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Introduction

L a Mesure de Haar du nom de mathématicien hongrois Alfred Haar, qui l’a intro-

duite en 1933, Voir [12].

La découverte d’Alfred Haar de l’invaraint translationnelle d’une mesure sur tout

groupe topologique localement compact, devrait être classée comme l’un des mo-

ments marquants de l’histoire des mathématiques dans le vingtieme siècle.

Bien que l’existence soit connue pour tous les groupes calssiques, un résultat d’une

telle généralité a été jugé improbable par la plupart des experts. John Von Neumann

raconta ensuite avec un sourire ironique, comment il avait essayé de dissuader Haar

de considerér la mesure de Haar. Il a fait amende honorable en donnant une preuve

facile dans [7] de l’existence de la mesure de Haar pour les groupes compacts.

Haar prouve l’existence d’une telle mesure en recourant à l’axiôme de choix. Étant

donné que l’ensemble vérifie la deuxième axiome de dénombrabilité, cela peut être

réalisé avec une opération diagonale de Cantor. Son argumentation peut-être adap-

tée au cas général, mais alors l’axiome du choix semble être nécessaire pour l’existirée.

Cependant, en 1935 Von Neumann,[16] et AndreWeil,[21] (indépendenent) ont prouvé,

que l’échelle était unique jusqu’à la constante de multiplication. L’argument de Weil

pour l’existence est assez basique et peut être reproduit en utilisant seulement quelques

faits sur le produit de convolution et la division unitaire. Une preuve plus courte mais

plus avancée est obtenue en appliquant le théorème de Fubini (un que seulement dans
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la "version Fubinienne" des fonctions continues à support compact) au produit de

deux intégrales de Haar sur G × G, Voir [7][9], par lequel Von Neumann a prouvé

l’unicité.

Cette mémoire est organisé en trois chapitres :

L’objectif du premier chapitre est de fournir quelques définitions et théorèmes de base

qui seront utilisés tout au long de ce manuscrit. Il a également abordé la Théorème

de représentation de Riesz, qui a un rôle important dans la construction de la mesure

de Haar.

Dans le deuxième chapitre, les théories générales liées au groupes topologiques ont

été rappelées en présentant les définitions les plus importantes et les propriétés de

base, qui seront utile dans le traitement du thème de ce mémoire .

Le troisième chapitre comprend la partie importante de ce mémoire, à commencer

par le concept général de la mesure de Haar ainsi que les preuves de son existence et

de son unicité. Il comprend également des exemples de la mesure de Haar de quelques

groupe topologique localement compact et leurs actions gauche et droite. Ceci afin

que le lecteur puisse mieux comprendre la thématique exposée.



Chapitre 1

Préliminaires

1.1 Topologie

Notre thème principal, la mesure de Haar est définie pour un groupe topologique

localement compact. La propriété "localement Compact" est topologique, et nous

devons savoir quelque chose sur la topologie. Dans cette section, nous fournirons

quelques définitions et propriétés de base qui aident à construire la mesure de Haar.

Pour plus d’informations voir [9][15][20].

Définition 1.1.1. [3] Soit X un espace topologique

• L’espace X est dit être un espace T0 si pour tout x 6= y ∈ X il existe un sous-

ensemble ouvert contenant uniquement l’un d’entre eux.

• L’espace X est dit T1 si pour tout x 6= y ∈ X il existe deux ouverts U et V tels que

x ∈ U et y ∈ V .

• L’espace X est dit T2 ou Hausdorff si pour tout x 6= y ∈ X il existe deux ouverts

disjoints U et V tels que x ∈ U et y ∈ V .

• L’espace X est dit T3 s’il est T1 et si pour tout fermé F et x 6∈ F il existe deux

ouverts disjoints U et V tel que F ⊂ U et x ∈ V .

Définition 1.1.2. [15] Soit X un espace topologique séparé. On dit que X est compact

si, de tout recouvrement ouvert de X, on peut extraire un sous-recouvrement fini.
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Autrement dit, pour toute famille d’ouverts (Ui)i∈I de X telle que X =
⋃
i∈I

Ui, il existe

un sous-ensemble fini J de I tel que X =
⋃
i∈J

Ui.

Proposition 1.1.1. [15] Soient X un espace topologique séparé et A, B deux parties

compactes de X telles que A∩B = ∅. Alors il existe deux ouverts U et V dans X tels

que A ⊂ U,B ⊂ V, et U ∩ V = ∅.

Corollaire 1.1.1. [18]

Tout espace séparé compact est normal.

Définition 1.1.3 (Espaces topologique localement compacts ). [20]

On dit qu’un espace topologique X est localement compact s’il est séparé, et si tout

point possède au moins un voisinage compact.

Exemple :

• Tout espace compact X est localement compact, car X est un voisinage compact

de chacun de ses points.

Proposition 1.1.2. [9] Soit X est un espace localement compact, et soit U ⊂ X est

ouvert, et x ∈ U , il existe un voisinage compact V de x tel que V ⊂ U .

Proposition 1.1.3. [9] Un espace topologique X est compact si, et selement si

pour toute famille {Fα}α∈A d’ensembles fermés avec la propriété d’intersection finie,⋂
α∈A Fα 6= ∅.

Théorème 1.1.1. [15] Soit X un espace topologique séparé. Les propriétés suivantes

sont équivalentes.

(i) X est un espace normal.

(ii) Pour tous ensembles fermés, non vides et disjoints A et B dans X, il existe une

fonction continue f : X → [0, 1] telle que f(x) = 0 pour tout x ∈ A et f(y) = 1 pour

tout y ∈ B.
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Théorème 1.1.2 (Tychonoff). [15] Soit (Xi)i∈I une famille d’espaces topologiques

non vides. Alors l’espace topologique produit
∏
i∈I

Xi est compact si et seulement si

pour tout i ∈ I, Xi est compact.

1.2 Mesures et intégration

Dans cette section, nous présenterons quelques définitions et théorèmes importantes

sur la théorie de la mesure et intégration qui sont directement liées à notre sujet

principal, qui est la mesure de Haar, voir [5][10][11][17].

Définition 1.2.1 (Tribu ou σ-Algbre). [10]

Soient X un ensemble et M ⊂ P(X) un ensemble de parties de X,M est une tribu

sur X (σ-Algebre)si :

a) ∅ ∈ M.

b) ∀A ⊂ X,A ∈M =⇒ Ac ∈M( stabilite par passage ou complémentaire )

c) ∀(An)n≥0 ⊂M =⇒
⋃
n≥0

An ∈M( stabilité par union dénombrable).

Exemple :

• M = {∅, X} (tribu triviale),

• M = P(X) (tribu grossière),

sont des tribus sur X.

Définition 1.2.2 (espace mesurable). Si X est un ensemble etM une tribu de parties

de X, le couple (X,M) s’appelle un espace mesurable. Les éléments deM s’appellent

les parties mesurables de X.

Définition 1.2.3 (Tribu engendrée). Soit F une famille de parties de X. On note

σ(F ) =
⋂

M tribu surX,F⊂M

M.

Alors, σ(F ) est une tribu sur X appelée tribu engendrée par F . C’est la plus petite

tribu sur X qui contient F .
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Définition 1.2.4 (Tribu borélienne). [11]

Soit (X, T ) un espace topologique. On appelle tribu borélienne (ou tribu de Borel)

la tribu engendrée par l’ensemble des ouverts de X, cette tribu sera notée B(X). On

appelle borélien de X un élément de sa tribu borélienne.

Définition 1.2.5 (Mesures positives). [11]

Soit (X,M) un espace mesurable. On appelle mesure positive sur X une applica-

tion µ :M→ [0,+∞] vérifiant :

i) µ(∅) = 0.

ii) Pour toute suite (An)n≥0 composeé d’une famille dénombrable d’ensembles mesu-

rables deux à deux disjoints, on a

µ(
⋃
n≥0

An) =
+∞∑
n=0

µ(An).

On dit que (X,M, µ) est un espace mesuré.

Exemple :

1) Mesure de Dirac en x ∈ X.

Soit (X,M) un ensemble mesurable. On définit δx :M→ [0,+∞] par

δx(A) = 1A(X) =

1 si x ∈ A,

0 sinon.

2) Mesure de comptage : Sur (X,P(X)), on définit la mesure de comptage µ(A),

A ∈ X par

µ(A) =

Card(A) si Aest fini ,

+∞ sinon.

Proposition 1.2.1 (propriétés élémentaires d’une mesure positive).
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1. Si A,B ∈M et A ⊂ B, alors µ(A) ≤ µ(B).

2. Si An ∈M,∀n ∈ N alors

µ(
⋃
n≥0

An) ≤
+∞∑
n=0

µ(An).

3. Si An ∈M,∀n ∈ N et si An ⊂ An+1,∀n ≥ 0, alors

µ(
⋃
n≥0

An) = lim
n→∞

µ(An).

