2
.

4.3 Singularité logarithmique

On considère l'équation intégrale∫ 1

−1
ln | x− t | ϕ0(t)dt = 1,−1 < x < 1. (4.13)

En posant x = cosα, et t = cos β, l'équation (4.13) devient∫ π

0

ln | cosα− cos β | ω(β)dβ = 1, 0 < α < π. (4.14)

ou ω(β) = ϕ0(cosβ) sin β. Soit maintenant le développement ω(β) =
∑∞

n=0 bn cos(nβ),

alors

ln | cosα− cos β |= − ln 2− 2
∞∑
n=1

cos(nα) cos(nβ)

n
(4.15)

L'équation (4.14) devient
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∫ π

0

[
− ln 2− 2

∞∑
n=1

cos(nα) cos(nβ)

n

]
×

[
∞∑
n=0

bm cos(mβ)

]
dβ = 1

De l'orthogonalité des fonctions cosinus, il en résulte,

−πb0 ln 2−
∞∑
n=1

πbn
cos(nα)

n
= 1

ainsi, b0 = −( 1
(π ln 2)

), bn = 0, n > 1, et on trouve que la solution de l'équation

(4.13) est donnée par

ϕ0(t) = − 1

π ln 2

1√
1− t2

(4.16)
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Conclusion

Dans ce mémoire, nous avons présenté quelques résultats sur les équa-

tions intégrales. On a appliqué quelques théorèmes du point �xe (principe

de contraction de Banach qui garantit l'existence et l'unicité de la solution,

Schauder assure l'existence) sur quelques équations intégrales de type Fred-

holm et de Volterra, et aussi on a présenté quelques méthodes de résolutions

de ces équations, des méthodes analytiques comme la méthode de noyaux ité-

rés, noyau dégénéré,et déterminants de Fredholm (qui s'applique seulement

sur les équations intégrales linéaire).

Nous prévoyons dans le futur d'essayer d'améliorer certains résultats a�n de

pouvoir les appliquer à l'étude d'équations intégrales non linéaires.
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