République Algérienne Démocratique et Populaire

Ministére de 1’enseignement supérieur et de la recherche scientifique

77 UNIVERSITY N° Attribué par la bibliothéque 7 UNVERSITY
{721 of SAIDA {721 of SAIDA
| S HOULAY Tl | D UL T
INENNENEEE

Année univ.: 2020/2021

hd 2 b .
Contractions d’algébres de Lie
Mémoire présenté en vue de 'obtention du diplome de
Master Académique
Université de Saida - Dr Moulay Tahar
Discipline : MATHEMATIQUES
Spécialité : Analyse mathématique
par
Mohamed Hamiti'
Sous la direction de
Dr M. B. Zahaf
Soutenue le 13/07/2021 devant le jury composé de

M. K. Djerfi Université Dr Tahar Moulay - Saida Président
M. M. B Zahaf Université AbouBekr Belkaid - Tlemcen Encadreur
M. H. M. Dida Université Dr Tahar Moulay - Saida Examinateur
M. A. Zeglaoui Université Dr Tahar Moulay - Saida Examinateur

1. e-mail : hamiti.med.am@gmail.com



Dédicaces

A ma Chére Mére Halima

A mon Pére Chikh Dont le mérite,

les sacrifices et les qualités humaines m’ont permis de vivre ce jour.
A Mes fréres

Abd alhaq , abd kader, abd ali

A tous les gens qui m’aiment :

Touati Mohamed, Bouazza Mustapha, Mousab Barket, Djamal Mohamds,. . .






Remerciements

Avant toute chose, nous tenons & remercier Allah pour cette grace d’étre en vie et
en bonne santé, et pour avoir terminé ce travail dans les meilleures conditions et ce
malgré toutes les contraintes et les obstacles que nous avons rencontré.

Je tiens & présenter un remerciement bien distingué a mon encadreur Dr. Zahaf Mo-
hammed Brahim pour son soutien, son aide, et ses conseils qui m’ont beaucoup aidé
durant ’élaboration de ce mémoire.

En méme temps je tiens & exprimer mes remerciements et ma gratitude aux ensei-
gnants de I'université de Moulay Tahar, pour leurs dévouements et leurs Assistances
tout au long de mes études universitaires.

Je tiens aussi a exprimer ma profonde reconnaissance a tous les membres de jury Dr.
K. Djerfi, Dr. H. M. Dida et Dr. A. Zeglaoui d’avoir accepté d’évaluer ce travail.
Enfin je remercie toute personne qui a contribué de prés ou de loin a la réalisation de

ce travail et dont les noms ne figurent pas dans ce document.






Table des matiéres

Introduction

1

Algébres de Lie

1.1

1.2
1.3

14
1.5
1.6
1.7

Notion d’algebre de Lie . . . . . . . . ... ... L.
1.1.1 Sous-algébres de Lie . . . . . ... ... ... L.
1.1.2 Idéaux dans les algébres de Lie . . . . . ... ... ......
1.1.3 Centre d’une algébre de Lie . . . . .. .. .. ... .. ....
1.1.4  Centralisateur et normalisateur . . . . .. ... ... ... ..
Constantes de structure . . . . . . . . ... L
Morphismes d’algébre de Lie et représentations . . . . ... ... ..
1.3.1 Morphisme d’algebre de Lie . . . . .. .. .. ... ... ..
1.3.2 Représentations et représentation adjointe . . . . .. ... ..
1.3.3 Forme de Killing . . . .. .. ... .. ... ...
Algébres de Lie nilpotentes . . . . . . ... .. ... oL,
Algébres de lie résolubles . . . . . .. .. ... ... L.
Algébres de Lie simples . . . . . .. ... .. ... .. .. ...,

Algébres de Lie semi-simples . . . . . .. ... ..o

Groupes de Lie

2.1
2.2
2.3
2.4
2.5
2.6

Définitions et exemples . . . . . . ..o
Algébre de Lie d’'un groupede Lie . . . . . .. . ... ... ......
Groupes de Lie des matrices . . . . . . . .. ... ... .. ... ..
Algébre de Lie du groupe de Lie des matrices . . .. ... ... ...
Groupe de transformations . . . . . . ... .. ...

Représentations adjointe et coadjointe d’'un groupe de Lie. . . . . . .

10
11
11
12
14
14
14
16
18
20
22
23



TABLE DES MATIERES

3 Contractions d’algébres et de groupes de Lie 43
3.1 Contractions d’algébres de Lie . . . . . . . .. ... ... ... .... 43
3.2 Types simples de contractions . . . . .. ... ... ... ....... 46

3.2.1 Contractions d'Inonii-Wigner . . . . . .. .. ... ... ... 46
3.2.2  Contractions selon Saletan . . . . . .. .. .. ... .. .. .. 48
3.2.3 Contractions d’Inénii-Wigner généralisées . . . . . . . . . . .. 51
3.3 Critéres nécessaires de contraction . . . . . . .. . ... ... .. ... 52
3.4 Contraction des algébres de Lie réelles de dimension 3 . . . . . . . .. 53
3.5 Contractions de groupes de Lie . . . . . . .. ... ... ... ..., 58

Bibliographie 61



TABLE DES MATIERES




Introduction

Le processus de contraction d’algébres de Lie permet d’obtenir a partir d’une algébre
de Lie donnée une nouvelle algébre de Lie, non isomorphe a la premiére mais en
préservant une partie de sa structure. Il procéde par des transformations singuliéres
des éléments infinitésimaux (les générateurs) et, en ce sens, il peut étre généralisé
a d’autres structures algébriques. A partir d’une algébre de Lie g, on construit une
famille paramétrée de nouvelles algébres, g., isomorphes & g pour € # 0, mais pas
pour la valeur singuliére ¢ = 0. Les algébres g., pour € # 0, sont obtenues par re-
paramétrisations de g. Ensuite, la nouvelle algébre de Lie émerge comme la limite
singuliére ¢ — 0 du parameétre.

Le concept de contractions d’algebres de Lie introduit par Segal 23] de maniére heu-
ristique n’est devenu bien connu qu’apreés l'invention des contractions d’'Inonii-Wigner
(IW-contractions) dans [9]. Saletan [22] a donné la premiére définition générale rigou-
reuse des contractions et a étudié toute la classe des contractions a4 un seul paramétre
e pour lesquelles les éléments de la matrice de contraction correspondante sont des
polynomes du premier degré en . Dans cette classe, les contractions introduites par
E. Inonii et E. P. Wigner représentent un cas particulier trés simple.

Dans une autre direction les contractions d’Inonii-Wigner généralisées dites aussi
contractions de Doebner-Melsheimer [5] représentent I’extension non linéaire en € des
contractions d’Inénii-Wigner normales. Des contractions de type plus général ont été
envisagées par d’autres auteurs, en particulier, sous le nom de transitions [21] ou sous
le nom de dégénérescences |1, 2, 3, 1, 16].

Les contractions d’algébres de Lie sont apparues dans différents domaines de la phy-
sique et des mathématiques, par exemple dans I’étude des représentations, des inva-
riants et des fonctions spéciales.

Le plan de ce mémoire est le suivant :

Le chapitre 1 concernera des généralités sur les algébres de Lie : définitions, exemples,

notions de sous-algébres de lie, d’idéaux, de constantes de structure, de centre, de cen-
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tralisateur et normalisateur, de morphismes, de représentations. Les trois derniéres
sections de ce chapitre sont consacrées a la classification des algébres de Lie, no-
tons qu’il existe différentes familles importantes d’algébres de Lie qui permettent leur
classification : les algébres de Lie résolubles (I’exemple typique est 'ensemble des ma-
trices triangulaires supérieures), les algébres de Lie nilpotente (I’exemple typique est
I’ensemble des matrices triangulaires supérieures strictes), et les algébres de Lie semi-
simples ; un exemple important est 'algébre de Lie sl,,(K), c’est-a-dire I'ensemble des
matrices carrées d’ordre n de trace nulle muni du crochet [A, B] = AB — BA. Chaque
notion dans ce chapitre est illustrée par un nombre important d’exemples.

Dans le chapitre 2, nous présentons quelques définitions sur la théorie des groupes
de Lie. Notons que les algébres de Lie sont naturellement associées aux groupes de
Lie, qui jouent un role aussi bien en mathématique qu’en physique (ils décrivent la
symétrie continue). La classification des algébres de Lie est utilisée de fagon cruciale
pour I'étude des groupes de Lie.

Dans le troisiéme chapitre, nous donnons la définition des contractions d’algébres de
Lie puis nous citons quelques types simples de contractions notamment les contrac-
tions d’Inonii-Wigner, de Saletan et d’Indnii-Wigner généralisées. Ainsi nous donnons
les critéres nécessaires de contractions, ensuite nous présentons toutes les contractions
possibles des algeébres de Lie réelles de dimension 3. Finalement nous terminons ce
chapitre par donner la définition des contractions de groupes de Lie inspirée de celles
de Mickelsson-Niederle [11], ensuite comme exemples nous montrons que le groupe
de Heisenberg H3 de dimension 3 est une contraction du groupe des déplacements
euclidiens du plan M (2), ainsi que le groupe M(n) est une contraction du groupe
SO(n,1) ( la composante connexe de I'identité du groupe SO(n, 1)).

Il est évident que ce mémoire n’a aucune prétention d’innovation, il est la synthése

de plusieurs papiers scientifiques.



Chapitre 1

Algébres de Lie

Dans ce chapitre K =R ou C.

1.1 Notion d’algébre de Lie

Definition 1.1.1. Une algébre de Lie g = (V,[.,.]) de dimension n sur K est un
espace vectoriel V' de dimension n sur K, muni d’un produit bilinéaire antisymétrique
[.,.], appelé crochet de Lie, tel que :
[z,2] =0 Vz e V. (Uantisymétrie) (1.1)
[, [y, 2] + [y, [z, 2]] + [2, [, 9] = 0, Vz,y,2 € V. (1.2)
(Videntité de Jacobi)

Proposition 1.1.1. La condition (1.1) est équivalente a la condition

[, 9] = —y, 7]
pour tout x,y € V.
Démonstration. Supposons que [z, y] = —[y, z| pour tout x,y € V. Alors
[z, 2] = —[x,x] = [x,2] = 0 pour tout x € V.

Inversement, si [x,z] = 0 pour tout = € V, alors pour tout x,y € V,
0=[v+yz+y]=[z,2]+[z,y] + [y, 2] + [y,9] = [z,9] + [y, 2]

= [z,y] = —[y, z].
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Proposition 1.1.2. L’identité de Jacobi (1.2) est équivalente &

[z, 9], 2] + [y, 2], 2] + [[2,2] ,y] = O
pour toult x,y,z € V.

Démonstration. C’est facile de démontrer, il suffit de multiplier I'identité de Jacobi

par —1 et utiliser la proposition précédente O
Considérons maintenant quelques exemples d’algébres de Lie :

Exemple 1.1.1.
1. Tout espace vectoriel V' sur K muni du crochet [x,y] =0, z,y € V , est une algébre

de Lie sur K. On voit que les conditions (1.1) et (1.2) sont immédiatement satisfaites.

2. Considérons une algébre associative A et définissons un crochet de Lie sur A en

posant

[z,y] == xy —yx

Nous devons vérifier que [x,y] est bien un crochet de Lie sur A. Or antisymétrie est

évidente, et la vérification de 'identité de Jacobi est un calcul simple

[, [y, 2] + [y, [z 2]] + [=, [, o]
= z(yz —2y) — (y2 — 2y)z + y(2a — x2)
(2w — w2)y + 2(wy — yr) — (2y — ya)2
= TYz —x2Y —Yzx + 2yxr + Yyzx — Yyrz
—zZxy + x2y + 20y — 2Yyr — Y2 + Yz
= 0.

Le crochet de Lie [x,y] défini ci-dessus est appelé le commutateur de x et y.

3. Soit V' un espace vectoriel sur K. L’algébre gl(V') des endomorphismes de V. munie
du crochet [A, Bl = Ao B— Bo A, est une algébre de Lie de dimension dim(V)?* sur
K. Par exemple si V.= C" (resp. V.= R"), alors gl(V') s’identifie naturellement
Palgébre de Lie gl(n,C) (resp. gl(n,R)) des matrices carrées d’ordre n a coefficients
complexes (réels). Le crochet de Lie sur gl(n,C) (resp. gl(n,R)) est alors défini par
le produit matriciel : [A, Bl = A.B — B.A.
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La base standard de gl(n,C) (resp. gl(n,R)) est ’ensemble des toutes les matrices e;;
(ayant 1 en (i,7)-éme position et 0 ailleurs), ou 1 < 1,5 < n. Puisque e;jey = djei,
il s’ensuit que les crochets de Lie de gl(n,C) (resp. gl(n,R)) par rapport a sa base

standard sont donnés par :
€, ert] = Ojreir — iey;.

4. L’espace vectoriel sl(n,K) des matrices carrées d’ordre n, a coefficients dans K et
de trace nulle muni du crochet [x,y] = xy — yx, est une algébre de Lie sur K de
dimension n? — 1, appelée algébre linéaire spéciale.

Prenons tout les e;; (i # j), ainsi que tout les hy = e;; —e;iy141 (1 <i <n—1), pour
un total de n®> —n + (n — 1) matrices. Nous considérerons toujours cela comme une
base standard de sl(n,K).

En particulier, pour n = 2, l'algébre de Lie sI(2,R) est engendrée par les matrices

10 01 00
h="h =e —exn= , €= €12 = 7f:€21:
0 —1 00 1 0

avec les relations de commutations suitvantes
le, fl =h, [h, f]=—=2f, et]h,e] =2e.