4. Si An ∈M, et An ⊃ An+1, ∀n ∈ N, avec µ(A0) <∞ on a

µ(
⋂
n≥0

An) = lim
n→∞

µ(An).

Définition 1.2.6 (Mesures extérieures). [9]

Soit X un ensemble quelconque. Une application µ∗ : P(X) → [0,∞] est appelée

mesure extérieure sur X si

i) µ∗(∅) = 0.

ii) µ∗ est croissante : si A ⊂ B ⊂ X ⇒ µ∗(A) ≤ µ∗(B).

iii) µ∗ est σ-sous-additive : pour tout suite {An}n∈N ⊂ P(X),

µ∗(
∞⋃
n=1

An) ≤
∞∑
n=1

µ∗(An).

Une partie B de X est dite µ∗-mesurable si pout toute partie A de X,

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc).

Remarque :

Il est facile de voir qu’un ensemble B est µ∗-mesurable si et seulment, si µ∗(A) ≥

µ∗(A ∩B) + µ∗(A ∩Bc) pour tous les A ⊂ X tels que µ∗(A) <∞.

Exemple : Une mesure de Radon sur un espace topologique X est une mesure de

Borel qui est finie sur les ensembles compacts, régulière externe sur tous les ensembles

de Borel et régulière interne sur tous les ensembles ouverts.
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Définition 1.2.7 (Applications mesurables). [17] Soient (X,M) et (X ′,N ) deux

espaces mesurables non vide, et soit f une application de X dans X ′. L’application f

est dite mesurable si f−1(N ) ⊂M, i.e pour tout B ∈ N alors f−1(B) ∈M.

Exemple :

Soit (X,M) un espace mesurable, et soit A ⊂ X. On définit la fonction indicatrice

de A par

1A(x) =

1 si x ∈ A,

0 sinon.

Alors

∀a ∈ R, (1A)−1(]a,+∞[) =


∅ si a ≥ 1,

A si 0 ≤ a < 1,

X si a < 0.

Ainsi, 1A est mesurable si et seulement si A est mesurable (A ∈M).

Exemple :

Soient (X, T ) et (Y, T ′) deux espaces topologiques et f : X → Y une fonction conti-

nue, alors f est mesurable.

Définition 1.2.8 ( Mesure σ−finie). [10] Soit (X,M, µ) un espace mesuré, on dit

que µ est σ−finie (ou que (X,M, µ) est σ−finie ) si :

∃(An)n∈N ⊂M, µ(An) <∞, ∀n ∈ N, etX =
⋃
n∈N

An.

Théorème 1.2.1 (Mesure produit). [5] Soient (X,M, µ) et (Y,N , ν) deux espaces

mesurés σ−finis. Alors

a) Il existe une unique mesure m sur (X × Y,M⊗N ) telle que

m(A×B) = µ(A)ν(B)∀A ∈M,∀B ∈ N .
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b) Pour tout E ∈M⊗N , on a :

m(E) =

∫
X

ν(Ex)dµx =

∫
Y

µ(Ey)dνy.

Théorème 1.2.2 (Fubini-Tonelli). [5] Soient (X,M, µ) et (Y,N , ν) deux espaces

mesurés σ−finis, et soit f : X × Y → [0,+∞] une fonction M ⊗ N -mesurable.

Alors : i) Les fonctions

(X,M) → [0,+∞]

x 7→
∫
Y
f(x, y)dνy

et

(Y,N ) → [0,+∞]

y 7→
∫
X
f(x, y)dµx

sont mesurables.

ii) On a les égalités suivantes :∫
X×Y

fd(µ⊗ ν) =

∫
X

(∫
Y

f(x, y)dνy

)
dµx =

∫
Y

(∫
X

f(x, y)dµx

)
dνy.

1.3 Théorème de représentation de Riesz (Riesz-Markov)

Le théorème de représentation de Riesz, appelé par fois le théorème de Riesz-

Markov ; à ne pas confondre avec le célérbre théoréme de représentation de Riesz qui

perment une udentification d’un espace de Hilbert avec une espace duel topologique.

Le théorème de représentation de Riesz fournit une manière d’obtenir des mesures

(positives) à partir de formes linéaires positives sur l’espace des fonctions continues à

support compact.

On note Cc(X) l’espace des fonctions continues à support compact de X dans R

ou C. On rappelle que le support d’une fonction f est supp(f) = {x ∈ X | f(x) 6= 0}.

Définition 1.3.1. [9] Soit X un espace topologique séparé localement compact. Une

mesure de Radon µ sur X est une mesure de Borel avec les propriétés suivantes :
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1. µ(K) <∞ pour tous les compacts K ⊂ X.

2. (Régularité extérieure) Pour chaque ensemble Borel E,

µ(E) = inf{µ(U) | E ⊂ U,U ouvert }.

3. (Régularité intérieure) Pour chaque ensemble ouvert U ,

µ(U) = sup{µ(K) | K ⊂ U,K compact }.

Lemme 1.3.1 (Lemme d’Urysohn).

Soit X un espace topologique séparé localement compact, U un ouvert de X, K

un compact de X inclus dans U . Alors il existe une fonction f ∈ Cc(X) telle que

supp(f) ⊂ U , f = 1 sur K et 0 ≤ f ≤ 1.

Remarque : En termes de fonctions caractéristiques, la conclusion affirme l’exis-

tence d’une fonction continue f qui satisfait les inégalités 1K ≤ f ≤ 1U .

Théorème 1.3.1 (Théorème de représentation de Riesz (Riesz-Markov)). [10]

Soit I : Cc(X)→ C une forme linéaire. Alors il existe une mesure unique de Radon

µ : B → [0,∞] telle que I(f) =
∫
X
fdµ. pour tout f ∈ Cc(X). En outre

µ(U) = sup {I(f) : f ∈ Cc(X), 0 ≤ f ≤ 1, supp (f) ⊂ U} pour tous ouvertU ⊂ X,

(1.1)

et

µ(K) = inf {I(f) : f ∈ Cc(X), 0 ≤ f ≤ 1, f ≥ 1K} pour tous les compactsK ⊂ X.

(1.2)



Chapitre 2

Groupes topologiques

Dans ce chapitre, nous discuterons des théorèmes généraux concernant les groupes

topologiques. Axiomes de séparation dans un groupe topologique, sous-groupes, groupes

quotients. En plus des fonctions continues sur les groupes topologiques. Pour plus

d’information voir[3][13][14]

2.1 Définition et propriétés

Définition 2.1.1. [3] Un groupe topologique est un ensemble G muni d’une structure

de groupe et d’une topologie tel que les deux applications :

ψ : G×G → G

(x, y) 7→ xy

et

ϕ : G → G

x 7→ x−1

(oû G×G est muni de la topologie produit), sont continues.

Notation : Si A et B sont deux parties de G, on pose :
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AB = {xy, x ∈ Aet y ∈ B} = ψ(A×B),

A−1 = {x−1, x ∈ A} = ϕ(A).

Remarque 2.1.1. [13] Soient G un groupe topologique et x, y ∈ G. Les deux appli-

cations ψ et ϕ étant continues ; pour tout voisinage V de xy dans G, il existe deux

voisinages U de x et W de y tels que UW ⊂ V . Aussi, pour tout voisinage U de x−1,

U−1 = ϕ−1(U) est un voisinage de x.

Théorème 2.1.1. [14] Soit G un groupe muni d’un topologie, si G×G est muni de

la topologie produit, alors G est un groupe topologique si, et selment si, l’application

γ : G×G → G

(x, y) 7→ xy−1

est continue.

Preuve :

Montrons que ϕ et ψ sont continues est équivant au fait que γ est continue.

(⇒) supposons que ϕ et ψ sont continue. Soit V un voisinage de xy−1, il existe donc

un voisinage W de x et un voisinage U de y tels que WU−1 ⊂ V alors γ est continue.

(⇐) Réciproquement, supposons que γ est continue. Soit U un voisinage de y−1 comme

ey−1 = y−1, il existe un voiasinage V de y et un voisinage W de e tel que WV −1 ⊂ U .

On a donc V −1 ⊂ WV −1 ⊂ U (car e ∈ W ) alors ψ est continue. Montrons que ϕ

est continue. Soit V un voisinage de xy = x(y−1)−1 il existe un vouisinage U de x et

un voisinage W de y−1 tel que UW−1 ⊂ V , comme W−1 est un voisinage de y , ceci

montre que ψ est continue.

2

Exemple 2.1.1.

1. Le groupe multiplicatif (R∗+ =]0,+∞[,×) muni de la topologie induite par celle

de R est un groupe topologique.
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2. Le groupe additif Rn(n ≥ 1) muni de la topologie définie par la distance eucli-

dienne est un groupe topologique.

