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Introduction

La trajectoire d’une particules chargée se déplacant sous ’action d’un champ magnétique
constitue un sujet de recherche important. Cette trajectoire, en géométrie, sur une variété est
connue sous le nom une courbe magnétique. Les courbes magnétiques fait naitre un vaste sujet
de recherche dans divers variétés Riemanniennes.

Une courbe 7(t) sur une variété riemannienne (M, g) est appelée courbe magnétique si son

champ de vecteur de vitesse 7/ = T satisfait I’équation de Lorentz

V' =2(y) (1)

ou V est la connexion de Levi-Civita de g et ® est un champ de tenseur de type (1,1) sur M

lié & la force de Lorentz. On deéfinit la force de Lorentz par le champ magnétique F

9(®(X),Y)=F(X,Y), VXY ex(M) (2)

Ainsi, I’équation de Lorentz (1) pour la courbe magnétique est une généralisation de I’équation
des géodésiques, c’est-a-dire pour ¢ = 0.
Rappelons que le produit vectoriel de deux champs de vecteurs X, Y sur la variété rieman-

nienne M est défini par

9 X XY, Z)=dv,(X,Y,Z), VZ e x(M) (3)

ou dv, désigne une forme de volume sur M.
La force F' peut étre définie par

FV = ivdvg

ou ¢ désigne le produit interieure sur M.

Par conséquent, le tenseur ® est lié a un vecteur V' qu’on le note ®y,, donné par

Py(X)=VxX (4)
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puis ’équation de Lorentz Eq(1) peut s’écrire comme
Vo' =V xs

D’autre part, Wilhelm Karl Joseph Killing (10 mai 1847 — 11 février 1923) est un mathématicien
allemand connu pour ses nombreuses contributions aux théories des algebres de Lie, des groupes
de Lie..., I'un de ces travaux qui prend son non la notion de vecteurs de Killing. Un vecteur
de Killing, ou champ de Killing, est un champ de vecteur sur une variété Riemannienne qui
conserve la métrique de cette variété. Lorsque V' est un vecteur de Killing, la courbe 7 est
appelée une courbe magnétique de Killing.

Le but de ce Mémoire est d’étudier et de déterminer les courbes magnétiques correspondentes

aux vecteurs de killing sur le groupe SL(2,R) (voir [4]) défini par
a b
SL(2,R) = |a,b,c,d € Retad —cb=1 ),
d

qu’il se compose en trois chapitre :

Dans le premier chapitre, on rappelle quelques notions de base sur les variétés (variété
différentiable et variété Riemannienne),vecteurs de Killing et repére de Serret-Frenet.

Le deuxiéme chapire se consentre sur la géometrie du groupe SL (2,R) et la connexion de
Levi-civite ainsi que les vecteurs de Killing.

Finalement le troisieme et le dernier chapitre, on détermine les courbes magnetiques associes
aux vecteurs de Killing dans le groupe SL (2,R) et on donne leurs représentations graphiques

en utilisant le logiciel "Wolfram Mathematica’ dans ’espace Euclidien de dimension 3.



Chapitre 1

Notions basiques sur les variétés

1.1 Variétés différentiables

1.1.1 Variétés Différentiables

Soit M un espace topologique sépéré non vide.

Définition 1.1 On dit que M est une variété topologique de dimension n € N si tout point p

de M posséde un voisinage ouvert U homéomorphe a R™ 1.e: il existe une application bijective
p:R" —U

1

tel que @ et son inverse = sont continue.

Un point p de U est repéré par les coordonnées (py, .., p,) dans R™ de son image réciproque
o Y(p). Alors, on dit que U est un ouvert de coordonnées locales de M au voisinage de p. La
paire (U, ¢) est appelée carte locale et (p, .., p,) = ¢ '(p) seront les coordonnées locales de p.
Si (U, ) et (V,9) sont deux cartes locales telle que l'intersection U et V' soit non vide
alors un point p € U NV est repéré par ses coordonnées (py, .., p,) dans U et ses coordonnées

(pl,..,pl,) dans V. Comme le diagramme

e (UNV) & Unv

v
! /

yHUNY)



est commutatif alors on a

(s D) =0 0 0(p1, ey )

ott Papplication 1) ~* o ¢ est appelée changement de coordonnées de la carte (U, ) vers la carte

(V.4).
On appelle atlas définissant M la donnée d’un recouvrement ouvert {U; };c; et pour chaque

i € I, d’'un homéomorphisme ¢, : R" — U; ; cet objet sera noté {U;, ¢, }icr-

Définition 1.2 On dira que M est une variété différentiable si elle est une variété topologique

et ’homéomorphisme 1)~ o ¢ est de classe C™.

1.1.2 Espace et fibré tangent

Soit M une variété différentielle de dimension n. On note C*° (M) 'ensemble des fonctions

réelles de classe C! sur M.

Définition 1.3 L’ensemble C*°(M) est un espace vectoriel sur R est une algébre associative et

commutative avec le produit usuel

ou f,g € C®(M) etx € M.

Définition 1.4 Un vecteur tangent en un pointp € M est lapplication v : C°(M) — R telle
que pour touts a,b € R, pour touts f,g € C>*(M), on a

-v est R-linéaire : v(af + bg) = av(f) + bv(g),

- v satisfait la régle de Leibnitz : v(f.g)(p) = v(f).g9(p) + f(p).v(g).

L’ensemble de vecteurs tangents au point p de M est noté par TpM, et on ['appelle [’espace

tangent en p € M, c’est un espace vectoriel de dimension n (dim M ).

On peut voir ’espace tangent par la définition suivante.

