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Introduction générale

D e nombreux phénomènes aléatoires se manifestent dans la nature : fluctuations de la tempé-

rature, de la pression atmosphérique, . . . etc. En électronique et en télécommunications, l’étude des

processus aléatoires est utile notamment dans le contexte des communications numériques, certains

signaux sont impossibles à caractériser a priori. L’exploitation des processus aléatoires est aussi à

la base de nombreuses approches en traitement du signal, que ce soit pour caractériser le contenu

fréquentiel du signal ou pour coder et tatouer un signal de parole. Plus généralement, les sources

d’information telles que le son, les images sont aléatoires et varient dans le temps. Enfin, les processus

aléatoires ont une application dans le cadre du traitement du trafic dans les réseaux et notamment

pour l’analyse du temps de transfert et/ou du temps de traitement d’un paquet d’informations de

taille aléatoire, généré à des intervalles de temps aléatoires (Théorie des Files d’Attente). La théorie

des processus aléatoire vise à introduire les outils de traitement des phénomènes variant aléatoire-

ment dans le temps.

Les phénomènes d’attente sont devenus l’une des préoccupations de l’homme depuis bien longtemps.

Attendre, constitue la tâche la plus désagréable de la vie moderne. Comment gérer un système

présentant des files d’attente, afin d’améliorer sa qualité de service ? Cette question a été abordée,

pour la première fois par A.K. Erlang avec ses travaux concernant le réseau téléphonique de Copen-

hague [32]. La théorie mathématique s’est ensuite développée notamment grâce aux contributions

de Palm, Kolmogorov, Khintchine, Pollaczek [32] et fait actuellement toujours l’objet de nombreuses

publications scientifiques. Cette théorie s’est ensuite étendue à de nombreux champs d’application

comme la gestion de stocks, les télécommunications en général, la fiabilité de systèmes complexes,...

Les problèmes liés à l’attente dans un centre de service sont omniprésents dans notre société. Les

exemples ne manquent pas :

- Attente à un guichet (caisse dans un supermarché, administration),

- traffic urbain ou aérien.

- réseaux téléphoniques.
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- circulation de pièces dans un atelier.

- programmes dans un système informatique,...

En effet, afin d’analyser le comportement de ces systèmes, évaluer et optimiser leurs perfor-

mances, il faut d’abord les représentés par des modèles mathématiques qui proviennent de la théorie

des files d’attente. Un modèle typique de files d’attente nécessite la définition des processus d’inter-

arrivées et la durée de service de client, la taille de la file qui peut être fini ou non, ainsi que la

discipline de service. Tous ces paramètres sont indiqués dans la notation dite de Kendall. Dans cer-

tains systèmes, on est amené à imposer des priorités d’utilisation du service. Notre travail consiste à

étudier une classe de systèmes de files d’attente, qui porte le nom de système de files d’attente simple

comprenant une station de service et pour lequel la capacité de l’espace est infini et de discipline de

service FIFO. Dans notre mémoire nous analysons des conditions de stabilité d’un systèmes de files

d’attente avec rappel, abandon, feedback. Le mémoire est composée de quatre chapitres.

Dans le premier chapitre ,nous abordons les processus à la base de l’étude de tels systèmes

d’attente qui sont les processus stochastiques. Nous présentons une introduction aux concepts de

base de la théorie des processus stochastiques. Nous présentons également les relations fondamentales

entre les diférents processus stochastiques.

Dans le deuxième chapitre, nous introduisons la terminologie de la théorie des files d’at-

tente. Certaines définitions et notations qui sont nécessaires dans l’étude des systèmes de files d’at-

tente (la notation de KANDELL, la formule de LITTLE · · · ) sont nottamment données. Et nous

étudions quelque modèles de files d’attente (M/M/1,M/M/1/K,M/M/c,M/M/∞) et l’évaluation

de leurs paramètres de performance.

Après nous présentons une étude de certains modèles d’attente avec clients impatients. Nous

traitons le cas de files d’attente avec rappels, ensuite un système d’attente avec abandon et enfin un

modèle avec feedback.

Enfin Dans le troisième, on donne la condition de stabilité d’un système de files d’attente

avec rappel,abandon et feedback.



Chapitre 1

Processus Stochastique

L’étude des processus stochastiques s’insère dans la théorie des probabilités dont elle consti-

tue l’un des objectifs les plus profonds. Il existe de nombreuses applications des processus aléatoires

notamment en physique statistique [23] (par exemple le ferromagnétisme, les transitions de phases,

etc.), en biologie (évolution, génétique et génétique des populations), médecine (croissance de tu-

meurs, épidémie). Elle soulève des problèmes mathématiques intéressants et souvent très difficiles.

Par exemple, le prix d’un baril du Pétrole, qui ont tiré l’attention de beaucoup des spécialistes éco-

nomiques. En effet, ce prix, dans la bourse, varie tout le temps, cette variation nous donne l’idée

d’établir un processus aléatoire, ou encore un processus stochastique, d’où la modélisation par une

famille de variables aléatoires X(t)t∈T où T est l’ensemble des temps pendant lesquels le phénomène

est observé. La famille X(t)t∈T est appelée processus aléatoire, ou encore processus stochastique.

Définition 1.1. Un processus stochastique est une suite de variables aléatoires indexées par T à

valeurs dans un ensemble X. Sa caractéristique de base est le fait que la loi de la variable X soit

fonction de t définies dans le même espace de probabilité (Ω,F,P) et à valeurs dans l’espace mesurable

(E, E), t ∈ T représente une date [35]

F Lorsque T ⊆ Z, on parlera de processus à temps discret (suite stochastique) notée (Xn)n∈N

F lorsque T est un intervalle I ⊆ R, on parlera de processus à temps continu.

Définition 1.2. On appelle espace des états (des phases) l’ensemble E où les variables Xn prennent

leurs valeurs. L’ensemble E peut être discret ou continu. Par conséquent, on distingue quatre types

de processus :

1. Suite stochastique à espace d’état discret.

2. Suite stochastique à espace d’état continu.

3. Processus continu à espace d’état discret.
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4. Processus continu à espace d’état continu.

La loi d’un processus stochastique est caractérisée par la donnée de la loi du vecteur qui lui est

associé.

Définition 1.3. Un processus stochastique Et, t ≤ 0 est strictement

stationnaire, si ∀(t0, ..., tn) ∈ R,∀t ∈ R : F(Et0 , ..., Etn) = F(Et0+T , ..., Etn+T ) .

Définition 1.4. {E , t ≥ 0} est à accroissement stationnaire (homogène), si ∀t1 ∈ R,∀h ∈ R :

Xt2+h
−Xt1+h

etXt2 −Xt1 sont des variables aléatoire de même loi.

Définition 1.5. Un processus est à accroissement indépendant stationnaire (Nt)R+ est dit évène-

ment rare si

lim
h→0+

P([Nh > 0]) = 0

et si

lim
h→0+

P([Nh > 1])

P([Nh = 1])
= 0.

1.1 Loi de poisson et loi exponentielle

1.1.1 Loi de poisson

Définition 1.1.1. :(Loi de poisson)

Une variable aléatoire X à valeurs entières suit une loi de Poisson de paramètre µ > 0 si :

∀k ∈ N,P(X = k) =
µk

k!
exp(−µ)

Propriété 1.1.1. :

Soit X une variable aléatoire discrète qui suit une distribution poissonniene.

- La fonction génératrice des moments est :

ϕ(t) = E[etX ] = eµ(e
t−1)

- La moyenne et la variance sont :

E(X) = µ, Var(X) = µ.

