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Introduction

a Mesure de Haar du nom de mathématicien hongrois Alfred Haar, qui I’a intro-
duite en 1933, Voir [12].
La découverte d’Alfred Haar de l'invaraint translationnelle d’'une mesure sur tout
groupe topologique localement compact, devrait étre classée comme 1'un des mo-

ments marquants de ’histoire des mathématiques dans le vingtieme siécle.

Bien que 'existence soit connue pour tous les groupes calssiques, un résultat d’une
telle généralité a été jugé improbable par la plupart des experts. John Von Neumann
raconta ensuite avec un sourire ironique, comment il avait essayé de dissuader Haar
de considerér la mesure de Haar. Il a fait amende honorable en donnant une preuve

facile dans [7] de 'existence de la mesure de Haar pour les groupes compacts.

Haar prouve Uexistence d’une telle mesure en recourant a I’axiéme de choix. Etant
donné que ’ensemble vérifie la deuxiéme axiome de dénombrabilité, cela peut étre
réalisé avec une opération diagonale de Cantor. Son argumentation peut-étre adap-
tée au cas général, mais alors 'axiome du choix semble étre nécessaire pour 1’existirée.
Cependant, en 1935 Von Neumann,| 16| et Andre Weil,[21] (indépendenent) ont prouvé,
que I’échelle était unique jusqu’a la constante de multiplication. L’argument de Weil
pour l'existence est assez basique et peut étre reproduit en utilisant seulement quelques
faits sur le produit de convolution et la division unitaire. Une preuve plus courte mais

plus avancée est obtenue en appliquant le théoréme de Fubini (un que seulement dans
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la "version Fubinienne" des fonctions continues & support compact) au produit de
deux intégrales de Haar sur G x G, Voir [7]|9], par lequel Von Neumann a prouvé
I'unicité.

Cette mémoire est organisé en trois chapitres :
L’objectif du premier chapitre est de fournir quelques définitions et théorémes de base
qui seront utilisés tout au long de ce manuscrit. Il a également abordé la Théoréeme
de représentation de Riesz, qui a un réle important dans la construction de la mesure

de Haar.

Dans le deuxiéme chapitre, les théories générales liées au groupes topologiques ont
été rappelées en présentant les définitions les plus importantes et les propriétés de

base, qui seront utile dans le traitement du théme de ce mémoire .

Le troisiéme chapitre comprend la partie importante de ce mémoire, & commencer
par le concept général de la mesure de Haar ainsi que les preuves de son existence et
de son unicité. Il comprend également des exemples de la mesure de Haar de quelques
groupe topologique localement compact et leurs actions gauche et droite. Ceci afin

que le lecteur puisse mieux comprendre la thématique exposée.



Chapitre 1

Préliminaires

1.1 Topologie

Notre théme principal, la mesure de Haar est définie pour un groupe topologique
localement compact. La propriété "localement Compact" est topologique, et nous
devons savoir quelque chose sur la topologie. Dans cette section, nous fournirons
quelques définitions et propriétés de base qui aident a construire la mesure de Haar.

Pour plus d’informations voir [9][15][20].

Définition 1.1.1. [3/ Soit X un espace topologique

o L’espace X est dit étre un espace Ty si pour tout x # y € X il existe un sous-
ensemble ouvert contenant uniquement ['un d’entre euz.

o L’espace X est dit Ty si pour tout x # y € X il existe deux ouverts U et V tels que
xeUeyelV.

o L’espace X est dit Ty ou Hausdorff si pour tout x # y € X il existe deux ouverts
disjoints U et 'V tels que x € U ety € V.

o L’espace X est dit Ty s’il est Ty et si pour tout fermé F et x € F il existe deux
ouverts disjoints U et V tel que F C U etx € V.

Définition 1.1.2. [715] Soit X un espace topologique séparé. On dit que X est compact

si, de tout recouvrement ouvert de X, on peut extraire un sous-recouvrement fini.
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Autrement dit, pour toute famille d’ouverts (U;);e; de X telle que X = U U, il existe
iel

un sous-ensemble fini J de I tel que X = U Us.

ieJ
Proposition 1.1.1. [75] Soient X un espace topologique séparé et A, B deux parties
compactes de X telles que AN B = (). Alors il existe deux ouverts U et V dans X tels
que ACUBCV,etUNV =0.

Corollaire 1.1.1. 18/

Tout espace séparé compact est normal.

Définition 1.1.3 (Espaces topologique localement compacts ). [20]
On dit qu’un espace topologique X est localement compact s’il est séparé, et si tout

point posséde au moins un voisinage compact.

Exemple :
e Tout espace compact X est localement compact, car X est un voisinage compact

de chacun de ses points.

Proposition 1.1.2. [9] Soit X est un espace localement compact, et soit U C X est

ouvert, et x € U, il existe un voisinage compact 'V de x tel que V C U.

Proposition 1.1.3. /9] Un espace topologique X est compact si, et selement si

pour toute famille {Fy}aca d’ensembles fermés avec la propriété d’intersection finie,

ﬂaeA FOé 7é @

Théoréme 1.1.1. [15] Soit X un espace topologique séparé. Les propriétés suivantes
sont équivalentes.

(i) X est un espace normal.

(ii) Pour tous ensembles fermés, non vides et disjoints A et B dans X, il existe une
fonction continue f: X — [0,1] telle que f(x) =0 pour tout x € A et f(y) =1 pour
tout y € B.
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Théoréme 1.1.2 (Tychonoff). [15] Soit (X;)icr une famille d’espaces topologiques

non vides. Alors [’espace topologique produit HXZ- est compact si et seulement si
iel

pour tout 1 € I, X; est compact.

1.2 Mesures et intégration

Dans cette section, nous présenterons quelques définitions et théorémes importantes
sur la théorie de la mesure et intégration qui sont directement liées a notre sujet

principal, qui est la mesure de Haar, voir [5][10][11][17].

Définition 1.2.1 (Tribu ou o-Algbre). [10]

Soient X un ensemble et M C P(X) un ensemble de parties de X, M est une tribu
sur X (o-Algebre)si :

a) 0 e M.

b) VA C X, A € M = A° € M( stabilite par passage ou complémentaire )

c) V(An)n>o C M = |J A, € M( stabilité par union dénombrable).
n>0

Exemple :
o M = {0, X} (tribu triviale),
e M =P(X) (tribu grossiére),

sont des tribus sur X.

Définition 1.2.2 (espace mesurable). Si X est un ensemble et M une tribu de parties
de X, le couple (X, M) s’appelle un espace mesurable. Les éléments de M s’appellent

les parties mesurables de X.

Définition 1.2.3 (Tribu engendrée). Soit F' une famille de parties de X. On note

o(F) = N M.

M tribu sur X,FFCM

Alors, o(F) est une tribu sur X appelée tribu engendrée par F. C’est la plus petite

tribu sur X qui contient F.
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Définition 1.2.4 (Tribu borélienne). [/1/

Soit (X, T) un espace topologique. On appelle tribu borélienne (ou tribu de Borel)
la tribu engendrée par l’ensemble des ouverts de X, cette tribu sera notée B(X). On

appelle borélien de X un élément de sa tribu borélienne.

Définition 1.2.5 (Mesures positives). [///

Soit (X, M) un espace mesurable. On appelle mesure positive sur X une applica-
tion p : M — [0, +00] vérifiant :
i) u(0) = 0.

1) Pour toute suite (Ay)n>0 composeé d’une famille dénombrable d’ensembles mesu-

rables deuzr a deux disjoints, on a

p(U 40 = 3 (A

On dit que (X, M, i) est un espace mesuré.

