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Introduction

Le processus de contraction d'algèbres de Lie permet d'obtenir à partir d'une algèbre

de Lie donnée une nouvelle algèbre de Lie, non isomorphe à la première mais en

préservant une partie de sa structure. Il procède par des transformations singulières

des éléments in�nitésimaux (les générateurs) et, en ce sens, il peut être généralisé

à d'autres structures algébriques. A partir d'une algèbre de Lie g, on construit une

famille paramétrée de nouvelles algèbres, gε, isomorphes à g pour ε 6= 0, mais pas

pour la valeur singulière ε = 0. Les algèbres gε, pour ε 6= 0, sont obtenues par re-

paramétrisations de g. Ensuite, la nouvelle algèbre de Lie émerge comme la limite

singulière ε→ 0 du paramètre.

Le concept de contractions d'algèbres de Lie introduit par Segal [23] de manière heu-

ristique n'est devenu bien connu qu'après l'invention des contractions d'Inönü-Wigner

(IW-contractions) dans [9]. Saletan [22] a donné la première dé�nition générale rigou-

reuse des contractions et a étudié toute la classe des contractions à un seul paramètre

ε pour lesquelles les éléments de la matrice de contraction correspondante sont des

polynômes du premier degré en ε. Dans cette classe, les contractions introduites par

E. Inönü et E. P. Wigner représentent un cas particulier très simple.

Dans une autre direction les contractions d'Inönü-Wigner généralisées dites aussi

contractions de Doebner-Melsheimer [5] représentent l'extension non linéaire en ε des

contractions d'Inönü-Wigner normales. Des contractions de type plus général ont été

envisagées par d'autres auteurs, en particulier, sous le nom de transitions [21] ou sous

le nom de dégénérescences [1, 2, 3, 4, 16].

Les contractions d'algèbres de Lie sont apparues dans di�érents domaines de la phy-

sique et des mathématiques, par exemple dans l'étude des représentations, des inva-

riants et des fonctions spéciales.

Le plan de ce mémoire est le suivant :

Le chapitre 1 concernera des généralités sur les algèbres de Lie : dé�nitions, exemples,

notions de sous-algèbres de lie, d'idéaux, de constantes de structure, de centre, de cen-
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tralisateur et normalisateur, de morphismes, de représentations. Les trois dernières

sections de ce chapitre sont consacrées à la classi�cation des algèbres de Lie, no-

tons qu'il existe di�érentes familles importantes d'algèbres de Lie qui permettent leur

classi�cation : les algèbres de Lie résolubles (l'exemple typique est l'ensemble des ma-

trices triangulaires supérieures), les algèbres de Lie nilpotente (l'exemple typique est

l'ensemble des matrices triangulaires supérieures strictes), et les algèbres de Lie semi-

simples ; un exemple important est l'algèbre de Lie sln(K), c'est-à-dire l'ensemble des

matrices carrées d'ordre n de trace nulle muni du crochet [A,B] = AB−BA. Chaque
notion dans ce chapitre est illustrée par un nombre important d'exemples.

Dans le chapitre 2, nous présentons quelques dé�nitions sur la théorie des groupes

de Lie. Notons que les algèbres de Lie sont naturellement associées aux groupes de

Lie, qui jouent un rôle aussi bien en mathématique qu'en physique (ils décrivent la

symétrie continue). La classi�cation des algèbres de Lie est utilisée de façon cruciale

pour l'étude des groupes de Lie.

Dans le troisième chapitre, nous donnons la dé�nition des contractions d'algèbres de

Lie puis nous citons quelques types simples de contractions notamment les contrac-

tions d'Inönü-Wigner, de Saletan et d'Inönü-Wigner généralisées. Ainsi nous donnons

les critères nécessaires de contractions, ensuite nous présentons toutes les contractions

possibles des algèbres de Lie réelles de dimension 3. Finalement nous terminons ce

chapitre par donner la dé�nition des contractions de groupes de Lie inspirée de celles

de Mickelsson-Niederle [14], ensuite comme exemples nous montrons que le groupe

de Heisenberg H3 de dimension 3 est une contraction du groupe des déplacements

euclidiens du plan M(2), ainsi que le groupe M(n) est une contraction du groupe

SO0(n, 1) ( la composante connexe de l'identité du groupe SO(n, 1)).

Il est évident que ce mémoire n'a aucune prétention d'innovation, il est la synthèse

de plusieurs papiers scienti�ques.



Chapitre 1

Algèbres de Lie

Dans ce chapitre K = R ou C.

1.1 Notion d'algèbre de Lie

De�nition 1.1.1. Une algèbre de Lie g = (V, [., .]) de dimension n sur K est un

espace vectoriel V de dimension n sur K, muni d'un produit bilinéaire antisymétrique

[., .], appelé crochet de Lie, tel que :

[x, x] = 0 ∀x ∈ V. (l'antisymétrie) (1.1)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ V. (1.2)

(l'identité de Jacobi)

Proposition 1.1.1. La condition (1.1) est équivalente à la condition

[x, y] = −[y, x]

pour tout x, y ∈ V .

Démonstration. Supposons que [x, y] = −[y, x] pour tout x, y ∈ V . Alors

[x, x] = −[x, x]⇒ [x, x] = 0 pour tout x ∈ V.

Inversement, si [x, x] = 0 pour tout x ∈ V , alors pour tout x, y ∈ V ,

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]

⇒ [x, y] = −[y, x].
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Proposition 1.1.2. L'identité de Jacobi (1.2) est équivalente à

[[x, y] , z] + [[y, z] , x] + [[z, x] , y] = 0

pour tout x, y, z ∈ V .

Démonstration. C'est facile de démontrer, il su�t de multiplier l'identité de Jacobi

par −1 et utiliser la proposition précédente

Considérons maintenant quelques exemples d'algèbres de Lie :

Exemple 1.1.1.

1. Tout espace vectoriel V sur K muni du crochet [x, y] = 0, x, y ∈ V , est une algèbre

de Lie sur K. On voit que les conditions (1.1) et (1.2) sont immédiatement satisfaites.

2. Considérons une algèbre associative A et dé�nissons un crochet de Lie sur A en

posant

[x, y] := xy − yx

Nous devons véri�er que [x, y] est bien un crochet de Lie sur A. Or l'antisymétrie est

évidente, et la véri�cation de l'identité de Jacobi est un calcul simple

[x, [y, z]] + [y, [z, x]] + [z, [x, y]]

= x(yz − zy)− (yz − zy)x+ y(zx− xz)

−(zx− xz)y + z(xy − yx)− (xy − yx)z

= xyz − xzy − yzx+ zyx+ yzx− yxz

−zxy + xzy + zxy − zyx− xyz + yxz

= 0.

Le crochet de Lie [x, y] dé�ni ci-dessus est appelé le commutateur de x et y.

3. Soit V un espace vectoriel sur K. L'algèbre gl(V ) des endomorphismes de V munie

du crochet [A,B] = A ◦B −B ◦A, est une algèbre de Lie de dimension dim(V )2 sur

K. Par exemple si V = Cn (resp. V = Rn), alors gl(V ) s'identi�e naturellement à

l'algèbre de Lie gl(n,C) (resp. gl(n,R)) des matrices carrées d'ordre n à coe�cients

complexes (réels). Le crochet de Lie sur gl(n,C) (resp. gl(n,R)) est alors dé�ni par

le produit matriciel : [A,B] = A.B −B.A.
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La base standard de gl(n,C) (resp. gl(n,R)) est l'ensemble des toutes les matrices eij

(ayant 1 en (i, j)-ème position et 0 ailleurs), où 1 ≤ i, j ≤ n. Puisque eijekl = δjkeil,

il s'ensuit que les crochets de Lie de gl(n,C) (resp. gl(n,R)) par rapport à sa base

standard sont donnés par :

[eij, ekl] = δjkeil − δliekj.

4. L'espace vectoriel sl(n,K) des matrices carrées d'ordre n, à coe�cients dans K et

de trace nulle muni du crochet [x, y] = xy − yx, est une algèbre de Lie sur K de

dimension n2 − 1, appelée algèbre linéaire spéciale.

Prenons tout les eij (i 6= j), ainsi que tout les hi = eii− ei+1,i+1 (1 ≤ i ≤ n− 1), pour

un total de n2 − n + (n − 1) matrices. Nous considérerons toujours cela comme une

base standard de sl(n,K).

En particulier, pour n = 2, l'algèbre de Lie sl(2,R) est engendrée par les matrices

h = h1 = e11 − e22 =

(
1 0

0 −1

)
, e = e12 =

(
0 1

0 0

)
, f = e21 =

(
0 0

1 0

)

avec les relations de commutations suivantes

[e, f ] = h, [h, f ] = −2f, et [h, e] = 2e.

5. L'algèbre de Heisenberg de dimension 3 est l'ensemble des matrices de la forme
0 x z

0 0 y

0 0 0


où x, y, z dans R muni du crochet des matrices, est une algèbre de Lie et possédant

une base {X1, X2, X3}

X1 =


0 1 0

0 0 0

0 0 0

 , X2 =


0 0 0

0 0 1

0 0 0

 , X3 =


0 0 1

0 0 0

0 0 0


véri�ant

[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0.



6 CHAPITRE 1. ALGÈBRES DE LIE

6. L'algèbre m(2) des déplacements euclidiens du plan est l'ensemble des matrices de

la forme 
0 −θ a

θ 0 b

0 0 0


où θ, a, b dans R muni du crochet des matrices, est une algèbre de Lie et possédant

une base {e1, e2, e3}

e1 =


0 0 1

0 0 0

0 0 0

 , e2 =


0 0 0

0 0 1

0 0 0

 , e3 =


0 −1 0

1 0 0

0 0 0


véri�ant

[e3, e1] = e2, [e2, e3] = e1 et [e1, e2] = 0.

7. L'algèbre de Lie aff(R) composée de toutes les matrices carrées d'ordre 2 réelles

dont la deuxième ligne est nulle. Les deux éléments

X1 =

(
1 0

0 0

)
, X2 =

(
0 1

0 0

)

forment une base et on a [X1, X2] = X2.

8. L'algèbre de Lie d'un groupe de Lie G (voir Chapitre 2 pour la dé�nition d'un

groupe de Lie) est l'ensemble de tous les champs de vecteurs invariants à gauche sur

G, le crochet étant le crochet des champs de vecteurs.

De�nition 1.1.2. Une algèbre de Lie g est abélienne si [x, y] = 0 pour tout x et y

dans g.

Exemple 1.1.2.

1. Tout espace vectoriel V sur K est muni d'une structure d'algèbre de Lie abélienne

sur K.

2. Toute algèbre de Lie de dimension 1 sur K est abélienne.
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1.1.1 Sous-algèbres de Lie

De�nition 1.1.3. Une sous-algèbre de Lie d'une algèbre de Lie g est un sous espace

vectoriel s de g stable par le crochet de Lie i.e. [s, s] ⊂ s ou encore, pour tout x ∈ s

et y ∈ s on a [x, y] ∈ s.

Exemple 1.1.3.

1. L'espace vectoriel réel des matrices carrées d'ordre n triangulaires supérieures

(ou inférieures ) est une sous algèbre de Lie.

2. L'algèbre de Lie aff(R) est une sous-algèbre de Lie de gl(2,R).

Proposition 1.1.3. L'algèbre de Lie sl(n,K) (K = R ou C) est une sous-algèbre de

Lie de gl(n,K).

Démonstration. Rappelons que

sl(n,K) = {x ∈ gl(n,K), T r(x) = 0}.

Donc il su�t de montrer que Tr([x, y]) = 0 pour x, y ∈ sl(n,K). Soit x, y ∈ sl(n,K).

Alors on a

Tr([x, y]) = Tr(xy − yx) = Tr(xy)− Tr(yx) = Tr(xy)− Tr(xy) = 0.

Proposition 1.1.4. L'espace des matrices anti-symétriques sur le corps K, donné

par

so(n,K) = {x ∈ gl(n,K), xT + x = 0}.

est une sous-algèbre de Lie de gl(n,K).

Démonstration. Il su�t de montrer que ([x, y])T + [x, y] = 0 pour x, y ∈ so(n,K).

Soit x, y ∈ so(n,K). Alors on a

([x, y])T + [x, y] = (xy − yx)T + xy − yx

= yTxT − xTyT + xy − yx

= (−y)(−x)− (−x)(−y) + xy − yx

= yx− xy + xy − yx

= 0.
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Remarque 1.1.1 (La sous-algèbre de Lie de so(3) = so(3,R)). On note par Rx, Ry

et Rz respectivement les trois matrices
0 0 0

0 0 −1

0 1 0

 ,


0 0 1

0 0 0

−1 0 0

 ,


0 −1 0

1 0 0

0 0 0

 ,

ce sont des "rotations in�nitésimales" de R3 autour des axes des x, y, z respective-

ment.

Clairement, elles forment une base pour so(3) = so(3,R) ( l'algèbre de Lie des

matrices d'ordre 3 réelles anti-symétriques) ; elles sont aussi une base, sur C, pour
so(3,C). En utilisant le crochet dé�ni par le produit matriciel, on véri�e que

[Rx, Ry] = Rz, [Ry, Rz] = Rx, [Rz, Rx] = Ry.

Proposition 1.1.5. Soit S une matrice carrée non-singulière (inversible) sur K et

g := {x ∈ gl(n,K), SxTS−1 = −x}.

Alors g est une sous-algèbre de Lie de gl(n,K). De plus, g ⊂ sl(n,K).

Démonstration. Il est très facile de véri�er que g est un sous-espace de gl(n,K). Ce

qui est important est de prouver que g est stable par le crochet de Lie dans gl(n,K).

Autrement dit, nous devons prouver que [x, y] ∈ g dès que x et y sont dans g.

Soit x, y ∈ g,

S([x, y]T )S−1 = S((xy − yx)T )S−1

= S(yTxT − xTyT )S−1

= S(yTxT )S−1 − S(xTyT )S−1

= (SyTS−1)(SxTS−1)− (SxTS−1)(SyT )S−1)

= (−y)(−x)− (−x)(−y)

= yx− xy

= −[x, y].

ce qui montre que [x, y] appartient à g.

Pour tout x ∈ g, on a

Tr(SxTS−1) = Tr(−x) = −Tr(x).
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D'autre part, on a

Tr(SxTS−1) = Tr(xTSS−1) = Tr(xT ) = Tr(x).

