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0.1 Introduction

La trajectoire d�une particules chargée se déplaçant sous l�action d�un champ magnétique

constitue un sujet de recherche important. Cette trajectoire, en géométrie, sur une variété est

connue sous le nom une courbe magnétique. Les courbes magnétiques fait naitre un vaste sujet

de recherche dans divers variétés Riemanniennes.

Une courbe 
(t) sur une variété riemannienne (M; g) est appelée courbe magnétique si son

champ de vecteur de vitesse 
0 = T satisfait l�équation de Lorentz

r
0

0 = �(
0) (1)

où r est la connexion de Levi-Civita de g et � est un champ de tenseur de type (1; 1) sur M

lié à la force de Lorentz. On dè�nit la force de Lorentz par le champ magnétique F

g(�(X); Y ) = F (X; Y ); 8X;Y 2 �(M) (2)

Ainsi, l�équation de Lorentz (1) pour la courbe magnétique est une généralisation de l�équation

des géodésiques, c�est-à-dire pour � � 0.

Rappelons que le produit vectoriel de deux champs de vecteurs X;Y sur la variété rieman-

nienne M est dé�ni par

g(X � Y; Z) = dvg(X; Y; Z); 8Z 2 �(M) (3)

où dvg désigne une forme de volume sur M .

La force F peut être dé�nie par

FV = iV dvg

où i désigne le produit interieure sur M .

Par conséquent, le tenseur � est lié a un vecteur V qu�on le note �V ; donné par

�V (X) = V �X (4)
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puis l�équation de Lorentz Eq(1) peut s�écrire comme

r
0

0 = V � 
0

D�autre part, Wilhelm Karl Joseph Killing (10 mai 1847 �11 février 1923) est un mathématicien

allemand connu pour ses nombreuses contributions aux théories des algèbres de Lie, des groupes

de Lie..., l�un de ces travaux qui prend son non la notion de vecteurs de Killing. Un vecteur

de Killing, ou champ de Killing, est un champ de vecteur sur une variété Riemannienne qui

conserve la métrique de cette variété. Lorsque V est un vecteur de Killing, la courbe 
 est

appelée une courbe magnétique de Killing.

Le but de ce Mémoire est d�étudier et de déterminer les courbes magnétiques correspondentes

aux vecteurs de killing sur le groupe SL(2;R) (voir [4]) dé�ni par

SL (2;R) =

8<:
0@ a b

c d

1A j a; b; c; d 2 R et ad� cb = 1

9=; ;

qu�il se compose en trois chapitre :

Dans le premier chapitre, on rappelle quelques notions de base sur les variétés (variété

di¤érentiable et variété Riemannienne),vecteurs de Killing et repère de Serret-Frenet.

Le deuxième chapire se consentre sur la géometrie du groupe SL (2;R) et la connexion de

Levi-civite ainsi que les vecteurs de Killing.

Finalement le troisième et le dernier chapitre, on détermine les courbes magnetiques associes

aux vecteurs de Killing dans le groupe SL (2;R) et on donne leurs représentations graphiques

en utilisant le logiciel �Wolfram Mathematica�dans l�espace Euclidien de dimension 3.
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Chapitre 1

Notions basiques sur les variétés

1.1 Variétés di¤érentiables

1.1.1 Variétés Di¤érentiables

Soit M un espace topologique sépéré non vide.

Dé�nition 1.1 On dit que M est une variété topologique de dimension n 2 N si tout point p

de M possède un voisinage ouvert U homéomorphe à Rn i.e: il existe une application bijective

' : Rn �! U

tel que ' et son inverse '�1 sont continue.

Un point p de U est repéré par les coordonnées (p1; ::; pn) dans Rn de son image réciproque

'�1(p). Alors, on dit que U est un ouvert de coordonnées locales de M au voisinage de p. La

paire (U;') est appelée carte locale et (p1; ::; pn) = '�1(p) seront les coordonnées locales de p.

Si (U;') et (V;  ) sont deux cartes locales telle que l�intersection U et V soit non vide

alors un point p 2 U \ V est repéré par ses coordonnées (p1; ::; pn) dans U et ses coordonnées

(p01; ::; p
0
n) dans V . Comme le diagramme

'�1(U \ V ) '! U \ V

#
 

%

 �1(U \ V )
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est commutatif alors on a

(p01; ::; p
0
n) =  �1 � '(p1; ::; pn)

où l�application  �1 � ' est appelée changement de coordonnées de la carte (U;') vers la carte

(V;  ).

On appelle atlas dé�nissant M la donnée d�un recouvrement ouvert fUigi2I et pour chaque

i 2 I, d�un homéomorphisme 'i : Rn ! Ui ; cet objet sera noté fUi; 'igi2I .

Dé�nition 1.2 On dira que M est une variété di¤érentiable si elle est une variété topologique

et l�homéomorphisme  �1 � ' est de classe C1.

1.1.2 Espace et �bré tangent

Soit M une variété di¤érentielle de dimension n. On note C1(M) l�ensemble des fonctions

réelles de classe C1 sur M .

Dé�nition 1.3 L�ensemble C1(M) est un espace vectoriel sur R est une algèbre associative et

commutative avec le produit usuel

(fg)(x) = f(x)g(x);

où f; g 2 C1(M) et x 2M .

Dé�nition 1.4 Un vecteur tangent en un pointp 2 M est l�application v : C1(M) ! R telle

que pour touts a; b 2 R, pour touts f; g 2 C1(M), on a

-v est R-linéaire : v(af + bg) = av(f) + bv(g),

- v satisfait la règle de Leibnitz : v(f:g)(p) = v(f):g(p) + f(p):v(g).

L�ensemble de vecteurs tangents au point p de M est noté par TpM , et on l�appelle l�espace

tangent en p 2M , c�est un espace vectoriel de dimension n (dim M).

On peut voir l�espace tangent par la dé�nition suivante.

Dé�nition 1.5 On dé�nit l�espace tangent à M en un de ses points comme l�ensemble des

vecteurs tangents à une courbe tracée dans M: Un vecteur v de Rn est dit tangent à M en un
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point x de M s�il existe une courbe paramétrée de classe C1


 : ]�";+"[!M � Rn

dé�nie sur un voisinage de 0, telle que


(0) = x et 
0(0) = v

L�espace tangent en tout point p d�un ouvert U de Rn est TpU = Rn .