3. Soit K = R ou C. On munit Mn(K) ∼= Kn2 de la topologie usuelle. L’application

A 7→ detA est continue, car c’est un polynôme en les coefficients ai,j de A. Donc

le groupe

GLn(K) = {A ∈ Mn(K) : detA 6= 0},

est un ouvert de Mn(K). L’application (A,B) 7→ AB est continue, puisque

chaque coefficient

(AB)ij =
n∑

K=1

ai,kbk,j,

est une fonction continue (un polynôme quadratique) en les coefficients de A

et B. D’un autre côtê, soit C(A) la matrice des cofacteurs de A, c’est-à-dire

C(A)i,j est le déterminant de la matrice de taille n − 1 obtenue à partir de A

en supprimant la i-éme ligne et la j’éme colonne ; c’est polynôme homogène de

degré n− 1 en les coefficients de A. D’après la formule

A−1 =
1

detA
tC(A),

oû t désigne la transposée , on voit que A 7→ A−1 est une application continue .

Donc GLn(K) est un groupe topologique , appelé le groupe linéaire de K d’ordre

n.

Théorème 2.1.2. [14] Soient G un groupe topologique et a ∈ G. Alors :

1. La translation à gauche La : x 7→ ax et la translation à droite Ra : x 7→ xa sont

des homéomorphismes de G dans G.

2. L’application ϕ et l’automorphisme intérieur Fa : x 7→ axa−1 sont des homéo-

morphismes.

Preuve :
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1) L’application La est homéomorphisme :

a) La est bijective :

Injective : Soit x et x′ ∈ G, on a :

La(x) = La(x
′) ⇒ ax = ax′

⇒ a−1(ax) = a−1(ax′)

⇒ (a−1a)x = (a−1a)x′

⇒ x = x′

Surjective : Soit y ∈ G, existe-t-il un x ∈ G tel que La(x) = y, on a

La(x) = y ⇔ ax = y

⇒ a−1(ax) = a−1y

⇒ x = a−1y

Ce qui montre que La est surjective.

En remarquant que y = La(x)⇔ x = La−1(y), ceci montre que (La)
−1 = La−1 .

b) La est continue :

Soit V un voisinage de ax, il existe un voisinage U de a et un voisinage W de

x tel que UW ⊂ V . Comme aW ⊂ UW ⊂ V alors La est continue.

L−1a = La−1 est aussi continue et par conséquent, La est un homéomorphisme,

ainsi. D’une manière analogue, on montre aussi que Ra est un homéomorphisme.

2) L’application ϕ est une bijection continue égale à sa réciproque, donc c’est un

homéomorphisme

L’automorphisme Fa : x 7→ axa−1 est un homéomorphisme comme composé de deux

homéomorphismes, en effet Fa = La ◦Ra−1 .

2
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Corollaire 2.1.1. [4] Soit G un groupe topologique.

Pour toute partie ouverte (resp fermée) O de G et tout point a ∈ G, les ensembles

aO, Oa, O−1 sont ouverts (resp fermés).

Preuve :

Soit O est un ouvert de G, alors O−1 aussi ouvert car l’application ϕ est un homéo-

morphisme et O−1 = ϕ(O). Les ensembles aO et Oa sont des ouverts puisque La et

Ra sont des homéomorphismes et aO = La(O) et Ra(O) = Oa.

2

Définition 2.1.2. [13] Soit G un groupe topologique, un voisinage V de e est dit

symétrique si V = V −1.

Lemme 2.1.1. [14] Soit G un groupe topologique .

Tout voisinage U de e contient un voisinage symétrique V de e.

Preuve : Soit U un voisinage de e, donc U−1 est aussi un voisinage de e, d’où V =

U ∩ U−1 est aussi un voisinage de e qui est symétrique, ( car V −1 = (U ∩ U−1)−1 =

U−1 ∩ (U−1)−1 = V ) et V ⊂ U .

2

Proposition 2.1.1. [3] Soient G un groupe topologique et U l’ensemble des voisi-

nages de e, alors U vérifie les propriétes suivante :

1. ∀U ∈ U , ∃V ∈ U , tel que V V ⊂ U.

2. ∀U ∈ U , ∀a ∈ U,∃V ∈ U , tel que aV ⊂ U.

3. ∀U ∈ U ,∀a ∈ U,∃V ∈ U tel que aV a−1 ⊂ U.

Preuve :

1. Soit U ∈ U , comme ψ est continue donc ψ−1(U) est un voisinage de (e, e), et

donc il existe un voisinage V1 de U et un voisinage V2 de U tel que V1 × V2 ⊂

ψ−1(U), on pose V = V1 ∩ V2, on a bien ψ(V, V ) = V V ⊂ ψ(ψ−1(U)) ⊂ U.
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2. Soit a ∈ G. L’application La est continue donc si U ∈ U , alors il existe V ∈ U

tel que V ⊂ L−1a (U). D’où

La(V ) = aV ⊂ La(L
−1
a (U)) ⊂ U.

3. Soit a ∈ G. L’application Fa est continue comme c’est égale La ◦ Ra−1 , donc si

U ∈ U , alors il existe V ∈ U tel que V ⊂ F−1a (U). D’où

Fa(V ) = aV a−1 ⊂ Fa(F
−1
a (U)) ⊂ U.

2

2.2 Sous-groupes, groupe quotient

2.2.1 Sous-groupes topologiques

Définition 2.2.1.1. [4]

Soient G un groupe topologique, et H ⊆ G. On dit que H est un sous-groupe topo-

logique de G, si H est sous-groupe de G que l’on munit de la topologie induite par

G.

Théorème 2.2.1.1. Un sous-groupe H d’un groupe topologique G est ouvert si, et

seulement si son intérieurs est non vide. Chaque sous groupe ouvert H de G est

fermée.

Preuve :

Supposon que H a un point intérieur x. Il existe un voisinage ouvert U de e tel que

xU ⊂ H, pour y ∈ H on a : yU = (yx−1)xU ⊂ yx−1H = H. Donc H est ouvert. Si H

est ouvert, alors par définition, tout point de H est un point intérieure. On suppose

que H est un ouvert et soit G−H =
⋃
x∈G

{xH/x 6∈ H}. Chaque xH est un ouvert, et

donc G−H est un ouvert, ainsi H est fermée.

2
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Théorème 2.2.1.2. Soit U un voisinage symétrique de e dans un groupe topologique

G. L’ensemble H =
∞⋃
k=1

Uk est un sous-groupe ouvert et fermé de G.

Preuve :

Soient x, y ∈ G, il existe m,n > 0 , tels que x ∈ Um et y ∈ Un donc xy−1 ∈

Um(Un)−1 = UmU−n = UmUn = Um+n ⊂ H . Ainsi H est un sous-groupe de G.

Pour montrer que H est ouvert, il suffit de remarquer que ∀y ∈ H, yU ⊂ yH = H.

Donc H est ouvert , et par conséquent, d’aprés le théoreme 2.2.1.1 ci-dessus il est

fermé.

2

Théorème 2.2.1.3. Soit G un groupe topologique, H un sous-groupe, alors H est un

sous-groupe de G.

Si de plus H est normal, alors H l’est aussi .

Preuve :

Il suffit de montrer que H est stable pour les lois de composition et d’inversion.

Soit a, b ∈ H, montrons que ab−1 ∈ H : Soit V un vouisinage de ab−1, alors il

existe U un voisinage de a et W un voisinage de b tels que UW−1 ⊆ V . Comme

a, b ∈ H, on a U ∩ H 6= ∅ et W ∩ H 6= ∅,i.e.∃x ∈ U ∩ H et y ∈ W ∩ H tels que

xy−1 ∈ UW−1 ∩H ⊆ V ∩H, i.e V ∩H 6= ∅.

Supposons de plus que H normal et soit a ∈ H, x ∈ G. Montrons que x−1ax ∈ H. Soit

V un voisinage de x−1ax, il existe U voisinage de a tel que x−1Ux ⊂ V, or a ∈ H,ainsi

U ∩ H 6= �. Soit b ∈ U ∩ H, ona donc x−1bx ∈ V et comme H est normal, on a

également x−1bx ∈ H, alors x−1bx ∈ V ∩H.

2

2.2.2 Groupes topologiques quotients

Définition 2.2.2.1. [4] Soient G un groupe topologique et H un sous-groupe topolo-

gique de G, et π : G→ G/H la projetion canonique.
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On définit une topologie sur G/H de la façon suivante : Une partie A = H de G/H

est un ouvert si π−1(A) est un ouvert de G.

Cette topologie sur G/H est appelée la topologie quotient.

Théorème 2.2.2.1. Soient G un groupe topologique et H un sous-groupe normal,

alors le groupe quotient G/H est un groupe topologique.

Preuve :

Il suffit de montrer que l’application :

π : G/H ×G/H → G/H

(x, y) 7→ xy−1
est continue.

Soit W un voisinage ouvert de xy−1, rappelons que x = xH et y = yH où x, y ∈ G.

