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Introduction générale

D e nombreux phénoménes aléatoires se manifestent dans la nature : fluctuations de la tempé-
rature, de la pression atmosphérique, ... etc. En électronique et en télécommunications, ’étude des
processus aléatoires est utile notamment dans le contexte des communications numériques, certains
signaux sont impossibles a caractériser a priori. L’exploitation des processus aléatoires est aussi a
la base de nombreuses approches en traitement du signal, que ce soit pour caractériser le contenu
fréquentiel du signal ou pour coder et tatouer un signal de parole. Plus généralement, les sources
d’information telles que le son, les images sont aléatoires et varient dans le temps. Enfin, les processus
aléatoires ont une application dans le cadre du traitement du trafic dans les réseaux et notamment
pour l'analyse du temps de transfert et/ou du temps de traitement d’un paquet d’informations de
taille aléatoire, généré a des intervalles de temps aléatoires (Théorie des Files d’Attente). La théorie
des processus aléatoire vise & introduire les outils de traitement des phénoménes variant aléatoire-
ment dans le temps.

Les phénomeénes d’attente sont devenus 'une des préoccupations de ’homme depuis bien longtemps.
Attendre, constitue la tache la plus désagréable de la vie moderne. Comment gérer un systéme
présentant des files d’attente, afin d’améliorer sa qualité de service ? Cette question a été abordée,
pour la premiére fois par A.K. Erlang avec ses travaux concernant le réseau téléphonique de Copen-
hague [32]. La théorie mathématique s’est ensuite développée notamment grace aux contributions
de Palm, Kolmogorov, Khintchine, Pollaczek [32] et fait actuellement toujours 'objet de nombreuses
publications scientifiques. Cette théorie s’est ensuite étendue & de nombreux champs d’application
comme la gestion de stocks, les télécommunications en général, la fiabilité de systémes complexes,...
Les problémes liés a I'attente dans un centre de service sont omniprésents dans notre société. Les
exemples ne manquent pas :

- Attente & un guichet (caisse dans un supermarché, administration),

- traffic urbain ou aérien.

- réseaux téléphoniques.
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- circulation de piéces dans un atelier.
- programmes dans un systéme informatique,...

En effet, afin d’analyser le comportement de ces systémes, évaluer et optimiser leurs perfor-
mances, il faut d’abord les représentés par des modéles mathématiques qui proviennent de la théorie
des files d’attente. Un modéle typique de files d’attente nécessite la définition des processus d’inter-
arrivées et la durée de service de client, la taille de la file qui peut étre fini ou non, ainsi que la
discipline de service. Tous ces paramétres sont indiqués dans la notation dite de Kendall. Dans cer-
tains systémes, on est amené a imposer des priorités d’utilisation du service. Notre travail consiste a
étudier une classe de systémes de files d’attente, qui porte le nom de systéme de files d’attente simple
comprenant une station de service et pour lequel la capacité de I’espace est infini et de discipline de
service FIFO. Dans notre mémoire nous analysons des conditions de stabilité d’un systémes de files

d’attente avec rappel, abandon, feedback. Le mémoire est composée de quatre chapitres.

Dans le premier chapitre ,nous abordons les processus a la base de I’étude de tels systémes
d’attente qui sont les processus stochastiques. Nous présentons une introduction aux concepts de
base de la théorie des processus stochastiques. Nous présentons également les relations fondamentales
entre les diférents processus stochastiques.

Dans le deuxiéme chapitre, nous introduisons la terminologie de la théorie des files d’at-
tente. Certaines définitions et notations qui sont nécessaires dans 1’étude des systémes de files d’at-
tente (la notation de KANDELL, la formule de LITTLE --- ) sont nottamment données. Et nous
étudions quelque modeles de files d’attente (M/M/1, M/M/1/K, M/M/c, M/M /) et I'évaluation
de leurs parameétres de performance.

Apreés nous présentons une étude de certains modeéles d’attente avec clients impatients. Nous
traitons le cas de files d’attente avec rappels, ensuite un systéme d’attente avec abandon et enfin un
modéle avec feedback.

Enfin Dans le troisiéme, on donne la condition de stabilité d’un systéme de files d’attente

avec rappel,abandon et feedback.



Chapitre 1

Processus Stochastique

L’étude des processus stochastiques s’insére dans la théorie des probabilités dont elle consti-
tue I'un des objectifs les plus profonds. Il existe de nombreuses applications des processus aléatoires
notamment en physique statistique [23] (par exemple le ferromagnétisme, les transitions de phases,
etc.), en biologie (évolution, génétique et génétique des populations), médecine (croissance de tu-
meurs, épidémie). Elle souléve des problémes mathématiques intéressants et souvent trés difficiles.
Par exemple, le prix d’un baril du Pétrole, qui ont tiré I'attention de beaucoup des spécialistes éco-
nomiques. En effet, ce prix, dans la bourse, varie tout le temps, cette variation nous donne I'idée
d’établir un processus aléatoire, ou encore un processus stochastique, d’ou la modélisation par une
famille de variables aléatoires X (t);er ou T est U'ensemble des temps pendant lesquels le phénomeéne

est observé. La famille X (¢);cr est appelée processus aléatoire, ou encore processus stochastique.

Définition 1.1. Un processus stochastique est une suite de variables aléatoires indexées par T a
valeurs dans un ensemble X. Sa caractéristique de base est le fait que la loi de la variable X soit
fonction de t définies dans le méme espace de probabilité (Q,F,P) et a valeurs dans l’espace mesurable
(E, &), t € T représente une date [35]

* Lorsque T''C Z, on parlera de processus & temps discret (suite stochastique) notée (X, )nen

% lorsque T est un intervalle I C R, on parlera de processus a temps continu.

Définition 1.2. On appelle espace des états (des phases) l’ensemble I ou les variables X,, prennent
leurs valeurs. L’ensemble I peut étre discret ou continu. Par conséquent, on distingue quatre types

de processus :
1. Suite stochastique a espace d’état discret.
2. Suite stochastique & espace d’état continu.

3. Processus continu a espace d’état discret.
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4. Processus continu a espace d’état continu.
La loi d’un processus stochastique est caractérisée par la donnée de la loi du vecteur qui lui est

aSSOCIE.

Définition 1.3. Un processus stochastique E;,t < 0 est strictement

stationnaire, si Y(to,...,t,) € R,VE € R: F(&y, -y &) = F(EtotTs s EtptT) -

Définition 1.4. {€,t > 0} est a accroissement stationnaire (homogéne), si Vt; € R,Vh € R :

Xty — Xty et Xy, — Xy, sont des variables aléatoire de méme loi.

Définition 1.5. Un processus est & accroissement indépendant stationnaire (Ny)gr, est dit événe-

i
ment rare si
lim P([Ny, >0]) =0

h—04

et st

1.1 Loi de poisson et loi exponentielle

1.1.1 Loi de poisson

Définition 1.1.1. :(Loi de poisson)

Une variable aléatoire X a valeurs entiéres suit une loi de Poisson de paramétre p > 0 si :

k

Vk e N,P(X = k) = % exp(—p)

Propriété 1.1.1. :
Soit X une variable aléatoire discrete qui suit une distribution poissonniene.

- La fonction génératrice des moments est :

p(t) = E[e!¥] = e#" )

- La moyenne et la variance sont :
E(X) = pu, Var(X) = p.