5. L’algebre de Heisenberg de dimension 3 est l'ensemble des matrices de la forme

0 =z =z
0 0 y
0 0 0

o x, Yy, z dans R muni du crochet des matrices, est une algébre de Lie et possédant
une base { X1, Xo, X3}

XIZ 7X2: ’X3:

o O O
o O =
o O O
o O O
o O O
oS = O
o o o
o o o
o O =

vérifiant
[leXQ] — X3; [X17X3] - Oa [X27X3] - O
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6. L’algebre m(2) des déplacements euclidiens du plan est l’ensemble des matrices de

la forme
0 —0 a
6 0
0 O

ot 0, a, b dans R muni du crochet des matrices, est une algebre de Lie et possédant

une base {e1, eq, €3}

0 01 0 00 0 —
er=10020|,ee=]1001/1],e=
0 0O 0 0O 0

vérifiant
leg, e1] = ea, [e2,e3] = €1 el [e1,e3] = 0.

7. L’algebre de Lie aff(R) composée de toutes les matrices carrées d’ordre 2 réelles

dont la deuzxiéme ligne est nulle. Les deux éléments

1 0 0 1
XIZ ) XQZ
0 0 0 0

forment une base et on a [ X1, Xo] = Xo.
8. L’algébre de Lie d’un groupe de Lie G (voir Chapitre 2 pour la définition d’un
groupe de Lie) est 'ensemble de tous les champs de vecteurs invariants a gauche sur

G, le crochet étant le crochet des champs de vecteurs.

Definition 1.1.2. Une algébre de Lie g est abélienne si [x,y] = 0 pour tout = et y
dans g.

Exemple 1.1.2.

1. Tout espace vectoriel V sur K est muni d’une structure d’algebre de Lie abélienne

sur K.

2. Toute algeébre de Lie de dimension 1 sur K est abélienne.
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1.1.1 Sous-algébres de Lie

Definition 1.1.3. Une sous-algebre de Lie d’une algébre de Lie g est un sous espace
vectoriel s de g stable par le crochet de Lie i.e. [s,5] C s ou encore, pour toul x € s

ety €s onalr,y)] €s.

Exemple 1.1.3.

1. L’espace vectoriel réel des matrices carrées d’ordre n triangulaires supérieures

(ou inférieures ) est une sous algébre de Lie.

2. L’algébre de Lie aff(R) est une sous-algébre de Lie de gl(2,R).

Proposition 1.1.3. L’algébre de Lie sl(n,K) (K =R ou C) est une sous-algébre de
Lie de gl(n, K).

Démonstration. Rappelons que
sl(n,K) = {x € gl(n,K), Tr(z) =0}.
Donc il suffit de montrer que T'r([z,y]) = 0 pour z,y € sl(n,K). Soit x,y € sl(n, K).
Alors on a
Tr([z,y]) = Tr(zy — yz) = Tr(zy) — Tr(yx) = Tr(xy) — Tr(zy) = 0.
O

Proposition 1.1.4. L’espace des matrices anti-symétriques sur le corps K, donné
par
so(n,K) = {z € gl(n,K), 27 + 2 = 0}.

est une sous-algébre de Lie de gl(n,K).

Démonstration. 1l suffit de montrer que ([z,y])” + [z,y] = 0 pour z,y € so(n,K).
Soit z,y € s0(n,K). Alors on a

([z.y)" +[2.9] = (zy—y2)" +ay—yx
— yTZET—ZETyT—I—fL'y—yI
= (—y)(=2) — (=2)(-y) + zy —yx
= Yyr —rTYy +2ITYy —Yx
= 0.
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Remarque 1.1.1 (La sous-algébre de Lie de s0(3) = s0(3,R)). On note par R,, R,

et R, respectivement les trois matrices

0 001 0 -1 0
-1 |, 0 00|, )
0 -1 0 0 0

ce sont des "rotations infinitésimales” de R3 autour des azes des x, vy, z respective-
ment.

Clairement, elles forment une base pour so(3) = so(3,R) ( lalgébre de Lie des
matrices d’ordre 3 réelles anti-symétriques); elles sont aussi une base, sur C, pour

50(3,C). En utilisant le crochet défini par le produit matriciel, on vérifie que
(R, Ry = R., [, K] = R, [R., R.] = R,
Proposition 1.1.5. Soit S une matrice carrée non-singuliére (inversible) sur K et
g :={r € gl(n,K), Sz¥S™' = —z}.
Alors g est une sous-algébre de Lie de gl(n,K). De plus, g C sl(n,K).

Démonstration. 11 est trés facile de vérifier que g est un sous-espace de gl(n,K). Ce
qui est important est de prouver que g est stable par le crochet de Lie dans gl(n, K).
Autrement dit, nous devons prouver que [z,y| € g dés que z et y sont dans g.
Soit x,y € g,
S([z,y]")S™" = S((zy —y2)")S™
— S(yTZL'T . .I'TyT)S_l
— S(yTl'T)S_l _ S(I'TyT)S_l
= (Sy"STH(Sz"S7) — (SzTSTH(Sy")ST)
= (=y)(=2) = (=2)(-y)
= yr — 1Y
ce qui montre que [z, y] appartient a g.

Pour tout € g, on a

Tr(Sz"S™) = Tr(—z) = —Tr(z).
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D’autre part, on a
Tr(Sz"S™) =Tr(2"SS™) = Tr(a") = Tr(x).

Ce qui donne
Ainsi

et par suite g et une sous-algébre de sl(n, K). [

Remarque 1.1.2. Si on pose S = I, dans la proposition 1.1.5, alors on obtient
Ualgébre de Lie so(n,K).

Exemple 1.1.4. Soit J, la matrice carrée d’ordre 2n donnée par

0 I,
—I, 0]

Si nous appliquons la proposition 1.1.5 a S = J,,, alors nous obtenons l’algébre de Lie

symplectique sp(n, K), donnée par
sp(n,K) = {z € gl(n,K), JzTJ ' = —z}.

Exemple 1.1.5. Soit n =p+q, o p,q € Z*. Si dans la proposition 1.1.5, S est la

matrice carrée d’ordre p + q donnée par

[p,q = ( _[p Oqu ) .
qup [q

alors on obtient la sous-algebre de Lie
s0(p.¢.K) = {v € gllp + ¢, K), Lya" 1, = —a}

de sl(p + ¢, K).
Lorsque K = R, cette algébre de Lie est notée simplement par so(p,q). Notons que
s0(p,0,K) = 50(0, p, K) = so(p, K).

On rappelle que I’adjoint d’une matrice complexe z est la matrice z* = 77 .
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Proposition 1.1.6. Soit S une matrice carrée non-singuliere sur C et

g:={x €gl(n,C), Sx*S™' = —z}.
Alors g est une sous-algébre de Lie de gl(n,C). De plus, g C sl(n, K).
Démonstration. La preuve est assez similaire a celle de la proposition 1.1.5. O

Exemple 1.1.6. Dans la proposition 1.1.6, si S = I, alors on obtient ’algébre de
lie

u(n) ={z € gl(n,C), z* = -z} (1.3)
des matrices anti-hermitiennes. Si on considére l'intersection de cette algebre de Lie
avec sl(n, C) on obtient 'algébre de Lie

su(n) = u(n) Nsl(n,C)

des matrices anti-hermitiennes de trace nulle.
Ici, on a utilisé le fait que l’intersection de deux sous-algébres de Lie d’une algébre

de Lie g est une sous-algebre de Lie de g, qu’on peut facilement vérifier.

Exemple 1.1.7. Sin = p + q et si, dans la proposition 1.1.6, S = I,,, alors on

obtient la sous-algébre de lie

u(pa Q) = {l’ € g[(p + q, C)? Ipaqx*lp7q = —ilf} (14)

de gl(p + q,C). L’intersection u(p,q) Nsl(p + q,C) est notée par su(p, q).

1.1.2 Idéaux dans les algébres de Lie

Definition 1.1.4. Un sous espace vectoriel s d’une algébre de Lie g est un idéal de
g si[s,g9] Cs. ie., pourtout x €s ety € g on a[r,y| € s.
Exemple 1.1.8.

1. L’algébre de sl(n,R) est un idéal de gl(n,R).

2. Le sous espace vectoriel [g,9] = ({[z,y]/ z,y € g}) est un idéal de g.

3. L’espace vectoriel des matrice triangulaires supérieure ( resp inférieure) dont
les termes diagonauz sont nuls est un idéal de ’algébre de Lie de matrice trian-

gulaire supérieure ( resp. inférieure).
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Remarque 1.1.3. Tout idéal d’une algébre de Lie g est une sous-algébre de g. En

particulier l'idéal [g, g] appelé Ualgébre de Lie dérivée ( ou commutant de g).

Remarque 1.1.4. I est facile de voir que si s et s’ sont deuzr Idéaux d’une algébre

de Lie g, il en est de méme de s+ s',sNs et [s,5].

1.1.3 Centre d’une algébre de Lie

Definition 1.1.5. Soit g une algébre de Lie sur K le centre Z(g) de g est définie par
Z(g) ={zeg/lr,y =0 (Vyeg)}
Exemple 1.1.9.

1. Si g est une algébre de Lie abélienne alors Z(g) = g.

2. Le centre de ’algébre de Lie s0(3) est trivial. 1l en est de méme pour le centre
de aff(R).

3. Le centre de gl(n,K) est 'ensemble des matrices scalaires i.e., Z(gl(n,K)) ~ K.

4. Le centre de sl(n,K) es trivial.

1.1.4 Centralisateur et normalisateur

Definition 1.1.6. Soit £ un sous-ensemble d’une algébre de Lie g. Le normalisateur

(resp. centralisateur) Ny(E) (resp. Z4(E)) de E dans g est défini par {z € g|[z, E] C
E} (resp. {x € gl[x, E] = 0}).

En particulier si E est un sous-espace vectoriel de g alors Zy(E) C Ny(E).

Exemple 1.1.10.

1. Si E est le sous espace vectoriel de g = gl(2,K) engendré par la matrice

<0 1)@107’3:
00
a b a b
Zg(E):{<O a)/a,beK}CNg(E):{<0 C>/a,b,c€K}

2. Si E est le sous espace vectoriel de g = sl(2,K) engendré par la matrice

1 0 a b
(O _1> alors .'Zg(E):Ng(E):{<O _a>/a€K}.
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Remarque 1.1.5. 1. Le normalisateur d’une sous-algebre de Lie s de g est une

sous-algébre de Lie de g qui contient s comme idéal.

2. Le centralisateur d’un sous-ensemble de g est une sous-algebre de g.

1.2 Constantes de structure

Soit g une I'algébre de Lie de dimension n > 2 sur K. Fixons une base {ej, e, ..., €,}

de g, en tant que espace vectoriel sur K. Nous avons donc
n
el => Clen  ij=1,..n (1.5)
k=1

oll C’ffj c K.

Definition 1.2.1. Les constantes C’{fj, 1 <1,7,k < n sont appelées les constantes de

structure de g relativement a la base {e1, ez, ..., €,}.

Exemple 1.2.1.

1. Si g est une algebre de Lie abélienne,alors ses coefficients de structure sont tous

nuls relativement a toute base de g.
2. Les constantes de structure de l’algébre de Lie s0(3) relativement & la base

{X1, Xy, X3} sont donnés par : C}y = Cy 4 =C5, = 1.

3. Pour Ualgébre de Lie aff(R), notons X1 = X et Xo =Y. Alors les constantes

de structure de cette algébre, relativement a la base { X1, Xo}, sont 02271 =1.

Proposition 1.2.1. Le crochet de Lie [.,.| définit une algébre de Lie de dimension
n si et seulement si les constantes de structure vérifient les n|[(5) + (7)] conditions
d’antisymétrie.

Chy=ClH+Cji=0 ijk=123 .n (1.6)

et les n (%) relations quadratiques

D CLCn 4O+ CLCT =0 G k,m=1,2,3,..n (1.7)
=1
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Démonstration. Ces relations ne sont rien d’autre que ’écriture en terme de C’fj des
axiomes de la définition d’une algébre de Lie. En effet,

1. pour k fixé et i, j = 1,2,3,...,n le nombre de conditions (1.6) est égal a (§) sii # j

et il est égal & (7) si @ = j. Alors pour k fixé le nombre de conditions (1.6) est égal a

() + (@)-

En revanche si k varie dans {1,2,3,...,n} alors le nombre de conditions (1.6) est égal

anfg)+ =00

2. Pour m fixé et i, 7,k = 1,2,3,...,n le nombre de conditions (1.7) est (%) . Si m varie

dans {1,2,3,...,n} alors le nombre de conditions (1.7) est égal a n (}). O

L’ensemble des constantes {Cf;} satisfaisant (1.6), (1.7) peut étre considéré comme
une sous variété W C K™ de dimension
n*(n+1) n?>(n-1)

dim W™ < n® — = : L.
imW" <n 5 5 (1.8)

En effet, notons par E™ I'espace de tous les ensembles {Cf]} satisfaisant (1.6), comme

Em c K™ il est claire que

dim E" = n® moins le nombre d’équations ” C[’;:’ = 0”

_ ng_nQ(n—i-l) :nQ(n—l).

2 2

Puisque W™ C E™ alors

2
-1

dim W™ < dim E" = %

Remarque 1.2.1. On a dimW? =2, dimW? = 6 et pour n > 3 l'inégalité (1.8) est

stricte.
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1.3 Morphismes d’algébre de Lie et représentations

1.3.1 Morphisme d’algébre de Lie

Definition 1.3.1. Un morphisme d’algébres de Lie est une application linéaire T :

g — b qui respecte les crochet de Lie, i.e T([x,y]) = [T (x), T(y)] pour tout x,y dans
g.

Il est clair que le noyau (resp. I'image ) d’'un morphisme g — b d’algébre de Lie est

un idéal (resp. une sous-algebre de Lie) de g (resp. b).