Preuve :
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ϕ(t) =

∞∑
k=0

etk
µk

k!
e−µ

= e−µ
∞∑
k=0

(µet)k

k!

= e−µeµe
t

Calculons les dérivées de la fonction génératrice

ϕ
′
(t) = µeteµ(e

t−1)

ϕ
′′
(t) = (1 + µet)µeµeµ(e

t−1)

D’où

E[x] = ϕ
′
(0) = µ

Var(x) = ϕ
′′
(0)− E[x]2 = µ

�

1.1.2 Loi exponentielle

Définition 1.1.2. :(Loi exponentielle)

Soit la variable aléatoire X continue de loi exponentielle de paramètre λ > 0 à valeurs strictement

positives de probabilité :

∀t > 0,P(X = t) = λ exp(−λt)

Propriété 1.1.2. :

La loi exponentielle de paramètre λ est notée ε(λ).

Soit X une variable aléatoire de loi ε(λ).

Sa fonction de répartition est :

F (t) =

 λ exp(−λt) si t ≥ 0

0 sinon.
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Sa fonction génératrice des moments est :ϕ(t) = E[etX ] =

 ∞ si t ≥ λ
λ

λ− t
si t < λ

Sa moyenne et sa variance sont : E(X) =
1

λ
, Var(X) =

1

λ2
.

Preuve :

Soit X une variable aléatoire de loi ε(λ)

* F (t) = P(X ≤ t) = 0 si t < 0 car X est une veriable positive et si t > 0 on a

F (t) =

∫ t

0

fX(x)dx

=

∫ t

0

λe−λx

= 1− e−λt

Sa fonction génératrice des moments vérifie

ϕ(t) = E[etX ]

=

∫ ∞
0

λetxe−λxdx

=

∫ ∞
0

λe(t−λ)xdx

=

[
λ

t− λ
e(t−λ)x

]+∞
o

D’où le résultat.

Calculons les dérivées de la fonction génératrice, on a

ϕ′(t) =
λ

(λ− t)2

ϕ′′(t) =
2λ

(λ− t)3

D’où

E[X] = ϕ′(0) =
1

λ
et Var(X) = ϕ′′(0)− E[X]2 =

1

λ2

�
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1.1.3 Relation entre la distribution Exponentielle et la distribution de

Poisson

La densité de probabilité d’une distribution exponentielle f(t) = λe−λt.

Supposons τ est exponentielle avec une espérence 1
λ , et n est de Poisson de moyenne µ on a :

P (τ > t) = 1− F (t)

= e−λt

= P (n = 0 en t)

= P (0, t)

Notons P (n, t) la probabilité d’avoir n unite dans le temps t.

P (0, t) = e−µt

P (1, t) =
∫ t
τ−0 P (0, τ)f(1− τ)dτ = λte−λt

P (2, t) =
∫ t
τ−0 P (1, τ)f(1− τ)dτ = (λt)2e−λt/2!

. . .

P (n, t) =
∫ t
τ−0 P (n− 1, τ)f(1− τ)dτ = (λt)ne−λt/n!

1.2 Processus à accroissements indépendants

Définition 1.2.1. : (Processus à accroissements indépendants)

Un processus stochastique est dit un processus à accroissements indépendants s’il vérifie la propriété :

∀t ≥ 0,∀s ≥ 0, Nt+s −Nt est indépendante de Nu,∀u ≤ t .

Un processus à accroissements stationnaires est un processus stochastique qui vérifie la propriété :

La loi de Nt+s −Ns ne dépend pas de t.

1.3 Processus de comptage

Définition 1.3.1. :(Processus de comptage)

Soit N(t) un processus stochastiqueest si N(t) représente le nombre total des évènements qui sont

arrivés avant l’instant t, on dit que N(t) est un processus de comptage discret à temps continu tout

processus de comptage vérifie les propriétés suivantes :

1. le nombre N(t) est à valeurs entières positives, Pour tout t ≥ 0 .
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2. La fonction t 7→ N(t) est croissante.

3. la différence N(t)−N(s) représente le nombre d’évènement se produisant dans l’intervalle de

temps ]s, t], Pour tout couple (s, t)(0 < s < t).

le processus des temps d’inter-arrivées {Wn, n ∈ N0} ou ∀n ∈ N0 la variable aléatoire Wn est

le temps d’attente entre les (n− 1)ième , nième occurrences, est un processus peut être associé

au processus des temps d’occurrence [34] càd :

Wn = Tn − Tn−1

avec Tn est le temps d’arrivé du nième client.

Démonstration :

On a Wn = Tn − Tn−1

W1 +W2 + . . .+Wn = T1 − T0 + T2 − T1 + T3 − T2 + . . .+ Tn−1 − Tn−2 + Tn − Tn−1

= T0 + Tn

= Tn car T0 = 0

�

1.4 Processus de poisson

Le processus de Poisson sert a modéliser l’occurrence d’évènements successifs. Chaque évène-

ment est tel que dans un intervalle de temps (t, t+ ∆t avec ∆t) petit [18].

Exemple 1.4.0.1. : Les exemples de processus ne se limitent évidemment pas à la biologie :

– Appels téléphoniques à un standard.

– Prise d’un poisson par un pécheur.

– Arrivée d’un client à un guichet.

– Passage d’un autobus.

Définition 1.4.1. : Un processus de comptage ( Nt)t ∈ R+, tel que N0 = 0 est un processus de

Poisson [17] si :

1. (Nt)t∈R+
est stationnaire.

2.(Nt)t∈R+
est un processus à accroissements indépendants.

3. (Nt)t∈R+
est un processus à évènements rares.
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1.5 Processus de renouvellement

Les processus de Poisson et de renouvellement sont des processus aléatoires de comptage à

temps continu qui conviennent la description des phénomènes dont les occurrences surviennent en

des temps successifs aléatoires. Ils sont utiles à la modélisation des files d’attente apparaissant à

l’entrée de services et dans les réseaux de communication, et permettent de résoudre des problèmes

de maintenance.

processus de renouvellement est un processus de comptage pour le quel les temps entre deux

arrivés consecutives sont des variables aléatoires indépendantes s’appelle processus de renouvelle-

ment. Les temps de renouvellement (ou les temps de la n-ième arrivée) sont :

An =

n∑
i=1

ai n = 1, 2, . . .

on voir que le nombre d’arrivées avant le temps t, i.e. le processus

(Nt)t∈R+
= sup

k
{k,AK ≤ t}

est un processus de comptage.

1.6 Processus de naissance et de mort

Définition 1.6.1. : On peut réaliser un processus de naissance et de mort de la façon suivante :

• Les arrivées et les départs d’entités obéissent à des lois exponentielles de taux respectifs λ(n) et

µ(n).

• A l’aide l’hypothèse de régularité : deux évènements ne peuvent pas se produire en même temps,

donc la probabilité que deux évènements se produisent dans un intervalle de temps dt est

négligeable.

• Il y a une transition vers un état voisin, soit par l’arrivée d’un client (naissance), soit par le départ

d’un client (mort).

Si πn(t) est la probabilité pour qu’il a n clients dans le système à l’instant t, l’équation de Kolomo-

gorov [36]s’écrit, pour n > 0 :

πn(t+ dt) = (1− (λn + µn) dt)πn(t) + µn+1πn+1(t)dt+ λn−1πn−1(t)dt+ o(dt)

C’est-à-dire, en faisant tendre dt vers 0 , pour n > 0 :

d

dt
πn(t) = − (λn + µn)πn(t) + µn+1πn+1(t) + λn−1πn−1(t)
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De la même façon, on obtient pour n = 0 :

d

dt
π0(t) = −λ0π0(t) + µ1π1(t)

Un cas particulier du processus de naissance et de mort c’est Le processus de Poisson avec µn = 0 et

λn = λ dans ce cas on trouve pas un régime stasionnaire [13] les équations différentielles s’écrivent

alors

π0(t) = e−λt ,
d

dt
π0(t) = −λ0π0(t) ,

d

dt
πn(t) = −λ(πn(t)− πn−1(t))

La solution est πn(t) =
(λt)ne−λt

n!
.