Ce qui donne

Tr(x) = −Tr(x).

Ainsi

Tr(x) = 0,

et par suite g et une sous-algèbre de sl(n,K).

Remarque 1.1.2. Si on pose S = In dans la proposition 1.1.5, alors on obtient

l'algèbre de Lie so(n,K).

Exemple 1.1.4. Soit Jn la matrice carrée d'ordre 2n donnée par

(
0 In

−In 0

)
.

Si nous appliquons la proposition 1.1.5 à S = Jn, alors nous obtenons l'algèbre de Lie

symplectique sp(n,K), donnée par

sp(n,K) = {x ∈ gl(n,K), Jnx
TJ−1n = −x}.

Exemple 1.1.5. Soit n = p + q, où p, q ∈ Z+. Si dans la proposition 1.1.5, S est la

matrice carrée d'ordre p+ q donnée par

Ip,q =

(
−Ip 0p×q

0q×p Iq

)
.

alors on obtient la sous-algèbre de Lie

so(p, q,K) = {x ∈ gl(p+ q,K), Ip,qx
T I−1p,q = −x}

de sl(p+ q,K).

Lorsque K = R, cette algèbre de Lie est notée simplement par so(p, q). Notons que

so(p, 0,K) = so(0, p,K) = so(p,K).

On rappelle que l'adjoint d'une matrice complexe x est la matrice x∗ = xT .
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Proposition 1.1.6. Soit S une matrice carrée non-singulière sur C et

g := {x ∈ gl(n,C), Sx∗S−1 = −x}.

Alors g est une sous-algèbre de Lie de gl(n,C). De plus, g ⊂ sl(n,K).

Démonstration. La preuve est assez similaire à celle de la proposition 1.1.5.

Exemple 1.1.6. Dans la proposition 1.1.6, si S = In, alors on obtient l'algèbre de

lie

u(n) = {x ∈ gl(n,C), x∗ = −x} (1.3)

des matrices anti-hermitiennes. Si on considère l'intersection de cette algèbre de Lie

avec sl(n,C) on obtient l'algèbre de Lie

su(n) = u(n) ∩ sl(n,C)

des matrices anti-hermitiennes de trace nulle.

Ici, on a utilisé le fait que l'intersection de deux sous-algèbres de Lie d'une algèbre

de Lie g est une sous-algèbre de Lie de g, qu'on peut facilement véri�er.

Exemple 1.1.7. Si n = p + q et si, dans la proposition 1.1.6, S = Ip,q, alors on

obtient la sous-algèbre de lie

u(p, q) = {x ∈ gl(p+ q,C), Ip,qx
∗Ip,q = −x} (1.4)

de gl(p+ q,C). L'intersection u(p, q) ∩ sl(p+ q,C) est notée par su(p, q).

1.1.2 Idéaux dans les algèbres de Lie

De�nition 1.1.4. Un sous espace vectoriel s d'une algèbre de Lie g est un idéal de

g si [s, g] ⊂ s. i.e., pour tout x ∈ s et y ∈ g on a [x, y] ∈ s.

Exemple 1.1.8.

1. L'algèbre de sl(n,R) est un idéal de gl(n,R).

2. Le sous espace vectoriel [g, g] =
〈
{[x, y]/ x, y ∈ g}

〉
est un idéal de g.

3. L'espace vectoriel des matrice triangulaires supérieure ( resp inférieure) dont

les termes diagonaux sont nuls est un idéal de l'algèbre de Lie de matrice trian-

gulaire supérieure ( resp. inférieure).
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Remarque 1.1.3. Tout idéal d'une algèbre de Lie g est une sous-algèbre de g. En

particulier l'idéal [g, g] appelé l'algèbre de Lie dérivée ( ou commutant de g).

Remarque 1.1.4. Il est facile de voir que si s et s′ sont deux Idéaux d'une algèbre

de Lie g, il en est de même de s+ s′, s ∩ s′ et [s, s′].

1.1.3 Centre d'une algèbre de Lie

De�nition 1.1.5. Soit g une algèbre de Lie sur K le centre Z(g) de g est dé�nie par

Z(g) = {x ∈ g/ [x, y] = 0 (∀y ∈ g)}.

Exemple 1.1.9.

1. Si g est une algèbre de Lie abélienne alors Z(g) = g.

2. Le centre de l'algèbre de Lie so(3) est trivial. Il en est de même pour le centre

de aff(R).

3. Le centre de gl(n,K) est l'ensemble des matrices scalaires i.e., Z(gl(n,K)) ' K.

4. Le centre de sl(n,K) es trivial.

1.1.4 Centralisateur et normalisateur

De�nition 1.1.6. Soit E un sous-ensemble d'une algèbre de Lie g. Le normalisateur

(resp. centralisateur) Ng(E) (resp. Zg(E)) de E dans g est dé�ni par {x ∈ g|[x,E] ⊂
E} (resp. {x ∈ g|[x,E] = 0}).

En particulier si E est un sous-espace vectoriel de g alors Zg(E) ⊂ Ng(E).

Exemple 1.1.10.

1. Si E est le sous espace vectoriel de g = gl(2,K) engendré par la matrice(
0 1

0 0

)
alors :

Zg(E) =

{(
a b

0 a

)
/a, b ∈ K

}
⊂ Ng(E) =

{(
a b

0 c

)
/a, b, c ∈ K

}

2. Si E est le sous espace vectoriel de g = sl(2,K) engendré par la matrice(
1 0

0 −1

)
alors : Zg(E) = Ng(E) =

{(
a b

0 −a

)
/a ∈ K

}
.
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Remarque 1.1.5. 1. Le normalisateur d'une sous-algèbre de Lie s de g est une

sous-algèbre de Lie de g qui contient s comme idéal.

2. Le centralisateur d'un sous-ensemble de g est une sous-algèbre de g.

1.2 Constantes de structure

Soit g une l'algèbre de Lie de dimension n ≥ 2 sur K. Fixons une base {e1, e2, ..., en}
de g, en tant que espace vectoriel sur K. Nous avons donc

[ei, ej] =
n∑
k=1

Ck
i,jek i, j = 1, ..., n (1.5)

où Ck
i,j ∈ K.

De�nition 1.2.1. Les constantes Ck
i,j, 1 ≤ i, j, k ≤ n sont appelées les constantes de

structure de g relativement à la base {e1, e2, ..., en}.

Exemple 1.2.1.

1. Si g est une algèbre de Lie abélienne,alors ses coe�cients de structure sont tous

nuls relativement à toute base de g.

2. Les constantes de structure de l'algèbre de Lie so(3) relativement à la base

{X1, X2, X3} sont donnés par : C3
1,2 = C1

2,3 = C2
3,1 = 1.

3. Pour l'algèbre de Lie aff(R), notons X1 = X et X2 = Y . Alors les constantes

de structure de cette algèbre, relativement à la base {X1, X2}, sont C2
2,1 = 1.

Proposition 1.2.1. Le crochet de Lie [., .] dé�nit une algèbre de Lie de dimension

n si et seulement si les constantes de structure véri�ent les n [(n2 ) + (n1 )] conditions

d'antisymétrie.

Ck
[i,j] := Ck

i,j + Ck
j,i = 0 i, j, k = 1, 2, 3, ..., n (1.6)

et les n (n3 ) relations quadratiques

n∑
l=1

C l
i,jC

m
k,l + C l

j,kC
m
i,l + C l

k,iC
m
j,l = 0. i, j, k,m = 1, 2, 3, ..., n (1.7)
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Démonstration. Ces relations ne sont rien d'autre que l'écriture en terme de Ck
i,j des

axiomes de la dé�nition d'une algèbre de Lie. En e�et,

1. pour k �xé et i, j = 1, 2, 3, ..., n le nombre de conditions (1.6) est égal à (n2 ) si i 6= j

et il est égal à (n1 ) si i = j. Alors pour k �xé le nombre de conditions (1.6) est égal à

(n2 ) + (n1 ).

En revanche si k varie dans {1, 2, 3, ..., n} alors le nombre de conditions (1.6) est égal

à n [(n2 ) + (n1 )] =
n2 (n+ 1)

2
.

2. Pour m �xé et i, j, k = 1, 2, 3, ..., n le nombre de conditions (1.7) est (n3 ) . Si m varie

dans {1, 2, 3, ..., n} alors le nombre de conditions (1.7) est égal à n (n3 ) .

L'ensemble des constantes
{
Ck
i,j

}
satisfaisant (1.6), (1.7) peut être considéré comme

une sous variété W n ⊂ Kn3
de dimension

dimW n ≤ n3 − n2 (n+ 1)

2
=
n2 (n− 1)

2
. (1.8)

En e�et, notons par En l'espace de tous les ensembles
{
Ck
i,j

}
satisfaisant (1.6), comme

En ⊂ Kn3
il est claire que

dimEn = n3 moins le nombre d'équations ”Ck
[i,j] = 0”

= n3 − n2 (n+ 1)

2
=
n2 (n− 1)

2
.

Puisque W n ⊂ En alors

dimW n ≤ dimEn =
n2 (n− 1)

2
.

Remarque 1.2.1. On a dimW 2 = 2, dimW 3 = 6 et pour n ≥ 3 l'inégalité (1.8) est

stricte.



14 CHAPITRE 1. ALGÈBRES DE LIE

1.3 Morphismes d'algèbre de Lie et représentations

1.3.1 Morphisme d'algèbre de Lie

De�nition 1.3.1. Un morphisme d'algèbres de Lie est une application linéaire T :

g −→ h qui respecte les crochet de Lie, i.e T ([x, y]) = [T (x), T (y)] pour tout x, y dans

g.

Il est clair que le noyau (resp. l'image ) d'un morphisme g −→ h d'algèbre de Lie est

un idéal (resp. une sous-algèbre de Lie) de g (resp. h).

Exemple 1.3.1. Si a est un idéal de g, alors la projection naturelle

π : g→ g/a

x 7→ x+ a

est un morphisme d'algèbres de Lie surjective.

1.3.2 Représentations et représentation adjointe

De�nition 1.3.2. Une représentation de g dans un K-espace vectoriel V est un mor-

phisme d'algèbres de Lie φ : g −→ gl(V) (l'algèbre des endomorphismes de V). La
dimension de cette représentation est la dimension de V sur K. La représentation

(φ,V) est �dèle si φ est injective.

De�nition 1.3.3. Une représentation (φ,V) est irréductible si les seuls sous espaces

vectoriels de V qui sont invariants par g sont {0} et V lui même, i.e., (φ,V) est

irréductible si φ(g)W ⊆ W ⇐⇒ W = {0} ou W = V.

Exemple 1.3.2. L'algèbre de Lie gl(n,R) agit naturellement sur l'espace vectoriel

Rn (action d'une matrice réelle carrée d'ordre n sur un vecteur de Rn).

De�nition 1.3.4. Le morphisme d'algèbre de Lie g −→ gl(g) dé�ni par x 7−→ [x, .]

est appelé la représentation adjointe de g et est noté ad. L'identité de Jacobi exprime

précisément le fait que ad respecte le crochet.

Exemple 1.3.3. Considérons l'algèbre de Lie g = sl(2,R)

Les relations de commutations de sl(2,R) sont

[e, f ] = h, [h, f ] = −2f, et [h, e] = 2e.
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Ainsi

ad(h)(e) = 2e+ 0f + 0h, ad(h)(f) = 0e− 2f + 0h, ad(h)(h) = 0e+ 0f + 0h,

ad(e)(e) = 0e+ 0f + 0h, ad(e)(f) = 0e+ 0f + h, ad(e)(h) = −2e+ 0f + 0h,

ad(f)(e) = 0e+ 0f − h, ad(f)(f) = 0e+ 0f + 0h, ad(f)(h) = 0e+ 2f + 0h.

Par conséquent on obtient les matrices ad(h), ad(e) et ad(f)

ad(h) =


2 0 0

0 −2 0

0 0 0

 , ad(e) =


0 0 −2

0 0 0

0 1 0

 ,

ad(f) =


0 0 0

0 0 2

−1 0 0


Exemple 1.3.4. Considérons l'algèbre de Lie so(3) des rotations de l'espace, donc

on a :

ad(Rx) = Rx, ad(Ry) = Ry, ad(Rz) = Rz.

Exemple 1.3.5. Pour l'algèbre de Lie aff(R) nous avons :

ad(X1) =

(
0 0

0 1

)
et ad(X2) =

(
0 0

−1 0

)
.

De�nition 1.3.5. Une algèbre de Lie g est dite unimodulaire si Tr(ad(x)) = 0 pour

tout x ∈ g.

Exemple 1.3.6. Les algèbres de Lie so(3) et sl(2,R) sont unimodulaires.

De�nition 1.3.6. Une dérivation de g est un endomorphisme D de g tel que D([x, y]) =

[D(x), y] + [x,D(y)] pour tous x et y dans g. On notera Der(g) l'ensemble des déri-

vations de g.

Exemple 1.3.7. 1. Si g = V est un espace vectoriel muni d'une structure d'algèbre

de Lie abélienne, alors Der(g) est l'espace vectoriel de tous les endomorphismes de

V .

2. D'après l'identité de Jacobi, l'endomorphisme ad(x) est une dérivation de g pour

tout x ∈ g.
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1.3.3 Forme de Killing

Soit V un espace vectoriel sur K. nous désignons par V ∗ le dual vectoriel de V , i.e.,
l'espace vectoriel des formes sur V . Soient b : V × V −→ K une application bilinéaire

et U un sous espace vectoriel de V .

De�nition 1.3.7. Le radical de b est le sous espace vectoriel

rad(b) = {v ∈ V/ b(v, v′) = 0,∀v′ ∈ V } de V . Nous dirons que b est non-dégénérée (

resp. dégénérée) si le radical de b est trivial ( resp. non trivial).

De�nition 1.3.8. L'orthogonal de U est le sous espace vectoriel

U⊥ = {v ∈ V/ b(v, v′) = 0,∀v′ ∈ U} de V . Nous noterons b |U×U la restriction de b à

U × U .

Proposition 1.3.1.

1. rad(b |U×U) = U ∩ U⊥, si de plus est non dégénérée alors :

2. dim(U) + dim(U⊥) = dimV .

3. U + U⊥ = V ⇐⇒ b|U×U est non dégénérée.

Démonstration. (1)- C'est une simple reformulation des dé�nitions.