Preuve :
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_ - tk::u —u
pt) = kzz;)e ke
oo
—u (peh)”
_ I
= "y Kl
k=0
— e Here
Calculons les dérivées de la fonction génératrice
Q1) = peter D
P'(t) = (14 pe)petert
D’ou
Elz] = ¢(0)=nu
Var(z) = ¢ (0) —E[]” = p

1.1.2 Loi exponentielle

Définition 1.1.2. :(Loi exponentielle)
Soit la variable aléatoire X continue de loi exponentielle de parameétre A > 0 a valeurs strictement

positives de probabilité :

Vi > 0,P(X =t) = dexp(—At)

Propriété 1.1.2. :

La loi exponentielle de parameétre A est notée ().
Soit X une variable aléatoire de loi e(\).

Sa fonction de répartition est :

Aexp(=At) si t>0

0 sinon.
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00 sit> M\
Sa fonction génératrice des moments est :p(t) = Ele!X] = A
—  Sit<A
A=t
. 1
Sa moyenne et sa variance sont : BE(X) = X Var(X) = =

Preuve :
Soit X une variable aléatoire de loi e(\)

*F(t)=P(X <t)=0sit<0car X est une veriable positive et si ¢ > 0 on a

F(t) = /OfX(x)dx

= / Ae ™A
0

= 1—e

Sa fonction génératrice des moments vérifie

o(t) = E[e¥]

o0
= / AetTe My
0

o0
= / Aet=Nz gy
0

D’otu le résultat.

Calculons les dérivées de la fonction génératrice, on a

D’ou

et Var(X) = ¢"(0) — E[X]2 -
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1.1.3 Relation entre la distribution Exponentielle et la distribution de

Poisson
La densité de probabilité d’une distribution exponentielle f(t) = e **.
Supposons 7 est exponentielle avec une espérence %, et n est de Poisson de moyenne p on a :
Pir>t)=1-F(t)

oM

=Pn=0 en 1)

= P(0,t)

Notons P(n,t) la probabilité d’avoir n unite dans le temps t¢.

t

P(1,t)= [ P0,7)f(1 —7)dr = Ate
P2,t)= [ P(L7)f(1—7)dr = (At)%e™ /2!

P(n,t) = [ P(n—1,7)f(1 —7)dr = (\t)"e~ /n!

1.2 Processus a accroissements indépendants

Définition 1.2.1. : (Processus a accroissements indépendants)

Un processus stochastique est dit un processus & accroissements indépendants s’il vérifie la propriété :
vVt > 0,Vs > 0, Nyps — Ny est indépendante de Ny, YVu <t .

Un processus 4 accroissements stationnaires est un processus stochastique qui vérifie la propriété :

La loi de Nyys — N ne dépend pas de t.

1.3 Processus de comptage

Définition 1.3.1. :(Processus de comptage)
Soit N(t) un processus stochastiqueest si N(t) représente le nombre total des événements qui sont
arrivés avant linstant t, on dit que N (t) est un processus de comptage discret a temps continu tout

processus de comptage vérifie les propriétés suivantes :

1. le nombre N (t) est a valeurs entiéres positives, Pour toutt >0 .
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2. La fonction t — N(t) est croissante.

3. la différence N(t) — N(s) représente le nombre d’événement se produisant dans l'intervalle de
temps |s,t], Pour tout couple (s,t)(0 < s < t).
le processus des temps d’inter-arrivées {W,,n € No} ou Vn € Ny la variable aléatoire W, est
le temps d’attente entre les (n — 1)¢™¢ n'me occurrences, est un processus peut étre associé

au processus des temps d’occurrence [7/] cad :

Wn = Tn - Tn—l

avec Ty, est le temps d’arrivé du n*®™ client.

Démonstration :

OHaWn:Tn—Tn,1
W1+W2+...+Wn:Tl7T0+T27T1+T37T2+...+Tn_17Tn_2+Tn7Tn_1
=To+1T,

=T, car Ty=

1.4 Processus de poisson

Le processus de Poisson sert a modéliser 'occurrence d’événements successifs. Chaque événe-

ment est tel que dans un intervalle de temps (¢, + A avec A;) petit [18].

Exemple 1.4.0.1. : Les exemples de processus ne se limitent évidemment pas a la biologie :
— Appels téléphoniques a un standard.

— Prise d’un poisson par un pécheur.

— Arrivée d’un client & un guichet.

— Passage d’un autobus.

Définition 1.4.1. : Un processus de comptage ( Nyt € Ry, tel que Ng = 0 est un processus de
Poisson [17] si :

1. (Ny)
2,(Nt)t€R+
3. (Ny)

teR, est stationnaire.

est un processus & accroissements indépendants.

est un processus a évenements rares.
tER,
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1.5 Processus de renouvellement

Les processus de Poisson et de renouvellement sont des processus aléatoires de comptage a
temps continu qui conviennent la description des phénoménes dont les occurrences surviennent en
des temps successifs aléatoires. Ils sont utiles a la modélisation des files d’attente apparaissant a
I’entrée de services et dans les réseaux de communication, et permettent de résoudre des problémes
de maintenance.

processus de renouvellement est un processus de comptage pour le quel les temps entre deux
arrivés consecutives sont des variables aléatoires indépendantes s’appelle processus de renouvelle-

ment. Les temps de renouvellement (ou les temps de la n-iéme arrivée) sont :

Anzzn:ai n=12,...
i=1

on voir que le nombre d’arrivées avant le temps t, i.e. le processus

(Nt)te]lh = Sl;p{k’AK <t}

est un processus de comptage.

1.6 Processus de naissance et de mort

Définition 1.6.1. : On peut réaliser un processus de naissance et de mort de la fagon suivante :

o Les arrivées et les départs d’entités obéissent a des lois exponentielles de taux respectifs A(n) et
p(n).

o A laide Uhypothése de régularité : deuxr événements ne peuvent pas se produire en méme temps,
donc la probabilité que deux événements se produisent dans un intervalle de temps dt est
négligeable.

o [l y a une transition vers un état voisin, soit par larrivée d’un client (naissance), soit par le départ
d’un client (mort).

Si m,(t) est la probabilité pour qu’il a n clients dans le systéme a Uinstant t, I’équation de Kolomo-

gorov [56]s’écrit, pour n >0 :
Tn(t +dt) = (1 — Ay + pn) dt) T () + pnr1mne1 (8)dt + An—1ma—1 (¢)dt + o(dt)

C’est-a-dire, en faisant tendre dt vers 0 , pour n >0 :

d
%Wn(t) = — (Ao + pn) T (t) + tng1Tns1(t) + Ano1mn—1(2)
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De la méme fagon, on obtient pour n =0 :

%m(t) = Nomo(t) + pumi(t)

Un cas particulier du processus de naissance et de mort c’est Le processus de Poisson avec j,, = 0 et

An = A dans ce cas on trouve pas un régime stasionnaire [15] les équations différentielles s’écrivent

alors
Y d d
mo(t) = e , —7o(t) = —Aomo(t) , — 7 (1) A7 (t) — 71 (t))
dt dt
)™ —At
La solution est 7, (t) = %,
n!

Représentation de transition d’un processus de naissance et mort

Définition 1.6.0.1. : (Processus de naissance et de mort)

C’est un cas particulier de chatne de Markov [5] ou seules les transitions d’un état & un état voisin
sont permises, on s’téresse au cas continus avec des tauxr de transition c’est le point de départ de la
théorie des files d’attente. On introduit les données suivantes :

An ctauz de naissances quand le nombre de population égale a n.