Exemple :
1) Mesure de Dirac en z € X.

Soit (X, M) un ensemble mesurable. On définit J, : M — [0, +-00] par

1 size A,

0 sinon.

2) Mesure de comptage : Sur (X,P(X)), on définit la mesure de comptage p(A),
A€ X par

Card(A) si Aest fini,
uA) =

+00 sinon.

Proposition 1.2.1 (propriétés élémentaires d’une mesure positive).
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1. SiA,Be M et AC B, alors pu(A) < u(B).
2. Si A, € M,¥n € N alors

ZUERES yrI2t

n>0

3. St A, e M,VneNetsi A, CApi1,Yn >0, alors

UA = lim u(A,).

n—oo
n>0
4. St A, e M, et A, D Apiq,Vn €N, avec u(Ag) < 00 on a

ﬂA = lim u(A,).

n—00
n>0

Définition 1.2.6 (Mesures extérieures). [J/

Soit X un ensemble quelconque. Une application p* : P(X) — [0,00] est appelée

mesure extérieure sur X si
i) pi(0)=0.
ii) p* est croissante : si AC B C X = p*(A) < u*(B).

iii) p* est o-sous-additive : pour tout suite {A, }nen C P(X),
QUCERED I
Une partie B de X est dite u*-mesurable si pout toute partie A de X,

p(A) = p (AN B) + (AN B°).

Remarque :

Il est facile de voir qu'un ensemble B est p*-mesurable si et seulment, si p*(A) >
w (AN B)+ p* (AN B°) pour tous les A C X tels que pu*(A) < oo.

Exemple : Une mesure de Radon sur un espace topologique X est une mesure de

Borel qui est finie sur les ensembles compacts, réguliére externe sur tous les ensembles

de Borel et réguliére interne sur tous les ensembles ouverts.
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Définition 1.2.7 (Applications mesurables). [/7] Soient (X, M) et (X', N) deuz
espaces mesurables non vide, et soit f une application de X dans X'. L’application f

est dite mesurable si f~Y(N) C M, i.e pour tout B € N alors f~1(B) € M.

Exemple :

Soit (X, M) un espace mesurable, et soit A C X. On définit la fonction indicatrice

de A par
1 sizeA,
La(z) =
0 sinon.
Alors
)
0 sia>1,

Va € R, (ﬂA)il(]a’ +oo) =9 A si0 <a<l,

X sia<0.

\

Ainsi, 14 est mesurable si et seulement si A est mesurable (A € M).
Exemple :
Soient (X, T) et (Y, T’) deux espaces topologiques et f : X — Y une fonction conti-

nue, alors f est mesurable.

Définition 1.2.8 ( Mesure o—finie). [10] Soit (X, M, p) un espace mesuré, on dit

que 1 est o—finie (ou que (X, M, ) est o—finie ) si :

I(An)nen C M, pu(Ay) <00, VneN, et X = | A,

neN

Théoréme 1.2.1 (Mesure produit). [5] Soient (X, M, pn) et (Y,N,v) deux espaces

mesurés o— finis. Alors

a) Il existe une unique mesure m sur (X x Y, M @ N) telle que

m(A x B) = p(A)v(B)VA € M,VB € N.
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b) Pour tout E€ MQN, on a :
m(FE) = / v(E,)dp, = / w(EY)dy,.
X Y

Théoréme 1.2.2 (Fubini-Tonelli). /5] Soient (X, M,pu) et (Y,N,v) deuz espaces
mesurés o—finis, et soit f : X x Y — [0,+00] une fonction M @ N -mesurable.

Alors : 1) Les fonctions

(X, M) — [0, +00]
x = [y [, y)dy,

et
Y,N) = (0,409
y o o= Jx f@y)dee
sont mesurables.

1) On a les égalités suivantes :

[ pasn) - [ ( / f(x,y)duy) ine= | ( / f(x,y)%) "

1.3 Théoréme de représentation de Riesz (Riesz-Markov)

Le théoréeme de représentation de Riesz, appelé par fois le théoréme de Riesz-
Markov ; & ne pas confondre avec le célérbre théoréme de représentation de Riesz qui
perment une udentification d’un espace de Hilbert avec une espace duel topologique.
Le théoréeme de représentation de Riesz fournit une maniére d’obtenir des mesures
(positives) a partir de formes linéaires positives sur I'espace des fonctions continues a
support compact.

On note C.(X) l'espace des fonctions continues a support compact de X dans R

ou C. On rappelle que le support d’une fonction f est supp(f) = {x € X | f(z) # 0}.

Définition 1.3.1. /9] Soit X un espace topologique séparé localement compact. Une

mesure de Radon p sur X est une mesure de Borel avec les propriétés suivantes :



16 CH. 1. Préliminaires

1. w(K) < oo pour tous les compacts K C X.

2. (Régularité extérieure) Pour chaque ensemble Borel E,
w(E) =inf{uU) | E C U,U ouvert }.

3. (Régularité intérieure) Pour chaque ensemble ouvert U,

p(U) = sup{u(K) | K C U, K compact }.

Lemme 1.3.1 (Lemme d’Urysohn).

Soit X un espace topologique séparé localement compact, U un ouvert de X, K
un compact de X inclus dans U. Alors il existe une fonction f € C.(X) telle que

supp(f) C U, f=1sur K et0< f<1.

Remarque : En termes de fonctions caractéristiques, la conclusion affirme I’exis-

tence d’une fonction continue f qui satisfait les inégalités 1x < f < 1.

Théoréme 1.3.1 (Théoréme de représentation de Riesz (Riesz-Markov)). [10]

Soit I : Co(X) — C une forme linéaire. Alors il existe une mesure unique de Radon

B —[0,00] telle que I(f) = [ fdu. pour tout f € Co(X). En outre

p(U) = sup{I(f): fe€C(X),0< f <1, supp(f) C U} pour tous ouvertU C X,
(1.1)
et

w(K) = inf{I(f): f€CA(X),0< f<1,f>1k} pour tous les compacts K C X.
(1.2)



Chapitre 2

Groupes topologiques

Dans ce chapitre, nous discuterons des théorémes généraux concernant les groupes
topologiques. Axiomes de séparation dans un groupe topologique, sous-groupes, groupes
quotients. En plus des fonctions continues sur les groupes topologiques. Pour plus

d’information voir[3][13][14]

2.1 Définition et propriétés

Définition 2.1.1. /3] Un groupe topologique est un ensemble G muni d’une structure

de groupe et d’une topologie tel que les deux applications :

v GxG = G

(z,y) = xy

et

v:G - G

(00 G x G est muni de la topologie produit), sont continues.

Notation : Si A et B sont deux parties de G, on pose :
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AB ={xy,x € Aety € B} =¢(A x B),
A ={al e A} = ¢(A).

Remarque 2.1.1. [19] Soient G un groupe topologique et x,y € G. Les deux appli-
cations 1 et o étant continues; pour tout voisinage V de xy dans G, il existe deux
voisinages U de x et W de y tels que UW C V. Aussi, pour tout voisinage U de 271,

U™l =p Y(U) est un voisinage de .

Théoréme 2.1.1. [1/] Soit G un groupe muni d’un topologie, si G x G est muni de

la topologie produit, alors G est un groupe topologique si, et selment si, l’application

v:GxG = G

(x,y) +— ay!

est continue.

Preuve :

Montrons que ¢ et 1 sont continues est équivant au fait que v est continue.