(2)- Considérons les application linéaires φ : V −→ V ∗ et ψ : V −→ U∗ dé�nies par

v 7−→ b(v, .). En particulier, Ker(ψ) = U⊥,et φ est un isomorphisme si et seulement

si, b est non-dégénérée. Soit U ′ un sous espace vectoriel de V tel que V = U ⊕ U ′

Tout élément u∗ de U∗ dé�nit un élément v∗ de V ∗ tel que v∗|U = u∗ et v∗|U ′ = 0.

Puisque φ est un isomorphisme, alors il existe v dans V tel que φ(v) = v∗, de sotre

que ψ(v) = u∗, i.e ψ est surjective, et donc dim(V ) = dim(im(ψ)) + dim(Ker(ψ)) =

dim(U) + dim(U⊥).

(3)- C'est une conséquence directe de (1) et (2).

Remarque 1.3.1. Il se peut que b soit non dégénérée mais que sa restriction à U×U
est dégénérée.

Exemple 1.3.8. Soit K = R, V = R2, U = {(x, y) ∈ R2/x = y} et b((x, y), (x′, y′)) =

xx′ − yy′ donc U⊥ = {(x, y) ∈ R2/xt− yt = 0∀t ∈ R}

De�nition 1.3.9. On appelle forme de Killing de l'algèbre de Lie g l'application κ

dé�nie par

κ : g× g→ K

(x, y) 7→ Tr(ad(x) ◦ ad(y))
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Proposition 1.3.2. L'application κ est

1. bilinéaire et symétrique.

2. ad-invariant i.e., κ(ad(x)(y), z) + κ(y, ad(x)(z)) = 0, pour tout x, y, z dans g

avec

3. κ(x, y) = (1/2)(κ(x+ y, x+ y)− κ(x, x)− κ(y, y)), pour tout x, y dans g.

Démonstration. (1) et (3) sont facile à véri�er. Pour (2) on a

ad([x, y]) = [ad(x), ad(y)]

et

Tr(f ◦ g) = Tr(g ◦ f)

donc

κ(ad(x)(y), z) + κ(y, ad(x)(z)) = κ([x, y], z) + κ(y, [x, z])

= Tr(ad([x, y]) ◦ ad(z)) + Tr(ad(y) ◦ ad([x, z]))

= Tr(ad(x) ◦ ad(y) ◦ ad(z)− ad(y) ◦ ad(x) ◦ ad(z)

+(ad(y) ◦ ad(x) ◦ ad(z)− (ad(y) ◦ ad(z) ◦ ad(x))

= Tr(ad(x) ◦ ad(y) ◦ ad(z)− ad(y) ◦ ad(z) ◦ ad(x))

= 0.

Exemple 1.3.9. Considérons l'algèbre de Lie g = sl(2,R)

On a déjà calculer les matrices de ad(h), ad(e) et ad(f). Ainsi la matrice κ associée

à la forme de Killing est donnée par

κ =


κ(e, e) κ(e, f) κ(e, h)

κ(f, e) κ(f, f) κ(f, h)

κ(h, e) κ(h, f) κ(h, h)

 =


0 2 0

2 −4 0

0 0 8


Exemple 1.3.10.

1. Pour tout A etM dans gl(n,R) nous avons ad(A)2(M) = A2M−2AMA+MA2

de sorte que κ(A,A) = 2nTr(A2)− 2(Tr(A))2.

2. En utilisant l'exemple précédent, nous trouvons que κ(A,A) = 2nTr(A2) pour

tout A dans l'algèbre de Lie sl(n,R).
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3. pour l'algèbre de Lie aff(R), nous avons κ(X,X) = 1, κ(X, Y ) = 0 et κ(Y, Y ) =

0.

4. Le radical de la forme de Killing aff(R) est trivial, donc κ est non dégénérée.

5. Considérons l'algèbre so(3) des "rotations in�nitésimales" de l'espace. Nous

trouvons κ(X,X) = −2(a2 + b2 + c2) pour tout X = aRx + bRy + cRz.

1.4 Algèbres de Lie nilpotentes

Dans ce qui suit le corps K est quelconque, en particulier sa caractéristique n'est pas

nécéssairement nulle et il n'est pas nécéssairement algébriquement clos.

De�nition 1.4.1. Soit g une algèbre de Lie sur K. On pose pour tout entier i ≥ 0,

g0 := g et gi+1 = [g, gi] ⊆ gi

La suite décroissante d'idéaux g0 ⊇ g1, · · · ,⊇ gi ⊇ · · · est appelée la suite centrale

descendante de g

Une algèbre de Lie g sur K est nilpotente si la suite centrale descendante s'annule á

partir d'un certain rang, i.e., s'il existe un entier k ≥ 1 tel que gk = {0}.
Si gk−1 6= {0} et gk = {0}, on dit que g est nilpotente de cran (nilindex) k.

Exemple 1.4.1. 1. Tout algèbre de Lie abélienne est nilpotente.

2. L'algèbre de Lie réelle des matrices triangulaires supérieures dont les éléments

diagonaux sont nuls,

g = {x ∈M(n,K, xij = 0 si i ≥ j}.

Pour 1 ≤ k ≤ n− 1,

gk = {x ∈ g, xij = 0 si i ≥ j − k}.

En particulier gn−1 = 0, et g est nilpotente de nilindex n− 1.

3. De même l'algèbre de Lie réelle des matrices triangulaires inférieures, dont les

éléments diagonaux sont nuls, est nilpotente.

4. Soit n un entier naturel non-nul. L'algèbre de Heisenberg g = h2n+1 est l'algèbre

de Lie réelle de dimension 2n + 1 engendrée par 2n + 1 éléments Xi, Yi et Z,

i = 1, . . . , n, soumis aux seuls crochets non-nuls [Xi, Yi] = Z. Ainsi g1 = KZ,
qui est le centre de g, et g2 = {0}. Donc g est nilpotente de nilindex 2.
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De�nition 1.4.2. Une algèbre de Lie nilpotente de dimension n est appelée �liforme

si son nilindex est égal à n− 1.

Exemple 1.4.2. L'algèbre de Lie, notée fn+2 de dimension n+2, dé�nie dans la base

{X0, X1, ...Xn, Y } par
[Y,Xj] = Xj−1, j = 1, 2, ..., n.

est �liforme.

Notons que h3 = f3.

Proposition 1.4.1. Soit g une algèbre de Lie sur K.

1. Si g est nilpotente, alors le centre de g n'est pas trivial.

2. Si g est nilpotente alors, tout élément X de g est ad−nilpotent, i.e. ad(X) est

un endomorphisme nilpotent de g.

3. Si l'algèbre de Lie ad(g) = {ad(W )/ W ∈ g} est une algèbre de lie nilpotente

alors g nilpotente

4. Toute sous-algèbre ou tout quotient d'une algèbre de Lie nilpotente est nilpotent.

5. Si h est un idéal nilpotent de g contenu dans le centre de g et si l'algèbre de Lie

quotient g|h est nilpotente, alors g est nilpotente.

Démonstration. (1)- C'est une conséquence immédiate de la dé�nition d'une algèbre

de Lie nilpotente.

(2)- Nous avons adj(X)Y ∈ g(j) pour tout X et Y dans g, et j ≥ 1. D'autre part,

puisque g est nilpotente, il existe un entier k tel que g(k) = {0}, et donc adk(X) = 0

pour tout X ∈ g, ce qui démontre (2).

(3)- Puisque ad(g)j = ad(gj), alors nous avons ad(g)j = {0} =⇒ gj+1 = {0}.
(4)- Si s est une sous-algèbre de g, alors sj ⊆ gj pour tout j. Si h est un idéal de

g et π : g −→ g|h la surjection canonique, on a (g|h)j ⊆ π(gj), de sorte que g soit

nilpotente, alors les algèbres s et g|h sont nilpotentes.

(5)- Soit h un idéal nilpotent de g contenu dans le centre de g. Si g|h est nilpotente

alors il existe un entier k pour lequel (g|h)k ⊆ h, i.e., gk ⊂ h. Alors gk+1 = [g, gk] ⊂
[g, h] = {0} puisque h est contenu dans le centre de g.

Théorème 1.4.1 (Théorème d'Engel). [13] Soient g une algèbre de Lie sur K et

ρ : g −→ gl(V ) une représentation de g dans un espace vectoriel V de dimension

r = 1 sur K. Si ρ(X) est un endomorphisme nilpotent de V , pour tout X dans g,

Alors
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1. il existe un vecteur non nul v de V tel que ρ(X)v = 0, pour tout X ∈ g.

2. il existe une chaîne de sous-espace vectoriel V0 = {0} ⊂ V1 ⊂ · · · ⊂ Vr = V tels

que dim(Vj) = j et ρ(X)Vj ⊂ V(j−1) pour tout j. Autrement dit, il existe une

base de V dans laquelle tout endomorphisme ρ(X) de V , X ∈ g est une matrice

triangulaire supérieure dont tous les éléments diagonaux sont nuls.

3. Si ad(X) est un endomorphisme nilpotent de g pour tout X ∈ g, alors g est

nilpotente.

Corollaire 1.4.1. Soit g une algèbre de Lie nilpotent sur K. Il existe une chaîne

d'idéaux de g :

g0 = {0} ⊂ g1 ⊂ · · · ⊂ gr = g tels que dim(gj) = j et [g, gj] ⊂ gj−1 pour tout j

Autrement dit, il existe une base de g dans laquelle tout endomorphisme ρ(X), X ∈ g

est une matrice triangulaire supérieure dont tous les élément diagonaux sont nuls.

Démonstration. Il s'agit d'une reformulation du théorème de Engel avec V = g et

ρ = ad.

1.5 Algèbres de lie résolubles

Dans ce qui suit, sauf mention, le corps K est arbitraire

De�nition 1.5.1. Soit g une Algèbre de Lie sur K. On pose pour tout j ≥ 0, g(j+1) =

[g(j), g(j)], avec g(0) = g. La suite décroissante d'idéaux g(0) ⊇ g(1) · · · ⊇ g(j) ⊇ · · ·
est appelée la suite dérivée de g.

De�nition 1.5.2. Une Algèbre de Lie sur K est résoluble si la suite des commutateurs

s'annule à partir d'un certain rang, i.e., s'il existe un entier k ≥ 1 tel que g(k) = {0}.

Exemple 1.5.1.

1. Tout Algèbre de Lie nilpotente est résoluble, puisque g(j) ⊆ gj pour tout j.

2. L'algèbre de Lie g = aff(R) est de dimension 2. Une base est constituée de deux

éléments X1, X2 véri�ant

[X1, X2] = X2.

Ainsi g(1) = RX2, g(2) = {0}. Donc g est résoluble, mais n'est pas nilpotente.
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3. Soit l'algèbre de Lie g = sl(2,K). Elle possède une base {e, f, h} véri�ant

[e, f ] = h, [h, f ] = −2f, et [h, e] = 2e.

Ainsi g(1) = g(1) = g. Donc g n'est ni nilpotente, ni résoluble.

4. L'algèbre de Lie réelle des matrices triangulaires supérieures

g = {x ∈M(n,K), xij = 0 si i > j}.

Pour 1 ≤ k ≤ n− 1,

g(k) = {x ∈ g, xij = 0 si i > j − 2k−1}.

Par suite g(k) = {0} si 2k−1 ≥ n − 1. Ainsi g est résoluble, mais n'est pas

nilpotente.

5. L'algèbre de Lie réelle de dimension 3 engendrée par trois éléments A, X et

Y soumis aux seuls crochets non-nuls [A,X] = X − Y et [A, Y ] = X + Y est

résoluble mais pas nilpotente.

Proposition 1.5.1. Soit g une algèbre de Lie sur K.

1. Si g est résoluble, tout sous-algèbre de g est résoluble. En particulier un idéal

dans une algèbre de résoluble est résoluble.

2. Si h est un idéal de g, alors l'algèbre quotient g|h est résoluble.

3. Si h est un idéal de g tel que h et g|h sont résolubles, alors g résoluble.

Démonstration. Soient π : g −→ g/h la surjection canonique et s est une sous-

algèbre de Lie de g. Il est clair que (g(j)) = (g/h)(j) et s(j) ⊆ g(j) pour tout j ≥ 0.

Cela prouve (1) et (2).

pour (3), supposons que (g/h)(k) = {0} et (h)(l) = {0}. On a (g(k)) = (g/h)(k) = {0}

et g(k) ⊂ h, de sorte que g(k+1) ⊆ (h)(l) = {0}.

Proposition 1.5.2. La somme de tous les idéaux résoluble de g est l'unique idéal

résoluble de g contenant tous les résoluble de g.

Démonstration. Il su�t de montrer que si h1 et h2 sont deux idéaux résolubles de g,

alors h1+h2 est un idéal résoluble de g. Pour la résolubilité de h1+h2, nous appliquons

(2) et (3) de la proposition 1.5.1 à l'isomorphisme (h1 + h2)/h2 ' h1/(h1 ∩ h2).
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Théorème 1.5.1. ( Théorème de Lie )[13] Supposons que K soit un corps algèbrei-

quement clos de caractérisrtique nulle. Soient g une algèbre de Lie sur K et ρ une

représentation de g dans un espace vectoriel V non trivial sur K. Si g est résoluble

alors :

1. il existe un vecteur non nul commun à tous les ρ(X), X ∈ g, i.e il existe une

fonction scalaire λ : g −→ K , telle que ρ(X)v = λ(X)v pour tout X ∈ g ;

2. il existe une suite V0 = {0} ⊂ · · · ⊂ Vr = V de sous-espace vectoriel de V dans

laquelle tous les endomorphisme ρ(X), X ∈ g, prennent la forme de matrices

triangulaires supérieures.

Corollaire 1.5.1. Soit g une algèbre de Lie sur un corps K algébriquement clos de

caract¯istique nulle.

1. g résoluble si seulement si [g, g] nilpotente ;

2. g est résoluble alors il existe une suite g0 = {0} ⊂ · · · ⊂ gr = g d'idèaux de g

telle que pour tout j, dim(gj) = j, gj est un idéal dans gj+1 et gj+1/gj est une

algèbre de Lie abélienne, i.e., [gj+1, gj+1] ⊂ gj.