Exemple 1.3.1. Si a est un idéal de g, alors la projection naturelle

T : g—g/a

r—xr+a

est un morphisme d’algébres de Lie surjective.

1.3.2 Représentations et représentation adjointe

Definition 1.3.2. Une représentation de g dans un K-espace vectoriel V est un mor-
phisme d’algébres de Lie ¢ : g — gl(V) (lalgébre des endomorphismes de V). La
dimension de cette représentation est la dimension de V sur K. La représentation

(¢, V) est fidéle si ¢ est injective.

Definition 1.3.3. Une représentation (¢,V) est irréductible si les seuls sous espaces
vectoriels de V qui sont invariants par g sont {0} et V lui méme, i.e., (¢,V) est
irréductible si p(g)W C W <= W = {0} ou W = V.

Exemple 1.3.2. L’algébre de Lie gl(n,R) agit naturellement sur 'espace vectoriel

R™ (action d’une matrice réelle carrée d’ordre n sur un vecteur de R™).

Definition 1.3.4. Le morphisme d’algébre de Lie g — gl(g) défini par x — [z, .]
est appelé la représentation adjointe de g et est noté ad. Lidentité de Jacobi exprime

précisément le fait que ad respecte le crochet.

Exemple 1.3.3. Considérons l’algébre de Lie g = sl(2,R)

Les relations de commutations de sl(2,R) sont

le, fl=h, [h, f]==2f, eth,e] =2e.
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Ainsi

ad(h)(e) = 2e +0f + 0h, ad(h)(f) = 0e —2f + 0h, ad(h)(h) = 0e+ 0f + Oh,
ad(e)(e) = 0e +0f +0h, ad(e)(f) =0e+0f+h, ad(e)(h) = —2e+ 0f + Oh,
ad(f)(e) =0e+0f —h, ad(f)(f) =0e+0f+ 0h, ad(f)(h) = 0e+2f + Oh.

Par conséquent on obtient les matrices ad(h), ad(e) et ad(f)

2 00 0 0 =2
adh)=| 0 —2 0 |, ade)=] 0 0 ,
0 00 01 O
0 00
ad(f) = 00 2
-1 0 0

Exemple 1.3.4. Considérons 'algébre de Lie so(3) des rotations de l’espace, donc

on a !

ad(R;) = R,, ad(R,) = Ry, ad(R,) = R..

Exemple 1.3.5. Pour l’algébre de Lie aff(R) nous avons :

oy = (0 ) ) st (° ).

Definition 1.3.5. Une algébre de Lie g est dite unimodulaire si Tr(ad(z)) =0 pour
tout x € g.

Exemple 1.3.6. Les algébres de Lie so(3) et sl(2,R) sont unimodulaires.

Definition 1.3.6. Une dérivation de g est un endomorphisme D de g tel que D([x,y]) =
[D(x),y] + [z, D(y)] pour tous x et y dans g. On notera Der(g) I’ensemble des déri-

vations de g.

Exemple 1.3.7. 1. Si g =V est un espace vectoriel muni d’une structure d’algébre
de Lie abélienne, alors Der(g) est l'espace vectoriel de tous les endomorphismes de
V.

2. D’apres Uidentité de Jacobi, l'endomorphisme ad(x) est une dérivation de g pour

tout x € g.
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1.3.3 Forme de Killing

Soit V' un espace vectoriel sur K. nous désignons par V* le dual vectoriel de V| i.e.,
I’espace vectoriel des formes sur V. Soient b : V' x V' — K une application bilinéaire

et U un sous espace vectoriel de V.

Definition 1.3.7. Le radical de b est le sous espace vectoriel
rad(b) = {v € V/ b(v,v") = 0,Yv' € V'} de V. Nous dirons que b est non-dégénérée (

resp. dégénérée) si le radical de b est trivial ( resp. non trivial).

Definition 1.3.8. L’orthogonal de U est le sous espace vectoriel
Ut ={veV/bw,v)=0,Y €U} de V. Nous noterons b |yxy la restriction de b a
UxU.

Proposition 1.3.1.
1. rad(b |yxy) = U NU*L, si de plus est non dégénérée alors :
2. dim(U) + dim(U*+) = dimV'.
3. U+ Ut =V < blyxy est non dégénérée.

Démonstration. (1)- C’est une simple reformulation des définitions.

(2)- Considérons les application linéaires ¢ : V. — V* et ¢ : V. — U* définies par
v +—> b(v,.). En particulier, Ker(¢) = Ut et ¢ est un isomorphisme si et seulement
si, b est non-dégénérée. Soit U’ un sous espace vectoriel de V' tel que V = U & U’
Tout élément u* de U* définit un élément v* de V* tel que v*|y = u* et v*|pr = 0.
Puisque ¢ est un isomorphisme, alors il existe v dans V' tel que ¢(v) = v*, de sotre
que ¥(v) = u*, i.e ¥ est surjective, et donc dim (V) = dim(im(y)) + dim(Ker(¢)) =
dim(U) + dim(U*).

(3)- C’est une conséquence directe de (1) et (2). O
Remarque 1.3.1. ] se peut que b soit non dégénérée mais que sa restriction a U x U
est dégénérée.

Exemple 1.3.8. Soit K=R,V =R2 U = {(z,y) € R*/z =y} et b((z,y), (2,y)) =
zx' —yy donc U+ = {(x,y) € R?/xt — yt = 0Vt € R}

Definition 1.3.9. On appelle forme de Killing de l’algebre de Lie g l'application k
définie par
ko gxg—K
(x,y) = Tr(ad(z) o ad(y))
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Proposition 1.3.2. L’application k est
1. bilinéaire et symétrique.

2. ad-invariant i.e., k(ad(z)(y), z) + k(y,ad(x)(z)) = 0, pour tout x,y,z dans g

avec

3. k(z,y) = (1/2)(k(z + y,x +y) — k(z,x) — Kk(y,y)), pour tout x,y dans g.

Démonstration. (1) et (3) sont facile a vérifier. Pour (2) on a

ad([z,y]) = [ad(z), ad(y)]

et
Tr(fog)=Tr(gof)

donc

w(ad(z)(y), 2) + wly, ad(@)(2)) = 5[z, 5], 2) + #(y, [5, 2]
= Tr(ad([z,y]) 0 ad(z)) + Tr(ad(y) o ad([z, 2]))
= Tr(ad(z) o ad(y) o ad(z) — ad(y) o ad(x) o ad(z)
+(ad(y) o ad(x) o ad(z) — (ad(y) o ad(z) o ad(x))
= Tr(ad(z) o ad(y) o ad(z) — ad(y) o ad(z) o ad(z))
= 0.

Exemple 1.3.9. Considérons l’algébre de Lie g = sl(2,R)
On a déja calculer les matrices de ad(h), ad(e) et ad(f). Ainsi la matrice Kk associée

a la forme de Killing est donnée par

k(e,e) k(e f) k(e ,h) 0 2 0
k= "i(fae) "i(fa f) H(.ﬂ h) - 2 40
k(h,e) k(h,f) r(h,h) 0 0 8

Exemple 1.3.10.

1. Pour tout A et M dans gl(n,R) nous avons ad(A)*(M) = A2M —2AM A+ M A?
de sorte que (A, A) = 2nTr(A?) — 2(Tr(A))%

2. En utilisant l'exzemple précédent, nous trouvons que k(A, A) = 2nTr(A?) pour
tout A dans lalgébre de Lie sl(n,R).
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3. pour Ualgébre de Lie aff(R), nous avons k(X,X) =1, k(X,Y) =0 et (Y,Y) =
0.

4. Le radical de la forme de Killing aff(R) est trivial, donc k est non dégénérée.

5. Considérons lalgébre so(3) des "rotations infinitésimales” de ’espace. Nous
trouvons k(X, X) = —2(a® + b* + ¢*) pour tout X = aR, + bR, + cR..

1.4 Algeébres de Lie nilpotentes

Dans ce qui suit le corps K est quelconque, en particulier sa caractéristique n’est pas

nécéssairement nulle et il n’est pas nécéssairement algébriquement clos.

Definition 1.4.1. Soit g une algébre de Lie sur K. On pose pour tout entier ¢ > 0,
gl=getg =[gg]Cd

La suite décroissante d’idéauz g° O g',---,D g' D --- est appelée la suite centrale
descendante de g

Une algébre de Lie g sur K est nilpotente si la suite centrale descendante s’annule d
partir d’un certain rang, i.e., s’il existe un entier k > 1 tel que g& = {0}.

Si gh=t £ {0} et g* = {0}, on dit que g est nilpotente de cran (nilindex) k.

Exemple 1.4.1. 1. Tout algébre de Lie abélienne est nilpotente.

2. L’algébre de Lie réelle des matrices triangulaires supérieures dont les éléments

diagonauz sont nuls,

g={re M(n,K, z;; =0sii>j}.
Pour1<k<n-—1,

g ={rveg, v;=0sii>j—k}

En particulier g"~' = 0, et g est nilpotente de nilindex n — 1.

3. De méme l'algebre de Lie réelle des matrices triangulaires inférieures, dont les

éléments diagonauzr sont nuls, est nilpotente.

4. Soit n un entier naturel non-nul. L’algebre de Heisenberg g = Ha,11 est l'algebre
de Lie réelle de dimension 2n + 1 engendrée par 2n + 1 éléments X;,Y; et Z,
i=1,...,n, soumis auz seuls crochets non-nuls [X;,Y;] = Z. Ainsi g* = KZ,

qui est le centre de g, et g°> = {0}. Donc g est nilpotente de nilindex 2.
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Definition 1.4.2. Une algébre de Lie nilpotente de dimension n est appelée filiforme

st son nilindex est égal a n — 1.

Exemple 1.4.2. L’algébre de Lie, notée .o de dimension n+ 2, définie dans la base
{Xo, X1,..X,,, Y} par
[Y, X]] = Xj*l; j = 1, 2, ., n.
est filiforme.
Notons que bhs = fs.

Proposition 1.4.1. Soit g une algébre de Lie sur K.
1. Si g est nilpotente, alors le centre de g n’est pas trivial.

2. Si g est nilpotente alors, tout élément X de g est ad—nilpotent, i.e. ad(X) est
un endomorphisme nilpotent de g.
3. Si lalgebre de Lie ad(g) = {ad(W)/ W € g} est une algébre de lie nilpotente

alors g nilpotente
4. Toute sous-algébre ou toul quotient d’une algébre de Lie nilpotente est nilpotent.

5. 51 h est un idéal nilpotent de g contenu dans le centre de g et si algebre de Lie

quotient g|h est nilpotente, alors g est nilpotente.

Démonstration. (1)- C’est une conséquence immeédiate de la définition d’une algébre
de Lie nilpotente.

(2)- Nous avons ad’(X)Y € g(;) pour tout X et Y dans g, et 7 > 1. D’autre part,
puisque g est nilpotente, il existe un entier & tel que gy = {0}, et donc ad®*(X) =0
pour tout X € g, ce qui démontre (2).

(3)- Puisque ad(g)?! = ad(g’), alors nous avons ad(g)’ = {0} = ¢’*! = {0}.

(4)- Si s est une sous-algébre de g, alors s/ C g/ pour tout j. Si h est un idéal de
g et m: g — glh la surjection canonique, on a (g|h)’ C m(g7), de sorte que g soit
nilpotente, alors les algébres s et g|h sont nilpotentes.

(5)- Soit b un idéal nilpotent de g contenu dans le centre de g. Si g|h est nilpotente
alors il existe un entier k pour lequel (g|h)* C b, i.e., g* C h. Alors g"™! = [g,g"] C
lg, ] = {0} puisque b est contenu dans le centre de g. ]

Théoréme 1.4.1 (Théoréeme d’Engel). [17] Soient g une algébre de Lie sur K et
p g — gl(V) une représentation de g dans un espace vectoriel V. de dimension

r =1 sur K. Si p(X) est un endomorphisme nilpotent de V, pour tout X dans g,
Alors
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1. il eziste un vecteur non nul v de V' tel que p(X)v =0, pour tout X € g.

2. il existe une chaine de sous-espace vectoriel Vo ={0} C Vi C--- CV, =V tels
que dim(V;) = j et p(X)V; C V{j_1) pour tout j. Autrement dil, il existe une
base de V' dans laquelle tout endomorphisme p(X) de V, X € g est une matrice

triangulaire supérieure dont tous les éléments diagonaur sont nuls.

3. Si ad(X) est un endomorphisme nilpotent de g pour tout X € g, alors g est

nilpotente.

Corollaire 1.4.1. Soit g une algébre de Lie nilpotent sur K. Il existe une chaine
didéaur de g :

g" = {0} cglC---Cg" =g tels que dim(g’) = j et [g,¢’] C g’ pour tout j
Autrement dit, il existe une base de g dans laquelle tout endomorphisme p(X), X € g

est une matrice triangulaire supérieure dont tous les élément diagonauzr sont nuls.

Démonstration. 11 s’agit d’une reformulation du théoréme de Engel avec V = g et
p = ad. O

1.5 Algébres de lie résolubles
Dans ce qui suit, sauf mention, le corps K est arbitraire

Definition 1.5.1. Soit g une Algébre de Lie sur K. On pose pour tout j > 0, gttt =
(g9, g)], avec g9 = g. La suile décroissante d’idéaus g D g)... D gl) O ...

est appelée la suite dérivée de g.

Definition 1.5.2. Une Algébre de Lie sur K est résoluble si la suite des commutateurs

s’annule & partir d’un certain rang, i.e., s’il existe un entier k > 1 tel que gi® = {0}.

Exemple 1.5.1.

1. Tout Algébre de Lie nilpotente est résoluble, puisque g C g7 pour tout j.

2. L’algeébre de Lie g = aff(R) est de dimension 2. Une base est constituée de deux
éléments X1, Xo vérifiant

(X1, Xo] = Xo.