Dé�nition 1.6 On appelle �bré tangent à M , que l�on désigne par TM , l�ensemble de tous les

vecteurs tangents deMen ses points, c�est donc la réunion de tous les espaces tangents TpM en

ses divers points :

TM = [
p2M

TPM = [
p2M

f(p; v) j p 2M; v 2 TPMg

C�est une famille d�espaces vectoriels paramétrisès par M . On peut le munir d�une projection

� : TM !M dé�nie par �(p; v) = p.

Le �bré TM est une variété di¤érentiable de dimension 2n. L�application � : (p;u) 2 TM !

p 2M est di¤érentiable.

On appelle section C1 de TM ou champ de vecteurs sur M toute application di¤érentiable

X : TM ! M telle que � � X = idM . Le champ de vecteurs X en tout point p 2 M est un

vecteur X(p) tangent à M en p de façon à ce que la variation de X(p) (en fonction de p) soit

di¤érentiable.

L�ensemble �(TM) des champs de vecteurs sur M est un module sur l�anneau C1(M) des

fonctions C1 sur M .

1.1.3 Espace et �bré cotangent

Comme TpM est un espace vectoriel, il est possible de considérer son dual, que nous noterons

T �pM . Cet espace est appelé l�espace cotangent à M en p. Il est un espace vectoriel de même

dimension que TpM:
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Localement, au dessus d�un ouvert U , d�une carte locale (U;'), f @
@xi
(p)g est une base de

TpM pour tout p 2 U . Notons fdxi jpg sa base duale, on a alors :

< dxi=p;
@
@xj
(p) >= @xi

@xj
(p) = �ij

Dé�nition 1.7 On dé�nit le �bré cotangent par

T �M = [
p2M

T �pM

C�est une variété di¤érentiable de dimension 2n. Une section de classe C1 � :M ! TM de

ce �bré, est appelée une 1-forme di¤érentielle sur M .

1.1.4 Connexions

Dé�nition 1.8 Soit M une variété di¤érentiable. Une connexion linéaire sur M est une ap-

plication

r : �(M)� �(M)! �(M)

telle que

r : (X; Y ) 7! rXY

véri�ants les propriétés :

1. rXY est C1(M)-linéaire par rapport à X :

rfX+gYZ = frXZ + grYZ; f; g 2 C1(M)

2. rXY est R-linéaire par rapport à Y :

rX(aY + bZ) = arXY + brXZ; a; b 2 R

3. véri�e la régle de Leibniz :

rXfY = frXY +X(f)Y; f 2 C1(M)
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rXY est appelée la dérivée covariante de Y dans la direction de X .

pour tous X; Y; Z 2 �(M):

Dé�nition 1.9 Soient r une connexion surM et (U; �) une carte surM de coordonnées locales

(x1; x2; :::; xn): On dé�nit les fonctions di¤érentiables �kij : U ! R par

r @
@xi

@

@xj
=

nX
k=1

�kij
@

@xk

appelée les symboles de Christo¤el. En générale,

rXY = X i

�
@Y k

@xi
+ �kijY

j

�
@

@xk

rX : �(M)! �(M) est la dérivée covariante associé à la connexion linéaire r:

Dé�nition 1.10 Soit r une connexion sur une variété di¤érentiabl M . Le tenseur de torsion

de r est une application

T : �(M)� �(M)! �(M)

tel que

T : (X; Y ) 7! T (X; Y ) = rXY �rYX � [X; Y ]

1.1.5 Géodesiques

Dé�nition 1.11 Une courbe 
 dans une variété di¤erentiableM muni d�une connexion linéaire

r est dite géodésique si

r
0

0 = 0

1.2 Variétés Riemanniennes

1.2.1 Métriques Riemmaniennes

Soit M une variété di¤erentiable de dimension n:
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Dé�nition 1.12 Une métrique Riemannienne notée g est une application dé�nie par

g : �(TM)� �(TM) �! C1(M);

(X; Y ) 7! g (X; Y )

telle que g est

1. Symétrique g(X; Y ) = g(Y;X);

2. Non dégénérée g(X;X) = 0 =) X = 0;

3. Dé�nie positive g(X;X) � 0;

pour tout X; Y 2 �(TM):

Dé�nition 1.13 Une variété di¤erentiable M muni d�une métrique Riemannienne g est dite

variété Riemannienne notée (M; g) :

Une metrique Riemannienne g sur M dé�nit sur chaque espace tangent un produit scalaire

donnée par

hu; vi = hu; vip = g (u; v) j u; v 2 TpM

La norme d�un vecteur v de TpM est

kvk =
p
g(v; v)

Langle entre deux vecteurs u et v de TpM est lunique � 2 [0; �] telle que

cos � =
hu; vi
kuk kvk

La longueur d�une courbe C1 par morceaux 
 : [a; b] �!M est dé�nie par

L(
) =

bZ
a

k
0(t)k dt

La longueur d�une courbe est invariante par reparamétrage régulier. La distance entre x; y 2M

est dé�nie par

d(x; y) = inf L(
)
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Une courbe 
 : [a; b] �!M est paramétrée par la longueur d�arc ou unitaire si

k
0k = 1

1.2.2 Connexion de Levi-Civita

Dé�nition 1.14 Soit (M; g) une variété Riemannienne .Une connexion linéaire r est dite de

Levi-Civita si

1. r est symétrique si le tenseur de torsion est nul i.e. rXY �rYX = [X; Y ] :

2. r est compatible avec g i.e. X hY; Zi = hrXY; Zi+ hY;rYZi :

Théorème 1.15 Une variété Riemannienne (M; g) admet une et une seule connexion de Levi-

Civita.

1.3 Vecteurs de Killing

Dé�nition 1.16 Soit (M; g) une variété Riemannienne. Le champ de vecteur V sur M est

appelé un champ de vecteur de Killing s�il satisfait l�équation de Killing

g(rY V; Z) + g(rZV; Y ) = 0;8Y; Z 2 �(TM) (1.1)

En particulier, les champs vecteurs de Killing dé�nissent une classe importante de champs

magnétiques appelés champs magnétiques de Killing et de plus les trajectoires correspondant

aux champs magnétiques de Killing sont appelées courbes magnétiques de Killing qu�on va voir

au chapitre 3.

1.4 Repère de Serret-Frenet

Soient (M; g) une variété Riemannenne et 
 : I � R �! M une courbe paramétrée par la

longueur d�arc s. On supposera ici les courbes paramétrées bi-régulières, i.e. 
0 et 
00 linéairement

indépendants en tout point.