Wy ctaux de morts quand le nombre de population égale a n.

A A
AT "ol T Talle Tal

FIGURE 1.1 — Diagramme de transition d’un processus de naissance et de mort.

Ce graphe représente les transitions d’un état a un autre. La transition vers la droite représente

une naissance et celle vers la gauche représente une mort.
o Si tous les \; sont nuls, on parle de processus de mort.

o Si tous les p; sont nuls, on parle de processus de naissance.

Processus de naissance

Définition 1.6.0.2. : Le processus de naissance est la géniralisation direct d’un processus de pois-

son lorsque le parametre d’intensité X\ dépend de [’état courant du processus, il va nous permettre
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d’introduire le concept "d’explosion” Si la taille d’une population a une transition n — n + 1 donc

il correspondant & une naissance.

Processus de mort

St la taille d’une population & une transition n — n — 1 donc il correspondant & une mort.
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Chapitre 2

Systémes de files d’attente

La théorie des files d’attente a commencé en 1909 avec les travaux de recherches de l'ingénieur
danois Agner Krarup Erlang ( 1878,1929 ) sur le trafic téléphonique de Copenhague pour déterminer
le nombre de circuits nécessaires afin de fournir un service téléphonique acceptable. Par la suite, les
files d’attente ont été intégrés dans la modélisation de divers domaines d’actiwvité [15]. On assista
alors & une évolution rapide de la théorie des files d’attente qu’on appliqua & I’évaluation des perfor-
mances des systémes informatiques et aur réseaur de communication. Les chercheurs oeuvrant dans
cette branche d’activité ont élaboré plusieurs nouvelles méthodes qui ont été ensuite appliquées avec
succés dans d’autres domaines, notamment dans le secteur de la fabrication. On a aussi constaté
une résurgence des applications pratiques de la théorie des files d’attente dans des secteurs plus tra-
ditionnels de la recherche opérationnelle, un mouvement mené par Peter Kolesar et Richard Larson
[0]. Grdce a tous ces développements, la théorie des files d’attente est aujourd’hui largement utilisé

et ses applications sont multiples.
Définition 2.0.1 (File d’attente) [10]

Une file d’attente est un systéme dans lequel arrivent des clients auquel des serveurs four-
nissent un service. Ce formalisme peut étre utilisé dans des situations diverses : guichet de poste
trafic routier, traitement des instructions par un processeur, gestion de communications télépho-
niques, ateliers de réparation,... etc. On parle de phénomeéne d’attente chaque fois que certaines
unités appelées clients se présentent d’une maniére aléatoire & de stations afin de recevoir un service
dont la durée est généralement aléatoire. Dans [’étude de systémes de files d’attente, on s’intéresse
essentiellement & deux grandeurs : le nombre de clients dans le systéme, et le temps passé par un

client dans le systéme. Ce dernier se décompose en un temps d’attente et un temps de service.
Classification des files d’attente [2/] :

Pour décrire une file d’attente, on doit donc se donner les éléments suivants :
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La nature du processus des arrivées qui est définie par la distribution des intervalles séparant deux

arrivées consécutives.

La distribution du temps aléatoire de service.
o Le nombre s des stations de service.

e La capacité N du systeme. Si N < oo, la file ne peut dépasser une longueur de N — s unitées.

Dans ce cas, certains clients qui arrivent vers le systéme n’ont pas la possibilité d’y entre.

Terminologie et notations [/] :
En lien avec la loi exponentielle :
o)\ :Le taux d’arrivée ; le nombre moyen d’arrivées par unité de temps.

ox : L%intervalle de temps moyen séparant deux arrivées consécutives.

>

op : Le taux de service; le nombre moyen de clients servis par unité de temps.

o% : Temps moyen de service d’un client dans le systéme.

L’analyse d’un systéeme de file d’attente dépends de l’état initial et du temps écoulé. C’est la situation
transitoire ot ’étude est trés complexe. Dans la théorie des files d’attente I’étude se fait une fois que
le systéme atteint sa situation d’équilibre ; ot les états du systéme sont essentiellement indépendants
de l’état initial et du temps déja écoulé. On suppose que le systéme est en opération depuis un trés
long moment.

En situation d’équilibre on note :[7]

olP,, : Probabilité qu’il y ait n clients dans le systéme.

oLg : Nombre moyen (espérance mathématique) de client dans le systéme.

oLg : Nombre de clients dans la file d’attente excluant ceux qui sont dans le service.

oW, : Le temps moyen passé par un client dans la file (excluant le temps de service).

Les différents types de files d’attente :
Les figures suivantes représentent les différents systémes de files d’attente selon l’espace d’attente et

Despace de service figure(2.1), figure(2.2),figure(2.3) :
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Source des
utilisateurs

Source des - File d'attente -
u@/ - )

Point d'arrivée dans le systéme Point d'arrivée au serveur Point de départ

FIGURE 2.1 — File d’attente avec un seul espace d’attente et un seul serveur.

Serveurs
Serveur 2

Source des File d’attente .

I
I
|
1
I
Point darrivée dans le systéme Point d’arrivée au serveur Point de départ

FIGURE 2.2 — File d’attente avec un seul espace d’attente et plusieurs serveurs.

Serveurs

' I
|
uuusninfs// :
- 1 : ‘
. |

Source des File d’ . -
e d’attente
Ty ) s =T
< C—— | I
I I

Source des : 1 '

= ' 3
~ rn

. I :

Point darrivée dans le systéme Point d’arrivée au serveur Point de départ

FI1GURE 2.3 — File d’attente avec plusieurs espace d’attente et plusieurs serveurs.

2.1 Files d’attente simple

Définition 2.1.1. Une file d’attente simple est un systéme constitué d’un ou plusieurs serveurs
et d’un espace d’attente. les clients arrivent de [’extérieur, patientent éventuellement dans la file
d’attente, regoivent un service, puis quittent la station [20]. Afin de spécifier complétement une file

d’attente simple, on doit caractériser le processus d’arrivée des clients, le temps de service ainsi que
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la structure et la discipline de service de la file d’attente figure(2.4) .

R Systeme
@ 0 ) P

Ordre de

OI traitermant

@) :
°88ci- 0 e 0 ocvmo. : ®

(s) OJ Arrivées I Service Départ
1 |I| 2nie

FIGURE 2.4 — File d’attente simple.

Processus d’arrivée

L’arrivée des clients a la station sera décrite a l’aide d’un processus stochastique de comptage
(Nt)y>0-
o Si A, désigne la variable aléatoire mesurant linstant d’arrivée du n'®™¢ client dans le systéme,
on aura ainsi : Ag =0 et A, = inf {t; N, =n}.
e Si T, désigne la variable aléatoire mesurant le temps séparant Uarrivée du (n—1)*™¢ client et du
ieme

n client [21], on a alors :

Tn = An - Anfl

Temps de service

Considérons tout d’abord une file a serveur unique. On note Dy, la variable aléatoire mesurant
Vinstant de départ dun*®™ client du systéme et Y, la variable aléatoire mesurant le temps de service
du n*®™e  client(le temps séparant le début et la fin du service). Un instant de départ correspond
toujours a une fin de service, mais ne correspond pas forcément & un début de service . Il se peut
en effet qu’un client qui quitte la station laisse celle-ci vide. le serveur est alors inoccupé jusqu’a
larrivée du prochain client.On note p le taur de service :

1/ est la durée moyenne de service.