Définition 1.5 On définit l’espace tangent & M en un de ses points comme [’ensemble des

vecteurs tangents a une courbe tracée dans M. Un vecteur v de R™ est dit tangent a M en un



point x de M s’il existe une courbe paramétrée de classe C!
v:i]—e,+e[—> M CR"
définie sur un voisinage de 0, telle que

7(0) =z et 7'(0) = v

L’espace tangent en tout point p d’un ouvert U de R™ est TpU = R"™ .

Définition 1.6 On appelle fibré tangent a M, que 'on désigne par T'M , l’ensemble de tous les
vecteurs tangents deM en ses points, c’est donc la réunion de tous les espaces tangents TpM en
ses divers points :

M :peUMTPM :pEUM{(p,v) |pe M,veTpM}

C’est une famille d’espaces vectoriels paramétrisés par M. On peut le munir d’une projection

7w : TM — M définie par w(p,v) = p.

Le fibré T'M est une variété différentiable de dimension 2n. L’application 7 : (p;u) € TM —
p € M est différentiable.

On appelle section C*° de T'M ou champ de vecteurs sur M toute application différentiable
X :TM — M telle que m o X = idy;. Le champ de vecteurs X en tout point p € M est un
vecteur X (p) tangent & M en p de fagon a ce que la variation de X (p) (en fonction de p) soit
différentiable.

L’ensemble I'(T'M) des champs de vecteurs sur M est un module sur 'anneau C*°(M) des

fonctions C'*° sur M.

1.1.3 Espace et fibré cotangent

Comme T, M est un espace vectoriel, il est possible de considérer son dual, que nous noterons
Ty M. Cet espace est appelé [’espace cotangent a M en p. Il est un espace vectoriel de méme

dimension que 7, M.



Localement, au dessus d'un ouvert U, d’une carte locale (U, ¢), {%(p)} est une base de

T,M pour tout p € U. Notons {dz; |,} sa base duale, on a alors :

< dal,, 50-(p) >= 52 (p) = 9

Définition 1.7 On définit le fibré cotangent par

"M = U T;M
peEM

C’est une variété différentiable de dimension 2n. Une section de classe C®° o : M — T M de

ce fibré, est appelée une 1-forme différentielle sur M.

1.1.4 Connexions

Définition 1.8 Soit M une variété différentiable. Une connexion linéaire sur M est une ap-

plication

V : D(M) x T(M) — T(M)

telle que
V:(X,)Y)— VxY

vérifiants les propriétés :

1. VxY est C®(M)-linéaire par rapport & X :

VixigvZ = fVxZ +gVyZ, frg€C™(M)

2. VxY est R-linéaire par rapport a 'Y :

Vx(aY +bZ) =aVxY +bVxZ, a,beR
3. vérifie la régle de Leibniz :
VxfY = fVxY + X(f)Y, feC®(M)



VxY est appelée la dérivée covariante de Y dans la direction de X .

pour tous X,Y,Z € I'(M).

Définition 1.9 Soient V une connexion sur M et (U, ¢) une carte sur M de coordonnées locales

(1, T2, ..., ). On définit les fonctions différentiables Ffj :U — R par

appelée les symboles de Christoffel. En générale,

(oYE L @
= X" — Y| —
ViV =X ( o T THY ) o

Vx :T(M) - T'(M) est la dérivée covariante associé a la connexion linéaire V.

Définition 1.10 Soit V une connexion sur une variété différentiabl M. Le tenseur de torsion
de V est une application

T:T(M)xT'(M)—T(M)
tel que

T:(X,Y) > T(X,Y)=VxY - VyX — [X,Y]

1.1.5 Géodesiques

Définition 1.11 Une courbe v dans une variété differentiable M muni d’une connexion linéaire
V est dite géodésique si

Vyy' =0

1.2 Variétés Riemanniennes

1.2.1 Meétriques Riemmaniennes

Soit M une variété differentiable de dimension n.



Définition 1.12 Une métrique Riemannienne notée g est une application définie par

g  I(TM)xI(TM)— C*(M),
(X,)Y) — g(X,Y)

telle que g est

1. Symétrique g(X,Y) = g(Y, X),

2. Non dégénérée g(X,X)=0 — X =0,
3. Définie positive g(X,X) >0,

pour tout X, Y € T'(T'M).

Définition 1.13 Une variété differentiable M muni d’une métrique Riemannienne g est dite

variété Riemannienne notée (M, g) .

Une metrique Riemannienne g sur M définit sur chaque espace tangent un produit scalaire
donnée par

(u,v) = (u,v), = g (v,v) | u,v € T,M

La norme d'un vecteur v de T,M est

[o]l = Vg(v,v)

Langle entre deux vecteurs u et v de T, M est lunique 6 € [0, 71| telle que

(u, v)

cosf =
(]| {J]]

La longueur d’une courbe C' par morceaux v : [a,b] — M est définie par

b
L) = [ v o d
La longueur d’une courbe est invariante par reparamétrage régulier. La distance entre x,y € M
est définie par

d(x,y) = inf L(v)

10



Une courbe 7 : [a,b] — M est paramétrée par la longueur d’arc ou unitaire si
IVl =1

1.2.2 Connexion de Levi-Civita

Définition 1.14 Soit (M, g) une variété Riemannienne .Une connezion linéaire V est dite de
Levi-Civita st

1.V est symétrique si le tenseur de torsion est nul i.e. VxY — Vy X = [X,Y].

2. V est compatible avec g i.e. X (Y, Z) = (VxY,Z)+ (Y,VyZ).

Théoréme 1.15 Une variété Riemannienne (M, g) admet une et une seule connexion de Levi-

Clivita.

1.3 Vecteurs de Killing

Définition 1.16 Soit (M, g) une variété Riemannienne. Le champ de vecteur V sur M est

appelé un champ de vecteur de Killing s’il satisfait [’équation de Killing
g(Vy V. Z)+g(VVY)=0,VY,Z € T(TM) (1.1)

En particulier, les champs vecteurs de Killing définissent une classe importante de champs
magnétiques appelés champs magnétiques de Killing et de plus les trajectoires correspondant
aux champs magnétiques de Killing sont appelées courbes magnétiques de Killing qu’on va voir

au chapitre 3.