Démonstration. (1)- Si g est résoluble alors, d'aprés le théorème de Lie, il existe

une base de g dans laquelle ad(X), X ∈ g, prend la forme d'une matrice triangu-

laire supérieure, de sorte que ad[X, Y ] = [ad(X), ad(Y )] est une matrice triangulaire

supérieure dont tous les termes diagonaux sont nuls. Ainsi tous les endomorphisme

ad([X, Y ]), X, Y ∈ g sont nilpotents. D'après le théorème d'Engel, [g, g] est une al-

gèbre de Lie nilpotente. Réciproquement si [g, g] est nilpotente alors elle est résoluble,

et donc g est résoluble puisque g(j) = [g, g](j−1).

(2)- Il su�t d'appliquer le théorème de Lie à la repr±entation adjointe de g, i.e., V = g

et ρ = ad.

1.6 Algèbres de Lie simples

De�nition 1.6.1. Une algèbre de Lie est simple si elle est non abélienne et si elle

ne contient pas d'idéaux propres non triviaux.

Exemple 1.6.1. sl(2,C) est simple.

En e�et, supposons que a 6= {0} soit un idéal de sl(2,C). Soit v 6= 0 un élément de a,

et écrivons v = αe+βf+γh, où α, β et γ ne sont pas tous nuls. Supposons que α 6= 0.
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Alors d'après les relations de commutation de sl(2,C), [v, f ] = αh− 2γf ∈ a, et donc

[[v, f ], f ] = −2αf ∈ a. Ainsi f ∈ a, et donc h = [e, f ] ∈ a et aussi e = 1
2
[h, e] ∈ a.

Ainsi α 6= 0 implique que a = g. Un argument similaire montre que β 6= 0 implique

a = g.

En�n, si γ 6= 0, alors [v, e] = −βh + 2γe ∈ a, donc par un argument similaire du

précédent montre que a = g.

1.7 Algèbres de Lie semi-simples

Dans ce paragraphe le corps K est un corps de caractéristique nulle et g une algèbre

de Lie sur K.

De�nition 1.7.1. On appelle radical d'une algèbre de Lie g, noté Rad(g) l'idéal

résoluble qui contient tout idéal résoluble de g ( il existe toujours et il est unique voir

proposition 1.5.2).

Exemple 1.7.1. Le radical de l'algèbre de Lie sl(n,R) est trivial.

De�nition 1.7.2. Une algèbre de Lie est semi-simple si elle ne contient pas d'idéaux

résoluble non triviaux, i.e., si Rad(g) = {0}.

Exemple 1.7.2. L'algèbre de Lie so(3) est semi-simple.

Proposition 1.7.1. Soit g une algèbre de Lie sur le corps K

1. L'algèbre de Lie quotient g/Rad(g) est semi-simple.

2. Si g est simple alors [g, g] = g.

3. Si g est simple alors g est semi-simple.

4. Si g est simple alors le centre de g est trivial.

5. Si g est simple alors tout idéal de g est semi-simple.

6. Si g est simple alors g est la somme directe de deux idáux semi-simples.

Théorème 1.7.1. [10] Soient g une algèbre de Lie sur K et κ la forme de Killing de

g. Les assertions suivantes sont équivalentes :

1. κ est non-dégénérée.

2. g est semi-simple.
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3. g est une somme directe g = ⊕igi d'idéaux simples de g. Cette décomposition

est unique à une permutation près sur les i, et tout idéal de g est une somme

de ces gi.

Exemple 1.7.3. L'algèbre de Lie sl(2,R) est semi-simple.

On a déjà calculer la matrice associée à la forme de Killing

κ =


0 2 0

2 −4 0

0 0 8


et detκ = −32 6= 0.

De�nition 1.7.3. Une sous-algèbre de Lie nilpotente h d'une algèbre de Lie g qui

est égale à son normalisateur dans g est dite sous-algèbre de Cartan de g.

Proposition 1.7.2. [10] Une sous-algèbre de Cartan d'une algèbre de Lie semi-simple

complexe est abélienne.



Chapitre 2

Groupes de Lie

2.1 Dé�nitions et exemples

De�nition 2.1.1. Un groupe de Lie est un sous-ensemble non vide, G, satisfaisant

les conditions suivantes :

1. G est un groupe (avec l'élément neutre noté e).

2. G est une variété di�érentiable.

3. L'application

G×G → G

(g1, g2) 7→ g1g
−1
2 (2.1)

est C∞.

Il y a aussi une notion de groupe de Lie complexe, dont la dé�nition est obtenue à

partir de la dé�nition ci-dessus en remplaçant le mot variété di�érentiable par le mot

variété analytique complexe et la condition C∞ par analytique complexe.

Exemple 2.1.1. 1. L'espace euclidien Rn muni de l'addition vectorielle et l'ensemble

des nombres complexes non nul C∗ muni de la loi de multiplication sont des groupes

de Lie.

2. Le cercle unité S1 ⊂ C∗ est un groupe de Lie avec la multiplication induite de C∗.

3. Le n-tore T n qui est une variété peut être vu comme un ensemble constitué de tous

les n× n matrices diagonales à entrées complexes de module 1, c'est-à-dire pour tout
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M ∈ T n

M =


e2πiθ1 0 . . . 0

0 e2πiθ2 . . . 0
...

...
. . .

...

0 0 . . . e2πiθn

 , θi ∈ R.

Ainsi T n est un groupe et les opérations de groupe, multiplication et inversion matri-

cielles sont clairement C∞. Par conséquent, le n-tore est un groupe de Lie.

4. Le groupe linéaire général réel GL(n,R) , est l'ensemble de toutes les n×n-matrices

réelles inversibles muni de la loi de composition dé�nie par la multiplication usuelle

des matrices. Il est aussi une variété di�érentiable. Il est facile de voir que les appli-

cations (a, b) 7→ ab et a 7→ a−1 sont C∞. Donc c'est un groupe de Lie.

De même GL(n,C), l'ensemble de toutes les n×n-matrices complexes inversibles, est

naturellement un groupe de Lie.

5. Soit G = R∗ × R, on dé�nit la multiplication sur G par

(a1, x1) · (a2, x2) = (a1a2, a1x2 + x1).

Pour cette opération, (1, 0) est l'élément neutre de G et (a−1,−a−1x) est un élément

inverse pour chaque (a, x) ∈ G. L'associativité est facile à véri�er et il est clair que

la multiplication et l'inverse sont C∞. Par conséquent, G est le groupe de Lie et est

appelé le groupe des déplacements a�nes de R. Si l'on identi�e l'élément (a, x) de G

avec le déplacement a�ne t 7→ at+x, alors la multiplication dans G est la composition

des déplacements a�nes.

2.2 Algèbre de Lie d'un groupe de Lie

Rappelons qu'un champ de vecteurs X sur une variété di�érentiableM est une appli-

cation qui à tout point p de M fait correspondre un vecteur tangent Xp appartenant

à Tp(M).

Si le champ de vecteurs X est dé�ni dans un ouvert U , soit p un point de U et soient

x1, x2, ..., xn des coordonnées locales dans V , voisinage de p contenu dans U . Pour

tout q ∈ V , le vecteur Xq s'exprime par rapport à la base
(

∂
∂xi

)
q
de Tq(M) par

n∑
i=1

ai

(
∂

∂xi

)
q

.
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Les ai sont les composantes du champ de vecteur relativement aux coordonnées

x1, x2, ..., xn.

Le champ de vecteurs X est di�érentiable dans un voisinage de p, si dans ce voisinage

a1, a2, ..., an sont des fonctions di�érentiables.

Un tel champ de vecteurs X dé�nit par la formule X(f) = (x 7→ Xp(f)) un endo-

morphisme R-linéaire X de C∞(U) dans lui-même qui véri�e la relation X(fg) =

gX(f) + fX(g). Inversement une telle application dé�nit un unique champ de vec-

teurs.

Soit X et Y deux champs de vecteurs sur un ouvert U d'une variété M . Soit

[X, Y ] : f 7→ X(Y (f))− Y (X(f))

l'endomorphisme X ◦ Y − Y ◦X de C∞(U). C'est encore un champ de vecteurs. En

e�et, si f et g sont deux fonctions C∞, on a

[X, Y ](fg) = X(Y (fg))− Y (X(fg)) = X(fY (g) + gY (f))− Y (fX(g) + gX(f))

= (X(f)Y (g) + fX(Y (g)) +X(g)Y (f) + gX(Y (f)))

−(Y (f)X(g) + fY (X(g)) + Y (g)X(f) + gY (X(f)))

= f(X(Y (g))− Y (X(g))) + g(X(Y (f))− Y (X(f)))

= f [X, Y ](g) + g[X, Y ](f),

si bien que [X, Y ] est un champ de vecteurs sur U . On l'appelle le crochet de Lie des

champs de vecteurs X et Y .

De�nition 2.2.1. Étant donné un groupe de Lie G, pour tout g ∈ G on dé�nit la

translation à gauche comme l'application, lg : G → G, telle que lgx = gx, pour tout

x ∈ G, et la translation à droite comme l'application, rg : G→ G, tel que rgx = xg−1,

pour tout x ∈ G.
Un champs de vecteur X sur G est dite invariant à gauche si pour tout g ∈ G on a

dlg ◦X = X ◦ lg. (dlg est la di�érentielle de lg en un point de G).

Remarque 2.2.1. Puisque l'application (2.1) est de classe C∞, les applications lg et
rg sont des di�éomorphismes, et leurs dérivées jouent un rôle important.

Proposition 2.2.1. [24] Soit G un groupe de Lie et g l'ensemble de tous les champs

de vecteurs invariant à gauche sur G.
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1. g est un espace vectoriel, et l'application

β : g→ TeG

X 7→ β(X) = X(e) (2.2)

est un isomorphisme de g sur TeG l'espace tangent de G en l'élément neutre e. Par

conséquence, dimg = dimTeG = dimG.

2. Le crochet de Lie de deux champs de vecteurs invariant à gauche est un champs

de vecteurs invariant à gauche.

3. g est une algèbre de Lie muni du crochet de Lie sur les champs de vecteurs.

Démonstration. 1. Soient X, Y ∈ g et k ∈ R alors

dlg ◦ (X + Y ) = dlg ◦X + dlg ◦ Y (dlg est linèaire

= X ◦ lg + Y ◦ lg (X, Y ∈ g)

= (X + Y ) ◦ lg.

dlg(kX) = kdlg(X) = k(X(lg)) = (kX)(lg).

Ce qui montre que g est un espace vectoriel réel. D'une autre part, β est clairement

linéaire par dé�nition.

β est injective : Soient X, Y ∈ g avec β(X) = β(Y ) alors X(e) = Y (e). Donc pour

g ∈ G, on a

X(g) = X(ge) = X(lg(e)) = dlg(X(e)) = dlg(Y (e)) = Y (lg(e)) = Y (ge) = Y (g).

ce qui implique que X = Y .

β est surjective : Soit u ∈ TeG et pour g ∈ G dé�nissons X(g) = dlg(u) alors

β(X) = X(e) = dle(u) = u. X est invariant à gauche puisque pour h ∈ G :

X(lh(g)) = X(hg) = dlhg(u) = dlh(dlg(u)) = dlh(X(g)).

Ce qui montre que β est surjective.

2. Soient g ∈ G et f une fonction C∞ dans un voisinage de lg(x) où x ∈ G alors

dlg[X, Y ](f) = [X, Y ](f ◦ lg)

= X[Y (f ◦ lg)]− Y [X(f ◦ lg)]

= X[dlg(Y )(f)]− Y [dlg(X)(f)]

= X[Y (lg)(f)]− Y [X(lg)(f)]

= (XY )(lg)(f)− (Y X)(lg)(f)

= [X, Y ](lg)(f).
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Ainsi [X, Y ] est invariant à gauche.

3. Elle est immédiate à partir des propriétés du crochet des champs de vecteurs.

De�nition 2.2.2. L'algèbre de Lie d'un groupe de Lie est l'algèbre de Lie g des

champs de vecteurs invariants à gauche sur G.

On peut aussi dé�nir l'algèbre de Lie d'un groupe de Lie par l'espace tangent en

l'élément neutre TeG de G muni de la structure d'algèbre de Lie induite par l'isomor-

phisme (2.2).

Proposition 2.2.2. gl(n,K) avec K = C ou R est l'algèbre de Lie de GL(n,K).

Démonstration. Nous allons démontrer le premier cas pour K = R puisque le second

cas i.e., pour K = C peut être considéré de manière analogue à partir du premier cas.

Soit g l'algèbre de Lie de GL(n,R). Il su�t de prouver qu'il existe un isomorphisme

d'algèbre de Lie entre g et gl(n,R). Pour le voir, soit xij les fonctions de coordon-

nées naturelles sur gl(n,R) qui assignent à chaque matrice sa ij-ième entrée et soit :

Te(gl(n,R))→ gl(n,R) est l'identi�cation canonique, c'est-à-dire si u ∈ Te(gl(n,R)),

α

(
u =

n∑
i,j=1

u(xij)
∂

∂xij

)
=

n∑
i,j=1

u(xij)eij

où eij est la base standard pour l'espace des matrices.

Alors

α(u)ij = u(xij).

Mais Te(GL(n,R)) = Te(gl(n,R)) puisque GL(n,R) est un sous-ensemble de gl(n,R).

Ainsi, on peut dé�nir l'application β : g→ gl(n,R) par

β(X) = α(X(e)).

β est clairement un isomorphisme d'espaces vectoriels puisque les applications X →
X(e) et α sont des isomorphismes. Donc, nous n'avons besoin que prouver pour tout

X, Y ∈ g,

β([X, Y ]) = [β(X), β(Y )].

On a

(xij ◦ lA)(B) = xij(AB) =
∑
k

xij(A)xkj(B)
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où

A = (xij(A))ij, B = (xij(B))ij ∈ G

et puisque Y est un champ de vecteur invariant à gauche alors

(Y (xij))(A) = YA(xij)

= dlA(Ye)(xij) = Ye(xij ◦ lA)

= Ye

(∑
k

xik(A)xkj

)
=
∑
k

xik(A)Ye(xkj)

=
∑
k

xik(A)α(Ye)kj =
∑
k

xik(A)β(Y )kj.

A partir de ce résultat on peut calculer la ij-ième composante de β([X, Y ]) :

β([X, Y ])ij = α([X, Y ]e)ij

= [X, Y ]e(xij)

= Xe(Y (xij))− Ye(X(xij))

= Xe

(∑
k

xikβ(Y )kj

)
− Ye

(∑
k

xikβ(X)kj

)

=
∑
k

X(xik)β(Y )kj −
∑
k

Y (xik)β(X)kj

=
∑
k

α(Xe)ik)β(Y )kj −
∑
k

α(Yik)β(X)kj

= (β(X)β(Y ))ij − (β(Y )β(X))ij

= [β(X), β(Y ))]ij.