Ainsi g = RXy, g® = {0}. Donc g est résoluble, mais n’est pas nilpotente.
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3. Soit lalgebre de Lie g = sl(2,K). Elle posséde une base {e, f,h} vérifiant
e, f1=h, [h, f] = =2f, et[h,e]=2e

Ainsi gt = g(1) = 8- Donc g n’est ni nilpotente, ni résoluble.

4. L’algebre de Lie réelle des matrices triangulaires supérieures
g={r e M(n,K), z;; =0sii> j}.
Pour1<k<n-1,
gW ={recg, zy=0sii>j— 2"}

Par suite g*) = {0} si 2871 > n — 1. Ainsi g est résoluble, mais n'est pas

nilpotente.

5. L’algébre de Lie réelle de dimension 3 engendrée par trois éléments A, X et
Y soumis auz seuls crochets non-nuls [A, X] =X =Y et [A,Y] = X 4+ Y est

résoluble mais pas nilpotente.

Proposition 1.5.1. Soit g une algébre de Lie sur K.

1. Sv g est résoluble, tout sous-algebre de g est résoluble. En particulier un idéal

dans une algébre de résoluble est résoluble.
2. Si b est un idéal de g, alors lalgébre quotient glb est résoluble.

3. Si b est un idéal de g tel que b et glb sont résolubles, alors g résoluble.

Démonstration. Soient 7 :g — g/b la surjection canonique et § est une sous-

algébre de Lie de g. II est clair que (g)) = (g/h)¥) et s C gl pour tout j > 0.
Cela prouve (1) et (2).

pour (3), supposons que (g/h)* = {0} et (H)® = {0}. On a (g™®) = (g/h)* = {0}
et g C b, de sorte que g+ C () = {0}. O

Proposition 1.5.2. La somme de tous les idéaux résoluble de g est l'unique idéal

résoluble de g contenant tous les résoluble de g.

Démonstration. 11 suffit de montrer que si h; et hy sont deux idéaux résolubles de g,
alors by +bhs est un idéal résoluble de g. Pour la résolubilité de by +bs, nous appliquons
(2) et (3) de la proposition 1.5.1 a I"isomorphisme (h; + bh2) /b2 =~ b1 /(b1 N h2). O



22 CHAPITRE 1. ALGEBRES DE LIE

Théoréme 1.5.1. ( Théoréme de Lie )[15] Supposons que K soit un corps algébrei-
quement clos de caractérisrtique nulle. Soient g une algébre de Lie sur K et p une
représentation de g dans un espace vectoriel V' non trivial sur K. Si g est résoluble

alors :
1. il existe un vecteur non nul commun & tous les p(X), X € g, i.e il existe une

fonction scalaire )\ :g — K , telle que p(X)v = AN X)v pour tout X € g;

2. il existe une suite Vo = {0} C --- C V, =V de sous-espace vectoriel de V dans
laquelle tous les endomorphisme p(X), X € g, prennent la forme de malrices

triangulaires supérieures.

Corollaire 1.5.1. Soit g une algébre de Lie sur un corps K algébriquement clos de

caractristique nulle.
1. g résoluble si seulement si [g, g] nilpotente ;

2. g est résoluble alors il existe une suite go = {0} C -+ C g, = g d’idéaux de g
telle que pour tout j, dim(g;) = j, g; est un idéal dans g;+1 et gj11/9; est une

algébre de Lie abélienne, i.e., [gj+1,8j+1) C 95

Démonstration. (1)- Si g est résoluble alors, d’aprés le théoréme de Lie, il existe
une base de g dans laquelle ad(X), X € g, prend la forme d’une matrice triangu-
laire supérieure, de sorte que ad[X,Y] = [ad(X), ad(Y')] est une matrice triangulaire
supérieure dont tous les termes diagonaux sont nuls. Ainsi tous les endomorphisme
ad([X,Y]), X, Y € g sont nilpotents. D’aprés le théoréme d’Engel, [g, g] est une al-
gebre de Lie nilpotente. Réciproquement si [g, g] est nilpotente alors elle est résoluble,
et donc g est résoluble puisque gt = [g, g]v—).

(2)- Tl suffit d’appliquer le théoréme de Lie a la reprsentation adjointe de g, i.e., V =g
et p = ad. O]

1.6 Algebres de Lie simples

Definition 1.6.1. Une algebre de Lie est simple si elle est non abélienne et si elle

ne contient pas d’idéaur propres non triviaud.

Exemple 1.6.1. s((2,C) est simple.
En effet, supposons que a # {0} soit un idéal de sl(2,C). Soit v # 0 un élément de a,

et écrivons v = ae+ B f+vh, ot o, 5 et vy ne sont pas tous nuls. Supposons que o # 0.
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Alors d’apres les relations de commutation de s1(2,C), [v, f] = ah—2vf € a, et donc
[[v, fl, f] = —2af € a. Ainsi f € a, et donc h = [e, f] € a el aussi e = %[h,e] € a.
Ainsi o # 0 implique que a = g. Un argument similaire montre que B # 0 implique
a=g.

Enfin, si v # 0, alors [v,e] = —ph + 2ve € a, donc par un argument similaire du

précédent montre que a = g.

1.7 Algebres de Lie semi-simples

Dans ce paragraphe le corps K est un corps de caractéristique nulle et g une algébre
de Lie sur K.

Definition 1.7.1. On appelle radical d’une algébre de Lie g, noté Rad(g) l’idéal
résoluble qui contient tout idéal résoluble de g ( il existe toujours et il est unique voir

proposition 1.5.2).
Exemple 1.7.1. Le radical de l’algébre de Lie sl(n,R) est trivial.

Definition 1.7.2. Une algébre de Lie est semi-simple si elle ne contient pas d’idéauz

résoluble non triviauz, i.e., si Rad(g) = {0}.
Exemple 1.7.2. L’algébre de Lie s0(3) est semi-simple.

Proposition 1.7.1. Soit g une algébre de Lie sur le corps K
1. L’algébre de Lie quotient g/Rad(g) est semi-simple.

Si g est simple alors [g, 9] = g.

Si g est simple alors g est semi-simple.

St g est simple alors le centre de g est trivial.

Si g est simple alors tout idéal de g est semi-simple.

S G A e e

St g est simple alors g est la somme directe de deur idduz semi-simples.
Théoréme 1.7.1. [10] Soient g une algébre de Lie sur K et k la forme de Killing de
g. Les assertions suivantes sont équivalentes :

1. Kk est non-dégénérée.

2. g est semi-simple.
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3. g est une somme directe § = @9, d’idéaur simples de g. Cette décomposition
est unique @ une permutation pres sur les i, et tout idéal de g est une somme

de ces g;.

Exemple 1.7.3. L’algébre de Lie sl(2,R) est semi-simple.

On a déja calculer la matrice associée a la forme de Killing

0 20
K= 2 -4 0
0 0 8

et det k = —32 # 0.

Definition 1.7.3. Une sous-algébre de Lie nilpotente by d’une algébre de Lie g qui

est €égale a son normalisateur dans g est dite sous-algébre de Cartan de g.

Proposition 1.7.2. [10] Une sous-algébre de Cartan d’une algébre de Lie semi-simple

compleze est abélienne.



Chapitre 2

Groupes de Lie

2.1 Définitions et exemples

Definition 2.1.1. Un groupe de Lie est un sous-ensemble non vide, G, satisfaisant

les conditions suivantes :
1. G est un groupe (avec l’élément neutre noté e).
2. G est une variété différentiable.

3. L’application

GxG — G

(91,92) = 195" (2.1)

est C*°.

Il y a aussi une notion de groupe de Lie complexe, dont la définition est obtenue a
partir de la définition ci-dessus en remplacant le mot variété différentiable par le mot

variété analytique complexe et la condition C*> par analytique complexe.

Exemple 2.1.1. 1. L’espace euclidien R™ muni de [’addition vectorielle et [’ensemble
des nombres complexes non nul C* muni de la loi de multiplication sont des groupes
de Lie.

2. Le cercle unité St C C* est un groupe de Lie avec la multiplication induite de C*.
3. Le n-tore T™ qui est une variété peut étre vu comme un ensemble constitué de tous

les n x n matrices diagonales a entrées complexes de module 1, ¢’est-a-dire pour tout
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MeT"”
627ri91 O 0
0 627ri02 0
M = _ , 0, €R
0 0 627ri9n

Ainsi T™ est un groupe et les opérations de groupe, multiplication et inversion matri-
cielles sont clairement C*°. Par conséquent, le n-tore est un groupe de Lie.

4. Le groupe linéaire général réel GL(n,R) , est l'ensemble de toutes les nxn-matrices
réelles inversibles muni de la loi de composition définie par la multiplication usuelle
des matrices. Il est aussi une variété différentiable. Il est facile de voir que les appli-

cations (a,b) — ab et a — a*

sont C*. Donc c’est un groupe de Lie.
De méme GL(n,C), l'ensemble de toutes les nxn-matrices complexes inversibles, est
naturellement un groupe de Lie.

5. Soit G = R* X R, on définit la multiplication sur G par

(a1, 1) - (ag,x2) = (@102, 129 + x1).

Pour cette opération, (1,0) est l’élément neutre de G et (a™', —a™'x) est un élément

inverse pour chaque (a,z) € G. L’associativité est facile a vérifier et il est clair que
la multiplication et Dinverse sont C*°. Par conséquent, G est le groupe de Lie et est
appelé le groupe des déplacements affines de R. Si lon identifie I’élément (a,x) de G
avec le déplacement affine t — at+x, alors la multiplication dans G est la composition

des déplacements affines.

2.2 Algébre de Lie d’un groupe de Lie

Rappelons qu’un champ de vecteurs X sur une variété différentiable M est une appli-
cation qui a tout point p de M fait correspondre un vecteur tangent X, appartenant
aT,(M).

Si le champ de vecteurs X est défini dans un ouvert U, soit p un point de U et soient
X1, T, ..., T, des coordonnées locales dans V', voisinage de p contenu dans U. Pour

tout ¢ € V, le vecteur X, s’exprime par rapport a la base <£> de T,(M) par
‘/q

3o (),



2.2 Algébre de Lie d’un groupe de Lie 27

Les a; sont les composantes du champ de vecteur relativement aux coordonnées
Ty T2y eeey Ty

Le champ de vecteurs X est différentiable dans un voisinage de p, si dans ce voisinage
ai, as, ..., a, sont des fonctions différentiables.

Un tel champ de vecteurs X définit par la formule X (f) = (z — X,(f)) un endo-
morphisme R-linéaire X de C*(U) dans lui-méme qui vérifie la relation X (fg) =
gX(f)+ fX(g). Inversement une telle application définit un unique champ de vec-
teurs.

Soit X et Y deux champs de vecteurs sur un ouvert U d’une variété M. Soit

(X, Y] f= X(Y(S) = Y(X()

I'endomorphisme X oY — Y o X de C®(U). C’est encore un champ de vecteurs. En

effet, si f et g sont deux fonctions C*, on a

(X, Y(fg) = X(Y(fg)) =Y (X(fg))=X(fY(g9)+gY(f) —Y(fX(g9)+9X(f))
= (X(N)Y(9) + fX(Y(9) +X(9)Y(f) +gX(Y(f))
)+ +

~(Y(/)X(g9) + fY(X(9)) +Y(9)X(f) + gY(X(f)))
= f(X(Y(9)) —Y(X(9)) +g(X(Y(f)) = Y(X([)))
= fIX,Y](g) +g[X,Y](f),

si bien que [X,Y] est un champ de vecteurs sur U. On Pappelle le crochet de Lie des

champs de vecteurs X et Y.

Definition 2.2.1. Etant donné un groupe de Lie G, pour tout g € G on définit la
translation a gauche comme Uapplication, l, : G — G, telle que lyx = gz, pour tout
x € G, et la translation & droite comme lapplication, 7, : G — G, tel que ryx = xg™!
pour tout v € G.

Un champs de vecteur X sur G est dite invariant a gauche si pour tout g € G on a
dlyo X =X ol,. (dl, est la différentielle de l, en un point de G).

Remarque 2.2.1. Puisque l'application (2.1) est de classe C*, les applications l, et

rq sont des difféomorphismes, et leurs dérivées jouent un role important.

Proposition 2.2.1. [2/] Soit G un groupe de Lie et g l'ensemble de tous les champs

de vecteurs invariant & gauche sur G.
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1. g est un espace vectoriel, et l’application

g g—>T.G
X — B(X)=X(e) (2.2)
est un isomorphisme de g sur T.G [’espace tangent de G en l’élément neutre e. Par
conséquence, dimg = dimT,.G = dimG.
2. Le crochet de Lie de deuxr champs de vecteurs invariant & gauche est un champs

de vecteurs invariant a gauche.

3. g est une algebre de Lie muni du crochet de Lie sur les champs de vecteurs.
Démonstration. 1. Soient X, Y € g et k € R alors
dlyo(X+Y) = dljoX +dljoY (dl, est lineaire
= Xol,+Yol, (X,Y €g)
= (X+Y)ol,
dly(kX) = kdly(X) = k(X(l)) = (EX)(L).

Ce qui montre que g est un espace vectoriel réel. D'une autre part, 5 est clairement
linéaire par définition.
[ est injective : Soient XY € g avec S(X) = B(Y) alors X(e) = Y(e). Donc pour
g€ G,ona

X(g) = X(ge) = X(ly(e)) = dly(X(e)) = dly(Y (e)) = Y (l4(e)) = Y(ge) = Y (9g).

ce qui implique que X =Y.
[ est surjective : Soit u € T.G et pour g € G définissons X(g) = dl,(u) alors
B(X) = X(e) = dl.(u) = u. X est invariant a gauche puisque pour h € G :

X(In(9)) = X(hg) = ding(u) = dln(dly(u)) = din(X(g))-

Ce qui montre que [ est surjective.