(=) supposons que ¢ et 1 sont continue. Soit V un voisinage de zy ™!, il existe donc
un voisinage W de x et un voisinage U de y tels que WU~ C V alors « est continue.
(<) Réciproquement, supposons que 7 est continue. Soit U un voisinage de y~! comme
ey~! = y~1, il existe un voiasinage V de y et un voisinage W de e tel que WV~ C U.
On a donc V7! € WV~ C U (car e € W) alors v est continue. Montrons que ¢
est continue. Soit V' un voisinage de zy = x(y~!)~! il existe un vouisinage U de z et

un voisinage W de y~! tel que UW ™! C V, comme W' est un voisinage de y , ceci

montre que 1) est continue.

Exemple 2.1.1.

1. Le groupe multiplicatif (R* =]0, 400, X) muni de la topologie induite par celle
de R est un groupe topologique.



2.1 Définition et propriétés 19

2. Le groupe additif R"(n > 1) muni de la topologie définie par la distance eucli-

dienne est un groupe topologique.

3. Soit K=R ou C. On munit M,,(K) = K" de la topologie usuelle. L’application
A detA est continue, car c’est un polynéme en les coefficients a; ; de A. Donc
le groupe

GL,(K) = {A € M,,(K) : detA # 0},

est un ouvert de M, (K). L’application (A, B) — AB est continue, puisque

chaque coefficient

n

(AB);; = Z a; kbr.j,

K=1
est une fonction continue (un polyndéme quadratique) en les coefficients de A
et B. D'un autre coté, soit C(A) la matrice des cofacteurs de A, c’est-a-dire
C(A);; est le déterminant de la matrice de taille n — 1 obtenue a partir de A
en supprimant la i-éme ligne et la j 'éme colonne; c’est polynéme homogéne de

degré n — 1 en les coefficients de A. D’aprés la formule

1
-1 "
" detA CA),

ot b désigne la transposée , on voit que A — A~ est une application continue .
Done GL,(K) est un groupe topologique , appelé le groupe linéaire de K d’ordre

n.

Théoréme 2.1.2. [1/] Soient G un groupe topologique et a € G. Alors :

1. La translation a gauche L, : x — ax et la translation a droite R, : x — xa sont
des homéomorphismes de G dans G.

1

2. L’application ¢ et l'automorphisme intérieur F, : x — axa™" sont des homéo-

morphismes.

Preuve :
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1) L’application L, est homéomorphisme :

a) L, est bijective :

Injective : Soit x et 2’ € G, on a :

/

L,(z) = Lo(2') = ar=azx
= a Yaz) = a (az)
= (ata)r = (a ta)a’
= z=2a

Surjective : Soit y € G, existe-t-il un x € G tel que L,(x) =y, on a

L(zx)=y & ar=y
= a (ax)=a"ly

= zv=aly

Ce qui montre que L, est surjective.

En remarquant que y = L,(z) <& x = L,-1(y), ceci montre que (L,)™' = Ly-1.

b) L, est continue :
Soit V' un voisinage de ax, il existe un voisinage U de a et un voisinage W de
x tel que UW C V. Comme aW C UW C V alors L, est continue.
L;' = L,—1 est aussi continue et par conséquent, L, est un homéomorphisme,

ainsi. D’une maniére analogue, on montre aussi que R, est un homéomorphisme.

2) L’application ¢ est une bijection continue égale & sa réciproque, donc c’est un
homéomorphisme
L’automorphisme F, : x — aza~' est un homéomorphisme comme composé de deux

homéomorphismes, en effet F, = L, o R,-1.
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Corollaire 2.1.1. [// Soit G un groupe topologique.
Pour toute partie ouverte (resp fermée) O de G et tout point a € G, les ensembles

a0, Oa, O~' sont ouverts (resp fermés).

Preuve :

Soit O est un ouvert de G, alors O~! aussi ouvert car I'application ¢ est un homéo-
morphisme et O~ = p(0). Les ensembles aO et Oa sont des ouverts puisque L, et
R, sont des homéomorphismes et aO = L,(O) et R,(O) = Oa.

O

Définition 2.1.2. [13] Soit G un groupe topologique, un voisinage V de e est dit

symétrique si V =V 1.

Lemme 2.1.1. [1/] Soit G un groupe topologique .

Tout voisinage U de e contient un voisinage symétrique V de e.

Preuve : Soit U un voisinage de e, donc U~! est aussi un voisinage de e, d’ou V =
UNU™! est aussi un voisinage de e qui est symétrique, (car V=1 = (UNU ™! =
UlnUHt=V)etVCU.

O

Proposition 2.1.1. [7/ Soient G un groupe topologique et % [’ensemble des voisi-

nages de e, alors % vérifie les propriétes suivante :
1. YU e, AV € U, tel que VV C U.
2.VYU € % ,Na € U,3AV € U, tel que aV C U.

3. YU € % ,Nac€U,3V €U tel que aVa~' C U.

Preuve :

1. Soit U € %, comme ¥ est continue donc 1)~!(U) est un voisinage de (e, e), et
donc il existe un voisinage V; de % et un voisinage V5 de % tel que V; x Vo C

Y~ (U), on pose V =V, N Va, on a bien ¥(V,V) =VV C (1 (U)) C U.
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2. Soit a € G. L’application L, est continue donc si U € %, alors il existe V € %
tel que V- C L1 (U). D’ou

La(V) =aV C Ly(LN(U)) C U.

3. Soit a € G. L’application F, est continue comme c’est égale L, o R,-1, donc si

U € U, alors il existe V € % tel que V C F,*(U). D’ou

F,(V)=aVa ' C F,(F,(U)) cU.

2.2 Sous-groupes, groupe quotient

2.2.1 Sous-groupes topologiques

Définition 2.2.1.1. [//
Soient G un groupe topologique, et H C G. On dit que H est un sous-groupe topo-

logique de G, si H est sous-groupe de G que I’'on munit de la topologie induite par

G.

Théoréme 2.2.1.1. Un sous-groupe H d’un groupe topologique G est ouvert si, et
seulement si son intérieurs est mon vide. Chaque sous groupe ouvert H de G est

fermée.

Preuve :

Supposon que H a un point intérieur x. Il existe un voisinage ouvert U de e tel que
xU C H,poury € Hon a: yU = (yz~')aU C yo~'H = H. Donc H est ouvert. Si H
est ouvert, alors par définition, tout point de H est un point intérieure. On suppose

que H est un ouvert et soit G — H = U {zH/x ¢ H}. Chaque zH est un ouvert, et
zelG

donc G — H est un ouvert, ainsi H est fermée.
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Théoréme 2.2.1.2. Soit U un voisinage symétrique de e dans un groupe topologique

G. L’ensemble H = U U* est un sous-groupe ouvert et fermé de G.
k=1

Preuve :

Soient z,y € G, il existe m,n > 0 , tels que x € U™ et y € U™ donc oy~ ! €
umum)~t=umut =UmU" = U™ C H . Ainsi H est un sous-groupe de G.
Pour montrer que H est ouvert, il suffit de remarquer que Yy € H,yU C yH = H.
Donc H est ouvert , et par conséquent, d’aprés le théoreme 2.2.1.1 ci-dessus il est
fermé.

O

Théoréme 2.2.1.3. Soit G un groupe topologique, H un sous-groupe, alors H est un
sous-groupe de G.

Si de plus H est normal, alors H lest aussi .

Preuve :

Il suffit de montrer que H est stable pour les lois de composition et d’inversion.
Soit a,b € H, montrons que ab~' € H : Soit V un vouisinage de ab™!, alors il
existe U un voisinage de a et W un voisinage de b tels que UW~! C V. Comme
abe HonaUNH#@et WNH#@iedrc UNHetyeWnH tels que
xy teUWINHCVNH,ieVNH#@.