Ainsi β est un isomorphisme d'algèbres de Lie.

2.3 Groupes de Lie des matrices

De�nition 2.3.1. Soient M(n,C) l'espace de toutes les n× n-matrices complexes et

(Am) une suite d'éléments de M(n,C). On dit que (Am) converge vers une matrice

A si chaque élément matriciel de (Am) converge (quand m → ∞) vers l'élément

matriciel correspondant de A (c'est-à-dire si (Am)kl converge vers Akl pour tout 1 ≤
k, l ≤ n).
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De�nition 2.3.2. Un groupe de Lie matriciel est tout sous-groupe G de GL(n,C)

avec la propriété que, si (Am) est une suite quelconque de matrices dans G, et (Am)

converge vers une matrice A alors soit A ∈ G, soit A n'est pas inversible. Il est

équivalent de dire qu'un groupe de Lie matriciel est un sous-groupe fermé de GL(n,C)

(Ceci n'est pas nécessairement fermé dans M(n,C)).

Exemple 2.3.1. 1. Le groupe linéaire spécial sur K (K = R ou C), noté SL(n,K),

est le groupe de n×n-matrices inversibles (avec entrées dans K) ayant le déterminant

égal à 1,

SL(n,K) = {A ∈ GL(n,K)| det(A) = 1}.

Il est clair que c'est un sous-groupe de GL(n,C). En e�et, ∀A,B ∈ SL(n,K), on a

det(AB−1) = detA det(B−1) = detA(detB)−1 = 1

ce qui implique que AB−1 ∈ SL(n,K). De plus, si (Am) est une suite dans SL(n,K)

qui converge vers une matrice A, alors tous les Am ont le déterminant 1 et A aussi

puisque le déterminant est un fonction continue. Ainsi, SL(n,R) et SL(n,C) sont

des groupes de Lie matriciels.

2. On dé�nit le groupe orthogonal O(n) par

O(n) = {A ∈M(n,R)|ATA = AAT = In}

où AT désigne la matrice transposée de A et In est la matrice identité de taille n.

Il est clair que O(n) est un sous-groupe de GL(n,R) puisque pour toute matrice

A ∈ O(n), A a comme inverse AT dans O(n) et pour toutes matrices A,B ∈ O(n) ,

on a AB ∈ O(n) puisque

(AB)T (AB) = BTATAB = BT InB = BTB = In,

(AB)(AB)T = ABBTAT = AInA
T = AAT = In.

Pour voir que O(n) est fermé dans GL(n,R), notons que le singleton qui contient

la matrice identité {In} est fermé dans GL(n,R) et chaque fois que nous avons

ATA = In dans GL(n,R) alors AAT = In et vice-versa. De sorte que O(n) peut être

exprimé comme

{A ∈ GL(n,R)|ATA = In}

ou

{A ∈ GL(n,R)|AAT = In}.
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Considérons l'application T : M(n,R) → M(n,R) dé�nie par A 7→ ATA. T est

continue puisque les éléments de ATA sont des polynômes d'éléments de A ; à savoir,

Pn =
∑n

k=1 akiakj où A = [aij]. Alors O(n) = T−1({In}) est fermé dans M(n,R) et

donc fermé dans GL(n,C). Ainsi O(n) est un groupe de Lie matriciel.

Considérons maintenant la restriction de l'application déterminant à O(n), detO(n) :

O(n)→ R et notons que pour toute matrice A ∈ O(n),

[det(A)]2 = detA detA = det(AT ) detA = det(ATA) = det(In) = 1.

Cela implique detA = ±1 donc on obtient que O(n) = O+(n) ∪O−(n) où

O+(n) = {A ∈ O(n)| detA = 1},

O−(n) = {A ∈ O(n)| detA = −1}

avec O+(n) ∩O−(n) = ∅.
On dé�nit le groupe orthogonal spécial par :

SO(n) = {A ∈ GL(n,R)| ATA = In et detA = 1} = O+(n)

Il est claire que SO(n) est un sous-groupe de GL(n,R) et est fermé puisque SO(n) =

O(n)∩SL(n,R) est l'intersection de deux sous-groupes fermés de GL(n,R) (également

de M(n,R)). Par conséquent, SO(n) est un groupe de Lie matriciel.

Géométriquement, les éléments de O(n) sont soit des rotations, soit des combinaisons

de rotations et de ré�exions. Par contre, les éléments de SO(n) ne sont que des

rotations. Ainsi, occasionnellement, nous appelons SO(n) le groupe des rotations.

3. On dé�nit le groupe unitaire U(n) et le groupe unitaire spécial SU(n) par :

U(n) = {A ∈ GL(n,C)| A∗A = AA∗ = In},

= {A ∈ GL(n,C)| A∗A = In},

= {A ∈ GL(n,C)| AA∗ = In}

SU(n) = {A ∈ GL(n,C)| A∗A = In et detA = 1},

= U(n) ∩ SL(n,R).

où A∗ désigne l'adjoint de A ((A∗)ji = Aij ). U(n) est un sous-groupe de GL(n,C)

puisque pour tout A,B ∈ U(n),

(AB−1)∗(AB−1) = (AB∗)∗(AB∗) = BA∗AB∗ = BInB
∗ = BB∗ = In.
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Aussi SU(n) est clairement un sous-groupe de U(n). Comme dans le cas de O(n),

U(n) est fermé dans M(n,C) et donc fermé dans GL(n,C) puisqu'il s'agit d'une

image inverse de la fonction continue A 7→ A∗A d'un ensemble fermé {In}. SU(n),

qui est l'intersection de deux ensembles fermés, est fermé. Par conséquent, U(n) et

SU(n) sont des groupes de Lie matriciels.

4. Le groupe de Heisenberg H3 est l'ensemble des matrices réelles 3× 3 de la forme


1 a t

0 1 b

0 0 1

 (2.3)

Il est facile de voir que H3 est un sous-ensemble de GL(n,R) et est fermé par multipli-

cation usuelle de matrices. La matrice identité I3 est clairement dans H3 et l'inverse

de toute matrice de la forme (2.3) est


1 −a ab− t
0 1 −b
0 0 1

 (2.4)

De plus, la limite de suite de matrices de la forme (2.3) est encore de cette forme. par

conséquent H3 est un groupe de Lie matriciel. Notons qu'on peut regarder le groupe

de Heisenberg H3 comme l'ensemble des triplets de nombres réels (a, b, t) muni de la

loi

(a, b, t).(a′, b′, t′) = (a+ a′, b+ b′, t+ t′ + ab′).

L'élément neutre est (0, 0, 0) et (a, b, t)−1 = (−a,−b,−t+ ab).

5. Le groupe SO(n,m) : le sous-groupe de GL(n+m,R) des (n+m)×(n+m)-matrices

g telles que det g = 1 et qui préservent la forme bilinéaire sur Rn+m donnée par

< x, y >n,m= −x1y1 − · · · − xnyn + xn+1yn+1 + · · ·+ xn+myn+m

(i.e., tel que < gx, gy >n,m=< x, y >n,m pour tout x, y ∈ Rn+m).

6. Le groupe des déplacements de l'espace euclidien à n-dimensions M(n) : est l'en-

semble SO(n)× Rn des couples (k, v) muni de la loi

(k, v).(k′, v′) = (kk′, v + k.v′).
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L'élément neutre est (e, 0) (e est la rotation unité) et (k, v)−1 = (k−1,−k−1v). C'est

un groupe qu'on peut réaliser comme groupe de matrices sous la forme suivante :

g =

(
k v

0 1

)

où k ∈ SO(n) et v ∈ Rn.

De�nition 2.3.3. Soient G et H deux groupes de Lie.

1. Un homomorphisme de groupes de Lie est une application φ : G → H de classe

C∞ qui est un homomorphisme de groupes abstraits.

2. Un isomorphisme de groupes de Lie est un homomorphisme de groupes de Lie

φ : G→ H bijectif.

3. Un automorphisme de G est un isomorphisme de G dans lui même.

Exemple 2.3.2. 1. L'application det : GL(n,C) → C∗ est un homomorphisme de

groupes de Lie puisque det est de classe C∞ et det(AB) = det(A) det(B) pour toutes

les matrices A et B ∈ GL(n,C).

2. L'application f : R → SO(2) donnée par f(t) =

(
cos t − sin t

sin t cos t

)
est un homo-

morphisme de groupe de Lie puisque f est de classe C∞ et

f(s+ t) =

(
cos(s+ t) − sin(s+ t)

sin(s+ t) cos(s+ t)

)

=

(
cos s cos t− sin s sin t − sin s cos t− cos s sin t

sin s cos t+ cos s sin t cos s cos t− sin s sin t

)

=

(
cos s − sin s

sin s cos s

)(
cos t − sin t

sin t cos t

)
= f(s)f(t).
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2.4 Algèbre de Lie du groupe de Lie des matrices

Rappelons que si X est une n× n-matrice alors l'exponentielle de X est donnée par

la série entière convergente

eX = I +X +
X2

2!
+
X3

3!
+ ... =

∞∑
n=0

Xn

n!
. (2.5)

Remarque 2.4.1. Rappelons que la norme de Hilbert-Schmidt de toute matrice X ∈
M(n,C) est dé�nie par :

‖X‖ =

(
n∑

i,j=1

|xij|2
) 1

2

(2.6)

cette norme satisfait les inégalités suivantes

‖A+B‖ ≤ ‖A‖+ ‖B‖

‖AB‖ ≤ ‖A‖‖B‖

La série (2.5) converge uniformément et l'application exponentielle

exp : M(n,C) → M(n,C)

X 7→ eX

est continue. En e�et, Soit R > 0 alors pour tout X tel que ‖X‖ ≤ R, on a∥∥∥∥∥
∞∑
k=0

Xk

k!

∥∥∥∥∥ ≤
∞∑
k=0

∥∥∥∥Xk

k!

∥∥∥∥ ≤ ∞∑
k=0

‖X‖k

k!
≤

∞∑
k=0

Rk

k!
= eR <∞

ceci implique que la série converge absolument et uniformément sur l'ensemble {‖X‖ ≤
R}. Puisque R est arbitraire, la série converge uniformément. Pour la continuité, re-

marquons que Xk est une fonction continue de X alors les sommes partielles de la

série sont continues. Puisque la série converge uniformément, alors l'application exp

est continue.

Proposition 2.4.1. [7] Soient X et Y n× n-matrices arbitraires. Alors on

1. e0 = In.

2.
(
eX
)∗

= eX
∗
.

3. eX est inversible et
(
eX
)−1

= e−X .
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4. e(α+β)X = eαXeβX pour tous α et β ∈ C.
5. Si XY = Y X alors eX+Y = eXeY = eY eX .

6. Si C est inversible, alors eCXC
−1

= CeXC−1.

Proposition 2.4.2. Pour tout X ∈M(n,C), on a

det(eX) = eTr(X).

Démonstration. Si X est diagonalisable avec valeurs propres λ1, λ2, · · · , λn, alors eX

est diagonalisable avec valeurs propres eλ1 , eλ2 ,...,eλn . Ainsi, Tr(X) =
∑

j λj et

det(eX) = eλ1eλ2 · · · eλn = eTr(X).

Si X n'est pas diagonalisable, on peut l'approximer par des matrices diagonalisables.

De�nition 2.4.1. [7] Une fonction A : R → GL(n,C) est dite sous-groupe à un

paramètre de GL(n,C) si

1. A est continue.

2. A(0) = In,

3. A(t+ s) = A(t)A(s)∀t, s ∈ R.

Théorème 2.4.1. [7] Si A(.) est un sous-groupe à un paramètre de GL(n,C), alors

il existe une unique n× n-matrice X telle que

A(t) = etX .

Lemme 2.4.1. [24] Si G est un sous-groupe de Lie de GL(n,C) (non nécessairement

fermé) et g son algèbre de Lie alors l'application exponentielle

exp : g→ G.

envoie l'algèbre de Lie g de G dans G

Proposition 2.4.3. Soit G un sous-groupe de Lie de GL(n,C) et g son algèbre de

Lie alors

g =
{
X ∈ gl(n,C), etX ∈ G, ∀t ∈ R

}
.

Démonstration. Soit X ∈ gl(n,C) tel que etX ∈ G pour tout t ∈ R alors X ∈ TeG = g

puisque α(t) = etX est une courbe sur G et α(0) = e ; α′(0) = X. Inversement, si

X ∈ g alors d'après le lemme 2.4.1, etX ∈ G pour tout t ∈ R.
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La proposition 2.4.3 est utile pour calculer les algèbres de Lie des sous-groupes de

Lie de GL(n,C) (y compris les groupes de Lie matriciels). Nous pouvons donner la

dé�nition des algèbres de Lie des groupes de Lie matriciels comme suit

De�nition 2.4.2. [7] Soit G un groupe de Lie matriciel, c'est à dire un sous-groupe

fermé de GL(n,C), l'algèbre de Lie g de G est l'ensemble de toutes les matrices X

telles que etX ∈ G pour tout t ∈ R.

De manière équivalente, X est dans g si et seulement si le sous-groupe à un paramètre

(Dé�nition 2.4.1) engendré par X est dans G. Notons que le simple fait d'avoir eX

dans G ne garantit pas que X est dans g. Même si G est un sous-groupe de GL(n,C)

(et pas nécessairement de GL(n,R)), nous n'exigeons pas que etX soit dans G pour

tous les nombres complexes t, mais seulement pour tous les nombres réels t.

Théorème 2.4.2. [7] Soit G un groupe de Lie matriciel, avec g son algèbre de Lie.

Si X et Y sont deux éléments de g, alors on a

1. AXA−1 ∈ g pour tout A ∈ G.
2. sX ∈ g pour tout s ∈ R.
3. X + Y ∈ g.

4. XY − Y X ∈ g.

Il résulte de ce théorème que l'algèbre de Lie d'un groupe de Lie matriciel est une

algèbre de Lie, avec crochet de Lie donné par [X, Y ] = XY − Y X.

Proposition 2.4.4. sl(n,C) (resp. sl(n,R)) est l'algèbre de Lie de SL(n,C) (resp.

SL(n,R)).