2. Soient g € G et f une fonction C*> dans un voisinage de [,(z) o z € G alors

dly[X,Y](f) = [X,Y](fely)
= X[Y(foly)] =Y[X(foly)]
= Xldl,(Y) ()] = Y]dl(X)(f)]
= XY ()N =YX (L) (f)]
= (XY)({Uy)(f) = (YX)()(f)

= [X,Y](g)(f)-
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Ainsi [X, Y] est invariant & gauche.

3. Elle est immédiate a partir des propriétés du crochet des champs de vecteurs. [J

Definition 2.2.2. L’algebre de Lie d’un groupe de Lie est l’algébre de Lie g des

champs de vecteurs invariants a gauche sur G.

On peut aussi définir I'algébre de Lie d’un groupe de Lie par I'espace tangent en
I’élément neutre T,G de G muni de la structure d’algébre de Lie induite par I'isomor-
phisme (2.2).

Proposition 2.2.2. gl(n,K) avec K = C ou R est l'algébre de Lie de GL(n,K).

Démonstration. Nous allons démontrer le premier cas pour K = R puisque le second
cas i.e., pour K = C peut étre considéré de maniére analogue a partir du premier cas.
Soit g 'algebre de Lie de GL(n,R). Il suffit de prouver qu’il existe un isomorphisme
d’algebre de Lie entre g et gl(n,R). Pour le voir, soit z;; les fonctions de coordon-
nées naturelles sur gl(n, R) qui assignent a chaque matrice sa ij-iéme entrée et soit :

T.(gl(n,R)) — gl(n,R) est I'identification canonique, c¢’est-a-dire si u € T,(gl(n, R)),

a (u = Z u(%)%) = Z u(zij)e;;

ij=1 ij=1

ou e;; est la base standard pour 'espace des matrices.
Alors

a(u)ij = u(zi;).
Mais T.(GL(n,R)) = T.(gl(n,R)) puisque GL(n,R) est un sous-ensemble de gl(n, R).
Ainsi, on peut définir Papplication 8 : g — gl(n,R) par

AX) = a(X(e)).

[ est clairement un isomorphisme d’espaces vectoriels puisque les applications X —
X (e) et o sont des isomorphismes. Done, nous n’avons besoin que prouver pour tout
X, Y €g,

B([X,Y]) = [B(X), BY)].

(5 0 14)(B) = 2;5(AB) = ) _ x5(A)zi;(B)
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ol

A = (2ij(A))ij, B=(25(B));; €G
et puisque Y est un champ de vecteur invariant a gauche alors

(Y(zij))(A) = Ya(zy)
— dlA(}/;)(Z'Z]) = }/;(xij o ZA)

=Y, (Z l’ik(A)fEk;j> = Z$z‘k(A)Ye($kj)

= ink(A)Oé(Ye)kj = Zzzk(A)ﬁ(Y)kﬂ

A partir de ce résultat on peut calculer la 7j-iéme composante de 5([X,Y]) :

BUIX. Y]y = a([X,Y]e)y
= [X,Y]e(wi;)
= Xe(Y(wij)) — Ye(X(24))

- X, (Z xikﬁ(Y)kj> —~Y, (Z i B(X )w)
= > X(@a)BOY ks — > Y (i) B(X )iy

= Z (X)) BY )i — Za(nk)ﬁ(m’ﬂ’

= (BX)B(Y))i; — (BY)B(X))s;
= [B(X), B(Y))lis-

Ainsi § est un isomorphisme d’algébres de Lie. O

2.3 Groupes de Lie des matrices

Definition 2.3.1. Soient M (n,C) [’espace de toutes les n X n-matrices complezes et
(Am) une suite d’éléments de M(n,C). On dit que (A,,) converge vers une matrice
A si chaque élément matriciel de (A,,) converge (quand m — oo) vers l’élément

matriciel correspondant de A (¢’est-a-dire si (Ap)g converge vers Ay pour tout 1 <

k.l <n).
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Definition 2.3.2. Un groupe de Lie matriciel est tout sous-groupe G de GL(n,C)
avec la propriété que, si (A,,) est une suite quelconque de matrices dans G, et (A,)
converge vers une matrice A alors soit A € G, soit A n’est pas inversible. Il est
équivalent de dire qu’un groupe de Lie matriciel est un sous-groupe fermé de GL(n,C)

(Ceci n’est pas nécessairement fermé dans M(n,C)).

Exemple 2.3.1. 1. Le groupe linéaire spécial sur K (K =R ou C), noté SL(n,K),
est le groupe de n X n-matrices inversibles (avec entrées dans K) ayant le déterminant
égal a 1,

SL(n,K)={A € GL(n,K)|det(A) = 1}.

1l est clair que c’est un sous-groupe de GL(n,C). En effet, VA, B € SL(n,K), on a
det(AB™1) = det Adet(B™') = det A(det B) ™' =1

ce qui implique que AB™' € SL(n,K). De plus, si (A,,) est une suite dans SL(n,K)
qui converge vers une matrice A, alors tous les A,, ont le déterminant 1 et A aussi
puisque le déterminant est un fonction continue. Ainsi, SL(n,R) et SL(n,C) sont
des groupes de Lie matriciels.

2. On définit le groupe orthogonal O(n) par
O(n) ={A € M(n,R)|ATA = AAT = I}

ot AT désigne la matrice transposée de A et I, est la matrice identité de taille n.
Il est clair que O(n) est un sous-groupe de GL(n,R) puisque pour toute matrice
A€ O(n), A a comme inverse AT dans O(n) et pour toutes matrices A, B € O(n) ,
on a AB € O(n) puisque

(AB)Y(AB) = B"ATAB = B"I,B = B"B =1,
(AB)(AB)" = ABBT AT = AILAT = AAT = I,,.

Pour voir que O(n) est fermé dans GL(n,R), notons que le singleton qui contient
la matrice identité {In} est fermé dans GL(n,R) et chaque fois que nous avons
ATA =1, dans GL(n,R) alors AAT = I,, et vice-versa. De sorte que O(n) peut étre
eTPTIME comme

{A c GL(TL,R”ATA = ]n}

ou

{A e GL(n,R)|AAT = I}
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Considérons 'application T : M(n,R) — M(n,R) définie par A — ATA. T est
continue puisque les éléments de AT A sont des polynémes d’éléments de A ; a savoir,
B, =31 agiag; ot A = [ay]. Alors O(n) = T-Y({I,}) est fermé dans M(n,R) et
donc fermé dans GL(n,C). Ainsi O(n) est un groupe de Lie matriciel.

Considérons maintenant la restriction de l'application déterminant a O(n), detog, :

O(n) — R et notons que pour toute matrice A € O(n),
[det(A))* = det Adet A = det(A”) det A = det(ATA) = det(I,) = 1.
Cela implique detA = £1 donc on obtient que O(n) = OT(n) U O~ (n) ou
OT(n) ={A € O(n)| det A =1},

O (n) ={A€O(n)| det A= -1}
avec O (n) N O~ (n) = 0.

On définit le groupe orthogonal spécial par :
SO(n) ={A € GL(n,R)| ATA=1, et det A=1} =OT(n)

Il est claire que SO(n) est un sous-groupe de GL(n,R) et est fermé puisque SO(n) =
O(n)NSL(n,R) est l'intersection de deux sous-groupes fermés de GL(n,R) (également
de M(n,R)). Par conséquent, SO(n) est un groupe de Lie matriciel.
Géométriquement, les éléments de O(n) sont soit des rotations, soil des combinaisons
de rotations et de réflexions. Par contre, les éléments de SO(n) ne sont que des
rotations. Ainsi, occasionnellement, nous appelons SO(n) le groupe des rotations.

3. On définit le groupe unitaire U(n) et le groupe unitaire spécial SU(n) par :

Un) = {A€GL(n,C)| A*A=AA* = I,,},

— {A€GL(n,C)| A"A=1,},
= {AeGL(n,C)| AA* =1,}

SU(n) = {A€eGL(n,C)|A*A=1, et det A =1},
= U(n)NSL(n,R).

ot A* désigne l’adjoint de A ((A*);; = Ai; ). U(n) est un sous-groupe de GL(n,C)
puisque pour tout A, B € U(n),

(AB™Y)*(AB™") = (AB*)*(AB*) = BA*AB* = BI,B* = BB* = I,,.
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Aussi SU(n) est clairement un sous-groupe de U(n). Comme dans le cas de O(n),
U(n) est fermé dans M(n,C) et donc fermé dans GL(n,C) puisqu’il s’agit d’une
image inverse de la fonction continue A — A*A d’un ensemble fermé {I,}. SU(n),
qui est lintersection de deuz ensembles fermés, est fermé. Par conséquent, U(n) et
SU(n) sont des groupes de Lie matriciels.

4. Le groupe de Heisenberg Hs est [’ensemble des matrices réelles 3 x 3 de la forme

(2.3)

o O =
S = Q
—_ o o

Il est facile de voir que Hy est un sous-ensemble de GL(n,R) et est fermé par multipli-
cation usuelle de matrices. La matrice identité I3 est clairement dans Hs et I'inverse

de toute matrice de la forme (2.3) est

1 —a ab—t
0 1 —b (2.4)
0 0 1

De plus, la limite de suite de matrices de la forme (2.3) est encore de cette forme. par
conséquent Hz est un groupe de Lie matriciel. Notons qu’on peut regarder le groupe
de Heisenberg Hs comme ['ensemble des triplets de nombres réels (a,b,t) muni de la

loi

(a,b,t).(a", 0 t") = (a+d b+ t+t +ab).

L’élément neutre est (0,0,0) et (a,b,t)"! = (—a, —b, —t + ab).
5. Le groupe SO(n,m) : le sous-groupe de GL(n+ m,R) des (nt+m)x(n+m)-matrices

g telles que det g = 1 et qui préservent la forme bilinéaire sur R™™™ donnée par

<ZY Spm= —T1Y1 — * — TpYn + Tnt1Yn+1 + 0 + TnamYntm

(i.e., tel que < gz, gy >nm=< T,Y >nm pour tout x,y € R"" ).
6. Le groupe des déplacements de l'espace euclidien & n-dimensions M(n) : est l'en-

semble SO(n) x R™ des couples (k,v) muni de la loi

(k,v).(K,0") = (KK, v + k).
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L’élément neutre est (e,0) (e est la rotation unité) et (k,v)~' = (k~', —k~1v). C’est

un groupe qu’on peut réaliser comme groupe de matrices sous la forme suivante :

o k € SO(n) et v e R™.

Definition 2.3.3. Soient G et H deux groupes de Lie.

1. Un homomorphisme de groupes de Lie est une application ¢ : G — H de classe

C*® qui est un homomorphisme de groupes abstraits.

2. Un isomorphisme de groupes de Lie est un homomorphisme de groupes de Lie

¢ : G — H bijectif.

3. Un automorphisme de G est un isomorphisme de G dans lui méme.

Exemple 2.3.2. 1. L’application det : GL(n,C) — C* est un homomorphisme de
groupes de Lie puisque det est de classe C* et det(AB) = det(A) det(B) pour toutes
les matrices A et B € GL(n,C).

cost —sint

2. L’application f : R — SO(2) donnée par f(t) = < ) est un homo-

sint cost

morphisme de groupe de Lie puisque [ est de classe C* et

fst) = (cos(s+t) —sin(s+t)>

sin(s+t)  cos(s+1)

( cosscost —sinssint —sinscost — cosssint >

sin scost + cos ssint cosscost —sinssint

coss —sins cost —sint
sin s COS S sint cost

= [f(s)f (D).
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2.4 Algebre de Lie du groupe de Lie des matrices

Rappelons que si X est une n X n-matrice alors ’exponentielle de X est donnée par

la série entiére convergente

2 X3 e X"

—I+X+?+§+ ZF (2.5)

n=0

Remarque 2.4.1. Rappelons que la norme de Hilbert-Schmidt de toute matrice X €
M (n,C) est définie par :

1
n 2
X = (Z |$ij|2> (2.6)
ij=1
cette norme satisfait les inégalités suivantes
A+ Bl < [|A] + B
IAB| < [[A[ll| B

La série (2.5) converge uniformément et l’application exponentielle

exp: M(n,C) — M(n,C)

X = X

est continue. En effet, Soit R > 0 alors pour tout X tel que | X|| < R, on a

2T

k=0

(o ¢] o k.
X HX H R

< — < =e" <00
< 2

k=0 k=
ceci implique que la série converge absolument et uniformément sur ’ensemble {|| X || <
R}. Puisque R est arbitraire, la série converge uniformément. Pour la continuité, re-
marquons que X* est une fonction continue de X alors les sommes partielles de la
série sont continues. Puisque la série converge uniformément, alors ’application exp

est continue.

Proposition 2.4.1. [7] Soient X et Y n x n-matrices arbitraires. Alors on
1. =1,.
2. (eX)* =X,

3. X est inversible et (eX)fl =e X,



36 CHAPITRE 2. GROUPES DE LIE

4. e @tAX = X eBX pour tous o et 5 € C.
5.9 XY =YX alors eXTY = eXe¥ = e¥eX.

6. Si C est inversible, alors X0~ = CeXC1L.

Proposition 2.4.2. Pour tout X € M(n,C), on a
det(e¥) = eI,

Démonstration. Si X est diagonalisable avec valeurs propres A\, A, - - , A, alors e*

est diagonalisable avec valeurs propres e, e*2,....e*. Ainsi, Tr(X) = 3. \; et

det(eX) = eMer ... et = ),

Si X n’est pas diagonalisable, on peut ’approximer par des matrices diagonalisables.
m

Definition 2.4.1. [7] Une fonction A : R — GL(n,C) est dite sous-groupe a un
parametre de GL(n,C) si

1. A est continue.

2. A(0) = I,

3. At +s) = A(t)A(s) Vt, s € R.

Théoréme 2.4.1. [7] Si A(.) est un sous-groupe a un paramétre de GL(n,C), alors

il existe une unique n X n-matrice X telle que
A(t) = .