On a π−1(W ) est un ouvert dans G (car π est continue ) et xy−1 ∈ π−1(W ), puisque G

est un groupe topologique, il existe deux ouverts U et V tels que x ∈ U, y−1 ∈ V −1 et

xy−1 ∈ UV −1 ⊂ π−1(W ). Puisque π est ouvert xy−1 ∈ π(U)π(V )−1 ⊂ π(π−1(W )) =

W . et π(U), (π(V ))−1 = π(V −1) sont ouverts car U et V le sont.

2

Théorème 2.2.2.2. Soient G un groupe topologique et H un sous-groupe normal de

G.

a) Pour que G/H soit séparé, il faut et il suffit que H soit fermé dans G.

b) Pour que G/H soit discret, il faut et il suffit que H soit ouverte dans G.

Preuve :

a) (⇒) Supposons G/H séparé. Alors tout singleton de G/H est un sous-ensemble

fermé et donc en particulier le point {H} est fermé. Puisque π est continue, H =

π−1({H}) est un fermé.

(⇐) supposons H fermé. Soit ∀x ∈ G on a xH est un fermé est donc G \ xH est un

ouvert dans G. Donc π(G\xH) est un ouvert dans G/H, or (G/H)\{xH} = π(G\H)

donc {xH} est fermé et ainsi G/H est séparé.

b) (⇒) Si G/H est discret alors chaque singleton est ouvert donc en particulier {H}.

Or H = π−1({H}) donc H est ouvert.
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(⇐) Si H est ouvert, alors xH l’est aussi pour tout x ∈ G ce qui implique que {x},

est ouvert dans G/H. D’où G/H est discret.

2

2.3 Axiomes de séparation dans des groupes topolo-

giques

Proposition 2.3.1. Soit G un groupe topologique, et soit H un sous-groupe topolo-

gique de G. Les propriétés suivantes sont équivalentes :

a) G est T0.

b) G est T1.

c) G est T2 ou Hausdorff.

d)
⋂
U∈U

U = {e}, où U est un systéme fondamental de voisinages de e.

Preuve : Nous montrerons que (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a).

(a) ⇒ (b) : Soient x 6= y, et x, y ∈ G, il existe un voisinage U de x tel que y 6∈ U .

Puisque x−1U = V est un voisinage de e alors V ∩ V −1 = W est un voisinage symé-

trique de e. Donc yW est un voisinage de y et x 6∈ yW . En effet, sinon x−1 ∈ Wy−1, et

donc x−1 ∈ Wy−1 ⊂ V y−1 ⊂ x−1Uy−1, ce qui implique e = xx−1 ∈ xx−1Uy−1 = Uy−1

c’est-à-dire y ∈ U , ce qui est une contradiction.

(b)⇒ (c) : Si G est T1 et x 6= y ∈ G il existe un voisinage symétrique V de e tel que

V V ⊆ U qui est xy−1 6∈ V.V .

Alors Vx et Vy sont des voisinages disjoints de x et y. Pour cela z = vx = wy, pour

certains v, w ∈ V . Alors xy−1 = v−1zz−1w = v−1w ∈ V −1V = V V. Comme cela ne
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peut pas être le cas, Vx et Vy sont disjoints. Par conséquent, G est Hausdorff.

(c)⇒ (d) : Soit x ∈
⋂
U∈U

U et supposons que x 6= e. Il existe un voisinage V de e tel

que x 6∈ V . On a U est un systéme fondamental de voisinages alors il existe U ∈ U

tel que U ⊂ V , contradiction x ∈ V . D’où x = e.

(d) ⇒ (a) : Soit x 6= y ∈ G ; puisque xy−1 6= e il existe U ∈ U tel que xy−1 6∈ U .

Donc Uy est un voisinage de y tel que x 6∈ Uy.

2

Proposition 2.3.2. [9] Soit G un groupe topologique.

Si G n’est pas T1, Soit H = {e} . Alors H est un sous-groupe normal et G/H équipé

du la topologie par quotient, est un groupe topologique de Hausdorff.

Preuve :

D’aprés la théorème 2.2.1.3, H est un sous-groupe normal. Il est bon de vérifier que

la multiplication et l’inversion sont continues sur G/H. On voit que {eG/H} est fermé

dans la topologie quotient puisque H est fermé. Par conséquente, tous les autres

ensembles à un point sont également fermés, en utilisant que gH est fermé pour

chaque g ∈ G , et donc G/H est T1 et par la première partie de cette proposition,

nous concluons que G/H est Hausdorff.

2

2.4 Fonctions continues sur les groupes topologiques

Définition 2.4.1. [9] Soient G un groupe topologique et f une fonction réelle ou

complexe sur G. On définit la translation gauche et à la translation droite de f comme

suite :
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Lyf(x) = f(y−1x), Ryf(x) = f(xy), pour tout x, y ∈ G.

Remarque : Pour tous y, z ∈ G , on a Lyzf = Ly(Lzf) et Ryzf = Ry(Rzf).

Définition 2.4.2. Soit X un espace topologique, et f : X −→ C est une fonction. Le

support de f , noté supp (f), est l’ensemble supp(f) = {x ∈ X; f(x) 6= 0}.

Si supp (f) est compact, on dit que f est à support compact, et nous définissons

Cc(X) = {f ∈ C(X) : supp (f) est compact }, où C(X) désigne l’ensemble des fonc-

tions continues à valeurs complexes sur X.

Par exemple, chaque fonction continue sur un compact l’espace topologique a un sup-

port compact puisque chaque sous-ensemble fermé d’un espace compact est compact.

Nous utilisons également la notation suivante C+
c (X) = {f ∈ Cc(X) : f(x) ≥

0 et ‖f‖∞ > 0}, où ‖f‖∞ = sup {|f(x)| : x ∈ X}.

Définition 2.4.3. [9]

Soient G un groupe topologique, et f ∈ Cc(G) on dit que f est continue uniformément

à gauche ( resp uniformément à droite). Si pour tous ε > 0, il existe un voisinage U

de e tel que ‖Ly(f)− f‖∞ < ε, ( resp ‖Ry(f)− f‖∞ < ε), ∀y ∈ U .

Proposition 2.4.1. Soit G un groupe topologique et f ∈ Cc(G) alors f est uniformé-

ment continue à gauche et à droite.

Preuve :

Soient K = supp(f) = {x ∈ X; f(x) 6= 0} et supposons ε > 0, puisque f est continue

alors pour tout x ∈ K, il existe un voisinage Ux de e tel que pour tout y ∈ Ux,

|f(xy)− f(x)| < ε

2
,

est par Proposition 2.1.1,(1). Il y a un voisinage symétrique Vx de e tel que VxVx ⊂

Ux. Puis {xVx}x∈K couvre K donc il existe x1, . . . , xn ∈ K tel que K ⊂
⋃n
i=1 xiVxi .

On pose V =
⋂n
i=1 Vxi .
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Maintenant nous allons montrer que V est le voisinage souhaité. Il est clair que

V est un voisinage symétrique de e. D’abord supposons x ∈ K et y ∈ V . Puis

xx−1xi ∈ Vxi ⊂ Uxi pour certains 1 ≤ i ≤ n et donc y−1xx−1i ∈ V Vxi ⊂ VxiVxi ⊂ Uxi .

Par conséquent, nous avons cela

|f(y−1x)− f(x)| = |f(y−1xx−1i xi)− f(xx−1i xi)|

≤ |f(y−1xx−1i xi)− f(xi)|+ |f(xi)− f(xx−1i xi)|

≤ ε
2

+ ε
2

= ε.

Maintenant supposons x 6∈ K. Si y−1x 6∈ K alors l’inégalité est trivial.

Sinon, si y−1x ∈ K, alors y−1xx−1i ∈ Vx, pour certains i. Donc xx−1i = yy−1xx−1i ∈

Uxi , alors

|f(y−1x)− f(x)| ≤ |f(y−1x)− f(xi)|+ |f(xi)− f(x)|

= |f(y−1xx−1i xi)− f(xi)|+ |f(xi)− f(xx−1i xi)| < ε.

2

Corollaire 2.4.1. [6] Soient f ∈ Cc(G) et ε > 0, il existe un voisinage V de e tel

que |f(x)− f(y)| < ε chaque fois que y−1x ∈ V ou yx−1 ∈ V .

Preuve :

Soit ε > 0. Comme f est uniformément continue à gauche et à droite, il existe un

voisinage W1 de e tel que pour tout x ∈ G et z ∈ W1, |Lzf(x) − f(x)| < ε et un

voisinage W2 de e tel que z ∈ W2 implique |Rzf(x)− f(x)| < ε. Soit W = W1 ∩W2.

Alors, si y−1x ∈ W , c’est-à-dire, x = yw pour certainsw ∈ W , on en déduit que

|f(x) − f(y)| = |f(yw) − f(y)| = |Rwf(y) − f(y)| < ε. De même, nous avons que si

yx−1 = w ∈ W , alors |f(x)− f(y)| = |Lwf(y)− f(y)| < ε.