Supposons de plus que H normal et soit « € H, z € G. Montrons que z~'ax € H. Soit
V un voisinage de 'az, il existe U voisinage de a tel que z~'Ux C V, or a € H ,ainsi
UNH # ©@. Soit b€ UN H, ona donc 27 'bx € V et comme H est normal, on a

également z~'bx € H, alors 27 'bx € V N H.

2.2.2 Groupes topologiques quotients

Définition 2.2.2.1. [// Soient G un groupe topologique et H un sous-groupe topolo-
gique de G, et m: G — G/H la projetion canonique.
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On définit une topologie sur G/H de la fagon suivante : Une partie A = H de G/H
est un ouvert si 7 '(A) est un ouvert de G.

Cette topologie sur G/H est appelée la topologie quotient.

Théoréme 2.2.2.1. Soient G un groupe topologique et H un sous-groupe normal,

alors le groupe quotient G/H est un groupe topologique.

Preuve :

Il suffit de montrer que 'application :

W:G/HXG/H — G/H )
. est continue.

(@,9) =Ty

Soit W un voisinage ouvert de g~ !, rappelons que T = 2 H et § = yH ot z,y € G.

On a 71 (W) est un ouvert dans G (car 7 est continue ) et xy~* € 7=(W), puisque G

est un groupe topologique, il existe deux ouverts U et V tels que x € U,y ' € V! et

ry ' e UVt C 7= Y(W). Puisque 7 est ouvert 7y~ ! € m(U)n(V)™! C n(x"1(W)) =
W . et m(U), (x(V))™' =x(V~!) sont ouverts car U et V le sont.

O

Théoréme 2.2.2.2. Soient G un groupe topologique et H un sous-groupe normal de
G.

a) Pour que G/H soit séparé, il faut et il suffit que H soit fermé dans G.

b) Pour que G/H soit discret, il faut et il suffit que H soit ouverte dans G.

Preuve :

a) (=) Supposons G/H séparé. Alors tout singleton de G/H est un sous-ensemble
fermé et donc en particulier le point {H} est fermé. Puisque 7 est continue, H =
7Y ({H}) est un fermé.

(<) supposons H fermé. Soit Vo € G on a zH est un fermé est donc G \ zH est un
ouvert dans G. Donc w(G\ 2 H ) est un ouvert dans G/H, or (G/H)\{zH} = n(G\ H)
donc {xH} est fermé et ainsi G/H est séparé.

b) (=) Si G/H est discret alors chaque singleton est ouvert donc en particulier {H }.
Or H = 7 '({H}) donc H est ouvert.
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(<) Si H est ouvert, alors zH l'est aussi pour tout = € G ce qui implique que {7},

est ouvert dans G/H. D’ou G/H est discret.

2.3 Axiomes de séparation dans des groupes topolo-
giques

Proposition 2.3.1. Soit G un groupe topologique, et soit H un sous-groupe topolo-

gique de G. Les propriétés suivantes sont équivalentes :

a) G estTy.
b) G est T;.
c) G estTy ou Hausdorff.

d) ﬂ U ={e}, ou % est un systéme fondamental de voisinages de e.

Uew
Preuve : Nous montrerons que (a) = (b) = (¢) = (d) = (a).
(a) = (b) : Soient x # y, et x,y € G, il existe un voisinage U de z tel que y € U .
Puisque 271U = V est un voisinage de e alors V NV ™1 = W est un voisinage symé-
trique de e. Donc yW est un voisinage de y et x € yW. En effet, sinon 27! € Wy ™!, et
doncax™ ' € Wyt c Vy ! Ca Uy !, cequiimpliquee = zz~! € z2~ Uy ! = Uy !

c’est-a-dire y € U, ce qui est une contradiction.

(b) = (c) : Si Gest T et x # y € G il existe un voisinage symétrique V' de e tel que
VV CU quiest zy € V.V.
Alors V,, et V,, sont des voisinages disjoints de z et y. Pour cela z = vx = wy, pour

certains v,w € V. Alors zy ! = v lzz7lw = v™lw € V7V = VV. Comme cela ne
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peut pas étre le cas, V, et V,, sont disjoints. Par conséquent, G est Hausdorff.

(c) = (d) : Soit = € ﬂ U et supposons que x # e. Il existe un voisinage V' de e tel
vew

que x € V. On a % est un systéme fondamental de voisinages alors il existe U € %

tel que U C V, contradiction x € V. D’ou z = e.

(d) = (a) : Soit z # y € G; puisque zy~' # e il existe U € % tel que zy~' € U.

Donc Uy est un voisinage de y tel que = ¢ Uy.

Proposition 2.3.2. [9] Soit G un groupe topologique.

Si G nest pas Ty, Soit H = @ . Alors H est un sous-groupe normal et G/H équipé

du la topologie par quotient, est un groupe topologique de Hausdorff.

Preuve :

D’aprés la théoréme 2.2.1.3, H est un sous-groupe normal. Il est bon de vérifier que
la multiplication et I'inversion sont continues sur G//H. On voit que {eq/u} est fermé
dans la topologie quotient puisque H est fermé. Par conséquente, tous les autres
ensembles & un point sont également fermés, en utilisant que gH est fermé pour
chaque g € G , et donc G/H est 17 et par la premiére partie de cette proposition,

nous concluons que G/H est Hausdorff.

2.4 Fonctions continues sur les groupes topologiques

Définition 2.4.1. /9] Soient G un groupe topologique et f une fonction réelle ou
complezxe sur G. On définit la translation gauche et a la translation droite de f comme

suite :
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L,f(z) = f(y 'z), R,f(z)=f(zy), pour toutz,y € G.
Remarque : Pour tous y,z € G ,ona L,.f = L,(L.f) et R,.f = Ry(R.f).

Définition 2.4.2. Soit X un espace topologique, et f : X — C est une fonction. Le

support de f, noté supp (f), est Uensemble supp(f) = {x € X; f(x) # 0}.

Si supp (f) est compact, on dit que f est a support compact, et nous définissons
Co(X)={f € C(X): supp(f)est compact }, ot C(X) désigne l’ensemble des fonc-
tions continues a valeurs complexes sur X.

Par exemple, chaque fonction continue sur un compact [’espace topologique a un sup-
port compact puisque chaque sous-ensemble fermé d’un espace compact est compact.

Nous utilisons également la notation suivante CH(X) = {f € C.(X) : f(x) >
Oet || fllso > 0}, 0t || fllc = sup{|f(x)|: z € X}.

Définition 2.4.3. [/
Soient G un groupe topologique, et f € C.(G) on dit que f est continue uniformément

a gauche ( resp uniformément a droite). Si pour tous € > 0, il existe un voisinage U

de e tel que || Ly(f) — fllo < e, (resp||Ry(f) — flloo <€), Vy € U.

Proposition 2.4.1. Soit G un groupe topologique et f € C.(G) alors f est uniformé-

ment continue a gauche et a droite.

Preuve :

Soient K = supp(f) = {z € X; f(x) # 0} et supposons € > 0, puisque f est continue
alors pour tout z € K, il existe un voisinage U, de e tel que pour tout y € U,,

Flay) = f@)| < 5,
est par Proposition 2.1.1,(1). Il y a un voisinage symétrique V, de e tel que V,V,, C
U,. Puis {2V, },ex couvre K donc il existe z1,...,2, € K tel que K C U}, 2;V,, -
On pose V =, Va,.
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Maintenant nous allons montrer que V est le voisinage souhaité. Il est clair que
V' est un voisinage symétrique de e. D’abord supposons x € K et y € V. Puis
za,t € Vy, C Uy, pour certains 1 < i < n et donc ytaz;' € VV,, C V,,V,, C U,,.