Représentation de transition d’un processus de naissance et mort

Définition 1.6.0.1. : (Processus de naissance et de mort)

C’est un cas particulier de chaîne de Markov [5] où seules les transitions d’un état à un état voisin

sont permises, on s’téresse au cas continus avec des taux de transition c’est le point de départ de la

théorie des files d’attente. On introduit les données suivantes :

λn :taux de naissances quand le nombre de population égale à n.

µn :taux de morts quand le nombre de population égale à n.

Figure 1.1 – Diagramme de transition d’un processus de naissance et de mort.

Ce graphe représente les transitions d’un état à un autre. La transition vers la droite représente

une naissance et celle vers la gauche représente une mort.

• Si tous les λi sont nuls, on parle de processus de mort.

• Si tous les µi sont nuls, on parle de processus de naissance.

Processus de naissance

Définition 1.6.0.2. : Le processus de naissance est la géniralisation direct d’un processus de pois-

son lorsque le paramètre d’intensité λ dépend de l’état courant du processus, il va nous permettre
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d’introduire le concept "d’explosion" Si la taille d’une population a une transition n → n + 1 donc

il correspondant à une naissance.

Processus de mort

Si la taille d’une population à une transition n→ n− 1 donc il correspondant à une mort.



18 CH. 1. Processus Stochastique



Chapitre 2

Systèmes de files d’attente

La théorie des files d’attente a commencé en 1909 avec les travaux de recherches de l’ingénieur

danois Agner Krarup Erlang ( 1878,1929 ) sur le trafic téléphonique de Copenhague pour déterminer

le nombre de circuits nécessaires afin de fournir un service téléphonique acceptable. Par la suite, les

files d’attente ont été intégrés dans la modélisation de divers domaines d’activité [15]. On assista

alors à une évolution rapide de la théorie des files d’attente qu’on appliqua à l’évaluation des perfor-

mances des systèmes informatiques et aux réseaux de communication. Les chercheurs oeuvrant dans

cette branche d’activité ont élaboré plusieurs nouvelles méthodes qui ont été ensuite appliquées avec

succés dans d’autres domaines, notamment dans le secteur de la fabrication. On a aussi constaté

une résurgence des applications pratiques de la théorie des files d’attente dans des secteurs plus tra-

ditionnels de la recherche opérationnelle, un mouvement mené par Peter Kolesar et Richard Larson

[6]. Grâce à tous ces développements, la théorie des files d’attente est aujourd’hui largement utilisé

et ses applications sont multiples.

Définition 2.0.1 (File d’attente) [10]

Une file d’attente est un système dans lequel arrivent des clients auquel des serveurs four-

nissent un service. Ce formalisme peut être utilisé dans des situations diverses : guichet de poste

trafic routier, traitement des instructions par un processeur, gestion de communications télépho-

niques, ateliers de réparation,... etc. On parle de phénomène d’attente chaque fois que certaines

unités appelées clients se présentent d’une manière aléatoire à de stations afin de recevoir un service

dont la durée est généralement aléatoire. Dans l’étude de systèmes de files d’attente, on s’intéresse

essentiellement à deux grandeurs : le nombre de clients dans le système, et le temps passé par un

client dans le système. Ce dernier se décompose en un temps d’attente et un temps de service.

Classification des files d’attente [24] :

Pour décrire une file d’attente, on doit donc se donner les éléments suivants :
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• La nature du processus des arrivées qui est définie par la distribution des intervalles séparant deux

arrivées consécutives.

• La distribution du temps aléatoire de service.

• Le nombre s des stations de service.

• La capacité N du système. Si N < ∞, la file ne peut dépasser une longueur de N − s unitées.

Dans ce cas, certains clients qui arrivent vers le système n’ont pas la possibilité d’y entre.

Terminologie et notations [4] :

En lien avec la loi exponentielle :

◦λ :Le taux d’arrivée ; le nombre moyen d’arrivées par unité de temps.

◦ 1λ : L’intervalle de temps moyen séparant deux arrivées consécutives.

◦µ : Le taux de service ; le nombre moyen de clients servis par unité de temps.

◦ 1µ : Temps moyen de service d’un client dans le système.

L’analyse d’un système de file d’attente dépends de l’état initial et du temps écoulé. C’est la situation

transitoire où l’étude est très complexe. Dans la théorie des files d’attente l’étude se fait une fois que

le système atteint sa situation d’équilibre ; où les états du système sont essentiellement indépendants

de l’état initial et du temps déjà écoulé. On suppose que le système est en opération depuis un très

long moment.

En situation d’équilibre on note :[7]

◦Pn : Probabilité qu’il y ait n clients dans le système.

◦Ls : Nombre moyen (espérance mathématique) de client dans le système.

◦Lq : Nombre de clients dans la file d’attente excluant ceux qui sont dans le service.

◦Wq : Le temps moyen passé par un client dans la file (excluant le temps de service).

Les différents types de files d’attente :

Les figures suivantes représentent les différents systèmes de files d’attente selon l’espace d’attente et

l’espace de service figure(2.1), figure(2.2),figure(2.3) :
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Figure 2.1 – File d’attente avec un seul espace d’attente et un seul serveur.

Figure 2.2 – File d’attente avec un seul espace d’attente et plusieurs serveurs.

Figure 2.3 – File d’attente avec plusieurs espace d’attente et plusieurs serveurs.

2.1 Files d’attente simple

Définition 2.1.1. Une file d’attente simple est un système constitué d’un ou plusieurs serveurs

et d’un espace d’attente. les clients arrivent de l’extérieur, patientent éventuellement dans la file

d’attente, reçoivent un service, puis quittent la station [20]. Afin de spécifier complètement une file

d’attente simple, on doit caractériser le processus d’arrivée des clients, le temps de service ainsi que
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la structure et la discipline de service de la file d’attente figure(2.4) .

Figure 2.4 – File d’attente simple.

Processus d’arrivée

L’arrivée des clients à la station sera décrite à l’aide d’un processus stochastique de comptage

(Nt)t≥0.

• Si An désigne la variable aléatoire mesurant l’instant d’arrivée du nième client dans le système,

on aura ainsi : A0 = 0 et An = inf {t;Nt = n}.

• Si Tn désigne la variable aléatoire mesurant le temps séparant l’arrivée du (n− 1)ième client et du

nième client [21], on a alors :

Tn = An −An−1

Temps de service

Considérons tout d’abord une file à serveur unique. On note Dn la variable aléatoire mesurant

l’instant de départ du nième client du système et Yn la variable aléatoire mesurant le temps de service

du nième client(le temps séparant le début et la fin du service). Un instant de départ correspond

toujours à une fin de service, mais ne correspond pas forcément à un début de service . Il se peut

en effet qu’un client qui quitte la station laisse celle-ci vide. le serveur est alors inoccupé jusqu’à

l’arrivée du prochain client.On note µ le taux de service :

1/µ est la durée moyenne de service.