2



Chapitre 3

Mesure de Haar

La mesure de Haar a été découverte par Alfred Haar (un mathématicien hongrois)

en 1933. Dans ce chapitre, nous introduisons le concept important de mesure in-

variante et d’intégration invariante sur un groupe topologique G, nous prouverons

également l’existence et l’unicité de la mesure de Haar. Soit G un groupe localement

compact et soit Cc(G) et C+
c (G) l’espace des fonctions continues et l’espace des fonc-

tions continue à support compact sur G avec un support compact respectivement,

voir[6][7][9][16].

3.1 Définition et propriétés

Un groupe localement compact est un groupe topologique dont la topologie sous-

jacents est localment compacte et séparé.

Définition 3.1.1. [9] Soit µ une mesure de Radon sur un groupe topologique locale-

ment compact G.

On dit que µ est invarinte à gauche ( resp à droite ), si µ(xA) = µ(A) ( respectivement

si µ(Ax) = µ(A)). Pour tout borélien A et pour tout x ∈ G.

Définition 3.1.2 (Mesure de Haar). [9]

Soit G est un groupe topologique localement compact. Une mesure de Haar à gauche
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(resp à droite) sur G est une mesure de Radon invariante à gauche (resp invariante

à droite) non nulle sur G.

Proposition 3.1.1. Soit G un groupe topologique localement compact.

a) Une mesure de Radon µ sur G est une mesure de Haar à gauche si, et seulement

si, la mesure µ̃ défini par µ̃(A) = µ(A−1), pour tout borélien A ⊆ G, est une

mesure de Haar à droite sur G.

b) Une mesure de Radon non nulle sur G est une mesure de Haar à gauche si, et

seulemment, si
∫
fdµ =

∫
Lyfdµ pour tout f ∈ C+

c (G) et pour tout y ∈ G.

c) Si µ est une mesure de Haar à gauche sur G alors µ(U) > 0 pour tous les U ⊂ G

ouverts non vides. De plus,
∫
fdµ > 0 pour tout f ∈ C+

c (G).

d) Si µ est une mesure de Haar à gauche sur G, alors µ(G) < +∞ si, et seulemment,

si G est compact.

Preuve :

a) Supposons que µ est une mesure de Haar à gauche. Il est facile de voir que c’est

une mesure de Radon non nulle. Soit A ⊆ G un ensemble de Borel. Que µ̃ est

invariant à droite découle simplement du fait que (Ax)−1 = x−1A−1 pour tout

x ∈ G. Par conséquent µ̃(Ax) = µ(x−1A−1) = µ(A−1) = µ̃(A). L’inverse peut

être montré de la même manière.

b) Soit µ est une mesure de Haar à gauche et soit y ∈ G. Notez que Ly1A = 1yA. Par

conséquent, pour chaque fonction simple h =
n∑
i=1

ai1Ai avec ai ≥ 0 on obtient

∫
hdµ =

n∑
i=1

aiµ(Ai) =
n∑
i=1

aiµ(yAi) =

∫
Lyhdµ.

De l’égalité
∫
fdµ = sup{

∫
hdµ | h simple f ≥ h} pour tous f ∈ C+

c (G), il

s’ensuit que
∫
fdµ =

∫
Lyfdµ.
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D’un autre côté, si
∫
fdµ =

∫
Lyfdµ pour tous f ∈ C+

c (G) et pour tout y ∈

G alors l’équation doit être vraie pour tous les f ∈ Cc(G), car ces fonctions

sont des combinaisons linéaires de fonctions dans C+
c (G). Puisque l’intégrale

est une fonctionnelle linéaire positive sur Cc(G), en appliquant le théoréme de

représentation de Riesz, on déduit que :

µ(U) = sup{
∫
fdµ | 0 ≤ f ≤ 1, supp (f) ⊂ U}

= sup{
∫
Lyfdµ | 0 ≤ f ≤ 1, supp (f) ⊂ U}

= sup{
∫
fdµ | 0 ≤ f ≤ 1, supp (f) ⊂ yU}

= µ(yU).

c) Si µ est une mesure de Radon non nulle, alors par régularité externe il y a un

ensemble ouvert U pour lequel µ(U) ≥ 0, et par régularité interne sur ensemles

ouverts il y a un ensemble compactK avec µ(K) > 0. Soit U un ensemble ouvert

et non vide arbitraire. Alors il existe x1, x2, . . . , xn ∈ G tels que K ⊆
n⋃
i=1

xiU,

d’où µ(xiU) = µ(U), pour tout 1 ≤ i ≤ n et µ(K) ≤
n∑
i=1

µ(xiU), nous concluons

que µ(U) > 0.

Pour f ∈ C+
c (G), soit U := {x ∈ G | f(x) > ‖f‖

2
}. Clairement, U est ouvert et

non vide, puisque ‖ f ‖> 0 donc
∫
fdµ ≥ ‖f‖µ(U)

2
> 0.

d) Si G est compact alors µ(G) < +∞ puisque µ est une mesure de Radon. Si G

n’est pas compact et que V est un voisinage compact de e, alors G ne peut pas

être couvert par un nombre fini de translates à gauche de V . Donc, inductive-

ment, nous pouvons choisir x1, x2, . . . , de sort que xn 6∈
n−1⋃
i=1

xiV . En utilisant

la Proposition 2.1.1 (1), choisissez un voisinage symétrique U de e tel que

U.U ⊂ V . Nous affirmons que pour tout m 6= n, xmU ∩ xnU = ∅. En effet,

supposons m < n, et que xmu = xnw pour certains u,w ∈ U, alors
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xn = xmuw
−1 ∈ xmU.U = xmV,

ce qui est en contradiction avec le choix de xn.

Par (c), il s’ensuit que µ(U) > 0,

µ(G) ≥
∑
n∈N

µ(xnU) = Nµ(U).

Laissant N →∞, nous donne µ(G) =∞ ce qui est une contradiction. Alors G

est compact.

2

Exemple 3.1.1.

1. La mesure de Lebesgue sur Rn est une mesure de Haar gauche et droite sur le

groupe additif G = Rn.

2. La mesure f 7→
∫ +∞
0

f(t)
t
dt est une mesure de Haar sur R∗+.

3.2 L’existence et l’unicité de la mesure de Haar

Dans cette section, nous démontrerons une partie importante de cette mémoire qui

est l’existence et l’unicité de la mesure de Haar à gauche sur chaque groupe locale-

ment compact G. L’existence sera prouvée en construisant une fonctionnelle linéaire

positive I sur Cc(G), qui est également invariante par translation à gauche dans le

sens où I(Lyf) = I(f) pour chaque f ∈ Cc(G) et pour tout y ∈ G. En utilisant le

théorème de représentation de Riesz et la proposition 3.1.1, (b) nous pouvons prouver

l’existence d’un mesure de Haar à gauche, et par la même proposition 3.1.1, (a) on

obtient immédiatement l’existence d’une mesure de Haar.
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3.2.1 L’existence

Définition 3.2.1.1 (Le numéro de couverture Haar). [7] Soient G un groupe locale-

ment compact et f, ϕ ∈ C+
c (G), on définit

(f : ϕ) = inf {
n∑
j=1

cj : f ≤
n∑
j=1

cjLxjϕ,∀n ∈ N, cj > 0 et∀x1, . . . , xn ∈ G}. (3.1)

et (f : ϕ) est le numéro de couverture fonctionnelle de f par rapport à ϕ.

Lemme 3.2.1.1. [9] Pour tous f, g, ϕ ∈ C+
c (G), on a

1. (f : ϕ) = (Lxf : ϕ), ∀x ∈ G, ( invariance gauche ).

2. (f + g : ϕ) ≤ (f : ϕ) + (g : ϕ), (sous-additivité).

3. (λf : ϕ) = λ(f : ϕ), ∀λ ≥ 0, (sous-linéairité).

4. Si f ≤ g alors (f : ϕ) ≤ (g : ϕ), (monotonie).

5. (f : ϕ) ≤ (f : g)(g : ϕ), (comparabilité).

6. (f : g) ≥ ‖f‖‖g‖−1, ( non-trivialité).

Preuve :

1. D’aprés l’equation 3.1, pour tout n ∈ N, cj > 0, xj ∈ G et j ≤ n. On a

f ≤
n∑
j=1

ciLxjϕ⇐⇒ Lx(f) ≤ Lx

(
n∑
j=1

cjLxjϕ

)
=

n∑
j=1

cjLxxjϕ.