Par conséquent, nous avons cela

|f(y~ g ) — fway )]
Jy twa ) — faa)| + | f () — flaa zy)]
+

[f(y~ ) = f(2)]

IA

(VAN
™

=£.

N

Maintenant supposons = € K. Si y~'x & K alors I'inégalité est trivial.

Sinon, si y ' € K, alors y~'zz; ' € V,, pour certains i. Donc xx; ' = yy lax; ! €
U,,, alors
fy™t2) = f@)| < [fly'z) — fl@)] + [f(zi) — f(=)
= | fly way w) = fxa)| + [ f2:) = flaayz)]| <e.
O

Corollaire 2.4.1. [0] Soient f € C.(G) et € > 0, il existe un voisinage V de e tel
que | f(z) — f(y)| < e chaque fois que y 'z € V ouyx=t € V.

Preuve :

Soit ¢ > 0. Comme f est uniformément continue & gauche et a droite, il existe un
voisinage W; de e tel que pour tout z € G et z € Wy, |L.f(z) — f(z)| < € et un
voisinage Wy de e tel que z € Wy implique |R, f(x) — f(x)| < e. Soit W = Wy N Wh.
Alors, si y~ 'z € W, cest-a-dire, * = yw pour certainsw € W, on en déduit que
|f(x) = f)l = [f(yw) = f()] = [Ruf(y) = f(y)| <e. De méme, nous avons que si
yr~t =w € W, alors [f(z) — f(y)| = [Luf(y) — fW)] <e.



Chapitre 3

Mesure de Haar

La mesure de Haar a été découverte par Alfred Haar (un mathématicien hongrois)
en 1933. Dans ce chapitre, nous introduisons le concept important de mesure in-
variante et d’intégration invariante sur un groupe topologique G, nous prouverons
également D'existence et 'unicité de la mesure de Haar. Soit G un groupe localement
compact et soit C.(G) et CF(G) 'espace des fonctions continues et I'espace des fonc-

tions continue & support compact sur GG avec un support compact respectivement,

voir[G][7][9][16].

3.1 Définition et propriétés

Un groupe localement compact est un groupe topologique dont la topologie sous-

jacents est localment compacte et séparé.

Définition 3.1.1. /9] Soit u une mesure de Radon sur un groupe topologique locale-
ment compact G.

On dit que p est invarinte a gauche (resp a droite ), si p(xA) = p(A) ( respectivement
si W(Azx) = u(A)). Pour tout borélien A et pour tout x € G.

Définition 3.1.2 (Mesure de Haar). [9/

Soit G est un groupe topologique localement compact. Une mesure de Haar a gauche
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(resp a droite) sur G est une mesure de Radon invariante & gauche (resp invariante

a droite) non nulle sur G.

Proposition 3.1.1. Soit G un groupe topologique localement compact.

a) Une mesure de Radon p sur G est une mesure de Haar a gauche si, et seulement
si, la mesure i défini par fi(A) = p(A™1), pour tout borélien A C G, est une

mesure de Haar & droite sur G.

b) Une mesure de Radon non nulle sur G est une mesure de Haar a gauche si, et

seulemment, st [ fdu = [ L,fdu pour tout f € CH(G) et pour tout y € G.

c) Sip est une mesure de Haar a gauche sur G alors p(U) > 0 pour tous lesU C G

ouverts non vides. De plus, [ fdu > 0 pour tout f € CF(G).

d) Siu est une mesure de Haar a gauche sur G, alors u(G) < +o0 si, et seulemment,

st G est compact.

Preuve :

a) Supposons que p est une mesure de Haar a gauche. Il est facile de voir que c’est
une mesure de Radon non nulle. Soit A C GG un ensemble de Borel. Que 1 est
invariant & droite découle simplement du fait que (Az)™' = 27*A~! pour tout
x € G. Par conséquent fi(Ax) = p(x A7) = p(A™Y) = fi(A). L'inverse peut

étre montré de la méme maniére.

b) Soit p est une mesure de Haar a gauche et soit y € G. Notez que L1, = 1,4. Par

conséquent, pour chaque fonction simple h = Z a;14; avec a; > 0 on obtient
i=1

/hdu = aip(A) = aip(yA;) = /Lyhdu-
=1 =1

De l'égalité [ fdu = sup{[ hdu | hsimple f > h} pour tous f € CF(G), il
s'ensuit que [ fdu = [ L,fdp.
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D’un autre coté, si [ fdu = [ L,fdp pour tous f € CF(G) et pour tout y €
G alors I'équation doit étre vraie pour tous les f € C.(G), car ces fonctions
sont des combinaisons linéaires de fonctions dans Cf(G). Puisque I'intégrale
est une fonctionnelle linéaire positive sur C,(G), en appliquant le théoréme de

représentation de Riesz, on déduit que :

w(U) = sup{[ fdu|0< f<1,supp(f) cU}
= sup{[ Lyfdu|0< f<1,supp(f) CU}
= sup{[ fdu|0 < f <1, supp(f) CyU}
= uyl).

c) Si pu est une mesure de Radon non nulle, alors par régularité externe il y a un
ensemble ouvert U pour lequel pu(U) > 0, et par régularité interne sur ensemles
ouverts il y a un ensemble compact K avec u(K) > 0. Soit U un ensemble ouvert

n
et non vide arbitraire. Alors il existe x1,xs,...,x, € G tels que K C Uin,
i=1

d’ou p(z;U) = p(U), pour tout 1 <i <mnet pu(K) < Z,u(in), nous concluons
i=1

que u(U) > 0.

Pour f € CF(G), soit U :={x € G| f(z) > ”%”} Clairement, U est ouvert et

non vide, puisque || f ||> 0 donc [ fdu > —”fH’;(U) > 0.

d) Si G est compact alors pu(G) < +oo puisque g est une mesure de Radon. Si G
n’est pas compact et que V' est un voisinage compact de e, alors G' ne peut pas

étre couvert par un nombre fini de translates a gauche de V. Donc, inductive-
n—1

ment, nous pouvons choisir zy, xs, ..., de sort que z, & U x;V. En utilisant
i=1

la Proposition 2.1.1 (1), choisissez un voisinage symétrique U de e tel que
U.U c V. Nous affirmons que pour tout m # n, z,,U Nz, U = (. En effet,

supposons m < n, et que x,,u = x,w pour certains u,w € U, alors
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Ty = Tpuw * € r,UU = x,,V,

ce qui est en contradiction avec le choix de x,,.

Par (c¢), il s’ensuit que p(U) > 0,

(@) =Y p(wal) = Nu(U).

nelN

Laissant N — oo, nous donne p(G) = oo ce qui est une contradiction. Alors G

est compact.

Exemple 3.1.1.

1. La mesure de Lebesque sur R™ est une mesure de Haar gauche et droite sur le

groupe additif G = R".

2. La mesure f f0+°° @dt est une mesure de Haar sur RY.

3.2 L’existence et 'unicité de la mesure de Haar

Dans cette section, nous démontrerons une partie importante de cette mémoire qui
est 'existence et 1'unicité de la mesure de Haar a gauche sur chaque groupe locale-
ment compact G. L’existence sera prouvée en construisant une fonctionnelle linéaire
positive I sur C.(G), qui est également invariante par translation a gauche dans le
sens ot I(L,f) = I(f) pour chaque f € C.(G) et pour tout y € G. En utilisant le
théoréme de représentation de Riesz et la proposition 3.1.1, (b) nous pouvons prouver
'existence d’'un mesure de Haar a gauche, et par la méme proposition 3.1.1, (a) on

obtient immeédiatement l'existence d’une mesure de Haar.
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3.2.1 L’existence

Définition 3.2.1.1 (Le numéro de couverture Haar). [7] Soient G un groupe locale-

ment compact et f, o € CH(Q), on définit

(f:9)= z'nf{ch < chijgo,‘v’n eN,¢; >0etVay,...,z, € G} (3.1)

3=1 Jj=1
et (f : @) est le numéro de couverture fonctionnelle de f par rapport a .