Structure de la file

Nombre de serveurs

Une station peut disposer de plusieurs serveurs en parallèle. Soit C le nombre de serveurs. Dès

qu’un client arrive à la station, soit il y a un serveur libre, le client entre instantanément en service,

soit tous les serveurs sont occupés et le client se place dans la file en attente de libération d’un des



2.2 Loi de Little 23

serveurs. Mais en suppose à la plupart du temps que les serveurs sont identiques et indépendants les

uns des autres. Une station particulière est la station IS (infinite servers) dans la quelle le nombre

de serveurs est infini. Cette station ne comporte donc pas de file d’attente.

Capacité de la file :

La capacité de la file à accueillir des clients en attente de service peut être finie ou infinie. Soit K

la capacité de la file, une file à capacité illimitée vérifie K = +∞.

2.2 Loi de Little

La loi de Little est une relation très générale qui s’applique à une grande classe de systèmes.

Elle ne concerne que le régime permanent du système. Aucune hypothèse sur les variables aléatoires

qui caractérisent le système (temps d’inter-arrivées, temps de service,...etc). La seule condition d’ap-

plication de la loi de Little est que le système soit stable. Le débit du système est alors indifféremment

soit le débit d’entrée, soit le débit de sortie : ds = de = d La loi de Little s’exprime telle que dans le

théorème suivant :

Théorème 2.2.1. (Formule de Little) :

Le nombre moyen de clients, le temps moyen passé dans le système et le débit moyen d’un système

stable en régime permanent se rélient de la façon suivante :

N = λeT

pour une file (M/M/1), λe = λ

On a vu que la loi de Little nous dit qu’il existe une relation entre le nombre moyen de clients dans

la file (en attente ou en service) et le temps moyen total de séjour d’un client dans la file(temps

d’attente +temps de service).

Remarque 2.2.1. :

La loi de Little s’applique à tous les modèles de file d’attente rencontrés en pratique (pas seulement

à la file M/M/1).

Mesure de performance d’une file d’attente

L’étude d’une file d’attente ou d’un réseau de files d’attente a pour but de calculer ou d’estimer

les performances d’un système dans des conditions de fonctionnement données, et les mesures les

plus fréquemment utilisées sont :

N = E(N) : nombre moyen de clients dans le système.
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Ns : nombre moyen de clients en train d’être servis.

NQ : nombre moyen de clients dans la file d’attente.

NQ,NS et N : sont les variables aléatoires correspondantes.

T : temps moyen qu’un client passe dans le système.

Ts : temps moyen de service.

Ts : temps moyen d’attente d’un client dans la file.

TQ,Ts et T : sont les variables aléatoires correspondantes.

De manière générale, une file est stable si et seulement si le nombre moyen d’arrivées de clients par

unité de temps, noté λ, est inférieur au nombre moyen de clients pouvant être servis par unité de

temps. Si chaque serveur peut traiter µ clients par unité de temps et si le nombre de serveurs est c,

une file est stable si et seulement si

λ < mµ⇔ ρ =
λ

cµ
< 1

où, ρ est appelé l’intensité du trafic.

Arrivée avant un départ et départ avant une arrivée

. Temps pour qu’une nouvelle arrivée se produise :

A ∼ exp(λ)

. Temps pour qu’un nouveau départ se produise :

D ∼ exp(µ)

(A et D sont indépendantes).

. Probabilité qu’une arrivée se produise avant un départ :

P(A < D) =
λ

λ+ µ

. Probabilité qu’un départ se produise avant une arrivée :

P(D < A) =
µ

λ+ µ

2.3 Notation de Kendall

La notation suivante, appelée la notation de Kendall, est largement utilisée pour classer les

différents systèmes de files d’attente [14] :

T/Y/C/K/m/Z
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avec

1. T : indique le processus d’arrivée des clients. Les symboles utilisés sont :

M : Inter-arrivées des clients sont identiquement distribuées selon une loi exponentielle. Il

correspond à un processus de Poisson ponctuel (propriété sans mémoire).

D : Les temps inter-arrivées des clients ou les temps de service sont constants et toujours les

mêmes.

GI :Inter-arrivées des clients ont une distribution générale (il n’y a aucune hypothèse sur la

distribution mais les inter-arrivées sont indépendantes et identiquement distribuées).

G :Inter-arrivées des clients ont une distribution générale et peuvent être dépendantes.

Ek : Ce symbole désigne un processus où les intervalles de temps entre deux arrivées succes-

sives sont des variables aléatoires indépendantes et identiquement distribuées suivant une loi

d’Erlang d’ordre k.

2. Y :décrit la distribution des temps de service d’un client. Les codes sont les mêmes que T .

3. C :nombre de serveurs.

4. K :capacité de la file c’est le nombre de places dans le système en d’autre terme c’est le nombre

maximal de clients dans le système y compris ceux en service.

5. m :population des usagers.

6. Z :discipline de service c’est la façon dont les clients sont ordonnés pour être servi. Les codes

utilisés sont les suivants :

- FIFO(first in, first out) ou FCFS (first come, first served) :c’est la file standard dans

laquelle les clients sont servis dans leur ordre d’arrivée. Notons que les disciplines FIFO et

FCFS ne sont pas équivalentes lorsque la file contient plusieurs serveurs. Dans la première, le

premier client arrivé sera le premier à quitter la file alors que la deuxième, il sera le premier

à commencer son service. Rien n’empêche alors qu’un client qui commence son service après

lui, dans un autre serveur, termine avant lui.

- LIFO(last in, first out) ou LCFS (last come, first served). Cela correspond à une pile, dans

laquelle le dernier client arrivé (donc posé sur la pile) sera le premier traité (retiré de la pile).

A nouveau, les disciplines LIFO et LCFS ne sont équivalentes que pour une file mono serveur.

- SIRO (Served In Random Order), les clients sont servis aléatoirement.

- PNPN (Priority service), les clients sont servis selon leur priorité. Tous les clients de la

plus haute priorité sont servis premiers, puis les clients de priorité inférieur sont servis, et

ainsi de suite.
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-PS ( Processor Sharing ), les clients sont servis de manière égale. La capacité du système est

partagée entre les clients.

2.4 Quelque modèle sur les files d’attente

2.4.1 Modèle d’attente M/M/1

Le système de files d’attente M/M/1 est le système le plus élémentaire de la théorie des files

d’attente. Le flot des arrivées est poissonnien de paramètre λ et la durée de service est exponentielle

de paramètre µ, la discipline d’attente est FIFO, la file d’attente est de capacité infinie [22]. La file

peut être considérée comme un processus de naissance et de mort ,figure(2.5) ,pour lequel :

Figure 2.5 – La file M/M/1.

λn = λ ∀n ≥ 0

µn =

 µ ∀n ≥ 1

0 si n = 0

Régime transitoire :

Pour ce système, le plus simple de la théorie des files d’attente, le flux des arrivées est pois-

sonnien de paramètre λ et la durée de service est exponentielle de paramètre µ. La capacité d’attente

est illimitée et il y a une seule station de service. Le processus (Xt) est markovien (doté de la pro-

priété d’absence de mémoire), ce qui rend son étude aisée. Grâce aux propriétés fondamentales du

processus de Poisson et de loi exponentielle, nous avons pour un petit intervalle de temps ∆t les

équations différentielles de Kolmogorov , figure(2.6) :

 P ′0(t) = −λP0(t) + µP1(t) , n = 0,

P ′n(t) = −(λ+ µ)Pn(t) + Pn−1(t) + µPn+1(t) , n = 1, 2, 3, .....
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Figure 2.6 – Diagramme de file d’attente M/M/1

où

Pn(t) = P(Xt = n)

Régime stationnaire

Quand t −→ ∞, on peut montrer que πn = lim
t→∞

Pn(t) = Pn existent et sont indépendante de l’état

initial du processus et que

πn = lim
t→∞

Pn(t) = (1− ρ)ρn ,∀n ∈ N

π = {πn}n≥0 est applé distribution stationnaire , elle suit une loi géométrique On obtient alors un

système d’équations linéaires homogène

 µP1 = λP0 , n = 0

λPn−1 + µPn+1 = (λ+ µ)Pn , n = 1, 2, ...

aux quelles on ajoute la condition
∞∑
n=0

Pn = 1. En additionnent les (n+ 1) premières équations , on

trouve

µPn+1 = λPn.