1.4 Repeére de Serret-Frenet

Soient (M, g) une variété Riemannenne et v : [ C R — M une courbe paramétrée par la
longueur d’arc s. On supposera ici les courbes paramétrées bi-réguliéres, i.e. 7' et 7" linéairement
indépendants en tout point.

On a



qui donne

<T(s),T(s) >=

et
Vr<T(s),T(s) >=2< V7T (s),T(s) >=0
d’ou les vecteurs V1T (s) et T'(s) sont orthogonaux et on a la définition.
Définition 1.17 Le vecteur normal unitaire (appelé aussi vecteur normal principal) est donné
par

VTT (S)

N = /e

et la fonction ||V1T (s)|| est appelée la coutbure de ~y notée par k.

Remarque 1.18 On a donc, comme pour les courbes planes
VrT (s) = k(s)N (s), (1.2)

mais ict la courbure est par définition, positive et le vecteur unitaire normal est orienté dans la

méme direction que V1T (s).

Définition 1.19 On définit ensuite le vecteur unitaire B (s) = T (s) A N (s) qui compléte la

base orthonormée directe {T, N, B} appelé repére de Serret-Frenet.

On considére V7B (s), c’est un vecteur orthogonal a B (s) mais aussi & T (s) car
VrB(s) =VrT (s) AN (s)+T (s) ANVrN (s) =T (s) ANVrN (s)

donc V7B (s) est colinéaire avec N (s) et on peut définir un fonction en s appelée la tortion

notée par 7, définie par I’équation suivante
VrB(s)=—7(s)N (s).
Certain auteurs définissent la torion par

VrB(s)=71(s)N(s).

12



Remarque 1.20 La définition suppose deux choses : premiérement que la courbe soit trois fois
dérivable, ensuite que la courbe soit bi-réguliére au point ou l'on veut définir la torsion ( en
un point non régulier, on ne peut pas définir le vecteur tangent unitaire, en un point non bi-
régulier, on ne peut pas définir le vecteur normal unitaire car T' (s) = 0). On observera aussi

que la condition de bi-régqularité impose que la courbure ne s’annule pas.

On calcule maintenant les coordonnées de Vo N dans la base {T', N, B}. On a

VN =al +bN + ¢B.

ol a, b et ¢ sont des fonctions en s. Utilisant Eq.(1.2), on obtient

a = <T,VTN> = —<VTT,N> = —K,

et
b= (N,VTN> =0

de plus
¢c=(B,VyN)=—(VyrB,N) =1,

La fonction 7 est appelée la torsion. D’ou

VN = —k(s)T + 7 (s) B.

Définition 1.21 Soit v : I C R — M wune courbe paramétrée par la longueur d’arc s.Les

formules de Serret-Frenet pour v est données par la matrice suivante,

\A 0 k(s) 0 T
VrN | =] —k(s) 0 7(s) N
VTB 0 —T(S) 0 B

ou k et T sont la fonction courbure et la fonction torsion respectivement.

13



Chapitre 2

Géomeétrie du groupe SL(2,R)

2.1 Groupe SL(2,R)

Soit le groupe linéaire spécial réel défini par

a b
SL(2,]R){( )a,b,c,dERetad—cbl}
c d

SL(2,R) a les trois sous-groupes suivants :
0
|y >0
VY

cosf sind .
A = |0eS }, B=
—sinf cosf
Par Isawara dans REF; on a la décomposition SL(2,R) = KAN, c’est-a-dire que chaque

> g

o {(27) e

éléement de SL(2,R) peut étre décomposé de fagon unique comme suit

a b _ cosf sind % 0 1 =z
c d —sinf cosf 0 Vv 0 1

<

14



pour certains ¥ € R, y € R et § € S'. (x,y,0) peuvent étre regroupés comme un systéme

global de coordonée du groupe SL(2,R).L’Algebre de Lie sl (2,R) de SL(2,R) est
s[(2,R) ={X € gl(2,R): tr(X) =0}

Le produit intérieur sur SL(2,R) est défini par

tr(X'Y)

<XaY>: 9

induit une métrique invariante a gauche sur SL(2,R) donnée par la définition suivante

Définition 2.1 Sur le groupe de dimension 3 SL(2,R), on définie la métrique invariante &

de\?  [dy\® [dx 2
gSL(2,R) = (Q_y) + (%) + (E +d9)

et de matrice representative

gauche par

1 1
a2 0 3
gsrem =) 0 gm0 (2.1)
1
2% 1

Les coordonnées (z,y) € R x R™ sont les coordonnées du plan de base hyperboloique 6 € S*.

La norme d’'un vecteur X € SL(2,R) est donnée par
1
X[ = (X, X)=.

Proposition 2.2 La famille de vecteur (e;),_15 de SL(2,R) donnée par

_9, 0 0 9,0 O
61_ yam 807 62_ yay7 63_89

forme une base orthonormée de SL(2,R) et de base duale donné par

wlzd—x, wQZ@, w3:(d—$+d0)
2y 2y

15



Preuve. On montre que que ||e;|| = 1, alors

2y 2y
||61||2 = JSL(2,R) 0 ; 0
—1 —1
1 1
2 Vo3 2y
= ( 2y 0 —1 ) 0 47 O 0
1
2% 0 1 —1
=1
de la meme maniére on montre que ||es|| = |les|| =1 et gsr2r) (€:,€e;) =0 pour i,j = 1,2,3 et

1#j. |

2.2 Connexion de Levi-Civita

Pour définir la connexion de Levi civita sur SL(2,R) on aurra besoin du lemme suivant

Lemme 2.3 Le crochet de Lie de la base est donné par

[61',61‘] =0 VZ = 1,_3

le1, €] = —2(eg +e3), [er,e3] =0 et [ea,e31 =0
Preuve. Les crochets de lie se calcul directement on utilisons la Proposition 2.2. =
D’ou la proposition suivante.