Lemme 2.4.1. [2/] Si G est un sous-groupe de Lie de GL(n,C) (non nécessairement

fermé) et g son algébre de Lie alors Uapplication exponentielle
exp:g— G.
envoie 'algébre de Lie g de G dans G

Proposition 2.4.3. Soit G un sous-groupe de Lie de GL(n,C) et g son algébre de
Lie alors

g={X €gl(n,C), ¥ € G, Vt e R}.

Démonstration. Soit X € gl(n, C) tel que X € G pour tout t € Ralors X € T,G = g

X

puisque a(t) = e'* est une courbe sur G et a(0) = e; o/(0) = X. Inversement, si

X € g alors d’aprés le lemme 2.4.1, !X € G pour tout t € R. O
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La proposition 2.4.3 est utile pour calculer les algébres de Lie des sous-groupes de
Lie de GL(n,C) (y compris les groupes de Lie matriciels). Nous pouvons donner la

définition des algébres de Lie des groupes de Lie matriciels comme suit

Definition 2.4.2. [7] Soit G un groupe de Lie matriciel, ¢’est a dire un sous-groupe
fermé de GL(n,C), Ualgébre de Lie g de G est I’ensemble de toutes les matrices X
telles que e € G pour tout t € R.

De maniére équivalente, X est dans g si et seulement si le sous-groupe a un parameétre
(Définition 2.4.1) engendré par X est dans G. Notons que le simple fait d’avoir eX
dans G ne garantit pas que X est dans g. Méme si G est un sous-groupe de GL(n,C)

X

et pas nécessairement de GL(n,R)), nous n’exigeons pas que e'* soit dans G pour
g

tous les nombres complexes ¢, mais seulement pour tous les nombres réels t.

Théoréme 2.4.2. [7] Soit G un groupe de Lie matriciel, avec g son algébre de Lie.
St X etY sont deux éléments de g, alors on a

1. AXA™! € g pour tout A € G.

2. sX € g pour tout s € R.

3. X+Y eg.

4. XY =YX eg.

Il résulte de ce théoréme que I'algébre de Lie d'un groupe de Lie matriciel est une
algébre de Lie, avec crochet de Lie donné par [X,Y] = XY — Y X.

Proposition 2.4.4. sl(n,C) (resp. sl(n,R)) est l’algébre de Lie de SL(n,C) (resp.
SL(n,R)).

Démonstration. Rappelons que
sl(n,C) ={X € gl(n,C), Tr(X) = 0}.
Si X € sl(n,C) alors Tr(X) = 0, d’aprés la proposition 2.4.2 on a

det(etX) — 6T7”(1§X) — etTr(X) -1

)

Ainsi '* € SL(n,C). Inversement, Si
det(etX) — eT’r(tX) _ 6tTr(X) _ 17

d
Tr(X) = aem(x)\t:o =}
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Proposition 2.4.5. u(n) (resp. su(n) ) est l’algébre de Lie de U(n) (resp. SU(n)).

Démonstration. Rappelons que
u(n) ={X € gl(n,C), X* = —-X} (2.7)

Si X € u(n) alors X* = —X. Ainsi, pour tout ¢ € R,
(etX)—l X X (etX)* (2.8)

ce qui implique que e'* € U(n). Inversement, Si (2.8) est vérifié alors par différentia-
tion par rapport a ¢t en t = 0 on obtient X* = —X. Ainsi, u(n) est Palgébre de Lie de
U(n).

Par analogie pour SU(n) en ajoutant la condition « déterminant 1 » au niveau du

groupe et la condition « trace 0 » au niveau de 'algébre de Lie. O]
Proposition 2.4.6. so(n) est en méme temps l'algébre de Lie de O(n) et SO(n).

Démonstration. Rappelons que
so(n) = {z € gl(n,R), X + X =0}.

Un argument exactement similaire a la preuve de la Proposition 2.4.5 montre qu’une
matrice réelle X appartient a I’algébre de Lie de O(n) si et seulement si X7 = —X.
Puisqu’une telle matrice a Tr(X) = 0 (car les éléments diagonaux de X sont tous
nuls), on voit que tout élément de I’algébre de Lie de O(n) est aussi dans 1’algébre de
Lie de SO(n). O

Proposition 2.4.7. L’algébre de Lie du groupe de Heisenberg Hs est b3, l'espace de

toutes les matrices de la forme

o o O
o O 8
O« W

ou x, vy, z dans R.

Démonstration. Si X est triangulaire strictement supérieure, il est facile de vérifier
que X™ est aussi triangulaire strictement supérieur pour tous les entiers positifs m.

Ainsi, pour X € b3, on a e!® = I + B avec B est triangulaire strictement supérieure,
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ceci montre que X € Hj. Inversement, si /X appartient & Hs pour tout réel ¢, alors

tous les éléments extradiagonaux de e/ sont indépendants de ¢. Ainsi

d
X = aet‘xhzo

sera de la forme en (2.9). O

2.5 Groupe de transformations

Definition 2.5.1. Un groupe de transformations est un triplet (G, X,.), ot G est
un groupe, X est un espace et "." est une action de G sur X, i.e., une application
G x X 3 (g,2) = gx € X satisfaisant :

1. A élément neutre e du groupe G correspond la transformation identique e.x = x.

2. Pour tout g1,92 € G on a (g192).x = g1.(g2.7).

Exemple 2.5.1. 1. Soient | er r les translations a gauche et a droite par un élément
de G, on peut vérifier que (G,G,l), (G,G,r) sont des groupes de transformations.

2. Soit Uautomorphisme intérieur oy qui est une transformation oy : G — G défi-
nie par ay(x) = grg~' ( Uaction adjointe), alors (G,G, ) est aussi un groupe de

transformations.

Soit (G, X,.) un groupe de transformations et x € X, I’ensemble G, de tout les
éléments g € G tel que g.x = x est appelé (sous) groupe stabilisateur de x. I’ensemble
O, :={g.z, g € G} est appelé orbite de x sous l'action de G.

Fixons un ensemble A C X. L’ensemble O, := U,c40, est appelé orbite de A sous
I’action de G.

Definition 2.5.2. Si pour tout x,y € X, il existe g € G tel que g.x =y, alors on dit
que G est un groupe transitif de transformations de X.
Autrement dit, si lorbite de chaque point de X coincide avec X. Dans ce cas X est

appelé espace homogéne.

Théoréme 2.5.1. Soit (G, X) un groupe transitif de transformations de X. Soit G,

le (sous) groupe stabilisateur du point xy € X. Alors (G, X) est isomorphe a (G,G/
Gap)-
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Démonstration. Soit "application gz~5 de G dans X donnée par

p:GeEg—grxgeX.

¢ est surjective puisque (G, X) est transitif.
Définissons maintenant 'application
?(9G,) = &(9)-

Elle est bien définie puisque G,,.z¢o = x¢. Ainsi on a

g'¢(th()) = gh'IO = ¢(gtho)

Il suffit de démontrer que ¢ est injective. Supposons que ¢(hG,,) = ¢(9G,,); donc
h.xo = g.xo et par suite h™'g € G,, et finalement hG,, = gGyy. O

Exemple 2.5.2. Soit G = SO(n) le groupe des rotations autour de l'origine de
l'espace euclidien a n dimensions. Ce groupe agit naturellement sur la sphére unité
S par

SO(n) x S" '3 (g,7) > gx € S

Cette action est transitive puisque un point arbitraire de la sphére peut étre obtenu
en faisant opérer une matrice orthogonale sur le pole nord de la sphére S"~1, i.e. sur

le point p=e, = (0,...,0,1). Le stabilisateur du point p

G, = |, Aesom-1),

est isomorphe a SO(n—1). Alors on conclut que les espaces homogénes (SO(n), S"1)
et (SO(n),SO(n)/SO(n — 1)) sont isomorphes.

2.6 Représentations adjointe et coadjointe d’un groupe
de Lie

Nous avons vu dans I'exemple 2.5.1 qu’un groupe de Lie agit sur lui-méme par ’action
définie par automorphisme intérieur o, : G — G donné par a,(z) = gzg~! ( Paction

adjointe). L’élément neutre est un point fixe par cette action.
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Definition 2.6.1 (Représentation adjointe). La différentielle de cy, notée Ad, : g —

g, définie un automorphisme d’algébre de Lie g. L’application

Ad : G — Aut(g)
g— Ad(g) = Ad,

est appelée la représentation adjointe de G.

Le noyau de la représentation adjointe, Ker(Ad), contient le centre Zg de G et coin-
cide avec Zg si G est connexe.

La différentielle de la représentation adjointe Ad : G — Aut(g) est la représentation
adjointe ad : g — End(g) de 'algébre de Lie g, donnée par X — [X .].

Remarque 2.6.1. Si G C GL(V) est un groupe linéaire agissant sur un espace

vectoriel V', alors la représentation adjoint peut s’écrire :
Ad)Y = gYg™', adyY =[X,Y]=XY -YX, g€G, X,Y €g

Definition 2.6.2 (Représentation coadjointe). Soit g* l'espace vectoriel dual de g.
La repésentation contragrediente Ad" : G — Aut(g*) de la représentation Ad : G —

Aut(g) est appelée la représenation coadjointe de G. i.e.,
(Ad'(9)F, Z) = (F, Ad(g™")Z), VF € g".g € G, Z € g.

Exemple 2.6.1. Soit lalgébre de Lie des déplacements euclidiens du plan m(2) engen-
drée par les trois générateurs P, Q), E tels que [P,Q] = FE, |P,E]| = —Q, [E,Q] = 0.
Dans cette base la matrice de la représentation adjointe de M(2) dans m(2), Ad, pour
g=(0,v1,v9) € M(2) est

1 0 0
Vg cosf —siné

—v; sinf cosf

et donc la matrice de la représentation coadjointe Ad"g dans m(2)* dans la base duale
P, Q*, E* est

1 wvysinf —vycosf vy cosb + vysin b
0 cos —sind

0 sin @ cos



42

CHAPITRE 2. GROUPES DE LIE




Chapitre 3

Contractions d’algébres et de groupes
de Lie

3.1 Contractions d’algébres de Lie

Etant donné un espace vectoriel de dimension finie V' Sur le corps K = R, ou C.

Definition 3.1.1. Soit U :]0, 1] — GL(V), une application continue (GL(V') est le
groupe linéaire de V' ). On définit une famille de nouveauz crochets sur V' en terme

du crochet [.,.] par :
Ve €]0, 1], Va,y €V : [z, y]. = U Uz, Uyl

Pour tout £ €]0, 1] l'algébre de Lie g. = (V,[.,.]c) est isomorphe ¢ g = (V,[., ]).
St la limite
. _ . —1 o
51—1>r-qr-10[x7 y]s = al—l>r-I|-10 U; [Ugl’, Usy] = [$7 y]O
existe pour tout x,y € V alors [z, ylo définit bien un crochet de Lie. L’algébre de Lie
go = (V, ., .Jo) est appelée contraction de l’algébre de Lie g.

Le parametre € est appelé paramétre de contraction.

Le procédé d’obtenir algébre gy a partir de ['algebre g est aussi appelée contraction.

Si une base de V' est fixée, 'opérateur U, est défini par la matrice correspondante. La

définition 3.1.1 peut étre reformulée en termes de constantes de structure
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Definition 3.1.2. Soient C’{fj les constantes de structure de l'algébre de Lie g et (U.)!

(2

les coefficients de la matrice de lopérateur U, dans la base fixée {eq,es,...,e,}. Si la

limate

. i | (rr—INK k. AR
Jim, 3 (AU UD€l =
1,),R=

existe pour tout 7', j’ et k' alors les C’i’?:j, sont les constantes de structure d’une algébre
de Lie gg.

La fonction matricielle U = U(e) est appelée matrice de contraction

Les définitions 3.1.1 et 3.1.2 sont équivalentes. La premiére définition est pratique
pour une considération théorique. La seconde est plus utilisable pour le calcul des

contractions concrétes.

Definition 3.1.3. On dit qu’une contraction de l’algebre de Lie g vers l'algébre de
Lie gy est :
- triviale si go est abélienne.

- impropre st go est isomorphe a g.

Remarque 3.1.1. Si on a lim., ((U:) := Uy et Uy € GL(V) alors il est evident
que la contraction est impropre. De plus, pour engendrer une contraction propre, la
fonction matricielle doit satisfaire a une des deux conditions :

1. La limite lim._,,(U.) n’existe pas, i.e. au moins un des éléments de la matrice U
est singulier quand € — 0.

2. La limite lim._, . o(U.) := Uy existe mais la matrice Uy est singuliére, i.e., det(Uy) =
0.

Ces deux conditions ne sont pas suffisantes pour avoir une contraction propre.

Remarque 3.1.2. Les contractions triviale et itmpropre existent pour n’importe quelle
algébre de Lie. La contraction triviale est facile a obtenir, par exemple, par la matrice
U. = diag(e, e, ...,€).

La matrice identité U. = diag(1, 1, ..., 1) peut étre toujours utilisée comme matrice de
contraction pour la contraction impropre.

L’algébre abélienne se contracte seulement vers elle méme, c’est un cas spécial ot la

contraction est a la fois triviale et impropre.
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Exemple 3.1.1. Soit l'algébre de Lie g = s0(3) @ Ay, de dimension 4, ow s0(3) est
engendeée par les 3 générateurs ey, eq, e3 et Ay est l'algébre de dimension 1 engendrée

par le générateur ey avec les relations de commutation

[61, 62] = €3, [62, 63] = €1, [63761] = €9, (3-1)

leieq] =0, 1=1,2,3.