D’où

Pn = (
λ

µ
)nP0 , n ∈ N,

∞∑
n=0

Pn = 1⇒ P0

∞∑
n=0

(
λ

µ
)n = 1

alors

Pn = (1− ρ)(ρ)n n = 0, 1, 2, ...

à condition que

λ

µ
= ρ < 1.

On constate que la file M/M/1 est gouvernée par la loi géométrique.

•λµ = ρ est le coefficient d’utilisation du système ou intensité du trafic.
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ρ correspond au nombre moyen d’arrivées par la durée moyenne du service.

•P0 = 1− ρ correspond à la probabilité que le système soit inoccupé. Si ρ ≥ 1, alors

lim
t→∞

Pn(t) = 0, n = 0, 1, 2, ...

ie : la longueur de la file d’attente dépasse toute mesure.

Caractéristiques du système :

Une importante caractéristique des systèmes de files d’attente est

• Le nombre moyen de clients dans le système :

N = E(N)

=

∞∑
n≥0

nπn

= (1− ρ)

∞∑
n≥0

nρn

=
ρ

1− ρ

=
λ

µ− λ

• le nombre moyen de clients en train d’être servis :

Ns = 1− π0 = ρ

• le nombre moyen de clients dans la file :

NQ =

∞∑
n≥1

(n− 1)πn

=
ρ2

1− ρ

De la même manière,on peut trouver,

∗ La variance du nombre de clients dans le système
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σ2 = V ar(X)

= (1− ρ)

∞∑
k=0

(K −N)ρK

=
ρ

(1− ρ)2

Le temps moyen de séjour dans le système.On peut l’obtenir en appliquant la formule de Little.

• Temps moyen qu’un client passe dans le système :

T =
N

λ

=
ρ

1− ρ
1

λ

=

1
µ

1− ρ

=
1

µ− λ

• Temps moyen de service :

T s =
1

µ

•Temps moyen d’attente :

TQ = T − T s

=
λ

µ(µ− λ)

2.4.2 Modèle d’attente M/M/1/K

Soit K la capacité de la file d’attente : c’est le nombre maximal de clients qui peuvent être

présents dans le système, soit en attente, soit en service. Quand un client arrive alors qu’il y a

déjà K clients présents dans le système, il est perdu. Ce système est connu sous le nom de file

M//M/1//K.

L’espace d’états E est maintenant infini :E = {0, 1, 2, . . .} La capacité de la file étant limitée, même
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si les clients arrivent en moyenne beaucoup plus vite que ce que le serveur de la file est capable de

traiter, dès que celle-ci est pleine, les clients qui se présentent sont rejetés. Le nombre de clients

dans la file ne peut donc jamais partir à l’infini [25].

De plus, dès qu’un client est autorisé à entrer, il sortira un jour et son temps de séjour dans la file

est fini, puisqu’il correspond au temps de service de tous les clients devant lui et que ce nombre est

limité par K. Sur un temps très long, le débit de sortie sera donc bien égal au débit d’entrée, ce qui

correspond bien à la stabilité inconditionnelle du système.

Le processus de naissance et de mort modélisant ce type de file d’attente est alors défini de la façon

suivante , figure(2.7), figure(2.8) :

λn =

 λ si n < K

0 si n > K

Figure 2.7 – La file M/M/1/K.

Figure 2.8 – Évaluation de l’état dans la file d’attente M/M/1/K.

L’intégration de l’équation récurrente permettant de calculer πn se fait alors comme suit :

πn =

 π0ρ
n pour n ≤ K

0 pour n > K
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π0 =


1

K∑
n=0

ρn
=

1− ρ
1− ρK+1 si λ 6= µ

1
K + 1 si λ = µ

Caractéristiques du système :

– Le nombre moyen de clients dans le système est :

N =

K∑
n=0

nπn =
ρ

1− ρ
1− (K + 1)ρK +KρK+1

1− ρK+1
(2.1)

LorsquK tend vers l’infini et ρ < 1, on retrouve les résultats de la file M/ M/1 :

N =
ρ

1− ρ
– Le nombre moyen de clients dans la file est :

NQ =

∞∑
n=1

(n− 1)πn = N − (1− π0) (2.2)

Le temps moyen qu’un client passe dans le système T et le temps moyen d’attente dans la file TQ

sont obtenus à partir la loi de Little :

– Temps moyen qu’un client passe dans le système :

T =
N

λ
(2.3)

– Temps moyen d’attente

TQ =
NQ

λ
(2.4)

2.4.3 Modèle d’attente M/M/C

On considère un système identique à la file M/M/1 excepté qu’il comporte C serveurs identiques et

indépendants les uns des autres. On conserve les hypothèses :

- Le processus d’arrivée des clients poissonien de taux λ .

- Le temps de service exponentiel de taux µ.

Ce système est connu sous le nom de file M/M/C [16]. L’espace d’états E est, comme pour la

M/M/1 infini : E (0, 1,2, ...) La file d’attente est de capacité infini. Si l’un des serveurs est libre,

le client qui arrive se dirige immédiatement vers ce serveur. Dans le cas contraire, le client prend sa

place dans une file d’attente commune pour tous les serveurs. Lorsqu’un serveur se libère, le client



32 CH. 2. Systèmes de files d’attente

en tête de la file occupe ce serveur. Par conséquent, la discipline d’attente est FIFO.

Le processus de naissance et de mort [1] modélisant ce type de file d’attente est alors défini de la

façon suivante , figure(2.9) , figure(2.10) :

λn = λ ∀n ≥ 0

µn =


0 si n = 0

nµ ∀n = 1, . . . , C

Cµ ∀n ≥ C

Figure 2.9 – La file M/M/C.

Figure 2.10 – Evaluation de l’état dans la file d’attente M/M/C.

D’après le diagramme et l’analyse du système en régime stationnaire, à l’aide de la procédure des

équations de Chapman Kolmogorov on obtient les équations suivantes :



2.4 Quelque modèle sur les files d’attente 33

λπ0 = µπ1

(λ+ nµ)πn = λπn−1 + (n+ 1)µπn+1 1 ≤ n < c

(λ+ cµ)πn = λπn−1 + cµπn+1 n ≥ c

(2.5)

avec

∞∑
n=0

πn = 1

La résolution du système ci-dessus présente la distribution stationnaire suivante :

NQ =

∞∑
n=1

(n− 1)πn = N − (1− π0) (2.6)

πn =
ρC

C!
(A)n−Cπ0, n ≥ C (2.7)

où

π0 =

[
C−1∑
n=0

ρn

n!
+
ρC

C!