Proposition 2.4 La connétion Lévi-civita V de SL(2,R) est donnée par

Velel = 2627 Veleg = —2617 Veleg = €2,
Veer = e3 Veea =0 Vees = —ep,
V€361 = €9, V63€2 = —€1, Ve3€3 =0.

Preuve. On utilisons la formule de Kosul suivante

<VXY7 Z> = %{X<Y’ Z> +Y<Z’X> - Z<X7Y> - <Za [}/’XD - <X7 [Y7 Z]> - <Y7 [X7 Z]>}’

16



On fait le calcul pour V., es.

(Vaeser) = sles—(enfes,eal)} -0,
(Vereses) = —%«eg,[el,ezb —1
(Veye3,03) = —§{<€3;[€1763]>+<€37[€17€3]>+<€17[€3763]>} =0 ,

Alors

Ve, €3 = €3.

De la méme maniére on calcul les autres connexions. m

2.3 Vecteurs de Killing dans SL(2,R)

Supposons que le champ vectoriel de Killing ait la forme
V =a(z,y,0)er + b(z,y,0)es + c(z,y,0)es

En substituant V' dans la relation Eq.(1.1) et en prenant Y = e;,Z = e; pour tout i,j €

{1,2,3},on aura 9 équations

g(vei‘/a ej) + g(VEj‘/? ei) =0 (23)

et puisque la métrique est symétrique le nombre d’équations se réduit a 6 équations. Pour

1 =j =1, on a d’aprés la Proposition 2.4

Ve,V = Veae + Ve bey + Ve, ces
= ey(a)ey + 2aeg + e1(b)ey + b(—2e; — e3) + e1(c)es + ceq

= (ei(a) —20) e + (2a +e1(b) +¢)ea + (=b+e1(c)) e3

da  Oa ob  0b dc  Oc
— (et 2 %+ y— — 2 oy — 5 _
(yam 20 b)el+(a+ yay am+c>62+(y81: 20 b)es
d’ou
da  Oa
9(Ve Vier) +g(Ve Vier) = 2(2y£ ~ 50" 20) =0

17



Nous obtenons le systéme d’équations différentielles (S) suivant

(
Zya%a—%a—%zo

2y2b— Zb+2a =0

a9y _
Sy
2y5-c— 55+ 550 —2b=10
8 . _
%C—O
KQy%c—%b—i—Za:O
le systéme (5) devient
( ,
2ya%a—%a—2b:0
2y2b— Zb+2a =0
b=0b(x,0
5. (z,0)

Zy%c—k%a—?bzo
¢ = clz,y)
Qy%c—%b—i—Za:O

\

On remarque que les solutions de (S) sont les champs de vecteurs donnés dans la base (ey, €2, €3)

par
1 1 x 1 T
Vii= et e3 Va=es Vo= _—er+ seat e
1 2y€1 2y€3 2 €3 3 2y61 262 2y€3
x2—y2 o x?_yQ
Vi = €1+ sex+ e
4 1y 1 22 1y 3

Les champs de vecteurs de Killing dans SL(2,R) sont donnés en base canonique par

I R R B B DIPON 0

18
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Chapitre 3

Courbes magnetiques de Killing sur

SL(2,R)

3.1 Courbes magnetiques

Soit F' une 2-forme sur une variété riemannienne (M, g) de dimension 3, appelée champ
magnétique. Une courbe () sur une variété riemannienne (M, g) est appelée courbe magnétique

si son champ de vecteurs de vitesse satisfait I’équation de Lorentz
V' =2(y) (3.1)

ou V est la connexion de Levi-Civita de g et ® est un champ de tenseurde type (1,1) sur M.

On deéfinit la force de Lorentz, 1lié au champ magnétique F' par
9((X),Y) = F(X,Y), VXY €x(M) (3.2)

L’équation de Lorentz pour la courbe magnétique est une généralisation de 1’équation géodé-
sique, c’est-a-dire que pour ® = 0, ’équation différentielle Eq(3.1) coincide avec 1'équation

géodésique.

Rappelons que le produit croisé de deux champs de vecteurs X,Y € x(M) sur la variété
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riemannienne M est défini par
9 X xY,Z)=dv,(X,Y,Z), VZex(M) (3.3)

ou dv, désigne une forme de volume sur M.

SiV est un champ de vecteur de Killing sur M, soit Fy = iy dv, le champ magnétique de

Killing correspondant, ot ¢ désigne le produit interieure sur M.

Par conséquent, la force de Lorentz ®y correspondant au champ magnétique de Killing Fy,
est

Dy(X)=V x X (3.4)

puis I’équation de Lorentz Eq(3.1) peut s’écrire comme

Vyy’ =V x ’7,

3.2 Courbes magnetiques de Killing sur SL(2,R)

Le but de cette section est de trouver des courbes magnétiques correspondantes aux champs
de vecteurs de Killing définis dans la section 2.3 en géométrie SL(2,R).
Pour simplifier, on note les courbes magnétiques correspondantes aux champs de vecteurs

de Killing V' par courbes V-magnetiques

3.3 Courbes V;—magnetiques

Dans cette sous-section, nous considérons les courbes magnétiques de Killing qui corres-
pondent au champ de vecteur de Killing V; = 0,.

Soit v : I C R —SL(2,R) une courbe réguliére définie par v(t) = (z(t),y(t),0(t)) dans les
coordonnées (z,y, ).