Structure de la file
Nombre de serveurs

Une station peut disposer de plusieurs serveurs en paralléle. Soit C le nombre de serveurs. Dés
uw’un client arrive a la station, soit il y a un serveur libre, le client entre instantanément en service
) ) )

soit tous les serveurs sont occupés et le client se place dans la file en attente de libération d’un des
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serveurs. Mais en suppose a la plupart du temps que les serveurs sont identiques et indépendants les
uns des autres. Une station particuliére est la station IS (infinite servers) dans la quelle le nombre

de serveurs est infini. Cette station ne comporte donc pas de file d’attente.

Capacité de la file :

La capacité de la file a accueillir des clients en attente de service peut étre finie ou infinie. Soit K

la capacité de la file, une file & capacité illimitée vérifie K = +oo.

2.2 Loi de Little

La loi de Little est une relation trés générale qui s’applique a une grande classe de systémes.
Elle ne concerne que le régime permanent du systéme. Aucune hypothése sur les variables aléatoires
qui caractérisent le systéme (temps d’inter-arrivées, temps de service,...etc). La seule condition d’ap-
plication de la loi de Little est que le systéeme soit stable. Le débit du systéme est alors indifféremment
soit le débit d’entrée, soit le débit de sortie : ds = d. = d La lot de Little s’exprime telle que dans le

théoreme suivant :

Théoréme 2.2.1. (Formule de Little) :
Le nombre moyen de clients, le temps moyen passé dans le systéme et le débit moyen d’un systéme

stable en régime permanent se rélient de la facon suivante :
N =\T

pour une file (M/M/1), Ae = A
On a vu que la loi de Little nous dit qu’il existe une relation entre le nombre moyen de clients dans
la file (en attente ou en service) et le temps moyen total de séjour d’un client dans la file(temps

d’attente +temps de service).

Remarque 2.2.1. :
La loi de Little s’applique a tous les modéles de file d’attente rencontrés en pratique (pas seulement

a la file M/M/1).

Mesure de performance d’une file d’attente

L’étude d’une file d’attente ou d’un réseau de files d’attente a pour but de calculer ou d’estimer
les performances d’un systéme dans des conditions de fonctionnement données, et les mesures les
plus fréguemment utilisées sont :

N = E(N) : nombre moyen de clients dans le systéme.
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N : nombre moyen de clients en train d’étre servis.
NiQ: nombre moyen de clients dans la file d’attente.
Nq,Ng et N : sont les variables aléatoires correspondantes.
T : temps moyen qu’un client passe dans le systéme.

Ts : temps moyen de service.

Ts : temps moyen d’attente d’un client dans la file.

Tq,Ts et T : sont les variables aléatoires correspondantes.

De maniere générale, une file est stable si et seulement si le nombre moyen d’arrivées de clients par
unité de temps, noté X\, est inférieur au nombre moyen de clients pouvant étre servis par unité de
temps. Si chaque serveur peut traiter p clients par unité de temps et si le nombre de serveurs est c,

une file est stable si et seulement si
A
A<muep=—<1

ot, p est appelé intensité du trafic.

Arrivée avant un départ et départ avant une arrivée
> Temps pour qu’une nouvelle arrivée se produise :

A ~ exp(A)
> Temps pour qu’un nouveau départ se produise :

D ~ exp(p)

(A et D sont indépendantes).

> Probabilité qu’une arrivée se produise avant un départ :

A

> Probabilité qu’un départ se produise avant une arrivée :

2.3 Notation de Kendall

La notation suivante, appelée la notation de Kendall, est largement utilisée pour classer les

différents systemes de files d’attente [1/] :

T/Y/C/K/m/Z
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avec

1.

T : indique le processus d’arrivée des clients. Les symboles utilisés sont :

M : Inter-arrivées des clients sont identiquement distribuées selon une loi exponentielle. Il
correspond & un processus de Poisson ponctuel (propriété sans mémoire).

D : Les temps inter-arrivées des clients ou les temps de service sont constants et toujours les
mémes.

GI :Inter-arrivées des clients ont une distribution générale (il n'y a aucune hypothése sur la
distribution mais les inter-arrivées sont indépendantes et identiquement distribuées).

G :Inter-arrivées des clients ont une distribution générale et peuvent étre dépendantes.

Ey : Ce symbole désigne un processus ot les intervalles de temps entre deux arrivées succes-
sives sont des variables aléatoires indépendantes et identiquement distribuées suivant une loi

d’Erlang d’ordre k.

. Y :décrit la distribution des temps de service d’un client. Les codes sont les mémes que T'.
. C mombre de serveurs.

. K :capacité de la file c’est le nombre de places dans le systéme en d’autre terme c’est le nombre

maximal de clients dans le systéme y compris ceux en service.

. m :population des usagers.

Z :discipline de service c’est la fagon dont les clients sont ordonnés pour étre servi. Les codes
utilisés sont les suivants :

- FIFO (first in, first out) ou FCFS (first come, first served) :c’est la file standard dans
laquelle les clients sont servis dans leur ordre d’arrivée. Notons que les disciplines FIFO et
FCFS ne sont pas équivalentes lorsque la file contient plusieurs serveurs. Dans la premiére, le
premier client arrivé sera le premier & quitter la file alors que la deuzieme, il sera le premier
a commencer son service. Rien n’empéche alors qu’un client qui commence son service apres
lut, dans un autre serveur, termine avant lui.

- LIFO (last in, first out) ou LCFS (last come, first served). Cela correspond & une pile, dans
laquelle le dernier client arrivé (donc posé sur la pile) sera le premier traité (retiré de la pile).
A nouwveau, les disciplines LIFO et LCFS ne sont équivalentes que pour une file mono serveur.
- SIRO (Served In Random Order), les clients sont servis aléatoirement.

- PNPN (Priority service), les clients sont servis selon leur priorité. Tous les clients de la
plus haute priorité sont servis premiers, puis les clients de priorité inférieur sont servis, et

ainst de suite.
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-PS ( Processor Sharing ), les clients sont servis de maniére égale. La capacité du systeme est

partagée entre les clients.

2.4 Quelque modéle sur les files d’attente

2.4.1 Modéle d’attente M /M /1

Le systeme de files d’attente M/M/1 est le systéeme le plus élémentaire de la théorie des files
d’attente. Le flot des arrivées est poissonnien de parameétre A et la durée de service est exponentielle
de parameétre p, la discipline d’attente est FIFO, la file d’attente est de capacité infinie [22]. La file

peut étre considérée comme un processus de naissance et de mort ,figure(2.5) ,pour lequel :

N(t): Nombre de clients

A
g ™

A

Arrivées
poissoniennes

Temps de service
exponentiel

FIGURE 2.5 — La file M/M/1.