On a


0 (s) = T (s) ; kT (s)k = 1
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qui donne

< T (s) ; T (s) >= 1

et

rT < T (s) ; T (s) >= 2 < rTT (s) ; T (s) >= 0

d�où les vecteurs rTT (s) et T (s) sont orthogonaux et on a la dé�nition.

Dé�nition 1.17 Le vecteur normal unitaire (appelé aussi vecteur normal principal) est donné

par

N (s) =
rTT (s)

krTT (s)k

et la fonction krTT (s)k est appelée la coutbure de 
 notée par �.

Remarque 1.18 On a donc, comme pour les courbes planes

rTT (s) = �(s)N (s) ; (1.2)

mais ici la courbure est par dé�nition, positive et le vecteur unitaire normal est orienté dans la

même direction que rTT (s).

Dé�nition 1.19 On dé�nit ensuite le vecteur unitaire B (s) = T (s) ^ N (s) qui complète la

base orthonormée directe fT;N;Bg appelé repère de Serret-Frenet.

On considére rTB (s), c�est un vecteur orthogonal à B (s) mais aussi à T (s) car

rTB (s) = rTT (s) ^N (s) + T (s) ^rTN (s) = T (s) ^rTN (s)

donc rTB (s) est colinéaire avec N (s) et on peut dé�nir un fonction en s appelée la tortion

notée par � ; dé�nie par l�équation suivante

rTB (s) = �� (s)N (s) :

Certain auteurs dé�nissent la torion par

rTB (s) = � (s)N (s) :

12



Remarque 1.20 La dé�nition suppose deux choses : premièrement que la courbe soit trois fois

dérivable, ensuite que la courbe soit bi-régulière au point où l�on veut dé�nir la torsion ( en

un point non régulier, on ne peut pas dé�nir le vecteur tangent unitaire, en un point non bi-

régulier, on ne peut pas dé�nir le vecteur normal unitaire car T 0 (s) = 0). On observera aussi

que la condition de bi-régularité impose que la courbure ne s�annule pas.

On calcule maintenant les coordonnées de rTN dans la base fT;N;Bg. On a

rTN = aT + bN + cB:

où a; b et c sont des fonctions en s: Utilisant Eq.(1.2), on obtient

a = hT;rTNi = �hrTT;Ni = ��;

et

b = hN;rTNi = 0

de plus

c = hB;rTNi = �hrTB;Ni = � ;

La fonction � est appelée la torsion. D�où

rTN = ��(s)T + � (s)B:

Dé�nition 1.21 Soit 
 : I � R �! M une courbe paramétrée par la longueur d�arc s:Les

formules de Serret-Frenet pour 
 est données par la matrice suivante,0BBB@
rTT

rTN

rTB

1CCCA =

0BBB@
0 �(s) 0

��(s) 0 �(s)

0 ��(s) 0

1CCCA
0BBB@

T

N

B

1CCCA
où � et � sont la fonction courbure et la fonction torsion respectivement.
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Chapitre 2

Géométrie du groupe SL(2;R)

2.1 Groupe SL(2;R)

Soit le groupe linéaire spécial réel dé�ni par

SL (2;R) =

8<:
0@ a b

c d

1A j a; b; c; d 2 R et ad� cb = 1

9=;
SL(2;R) a les trois sous-groupes suivants :

A =

8<:
0@ cos � sin �

� sin � cos �

1A j � 2 S1
9=; ; B =

8<:
0@ 1p

y
0

0
p
y

1A j y > 0

9=;
et C =

8<:
0@ 1 x

0 1

1A j x 2 R

9=;
Par Isawara dans REF ; on a la décomposition SL(2;R) = KAN , c�est-à-dire que chaque

élément de SL(2;R) peut être décomposé de façon unique comme suit

0@ a b

c d

1A =

0@ cos � sin �

� sin � cos �

1A0@ 1p
y

0

0
p
y

1A0@ 1 x

0 1

1A

14



pour certains x 2 R, y 2 R+ et � 2 S1. (x; y; �) peuvent être regroupés comme un système

global de coordonée du groupe SL(2;R):L�Algèbre de Lie sl (2;R) de SL(2;R) est

sl (2;R) = fX 2 gl (2;R) : tr (X) = 0g

Le produit intérieur sur SL(2;R) est dé�ni par

hX; Y i = tr(X tY )

2

induit une métrique invariante à gauche sur SL(2;R) donnée par la dé�nition suivante

Dé�nition 2.1 Sur le groupe de dimension 3 SL(2;R); on dé�nie la métrique invariante à

gauche par

gSL(2;R) =

�
dx

2y

�2
+

�
dy

2y

�2
+

�
dx

2y
+ d�

�2
et de matrice representative

gSL(2;R) = h; i :

0BBB@
1
2y2

0 1
2y

0 1
4y2

0

1
2y

0 1

1CCCA (2.1)

Les coordonnées (x; y) 2 R�R+ sont les coordonnées du plan de base hyperboloïque � 2 S1.

La norme d�un vecteur X 2 SL(2;R) est donnée par

kXk = hX;Xi 12 :

Proposition 2.2 La famille de vecteur (ei)i=1;3 de SL(2;R) donnée par

e1 = 2y
@

@x
� @

@�
; e2 = 2y

@

@y
; e3 =

@

@�
(2.2)

forme une base orthonormée de SL(2;R) et de base duale donné par

!1 =
dx

2y
; !2 =

dy

2y
; !3 =

�
dx

2y
+ d�

�
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Preuve. On montre que que ke1k = 1; alors

ke1k2 = gSL(2;R)

0BBB@
0BBB@
2y

0

�1

1CCCA ;

0BBB@
2y

0

�1

1CCCA
1CCCA

=
�
2y 0 �1

�0BBB@
1
2y2

0 1
2y

0 1
4y2

0

1
2y

0 1

1CCCA
0BBB@
2y

0

�1

1CCCA
= 1

de la meme manière on montre que ke2k = ke3k = 1 et gSL(2;R) (ei; ej) = 0 pour i; j = 1; 2; 3 et

i 6= j:

2.2 Connexion de Levi-Civita

Pour dé�nir la connexion de Levi_civita sur SL(2;R) on aurra besoin du lemme suivant

Lemme 2.3 Le crochet de Lie de la base est donné par

[ei; ei] = 0 8i = 1; 3

[e1; e2] = �2(e1 + e3); [e1; e3] = 0 et [e2; e3] = 0

Preuve. Les crochets de lie se calcul directement on utilisons la Proposition 2.2.

D�où la proposition suivante.