La premiére tache est de déduire 1’équation de la courbe magnétique v dans SL(2,R). On a

V() =)o +y(t) - +0() (3.5)
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De I'équation Eq.(2.2), Eq.(3.5) s’écrit en base (e;),_13 par

xl y/ m/
= e 4 = Sy 3.6
0l 2y€1+2y€2+(2y+ )es (3.6)

Ensuite, on calcul la dérivée covariante V.. En tenant compte des formules de connexion

données par la Proposition 2.4, on a

Proposition 3.1 La dérivée covariante du vecteur vitesse 7' suivant la base (e;);_15 est

Ve, 7' = (1’” - %) e1+ (% + (% + 9’)) es + (93” — 0" — %) es

’ i 2! ’ yy”fy’Q 2!
Ve,V ——gel—i-(@—l—@%— ; €2 — 5,63

’_ y' ! "
Ve3’}/ = —%61 —+ %62 + 9 €3

Preuve. En utilisons la Proposition 2.4et L’Egs.( 2.2 et 3.6), on aura

/ / /
Ve,V Ve, <§—ye1 + g—yeg + (;—y + 9’)e3)
= (x—/v e —i—y—IV e +(£/+6")V e > + <e ($—/)e +e <y—l)e +e (£/+0')e>
oy Va1t g Vaer t g e1€3 tlgy Jataly)etaly 3
! Y ! / " " "
= (562 - 2 (—2e; —e3) + (@ +0 )62) + (a"er + (2" — 0")es)

! ! ! !
= (93” — y_) e1 + (£ + (i +0’)) ez + (a:” — 0" — y_) es
y y 2y 2y

de la méme maniére on obtient
!

x ! x
Vet = Ve, (@61 + g—yeg + (@ + 9’)63>

x/ y/ x/ x/ y/ ﬂ?l
= (@Vmel + @qug + (@ + 9')V€263> + <€2 (@ e1 + e @ e + 62(2—y +0')es

! ! ! "o 02 !
= (—63 -+ (_ + 9/)€2> + <——€1 + <u) €y — —63)
2y 2y (0 Y Y

' ! "o 02 !
= —ge1+ (2—y+9’+%> €2 — —e3
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et

x/ / a;,/
VeV = Ve (%61 + g—yez + (@ + 9')€3>

a,/./ y/ x/ .CL', y/ x/

= (@vegel + @Ve‘g@z + (g + 0/)v6363) + <€3 (@ e+ e3 @ e + 63(@ + 60 )es
y ! "

= —=— — 0
2y61 + 23/62 + 0 es

Par la suite, de I’'Eq.(3.6) et la Proposition 3.1, on trouve

!/

V. = —v ’y’+y—,V 7’+(x—,+0’)V o (3.7)
Y 2y €1 2y €2 2y [} .
x/l ylel Sx/y/ y// xlel :L./2 y/2 x/l x/yl
= (=+—+ Jer + (- + — —)eet+ (07 + - — 5 )es
2y oy 2 2y oy oy 27 2y 2y°
En utilisant I’Eqgs.(3.6 et 3), on a
€1 €2 €3
/ 1 1 y/ 0, y/
Vi x " =det 3 0 3 = —4—y2€1 — @62 + 4—?/263 (38)
£ L g+

Remarque 3.2 La relation Eqs.(2.4) peut étre obtenue d’une autre maniére.

Soit dv, = é(dm A dy A df)l’élément de volume de SL(2,R). Le champ magnetique Fy,

correspond a V; est
1

171 A d0) et

FV1 = Zvldvg =

1
FV1(X> Y) = Z‘Vldvg()(a Y) = 4_y2(dy N d@)(X, Y)
De I'equation Eq(3.2),0n a

1 1
(I)Vl (335) =0, (I)Vl (ay) = __ay + 2_y2

2y 89, CI)vl (89) = —8y.

Par conséquent, la force de Lorentz ®y, est donnée en base (e;),_t5 par

1 1 1
Dy, (e1) = %62. Dy, (e2) = @61 + 2—y63. Dy, (e3) = —2—62.
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Enfin, On obtient le membre droit de la relation Eq.(3.8)

’ @ y, ' ’
Py (7)) = q)vl(@@l + 2 + (@ +0)es)

/ / /

- _Y v 9
= e e+ 2y€2 + 1y €3

= %X’y,

Maintenant, On cherche la courbe V;—magnetique en résolvant L’equation (6)

Vo =V x+
En utilisons les Eqs(3.7 et 3.8), on a
I” /91 31,/ ! " :L‘/Ql ZL‘/2 /2 " 23/ /
(=42 Der+ (- + 2+ = e (07 + 2 — ey
2y oy 2y 2y oy Yy 2y 2y 2y
y/ / /
= ——e+ e+ —e
492 ! 2y 2 42 s
qui donne le systéme d’équations différentielle (S) suivant
l,// /6/ 31,1 / ! o
A
1" 1! ! /2 /
S1:q L4+ L+ =0 (3.9)
7 J)” .’E/ ! ! o
AR Thal Ak A
La troisieme équation (S7)s peut s’écrire
x/ y/
9// v _ Y _ 0
+(2y) 4y?