A=A Vn>0
uw o Yn>1

Hn =
0 stn=0

Régime transitoire :

Pour ce systéme, le plus simple de la théorie des files d’attente, le flux des arrivées est pois-
sonnien de parametre A et la durée de service est exponentielle de paramétre . La capacité d’attente
est illimitée et il y a une seule station de service. Le processus (X;) est markovien (doté de la pro-
priété d’absence de mémoire), ce qui rend son étude aisée. Grice aux propriétés fondamentales du
processus de Poisson et de loi exponentielle, nous avons pour un petit intervalle de temps At les

équations différentielles de Kolmogorov , figure(2.6) :

Pi(t) = =APy(t) + pl(t) ;n =0,
PLt) = —(A+ 0)Pa(t) + Pa_r(t) + pPrsa(t) n=1,2,3, ...
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by Ly by fy
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FIGURE 2.6 — Diagramme de file d’attente M/M/1

ot

Régime stationnaire

Quand t — oo, on peut montrer que w, = tlim P, (t) = P, existent et sont indépendante de l’état
— 00
initial du processus et que
T, = lim P, (t) = (1 —p)p" ,Vne IN
t—o00

7w = {mn >0 est applé distribution stationnaire , elle suit une loi géométrigue On obtient alors un

systeme d’équations linéaires homogéne

/.LPl = APO ,n = 0
)\Pn—1+ﬂpn+1:(>‘+,u)Pn yn=1,2,..
aux quelles on ajoute la condition Z P, = 1. En additionnent les (n + 1) premiéres équations , on
n=0
trouve
/J/Pn_;'_]_ = )\Pn
D’ot
A
P,=(=)"F ,ne N,
I
SIS W
n=0 n=0 K
alors
Pn:(]'_p)(p)n n:07132a"'
a condition que
A
—=p<l
I

On constate que la file M/M/1 est gouvernée par la loi géométrique.

0% = p est le coefficient d’utilisation du systéme ou intensité du trafic.
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p correspond au nombre moyen d’arrivées par la durée moyenne du service.

oPy =1 — p correspond a la probabilité que le systéme soit inoccupé. St p > 1, alors

lim P,(t) =0, n=0,1,2,...

t—o0

ie : la longueur de la file d’attente dépasse toute mesure.

Caractéristiques du systéme :
Une importante caractéristique des systémes de files d’attente est

e Le nombre moyen de clients dans le systéme :

e le nombre moyen de clients en train d’étre servis :

Ny=1—-m=p

e le nombre moyen de clients dans la file :

o)
Ng = Z(n—l)ﬂn
n>1

De la méme maniére,on peut trouver,

x La variance du nombre de clients dans le systéme
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o? = Var(X)

= (1-p) ) (K-N)p*

k=0

_r
(1—p)?

Le temps moyen de séjour dans le systéeme.On peut l'obtenir en appliquant la formule de Little.

e Temps moyen qu’un client passe dans le systéme :

- N
T=—
A
__r 1
D)
1
_ K
L—p
1
=
e Temps moyen de service :
— 1
T, =—
I
e Temps moyen d’attente :
To = T-T,
B A
p(p—A)

2.4.2 Modéle d’attente M/M/1/K

Soit K la capacité de la file d’attente : c’est le nombre maximal de clients qui peuvent étre
présents dans le systéme, soit en attente, soit en service. Quand un client arrive alors qu’il y a
déja K clients présents dans le systéme, il est perdu. Ce systéme est connu sous le nom de file

L’espace d’états E est maintenant infini :E = {0,1,2,...} La capacité de la file étant limitée, méme
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si les clients arrivent en moyenne beaucoup plus vite que ce que le serveur de la file est capable de
traiter, dés que celle-ci est pleine, les clients qui se présentent sont rejetés. Le mombre de clients
dans la file ne peut donc jamais partir a Uinfini [25].

De plus, dés qu’un client est autorisé a entrer, il sortira un jour et son temps de séjour dans la file
est fini, puisqu’il correspond au temps de service de tous les clients devant lui et que ce nombre est
limité par K. Sur un temps trés long, le débit de sortie sera donc bien égal au débit d’entrée, ce qui

correspond bien a la stabilité inconditionnelle du systéme.

Le processus de naissance et de mort modélisant ce type de file d’attente est alors défini de la fagon

sutvante , figure(2.7), figure(2.8) :

A sin< K
0 sin>K

licx

FIGURE 2.7 — La file M/M/1/K.

Ap =

K, K-1)7 -2 A 20 I3
- [ [ — [
0 1 2 ot K-1 K
o . — ]
n 1 " n I

FIGURE 2.8 — Evaluation de I'état dans la file d’attente M/M/1/K.

L’intégration de l’équation récurrente permettant de calculer m, se fait alors comme suit :

mop" pour n <K
T =

0 pour n>K
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e = T si AFp
mo=d 2P

n=0

KT st A=p

Caractéristiques du systéme :

— Le nombre moyen de clients dans le systéme est :

K

~ p

N = E nm, = (2.1)

n — K+1
n=0 1 p 1 - P

LorsquK tend vers infini et p < 1, on retrouve les résultats de la file M/ M/1 :

N=_P_
I—p
— Le nombre moyen de clients dans la file est :
Ng=Y (n—1)m=N—(1-m) (2.2)
n=1

Le temps moyen qu’un client passe dans le systéme T et le temps moyen d’attente dans la file T
sont obtenus a partir la loi de Little :

— Temps moyen qu’un client passe dans le systéme :

T:

>| =

— Temps moyen d’attente

= N,
To = TQ (2.4)

2.4.3 Modéle d’attente M /M /C

On considére un systéme identique a la file M/M/1 excepté qu’il comporte C' serveurs identiques et
indépendants les uns des autres. On conserve les hypothéses :

- Le processus d’arrivée des clients poissonien de tauz \ .

- Le temps de service exponentiel de tauz (.

Ce systeme est connu sous le nom de file M/M/C [16]. L’espace d’états E est, comme pour la
M/M/1 infini : E (0, 1,2, ...) La file d’attente est de capacité infini. Si l'un des serveurs est libre,
le client qui arrive se dirige immédiatement vers ce serveur. Dans le cas contraire, le client prend sa

place dans une file d’attente commune pour tous les serveurs. Lorsqu’un serveur se libére, le client
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en téte de la file occupe ce serveur. Par conséquent, la discipline d’attente est FIFO.

Le processus de naissance et de mort [1] modélisant ce type de file d’attente est alors défini de la
fagon suivante , figure(2.9) , figure(2.10) :

A=A VYn>0
0 sin=0

Hn ng VYn=1,...,C
Cu Yn>C

a3,
Ty

FIGURE 2.9 — La file M/M/C.

» /,. f,. .f,. f,. /,. /.
0 1 2 Ce c-1 C C+1
- - - - o - -
I 21 LY TR TS cn o

cr

FIGURE 2.10 — Evaluation de I’état dans la file d’attente M/M/C.