∞∑
n=C

ρn−C

]−1
, ρ = λ

µ et A = λ
Cµ

Cette denière existe si : λ < Cµ

Caractéristiques du système :

À partir de la distribution stationnaire du processus {N(t), t ≥ 0}, on peut calculer les caractéris-

tiques du système. En effet,

– Le nombre moyen de clients dans le système est :

N = ρ+
ρC+1

C.C!(1−A)2
ρ0 (2.8)

– Le nombre moyen de clients dans la file est :

NQ =
ρC+1

C.C!(1−A)2
ρ0 (2.9)

– Temps moyen qu’un client passe dans le système :

T =
CµρC

C!(Cµ− λ)2
ρ0 (2.10)
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– Temps moyen d’attente

TQ =
1

µ
+

ρC

µC · C!(1−A)2
ρ0 (2.11)

2.4.4 Modèle d’attente M/M/∞

Pour ce modèle de file d’attente, le système est composé d’un nombre illimité de serveurs

identiques et indépendants les uns des autres. Dés qu’un client arrive, il est immédiatement servi

(c’est le cas ou il n’y a pas d’attente ). Dans cette file les clients arrivent à des instants 0 < t1 <

t2 < . . . formant un processus de Poisson de taux λ et les temps de service sont exponentiels de taux

µ Ce système est connu sous le nom de file M/M/∞ Comme cela a été fait pour la file M/M/C,

on peut facilement démontrer que le taux de transition d’un état n quelconque vers l’état n − 1 est

égal à nµ et correspond au taux de sortie d’un des n clients en service [2]. De même, le taux de

transition d’un état n vers l’état n+ 1 est égal à λ et correspond au taux d’arrivée d’un client. donc

c’est un processus de naissance est de mort avec :

πn−1λ = πnnµ pour n = 1, 2, . . .

soit πn =
ρ

n
πn−1 pour n = 1, 2, . . . où ρ =

λ

µ

les probabilités en fonction de πn.

πn =
ρn

n!
π0 pour n = 1, 2, . . .

La condition de normalisation nous donne alors immédiatement π0

π0 =
1

+∞∑
n=0

ρn

n!

= e−ρ

On obtient finalement

πn =
ρn

n!
e−ρ pour n = 1, 2, . . .

car la série
+∞∑
n=0

ρn

n!
converge pour toutes valeurs de ρ (done de λ et de µ ), ce qui est cohérent avec

la stabilité inconditionnelle de la file.

Caractéristiques du système :
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– Nombre moyen de clients N

N =

+∞∑
n=1

nπn

= e−ρ
+∞∑
n=1

ρn

(n− 1)!

= e−ρρeρ

= ρ

– Temps moyen de séjour T Intuitivement, le temps moyen passé dans les ystème est réduit au temps

moyen de service, soit 1
µ . On peut redémontrer ce résultat en utilisant la loi de Little :

T =
N

λ

=
1

µ

�

2.5 Systèmes de files d’attente avec impatience

Dans divers domaines, les clients impatients, découragés soit par la qualité de service soit

par la longueur de la file d’attente ou abandonnés carrément la file, sont devenus le but de plusieurs

études. Ces systèmes qui contiennent des clients impatiens ont fait des pertes considérables à l’éco-

nomie de plusieurs firmes [3].

Dans ce chapitre on s’intéresse aux files d’attente avec rappel , abandon et feedback.

• Rappel : Dans une file d’attete les rappels sont caractérisés par la propriété qu’un client qui trouve

à son arrivée tous les serveurs occupés quitte l’espace de service et rappelle ultérieurement à

des instants aléatoires. Entre deux rappels.successifs, le client est dit en orbite.

• Abandon : Après un temps passé dans la file, le client impatient décide de quitter le système sans

avoir le service.

• Feedback : Le client insatisfait de la qualité du service, décide de quitter la file pour redemander

ou compléter son service après un temps aléatoire.

2.5.1 Files d’attente avec rappel

Les systèmes de files d’attente avec rappel sont des systèmes utilisés dans la modélisation des

réseaux de télécommunication et dans les systèmes informatiques. Après son arrivée à une station
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donnée, un client qui trouve tous les serveurs occupés et ne peut pas recevoir le service immédiate-

ment, quitte le système pour être rappeler ultérieurement à des instants aléatoires jusqu’à satisfaction

de sa demande. C’est le cas pour les appels téléphoniques par exemple, entre deux appels successifs,

le client en question se trouve en orbite. Un tel système est appelé système de files d’attente avec

rappel (retour).

En général un système de files d’attente avec rappels est composé de c serveurs [19] et de m−c places

d’attente. Les arrivées des clients dans le système sont aléatoires, et les temps de service distribués

selon une loi donné, mais au moment de son arrivée, un client, qui trouve les serveurs occupés, soit

il rejoint la file d’attente soit il quitte l’espace de service pour renouveler sa demande de service après

une durée de temps aléatoire. La capacité de l’orbite peut être finie ou infinie. Le client rappelé de

l’orbite, est traité de la même manière qu’un client venant de l’extérieur, figure(2.11).

Figure 2.11 – système de files d’attente avec rappel

2.5.2 Files d’attente avec abandon

Après un moment passé dans la file, le client décide de quitter le système sans être servi [27].

La théorie des files d’attente avec abandon joue un rôle important dans la modélisation de beaucoup

de problèmes de la vie réelle. Ces applications sont utilisées dans plusieurs secteurs (informatique,

communication, industrie, . . .) ou encore dans les secteurs de la santé et des sciences médicales,

figure(2.12).
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Figure 2.12 – système de files d’attente avec abandon

2.5.3 Files d’attente avec feedback

Le client insatisfait de la qualité du service, décide de quitter la file pour redemander ou compléter

son service après un temps aléatoire [31], figure(2.13).

Figure 2.13 – système de files d’attente avec feedback
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Chapitre 3

Condition de stabilité d’un système

de files d’attente avec rappel,abandon

et feedback

3.1 Intoduction :

Dans la théorie classique des files d’attente, on suppose que tout client qui ne peut pas obte-

nir de service immédiatement à son arrivée se joint à une file d’attente ou quitte le système pour

toujours. Mais il y a des situations réelles où les clients bloqués quittent temporairement la zone de

service mais reviennent pour répéter leur demande après un certain temps aléatoire. Ce comporte-

ment de file d’attente est appelé files d’attente avec rappel (Parveen et Begum (2014)).

Les files d’attente avec rappel sont caractérisées par la fait que si un client trouve le serveur occupé

ou en panne ou en vacances, il peut décider de rejoindre un groupe de clients bloqués dans un éspace

(appelé orbite) pour répéter leur demandes, ou demander après un certain laps de temps, ou quitter

le système immédiatement.

L’étude des files d’attente avec rappel a été une priorité par de nombreux auteurs en raison de sa

large applicabilité dans l’accès Web, les systèmes téléphoniques, les réseaux de télécommunication et

les réseaux informatiques . . .. De nombreux articles dans ce domaine Yang et Templeton (1987) et

Falin (1990) [33], et une monographie sur ce sujet est donnée par Falin et Templeton (1997).

Les feedbacks dans les files d’attente représentent l’insatisfaction des clients en raison d’une qualité

inappropriée de service. En cas de feedback, après avoir obtenu un service partiel ou incomplet, le

client réessaye sa demande de service. Dans la communication informatique, la transmission d’une
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unité de données de protocole est parfois répétée en raison d’une erreur. Cela se produit générale-

ment en raison d’une qualité non satisfaisante de service. La reprise dans les opérations industrielles

est également un exemple de file d’attente avec rappel (Sharma et Kumar (2014)). Takacs (1963) a

été le premier à étudier les modèles de file d’attente avec feedback. L’auteur a étudié files d’attente

avec rappel pour déterminer le processus stationnaire pour la taille de la file d’attente et les deux

premiers moments de la fonction de distribution du temps total passé dans le système par un client.