En supposant que ¢’ # 0 (le cas ¥’ = 0 on le voi plus tard), aprés intégration on a

' 1

/
0 =c 2 1y ceR (3.10)

En remplagant Eq.(3.10) dans la premiére équation du systéme (S);, on a

x// w/y/ y/
+ 551 —2cy) =0

2y y? 2y
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En résolvant cette équation par rapport a x, on trouve

2 (t) = % —2cy(t) + M\ (1), € R (3.11)
D’ou
x(t) = /(% —2cy(7) + M2 (7))dr (3.12)

En remplagant Eq.(3.10) et Eq.(3.11) dans la deuxiéme équation du systéme (57)2, on a

" 2

) Y

C
2y 2%y

A

Pour A # 0 les solutions sont les fonctions elliptiques obtenues par des logiciels de calcul.
Cependant, pour A = 0 Eq. (3.13) a deux solutions

2

y(t) = % exp(£va(t + b)) + (1 + 8%) exp(+v/a(t + b)) — %C) a€RY (3.14)

en substutions ’'Eq.(3.14) dans Eq.(3.10) et Eq.(3.11) et par intégration on trouve

(t) = 25z exp(—va(t + b)) — 21+ 55) exp(va(t + b)) + 5(1 4+ 5)i + 1,
0(t) = 2c.t — /2 arctan(2v/2a(1 + %) _ %) T e

Considérons maintenant le cas spécial y/ = 0. Soit y = yo € R* | alors (5;) devient

=0
S, 2oy 2?6
! Yo +y§ +2y0 0
7 2! .
0 —|—2y0—0

A partir de la premiére équation de (S7);, on a
x(t) = 21t + xo, 1,20 € R

Ainsi, la courbe magnétique de Killing est une ligne

2
277

t) = (21t , ———

t4+00), o € R\{—%}
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Nous avons prouvé le théoréme suivant.

Théoréme 3.3 Les équations paramétriques des courbes Vi-magnétiques en géométrie SL(2,R)

correspondantes aux solutions du systéme d’équations différentielles (S1) sont :

a.
27 oxp(—va(t + b)) — Z2(1+ 5 ) exp(va(t + b)) + 5(1+ 55)t + ¢,
v = o exp(—v/a(t + b)) + (1 + 5%) exp(v/a(t + b)) — %
2c.t — v/2 arctan (2\/%(1 + %) exp(va(t +0b) — %) + ¢y
b. ot

— 1o exp(Va(t +b)) + \2/—%(1 + %) exp(—v/a(t +b)) + 5(1 + %)t + ¢s,

N = Lexp(va(t +b)) + (1 + 22) exp(—/a(t + b)) — &,
2ct — /2 arctan (exp(\/g(t%) + ey

c. La ligne dans le plan y = y0 donné par

2
277

——t+40
y0(2$1 + 1) 0>

Y(t) = (z1t + o, Yo, —

ot a,yo € RT,b,¢,x0,00,c1,0,c3,c4 € R et 71 € R\ {1

Les figures let 2 présentes les courbes magnétiques de killing dans les cas (a) et (b) du
Théoréme 3.3 pour a = 1,b = 0,c = 1,cl = 2 =3 =cd =0ett € [-4,0], t € [0,5],
respectivement. Notez que les courbes présentées ne sont pas une visualisation des courbes de
SL (2, R) dans 'espace Euclidien 3D plutot qu’une simple visualisation des solutions du systéme
Eq.(3.9) dans I'espace Euclidien 3D. Ici, dans 'intention d’obtenir tout type de visualisation de

courbe, nous égalisons une coordonnée 6 avec la coordonnée Euclidienne z.
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Figure 2 : Courbes Vi-magnétiques b’ dans SL(2,R) tracer dans (R3, gey.)

Remarque 3.4 Comme nous l’avons mentionné précédemment, si la force de Lorentz est nulle,
alors la courbe magnétique coincide avec la géodésique. En particulier, les courbes magnétiques
de Killing, qui correspondent au champ magnétique de Killing 0., sont des géodésiques si le coté

droit de I’Eq. (3.8) disparait, c’est-a-dire y = const et 0 = const

Corollaire 3.5 Il n’y a pas de courbe magnétique de Killing qui correspond au champ de vecteur

de Killing 0, qui est une géodésique en géométrie SL(2,R).
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3.4 Courbes V,—magnetiques

Dans cette partie, par analogie avec la précédente, on considére les courbes magnétiques de
Killing qui correspondent au champ de vecteur de Killing V5 = 0.

Dans ce cas, on a

/ x/

‘/2 X ’7/ = —%61 + @62. (315)

La relation Eq.(3.15) peut étre obtenue d’une autre maniére,.Le champ de vecteur KillingV, = 0y
définit le champ magnétique Fy, = ﬁ (dx A dy).

Ainsi, 'action de la force de Lorentz ®y, est donnée par

q)VQ(el) = €2, q)V2<62) = —€q, (PV2 <€3) - O

Par conséquent, nous obtenons le coté droit de I’équation Eq (3.15),

/ / /

X Y T
(I)V2 (’}/,) = (I)VZ(ZGI + 2—y€2 + (@ + 9/)63)
B y/ ZE,
= 2y€1 —+ 2y€2
— ‘/2 X ’y,

Prenons les cotés droits de I'Egs. (3.7) et(3.15),0n obtient le systéme d’équations différentielles

suivant
9 / 1,0
(20 1) = =0
Spiq L+£(20 —1)+ % — 45 =0
i 1,0
0"+ 5, +55=0

on cherche des solutions du systéme S, La troisiéme équation(S;)s peut s’écrire

x
0 +(=—)=0
+()
Apres l'intégration, on trouve
CC,/
0 =c— — eR 3.16
g (3.16)
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En remplagant (3.16) dans la premiére équation du systéme (S3)1, on a

b

x 'y 1—2e)y
@ty )y

=0
2y y? 2y

En résolvant cette équation par rapport a x, on trouve alors,
2'(t) = (1 —20)y(t) + M\ (t), AER (3.17)

ainsi

z(t) = /((1 —20)y(7T) + M2 (7))dr (3.18)

t

En remplagant I’'Egs (3.16) et (3.16) dans la deuxiéme équation du systéme (S53)2, on a
LA 2 A A (3.19)

’'eq.(3.16) n’a une solution exacte (analytique) que pour A = 0. Dans ce cas, on obtient la
fonction

y(t) =yoexp(a—1t), yo €R'eta eR (3.20)