Considérons la contraction d’algébres de Lie de g = s0(3) @ A1, donnée par la matrice

sutvante
0 0 € 0 —* 0 0 —e2
0 —&3 0 1 0 —3 0 0
U. = avec U; =
0 0 « g2 0 0 0
—g? -1 0 0 0 ' 0

On calcul la transformée des commutateurs :

le1,e0]e = U 'U.ey, U.ey] = UM ([—%ey, —€3ey))
= U '(e%les, e2]) = U1 (0) =0,
[e1,esle = U ' U.er, Uees] = U ([—€%ey, %1 — e4))
= U '(—€*leq, 1] + &2[es, e4]) = U1(0) = 0,
le1,eq]e = U 'U.ey, Ucey] = UM ([—%e4, ce3))
= U (=leq, e5]) = UZ1(0) = 0,
[ea,e3]e = U '[U.ey, Uces] = U ([—eeq, %1 — e4])
= U N—&"[eg, 1] + ¥lea, eq]) = U (ePe3) = ey,
[ea,eq]e = UM U.ey, U.ey] = UY([—3ey,65]) = U (—c*[ea, e5])
= U ' (—c'e3) = e; — s,
[es,ea)e = U 'U.es, U.ey) = U ([ee1 — ey, ge3))
= U-Yey, e3] —eleq, e3]) = U (—%ey) = eo.

Ainsi quand ¢ — +0 on obtient les relations de commutations de lalgébre de Lie Ayq

notamment

le2, €40 = €1, [es, ea]o = €3, [e1,e2]0 =0, [e1,e3]o =0, [e1,e4]o =0, [ea, €3]0 = 0.
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3.2 Types simples de contractions

3.2.1 Contractions d’Inonii-Wigner

Les contractions d’inonii-Wigner présentent un processus de limite entre algeébres de
Lie avec des matrices de contraction de type le plus simple. La plupart des contrac-
tions d’algebres de Lie de basse dimension sont équivalentes & ces contractions. Nous
discuterons de leurs propriétés qui sont essentielles pour une étude plus approfon-
die. Des contractions simples d’Indnii-Wigner ou briévement [W-contractions ont été
proposées pour la premiére fois dans [9] sont générées par des matrices de la forme
U. = Uy + eUj ot Uy et U sont des matrices constantes de taille n x n. On suppose
en outre que la matrice U. peut étre transformée en une forme diagonale spéciale
WUW™' = diag(1+ev,...,1+¢cv,e,...,e) =: D, au moyen des matrices constantes
réguliéres W and W. L’hypothése a été étudiée par Inonii et Wigner eux-mémes.
Sans perte de généralité on peut mettre v = 0. La matrice D, fournit des contrac-
tions de g vers go, o g and go sont des algébres de Lie avec les crochets de Lie
[z,y]" = W[W e, W Yy] et [z,y]g = W[W e, W lylo, qui sont évidemment iso-

morphes a g et go. Par conséquent, on a la définition suivante :

Definition 3.2.1. (/9, 22])

Une contraction est dite de type Inonii-Wigner, notée IW-contraction, sl existe une

base {e;} telle que

I, 0
U. = Ve € [0, 1] (3.2)
0 el,_m

ou Iy, est la matrice identité de dimension k .

Une telle contraction consiste a partager 'ensemble {eq, es, ..., e, } en deux ensembles

{e1, €9, ...;em} et {emi1, €mia, ..., e, }. Donc pour iy, j; = 1,....m, is, 50 =m+1,...,n
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on a
m 1 n
_ E k1 E k2
[ei1 ) ejl]g - Ou ]1€k1 6 Ci17j1 Cka
k1=1 ky=m+1
n
_ E k1 E )
[ei17ej2]5 = ¢ CZ]_ jgekl + 07,1,_]2
k1=1 ko=m+1
n
o _ 2 k1 ko
leir €3], = € E :012]2€k1 t+e § : Cinja Cha
k=1 ky=m+1
Ces relations sont convergentes ssi C*2 = 0. Par conséquent, les éléments de base

11 .71
€1, €9, ..., e, engendrent une sous algebre h de ’algébre initiale g, c’est 'unique condi-
tion pour que la contraction existe. Toutes les constantes de structure C’k de ’algébre
resultante go sont faciles a calculer :

Ok — ok Ck2 — Ok =0, ko — 0,

Zla]l 1 .71 21 .71 117]1 Zl’.72

Ckz — (k2 Ckl Okz =0,

11,J2 11,727 12,J2 12,J2

2.1717.17]'{71 = 17 -, m, i?aj27k2 =m + 17 wy
Ainsi on a

Proposition 3.2.1. Si go est une IW-contraction de g qui laisse invariant la sous-
algebre b de g alors gy a la structure de somme semi-directe ) B a, ou a est un
ideal abélien engendré par la base complémentaire choisie de §y. La sous algébre by est

isomorphe a Ualgébre quotient go/a.

Propriétés des IW-contractions ([0, 22, 12]) :

1. Chaque sous algébre h de l'algébre de Lie g peut étre utilisée pour obtenir une
[W-contraction de g. Les sous algébres triviales correspondent aux IW-contractions
impropres (h = g) ou triviales (h = {0}).

2. Différents choix de la base complémentaire de la base de h ou le remplacement de
b par une sous algébre équivalente de g donnent la méme algébre contractée a un
isomorphisme preés.

3. Si b est un idéal de g alors go = h @ a avec [h,a] = 0.

3. La répétition de la IW-contraction suivant la méme sous algeébre h donne aussi

I’algébre gq.
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Exemple 3.2.1. L’algébre de Lie m(2) des déplacements euclidiens du plan est une
IW-contraction de 'algébre de Lie s0(3).

Rappelons que Ualgébre de Lie m(2) des déplacements euclidiens du plan, engendrée

par les 3 générateurs ey, ey et es avec les relations de commutation avec
les, e1] = ea, [e2, €3] = €1, [e1,e2] =0,
et l’algebre de Lie s0(3), l'algébre du groupe des rotations de dimension 3, engendrée
par les 3 générateurs ey, ey et e avec les relations de commutation
le1, e2] = e3, [ea, €3] = €1, [es, e1] = ea.
St on considere
1 00

U.=1 0 ¢ 0 (3.3)
0 0 ¢

alors

[e1, €2]e = €3 — [e1, €] = e3

e, €1]le = €2 — [e3, e1]o = €g

[e2, €3] = %1 — e, €3]0 = 0.
Ici h =R{e1} et a=R{ey, e3}.

Remarque 3.2.1. Il est connu que les IW-contractions n’épuisent pas toutes les
contractions possibles méme dans le cas des algébres de Lie de dimension 3.

Les IW-contractions de ’algébre de Lie de dimension 3 des rotations s0(3) donnent
seulement une contraction propre et non triviale vers l'algébre m(2). En méme temps,
il existe une contraction propre de $0(3) vers l’algébre de Heisenberg bz et elle n’est

pas obtenue par une IW-contraction.

3.2.2 Contractions selon Saletan

Saletan [22] a entamer une étude plus générale en considérant la classe de toutes les

contractions linéaires par rapport au paramétre de contraction.

Definition 3.2.2. [22] Une réalisation d’une conlraction avec une fonction matri-
cielle qui est linéaire par rapport au parameétre de contraction est appelée contraction

(linéaire) de Saletan. Une telle contraction est notée S-contraction.
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Les S-contractions sont obtenues par les matrices de la forme
Ue) =u+ ew,

ol w est une matrice réguliére constante et pour avoir une contraction propre u est
nécessairement une matrice singuliére constante ainsi, sans perdre de généralité, on
peut supposer que w est égale a la matrice identité.

La méthode de Saletan consiste a utiliser une décomposition convenable de V' (I’espace

vectoriel sous-jacent a I’algébre de Lie g) de la forme
V =Vg & WV,

ou Vi et Viy sont des sous-espaces u-invariants définis d’une maniére naturelle de telle
fagon que u soit surjective sur Vg et nilpotente sur Vy '.
La condition nécessaire et suffisante pour que l'algébre gg soit contractée par la fonc-

tion matricielle linéaire U, est [22]

u([ux,y}]v + [:E7uy]N - U[ﬂf,y]N) = [ux,uy]N. (34)

Alors le crochet de Lie de I’algébre contractée go est donnée par

[ZL’, y]O = U_I[UZE, uy]R + [UZL‘, y}N + [l‘, uy]N - U[ZE, y]N' (35)

Ici [, |g et [, |n désignent les projections du crochet de Lie [, | sur les sous-espaces

Vg et Vi, respectivement, qui ne sont pas, en général, des crochets de Lie.

Remarque 3.2.2. 1. La matrice de toute contraction linéaire a une limite bien dé-
finie en € = 0. C’est pourquoi au contraire & la définition générale des contractions,
dans le cas d’une S-contraction sa fonction matricielle U, peut étre supposé définie sur
Vintervalle fermé [0,1]. Il convient alors de représenter la matrice U, sous la forme
Us = (1 —e)Uy + €Uy, ot Uy et Uy sont les valeurs de U, en e =0 et € = 1, respec-
tivement. Par définition de matrice de contraction, la matrice Uy est non singuliére,

et, pour des contractions propres, la matrice Uy est nécessairement singuliére.

1. Pour tout endomorphisme u de V/, il existe un entier naturel non nul g, appelé indice de Riesz,

tel que

V 2 Im(u) D Im(u?) O ... D Im(ud) = Im(u?™) = ...

0 C Ker(u) C Ker(u?) C ... C Ker(u?) = Ker(u??) = ...

On pose alors Im(u?) = Vg, Ker(u?) = Vy et I'on a la décomposition de Fitting [20], V = VR ® V.
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1l existe des reparamétrages spécifiques qui préservent la classe des contractions de

Saletan [22]. Soit U. = B + €A la matrice d’une contraction de Saletan. On fize

A > 1 et on considere la fonction malricielle U, sur Uintervalle [0, (1 + N7 au lieu
de [0,1]. Puis

3

B+aA:(1—As)B+a(A+>\B):(1—>\a)<B+1 (A+>\B)).

— AE

Le facteur (1 — \e) n’est pas indispensable puisque sa limite en ¢ = 0 vaut 1. En

€
1-Xe

supprimant ce facteur et en notant par €', on obtient la fonction matricielle
linéaire bien définie
L, =B+¢&(A+AB),¢ €10,1],

qui réalise la méme contraction de Saletan que U..
2. Levi-Nahas [11] étend la notion de contractions de Saletan en considérant les

contractions singuliéres. Dans ce cas, l'isomorphisme U, a la forme suivante
_ 2
U. =cu+cw,

avec u et w satisfaisant les hypothéses de Saletan.
3. Toute IW-contraction est évidemment une S-contraction et il existe des S-contractions

qui ne sont pas équivalentes aux IW-contractions, comme le montre [’exemple suivant :

Exemple 3.2.2. Considérons l’algébre de Lie g = s0(3) ® Ay ot s50(3) est engendeée
par les 3 générateurs ey, eq,e3 et Ay est l'algébre de dimension 1 engendrée par le

générateur eq avec les relations de commutation

[61762] = €3, [62763] = €1, [63, 61] = €3, (3-6)

[ei,ed ::0, 1= 1,2,3.
Soit la matrice de contraction U(e) = el + (1 — e)u ot u est telle que
uey = uey =0, ues = f:=e4+e3, uf =0.

Remarquons que u*¢ = 0 V¢ € g, donc on peut prendre Vg = {0} et Vy =g et on a
u?[z,yly = 0. Maintenant ug est un espace de dimension 1 donc [ux,uy|y = 0. De
plus, ug est engendré par f, et [f,&] s’écrit comme combinaison linéaire de e et ey

pour tout £ € g. Puisque ue; = uey = 0 alors u (ux, y|y + [z, uy]n) = 0 et par suite
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la condition (3.4) est bien vérifiée.

Puisque Vg = {0} alors l’équation (3.5) devient
[z, ylo = [uz, yln + [z, uyly — [uz, uy]n, (3.7)

donc en utilisant les relations en (3.6) on trouve le crochet de Lie

[61, 62]0 =—f, [62763]0 = €1, [63, 61]0 = €3, (3-8)

[62'7]0]0 = 07 1= 172a3
qui définit une algebre de Lie go.

Remarque 3.2.3. E. J. Saletan a montré dans [22] que cette algébre de Lie ne peut

jamais étre obtenue par une I'W-contraction de s0(3) @ A;.

3.2.3 Contractions d’Inonii-Wigner généralisées

Une autre généralisation de la classe des IW-contractions est donnée par generali-
zed IW-contractions (ou Doebner—Melsheimer contractions) [5, 8, 12] pour laquelle
la condition de la linéarité est remplacée par la condition que les éléments de la
matrice de contraction diagonalisée soient des puissances (entiéres) du paramétre de
contraction. A savoir, la matrice de contraction d’une contraction IW généralisée a
la forme U, = W‘ldiag(sal,aaz, .., e W, ot W et W sont des matrices constantes
non singuliére et aq, s, ..., a, € Z. Comme dans le cas des contractions [IW simples,

en raison de la possibilité de remplacement des algébres de Lie par des algebres iso-

morphes on peut supposer que W=w=1I , et on a la définition suivante :

Definition 3.2.3. Une contraction est dite contraction d’Inénii-Wigner généralisée

ot contraction de Doebner-Melsheimer [5, 8] si la matrice de contraction est donnée

par
e 0 o 0
0 g*2 0
U. =
0 0 ce. gOn

ol oy, Qg ..., Oy € L.
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Les constantes de structure de I'algebre contractée go sont données par la formule

~k o . aita—ay Yk
Cp; = lim g™ CF,
e—+0

de plus les contraintes
ata; >, 44, k=1,2..,n si C#0

sont nécessaires et suffisantes pour I'existence de la IW-contraction généralisée par la

matrice de contraction U, et
Ck.=CF. s aj+a;=ap et CF. =0 sinon
J T 4] g 3k (2 :

Remarque 3.2.4. [l est clair que les IW-contractions sont des cas particuliers des

IW-contractions généralisées avec a; € {0, 1}.