D’apres le diagramme et analyse du systéme en régime stationnaire, a l’aide de la procédure des

équations de Chapman Kolmogorov on obtient les équations suivantes :
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Amg = pum
AN+np)m, = MMp_1+ 4+ Dumppy 1<n<ec (2.5)
()‘ + c:u)ﬂ—n = Mp_1+tcumpp1r n>c

avec

iwn =1
n=0

La résolution du systéeme ci-dessus présente la distribution stationnaire suivante :

Ng=Y (n—=1)m=N—(1-m) (2.6)
n=1
oC
T = H(A)”_Cﬂo, n>C (2.7)
ol
c—-1 o ,OC ) -1
n—C A A
Ty = Za"i'az,l? ) P:;BtAZ@
n=0 n=C

Cette deniere existe si : A < Cu

Caractéristiques du systéme :

A partir de la distribution stationnaire du processus {N(t),t > 0}, on peut calculer les caractéris-
tiques du systéme. En effet,

— Le nombre moyen de clients dans le systéme est :

o C+1
N = T E—— 2.
PrC - AE (28)
— Le nombre moyen de clients dans la file est :
o C+1
N = - 2.
QT oo - Az (29)
— Temps moyen qu’un client passe dans le systéme :
c
7 _ G (2.10)

Cl(Cp— 2P
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— Temps moyen d’attente

i_]_ pc

Tog= -+ ——— 2.11

2.4.4 Modéle d’attente M /M /oo

Pour ce modéle de file d’attente, le systéme est composé d’un nombre illimité de serveurs
identiques et indépendants les uns des autres. Dés qu’un client arrive, il est immédiatement servi
(c’est le cas ou il n’y a pas d’attente ). Dans cette file les clients arrivent & des instants 0 < t1 <
to < ... formant un processus de Poisson de taux \ et les temps de service sont exponentiels de taux
u Ce systéme est connu sous le nom de file M/M/oo Comme cela a été fait pour la file M/M/C,
on peut facilement démontrer que le taux de transition d’un état n quelconque vers l’état n — 1 est
égal a nu et correspond au tauz de sortie d’un des n clients en service [2]. De méme, le tauz de
transition d’un état n vers l’état n+ 1 est égal a \ et correspond au tauzr d’arrivée d’un client. donc

c’est un processus de naissance est de mort avec :

Tp_1A =Tpnu  pour n=12 ...

soit 7Tn:£’/Tn_1 pour n=12,... oup=—
n

les probabilités en fonction de m,.

7

Tn = — 7o pour n=12,...
n

La condition de normalisation nous donne alors immédiatement mg

On obtient finalement

Wn:p—e_p pour mn=12,...
n!
+oo o
car la série Z — converge pour toutes valeurs de p (done de A et de p ), ce qui est cohérent avec
n!
n=0

la stabilité inconditionnelle de la file.

Caractéristiques du systéme :
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~ Nombre moyen de clients N

=

400
= E nmny
n=1

“+o0 n

- p
= P _—
e’ (n—1)!

n=1
— e*ppep
= p

— Temps moyen de séjour T Intuitivement, le temps moyen passé dans les ystéme est réduit au temps

moyen de service, soit i . On peut redémontrer ce résultat en utilisant la loi de Little :

T:

>| =

==

2.5 Systémes de files d’attente avec impatience

Dans divers domaines, les clients impatients, découragés soit par la qualité de service soit
par la longueur de la file d’attente ou abandonnés carrément la file, sont devenus le but de plusieurs
études. Ces systémes qui contiennent des clients impatiens ont fait des pertes considérables a [’éco-
nomie de plusieurs firmes [3].

Dans ce chapitre on s’intéresse aux files d’attente avec rappel , abandon et feedback.

e Rappel : Dans une file d’attete les rappels sont caractérisés par la propriété qu’un client qui trouve
a son arrivée tous les serveurs occupés quitte l’espace de service et rappelle ultérieurement a
des instants aléatoires. Entre deux rappels.successifs, le client est dit en orbite.

o Abandon : Aprés un temps passé dans la file, le client impatient décide de quitter le systéme sans
avoir le service.

o Feedback : Le client insatisfait de la qualité du service, décide de quitter la file pour redemander

ou compléter son service aprés un temps aléatoire.

2.5.1 Files d’attente avec rappel

Les systéemes de files d’attente avec rappel sont des systémes utilisés dans la modélisation des

résequx de télécommunication et dans les systémes informatiques. Aprés son arrivée a une station
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donnée, un client qui trouve tous les serveurs occupés et ne peut pas recevoir le service immédiate-
ment, quitte le systéme pour étre rappeler ultérieurement a des instants aléatoires jusqu’a satisfaction
de sa demande. C’est le cas pour les appels téléphoniques par exemple, entre deuzx appels successifs,
le client en question se trouve en orbite. Un tel systéme est appelé systéeme de files d’attente avec
rappel (retour).

En général un systéme de files d’attente avec rappels est composé de ¢ serveurs [19] et de m—c places
d’attente. Les arrivées des clients dans le systéme sont aléatoires, et les temps de service distribués
selon une loi donné, mais au moment de son arrivée, un client, qui trouve les serveurs occupés, soit
il rejoint la file d’attente soit il quitte I’espace de service pour renouveler sa demande de service aprés
une durée de temps aléatoire. La capacité de l'orbite peut étre finie ou infinie. Le client rappelé de

Dorbite, est traité de la méme maniére qu’un client venant de lextérieur, figure(2.11).

Arrivée des clients Départ des clients

FIGURE 2.11 — systéme de files d’attente avec rappel

2.5.2 Files d’attente avec abandon

Apres un moment passé dans la file, le client décide de quitter le systéme sans étre servi [27].
La théorie des files d’attente avec abandon joue un réle important dans la modélisation de beaucoup
de problemes de la vie réelle. Ces applications sont utilisées dans plusieurs secteurs (informatique,

communication, industrie, ...) ou encore dans les secteurs de la santé et des sciences médicales,

figure(2.12).
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o

Départ des clients

FIGURE 2.12 — systéme de files d’attente avec abandon

2.5.3 Files d’attente avec feedback

Le client insatisfait de la qualité du service, décide de quitter la file pour redemander ou compléter

son service aprés un temps aléatoire [71], figure(2.153).

1-B

— T+
H‘ -

FIGURE 2.13 — systéme de files d’attente avec feedback

Départ des clients




38

CH. 2. Systémes de files d’attente




Chapitre 3

Condition de stabilité d’un systéme

de files d’attente avec rappel,abandon

et feedback

3.1 Intoduction :

Dans la théorie classique des files d’attente, on suppose que tout client qui ne peut pas obte-
nir de service immédiatement & son arrivée se joint a une file d’attente ou quitte le systéme pour
toujours. Mais il y a des situations réelles o les clients bloqués quittent temporairement la zone de
service mais reviennent pour répéter leur demande aprés un certain temps aléatoire. Ce comporte-
ment de file d’attente est appelé files d’attente avec rappel (Parveen et Begum (2014)).

Les files d’attente avec rappel sont caractérisées par la fait que si un client trouve le serveur occupé
ou en panne ou en vacances, il peut décider de rejoindre un groupe de clients bloqués dans un éspace
(appelé orbite) pour répéter leur demandes, ou demander aprés un certain laps de temps, ou quitter
le systeme tmmédiatement.

L’¢tude des files d’attente avec rappel a été une priorité par de nombreux auteurs en raison de sa
large applicabilité dans l'acces Web, les systémes téléphoniques, les réseaux de télécommunication et
les réseaux informatiques .... De nombreux articles dans ce domaine Yang et Templeton (1987) et
Falin (1990) [33], et une monographie sur ce sujet est donnée par Falin et Templeton (1997).