Ensuite,nous étudions deux cas par rapport a la constante a,

A. Si a # 0. En substituant ’eq (3.20) dans(3.17) et (3.16), aprés intégration on obtient

o) = L2200 obat) + o (3.21)
et
0t) = (2 — %)t + 0, (3.22)

B. Si a = 0. l'equation (3.20) devient y = yo € RT, de 'equation (3.18) on a,
z(t) = (1 — 2¢)yot + o

Puis Eq. (3.16) donne
1
0(t) = (2¢ — §)t + 0o (3.23)
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Ainsi, la courbe magnétique de Killing est une ligne
1
v(t) = (1 = 20)yot + o, Yo, (2¢— §)t + 6p) (3.24)

Par conséquent, nous avons prouvé le théoréme suivant :

Théoréme 3.6 Les équations paramétriques des courbes Va-magnétiques en géométrie SL(2,R)
correspondantes aux solutions du systéme d’équations différentielles (S3) sont :

A. des courbes spatiales données par

(t) =

((1 — 2¢)yo

1
exp(at) + c1, yo exp(at), (2¢ — 5)75 + 00)

B. lignes dans le plan y = yo donné par

A0 = (= 20wt 70, o, (20— )i+ 60)

ot a € R\{0}, ¢,c1,70,00 € R et yo € RT.

La figure 3 présente la courbe magnétique de Killing dans le cas (a) du Théoréme 3.6 pour

a=c=c =y =1, 0p=0ette[-6,3].

Figure 3 : Courbes Vo-magnétiques ’a’ dans SL(2,R) tracer dans (R3, ge,.)

Remarque 3.7 Les courbes magnétiques de Killing, qui correspondent au champ magnétique

de Killing 0y, sont des géodésiques si le coté droit de I’Eq. (3.15) disparait, c¢’est-a-dire x = const
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et y = const.
La droite donnée par I’Eq.(3.15) pour ¢ = % est une courbe magnétique de Killing géodésique en

géométrie SL(2,R).

3.5 Courbes V;—magnetiques

Dans cette section, par analogie avec les deux précédentes, nous considérons les courbes
magnétiques de Killing qui correspondent au champ de vecteur de Killing V3 = x0z + y0y.
Dans ce cas,on a

0  xy —ay x0 xy — 'y

Vix o = (g = g — et

5 4y2 €3 (325)

Remarque 3.8 La relation Eq.(3.25) peut étre obtenue d’une autre maniére. Le champ de

vecteurde Killing V3 = x0x + ydy définit le champ magnétique

1

Ainsi, la force de Lorentz @y est donnée par

Py (e1) = @61 - 563; Py (e2) = _561 + Ees, Dy (e3) = 561 — @627
Par conséquent, on obtient le coté droit de la relation Eq.(3.25)
.17/ yl ;p’
P ! = & — = - 0
V3(7> V3(2yel+ 2y€2+(2y+ )63)
(6" xy — x’y) z6' xy — 'y

e J— — — e e

2 2y2 1 2y 2 4y2 3
= ‘/E,) X f'}//

En utulisonsdes cotés droits des Eqs. (3.7) et (3.25) on obtient le systéme d’équations différen-

tielles suivant

2y y 212 2
X yw 20’ $1y2 y/2 20’ o
53- %—F—y +_y2 —W—FZ—O (326)
” x o'y wy—aly
0" + 2y 292 4y? 0
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on cherche des solutions du systéme (S3), La troisiéme équation du systéme (S3)s peut s’écrire

x’ 1 x
g7 Y/ Il et VA 0
+ (Qy) + 2(2y)
Apres 'intégration,on a
0 Y_T eR (3.27)
=c————, ¢ :
2y 4y’

En remplagant I’Eq.(3.27) dans la premiére équation du systéme (.S3);, on trouve

7 /1,0 /
r_ory v T Y (3.28)

2y yr 22 8y oy 2

De maniére analogue, en remplacant I’Eq.(3.28) dans la deuxiéme équation du systéme (3.26),

nous avons

vy oy? 2% el ex  x Tx

y _y . L e r 3.29
2y 2y2+2y2+y+2y 8y2 212 (3.29)

pour résoudre 1'Eqs.(3.28) et (3.29), nous pouvons considérer un cas particulier lorsque z = ay.
Dans ce cas,on peut trouver des solutions aux du systéme (.S3).
Soit x = ay, a € R\{0}, en remplacant cela dans I'Egs. (3.28) et (3.29), on obtient I’equation
! 2c o1 4c
Er+ (= -E)+
Y a )
Cette équation a des solutions réelles uniquement pour £ € R\ (1 — \/75, 1+ */7§> Dans ce cas,
apres avoir introduit des nouvelles constantes ¢; = % € R\ {0} et b = acy, il suit 2’ = by.

De plus, de x = ay et x/ = by il suitz/ = %x La solution de cette équation est

z(t) = xo exp(gt), a#0 (3.30)
Ca suit
y(t) = % exp(gt), a=0 (3.31)

L’Eq. (3.27) implique 6 > = k € R, donc

0(t) = k.t + 04 (3.32)
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En remplacant 1'Eqs.(3.30), (3.31) et (3.32) dans les premiére et deuxiéme équations de (Sj3),

on a
B —2b?
Ca+2b
donc
b —k
a  2(k+b)

Ainsi, la courbe magnétique de Killing est donnée par

k k

0~y £), kt + 6o) (3.33)

v(t) = (wo eXp(—z( exp(—

2
k+b) 2(k + b)

Notez que 'Eq.(3.33) pour k = —b implique a = 0, ce qui n’est pas possible ici. Ensuite, nous
considérons le cas a = 0. De x = a - y suit x = 0. Si nous substituonsx = 0 dans la deuxieme
équation de (S3)2, nous obtenons y(t) = yo.e™. Bien que la troisiéme équation de (S3)3 suive
0(t) = k-t + 0, la premiére équation de (S3); implique 6(t) = ;.