Démonstration. Rappelons que

sl(n,C) = {X ∈ gl(n,C), T r(X) = 0}.

Si X ∈ sl(n,C) alors Tr(X) = 0, d'après la proposition 2.4.2 on a

det(etX) = eTr(tX) = et T r(X) = 1,

Ainsi etX ∈ SL(n,C). Inversement, Si

det(etX) = eTr(tX) = et T r(X) = 1,

T r(X) =
d

dt
et T r(X)|t=0 = 0.
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Proposition 2.4.5. u(n) (resp. su(n) ) est l'algèbre de Lie de U(n) (resp. SU(n)).

Démonstration. Rappelons que

u(n) = {X ∈ gl(n,C), X∗ = −X} (2.7)

Si X ∈ u(n) alors X∗ = −X. Ainsi, pour tout t ∈ R,

(
etX
)−1

= e−tX = etX
∗

=
(
etX
)∗

(2.8)

ce qui implique que etX ∈ U(n). Inversement, Si (2.8) est véri�é alors par di�érentia-

tion par rapport à t en t = 0 on obtient X∗ = −X. Ainsi, u(n) est l'algèbre de Lie de

U(n).

Par analogie pour SU(n) en ajoutant la condition � déterminant 1 � au niveau du

groupe et la condition � trace 0 � au niveau de l'algèbre de Lie.

Proposition 2.4.6. so(n) est en même temps l'algèbre de Lie de O(n) et SO(n).

Démonstration. Rappelons que

so(n) = {x ∈ gl(n,R), XT +X = 0}.

Un argument exactement similaire à la preuve de la Proposition 2.4.5 montre qu'une

matrice réelle X appartient à l'algèbre de Lie de O(n) si et seulement si XT = −X.

Puisqu'une telle matrice a Tr(X) = 0 (car les éléments diagonaux de X sont tous

nuls), on voit que tout élément de l'algèbre de Lie de O(n) est aussi dans l'algèbre de

Lie de SO(n).

Proposition 2.4.7. L'algèbre de Lie du groupe de Heisenberg H3 est h3, l'espace de

toutes les matrices de la forme 
0 x z

0 0 y

0 0 0

 (2.9)

où x, y, z dans R.

Démonstration. Si X est triangulaire strictement supérieure, il est facile de véri�er

que Xm est aussi triangulaire strictement supérieur pour tous les entiers positifs m.

Ainsi, pour X ∈ h3, on a etX = I +B avec B est triangulaire strictement supérieure,
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ceci montre que etX ∈ H3. Inversement, si etX appartient à H3 pour tout réel t, alors

tous les éléments extradiagonaux de etX sont indépendants de t. Ainsi

X =
d

dt
etX |t=0

sera de la forme en (2.9).

2.5 Groupe de transformations

De�nition 2.5.1. Un groupe de transformations est un triplet (G,X , .), où G est

un groupe, X est un espace et "." est une action de G sur X , i.e., une application

G×X 3 (g, x) 7→ g.x ∈ X satisfaisant :

1. A l'élément neutre e du groupe G correspond la transformation identique e.x = x.

2. Pour tout g1, g2 ∈ G on a (g1g2).x = g1.(g2.x).

Exemple 2.5.1. 1. Soient l er r les translations à gauche et à droite par un élément

de G, on peut véri�er que (G,G, l), (G,G, r) sont des groupes de transformations.

2. Soit l'automorphisme intérieur αg qui est une transformation αg : G → G dé�-

nie par αg(x) = gxg−1 ( l'action adjointe), alors (G,G, α) est aussi un groupe de

transformations.

Soit (G,X , .) un groupe de transformations et x ∈ X , l'ensemble Gx de tout les

éléments g ∈ G tel que g.x = x est appelé (sous) groupe stabilisateur de x. L'ensemble

Ox := {g.x, g ∈ G} est appelé orbite de x sous l'action de G.

Fixons un ensemble A ⊂ X . L'ensemble OA := ∪x∈AOx est appelé orbite de A sous

l'action de G.

De�nition 2.5.2. Si pour tout x, y ∈ X , il existe g ∈ G tel que g.x = y, alors on dit

que G est un groupe transitif de transformations de X .
Autrement dit, si l'orbite de chaque point de X coïncide avec X . Dans ce cas X est

appelé espace homogène.

Théorème 2.5.1. Soit (G,X ) un groupe transitif de transformations de X . Soit Gx0

le (sous) groupe stabilisateur du point x0 ∈ X . Alors (G,X ) est isomorphe à (G,G/

Gx0).
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Démonstration. Soit l'application φ̃ de G dans X donnée par

φ̃ : G ∈ g → g.x0 ∈ X .

φ̃ est surjective puisque (G,X ) est transitif.

Dé�nissons maintenant l'application

φ(gGx0) = φ̃(g).

Elle est bien dé�nie puisque Gx0 .x0 = x0. Ainsi on a

g.φ(hGx0) = gh.x0 = φ(ghGx0).

Il su�t de démontrer que φ est injective. Supposons que φ(hGx0) = φ(gGx0) ; donc

h.x0 = g.x0 et par suite h−1g ∈ Gx0 et �nalement hGx0 = gGx0 .

Exemple 2.5.2. Soit G = SO(n) le groupe des rotations autour de l'origine de

l'espace euclidien à n dimensions. Ce groupe agit naturellement sur la sphère unité

Sn−1 par

SO(n)× Sn−1 3 (g, x) 7→ g.x ∈ Sn−1.

Cette action est transitive puisque un point arbitraire de la sphère peut être obtenu

en faisant opérer une matrice orthogonale sur le pôle nord de la sphère Sn−1, i.e. sur

le point p = en = (0, ..., 0, 1). Le stabilisateur du point p

Gp =


0

A
...

0

0 . . . 0 1

 , A ∈ SO(n− 1),

est isomorphe à SO(n−1). Alors on conclut que les espaces homogènes (SO(n), Sn−1)

et (SO(n), SO(n)/SO(n− 1)) sont isomorphes.

2.6 Représentations adjointe et coadjointe d'un groupe

de Lie

Nous avons vu dans l'exemple 2.5.1 qu'un groupe de Lie agit sur lui-même par l'action

dé�nie par l'automorphisme intérieur αg : G→ G donné par αg(x) = gxg−1 ( l'action

adjointe). L'élément neutre est un point �xe par cette action.
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De�nition 2.6.1 (Représentation adjointe). La di�érentielle de αg, notée Adg : g→
g, dé�nie un automorphisme d'algèbre de Lie g. L'application

Ad : G→ Aut(g)

g 7→ Ad(g) = Adg

est appelée la représentation adjointe de G.

Le noyau de la représentation adjointe, Ker(Ad), contient le centre ZG de G et coïn-

cide avec ZG si G est connexe.

La di�érentielle de la représentation adjointe Ad : G → Aut(g) est la représentation

adjointe ad : g→ End(g) de l'algèbre de Lie g, donnée par X 7→ [X, .].

Remarque 2.6.1. Si G ⊂ GL(V ) est un groupe linéaire agîssant sur un espace

vectoriel V , alors la représentation adjoint peut s'écrire :

AdgY = gY g−1, adXY = [X, Y ] = XY − Y X, g ∈ G, X, Y ∈ g

De�nition 2.6.2 (Représentation coadjointe). Soit g∗ l'espace vectoriel dual de g.

La repésentation contragrediente Ad∗ : G → Aut(g∗) de la représentation Ad : G →
Aut(g) est appelée la représenation coadjointe de G. i.e.,

〈Ad∗(g)F,Z〉 = 〈F,Ad(g−1)Z〉, ∀F ∈ g∗, g ∈ G,Z ∈ g.

Exemple 2.6.1. Soit l'algèbre de Lie des déplacements euclidiens du plan m(2) engen-

drée par les trois générateurs P , Q, E tels que [P,Q] = E, [P,E] = −Q, [E,Q] = 0.

Dans cette base la matrice de la représentation adjointe de M(2) dans m(2), Adg pour

g = (θ, v1, v2) ∈M(2) est 
1 0 0

v2 cos θ − sin θ

−v1 sin θ cos θ


et donc la matrice de la représentation coadjointe Ad∗g dans m(2)∗ dans la base duale

P ∗, Q∗, E∗ est 
1 v1 sin θ − v2 cos θ v1 cos θ + v2 sin θ

0 cos θ − sin θ

0 sin θ cos θ

 .
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Chapitre 3

Contractions d'algèbres et de groupes

de Lie

3.1 Contractions d'algèbres de Lie

Étant donné un espace vectoriel de dimension �nie V Sur le corps K = R, ou C.

De�nition 3.1.1. Soit U :]0, 1] → GL(V ), une application continue (GL(V ) est le

groupe linéaire de V ). On dé�nit une famille de nouveaux crochets sur V en terme

du crochet [., .] par :

∀ε ∈]0, 1], ∀x, y ∈ V : [x, y]ε = U−1ε [Uεx, Uεy].

Pour tout ε ∈]0, 1] l'algèbre de Lie gε = (V, [., .]ε) est isomorphe à g = (V, [., .]).

Si la limite

lim
ε→+0

[x, y]ε = lim
ε→+0

U−1ε [Uεx, Uεy] := [x, y]0

existe pour tout x, y ∈ V alors [x, y]0 dé�nit bien un crochet de Lie. L'algèbre de Lie

g0 = (V, [., .]0) est appelée contraction de l'algèbre de Lie g.

Le paramètre ε est appelé paramètre de contraction.

Le procédé d'obtenir l'algèbre g0 à partir de l'algèbre g est aussi appelée contraction.

Si une base de V est �xée, l'opérateur Uε est dé�ni par la matrice correspondante. La

dé�nition 3.1.1 peut être reformulée en termes de constantes de structure
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De�nition 3.1.2. Soient Ck
i,j les constantes de structure de l'algèbre de Lie g et (Uε)

j
i

les coe�cients de la matrice de l'opérateur Uε dans la base �xée {e1, e2, ..., en}. Si la
limite

lim
ε→+0

n∑
i,j,k=1

(Uε)
i
i′(Uε)

j
j′(U

−1
ε )k

′

k C
k
i,j := C̃k′

i′,j′

existe pour tout i′, j′ et k′ alors les C̃k′

i′,j′ sont les constantes de structure d'une algèbre

de Lie g0.

La fonction matricielle U = U(ε) est appelée matrice de contraction

Les dé�nitions 3.1.1 et 3.1.2 sont équivalentes. La première dé�nition est pratique

pour une considération théorique. La seconde est plus utilisable pour le calcul des

contractions concrètes.

De�nition 3.1.3. On dit qu'une contraction de l'algèbre de Lie g vers l'algèbre de

Lie g0 est :

- triviale si g0 est abélienne.

- impropre si g0 est isomorphe à g.

Remarque 3.1.1. Si on a limε→+0(Uε) := U0 et U0 ∈ GL(V ) alors il est evident

que la contraction est impropre. De plus, pour engendrer une contraction propre, la

fonction matricielle doit satisfaire à une des deux conditions :

1. La limite limε→+0(Uε) n'existe pas, i.e. au moins un des éléments de la matrice U

est singulier quand ε→ 0.

2. La limite limε→+0(Uε) := U0 existe mais la matrice U0 est singulière, i.e., det(U0) =

0.

Ces deux conditions ne sont pas su�santes pour avoir une contraction propre.

Remarque 3.1.2. Les contractions triviale et impropre existent pour n'importe quelle

algèbre de Lie. La contraction triviale est facile à obtenir, par exemple, par la matrice

Uε = diag(ε, ε, ..., ε).

La matrice identité Uε = diag(1, 1, ..., 1) peut être toujours utilisée comme matrice de

contraction pour la contraction impropre.

L'algèbre abélienne se contracte seulement vers elle même, c'est un cas spécial où la

contraction est à la fois triviale et impropre.
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Exemple 3.1.1. Soit l'algèbre de Lie g = so(3) ⊕ A1, de dimension 4, où so(3) est

engendeée par les 3 générateurs e1, e2, e3 et A1 est l'algèbre de dimension 1 engendrée

par le générateur e4 avec les relations de commutation

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2, (3.1)

[ei, e4] = 0, i = 1, 2, 3.

Considérons la contraction d'algèbres de Lie de g = so(3)⊕A1, donnée par la matrice

suivante

Uε =


0 0 ε2 0

0 −ε3 0 0

0 0 0 ε

−ε2 0 −1 0

 avec U−1ε =


−ε−4 0 0 −ε−2

0 −ε−3 0 0

ε−2 0 0 0

0 0 ε−1 0

 .

On calcul la transformée des commutateurs :

[e1, e2]ε = U−1ε [Uεe1, Uεe2] = U−1ε ([−ε2e4,−ε3e2])

= U−1ε (ε5[e4, e2]) = U−1ε (0) = 0,

[e1, e3]ε = U−1ε [Uεe1, Uεe3] = U−1ε ([−ε2e4, ε2e1 − e4])

= U−1ε (−ε4[e4, e1] + ε2[e4, e4]) = U−1ε (0) = 0,

[e1, e4]ε = U−1ε [Uεe1, Uεe4] = U−1ε ([−ε2e4, εe3])

= U−1ε (−ε3[e4, e3]) = U−1ε (0) = 0,

[e2, e3]ε = U−1ε [Uεe2, Uεe3] = U−1ε ([−ε3e2, ε2e1 − e4])

= U−1ε (−ε5[e2, e1] + ε3[e2, e4]) = U−1ε (ε5e3) = ε4e4,

[e2, e4]ε = U−1ε [Uεe2, Uεe4] = U−1ε ([−ε3e2, εe3]) = U−1ε (−ε4[e2, e3])

= U−1ε (−ε4e3) = e1 − ε2e3,

[e3, e4]ε = U−1ε [Uεe3, Uεe4] = U−1ε ([ε2e1 − e4, εe3])

= U−1ε (ε3[e1, e3]− ε[e4, e3]) = U−1ε (−ε3e2) = e2.