Études sur la longueur de la file d’attente, le temps total de séjour et le temps d’attente pour une file

M/G/1 avec Bernoulli ont été donné par Vanden Berg et Boxma (1991). Choi et coll. (1998) ont

étudié un modèle M/M/c de file d’attente avec rappel , abondon géométrique et feedback [26] [28]

[29] . Santhakumaran et Thangaraj (2000) ont considéré un système de file d’attente avec feedback,

serveur unique et impatience. Choudhury et Paul (2005) ont donné la distribution de la taille de la

file d’attente à une duré aléatoire et à l’achèvement d’un service pour un modèle M/G/1. Thangaraj

et Vanitha (2009) ont obtenu des solutions du modèle de file d’attente M/M/1 avec feedback, ca-

tastrophes en utilisant des fractions continues, la solution d’état d’équilibre, les moments en régime

permanent et l’analyse de la période d’occupation sont calculés. Kumar et Sharma (2012) ont analysé

un système de file d’attente d’un seul serveur avec rétention des clients abandonnés. Arivudainambi

et Godhandaraman (2012) ont considéré un système de file d’attente avec des arrivées par groupes,

deux phases de service, feedback, K vacances et rappel [30] [11] [12]. Bouchentouf et al [9] . (2014)

ont analysé un modèle de file d’attente avec deux serveurs hétérogènes dérobade, abandon et feed-

back.

Motivé par la nécessité d’analyser les réseaux de files d’attente avec rappel et par la nécessité de

développer des outils qui premettent d’amélioré les paramètres de performance des systèmes de télé-

communication (centres d’appels), là où les abandons, les rappels et le feedback surviennent naturel-

lement.

Nous présentons un modèle de file d’attente avec rappel, abandon et feedback des clients, de plus le

système est composé de deux orbites. Nous donnons sa condition de stabilité nécessaire.

3.2 Le modèle

Le système markovien de file d’attente avec rappel,deux orbites, abandon et feedback , fi-

gure(3.1).

Dans ce modèle, il s’agit de deux flux de clients des orbites Poissonniens indépendants, S1

et S2. le client se dirige vers le serveur unique. Le taux d’arrivée des clients Si est αi, i = 1, 2, avec

α1 +α2 = α. Les temps de service sont indépendants et distribués de manière exponentielle avec une

moyenne 1
µ . À son arrivée si le client de type i trouve le serveur (principal) occupé, il est orienté
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Figure 3.1 – Un modèle de file d’attente avec deux orbites, l’abandon et feedback

vers une file d’attente dite (orbite) et redemande le service avec un taux de rappel exponentielle. Les

taux de rappels sont différents des taux des d’entrées au système. Ainsi, les clients bloqués dans les

orbites de type i forment une file d’attente orbitale à serveur unique de type i qui tentent d’avoir le

service. Les taux de rappels sont Poissonnien de paramètres γi, i = 1, 2. Cela crée un système avec

trois files d’attente dépendantes. Le client sur l’orbite essaie à nouveau le service après un temps

aléatoire ou quitte le système après un temps aléatoire au taux δi, i = 1, 2. Une fois que le client est

complètement servi, il décide soit de rejoindre de nouveau les clients en orbites pour un autre service

avec la probabilité β ou quitter le système définitivement avec la probabilité β = 1− β.

Soit C(t) le nombre de clients dans la file d’attente principale. C(t) prend les valeurs 0 ou 1.

Soit Ni(t) le nombre de clients dans la file d’attente orbitale i, i = 1, 2. Le processus de Markov

{(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} est irréductible sur l’espace d’états {0, 1, . . .}×{0, 1, . . .}×{0, 1}.

3.3 Résultat principal : condition nécessaire de stabilité

L’objectif principal de ce travail est de donner la condition de stabilité nécessaire à un système

de file d’attente avec rappels constants, deux orbites, abandon et feedback des clients. Le résultat

principal est donné dans la proposition suivante :

Proposition 3.3.1. [8]

La condition suivante

α (γ1 + δ1) (γ2 + δ2)

[α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
< 1 pour i = 1, 2

(3.1)
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et

[α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1 6= 0 (3.2)

est nécessaire pour la stabilité du système.

Preuve

Le système markovien {(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} de files d’attente avec rappels, c deux

orbites, des taux de rappels constants, abandon et feedback, est stable.

Nous devons d’abord montrer que

α (γ1 + δ1) (γ2 + δ2)

[α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1
≤ 1 (3.3)

et pour i = 1, 2

α (γ1 + δ1) (γ2 + δ2)

[α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
≤ 1 (3.4)

sont les conditions nécessaires d’existence d’un état stationnaire.

Présentons les équations d’équilibre et les fonctions génératrices. Considérons le système en état

stable, où nous définissons par (N1, N2, C) l’état stationnaire de la chaîne de Markov {(N1(t), N2(t), C(t)) : t ∈ [0,∞)}.

Définir l’ensemble des probabilités stationnaires Pn1n2
(c) comme suit :

Pn1n2
(c) = lim

t→∞
P (N1(t) = n1, N2(t) = n2, C(t) = c)

= P (N1 = n1, N2 = n2, C = c)

pour n1, n2 = 0, 1, . . .,et c = 0, 1, lorsque ces limites existent. On définit les probabilités marginales

Pn1.
(c) =

∞∑
n2=0

Pn1n2
(c) = P (N1 = n1, C = c) , n1 = 0, 1, 2, . . . , c = 0, 1

et

P.n2
(c) =

∞∑
n1=0

Pn1n2
(c) = P (N2 = n2, C = c) , n2 = 0, 1, 2, . . . , c = 0, 1.

Maintenant, écrivons les équations d’équilibre

1. N2 = n2 = 0

1.1. N1 = n1 = 0, c = 0

αP00(0) = β̄µP00(1) + δ1P10(0) + δ2P01(0) (3.5)
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1.2. N1 = n1 ≥ 1, c = 0

(α+ γ1 + δ1)Pn10(0) = β̄µPn10(1) + βµPn1−10(1) + δ1Pn1+10(0) + δ2Pn11(0) (3.6)

1.3. N1 = 0, c = 1

(α+ µ)P00(1) = αP00(0) + γ1P10(0) + γ2P01(0) + δ1P10(1) + δ2P01(1). (3.7)

1.4. N1 = n1 ≥ 1, c = 1

(α+ µ+ δ1)Pn10(1) =αPn10(0) + γ1Pn1+10(0) + γ2Pn11(0)

+ δ1Pn1+10(1) + δ2Pn11(1) + α1Pn1−10(1)

(3.8)

2. N2 = n2 ≥ 1

2.1. N1 = 0 c = 0

(α+ γ2 + δ2)P0n2
(0) = β̄µP0n2

(1) + βµP0n1−1(1) + δ1P1n2
(1) + δ2P0n2+1(0). (3.9)

2.2. N1 = n1 ≥ 1 c = 0

(α+ γ1 + γ2 + δ1 + δ2)Pn1n2
(0) = βµPn1−1n2

(1) + βµPn1n2−1(1)

+β̄µPn1n2
(1) + δ1Pn1+1n2

(0) + δ2Pn1n2+1(0)
(3.10)

2.3. N1 = 0 c = 1

(α+ µ+ δ2)P0n2
(1) =αP0n2

(0) + γ1P1n2
(0) + γ2P0n2+1(0) + δ1P1n2

(1)

+ δ2P0n2+1(1) + α2P0n2−1(1)

(3.11)

2.4. N1 = n1 ≥ 1 c = 1

(α+ µ+ δ1 + δ2)Pn1n2
(1) = αPn1n2

(0) + γ1Pn1+1n2
(0) + γ2Pn1n2+1(0)