Proposition 2.4 La connétion Lévi-civita r de SL(2;R) est donnée par

re1e1 = 2e2; re1e2 = �2e1; re1e3 = e2;

re2e1 = e3; re2e2 = 0; re2e3 = �e1;

re3e1 = e2; re3e2 = �e1; re3e3 = 0:

Preuve. On utilisons la formule de Kosul suivante

hrXY; Zi =
1

2
fXhY; Zi+ Y hZ;Xi � ZhX; Y i � hZ; [Y;X]i � hX; [Y; Z]i � hY; [X;Z]ig;
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On fait le calcul pour re1e3.

hre1e3; e1i =
1

2
fe3 � he1; [e3; e1]ig = 0 ;

hre1e3; e2i = �1
2
he3; [e1; e2]i = 1 ;

hre1e3; e3i = �1
2
fhe3; [e1; e3]i+ he3; [e1; e3]i+ he1; [e3; e3]ig = 0 ;

Alors

re1e3 = e2:

De la même manière on calcul les autres connexions.

2.3 Vecteurs de Killing dans SL(2;R)

Supposons que le champ vectoriel de Killing ait la forme

V = a(x; y; �)e1 + b(x; y; �)e2 + c(x; y; �)e3

En substituant V dans la relation Eq.(1.1) et en prenant Y = ei; Z = ej pour tout i; j 2

f1; 2; 3g;on aura 9 équations

g(reiV; ej) + g(rejV; ei) = 0 (2.3)

et puisque la métrique est symétrique le nombre d�équations se réduit à 6 équations. Pour

i = j = 1; on a d�aprés la Proposition 2.4

re1V = re1ae1 +re1be2 +re1ce3

= e1(a)e1 + 2ae2 + e1(b)e2 + b (�2e1 � e3) + e1(c)e3 + ce2

= (e1(a)� 2b) e1 + (2a+ e1(b) + c) e2 + (�b+ e1(c)) e3

= (2y
@a

@x
� @a

@�
� 2b)e1 +

�
2a+ 2y

@b

@y
� @b

@x
+ c

�
e2 + (2y

@c

@x
� @c

@�
� b)e3

d�où

g(re1
V; e1) + g(re1

V; e1) = 2(2y
@a

@x
� @a

@�
� 2b) = 0

17



Nous obtenons le système d�équations di¤érentielles (S) suivant

S :

8>>>>>>>>>>>><>>>>>>>>>>>>:

2y @
@x
a� @

@�
a� 2b = 0

2y @
@x
b� @

@�
b+ 2a = 0

2y @
@y
b = 0

2y @
@x
c� @

@�
c+ @

@�
a� 2b = 0

@
@�
c = 0

2y @
@y
c� @

@�
b+ 2a = 0

le système (S) devient

S :

8>>>>>>>>>>>><>>>>>>>>>>>>:

2y @
@x
a� @

@�
a� 2b = 0

2y @
@x
b� @

@�
b+ 2a = 0

b = b(x; �)

2y @
@x
c+ @

@�
a� 2b = 0

c = c(x; y)

2y @
@y
c� @

@�
b+ 2a = 0

On remarque que les solutions de (S) sont les champs de vecteurs donnés dans la base (e1; e2; e3)

par

V1 =
1

2y
e1 +

1

2y
e3; V2 = e3; V3 =

x

2y
e1 +

1

2
e2 +

x

2y
e3; (2.4)

V4 =
x2 � y2

4y
e1 +

x

2
e2 +

x2 � y2

4y
e3

Les champs de vecteurs de Killing dans SL(2;R) sont donnés en base canonique par

V1 =
@

@x
; V2 =

@

@�
; V3 = x

@

@x
+ y

@

@y
; V4 =

1

2
(x2 + y2)

@

@x
+ xy

@

@y
(2.5)
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Chapitre 3

Courbes magnetiques de Killing sur

SL(2;R)

3.1 Courbes magnetiques

Soit F une 2-forme sur une variété riemannienne (M; g) de dimension 3, appelée champ

magnétique. Une courbe 
(t) sur une variété riemannienne (M; g) est appelée courbe magnétique

si son champ de vecteurs de vitesse satisfait l�équation de Lorentz

r
0

0 = �(
0) (3.1)

où r est la connexion de Levi-Civita de g et � est un champ de tenseurde type (1; 1) sur M .

On dè�nit la force de Lorentz, lié au champ magnétique F par

g(�(X); Y ) = F (X; Y ); 8X;Y 2 �(M) (3.2)

L�équation de Lorentz pour la courbe magnétique est une généralisation de l�équation géodé-

sique, c�est-à-dire que pour � = 0, l�équation di¤érentielle Eq(3.1) coïncide avec l�équation

géodésique.

Rappelons que le produit croisé de deux champs de vecteurs X; Y 2 �(M) sur la variété
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riemannienne M est dé�ni par

g(X � Y; Z) = dvg(X; Y; Z); 8Z 2 �(M) (3.3)

où dvg désigne une forme de volume sur M .

SiV est un champ de vecteur de Killing sur M , soit FV = iV dvg le champ magnétique de

Killing correspondant, où i désigne le produit interieure sur M .

Par conséquent, la force de Lorentz �V correspondant au champ magnétique de Killing FV

est

�V (X) = V �X (3.4)

puis l�équation de Lorentz Eq(3.1) peut s�écrire comme

r
0

0 = V � 
0

3.2 Courbes magnetiques de Killing sur SL(2;R)

Le but de cette section est de trouver des courbes magnétiques correspondantes aux champs

de vecteurs de Killing dé�nis dans la section 2.3 en géométrie SL(2;R).

Pour simpli�er, on note les courbes magnétiques correspondantes aux champs de vecteurs

de Killing V par courbes V -magnetiques

3.3 Courbes V1�magnetiques

Dans cette sous-section, nous considérons les courbes magnétiques de Killing qui corres-

pondent au champ de vecteur de Killing V1 = @x.