Lemme 3.2.1.1. [9] Pour tous f, g, € CH(G), on a

1. (f:9)=(L.f :p), VxeG, (invariance gauche).

NS

C(fHgie) S (fre)+ (91 ), (sous-additivité).

CAfre) = A ), VYA >0, (sous-linéairité).

Co

4. Si f <galors (f:¢) <(g9:¢), (monotonie).
(fre) < (f:9)(g9: @), (comparabilité).

- (f9) 2 1F Mgl =", ( non-trivialite).

S O

Preuve :

1. D’aprés 'equation 3.1, pour tout n € N,¢; > 0,2; € G et j <n.On a

[ < ZCiijSO > L,(f) < L, <Z CjLﬂCjSD) - ZC]LMJ.QO.

Jj=1 Jj=1 J=1

2. Découle du fait que si
f S ZC]LZ‘JSD et g S ZajLZj<l07
j=1 j=1

alors

n+m

[H9E Y ehept D ailee = bilys,
j=1 j=1 k=1
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ol
Cr sil<k<n,
b, =
Ay, Sin—1<k<m
et
T, sil<k<n,
Y =

Zken Sin—1<k<m.

n n
3. Ici nous avons cela f < Z ¢jLg;p si et seulement si Af < Z Ac; Ly, p, ce qui
j=1 j=1

donne la conclusion.

4. Sig< chijap, et f <galors f < chLIjgp.

j=1 j=1
5. Découle du fait que si

n

f < ZCjLIj (g) et g< ZaiLZﬁOa
=1

Jj=1

alors

/< ZCjoj (Z Gz‘inSO) = Z Z Cj@iLy, ;0.
j=1

i=1 7j=1 =1

n
6. Soient n € N,¢; > 0,z; € G, pour j < n avec f < chLmjgp, il s’ensuit que
j=1
n
£ <l Z ¢jLa, ¢ || et par définition de la norme de la convergence uniforme,
j=1
n
nous concluons que || f|| < Z cjllell- ce qui implique (6).
j=1
O

Définition 3.2.1.2. [7] soit la fonction fo € CH(G) five, pour p € CF(G) on définit
Uapplication 1, : CF(G) — [0, 00] par
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Nous allons désormais regarder I, au lieu de f — (f : ¢). la raison en est les

inégalités suivantes dont nous aurons besion.

Lemme 3.2.1.2. Soient f,p € C.(G), nous avons l'inégalité

(fo: /)7 S L(f) < (f = fo) (3.2)
Preuve : Soient f, ¢ € C.(G), nous avons I,(f) = ((]{;:f;)),

alors

(fo: )TN < I(f) < (f: fo),
(fo: f)7' < ((J{;fi)) < (f: fo);

(fo: )M fo: ) S (Fr) <(f: fo)(for o).
D’apres le lemme 3.2.1.1 (5), ce qui implique (3.2)

O

Lemme 3.2.1.3. Soient fi, fo € CHG) et € > 0, il y a un voisinage V' de e tel que
I(f1) + I,(f2) < I,(f1 + f2) + €, pour tout p € CF(G), avec supp(p) C V.

Preuve :
On choisit d’abord une fonction g € CF(G) avec g = 1 sur 'ensemble supp(f; + f2),

et soit 0 > 0, & choisir plus tard. Nous définissons
h = fl +f2+5g, ethi = fl/h,Z = 1,2

(ot h; = 0 sur G\ supp(f;)). Ainsi, hy,hy € CH(G), et par le corollaire 2.4.1, il

existe un voisinage V de e tel que | h;(z) — hi(y) |< 6, pour i = 1,2 avec y 'z € V.

Soient n € N,¢; > 0etz; € G,5=1,2,...,n, de sort que h < chLIjgo. Il s’ensuit
j=1

que chaque fois que x;lx € supp(p) C V

fi(x) = h(x)hi(z) < Z cjp(x; x)hi(z) < Z cjo(x; @) [hi(z;) + 0.
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Cela signifie que

n

(fir ) <D clhilzy) +4],
j=1
et puisque hy + hy < 1 alors

(o) +(fai9) <D el +24].

n
Puisque E c; est arbitraire, nous concluons que
j=1

(fi:9)+ (f2:0) < (h:9)(1+20),

et d’apres le lemme 3.2.1.1 alors

Lo(f1) + 1o(f2) < (14 20)1p(h) < (1 +20)(Lo(fi + f2) + 014(9))-

Par conséquent, pour € > 0, on peut choisir § > 0 tel que

26I,(f1+ f2) + (1+20)01,(g) = 20012 4 952 )

< 26(fi+ far fo) +O(1+20)(g: fo) <e

D’aprés le lemme 3.2.1.2 nous concluons que

I(f1) + 1,(f2) < (1420)(L(fr+ f2) +1,(9)) < (L420)(L (f1 + f2) + (g : fo)
< Lp(fit o) £20(f1+ foi fo) £6(1+20)(g: fo) < L,(fr+ f2) +e

|

Théoréme 3.2.1.1. Chaque groupe localement compact G, posséde une mesure de

Haar a gauche.

Preuve : Pour chaque f € C(G), soit Xy intervalle [(fo : f)7%, (f : fo)], et soit

x= 1] x

fecd (@)
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D’aprésle lemme 3.2.1.2, I, € X, Vo € CF(G) et d’aprés le théoréme de Tychonoff,

alors X est compact.

Pour chaque voisinage V' de e, soit

Ky ={l, € X |pc CHG), suppp C V}.

Soit V4, Va, ..., V}, les voisinage de e. Clairement e € (;_, V;, donc Pensemble ouvert
i, Vi, est non vide. Par conséquent, d’aprés le lemme d’Urysohn, il existe une fonc-
tion ¢ € CF(G), telle que supp ¢ C [_; Vi. On voit que ¢ € Knr_ v, Clairement
Knr v, C Ni; Kv;, et cela implique que ce dernier ensemble est non vide.

Puisque {Ky }v est une famille de sous-ensembles fermés qui a la propriété d’inter-
section finie, on déduit que (), Ky est non vide. Choisissez un I € [, Kv.

Pour chaque voisinage V' de e nous avons que I € Ky . En utilisant la définition de
Ky avec la définition de la topologie produit, nous en déduisons que, pour chaque
fi,fo s fn € CHG) et € > 0, il existe ¢ € CFH(G) tel que supp ¢ € V et
I(fi) — L,(fi)] <&, Vi=1,2,...,n.