Exemple 3.2.3. L’algébre de Lie de Heisenberg hs de dimension 3 définie par les
relations de commutation [e1, ea]o = e3, [e3,€1]0 = 0 et [eq, €3]0 = 0 peut étre obtenue

par une IW-contraction généralisée de so0(3) en prenant

3.3 Critéres nécessaires de contraction

Dans ce paragraphe, nous allons donner quelques critéres nécessaires de contractions
d’algébres de Lie. Nous allons utiliser les notations suivantes (cf. Chapitre 1) :

- Der(g) est l'algébre des dérivations de g

- Z(g) est le centre de g,

- Rad(g) est le radical de g,

- N(g) est le nilradical de g (i.e., I'idéal nilpotent qui contienne tout idéal nilpotent
de g),

- na la dimension maximale des sous algébres abéliennes de g,

- na; la dimension maximale des idéaux abéliens de g,

- kg la forme de Killing de g,

- 74 la dimension de la sous algébre de Cartan,
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- adg et ad*g les représentations adjointe et coadjointe de g,

g’ =g,0'=1g,0" et g0 =g, 9" =[g""), 9"V},

- g0y = {0}, 9¢)/9a-1) est le centre de g/gq-1), I € N.

- Si g est une algebre de Lie résoluble (resp. nilpotente), rs(g) (r,(g)) désigne le rang
de résolubilité (nilpotence) de g, i.e., le nombre minimal [ tel que g = {0} (g' = {0}).

Théoréme 3.3.1. [16] Si g — go est une contraction propre, alors on a
1) dim Dergy > dim Derg ;

2) na(go) = nal(g);

3) dim Z(go) > dim Z(g) ; de plus dim goqy > dim gy, | € N;

4) dim g¥ < dim g®, 1 € N;

5)dim g' <dim g¢', | € N;

6) dim Rad(go) > dim Rad(g) ;

7) dim N(go) > dim N(g) ;

8) nai(go) = nai(g) ;

9) rgy >1g;

10) rang ad go < rang ad g, rang ad* go < rang ad* g ;

11) rang kg, < TANG K ;

12) go est unimodulaire si g ’est aussi;

13) Si g est une algébre de Lie résoluble alors gy est aussi résoluble et r5(go) < 75(9) ;

14) Si g est une algébre de Lie nilpotente alors go est aussi nilpotente et r,(go) <

n(9)-

3.4 Contraction des algébres de Lie réelles de dimen-
sion 3

Nous utilisons la liste compléte des classes non isomorphes d’algébres de Lie réelles

de dimension 3, qui a été construit par Mubarakzyanov [15] et légérement améliorés
dans [18, 19].



CHAPITRE 3. CONTRACTIONS D’ALGEBRES ET DE GROUPES
54 DE LIE

1) 3A1 ~ R3: [61, 62] = [62,63] = [63,61] =0

Abélienne, unimodulaire.

np=9, ny=3, na=3, k=0,
= 0.

rg = 3, Typ =Tg = 1, tr(adv)

2) Az1 D Aq: le1, ea] = €1, [e2, €3] = [e3,e1] =0
décomposable, résoluble.
np =4, nz=1, na=2, K=z,

rg =2, rs =2, tr(ad,) = —vs.

3) Asy1 = bs: €2, €3] = e1, [e3,e1] = [e1,e2] =0
Heisenberg, indécomposable, nilpotente, unimodulaire.
np=06, ny=1, ng =2, k=0,

rg =3, rn,=rs=2, tr(ad,) =0.

4) Aga: le1,e3] = e1, [e2,e3] =e1 + e, [e1,€2] =0
indécomposable, résoluble.
np=4, ny =0, na=2, Kk=2w3Y3,

rg =1, ry =2, tr(ad,) = —2vs.

5) Agzg: [61, 63] = €1, [62,63] = €y, [61, 62] =0
indécomposable, résoluble.
np=06, ny =0, ng =2, K= 2x3y3,

re =1, r, =2, tr(ad,) = —2vs.

6) A:Zzlﬁ [e1,e3] = e1, [e2,e3] = —ey, [e1,€2] =0
indécomposable, résoluble, unimodulaire.
np=4, ny =0, na=2, K=2r3Y3,
re =1, r, =2, tr(ad,) =0.

7) Ag ,: le1, e3] = e1, [ea,e3] = aeq, [e1,e2] =0,0 < Ja|] <1
indécomposable, résoluble.
np=4, ng=0, ng=2, k= (1+a?)xsys,
re =1, rs =2, tr(ad,) = —(1+ a)vs.

8) Ag,s ~m(2):  [es,e1] = eq, [ea,e3] = e, [e1,62] =0
indécomposable, résoluble, unimodulaire.
np=4, nyg =0, na=2, K= —2x3Y3,

rg =1, ry =2, tr(ad,) = 0.
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9) Ag_5: [e1, €3] = bep — eq, [ea,e3] = €1 + bea, [e1,e2] =0, >0
indécomposable, résoluble.
np=4, ny=0, na=2, k=2(*—1)x3ys,
rg =1, ry =2, tr(ad,) = —2bvs.

10) sl(2,R): [er,es] = e1, [e2,e3] = €3, [e1,e3] = 2ey
indécomposable, simple, unimodulaire.
np =3, nz =0, na =1 r=-22z3y1 — T2y + 221Y3),
rg =1, tr(ad,) = 0.

11) s0(3): le1, e2] = e3, [e2,e3] = e1, [es,e1] = ey
indécomposable, simple, unimodulaire.
np=3, nz=0, na=1, k= =2(z1y1 + T2y2 + T3Y3),
rg =1, tr(ad,) = 0.

Contractions

Toutes les contractions ( propres et non triviales) possibles d’algébres de Lie réelles

de dimension 3 sont données par la liste suivante [10] :

1) ’ A1 AL — A3.1‘

10 -1 e 00 e 0 —1
Uo=101 0 060 |=10=¢€¢ O
00 1 0 01 0 0 1
par rapport aux relations de commutation ci-dessus.
2) ’A3.2 — Asza
-1 0 O e 00 — 0
Ue = 0O 1 O 010 |= 0 1 ;
0 0 —1 0 0 ¢ 0 —e

ou bien en utilisant la matrice de contraction
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[e)
o O

g2
Us=1| 0
0

S M

3

par rapport aux relations de commutation ci-dessus.

3) ’AS.I — A3

1 00 1 00 100
Us=| 0 1 1 00 |=10¢€¢1],
0 01 0 01 001
ou bien par la matrice de contraction
e 0 O
Us=| 0 &2 0
0 0 1
par rapport aux relations de commutation ci-dessus
4) |Ag, — Az
l—a 1 0 e 00 (I—a)e 1 0
U. = 0 10 010 |= 0 10
0 01 0 0 ¢ 0 0 ¢

par rapport aux relations de commutation ci-dessus.

5) Ag5 — A3'1

U. =

o O M
S = O
o O

par rapport aux relations de commutation ci-dessus.

6) 5[(2, R) — Ag']_
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010 0
Us=12 00 =| 2
001 1 0 0
par rapport aux relations de commutation ci-dessus.
7) A3.1 — A;i
0 0 e 00 0
Ues = 0 010 |= 0
0 —1 0 00 1 -1 0
par rapport aux relations de commutation ci-dessus.
8) | Azy — AJ,
0 0 % e 00 0 %
U= 010 0 ¢ 0 |= 0
10 3 001 e 0 3
9) 50(3) — A3.1
e2 00
U, = 0 0
0 0 ¢

par rapport aux relations de commutation ci-dessus.

10) | Az, — A2,

o

U. =

SO O M
S M
_ o O

par rapport aux relations de commutation ci-dessus.
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Remarque 3.4.1. 1. Seules les contractions propres directes sont présentées ici. Rap-

pelons qu’une contraction de g a go s’appelle directe s’il n’y a pas d’algebre g, telle
que g1 % g, g1 % 9o, § est contractée a g, et g1 est contractée a go. L’algébre g est
nécessairement contractée en gy st g est contractée en g1 et g1 est contractée en g.

2. Toute contraction continue d’une algebre de Lie réelle de dimension 3 est équi-
valente a une contraction IW généralisée avec des puissances positives du paramétre
de contraction. De plus, seule la contraction s0(3) — As1 est non équivalente & une

contraction d’Inoni- Wigner simple.

3.5 Contractions de groupes de Lie

Definition 3.5.1 (|17], page 137). Un groupe local est un espace topologique dans
lequel les axiomes de groupe ne sont satisfaites que pour des éléments suffisamment

proches de [’élément neutre.

Definition 3.5.2. [1/] Soit G un groupe local et G° un groupe topologique. On dit que
G° est une contraction de G s’il existe un voisinage V de l’élément neutre e de G tel

que V2 = {gh| g,h € V} est bien défini, et une famille d’applications différentiables
F.:V? = G°% €€]0,1]

tels que

i. F. est un difféomorphisme de V* sur F.(V?) pour tout £ €0, 1].

ii. Pour toul gy € G° alors Jey €]0,1] tel que, pour toul € < &y, go € F.(V), i.e.
F'(go) est bien défini et appartient a V lorsque € < €.

iii. F.(e) est Iélément neutre de G° pour € €]0,1],

w. Si g,h € GY alors gh = lim._o F.(F-'(g) = (h)).

€

Remarque 3.5.1. La contraction d’algebres de Lie associée a la contraction du groupe
de Lie est :

U. = (dFS>€G ‘89— 0o

U. est une application linéaire et inversible pour tout ¢ €]0,1] et
lim U [U7 2, U7 y) = [2, 9l

pour tout x,y € go-
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Proposition 3.5.1. Le groupe de Heisenberg G° = Hj est une contraction du groupe

des déplacements euclidiens du plan G = M(2).

Démonstration. Considérons le groupe G = R x R? muni de la loi
(0,v).(6/,0") = (046" ,v+ Kk(O)) (3.9)

ou

k(9) = ( C?S(Q) — sin(#) ) '
sin(f) cos(0)

Ce groupe est le revétement simplement connexe du groupe M(2) = SO(2) x R? =

R /277 x R? muni de la loi (@ désigne la classe de 6) :

(0,0).(0",0") = (0 +6,v+ k(O)W)

ou k(0) = k(6).
On peut écrire le produit (3.9) sous la forme
(0, v1,v9).(0", 07, 05) = (0 + 6, v1 + v cos(B) — vy sin(B), vy + v} sin(6) + v cos(6))
Soit V= V2 =G et F.((0,v)) = F.((0,v1,v2)) = (£ 6,1 v, & vy)
Les conditions i., ii. et iii. de la définition sont évidemment vérifiées.
Maintenant la condition iv. est

lim FL(F7H((0,v1,v0)). N6, 0, 0h))) = lim F.((e0, evy, %vy). (e, v}, e20)))
e—

e—0

= lin% F.(e(0 +0'),ev; + ev] cos(el) — vy sin(eh), e*vy + v sin(ef) + e*vh cos(eh))
e—

= lir%(e + 6, v + v cos(e0) — evhsin(eh), vy + £ 1] sin(ed) + vh cos(eh))
E—

= (0+0 v+, v+ vh+00) = (0,v1,v2).(0',0],05) (le produit sur G° = Hs).

]

Proposition 3.5.2. Le groupe GY = M(n) est une contraction du groupe G =
SOy(n,1) ( la composante conneze de l'identité du groupe SO(n,1)).

Démonstration. D’aprés la décomposition de Cartan chaque élément g € G peut

s’écrire sous la forme g = k.p(ty,...,t,) avec k € K ~ SO(n) et p(ty,...,t,) =



CHAPITRE 3. CONTRACTIONS D’ALGEBRES ET DE GROUPES
60 DE LIE

exp{d i1 tjMjni1} ot M, est le générateur non-compact d’une rotation hyper-

bolique dans le (j, n+1)-plan.

Tout élément de GO peut s’écrire sous la forme k.r(ty,...,t,), k € SO(n) et r(ty,...,n)
est une translation par le vecteur ¢ = (¢, ..., t,) € R™.

soit V = V? = G et F.(k.p(t)) = k.r(: t). Les conditions i.,ii. et iii. de la définition
sont vérifices.

Maintenant la condition iv. s’écrit

liH(l) FE(Fgl(k(l)-T(t(l))).Fgl(k(z).r(t@))))
e—

= lir%Fa(kr(l).p(st(l)).k(z).p(st(Q)))
e—

= lim FL(kW k@ (@) p(etW) £® p(et?))

e—0

D’autre part, si on note par € I'algébre de Lie de K et p = Span{M;,+1,j =1,...,n}
(qui n’est pas une sous-algébre de so(n, 1) l'algébre de Lie de G) alors [¢,p] C p et

[b,p] C &
On a

(k(2))—1p(5t(”)).k(2).p(gt@)) = exp (6Ztgl)(k(2))_le,n+1k(2)> p(gt(z))
j=1

or

(k(Q))_le,n-i-lk(Q) = Z kjiMi7n+1
=1

et par suite
(K?) p(et @)k = p(e(k®)TeD).
De plus, 'approximation & I'ordre 1 en € donne
p(e(k®) W) p(et®) o p(e(®) Tt + )
on obtient donc

lim F.(F7 (RO (D). F @ (62)) = EOK@ 5 (K@) TeD) 4 ¢2)

e—0

qui est égal & kM (). k@ r(t?). Ce qui confirme la condition iv. et donc M (n) est

une contraction de SOy(n,1). O
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