Les feedbacks dans les files d’attente représentent l'insatisfaction des clients en raison d’une qualité
inappropriée de service. En cas de feedback, aprés avoir obtenu un service partiel ou incomplet, le

client réessaye sa demande de service. Dans la communication informatique, la transmission d’une
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unité de données de protocole est parfois répétée en raison d’une erreur. Cela se produit générale-
ment en raison d’une qualité non satisfaisante de service. La reprise dans les opérations industrielles
est également un exemple de file d’attente avec rappel (Sharma et Kumar (2014)). Takacs (1963) a
été le premier a étudier les modéles de file d’attente avec feedback. L’auteur a étudié files d’attente
avec rappel pour déterminer le processus stationnaire pour la taille de la file d’attente et les deux
premiers moments de la fonction de distribution du temps total passé dans le systéme par un client.
FEtudes sur la longueur de la file d’attente, le temps total de séjour et le temps d’attente pour une file
M/G/1 avec Bernoulli ont été donné par Vanden Berg et Boxma (1991). Choi et coll. (1998) ont
étudié un modele M /M/c de file d’attente avec rappel , abondon géométrique et feedback [26] [25]
[29] . Santhakumaran et Thangaraj (2000) ont considéré un systéme de file d’attente avec feedback,
serveur unique et impatience. Choudhury et Paul (2005) ont donné la distribution de la taille de la
file d’attente & une duré aléatoire et a l'achévement d’un service pour un modéle M/G/1. Thangaraj
et Vanitha (2009) ont obtenu des solutions du modéle de file d’attente M/M/1 avec feedback, ca-
tastrophes en utilisant des fractions continues, la solution d’état d’équilibre, les moments en régime
permanent et l’analyse de la période d’occupation sont calculés. Kumar et Sharma (2012) ont analysé
un systeme de file d’attente d’un seul serveur avec rétention des clients abandonnés. Arivudainambi
et Godhandaraman (2012) ont considéré un systéme de file d’attente avec des arrivées par groupes,
deux phases de service, feedback, K vacances et rappel [30] [11] [12]. Bouchentouf et al [9] . (2014)
ont analysé un modéle de file d’attente avec deur serveurs hétérogénes dérobade, abandon et feed-
back.

Motivé par la nécessité d’analyser les réseaux de files d’attente avec rappel et par la nécessité de
développer des outils qui premettent d’amélioré les paramétres de performance des systémes de télé-
communication (centres d’appels), la ou les abandons, les rappels et le feedback surviennent naturel-
lement.

Nous présentons un modéle de file d’attente avec rappel, abandon et feedback des clients, de plus le

systeme est composé de deuz orbites. Nous donnons sa condition de stabilité nécessaire.

3.2 Le modéle

Le systéeme markovien de file d’attente avec rappel,deux orbites, abandon et feedback , fi-
gure(3.1).

Dans ce modéle, il s’agit de deux flux de clients des orbites Poissonniens indépendants, Sy
et So. le client se dirige vers le serveur unique. Le taur d’arrivée des clients S; est a;, 1 = 1,2, avec
a1 +ag = a. Les temps de service sont indépendants et distribués de maniére exponentielle avec une

moyenne i A son arrivée si le client de type i trouve le serveur (principal) occupé, il est orienté
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FiGURE 3.1 — Un modéle de file d’attente avec deux orbites, ’abandon et feedback

vers une file d’attente dite (orbite) et redemande le service avec un tauz de rappel exponentielle. Les
tauz de rappels sont différents des taux des d’entrées au systéeme. Ainsi, les clients bloqués dans les
orbites de type i forment une file d’attente orbitale & serveur unique de type i qui tentent d’avoir le
service. Les taux de rappels sont Poissonnien de parametres v;,i = 1,2. Cela crée un systéme avec
trois files d’attente dépendantes. Le client sur [’orbite essaie a mouveau le service aprés un temps
aléatoire ou quitte le systéme aprés un temps aléatoire au taux 6;,1 = 1,2. Une fois que le client est
compléetement servi, il décide soit de rejoindre de nouveau les clients en orbites pour un autre service
avec la probabilité B ou quitter le systéme définitivement avec la probabilité B =1 — .

Soit C(t) le nombre de clients dans la file d’attente principale. C(t) prend les valeurs 0 ou 1.
Soit N;i(t) le nombre de clients dans la file d’attente orbitale i,9 = 1,2. Le processus de Markov

{(N1(t), N2(t),C(t)) : t € [0, +00)} est irréductible sur l’espace d’états {0,1,...} x{0,1,...} x{0,1}.

3.3 Reésultat principal : condition nécessaire de stabilité

L’objectif principal de ce travail est de donner la condition de stabilité nécessaire a un systéme
de file d’attente avec rappels constants, deuz orbites, abandon et feedback des clients. Le résultat

principal est donné dans la proposition suivante :

Proposition 3.3.1. [§/

La condition suivante

a(y1+01) (92 + 02) ( i ) .
1+ — ) <1 pour i=1,2
[+ (B+ Dp] (71 +61) (y2 + 02) — a1y — a1diye — aedam ¥i + 0 b

(3.1)
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et

[+ (84 Dl (71 +01) (72 + 02) — av1ye — a16172 — 20271 # 0 (3.2)

est nécessaire pour la stabilité du systéme.

Preuve
Le systéeme markovien {(N1(t), Na(t),C(t)) : t € [0,+00)} de files d’attente avec rappels, ¢ deux
orbites, des taux de rappels constants, abandon et feedback, est stable.

Nous devons d’abord montrer que

a(y1+61) (92 +d2) -1 (3.3)
[a+ (B+ )] (14 01) (v2 + 02) — ayiy2 — a101y2 — a2dey1 —

et pouri=1,2

a (v +01) (y2 +d2) (1 i ) <1 (3.4)
[+ (B4 1)p] (31 + 61) (32 + 82) — a7172 — a1d172 — a2dayt %i+oi)

sont les conditions nécessaires d’existence d’un état stationnaire.

Présentons les équations d’équilibre et les fonctions génératrices. Considérons le systéme en état

stable, ot nous définissons par (N1, N, C) létat stationnaire de la chaine de Markov {(N1(t), N2(t), C(t)) : t € [0,00)}.
Définir l’ensemble des probabilités stationnaires Py n,(c) comme suit :

Pnan(C) = hm P(Nl(t) = ’I’L1,N2(t) = ng,C(t) = C)

t—o0

ZP(Nl Z’I’Ll,NQZTLQ,CZC)

pour ni,ng =0,1,...et c=0,1, lorsque ces limites existent. On définit les probabilités marginales
o0
P, (c) = Z Pyin,(c)=P(Ni=n1,C=¢),n1 =0,1,2,..., ¢=0,1
no=0
et

P,,(c) = Z Poin,(¢c) =P(Ny=mn2,C=c¢),ny=0,1,2,...,¢=0,1.