Soit 
 : I � R!SL(2;R) une courbe régulière dé�nie par 
(t) = (x(t); y(t); �(t)) dans les

coordonnées (x; y; �):

La première tâche est de déduire l�équation de la courbe magnétique 
 dans SL(2;R). On a


0(t) = x0(t)
@

@x
+ y0(t)

@

@y
+ �0(t)

@

@�
(3.5)
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De l�équation Eq.(2.2), Eq.(3.5) s�écrit en base (ei)i=1;3 par


0 =
x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �0)e3 (3.6)

Ensuite, on calcul la dérivée covariante r
0

0. En tenant compte des formules de connexion

données par la Proposition 2.4, on a

Proposition 3.1 La dérivée covariante du vecteur vitesse 
0 suivant la base (ei)i=1:3 est8>>><>>>:
re1


0 =
�
x00 � y0

y

�
e1 +

�
x0

y
+ ( x

0

2y
+ �0)

�
e2 +

�
x00 � �00 � y0

2y

�
e3

re2

0 = �x0

y
e1 +

�
x0

2y
+ �0 + yy00�y02

y

�
e2 � x0

2y
e3

re3

0 = � y0

2y
e1 +

x0

2y
e2 + �00e3

Preuve. En utilisons la Proposition 2.4et L�Eqs.( 2.2 et 3.6), on aura

re1

0 = re1

�
x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �0)e3

�
=

�
x0

2y
re1e1 +

y0

2y
re1e2 + (

x0

2y
+ �0)re1e3

�
+

�
e1

�
x0

2y

�
e1 + e1

�
y0

2y

�
e2 + e1(

x0

2y
+ �0)e3

�
=

�
x0

y
e2 +

y0

2y
(�2e1 � e3) + (

x0

2y
+ �0)e2

�
+ (x00e1 + (x

00 � �00)e3)

=

�
x00 � y0

y

�
e1 +

�
x0

y
+ (

x0

2y
+ �0)

�
e2 +

�
x00 � �00 � y0

2y

�
e3

de la même manière on obtient

re2

0 = re2

�
x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �0)e3

�
=

�
x0

2y
re2e1 +

y0

2y
re2e2 + (

x0

2y
+ �0)re2e3

�
+

�
e2

�
x0

2y

�
e1 + e2

�
y0

2y

�
e2 + e2(

x0

2y
+ �0)e3

�
=

�
x0

2y
e3 + (

x0

2y
+ �0)e2

�
+

�
�x

0

y
e1 +

�
yy00 � y02

y

�
e2 �

x0

y
e3

�
= �x

0

y
e1 +

�
x0

2y
+ �0 +

yy00 � y02

y

�
e2 �

x0

2y
e3
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et

re3

0 = re3

�
x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �0)e3

�
=

�
x0

2y
re3e1 +

y0

2y
re3e2 + (

x0

2y
+ �0)re3e3

�
+

�
e3

�
x0

2y

�
e1 + e3

�
y0

2y

�
e2 + e3(

x0

2y
+ �0)e3

�
= � y0

2y
e1 +

x0

2y
e2 + �00e3

Par la suite, de l�Eq.(3.6) et la Proposition 3.1, on trouve

r
0

0 =

x0

2y
re1


0 +
y0

2y
re2


0 + (
x0

2y
+ �0)re3


0 (3.7)

= (
x00

2y
+
y0�0

y
+
3x0y0

2y2
)e1 + (

y00

2y
+
x0�0

y
+
x02

y2
� y02

2y2
)e2 + (�" +

x00

2y
� x0y0

2y2
)e3

En utilisant l�Eqs.(3.6 et 3), on a

V1 � 
0 = det

0BBB@
e1 e2 e3

1
2y

0 1
2y

x0

2y
y0

2y
x0

2y
+ �0

1CCCA = � y0

4y2
e1 �

�0

2y
e2 +

y0

4y2
e3 (3.8)

Remarque 3.2 La relation Eqs.(2.4) peut être obtenue d�une autre manière.

Soit dvg = 1
4y2
(dx ^ dy ^ d�)l�élément de volume de SL(2;R). Le champ magnetique FV1

correspond à V1 est

FV1 = iV1dvg =
1

4y2
(dy ^ d�) et

FV1(X; Y ) = iV1dvg(X; Y ) =
1

4y2
(dy ^ d�)(X; Y )

De l�equation Eq(3.2),on a

�V1(@x) = 0; �V1(@y) = �
1

2y
@y +

1

2y2
@�; �V1(@�) = �@y:

Par conséquent, la force de Lorentz �V1 est donnée en base (ei)i=1:3 par

�V1(e1) =
1

2y
e2: �V1(e2) =

1

2y
e1 +

1

2y
e3: �V1(e3) = �

1

2y
e2:
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En�n, On obtient le membre droit de la relation Eq.(3.8)

�V1(

0) = �V1(

x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �0)e3)

= � y0

4y2
e1 +

�0

2y
e2 +

y0

4y2
e3

= V1 � 
0

Maintenant, On cherche la courbe V1�magnetique en résolvant L�equation (6)

r
0

0 = V1 � 
0

En utilisons les Eqs(3.7 et 3.8), on a

(
x00

2y
+
y0�0

y
+
3x0y0

2y2
)e1 + (

y00

2y
+
x0�0

y
+
x02

y2
� y02

2y2
)e2 + (�" +

x00

2y
� x0y0

2y2
)e3

= � y0

4y2
e1 +

�0

2y
e2 +

y0

4y2
e3

qui donne le système d�équations di¤érentielle (S1) suivant

S1 :

8>>><>>>:
x00

2y
� y0�0

y
� 3x0y0

2y2
+ y0

4y2
= 0

y00

2y
+ x0�0

y
+ x02

y2
� y02

2y2
+ �0

2y
= 0

�00 + x00

2y
� x0y0

2y2
� y0

4y2
= 0

(3.9)

La troisième équation (S1)3 peut s�écrire

�00 + (
x0

2y
)0 � y0

4y2
= 0

En supposant que y0 6= 0 (le cas y0 = 0 on le voi plus tard), après intégration on a

�0 = c� x0

2y
� 1

4y
; c 2 R (3.10)

En remplaçant Eq.(3.10) dans la première équation du système (S1)1, on a

x00

2y
� x0y0

y2
+

y0

2y2
(1� 2cy) = 0
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En résolvant cette équation par rapport à x, on trouve

x0(t) =
1

2
� 2cy(t) + �y2(t); � 2 R (3.11)

D�où

x(t) =

Z
t

(
1

2
� 2cy(�) + �y2(�))d� (3.12)

En remplaçant Eq.(3.10) et Eq.(3.11) dans la deuxième équation du système (S1)2, on a

y00

2y
� y0

2

2y2
+
c

y
� 1

4y2
� c�y +

�

2
y2 = 0 (3.13)

Pour � 6= 0 les solutions sont les fonctions elliptiques obtenues par des logiciels de calcul.