Ainsi quand ε→ +0 on obtient les relations de commutations de l'algèbre de Lie A4.1

notamment

[e2, e4]0 = e1, [e3, e4]0 = e3, [e1, e2]0 = 0, [e1, e3]0 = 0, [e1, e4]0 = 0, [e2, e3]0 = 0.
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3.2 Types simples de contractions

3.2.1 Contractions d'Inönü-Wigner

Les contractions d'inönü-Wigner présentent un processus de limite entre algèbres de

Lie avec des matrices de contraction de type le plus simple. La plupart des contrac-

tions d'algèbres de Lie de basse dimension sont équivalentes à ces contractions. Nous

discuterons de leurs propriétés qui sont essentielles pour une étude plus approfon-

die. Des contractions simples d'Inönü-Wigner ou brièvement IW-contractions ont été

proposées pour la première fois dans [9] sont générées par des matrices de la forme

Uε = U0 + εU ′0 où U0 et U ′0 sont des matrices constantes de taille n× n. On suppose

en outre que la matrice Uε peut être transformée en une forme diagonale spéciale

ŴUεW̌
−1 = diag(1+εv, . . . , 1+εv, ε, . . . , ε) =: Dε au moyen des matrices constantes

régulières Ŵ and W̌ . L'hypothèse a été étudiée par Inönü et Wigner eux-mêmes.

Sans perte de généralité on peut mettre v = 0. La matrice Dε fournit des contrac-

tions de g̃ vers g̃0, où g̃ and g̃0 sont des algèbres de Lie avec les crochets de Lie

[x, y]̃ = Ŵ [Ŵ−1x, Ŵ−1y] et [x, y]0̃ = W̌ [W̌−1x, W̌−1y]0, qui sont évidemment iso-

morphes à g et g0. Par conséquent, on a la dé�nition suivante :

De�nition 3.2.1. ([9, 22])

Une contraction est dite de type Inönü-Wigner, notée IW-contraction, s'il existe une

base {ei} telle que

Uε =

(
Im 0

0 εIn−m

)
∀ε ∈ [0, 1] (3.2)

où Ik est la matrice identité de dimension k .

Une telle contraction consiste à partager l'ensemble {e1, e2, ..., en} en deux ensembles

{e1, e2, ..., em} et {em+1, em+2, ..., en}. Donc pour i1, j1 = 1, ...,m, i2, j2 = m+ 1, ..., n
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on a

[ei1 , ej1 ]ε =
m∑

k1=1

Ck1
i1,j1

ek1 +
1

ε

n∑
k2=m+1

Ck2
i1,j1

ek2

[ei1 , ej2 ]ε = ε

m∑
k1=1

Ck1
i1,j2

ek1 +
n∑

k2=m+1

Ck2
i1,j2

ek2

[ei2 , ej2 ]ε = ε2
m∑

k1=1

Ck1
i2,j2

ek1 + ε
n∑

k2=m+1

Ck2
i2,j2

ek2

Ces relations sont convergentes ssi Ck2
i1,j1

= 0. Par conséquent, les éléments de base

e1, e2, ..., em engendrent une sous algèbre h de l'algèbre initiale g, c'est l'unique condi-

tion pour que la contraction existe. Toutes les constantes de structure C̃k
i,j de l'algèbre

resultante g0 sont faciles à calculer :

C̃k1
i1,j1

= Ck1
i1,j1

, C̃k2
i1,j1

= Ck2
i1,j1

= 0, C̃k1
i1,j2

= 0,

C̃k2
i1,j2

= Ck2
i1,j2

, C̃k1
i2,j2

= C̃k2
i2,j2

= 0,

i1, j1, k1 = 1, ...,m, i2, j2, k2 = m+ 1, ..., n

Ainsi on a

Proposition 3.2.1. Si g0 est une IW-contraction de g qui laisse invariant la sous-

algèbre h de g alors g0 a la structure de somme semi-directe h ⊕s a, où a est un

ideal abélien engendré par la base complémentaire choisie de h. La sous algèbre h est

isomorphe à l'algèbre quotient g0/a.

Propriétés des IW-contractions ([6, 22, 12]) :

1. Chaque sous algèbre h de l'algèbre de Lie g peut être utilisée pour obtenir une

IW-contraction de g. Les sous algèbres triviales correspondent aux IW-contractions

impropres (h = g) ou triviales (h = {0}).
2. Di�érents choix de la base complémentaire de la base de h ou le remplacement de

h par une sous algèbre équivalente de g donnent la même algèbre contractée à un

isomorphisme près.

3. Si h est un idéal de g alors g0 = h⊕ a avec [h, a] = 0.

3. La répétition de la IW-contraction suivant la même sous algèbre h donne aussi

l'algèbre g0.
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Exemple 3.2.1. L'algèbre de Lie m(2) des déplacements euclidiens du plan est une

IW-contraction de l'algèbre de Lie so(3).

Rappelons que l'algèbre de Lie m(2) des déplacements euclidiens du plan, engendrée

par les 3 générateurs e1, e2 et e3 avec les relations de commutation avec

[e3, e1] = e2, [e2, e3] = e1, [e1, e2] = 0,

et l'algèbre de Lie so(3), l'algèbre du groupe des rotations de dimension 3, engendrée

par les 3 générateurs e1, e2 et e3 avec les relations de commutation

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Si on considère

Uε =


1 0 0

0 ε 0

0 0 ε

 (3.3)

alors

[e1, e2]ε = e3 −→ [e1, e2]0 = e3

[e3, e1]ε = e2 −→ [e3, e1]0 = e2

[e2, e3]ε = ε2e1 −→ [e2, e3]0 = 0.

Ici h = R{e1} et a = R{e2, e3}.

Remarque 3.2.1. Il est connu que les IW-contractions n'épuisent pas toutes les

contractions possibles même dans le cas des algèbres de Lie de dimension 3.

Les IW-contractions de l'algèbre de Lie de dimension 3 des rotations so(3) donnent

seulement une contraction propre et non triviale vers l'algèbre m(2). En même temps,

il existe une contraction propre de so(3) vers l'algèbre de Heisenberg h3 et elle n'est

pas obtenue par une IW-contraction.

3.2.2 Contractions selon Saletan

Saletan [22] a entamer une étude plus générale en considérant la classe de toutes les

contractions linéaires par rapport au paramètre de contraction.

De�nition 3.2.2. [22] Une réalisation d'une contraction avec une fonction matri-

cielle qui est linéaire par rapport au paramètre de contraction est appelée contraction

(linéaire) de Saletan. Une telle contraction est notée S-contraction.
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Les S-contractions sont obtenues par les matrices de la forme

U(ε) = u+ εw,

où w est une matrice régulière constante et pour avoir une contraction propre u est

nécessairement une matrice singulière constante ainsi, sans perdre de généralité, on

peut supposer que w est égale à la matrice identité.

La méthode de Saletan consiste à utiliser une décomposition convenable de V (l'espace

vectoriel sous-jacent à l'algèbre de Lie g) de la forme

V = VR ⊕ VN ,

où VR et VN sont des sous-espaces u-invariants dé�nis d'une manière naturelle de telle

façon que u soit surjective sur VR et nilpotente sur VN 1.

La condition nécessaire et su�sante pour que l'algèbre g0 soit contractée par la fonc-

tion matricielle linéaire Uε est [22]

u ([ux, y]N + [x, uy]N − u[x, y]N) = [ux, uy]N . (3.4)

Alors le crochet de Lie de l'algèbre contractée g0 est donnée par

[x, y]0 = u−1[ux, uy]R + [ux, y]N + [x, uy]N − u[x, y]N . (3.5)

Ici [, ]R et [, ]N désignent les projections du crochet de Lie [, ] sur les sous-espaces

VR et VN , respectivement, qui ne sont pas, en général, des crochets de Lie.

Remarque 3.2.2. 1. La matrice de toute contraction linéaire a une limite bien dé-

�nie en ε = 0. C'est pourquoi au contraire à la dé�nition générale des contractions,

dans le cas d'une S-contraction sa fonction matricielle Uε peut être supposé dé�nie sur

l'intervalle fermé [0, 1]. Il convient alors de représenter la matrice Uε sous la forme

Uε = (1 − ε)U0 + εU1, où U0 et U1 sont les valeurs de Uε en ε = 0 et ε = 1, respec-

tivement. Par dé�nition de matrice de contraction, la matrice U1 est non singulière,

et, pour des contractions propres, la matrice U0 est nécessairement singulière.

1. Pour tout endomorphisme u de V , il existe un entier naturel non nul q, appelé indice de Riesz,

tel que

V ⊃ Im(u) ⊃ Im(u2) ⊃ ... ⊃ Im(uq) = Im(uq+1) = ...

0 ⊂ Ker(u) ⊂ Ker(u2) ⊂ ... ⊂ Ker(uq) = Ker(uq+1) = ...

On pose alors Im(uq) = VR, Ker(uq) = VN et l'on a la décomposition de Fitting [20], V = VR⊕VN .
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Il existe des reparamétrages spéci�ques qui préservent la classe des contractions de

Saletan [22]. Soit Uε = B + εA la matrice d'une contraction de Saletan. On �xe

λ > 1 et on considère la fonction matricielle Uε sur l'intervalle [0, (1 + λ)−1] au lieu

de [0, 1]. Puis

B + εA = (1− λε)B + ε(A+ λB) = (1− λε)
(
B +

ε

1− λε
(A+ λB)

)
.

Le facteur (1 − λε) n'est pas indispensable puisque sa limite en ε = 0 vaut 1. En

supprimant ce facteur et en notant ε
1−λε par ε′, on obtient la fonction matricielle

linéaire bien dé�nie

U ′ε′ = B + ε′(A+ λB), ε′ ∈ [0, 1],

qui réalise la même contraction de Saletan que Uε.

2. Levi-Nahas [11] étend la notion de contractions de Saletan en considérant les

contractions singulières. Dans ce cas, l'isomorphisme Uε a la forme suivante

Uε = εu+ ε2w,

avec u et w satisfaisant les hypothèses de Saletan.

3. Toute IW-contraction est évidemment une S-contraction et il existe des S-contractions

qui ne sont pas équivalentes aux IW-contractions, comme le montre l'exemple suivant :

Exemple 3.2.2. Considérons l'algèbre de Lie g = so(3)⊕A1 où so(3) est engendeée

par les 3 générateurs e1, e2, e3 et A1 est l'algèbre de dimension 1 engendrée par le

générateur e4 avec les relations de commutation

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2, (3.6)

[ei, e4] = 0, i = 1, 2, 3.

Soit la matrice de contraction U(ε) = εI + (1− ε)u où u est telle que

ue1 = ue2 = 0, ue3 = f := e4 + e3, uf = 0.

Remarquons que u2ξ = 0 ∀ξ ∈ g, donc on peut prendre VR = {0} et VN = g et on a

u2[x, y]N = 0. Maintenant ug est un espace de dimension 1 donc [ux, uy]N = 0. De

plus, ug est engendré par f , et [f, ξ] s'écrit comme combinaison linéaire de e1 et e2

pour tout ξ ∈ g. Puisque ue1 = ue2 = 0 alors u ([ux, y]N + [x, uy]N) = 0 et par suite
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la condition (3.4) est bien véri�ée.

Puisque VR = {0} alors l'équation (3.5) devient

[x, y]0 = [ux, y]N + [x, uy]N − [ux, uy]N , (3.7)

donc en utilisant les relations en (3.6) on trouve le crochet de Lie

[e1, e2]0 = −f, [e2, e3]0 = e1, [e3, e1]0 = e2, (3.8)

[ei, f ]0 = 0, i = 1, 2, 3

qui dé�nit une algèbre de Lie g0.

Remarque 3.2.3. E. J. Saletan a montré dans [22] que cette algèbre de Lie ne peut

jamais être obtenue par une IW-contraction de so(3)⊕ A1.

3.2.3 Contractions d'Inönü-Wigner généralisées

Une autre généralisation de la classe des IW-contractions est donnée par generali-

zed IW-contractions (ou Doebner�Melsheimer contractions) [5, 8, 12] pour laquelle

la condition de la linéarité est remplacée par la condition que les éléments de la

matrice de contraction diagonalisée soient des puissances (entières) du paramètre de

contraction. À savoir, la matrice de contraction d'une contraction IW généralisée a

la forme Uε = Ŵ−1diag(εα1 , εα2 , . . . , εαn)W̌ , où Ŵ et W̌ sont des matrices constantes

non singulière et α1, α2, . . . , αn ∈ Z. Comme dans le cas des contractions IW simples,

en raison de la possibilité de remplacement des algèbres de Lie par des algèbres iso-

morphes on peut supposer que Ŵ = W̌ = I, et on a la dé�nition suivante :

De�nition 3.2.3. Une contraction est dite contraction d'Inönü-Wigner généralisée

où contraction de Doebner-Melsheimer [5, 8] si la matrice de contraction est donnée

par

Uε =


εα1 0 · · · 0

0 εα2 · · · 0
...

...
. . .

...

0 0 · · · εαn


où α1, α2, ..., αn ∈ Z.
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Les constantes de structure de l'algèbre contractée g0 sont données par la formule

C̃k
i,j = lim

ε→+0
εαi+αj−αkCk

i,j

de plus les contraintes

αi + αj ≥ αk, i, j, k = 1, 2, ..., n si Ck
i,j 6= 0

sont nécessaires et su�santes pour l'existence de la IW-contraction généralisée par la

matrice de contraction Uε et

C̃k
i,j = Ck

i,j si αi + αj = αk et C̃k
i,j = 0 sinon.

Remarque 3.2.4. Il est clair que les IW-contractions sont des cas particuliers des

IW-contractions généralisées avec αi ∈ {0, 1}.

Exemple 3.2.3. L'algèbre de Lie de Heisenberg h3 de dimension 3 dé�nie par les

relations de commutation [e1, e2]0 = e3, [e3, e1]0 = 0 et [e2, e3]0 = 0 peut être obtenue

par une IW-contraction généralisée de so(3) en prenant

Uε =


ε 0 0

0 ε 0

0 0 ε2

 .

3.3 Critères nécessaires de contraction

Dans ce paragraphe, nous allons donner quelques critères nécessaires de contractions

d'algèbres de Lie. Nous allons utiliser les notations suivantes (cf. Chapitre 1) :

- Der(g) est l'algèbre des dérivations de g

- Z(g) est le centre de g,

- Rad(g) est le radical de g,

- N(g) est le nilradical de g (i.e., l'idéal nilpotent qui contienne tout idéal nilpotent

de g),

- nA la dimension maximale des sous algèbres abéliennes de g,

- nAi la dimension maximale des idéaux abéliens de g,

- κg la forme de Killing de g,

- rg la dimension de la sous algèbre de Cartan,
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- adg et ad∗g les représentations adjointe et coadjointe de g,

- g0 = g, gl = [g, gl−1] et g(0) = g, g(l) = [g(l−1), g(l−1)],

- g(0) = {0}, g(l)/g(l−1) est le centre de g/g(l−1), l ∈ N.