Nous avons prouvé le théoréeme suivant

Théoréme 3.9 Les équations paramétriques des courbes Vs-magnétiques en géométrie SL(2,R)

correspondantes auz solutions du systéme d’équations différentielles (Ss) sont :

a. Courbes données par v(t) = (xg exp(—ﬁt), —xom exp(—ﬁt), kt +6,).
b. Lignes données par v(t) = (0, yo exp(mt), 0p).

ot b, k,m,xq, 0y € Ret yg e R +.

La figure 4 présente la courbe magnétique de Killing dans le cas (a) du Théoréme 3.9 pour

k=1,b=1 29=1, 6p=0et t € [-155].
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Figure 4 : Courbes V3-magnétiques ’a’ dans SL(2,R) tracer dans (R, gey.)

Remarque 3.10 Les courbes magnétiques de Killing qui correspondent au champ magnétique
de KillingVs = x0x + ydy, sont des géodésiques si le coté droit de I'Eq. (3.25) disparait, c’est-

a-dire 0 = const ety = bx.

Corollaire 3.11 Corollaire 3.12 Il n’y a pas de courbe magnétique géodésique de Killing
dans la géométrie SL (2, R) qui correspond au champ de vecteurs Killing Vs = x0, + y0,

3.6 Courbes V,—magnetiques

Dans cette sous-section, nous considérons les courbes magnétiques Killing qui correspondent
au champ de vecteurs Killing V,; = (x — y*)0, + xy0,
x0 74 zr' oy

(z* — %) + 7)61 - @(ﬁ —y?)es + (—4— + 8_( —y*))es  (3.34)

xx'
Vi X _(—— — L

Remarque 3.13 La relation (3.34) peut étre obtenue d’une autre maniére. Le champ du vecteur

Killing V, = %(xz — y*)0, + xy0, définit le champ magnétique

1
Fy, = 8—y2((9c2 —y*)dy A dO + 2zydf A dz)

et de la force de Lorentz @ est donnée par

Dy(er) = WQ N ge?” Dy, (e2) = (x24_yy2)61 - ;Z/ )63’
Dy, (e1) = gel — %62 - geg.
Ainsi ;on obtient le coté droit de I'Eq.(3.34)
/ ' y ' /
Dy, (7)) = (I)V4(2—y61 + 25" + (@ + 6')es)
= - L+ D e+ (- L=y
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Prenons les cotés droits des Eqgs.(3.7) et (3.34), on obtient le systéme d’équation differentiel

suivant
2! ylel 350’:1/ Tz’ y/ 9 2 20’
oY s P - y?) - % =0
2y y 2y2 4y 8y2 2
S . y// :E/9l zlz ylz 0/ 2 2

1) Bt T et gt -y =0
no o 2y ad ANO) 2y _
Ot o Ty @ —y) =0

Il semble que le systéme (S4) ne soit pas exactement résoluble dans le cas général. Cependant,
nous essayons de trouver des solutions qui ont au moins une fonction composante linéaire ou
constante.

Si nous ajoutons la premiére équation (Sy); a la troisiéme équation de (S;)s, on obtient la

condition nécessaire pour la solution potentielle
"+ ——"——-——-"—"—=0 (3.35)
Y

Examinons maintenant les solutions potentielles qui ont une fonction de composant constante
ou linéaire.

i) Si nous supposons x = x, alors la condition Eq.(3.35) implique

En substituant dans la deuxiéme équation du systéme (S,)s il donne une équation différentielle
qui ne peut étre résolue que de maniere essentiellement non algébrique.

ii) L’hypothése y = yo, ne simplifie pas le systéme (S;), donc nous cherchons une solution
en supposant qu’au moins une solution de composant est une fonction linéaire.

L’hypothese x(t) = ms-+xo conduit a la contradiction. Par contre, I'hypothese 0(t) = kt+60q
avec la condition Eq.(3.35) donne

k
x(t) = g cosh( ﬂt)

2

qui substitué dans la deuxiéme équation de (S4)s donne une contradiction.
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iii) Si nous supposons 0 = 6, alors la condition Eq.(3.35) implique 2’ = ay?.En substituant

dans la deuxiéme équation du systeme (S4), 'équation
yy" +20°y" = () =0

qui ne peut étre résolue que de maniere essentiellement non algébrique. De plus, toute combi-
naison de deux composantes linéaires de solution potentielle, substituées en Eq.(3.35) donne la
troisiéme composante non linéaire qui apres vérification des équations du systéme (S4) conduit
a la contradiction.

D’ou la proposition suivante.

Proposition 3.14 Les courbes magnétiques de Killing en géométrie SL(2,R), correspondant
aw, champ de vecteur de Killing V, = %(m2 —y?)0, + xyd, sont des solutions du systéme d’équa-
tions différentielles (Sy). En particulier, il n’y a pas de courbe magnétique de Killing en géomé-
trie SL(2,R) avec au moins une fonction de composante linéaire qui correspond au champ de

vecteur de Killing Vy = 3(2? — y*)0, + xy0, .

Remarque 3.15 Les courbes magnétiques de Killing qui correspondent au champ magnétique
de Killing Vy = %(xQ — y?)0, + xy0, sont des géodésiques si le membre de droite de I’Eq.(3.35)

s’annulle, c’est-a-dire x = const, y = const et § = const

Corollaire 3.16 Il n’y a pas de courbe magnétique de Killing géodésique dans la géométrie

SL(2,R) qui correspond au champ de vecteur de Killing Vy = %(3:2 — y*)0, + Y0,
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