Cependant, pour � = 0 Eq. (3.13) a deux solutions

y(t) =
1

8a
exp(�

p
a(t+ b)) + (1 +

8c2

a
) exp(�

p
a(t+ b))� 2c

a
): a 2 R+ (3.14)

en substutions l�Eq.(3.14) dans Eq.(3.10) et Eq.(3.11) et par intégration on trouve8<: x(t) = c
4a
p
a
exp(�

p
a(t+ b))� 2cp

a
(1 + 8c2

a
) exp(

p
a(t+ b)) + 1

2
(1 + 8c2

a
)t+ c1;

�(t) = 2c:t�
p
2 arctan(2

p
2a(1 + 8c2

a
)� 2

p
2cp
a
) + c2

Considérons maintenant le cas spécial y0 = 0: Soit y = y0 2 R� , alors (S1) devient

S1 :

8>>><>>>:
x00 = 0

x0�0

y0
+ x02

y20
+ �0

2y0
= 0

�00 + x00

2y0
= 0

A partir de la première équation de (S1)1, on a

x(t) = x1t+ x0; x1; x0 2 R

Ainsi, la courbe magnétique de Killing est une ligne


(t) = (x1t+ x0; y0; �
2x21

y0(2x1 + 1)
t+ �0); x1 2 Rn

�
�1
2

�
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Nous avons prouvé le théorème suivant.

Théorème 3.3 Les équations paramétriques des courbes V1-magnétiques en géométrie SL(2;R)

correspondantes aux solutions du système d�équations di¤érentielles (S1) sont :

a.


 =

0BBB@
c

4a
p
a
exp(�

p
a(t+ b))� 2cp

a
(1 + 8c2

a
) exp(

p
a(t+ b)) + 1

2
(1 + 8c2

a
)t+ c1;

1
8a
exp(�

p
a(t+ b)) + (1 + 8c2

a
) exp(

p
a(t+ b))� 2c

a

2c:t�
p
2 arctan

�
2
p
2a(1 + 8c2

a
) exp(

p
a(t+ b)� 2

p
2cp
a

�
+ c2

1CCCA
b. où


 =

0BBB@
� c
4a
p
a
exp(

p
a(t+ b)) + 2cp

a
(1 + 8c2

a
) exp(�

p
a(t+ b)) + 1

2
(1 + 8c2

a
)t+ c3;

1
8a
exp(

p
a(t+ b)) + (1 + 8c2

a
) exp(�

p
a(t+ b))� 2c

a
;

2ct�
p
2 arctan

�
exp(

p
a(t+b))�8c
2
p
2a

�
+ c4

1CCCA
c. La ligne dans le plan y = y0 donné par


(t) = (x1t+ x0; y0;�
2x21

y0(2x1 + 1)
:t+ �0)

où a; y0 2 R+; b; c; x0; �0; c1; c2; c3; c4 2 R et x1 2 Rn
�
�1
2

	
:

Les �gures 1et 2 présentes les courbes magnétiques de killing dans les cas (a) et (b) du

Théorème 3.3 pour a = 1; b = 0; c = 1; c1 = c2 = c3 = c4 = 0 et t 2 [�4; 0], t 2 [0; 5] ;

respectivement. Notez que les courbes présentées ne sont pas une visualisation des courbes de

SL (2, R) dans l�espace Euclidien 3D plutôt qu�une simple visualisation des solutions du système

Eq.(3.9) dans l�espace Euclidien 3D. Ici, dans l�intention d�obtenir tout type de visualisation de

courbe, nous égalisons une coordonnée � avec la coordonnée Euclidienne z.
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Figure 1 : Courbes V1-magnétiques �a�dans SL(2;R) tracer dans (R3; geuc)

Figure 2 : Courbes V1-magnétiques �b�dans SL(2;R) tracer dans (R3; geuc)

Remarque 3.4 Comme nous l�avons mentionné précédemment, si la force de Lorentz est nulle,

alors la courbe magnétique coïncide avec la géodésique. En particulier, les courbes magnétiques

de Killing, qui correspondent au champ magnétique de Killing @x, sont des géodésiques si le côté

droit de l�Eq. (3.8) disparaît, c�est-à-dire y = const et � = const

Corollaire 3.5 Il n�y a pas de courbe magnétique de Killing qui correspond au champ de vecteur

de Killing @x qui est une géodésique en géométrie SL(2;R).
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3.4 Courbes V2�magnetiques

Dans cette partie, par analogie avec la précédente, on considère les courbes magnétiques de

Killing qui correspondent au champ de vecteur de Killing V2 = @�.

Dans ce cas, on a

V2 � 
0 = � y0

2y
e1 +

x0

2y
e2: (3.15)

La relation Eq.(3.15) peut être obtenue d�une autre manière,.Le champ de vecteur KillingV2 = @�

dé�nit le champ magnétique FV2 =
1
4y2

(dx ^ dy).

Ainsi, l�action de la force de Lorentz �V est donnée par

�V2(e1) = e2; �V2(e2) = �e1; �V2(e3) = 0

Par conséquent, nous obtenons le côté droit de l�équation Eq (3.15),

�V2(

0) = �V2(

x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �0)e3)

= � y0

2y
e1 +

x0

2y
e2

= V2 � 
0

Prenons les côtés droits de l�Eqs. (3.7) et(3.15),on obtient le système d�équations di¤érentielles

suivant

S2 :

8>>><>>>:
x"
2y
� y0

2y
(2�0 � 1)� 3x0y0

2y2
= 0

y"
2y
+ x0

2y
(2�0 � 1) + x02

y2
� y02

2y2
= 0

�00 + x"
2y
+ x0y0

2y2
= 0

on cherche des solutions du système S2, La troisième équation(S2)3 peut s�écrire

�" + (
x0

2y
)0 = 0

Après l�intégration, on trouve

�0 = c� x0

2y
; c 2 R (3.16)
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En remplaçant (3.16) dans la première équation du système (S2)1, on a

x"

2y
� x0y0

y2
+
(1� 2c)y0

2y
= 0

En résolvant cette équation par rapport à x, on trouve alors,

x0(t) = (1� 2c)y(t) + �y2(t); � 2 R (3.17)

ainsi

x(t) =

Z
t

((1� 2c)y(�) + �y2(�))d� (3.18)

En remplaçant l�Eqs (3.16) et (3.16) dans la deuxième équation du système (S2)2, on a

y"

2y
� y02

2y2
� (2c� 1)�

2
y � �2

2
y2 = 0 (3.19)

l�eq.(3.16) n�a une solution exacte (analytique) que pour � = 0. Dans ce cas, on obtient la

fonction

y(t) = y0 exp(a� t); y0 2 R+et a 2 R (3.20)