2. Découle du fait que si

f ≤
n∑
j=1

cjLxjϕ et g ≤
m∑
j=1

ajLzjϕ,

alors

f + g ≤
n∑
j=1

cjLxjϕ+
m∑
j=1

ajLzjϕ =
n+m∑
k=1

bkLykϕ,
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où

bk =

ck si 1 ≤ k ≤ n,

ak−n si n− 1 ≤ k ≤ m

et

yk =

xk si 1 ≤ k ≤ n,

zk−n si n− 1 ≤ k ≤ m.

3. Ici nous avons cela f ≤
n∑
j=1

cjLxjϕ si et seulement si λf ≤
n∑
j=1

λcjLxjϕ, ce qui

donne la conclusion.

4. Si g ≤
n∑
j=1

cjLxjϕ, et f ≤ g alors f ≤
n∑
j=1

cjLxjϕ.

5. Découle du fait que si

f ≤
n∑
j=1

cjLxj(g) et g ≤
m∑
i=1

aiLziϕ,

alors

f ≤
n∑
j=1

cjLxj

(
m∑
i=1

aiLziϕ

)
=

n∑
j=1

n∑
i=1

cjaiLxjziϕ.

6. Soient n ∈ N, cj > 0, xj ∈ G, pour j ≤ n avec f ≤
n∑
j=1

cjLxjϕ, il s’ensuit que

‖f‖ ≤‖
n∑
j=1

cjLxjϕ ‖ et par définition de la norme de la convergence uniforme,

nous concluons que ‖f‖ ≤
n∑
j=1

cj‖ϕ‖. ce qui implique (6).

2

Définition 3.2.1.2. [7] soit la fonction f0 ∈ C+
c (G) fixe, pour ϕ ∈ C+

c (G) on définit

l’application Iϕ : C+
c (G)→ [0,∞] par

Iϕ(f) =
(f : ϕ)

(f0 : ϕ)
.
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Nous allons désormais regarder Iϕ au lieu de f 7→ (f : ϕ). la raison en est les

inégalités suivantes dont nous aurons besion.

Lemme 3.2.1.2. Soient f, ϕ ∈ Cc(G), nous avons l’inégalité

(f0 : f)−1 ≤ Iϕ(f) ≤ (f : f0). (3.2)

Preuve : Soient f, ϕ ∈ Cc(G), nous avons Iϕ(f) = (f :ϕ)
(f0:ϕ)

,

alors

(f0 : f)−1 ≤ Iϕ(f) ≤ (f : f0),

(f0 : f)−1 ≤ (f :ϕ)
(f0:ϕ)

≤ (f : f0),

(f0 : f)−1(f0 : ϕ) ≤ (f : ϕ) ≤ (f : f0)(f0 : ϕ).

D’apres le lemme 3.2.1.1 (5), ce qui implique (3.2)

2

Lemme 3.2.1.3. Soient f1, f2 ∈ C+
c (G) et ε > 0, il y a un voisinage V de e tel que

Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ε, pour tout ϕ ∈ C+
c (G), avec supp(ϕ) ⊂ V.

Preuve :

On choisit d’abord une fonction g ∈ C+
c (G) avec g ≡ 1 sur l’ensemble supp(f1 + f2),

et soit δ > 0, à choisir plus tard. Nous définissons

h = f1 + f2 + δg, ethi = fi/h, i = 1, 2

(où hi ≡ 0 sur G\ supp(fi)). Ainsi, h1, h2 ∈ C+
c (G), et par le corollaire 2.4.1, il

existe un voisinage V de e tel que | hi(x)− hi(y) |< δ, pour i = 1, 2 avec y−1x ∈ V.

Soient n ∈ N, cj ≥ 0 et xj ∈ G, j = 1, 2, . . . , n, de sort que h ≤
n∑
j=1

cjLxjϕ. Il s’ensuit

que chaque fois que x−1j x ∈ supp(ϕ) ⊂ V

fi(x) = h(x)hi(x) ≤
n∑
j=1

cjϕ(x−1j x)hi(x) ≤
n∑
j=1

cjϕ(x−1j x)[hi(xj) + δ].
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Cela signifie que

(fi : ϕ) ≤
n∑
j=1

cj[hi(xj) + δ],

et puisque h1 + h2 ≤ 1 alors

(f1 : ϕ) + (f2 : ϕ) ≤
n∑
j=1

cj[1 + 2δ].

Puisque
n∑
j=1

cj est arbitraire, nous concluons que

(f1 : ϕ) + (f2 : ϕ) ≤ (h : ϕ)(1 + 2δ),

et d’apres le lemme 3.2.1.1 alors

Iϕ(f1) + Iϕ(f2) ≤ (1 + 2δ)Iϕ(h) ≤ (1 + 2δ)(Iϕ(f1 + f2) + δIϕ(g)).

Par conséquent, pour ε > 0, on peut choisir δ > 0 tel que

2δIϕ(f1 + f2) + (1 + 2δ)δIϕ(g) = 2δ (f1+f2:ϕ)
(f0:ϕ)

+ 2δ2 (g:ϕ)
(f0:ϕ)

≤ 2δ(f1 + f2 : f0) + δ(1 + 2δ)(g : f0) < ε.

D’aprés le lemme 3.2.1.2 nous concluons que

Iϕ(f1) + Iϕ(f2) ≤ (1 + 2δ)(Iϕ(f1 + f2) + δIϕ(g)) ≤ (1 + 2δ)(Iϕ(f1 + f2) + δ(g : f0)

≤ Iϕ(f1 + f2) + 2δ(f1 + f2 : f0) + δ(1 + 2δ)(g : f0) < Iϕ(f1 + f2) + ε.

2

Théorème 3.2.1.1. Chaque groupe localement compact G, possède une mesure de

Haar à gauche.

Preuve : Pour chaque f ∈ C+
c (G), soit Xf l’intervalle [(f0 : f)−1, (f : f0)], et soit

X =
∏

f∈C+
c (G)

Xf .
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D’aprés le lemme 3.2.1.2, Iϕ ∈ X, ∀ϕ ∈ C+
c (G) et d’aprés le théorème de Tychonoff,

alors X est compact.

Pour chaque voisinage V de e, soit

KV = {Iϕ ∈ X | ϕ ∈ C+
c (G), suppϕ ⊂ V }.

Soit V1, V2, . . . , Vn les voisinage de e. Clairement e ∈
⋂n
i=1 Vi, donc l’ensemble ouvert⋂n

i=1 Vi, est non vide. Par conséquent, d’aprés le lemme d’Urysohn, il existe une fonc-

tion ϕ ∈ C+
c (G), telle que supp ϕ ⊂

⋂n
i=1 Vi. On voit que ϕ ∈ K⋂n

i=1 Vi
. Clairement

K⋂n
i=1 Vi

⊂
⋂n
i=1KVi , et cela implique que ce dernier ensemble est non vide.

Puisque {KV }V est une famille de sous-ensembles fermés qui a la propriété d’inter-

section finie, on déduit que
⋂
V KV est non vide. Choisissez un I ∈

⋂
V KV .

Pour chaque voisinage V de e nous avons que I ∈ KV . En utilisant la définition de

KV avec la définition de la topologie produit, nous en déduisons que, pour chaque

f1, f2, . . . , fn ∈ C+
c (G) et ε > 0, il existe ϕ ∈ C+

c (G) tel que supp ϕ ∈ V et

|I(fi)− Iϕ(fi)| < ε, ∀i = 1, 2, . . . , n.

Donc d’aprés le lemme 3.2.1.1; (1)(2) et le lemme 3.2.1.3 Iϕ est invariant à gauche et sa-

tisfait I(λ1f1+λ2f2) = λ1I(f1)+λ2I(f2), ∀λ1, λ2 ≥ 0, et il s’ensuit facilement que pour

f ∈ Cc(G) à valeur réelle on définit I(f) = I(f+)− I(f−), où f+(x) = max (f(x), 0)

et f−(x) = max (−f(x), 0). Alors I est clairement une forme linéaire positive sur

Cc(G) et donc par le théoréme de représentation de Riesz, nous concluons qu’il

existe une mesure de Radon unique µ telle que I(f) =
∫
fdµ, ∀f ∈ Cc(G). De

plus
∫
fdµ = I(f) ≥ (f0 : f)−1 > 0, pour tous f ∈ C+

c (G), et donc µ doit être non

nul. Puisque
∫
fdµ = I(f) = I(Lxf) =

∫
Lxfdµ, pour tout x ∈ G et f ∈ C+

c , nous

concluons par la proposition 3.1.1(b) que µ est une mesure de Haar à gauche.

2
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3.2.2 L’unicité

Soient µ une mesure de Haar à gauche, ν̌ une mesure de Haar à droite. Alors ν est

une mesure de Haar à gauche. On va montrer que µ et ν sont proportionnelles. Ceci

prouvera bien que deux mesures de Haar à gauche sont forcément proportionnelles.

Lemme 3.2.2.1. [6] Soit ν une mesure de Haar à gauche sur G. Alors pour tout

f ∈ Cc(G), la fonction

x 7→
∫
G

f(yx)dν(y)

est continue sur G.