+δ1Pn1+1n2
(1) + δ2Pn1n2+1(1) + α1Pn1−1n2

(1) + α2Pn1n2−1(1)
(3.12)

La fonction génératrice de probabilité de l’etat stationnaire du processus de Markov

{(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} est donné par

F (z1, z2, z) =

∞∑
n1=0

∞∑
n2=0

1∑
c=0

Pn1n2
(c)zn1

1 zn2
2 zc (3.13)

Définissons également la fonction génératice de probabilité (partielle) suivante

R(c)
n2

(z1) =

∞∑
n1=0

Pn1n2
(c)zn1

1 , c = 0, 1, n2 = 0, 1, . . .
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et

F (c) (z1, z2) =

∞∑
n2=0

∞∑
n1=0

Pn1n2
(c)zn1

1 zn2
2 =

∞∑
n2=0

R(c)
n2

(z1) zn2
2 , c = 0, 1. (3.14)

F (z1, z2, z) = F (0) (z1, z2) + zF (1) (z1, z2) , |z1| ≤ 1, |z2| ≤ 1

pour n2 = 0 et c = 0 on multiplie (3.5) et (3.6) par zn1
1 , on a

((α+ γ1 + δ1) z1 − δ1)R
(0)
0 (z1)− ((γ1 + δ1) z1 − δ1)P00(0) =

(
β̄µz1 + βµz21

)
R

(1)
0 (z1) + δ2z1R

(0)
1 (z1)

(3.15)

pour n2 = 0 et c = 1 on multiplie (3.8) et (3.9) par zn1
1 , on a

(
(α+ µ+ δ1) z1 − δ1 − α1z

2
1

)
R

(1)
0 (z1)− (δ1z1 − δ1)P00(1) = (αz1 + γ1)R

(0)
0 (z1)− γ1P00(0) + δ2z1R

(1)
1 + γ2z1R

(0)
1

(3.16)

pour n2 ≥ 1 et c = 0 on multiplie (3.10) et (3.11) par zn1
1 , on a

((α+ γ1 + γ2 + δ1 + δ2) z1 − δ1)R
(0)
n2 (z1)− ((γ1 + δ1) z1 − δ1)P0n2(0) =

(
β̄µz1 + βµz21

)
R

(1)
n2 (z1) +

βµz21R
(1)
n2−1 (z1) + δ2z1R

(1)
n2+1 (z1)

(3.17)

pour n2 ≥ 1 et c = 1 on multiplie (3.12) et (3.16) par zn1
1 , on a

(
(α+ µ+ δ1 + δ2) z1 − δ1 − α1z

2
1

)
R

(1)
n2 (z1)− (δ1z1 − δ1)P0n2(1) = (αz1 + γ1)R

(0)
n2 z1 + γ2z1R

(0)
n2+1 (z1) +

α2z1R
(1)
n2−1 (z1) + δ2z1R

(1)
n2+1 (z1)− γ1P0n2(0)

(3.18)

En utilisant les équations (3.16) et (3.18) puis en multipliant par zn2
2 , on a

(z1 (α+ γ1 + γ2 + δ1 + δ2) z2 − δ1z2 − δ2z1)F (0) (z1, z2)− (z1 (γ2 + δ2) z2 − δ2z1)F (0) (z1, 0)

− (z1 (γ1 + δ1) z2 − δ1) z2F
(0) (0, z2) =

(
βµz1z2 + βµz21z2 + βµz21z

2
2

)
F (1) (z1, z2)

(3.19)

Nous faisons de même avec les équations (3.17) et (3.19)

(
z1 (α+ µ+ δ1 + δ2) z2 − α1z

2
1z2 − δ1z2 − δ2z1 − α2z1z

2
2

)
F (1) (z1, z2)

− (z1z2δ2 − δ2z1)F (1) (z1, 0) + γ2z1F
(0) (z1, 0)

−z2 (δ1z1 − δ1)F (1) (0, z2) + γ1F
(0) (0, z2)

= ((αz1 + γ1) z2 + γ2z1)F (0) (z1, z2)

(3.20)

Laisser

a1Pn1.(1) = γ1Pn1+1.(0) + δ1Pn0+1.(1) (3.21)
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Récapitulation n1, on a

1− F (0)(0, 1) =

(
1 +

α1

γ1 + δ1

)
F (1)(1, 1) (3.22)

Puis par symétrie

1− F (0)(1, 0) =

(
1 +

α2

γ2 + δ2

)
F (1)(1, 1) (3.23)

Puis

F (1)(1, 1) =
α (γ1 + δ1) (γ2 + δ2)

[α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1
, (3.24)

avec [α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1 6= 0.

Deuxièmement, nous devons prouver que pour i = 1, 2, si

α (γ1 + δ1) (γ2 + δ2)

[α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
= 1 (3.25)

puis les deux files d’attente N1 et N2 sont illimités avec la probabilité un.

α (γ1 + δ1) (γ2 + δ2)

[α+ (β + 1)µ] (γ1 + δ1) (γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
= 1

de sorte que F (0)(1, 0) = 0 à partir de (3.23). Depuis F (0)(1, 0) =

∞∑
n1=0

Pn1,0(0)

(voir(3.15)), la condition F (0)(1, 0) = 0 implique que

Pn1,0(0) = 0 pour n1 = 0, 1, . . . . (3.26)

de sorte que de (3.6) à (3.7)

Pn1,0(1) = 0 pour n1 = 0, 1, . . . (3.27)

Nous utilisons maintenant un argument d’induction pour prouver que

Pn1,n2(0) = 0 pour n1, n2 = 0, 1, . . . (3.28)

Nous avons déjà montré dans (3.26) que (3.28) est vrai pour n2 = 0. Suppose que (3.28) est vrai

pour n2 = 0, 1, . . . , k et montrons que c’est toujours vrai pour n2 = k + 1
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À partir de (3.11) et de l’hypothèse d’induction, nous obtenons que Pn1,k(0) = Pn1,k(1) = 0 pour

n1 = 1, 2, . . . . Cette dernière égalité implique, en utilisant (3.16), que Pn2,k+1(0) = 0. Cela montre

que (3.28) tient pour n1 = 0, 1, . . ., et n2 = k + 1, et complète l’argument d’induction, prouvant que

(3.28) est vrai. Nous ont donc prouvé que Pn1,n2
(0) = 0 pour tous n1, n2 = 0, 1, . . . .

Prouvons que Pn1,n2
(1) = 0 pour tous n1, n2 = 0, 1, . . . . Ce dernier est vrai pour n1, n2 = 1, 2, . . .,

(3.11). C’est également vrai pour n2 = 0, n1 = 0, 1, . . ., de (3.27) Il reste à enquêter sur le cas où

n1 = 0 et n2 = 0, 1, . . . .

Par (3.10) et (3.28) nous obtenons que P0,n2
(1) = 0 pour n2 = 1, 2, . . ., alors que nous avons déjà

remarqué que P0,0(1) = 0. En résumé, Pn1,n2
(0) = Pn1,n2

(1) = 0 pour tous n1, n2 = 0, 1, . . ., de

sorte que P (N1 = n1, N2 = n2) = Pn1,n2
(0) + Pn1,n2

(1) pour tous n1, n2 = 0, 1, . . ., ce qui complète

la preuve.

�



Conclusion

Le but de ce mémoire, est de donné une condition nécessaire à la stabilité d’un système de file

d’attente avec rappels markovien, deux classes d’orbites et des rappels de clients constants, abandon

et feedback.
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CH. 3. Condition de stabilité d’un système de files d’attente avec rappel,abandon et

feedback
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