Ensuite,nous étudions deux cas par rapport à la constante a,

A. Si a 6= 0. En substituant l�eq (3.20) dans(3.17) et (3.16), après intégration on obtient

x(t) =
(1� 2c)y0

a
exp(at) + c1 (3.21)

et

�(t) = (2c� 1
2
)t+ �0 (3.22)

B. Si a = 0. l�equation (3.20) devient y = y0 2 R+; de l�equation (3.18) on a,

x(t) = (1� 2c)y0t+ x0

Puis Eq. (3.16) donne

�(t) = (2c� 1
2
)t+ �0 (3.23)
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Ainsi, la courbe magnétique de Killing est une ligne


(t) = ((1� 2c)y0t+ x0; y0; (2c� 1
2
)t+ �0) (3.24)

Par conséquent, nous avons prouvé le théorème suivant :

Théorème 3.6 Les équations paramétriques des courbes V2-magnétiques en géométrie SL(2;R)

correspondantes aux solutions du système d�équations di¤érentielles (S2) sont :

A. des courbes spatiales données par


(t) =

�
(1� 2c)y0

a
exp(at) + c1; y0 exp(at); (2c�

1

2
)t+ �0

�

B. lignes dans le plan y = y0 donné par


(t) = ((1� 2c)y0t+ x0; y0; (2c� 1
2
)t+ �0)

où a 2 Rnf0g, c; c1; x0; �0 2 R et y0 2 R+.

La �gure 3 présente la courbe magnétique de Killing dans le cas (a) du Théorème 3.6 pour

a = c = c1 = y0 = 1; �0 = 0 et t 2 [�6; 3] :

Figure 3 : Courbes V2-magnétiques �a�dans SL(2;R) tracer dans (R3; geuc)

Remarque 3.7 Les courbes magnétiques de Killing, qui correspondent au champ magnétique

de Killing @�, sont des géodésiques si le côté droit de l�Eq. (3.15) disparaît, c�est-à-dire x = const
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et y = const.

La droite donnée par l�Eq.(3.15) pour c = 1
2
est une courbe magnétique de Killing géodésique en

géométrie SL(2;R).

3.5 Courbes V3�magnetiques

Dans cette section, par analogie avec les deux précédentes, nous considérons les courbes

magnétiques de Killing qui correspondent au champ de vecteur de Killing V3 = x@x + y@y.

Dans ce cas,on a

V3 � 
0 = (
�0

2
� xy0 � x0y

4y2
)e1 �

x�0

2y
e2 +

xy0 � x0y

4y2
e3 (3.25)

Remarque 3.8 La relation Eq.(3.25) peut être obtenue d�une autre manière. Le champ de

vecteurde Killing V3 = x@x+ y@y dé�nit le champ magnétique

FV3 =
1

4y2
(xdy ^ d� + yd� ^ dx)

Ainsi, la force de Lorentz �V est donnée par

�V3(e1) =
x

2y
e1 �

1

2
e3; �V3(e2) = �

x

2y
e1 +

x

2y
e3; �V3(e3) =

1

2
e1 �

x

2y
e2;

Par conséquent, on obtient le côté droit de la relation Eq.(3.25)

�V3(

0) = �V3(

x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �)e3)

= (
�0

2
� xy0 � x0y

2y2
)e1 �

x�0

2y
e2 +

xy0 � x0y

4y2
e3

= V3 � 
0

En utulisonsdes côtés droits des Eqs. (3.7) et (3.25) on obtient le système d�équations di¤éren-

tielles suivant

S3 :

8>>><>>>:
x"
2y
� y0�0

y
� 3x0y0

2y2
� �0

2
+ xy0�x0y

4y2
= 0

y"
2y
+ x0�0

y
+ x0y2

y2
� y02

2y2
+ x�0

2y
= 0

�" + x"
2y
� x0y0

2y2
� xy0�x0y

4y2
= 0

(3.26)
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on cherche des solutions du système (S3), La troisième équation du système (S3)3 peut s�écrire

�" + (
x0

2y
)0 +

1

2
(
x

2y
)0 = 0

Après l�intégration,on a

�0 = c� x0

2y
� x

4y
; c 2 R (3.27)

En remplaçant l�Eq.(3.27) dans la première équation du système (S3)1, on trouve

x"

2y
� x0y0

y2
+
xy0

2y2
+

x

8y
� cy0

y
� c

2
= 0 (3.28)

De manière analogue, en remplaçant l�Eq.(3.28) dans la deuxième équation du système (3.26),

nous avons
y"

2y
� y02

2y2
+
x02

2y2
+
cx0

y
+
cx

2y
� x2

8y2
� xx0

2y2
= 0 (3.29)

pour résoudre l�Eqs.(3.28) et (3.29), nous pouvons considérer un cas particulier lorsque x = ay.

Dans ce cas,on peut trouver des solutions aux du système (S3).

Soit x = ay, a 2 Rnf0g, en remplaçant cela dans l�Eqs. (3.28) et (3.29), on obtient l�equation

(
y0

y
)2 + (

2c

a
� 1)(y

0

y
) +

1

4
(
4c

a
� 1) = 0

Cette équation a des solutions réelles uniquement pour c
a
2 R n h1�

p
2
2
; 1 +

p
2
2
i. Dans ce cas,

après avoir introduit des nouvelles constantes c1 =
y0

y
2 R n {0} et b = ac1, il suit x0 = by.

De plus, de x = ay et x0 = by il suitx0 = b
a
x. La solution de cette équation est

x(t) = x0 exp(
b

a
t); a 6= 0 (3.30)

Ça suit

y(t) =
x0
a
exp(

b

a
t); a = 0 (3.31)

L�Eq. (3.27) implique � �= k 2 R, donc

�(t) = k:t+ �0 (3.32)
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En remplaçant l�Eqs.(3.30), (3.31) et (3.32) dans les première et deuxième équations de (S3),

on a

k =
�2b2
a+ 2b

donc
b

a
=

�k
2(k + b)

Ainsi, la courbe magnétique de Killing est donnée par


(t) = (x0 exp(�
k

2(k + b)
t);�x0

k

2b(k + b)
exp(� k

2(k + b)
:t); kt+ �0) (3.33)

Notez que l�Eq.(3.33) pour k = �b implique a = 0, ce qui n�est pas possible ici. Ensuite, nous

considérons le cas a = 0. De x = a � y suit x = 0. Si nous substituonsx = 0 dans la deuxième

équation de (S3)2, nous obtenons y(t) = y0:e
m:t. Bien que la troisième équation de (S3)3 suive

�(t) = k�t+ �0, la première équation de (S3)1 implique �(t) = �0.