- Si g est une algèbre de Lie résoluble (resp. nilpotente), rs(g) (rn(g)) désigne le rang

de résolubilité (nilpotence) de g, i.e., le nombre minimal l tel que g(l) = {0} (gl = {0}).

Théorème 3.3.1. [16] Si g→ g0 est une contraction propre, alors on a

1) dim Derg0 > dim Derg ;

2) nA(g0) ≥ nA(g) ;

3) dim Z(g0) ≥ dim Z(g) ; de plus dim g0(l) ≥ dim g(l), l ∈ N ;

4) dim g
(l)
0 ≤ dim g(l), l ∈ N ;

5) dim gl ≤ dim gl, l ∈ N ;

6) dim Rad(g0) ≥ dim Rad(g) ;

7) dim N(g0) ≥ dim N(g) ;

8) nAi(g0) ≥ nAi(g) ;

9) rg0 ≥ rg ;

10) rang ad g0 ≤ rang ad g, rang ad∗ g0 ≤ rang ad∗ g ;

11) rang κg0 ≤ rang κg ;

12) g0 est unimodulaire si g l'est aussi ;

13) Si g est une algèbre de Lie résoluble alors g0 est aussi résoluble et rs(g0) ≤ rs(g) ;

14) Si g est une algèbre de Lie nilpotente alors g0 est aussi nilpotente et rn(g0) ≤
rn(g).

3.4 Contraction des algèbres de Lie réelles de dimen-

sion 3

Nous utilisons la liste complète des classes non isomorphes d'algèbres de Lie réelles

de dimension 3, qui a été construit par Mubarakzyanov [15] et légèrement améliorés

dans [18, 19].
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1) 3A1 ' R3 : [e1, e2] = [e2, e3] = [e3, e1] = 0

Abélienne, unimodulaire.

nD = 9, nZ = 3, nA = 3, κ = 0,

rg = 3, rn = rs = 1, tr(adv) = 0.

2) A2.1 ⊕A1 : [e1, e2] = e1, [e2, e3] = [e3, e1] = 0

décomposable, résoluble.

nD = 4, nZ = 1, nA = 2, κ = x2y2,

rg = 2, rs = 2, tr(adv) = −v2.

3) A3.1 = h3 : [e2, e3] = e1, [e3, e1] = [e1, e2] = 0

Heisenberg, indécomposable, nilpotente, unimodulaire.

nD = 6, nZ = 1, nA = 2, κ = 0,

rg = 3, rn = rs = 2, tr(adv) = 0.

4) A3.2 : [e1, e3] = e1, [e2, e3] = e1 + e2, [e1, e2] = 0

indécomposable, résoluble.

nD = 4, nZ = 0, nA = 2, κ = 2x3y3,

rg = 1, rs = 2, tr(adv) = −2v3.

5) A3.3 : [e1, e3] = e1, [e2, e3] = e2, [e1, e2] = 0

indécomposable, résoluble.

nD = 6, nZ = 0, nA = 2, κ = 2x3y3,

rg = 1, rs = 2, tr(adv) = −2v3.

6) A−1
3.4 : [e1, e3] = e1, [e2, e3] = −e2, [e1, e2] = 0

indécomposable, résoluble, unimodulaire.

nD = 4, nZ = 0, nA = 2, κ = 2x3y3,

rg = 1, rs = 2, tr(adv) = 0.

7) Aa
3.4 : [e1, e3] = e1, [e2, e3] = ae2, [e1, e2] = 0, 0 < |a| < 1

indécomposable, résoluble.

nD = 4, nZ = 0, nA = 2, κ = (1 + a2)x3y3,

rg = 1, rs = 2, tr(adv) = −(1 + a)v3.

8) A0
3.5 ' m(2) : [e3, e1] = e2, [e2, e3] = e1, [e1, e2] = 0

indécomposable, résoluble, unimodulaire.

nD = 4, nZ = 0, nA = 2, κ = −2x3y3,

rg = 1, rs = 2, tr(adv) = 0.
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9) Ab
3.5 : [e1, e3] = be1 − e2, [e2, e3] = e1 + be2, [e1, e2] = 0, b > 0

indécomposable, résoluble.

nD = 4, nZ = 0, nA = 2, κ = 2(b2 − 1)x3y3,

rg = 1, rs = 2, tr(adv) = −2bv3.

10) sl(2,R) : [e1, e2] = e1, [e2, e3] = e3, [e1, e3] = 2e2

indécomposable, simple, unimodulaire.

nD = 3, nZ = 0, nA = 1, κ = −2(2x3y1 − x2y2 + 2x1y3),

rg = 1, tr(adv) = 0.

11) so(3) : [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2

indécomposable, simple, unimodulaire.

nD = 3, nZ = 0, nA = 1, κ = −2(x1y1 + x2y2 + x3y3),

rg = 1, tr(adv) = 0.

Contractions

Toutes les contractions ( propres et non triviales) possibles d'algèbres de Lie réelles

de dimension 3 sont données par la liste suivante [16] :

1) A2.1 ⊕A1 −→ A3.1

Uε =


1 0 −1

0 1 0

0 0 1




ε 0 0

0 ε 0

0 0 1

 =


ε 0 −1

0 ε 0

0 0 1

 .

par rapport aux relations de commutation ci-dessus.

2) A3.2 −→ A3.1

Uε =


−1 0 0

0 1 0

0 0 −1




ε 0 0

0 1 0

0 0 ε

 =


−ε 0 0

0 1 0

0 0 −ε

 ,

ou bien en utilisant la matrice de contraction
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Uε =


ε2 0 0

0 ε 0

0 0 ε

 .

par rapport aux relations de commutation ci-dessus.

3) A3.1 −→ A3.3

Uε =


1 0 0

0 1 1

0 0 1




1 0 0

0 ε 0

0 0 1

 =


1 0 0

0 ε 1

0 0 1

 ,

ou bien par la matrice de contraction

Uε =


ε 0 0

0 ε2 0

0 0 1

 .

par rapport aux relations de commutation ci-dessus

4) Aa
3.4 −→ A3.1

Uε =


1− a 1 0

0 1 0

0 0 1




ε 0 0

0 1 0

0 0 ε

 =


(1− a)ε 1 0

0 1 0

0 0 ε

 .

par rapport aux relations de commutation ci-dessus.

5) Ab
3.5 −→ A3.1

Uε =


ε 0 0

0 1 0

0 0 ε

 .

par rapport aux relations de commutation ci-dessus.

6) sl(2,R) −→ A3.1
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Uε =


0 1 0

2 0 0

0 0 1




ε 0 0

0 ε 0

0 0 1

 =


0 ε 0

2ε 0 0

0 0 1

 .

par rapport aux relations de commutation ci-dessus.

7) A3.1 −→ A−1
3.4

Uε =


1 0 0

0 0 1

0 −1 0




ε 0 0

0 1 0

0 0 1

 =


ε 0 0

0 0 1

0 −1 0

 .

par rapport aux relations de commutation ci-dessus.

8) A−1
3.4 −→ A0

3.5

Uε =


0 0 1

2

0 1 0

1 0 1
2




ε 0 0

0 ε 0

0 0 1

 =


0 0 1

2

0 ε 0

ε 0 1
2

 .

9) so(3) −→ A3.1

Uε =


ε2 0 0

0 ε 0

0 0 ε

 .

par rapport aux relations de commutation ci-dessus.

10) A3.1 −→ A0
3.5

Uε =


ε 0 0

0 ε 0

0 0 1

 .

par rapport aux relations de commutation ci-dessus.
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Remarque 3.4.1. 1. Seules les contractions propres directes sont présentées ici. Rap-

pelons qu'une contraction de g à g0 s'appelle directe s'il n'y a pas d'algèbre g1 telle

que g1 6∼ g, g1 6∼ g0, g est contractée à g1 et g1 est contractée à g0. L'algèbre g est

nécessairement contractée en g0 si g est contractée en g1 et g1 est contractée en g0.

2. Toute contraction continue d'une algèbre de Lie réelle de dimension 3 est équi-

valente à une contraction IW généralisée avec des puissances positives du paramètre

de contraction. De plus, seule la contraction so(3) → A3.1 est non équivalente à une

contraction d'Inönü-Wigner simple.

3.5 Contractions de groupes de Lie

De�nition 3.5.1 ([17], page 137). Un groupe local est un espace topologique dans

lequel les axiomes de groupe ne sont satisfaites que pour des éléments su�samment

proches de l'élément neutre.

De�nition 3.5.2. [14] Soit G un groupe local et G0 un groupe topologique. On dit que

G0 est une contraction de G s'il existe un voisinage V de l'élément neutre e de G tel

que V2 = {gh| g, h ∈ V} est bien dé�ni, et une famille d'applications di�érentiables

Fε : V2 → G0; ε ∈]0, 1]

tels que

i. Fε est un di�éomorphisme de V2 sur Fε(V2) pour tout ε ∈]0, 1].

ii. Pour tout g0 ∈ G0 alors ∃ε0 ∈]0, 1] tel que, pour tout ε < ε0, g0 ∈ Fε(V), i.e.

F−1ε (g0) est bien dé�ni et appartient à V lorsque ε < ε0.

iii. Fε(e) est l'élément neutre de G0 pour ε ∈]0, 1],

iv. Si g, h ∈ G0 alors gh = limε→0 Fε(F
−1
ε (g)F−1ε (h)).

Remarque 3.5.1. La contraction d'algèbres de Lie associée à la contraction du groupe

de Lie est :

Uε = (dFε)eG : g→ g0

Uε est une application linéaire et inversible pour tout ε ∈]0, 1] et

lim
ε→0

Uε[U
−1
ε x, U−1ε y] = [x, y]0

pour tout x, y ∈ g0.
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Proposition 3.5.1. Le groupe de Heisenberg G0 = H3 est une contraction du groupe

des déplacements euclidiens du plan G = M(2).

Démonstration. Considérons le groupe G̃ = R× R2 muni de la loi

(θ, v).(θ′, v′) = (θ + θ′, v + k(θ)v′) (3.9)

où

k(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

Ce groupe est le revêtement simplement connexe du groupe M(2) = SO(2) × R2 ≡

R/2πZ× R2 muni de la loi (θ̇ désigne la classe de θ) :

(θ̇, v).(θ̇′, v′) = ( ˙θ + θ′, v + k(θ)v′)

où k(θ̇) = k(θ).

On peut écrire le produit (3.9) sous la forme

(θ, v1, v2).(θ
′, v′1, v

′
2) = (θ + θ′, v1 + v′1 cos(θ)− v′2 sin(θ), v2 + v′1 sin(θ) + v′2 cos(θ))

Soit V = V2 = G̃ et Fε((θ, v)) = Fε((θ, v1, v2)) = (1
ε
θ, 1

ε
v1,

1
ε2
v2)

Les conditions i., ii. et iii. de la dé�nition sont évidemment véri�ées.

Maintenant la condition iv. est

lim
ε→0

Fε(F
−1
ε ((θ, v1, v2)).F

−1
ε ((θ′, v′1, v

′
2))) = lim

ε→0
Fε((εθ, εv1, ε

2v2).(εθ
′, εv′1, ε

2v′2))

= lim
ε→0

Fε(ε(θ + θ′), εv1 + εv′1 cos(εθ)− ε2v′2 sin(εθ), ε2v2 + εv′1 sin(εθ) + ε2v′2 cos(εθ))

= lim
ε→0

(θ + θ′, v1 + v′1 cos(εθ)− εv′2 sin(εθ), v2 + ε−1v′1 sin(εθ) + v′2 cos(εθ))

= (θ + θ′, v1 + v′1, v2 + v′2 + v′1θ) = (θ, v1, v2).(θ
′, v′1, v

′
2) (le produit sur G0 = H3).

Proposition 3.5.2. Le groupe G0 = M(n) est une contraction du groupe G =

SO0(n, 1) ( la composante connexe de l'identité du groupe SO(n, 1)).

Démonstration. D'après la décomposition de Cartan chaque élément g ∈ G peut

s'écrire sous la forme g = k.p(t1, ..., tn) avec k ∈ K ' SO(n) et p(t1, ..., tn) =
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exp{
∑n

j=1 tjMj,n+1} où Mj,n+1 est le générateur non-compact d'une rotation hyper-

bolique dans le (j, n+1)-plan.

Tout élément de G0 peut s'écrire sous la forme k.r(t1, ..., tn), k ∈ SO(n) et r(t1, ..., n)

est une translation par le vecteur t = (t1, ..., tn) ∈ Rn.

soit V = V2 = G et Fε(k.p(t)) = k.r(1
ε
t). Les conditions i.,ii. et iii. de la dé�nition

sont véri�ées.

Maintenant la condition iv. s'écrit

lim
ε→0

Fε(F
−1
ε (k(1).r(t(1))).F−1ε (k(2).r(t(2))))

= lim
ε→0

Fε(k
(1).p(εt(1)).k(2).p(εt(2)))

= lim
ε→0

Fε(k
(1).k(2)(k(2))−1p(εt(1)).k(2).p(εt(2)))

D'autre part, si on note par k l'algèbre de Lie de K et p = Span{Mj,n+1, j = 1, ..., n}
(qui n'est pas une sous-algèbre de so(n, 1) l'algèbre de Lie de G) alors [k, p] ⊂ p et

[p, p] ⊂ k.

On a

(k(2))−1p(εt(1))).k(2).p(εt(2)) = exp

(
ε

n∑
j=1

t
(1)
j (k(2))−1Mj,n+1k

(2)

)
p(εt(2))

or

(k(2))−1Mj,n+1k
(2) =

n∑
i=1

kjiMi,n+1

et par suite

(k(2))−1p(εt(1)).k(2) = p(ε(k(2))>t(1)).

De plus, l'approximation à l'ordre 1 en ε donne

p(ε(k(2))>t(1)).p(εt(2)) ' p(ε(k(2))>t(1) + εt(2))

on obtient donc

lim
ε→0

Fε(F
−1
ε (k(1).r(t(1))).F−1ε k(2).r(t(2)))) = k(1)k(2).r((k(2))>t(1) + t(2))

qui est égal à k(1).r(t(1)).k(2).r(t(2)). Ce qui con�rme la condition iv. et doncM(n) est

une contraction de SO0(n, 1).
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