Preuve : Il faut montrer que pour un x0 ∈ G donné et ε > 0, il existe un voisinage

U de x0 tel que pour tout x ∈ U on a
∣∣∫
G
f(yx)− f(yx0)dν(y)

∣∣ < ε. En remplaçant

f par Rx0f(y) = f(yx0), on réduit le problème au cas x0 = e. Soit K le support de

f et soit V un voisinage symétrique compacte. Pour x ∈ V on a supp(Rxf) ⊂ KV .

Soit ε > 0, et comme f est uniformément continue, il existe un voisinage symétrique

W tel que pour x ∈ W on a |f(yx)− f(y)| < ε
ν(KV )

. Pour x ∈ U = W ∩ V on obtient

donc ∣∣∫
G
f(yx)− f(y)dν(y)

∣∣ ≤ ∫
KV
|f(yx)− f(y)|dν(y)

< ε
ν(KV )

ν(KV ) = ε.

2

Théorème 3.2.2.1.

Soient µ et ν deux mesures de Haar à gauche sur le groupe localement compact G.

Alors il existe un nombre réel positif c tel que µ = cν.

Preuve : L’assertion que µ = cν est équivalente à l’assertion que
∫
G
fdµ/

∫
G
fdν

est indépendant de f ∈ C+
c (G). Pour expliquer cela davantage, lorsque c = µ

ν
et les

mesures µ et ν sont écrites sous leurs formes intégrales de
∫
G
fdµ et

∫
G
fdν, alors le

rapport de
∫
G fdµ∫
G fdν

est le même pour tout f choisi dans C+
c (G). Supposons alors que
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f, g ∈ C+
c (G) ; nous montrerons que

∫
G fdµ∫
G fdν

=
∫
G gdµ∫
G gdν

.

Soit V0 un voisinage compact symétrique de e et soit

A = ( supp (f))V0 ∪ V0( supp (f)),

B = ( supp (g))V0 ∪ V0( supp (g)).

Pour y ∈ V0 considérez les fonctions x 7→ f(xy) − f(yx) et x 7→ g(xy) − g(yx)

sont pris en charge dans A et B respectivement. Ensuite, étant donné ε > 0, d’après

la proposition 2.4.1, il existe un voisinage compact symétrique V ⊂ V0 de e telle

que sup x|f(xy)− f(yx)| < ε et sup x|g(xy)− g(yx)| < ε, ∀y ∈ V .

Choisissons h ∈ C+
c (G) avec supp(h) ⊂ V et h(x) = h(x−1). Puisqu’un groupe est

un sous-groupe d’un groupe de permutations, tout élément x peut être réécrit sous la

forme yx. Ensuite nous avons,

(∫
G
hdν

) (∫
G
fdµ

)
=

∫
G

∫
G
h(y)f(x)dµ(x)dν(y)

=
∫
G

∫
G
h(y)f(yx)dµ(x)dν(y).

Maintenant par substitution, application du théorème de Fubini, et h(x) = h(x−1),

on a

(
∫
G
hdµ)(

∫
G
fdν) =

∫
G

∫
G
h(x)f(y)dµ(x)dν(y)

=
∫
G

∫
G
h(y−1x)f(y)dµ(x)dν(y)

=
∫
G

∫
G
h(x−1y)f(y)dν(y)dµ(x)

=
∫
G

∫
G
h(y)f(xy)dν(y)dµ(x)

=
∫
G

∫
G
h(y)f(xy)dµ(x)dν(y).

Puisque la fonction x→ f(xy)−f(yx) est supportée dans A et supx|f(xy)−f(yx)| <

ε, on établit que

|(
∫
G
hdµ)(

∫
G
fdν)− (

∫
G
hdν)(

∫
G
fdµ)| = |

∫
G

∫
G
h(y)f(xy)dµ(x)dν(y)

−
∫
G

∫
G
h(y)f(yx)dµ(x)dν(y)|,

=
∣∣∫
G

∫
G
h(y)[f(xy)− f(yx)]dµ(x)dν(y)

∣∣ ,
≤ εµ(A)

∫
hdν.
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Par la même approche,∣∣∣∣(∫
G

hdµ

)(∫
G

gdν

)
−
(∫

G

hdν

)(∫
G

gdµ

)∣∣∣∣ ≤ εµ(B)

∫
G

hdν.

En appliquant l’inégalité triangulaire, on obtient

∣∣∣∣
∫
G
fdµ∫

G
fdν
−
∫
G
gdµ∫

G
gdν

∣∣∣∣ ≤ ∣∣∣∣
∫
G
fdµ∫

G
fdν
−
∫
G
hdµ∫

G
hdν

∣∣∣∣+

∣∣∣∣
∫
G
hdµ∫

G
hdν
−
∫
G
gdµ∫

G
gdν

∣∣∣∣ .
En divisant les deux inégalités ci-dessus par (

∫
G
hdν)(

∫
G
fdν) et (

∫
G
hdν)(

∫
G
gdν)

respectivement, on a

∣∣∣∣(
∫
G
hdµ)(

∫
G
fdν)

(
∫
G
hdν)(

∫
G
fdν)

−
(
∫
G
hdν)(

∫
G
fdµ)

(
∫
G
hdν)(

∫
G
fdν)

∣∣∣∣ ≤ εµ(A)
∫
G
hdν

(
∫
G
hdν)(

∫
G
fdν)

,

et ∣∣∣∣(
∫
G
hdµ)(

∫
G
gdν)

(
∫
G
hdν)(

∫
G
gdν)

−
(
∫
G
hdν)(

∫
G
gdµ)

(
∫
G
hdν)(

∫
G
gdν)

∣∣∣∣ ≤ εµ(B)
∫
G
hdν

(
∫
G
hdν)(

∫
G
gdν)

.

Aprés la réduction, il nous reste ce qui suit

∣∣∣∣(
∫
G
hdµ)

(
∫
G
hdν)

−
(
∫
G
fdµ)

(
∫
G
fdν)

∣∣∣∣ ≤ εµ(A)

(
∫
G
fdν)

,

et ∣∣∣∣(
∫
G
hdµ)

(
∫
G
hdν)

−
(
∫
G
gdµ)

(
∫
G
gdν)

∣∣∣∣ ≤ εµ(B)

(
∫
G
gdν)

.

Ensuite, en additionnant on trouve

∣∣∣∣
∫
G
fdµ∫

G
fdν
−
∫
G
gdµ∫

G
gdν

∣∣∣∣ ≤ ε

(
µ(A)∫
G
fdν

+
µ(B)∫
G
gdν

)
.

Puisque ε est arbitraire, nous concluons que

∣∣∣∣
∫
G
fdµ∫

G
fdν

∣∣∣∣ =

∣∣∣∣
∫
G
gdµ∫

G
gdν

∣∣∣∣ .
2
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Corollaire 3.2.2.1. [2] Toute mesure invariante à gauche (resp. à droite) sur G est

proportionnelle à une mesure de Haar à gauche (resp. à droite).

3.3 La fonction module

Soit G un groupe localement compact, et soit µ une mesure de Haar sur G. Pour

x ∈ G la mesure µ, définie par

µx(A) = µ(Ax),

est clairement aussi une mesure de Haar, comme pour y ∈ G on a µx(yA) = µ(yAx) =

µ(Ax) = µx(A). Par conséquent, d’aprés l’unicité de la mesure de Haar, il existe un

nombre ∆(x) > 0 avec

µx = ∆(x)µ

De cette façon, on obtient une application ∆ : G→ R+, qui est appelée la fonction

modulaire du groupe G. Si ∆ ≡ 1, alors le groupe G est dit unimodulaire.

Dans ce cas, chaque mesure de Haar gauche est également invariante à droite.

Proposition 3.3.1. [6] La fonction modulaire ∆ : G→ R∗+ sur un groupe localement

compact G est un homomorphisme de groupes continu.

De plus, si µ est une mesure de Haar à gauche sur G pour tout y ∈ G et f ∈ Cc(G)

on a

∫
G

Ryf(x)dµ(x) =

∫
G

f(xy)dµ(x) = ∆(y−1)

∫
G

f(x)dµ(x). (3.3)

Preuve : Pour tous x, y ∈ G et le ensemble Borel A ⊂ G, on a

∆(xy)µ(A) = µxy(A) = µ(Axy) = µy(Ax)

= ∆(y)µ(Ax) = ∆(y)∆(x)µ(A).
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Choisissez A avec 0 < µ(A) < ∞ pour obtenir ∆(xy) = ∆(x)∆(y). D’où ∆ est un

homomorphisme de groupes.

Montrons que ∆ est continu :

Soit f ∈ Cc(G) avec c =
∫
G
f(x)dx 6= 0. D’aprés l’equation 3.3, nous avons

∆(y) =
1

c

∫
G

f(xy−1)dx =
1

c

∫
G

Ry−1f(x)dx.