Nous avons prouvé le théorème suivant

Théorème 3.9 Les équations paramétriques des courbes V3-magnétiques en géométrie SL(2;R)

correspondantes aux solutions du système d�équations di¤érentielles (S3) sont :

a. Courbes données par 
(t) = (x0 exp(� k
2(k+b)

t);�x0 k
2b(k+b)

exp(� k
2(k+b)

t); kt+ �0):

b. Lignes données par 
(t) = (0; y0 exp(mt); �0):

où b; k;m; x0, �0 2 Ret y0 2 R +.

La �gure 4 présente la courbe magnétique de Killing dans le cas (a) du Théorème 3.9 pour

k = 1; b = 1; x0 = 1; �0 = 0 et t 2 [�15; 5] :
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Figure 4 : Courbes V3-magnétiques �a�dans SL(2;R) tracer dans (R3; geuc)

Remarque 3.10 Les courbes magnétiques de Killing qui correspondent au champ magnétique

de KillingV3 = x@x + y@y, sont des géodésiques si le côté droit de l�Eq. (3.25) disparaît, c�est-

à-dire � = const ety = bx.

Corollaire 3.11 Corollaire 3.12 Il n�y a pas de courbe magnétique géodésique de Killing

dans la géométrie SL (2, R) qui correspond au champ de vecteurs Killing V3 = x@x + y@y

3.6 Courbes V4�magnetiques

Dans cette sous-section, nous considérons les courbes magnétiques Killing qui correspondent

au champ de vecteurs Killing V4 = 1
2
(x2 � y2)@x + xy@y

V4 � 
0 = (
xx0

4y
� y0

8y2
(x2 � y2) +

x�0

2
)e1 �

�0

4y
(x2 � y2)e2 + (�

xx0

4y
+

y0

8y2
(x2 � y2))e3 (3.34)

Remarque 3.13 La relation (3.34) peut être obtenue d�une autre manière. Le champ du vecteur

Killing V4 = 1
2
(x2 � y2)@x + xy@y dé�nit le champ magnétique

FV4 =
1

8y2
((x2 � y2)dy ^ d� + 2xyd� ^ dx)

et de la force de Lorentz �V est donnée par

�V4(e1) =
(x2 � y2)

4y
e2 �

x

2
e3; �V4(e2) =

(x2 � y2)

4y
e1 �

(x2 � y2)

2
e3;

�V4(e1) =
x

2
e1 �

(x2 � y2)

4y
e2 �

x

2
e3:

Ainsi ;on obtient le côté droit de l�Eq.(3.34)

�V4(

0) = �V4(

x0

2y
e1 +

y0

2y
e2 + (

x0

2y
+ �0)e3)

= (
xx0

4y
� y0

8y2
(x2 � y2) +

�0

2
)e1 �

�0

4y
(x2 � y2)e2 + (

xx0

4y
� y0

8y2
(x2 � y2))e3
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Prenons les côtés droits des Eqs.(3.7) et (3.34), on obtient le système d�équation di¤erentiel

suivant

S4 :

8>>><>>>:
x00

2y
� y0�0

y
� 3x0y0

2y2
� xx0

4y
+ y0

8y2
(x2 � y2)� x�0

2
= 0

y00

2y
+ x0�0

y
+ x0

2

y2
� y02

2y2
+ �0

4y
(x2 � y2) = 0

�00 + x00

2y
� x0y0

2y2
+ xx0

4y
� y0

8y2
(x2 � y2) = 0

Il semble que le système (S4) ne soit pas exactement résoluble dans le cas général. Cependant,

nous essayons de trouver des solutions qui ont au moins une fonction composante linéaire ou

constante.

Si nous ajoutons la première équation (S4)1 à la troisième équation de (S4)3, on obtient la

condition nécessaire pour la solution potentielle

�00 +
x00

y
� y0�0

y
� 2x

0y0

y2
� x�0

2
= 0 (3.35)

Examinons maintenant les solutions potentielles qui ont une fonction de composant constante

ou linéaire.

i) Si nous supposons x = x0, alors la condition Eq.(3.35) implique

�0 = ye
1
2
x0t

En substituant dans la deuxième équation du système (S4)2 il donne une équation di¤érentielle

qui ne peut être résolue que de manière essentiellement non algébrique.

ii) L�hypothèse y = y0, ne simpli�e pas le système (S4), donc nous cherchons une solution

en supposant qu�au moins une solution de composant est une fonction linéaire.

L�hypothèse x(t) = ms+x0 conduit à la contradiction. Par contre, l�hypothèse �(t) = kt+�0

avec la condition Eq.(3.35) donne

x(t) = x0 cosh(

r
ky0
2
t)

qui substitué dans la deuxième équation de (S4)2 donne une contradiction.
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iii) Si nous supposons � = �0, alors la condition Eq.(3.35) implique x0 = ay2.En substituant

dans la deuxième équation du système (S4)2 l�équation

yy00 + 2b2y4 � (y0)2 = 0

qui ne peut être résolue que de manière essentiellement non algébrique. De plus, toute combi-

naison de deux composantes linéaires de solution potentielle, substituées en Eq.(3.35) donne la

troisième composante non linéaire qui après véri�cation des équations du systéme (S4) conduit

à la contradiction.

D�où la proposition suivante.

Proposition 3.14 Les courbes magnétiques de Killing en géométrie SL(2;R), correspondant

au champ de vecteur de Killing V4 = 1
2
(x2� y2)@x+ xy@y sont des solutions du système d�équa-

tions di¤érentielles (S4). En particulier, il n�y a pas de courbe magnétique de Killing en géomé-

trie SL(2;R) avec au moins une fonction de composante linéaire qui correspond au champ de

vecteur de Killing V4 = 1
2
(x2 � y2)@x + xy@y .

Remarque 3.15 Les courbes magnétiques de Killing qui correspondent au champ magnétique

de Killing V4 = 1
2
(x2 � y2)@x + xy@y sont des géodésiques si le membre de droite de l�Eq.(3.35)

s�annulle, c�est-à-dire x = const, y = const et � = const

Corollaire 3.16 Il n�y a pas de courbe magnétique de Killing géodésique dans la géométrie

SL(2;R) qui correspond au champ de vecteur de Killing V4 = 1
2
(x2 � y2)@x + xy@y:
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