'I’L1=O

Maintenant, écrivons les équations d’équilibre
1. N2 =Ny = 0
1.1. N1 = N1 :O,CZO

aPoo(0) = BpPoo(1) + 81 Pio(0) + 62 Po1(0) (3.5)
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1.2. N1 =N Z ].,C:O
(@471 +61) Poyo(0) = BuPpyo(1) + P, —10(1) + 01 Py +10(0) + 2P, 1(0) (3.6)
1.3. Ny =0,c=1
(Oz + /J)Poo(l) = CkPoo(O) + ’71P10(0) + ’YQPOl(O) + (51P10(1) + (52P01(1). (37)
14 N1 =N 2 1,C: 1
(o + g+ 01) Ppyo(1) =aPp,0(0) + v1Poy 110(0) + 72 Py 1(0)
(3.8)
+ 01 P, 410(1) + 62,1 (1) + a1 Py —10(1)
2. N2 = N2 Z 1
2.1. Ny=0 ¢=0
(Oé + v2 + (52) P0n2 (O) = BNPOng (1) + BMPOnlfl(l) + (51P1n2(1) + (52P0n2+1(0). (39)
22N1:7’L121 c=0
( +1n+r+ 51 + 52) n1n2( ) = ﬁuPn1,1n2(1) + ﬁﬂpnlnzfl(l) (3 10)
+BIU’PTL1712(1) + 61Pn1+1’ﬂ2 (O> + 62Pﬂ1n2+1 (O)
2.8.Ny=0 c¢c=1
(a4 p+ 62) Pon, (1) =aPon, (0) + 71Pin, (0) + ¥2Pong+1(0) + 61 15, (1)
(3.11)
+ 02 Pony41(1) + a2 Pop,—1(1)
24]\71:71121 c=1
( +pt o1+ 62) 711”2(1) = aPﬂlnz (0) + 71Pn1+1n2 (0) + ’72Pn1n2+1(0) (3 12)
+61 n1+1n2(1) + 62P’ﬂ17l2+1(1) + alp’ﬂl—lnz(l) + a2pn1n2—1(1)
La fonction génératrice de probabilité de l'etat stationnaire du processus de Markov
{(N1(t), N2(t),C(t)) : t € [0, +00)} est donné par
(21, 22, % Z Z ZP’“"? )21t 22 2¢ (3.13)

n1=0n2=0 c=0

Définissons également la fonction génératice de probabilité (partielle) swivante

R ( ZP,M? )z, c=0,1,n5=0,1,...

n10
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et
FO(12) = 3 Y Pona(0)el 252 = > R (1) 257, ¢ =0, 1. (3.14)
n2:0 TL1:O n2:0

F(z1,22,2) = FO (21,20) + 2FW (21, 22) ,  |za| < 1,]22] <1

pour ng = 0 et ¢ =0 on multiplie (3.5) et (5.6) par z1*, on a

(@ +61) 21 = 61) BY (21) = (1 +81) 21 = 81) Poo(0) = (Buz1 + Buzd) Ry (1) + 62 R (1)
(3.15)
pour ng =0 et ¢ =1 on multiplie (3.8) et (3.9) par zi"*, on a

(a4 p+61) 21 — 61 — o 29) Rél) (21) — (0121 — 01) Poo(1) = (az1 + 1) Réo) (21) = 11 Poo(0) + 52Z1R§1) + ’72le§0)
(3.16)
pour ng > 1 et ¢ =0 on multiplie (3.10) et (3.11) par 21", on a

(@471 +72+061+2) 21 —01) Rff’z) (21) = ((71 + 61) 21 — 61) Pon, (0) = (Buz1 + Buzi) Rglz) (z1) +
/BMZ%RSQ)—l (21) + 52ZIRS¢12)+1 (21)
(3.17)

pour ng > 1 et ¢ =1 on multiplie (3.12) et (3.16) par z1"*, on a

(a4 p+61+062) 21 — 61 — q27) RS (21) — (0121 — 1) Pony (1) = (21 +71) ROz + ’722131(102)“ (z1)+

azz1RY) | (21) + 8320R0) 1 (21) — 71 Pony (0)
(3.18)

En utilisant les équations (3.16) et (3.18) puis en multipliant par 252, on a

(21 (@ + 71 472 + 01+ 02) 20 — 6122 — 0221) F O (21, 20) — (21 (v2 + 02) 22 — 8221) F(V) (21,0)
— (21 (71 + 1) 22 — 01) 22F© (0, 22) = (Buz1zo + Buzizs + Buaiz3) FY (21, 22)

(3.19)
Nous faisons de méme avec les équations (3.17) et (3.19)
(Zl (CE + 12 + (51 + (52) zZ9 — alz%ZQ — 5122 — (5221 — O[QZlZ%) F(l) (21, ZQ)
— (212902 — 8221) FM (21,0) 4+ 7221 F© (21,0
(212202 221) (21,0) + 7221 (21,0) (3.20)

—2Z2 (5121 — 61) F(l) (0, 22) + ’YlF(O) (O, 2’2)
= ((z1 +m) 22 + 7221) FO (21, 20)

Laisser

a1 Py, (1) =71Pn,+1.(0) + 81 Py 41.(1) (3.21)
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Récapitulation ny, on a

1_ g 0,1) = (1 + al) r 1,1 3.22
©.1) 7 + 61 1) ( )
Puis par symétrie
1— FO(1 0) = (1 + 042) FO(1,1 3.23
(1,0) Yo + 02 (L,1) ( )

Puis

a(y1+61) (92 + 62)

FU(1,1) = ; 3.24
1) [+ (B4 Dp] (71 +61) (y2 + 02) — amiyz — a1diy2 — aedam (3:24)
avec [a+ (B + Dp] (71 + 1) (72 + J2) — ay1y2 — a16172 — aedayr # 0.
Deuziemement, nous devons prouver que pour i = 1,2, si
o 0 i
o (1 +9) (2 + %) (1 + ) —1 (3.25)
[a+ (B4 Dp) (71 +01) (v2 4+ 02) — amn1y2 — a1d1y2 — azdam Vi + 0
puis les deux files d’attente N1 et No sont illimités avec la probabilité un.
a (v + 1) (92 + d2) <1+ Q; ):1
[+ (B+ D) (1 +61) (72 + 02) — a2 — ardiyz — a2dem Vi + 0
de sorte que F(V(1,0) = 0 & partir de (3.23). Depuis F(V(1,0) = Z Py, 0(0)
’I’L1:0
(voir(3.15) ), la condition F(©)(1,0) = 0 implique que
P, 0(0) =0 pour n; =0,1,.... (3.26)
de sorte que de (3.6) a (3.7)
P,, o(1) =0 pour n; =0,1,... (3.27)
Nous utilisons maintenant un argument d’induction pour prouver que
P, 1, (0) =0 pour ny,ny =0,1,... (3.28)

Nous avons déja montré dans (3.26) que (3.28) est vrai pour ng = 0. Suppose que (3.28) est vrai

pour ng = 0,1,...,k et montrons que c’est toujours vrai pour no =k + 1
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A partir de (3.11) et de Uhypothése d’induction, nous obtenons que Py, x(0) = P, x(1) = 0 pour
n1 = 1,2,.... Cette derniére égalité implique, en utilisant (3.16), que Py, x+1(0) = 0. Cela montre
que (3.28) tient pour ny = 0,1,..., et no = k+ 1, et complete 'argument d’induction, prouvant que
(3.28) est vrai. Nous ont donc prowvé que Py, n,(0) =0 pour tous ny,ne =0,1,....

Prowvons que Py, n,(1) = 0 pour tous n1,ny = 0,1,.... Ce dernier est vrai pour n1,n2 = 1,2, ...,
(3.11). C’est également vrai pour ne = 0,n1 = 0,1,..., de (3.27) Il reste & enquéter sur le cas ot
np=0eny=0,1,....

Par (3.10) et (3.28) nous obtenons que Py n,(1) = 0 pour ny = 1,2,..., alors que nous avons déja
remarqué que Pyo(1) = 0. En résumé, Py, n,(0) = Py, n,(1) = 0 pour tous n1,ne = 0,1,..., de
sorte que P (N1 =n1, Ny = ng) = Py, n,(0) + Py oy (1) pour tous ni,ne =0,1,..., ce qui compléte

la preuve.



Conclusion

Le but de ce mémoire, est de donné une condition nécessaire & la stabilité d’un systéme de file
d’attente avec rappels markovien, deux classes d’orbites et des rappels de clients constants, abandon

et feedback.
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