Donc d’aprés le lemme 3.2.1.1; (1)(2) et le lemme 3.2.1.3 I, est invariant & gauche et sa-
tisfait (A1 fi+Aafa) = MI(f1)+ AL (f2), YA1, A2 > 0, et il s’ensuit facilement que pour
f € C.(G) a valeur réelle on définit I(f) = I(f*) —I(f), on f*(z) = max (f(x),0)
et f~(z) = max (—f(z),0). Alors I est clairement une forme linéaire positive sur
C.(G) et donc par le théoréme de représentation de Riesz, nous concluons qu'il
existe une mesure de Radon unique yu telle que I(f) = [ fdu, Vf € C.(G). De
plus [ fdu =1(f) > (fo: f)~' > 0, pour tous f € CF(G), et donc p doit étre non
nul. Puisque [ fdu = I(f) = I(L,f) = [ L,fdu, pour tout = € G et f € C, nous

concluons par la proposition 3.1.1(b) que u est une mesure de Haar a gauche.
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3.2.2 L’unicité

Soient ;1 une mesure de Haar a gauche, 7 une mesure de Haar & droite. Alors v est
une mesure de Haar a gauche. On va montrer que p et v sont proportionnelles. Ceci

prouvera bien que deux mesures de Haar & gauche sont forcément proportionnelles.

Lemme 3.2.2.1. [0] Soit v une mesure de Haar & gauche sur G. Alors pour tout

f € C.Q), la fonction

xH[ﬁ@@W@)

est continue sur G.

Preuve : Il faut montrer que pour un xy € G donné et £ > 0, il existe un voisinage
U de y tel que pour tout « € U on a | [, f(yz) — f(yzo)dv(y)| < . En remplagant
f par R, f(y) = f(yzo), on réduit le probléme au cas zo = e. Soit K le support de
f et soit V' un voisinage symétrique compacte. Pour z € V on a supp(R,f) C KV.
Soit € > 0, et comme [ est uniformément continue, il existe un voisinage symétrique
W tel que pour x € Won a |f(yz) — f(y)] < sey- Pour € U = W NV on obtient

donc

[ flyz) = F)dv(y)| < [y [F(yz) — f(y)]dv(y)
< —==v(KV)=¢.

I/(;V)

Théoréme 3.2.2.1.

Soient p et v deux mesures de Haar a gauche sur le groupe localement compact G.

Alors il existe un nombre réel positif ¢ tel que p = cv.

Preuve : L’assertion que p = cr est équivalente a l’assertion que fG fdu/ fG fdv

est indépendant de f € CF(G). Pour expliquer cela davantage, lorsque ¢ = £ et les

mesures 4 et v sont écrites sous leurs formes intégrales de fG fdp et [ o fdv, alors le

Jo fdu
Jo fdv

rapport de est le méme pour tout f choisi dans C7(G). Supposons alors que
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Jo fdp [ gdu
Jo fdv = [ggdv®

Soit Vy un voisinage compact symétrique de e et soit

f,9 € CF(G); nous montrerons que

A= (supp (f))Vo U Vo(supp (f)),

B = (supp (g9))Vo U Vo( supp (g))-

Pour y € Vi considérez les fonctions x — f(xy) — f(yx) et x — g(xy) — g(yx)
sont pris en charge dans A et B respectivement. Ensuite, étant donné ¢ > 0, d’aprés
la proposition 2.4.1, il existe un voisinage compact symétrique V' C Vj de e telle
que sup.|f(zy) — f(yz)| < e et sup.lg(ry) — g(yz)| <e, Vy e V.

Choisissons h € CF(G) avec supp(h) C V et h(z) = h(z™'). Puisqu'un groupe est
un sous-groupe d’un groupe de permutations, tout élément x peut étre réécrit sous la

forme yx. Ensuite nous avons,

(S hdv) ([ fdp) =[5 [o h(y) f(@)dp(z)du(y)
Jo Ja M) f(yz d#( )dv(y).

Maintenant par substitution, application du théoréme de Fubini, et h(z) = h(z™1),

on a

(fc hdﬂ)(fc fdv) = fG fG

h(z)
- foG h(y=x) f( (y)
= Jo Jo ha ) Fy)dv(y)dp(z)
- foG h(y) f(zy)dv(y)du(x)
Jo Jo h ) f(zy)dp(z)dv(y).

Puisque la fonction x — f(zy) — f(yx) est supportée dans A et sup,|f(zy)— f(yz)| <

g, on établit que

|(J hdp) ([ fdv) = (Jo hdv)([g fam)] = | [, fG fay)dp(x)dv(y)
Jo Jo h@) f(yz)dp(z)dv(y)],
= \fafa I (zy) — f(ya)ldp(x)dv(y)]
A) [ hdv.

IN
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Par la méme approche,

() (L) = (L) (o) v [ 1

En appliquant I'inégalité triangulaire, on obtient

fG fdp _ ngd:u fG fdp B fG hdp fG hdp B ngdu
fG fdv ngdV fG fdv fG hdv fG hdv ngdV

En divisant les deux inégalités ci-dessus par ([, hdv)( [, fdv) et ([, hdv)( [, gdv)

<

respectivement, on a

(fG hdﬂ)(f(; fdv) (f(; hdy)(f(; o < ep(A) fg hdv

(fc th)(fG fdv) (fG th)(fG fdv)| — (fG hd’/)(fc fd’/)’

et

(f(; hdﬂ)(f(; gdv) B (f(; hd’/)(fg gdj) < epu(B) fG hdv
(fchdy)<fcgd’/) (fchdy)<fcgd’/) N (fchd’/)(fcgd’/)'

Aprés la réduction, il nous reste ce qui suit

‘(fghdu) U fdw)| _ ep(4)

(Jghdv)  (Jgfdv)| ™ ([ fdv)’
et
Ughdw) — (Jagdw)| _ ep(B)

(Johdv) — (Jggdv)| ~ (Jggdv)

Ensuite, en additionnant on trouve

Jo fdp Jq 9
Jo fdv [, gdv

Puisque € est arbitraire, nous concluons que

n(A)  p(B)
=¢ <fodV " fcgd’/> '

Jo fdu
fG fdv

Jo 9dp
fG gdv
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Corollaire 3.2.2.1. /2] Toute mesure invariante & gauche (resp. a droite) sur G est

proportionnelle a une mesure de Haar a gauche (resp. a droite).

3.3 La fonction module

Soit G un groupe localement compact, et soit 4 une mesure de Haar sur G. Pour

x € G la mesure p, définie par
p(A) = p(Az),

est clairement aussi une mesure de Haar, comme pour y € G on a i, (yA) = p(yAx) =
w(Az) = p(A). Par conséquent, d’aprés I'unicité de la mesure de Haar, il existe un

nombre A(z) > 0 avec

pa = A(z)p

De cette fagon, on obtient une application A : G — R, , qui est appelée la fonction
modulaire du groupe G. Si A = 1, alors le groupe G est dit unimodulaire.

Dans ce cas, chaque mesure de Haar gauche est également invariante a droite.

Proposition 3.3.1. [0/ La fonction modulaire A : G — R%. sur un groupe localement
compact G est un homomorphisme de groupes continu.
De plus, si i est une mesure de Haar a gauche sur G pour tout y € G et f € C.(Q)

on a

/Rf /fxy dula /f Jdju(z (3.3)

Preuve : Pour tous z,y € G et le ensemble Borel A C GG, on a

A(zy)p(A) = paoy(A) = p(Azy) = py(Az)
= Ay)u(Az) = A(y)Az)u(A).
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Choisissez A avec 0 < u(A) < oo pour obtenir A(zy) = A(z)A(y). Dot A est un
homomorphisme de groupes.
Montrons que A est continu :

Soit f € Co(G) avec ¢ = [, f(x)dx # 0. D’aprés I'equation 3.3, nous avons

AG) =7 [ sy e =< [ Ry s

Donc la fonction est continue d’aprés le lemme 3.2.2.1.

Proposition 3.3.2. [1] Si G est abélien ou compact, alors G est unimodulaire

Preuve : Si GG est un groupe abélien alors toute translation a droite est une transla-
tion a gauche translation, et donc chaque mesure de Haar & gauche est invariante a
droite.