Donc la fonction est continue d’après le lemme 3.2.2.1.

2

Proposition 3.3.2. [1] Si G est abélien ou compact, alors G est unimodulaire

Preuve : Si G est un groupe abélien alors toute translation à droite est une transla-

tion à gauche translation, et donc chaque mesure de Haar à gauche est invariante à

droite.

Si G est compact, alors ∆(G) est un sous-groupe compact du groupe multiplicatif

]0,+∞[. Mais le seule sous-groupe compact de cette dernière est le groupe trivial {1},

ce qui signifie que ∆ = 1.

2

Remarque 3.3.1. Un sous-groupe d’un groupe unimodulaire n’est pas nécessairement

unimodulaire. Par exemple G = GL(2,R) est unimodulaire mais le sous-groupe

H =


a b

0 1

 , a, b ∈ R, a 6= 0

 de G ne l’est pas .

Proposition 3.3.3. [1] Soit G un groupe localement compact. Pour chaque x ∈ G

on a ∫
G

f(x−1)∆(x−1)dµ(x) =

∫
G

f(x)dµ(x)

pour tout f ∈ Cc(G).
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Preuve : Soit f ∈ Cc(G) et posons I(f) =
∫
G
f(x−1)∆(x−1)dµ(x). Ensuit par le

I(Lyf) =
∫
G
f(y−1x−1)∆(x−1)dµ(x)

=
∫
G
f((xy)−1)∆(x−1)dµ(x)

= ∆(y−1)
∫
G
f(x−1)∆((xy−1)−1)dµ(x)

=
∫
G
f(x−1)∆(x−1)dµ(x) = I(f).

Il s’ensuit que I est une intégale invariante à gauche ; donc il existe un nombre c > 0

avec I(f) = c
∫
G
f(x)dµ(x). Pour montrer que c = 1, soit ε > 0 et choisi un voisinage

symétrique V avec |1−∆(s)| < ε, pour chaque s ∈ V . Soit f ∈ C+
c (V ) une fonction

symétrique. Puis

|1− c|
∫
G
f(x)dµ(x) =

∣∣∫
G
f(x)dµ(x)− I(f)

∣∣
≤

∫
G
|f(x)− f(x−1)∆(x−1)|dµ(x)

=
∫
V
f(x)|1−∆(x−1)|dµ(x)

< ε
∫
G
f(x)dµ(x).

On obtient donc |1− c| < ε et comme ε était arbitraire, nous concluons que c = 1 .

2

3.4 Exemples

Avant de commencer à fournir nos exemples sur la mesure de Haar, nous allons

d’abord passer sur quelques points importants qui aident le lecteur à comprendre.

i) Si G est un ouvert dans Rn pour un certain n, donc si x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ G, on a

x.y = F (x1, . . . , xn, y1, . . . , yn) ∈ G,

où F : G×G→ G, est une fonction continue vérifant :

a)
dFj

dxK
, dFj

dyK
existent et sont continus tout au long de G.
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b) Les jacobiens de La et Ra sont constants, c’est-à-dir qu’ils ne dépendent que de a.

ii) Pour toute fonction f ∈ Cc(G), l’application

f 7→ µ(f) =

∫
G

f(x)( det J(Lx))
−1dx

est une mesure de Haar à gauche sur G. De même l’application

f 7→ ν(f) =

∫
G

f(x)( det J(Rx))
−1dx

est une mesure de Haar à droite sur G.

Preuve (ii) :

D’après la propositions 3.1.1 (b), il est assez pour montrer que µ est invariante à

gauche. Pour tout y ∈ G et f ∈ C+
c (G),∫

G

f(y−1x)( det J(Lx))
−1dx =

∫
G

f(x)( det J(Lx))
−1dx

Faisons le changement de variables y−1x = s, d’où x = ys.

Ly étant un homéomorphisme de G, on a Ly(G) = G et d’après la formule de chan-

gement de variables dans les intégrales multiples.

∫
G
f(y−1x)( det J(Lx))

−1dx =
∫
G
f(s)( det J(Lys))

−1( det J(Ly))ds

=
∫
G
f(s)( det J(Lys))

−1( det J(Ls))
−1( det J(Ly))ds

=
∫
G
f(s)( det J(Ls))

−1ds = µ(f).

Donc µ est une mesure de Haar à gauche. On montrerait de même que ν est une

mesure de Haar à droite.

Nous pouvons maintenant commencer à traiter quelques exemples.

1. Soit G le groupe « ax+b »c’est-à-dire le groupe des transformations linéaires

affines de la droite réelle. Il peut être identifié avec le sous-groupe de GL(2,R)

constitué des matrices
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g =

x y

0 1

 , x, y ∈ R, x 6= 0.

G est une groupe localement compact isomorphe au demi-plan formé des

x ≥ 0. Un élément g de G s’écrira don (x, y) avec (x, y)(u, v) = (xu, xv + y).

Si

h =

a b

0 1

 ∈ G, on a

Lh(g) = hg =

a b

0 1

 .

x y

0 1

 =

ax ay + b

0 1



Rh(g) = gh =

x y

0 1

 .

a b

0 1

 =

ax bx+ y

0 1

 .

D’où

det J(Lh) = a2 et det J(Rh) = a.

Comme une fonction sur G s’identifie à une fonction des deux variables x et y,

soit f(g) = f(x, y), les mesures de Haar à gauche et à droite sur G s’écrivent

respectivement, pour toute f ∈ Cc(G) :

∫
G

f(g)dµ(g) =

∫ +∞

−∞

∫ +∞

0

f(x, y)

x2
dxdy,

et ∫
G

f(g)dν(g) =

∫ +∞

−∞

∫ +∞

0

f(x, y)

x
dxdy.

On constate au passage que le groupe G n’est pas unimodulaire. La fonction

module est donnée par ∆(g) = 1
x
.
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2. Prenous G = GL(2,R), le groupe linéaire général sur R2.

Si

a =

a11 a12

a21 a22

 ∈ G, on a

La(g) = ag =

a11 a12

a21 a22

 .

x11 x12

x21 x22


=

a11x11 + a12x21 a11x12 + a12x22

a21x11 + a21x21 a21x12 + a22x22

 .

Donc

J(La) =


a11 0 a12 0

0 a11 0 a12

a21 0 a22 0

0 a21 0 a22


et

det J(La) = a11 det


a11 0 a12

0 a22 0

a21 0 a22

+ a12 det


0 a11 a12

a21 0 0

0 a21 a22


= a11(a11a22a22 − a12a21a22) + a12(a12a21a21 − a11a21a22)

= a211a
2
22 − 2a11a12a21a22 + a212a

2
21

= (a11a22 − a12a21)2 = ( det a)2.

Ra(g) = ga =

x11 x12

x21 x22

 .

a11 a12

a21 a22


=

x11a11 + x12a21 x11a12 + x12a22

x21a11 + x22a21 x21a12 + x22a22

 .
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Donc

J(Ra) =


a11 a21 0 0

a12 a22 0 0

0 0 a11 a21

0 0 a12 a22

 ,

et

det J(Ra) = a11 det


a22 0 0

0 a11 a21

0 a12 a22

− a21 det

a12 0 0

0 a11 a21

0 a12 a22


= a11(a22a11a22 − a12a21a22)− a21(a12a11a22 − a21a12a12)

= ( det a)2.

Donc les mesures de Haar à gauche et à droite sont identiques et données par

∫
G

f(g)dµ(g) =

∫
R4

=
f(x11, x12, x21, x22)

x11x22 − x12x21
dx11dx12dx21dx22.

Ainsi GL(2,R) est unimodulaire.

3. Soit G l’ensemble des matrices carrées d’ordre 3 à coefficients réels de la forme

g =




1 x y

0 1 z

0 0 1

 | x, y, z ∈ Rn

 .

Si

s =


1 u v

0 1 w

0 0 1

 | u, v, w ∈ G.
un calcul élémentaire montre que

det J(Ls) = det J(Rs) = 1.
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Donc les mesures de Haar à gauche et à droite sont identiques et donnes par∫
G

f(g)dµ(g) =

∫
R3

f(x, y, z)dxdydz.

On particulaire G est unimodulaire.

4. Soit le groupe linéaire G = GL(n,R). Par définition, c’est l’ouvert dans Mn(R)

de matrices inversibles. Si c1, . . . , cn sont les vecteurs colonnes d’une matrice

x ∈Mn(R), alors pour g ∈ G,Lg(x) = gx = (gc1, . . . , gcn) et donc

det J(Lg) = ( det g)n.

De même, en considérant des lignes au lieu de colonnes, on obtient

det J(Rg) = ( det g)n.

Il s’ensuit que la mesure

| det x |−n
n∏

i,j=1

dxij,

sur G est invariante à gauche et à droite . Le groupe G = GL(n,R) est unimo-

dulaire.
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