Si G est compact, alors A(G) est un sous-groupe compact du groupe multiplicatif
10, +00[. Mais le seule sous-groupe compact de cette derniére est le groupe trivial {1},

ce qui signifie que A = 1.

Remarque 3.3.1. Un sous-groupe d’un groupe unimodulaire n’est pas nécessairement

unimodulaire. Par exemple G = GL(2,R) est unimodulaire mais le sous-groupe
a b
H = ,a,be R a#0 3 de G ne lest pas.
1

Proposition 3.3.3. [1] Soit G un groupe localement compact. Pour chaque v € G

on a

/G @A) dule) = /G F(@)du(z)

pour tout f € C.(G).
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Preuve : Soit f € C.(G) et posons I(f) = [, f(#7")A(z™")dpu(z). Ensuit par le

I(Lyf) = Jofly e A )du(z)
= Jo J(xy) ) A )dp(x)
= Aly™) Jo fa)A((zy™) dp(z)
= Jo S A )du(x) = 1(f).

Il s’ensuit que I est une intégale invariante a gauche ; donc il existe un nombre ¢ > 0
avec I(f) = ¢ [, f(x)du(z). Pour montrer que ¢ = 1, soit & > 0 et choisi un voisinage
symétrique V avec |1 — A(s)| < g, pour chaque s € V. Soit f € CH (V) une fonction

symétrique. Puis

11—l Jo fl@)du(z) = |[ fz)du(z) = I(f)]

Jo lf(@) = fl@H)A(x™")|dp(x)
Jv @)L = Ala™Y)]du(x)

< e, f(x)du(x).

IN

On obtient donc |1 — ¢| < € et comme ¢ était arbitraire, nous concluons que ¢ =1 .

O

3.4 Exemples

Avant de commencer & fournir nos exemples sur la mesure de Haar, nous allons
d’abord passer sur quelques points importants qui aident le lecteur & comprendre.
i) Si G est un ouvert dans R™ pour un certain n, donc si x = (x1,...,2,),y =

(yla"‘7yn> €G7 on a
x.y:F(,’lfl,...7xn,yl7-"7yn) EG’

ou F : G x G — @G, est une fonction continue vérifant :

dF; dF; . ,
) T=,7~ existent et sont continus tout au long de G.
g’ dyr
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b) Les jacobiens de L, et R, sont constants, ¢’est-a-dir qu’ils ne dépendent que de a.

ii) Pour toute fonction f € C.(G), 'application

ﬁ%MﬂzLﬂ@wdﬂ%W%x

est une mesure de Haar a gauche sur G. De méme 'application

fHWﬂ=Lﬂ@wdﬂ&W%x

est une mesure de Haar a droite sur G.
Preuve (ii) :
D’aprés la propositions 3.1.1 (b), il est assez pour montrer que u est invariante a

gauche. Pour tout y € G et f € CHG),

/G Flyta)(det J(L,))"dx = /G F@)(det J(L,)"da

Faisons le changement de variables y~ 'z = s, d’ot = ys.
L, étant un homéomorphisme de G, on a L,(G) = G et d’aprés la formule de chan-

gement de variables dans les intégrales multiples.

Jo fly~tz)(det J(L,)) " dx

Jo f(s)(det J(Lys))~" (det J(Ly))ds
= Jo f(s)(det J(Lys))~*(det J(Ls))~"(det J(Ly))ds
= [, f(s)(det J(Ly)) " ds = pu(f).

Donc p est une mesure de Haar & gauche. On montrerait de méme que v est une
mesure de Haar a droite.

Nous pouvons maintenant commencer a traiter quelques exemples.

1. Soit G le groupe « ax+b »c’est-a-dire le groupe des transformations linéaires
affines de la droite réelle. Il peut étre identifié avec le sous-groupe de GL(2,R)

constitué des matrices
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g= , r,y € Rz #0.
0 1

G est une groupe localement compact isomorphe au demi-plan formé des

x > 0. Un élément g de G s’écrira don (z,y) avec (z,y)(u,v) = (zu,zv + y).

Si
a
h = eG,ona
01
a b x Yy ar ay+b
0 1 0 1 0 1
Ty a b ar br+vy
Ru(g) = gh = : =
0 0 1 0 1
D’ou

det J(Ly) = a* et detJ(Ry) = a.

Comme une fonction sur G s’identifie & une fonction des deux variables x et v,

soit f(g) = f(x,y), les mesures de Haar a gauche et a droite sur G s’écrivent

respectivement, pour toute f € C.(G) :

[ @it = [ [T say

et

[ e,
| 1@avte) = [ [ Etaw,

On constate au passage que le groupe G n’est pas unimodulaire. La fonction

module est donnée par A(g) = 1.
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2. Prenous G = GL(2,R), le groupe linéaire général sur R?.

Si
11 Q12
a= eG,ona
Q21 Q22
@11 Q12 T11 T12
Li(g) =ag =
Q21 A22 To1 22
11711 + A12T21  G11T12 + A12T22
21711 + A21T21 (2112 + A22T22
Donc
a1 0 a2 O
0 a1 0 19
J(La) =
a921 O 929 O
0 a921 0 929
et
ann 0 ap 0 an a2
det J(L,) = andet | 0 agp 0 | +andet [ayy 0 0
a1 0 ag 0 ag ax

G11(G1la22a22 - CL126L21CL22) + CL12(CL126L216L21 - a11a21(l22)

2 2

2 2
ay1G39 — 2011412021 Q22 + A150%,

(ar1a9s — a12a91)* = (det a)?.

T11 T12 ailr aig

R.(g9) = ga

T21

T22

a21

T11G11 + T12021

T21@11 + T22021

22
T11G12 + T12022

T21G12 + To20922
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Donc
ajp axp 0 0
J ( Ra) _ aiz az 0O 0 ’
0 0 ann an
0 0 a2 ax
et
a22 0 0 aia O 0

detJ(Ra) = andet 0 a1 a1 _@21d€t 0 a1l a1
0 12 Q92 0 Q12 Aa22

= a11(a22a11a22 - a12a21a22) - a21(a12a11a22 - C6216L126112)

= (deta)*

Donc les mesures de Haar a gauche et a droite sont identiques et données par

T11, %12, To1, T
/f(g)d,u(g) :/ = f( BihatL e 22)d$11d9€12d$21d9022-
G R4

L1122 — T12221
Ainsi GL(2,R) est unimodulaire.

3. Soit G I'ensemble des matrices carrées d’ordre 3 a coefficients réels de la forme

=

Il
o =
= 8
SIS

| z,y,2 € R"

e}
e}
—_

Si

—_
<
[t

s=10 1 w]||uv,weQG.
00

—_

un calcul élémentaire montre que

det J(Ls) = det J(Rs) = 1.
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Donc les mesures de Haar a gauche et a droite sont identiques et donnes par

/f(g)du(g):/ f(z,y, z)dxdydz.
G R3

On particulaire G est unimodulaire.

. Soit le groupe linéaire G = GL(n,R). Par définition, c’est 'ouvert dans M, (R)

de matrices inversibles. Si ¢q,...,¢, sont les vecteurs colonnes d’'une matrice

z € M,(R), alors pour g € G, L,(z) = gz = (gc1, - .., gcn) et donc
det J(Ly) = (det g)".

De méme, en considérant des lignes au lieu de colonnes, on obtient
det J(R,) = (det g)".

Il s’ensuit que la mesure

n
| detx |™" H dx;,
ij=1
sur G est invariante a gauche et a droite . Le groupe G = GL(n,R) est unimo-

dulaire.
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