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Introduction

Les phénomrénes de files d’attente pruvent étre observer dans plusieurs situations réelles,
quand les équipements de service (compteurs, ascenseurs, lignes téléphoniques, feux de circu-
lation) ne peuvent pas immédiatement rendre la quatité ou le genre de service exigé par leurs
utilisateurs. Ea outre, au niveau de byte en technologies modernes de manipulation de don-
nées (systémes de communication, réseaux informatiques), on peut se produire des phénoménes
d’attente qui sont en générea mois évidents, mais les effets dont au niveau de 1'utilisateur ne
sont habiteuellement as moins sérieux.
Tout a fait souvent, de tels effets de congestion peuvent étre proportionnellement étudiés par
des méthodes matématiques de la théorie des files d’attente. Adoptant la terminologie abstraite
de théorie, I'entité rincipale dans le moeéles est la station, ou les clients qui ont besoin d’ une
certaine quantité de service arrivent. Typiquement, les modeés des files d’attente sont a caractére
stochastique, dans le sens ot la durée des temps entre arrivées et de service des clients successifs
n’ pas exactement indiquée, mais décrit en termes de distribustion de probabilité. La nature
stochastique des modéles de files d’attente refléte le fait que dans la plupart d’application, il
est intrinséquement aléatoire ou incertain quand la demande se produit et puor quelle quantité
de service.

Le modéle classique dans la théorie des files d’attente se comose d’ une file d’attente

simple servi par un serveur simple. Les modéle de file simple et serveur simple ont été étu-
diés intensivenment dans la littérateur [16] our un traitement rigoureux des résults analytique
principaux. Dans plusieurs situation, les modéle traditionnels de file-simple serveur-simple se
avérés trés résussis dans la prévision des temps d’attente, des longueurs de file d’attante, et des
probabilités de débordement d’amortissur. Cependant, dans la plupart des applictions récentes.
La théorie des files d’attente fournit un outil trés puissant et efficace pour la modélisation des
systémes admettant un phénomeéne d’attente. Cette théorie datent du début du XXéme siecle
par les travaux de l'ingénieur danois Agner Krarup Erlang(1878, 1929). Ses études sur le trafic
téléphonique de Copenhague pour le mieuxgérer afin de déterminer le nombre de circuits né-
cessaires pour fournir un service téléphonique acceptable, sont considérées comme la premiére
brique dans cette théorie [8]. Ensuite, les files d’attente ont été intégrés dans la modélisation des
systémes informatiques et aux réseaux de communication. Cette intégration dans ces domaines
et d’autre a permet une évolution de cette théorie surtout dans I’évaluation des parameétres
de performances des systémes informatiques et aux réseaux de communication. Actuellement
ce sont les applications dans le domaine de 'analyse de performance des réseaux (téléphone
mobile, Internet, multimédia,...) qui suscitent le plus de travaux.
Depuis les travaux d’Erlang [2] Un grand nombre d’applications dans tous les domaines ont été
mis en oeuvre et publiées. En 1953, David G. Kendall 2] a introduit la notation de Kendall pour
décrire les caractéristiques d'un systéme de file d’attente. en 1957 d’une maniére particuliére-
ment élégante et efficace Jackson a traité certains réseaux de files d’attente. En 1961, Thomas
L. Saaty [3], auteur de I'un des premiers livres complets sur la théorie des files d’attente. Ensuite
c’est les contributions des mathématiciens Khintchine, Palm, Pollaczek et Kolmogorov qui ont
vraiment poussés la théorie des files d’attente.

Mon mémoire organisé comme suit : Le chapitre 1 présente les notions de bases de 1'étude
des systémes de files d’attente, a savoir les processus stochastiques :Processus de comptage,
processus de renouvellement, Processus de Poisson, et processus de naissance et de mort. Dans
le chapitre 2, nous introduison : la terminologie de la théorie des files d’attente. Certaines dé-
finitions et notations qui sont nécessaires dans I’étude des systémes de files d’attente comme
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(Notation de Kendall, la loi de Little ,...etc ) sont notamment données. Ensuite nous étudions
quelque modéles de files d’attente ( M/M/1, M/M/1/K, M/M/c, M/M/1 ) et I’évaluation de
leurs paramétres de performance avec des exmples . Le chapitre 3 nous présentons Variations
et extensions : Systémes avec rejet, Systémes avec retour, Une file d’attente avec deux serveurs,
Files d’attente prioritaires de préemption.Enfin chapitre 4 nous présentons un’application :Traf-

fic routier.



Chapitre 1

Définitions et propriétés de base

1.1 Introduction

Les processus stochastiques décrivent 1'évolution d'une grandeur aléatoire en fonction du
temps (ou de I'espace). Il existe de nombreuses applications des processus aléatoires notamment
en physique statistique|22|.Les processus stochastiques ont outil trée puissant pour la modélia-
tion des phénomeéenes aléatoires évoluant dans le temps. leurs utilisations pour la description
et 'analyse des propriétés des systémes dynamiques(files d’attente, réseaux informatique et
téléphoniques, physique, boilogie ou économie...etc.)

Définition 1.1.1. (Processus stochastique).

Un processus stochastique est une famille (X (t);t € T') de variables aléatoires définie sur un
méme espace de probabilité.

Généralement X (t) représente l’état du processus stochastique au temps t [32].

e Si T est dénombrable, i.e. T C IN alors nous disons que (X(t);t € T) est un processus a
temps discret ;

o Si T est un intervalle de [0;00) alors le processus stochastique est dit un processus a temps
continu,

L’ensembele des valeurs de X (1) est applé lespace d’état, qui peut également étre soit discert
(fini ou infini dénombrable) ou continu (un sous-ensemble de R ou R™), donc nous écrivons
(X,)n=0 pour le processus a temps discret et (X;);>o pour le prossus a temps continu.

1.2 Processus de comptage

Définition 1.2.1. (Processus de comptage).

Un processus stochastique N (t) est appelé processus de comptage si N(t) représente le nombre
total des événements qui sont arrivés avant ['instant t. Tout processus de comptage vérifie les
propriétés suivantes :

1. Pour tout t > 0 le nombre N(t) est a valeurs entiéres positives ;

2. La fonction t — N(t) est croissante ;
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3. Pour tout couple (s;1)(0 < s <t), la différence N(t) — N(s) représente le nombre d’éve-
nement se produisant dans ['intervalle de temps |s;t].

Un processus de comptage est un processus discret a temps continu. Un second processus
peut étre associé au processus des temps d’occurrence; le processus des temps d’interarrivées
{W,in € Ny} ouVn € Ny la variable aléatoire W, est le temps d’attente entre les(n — 1)"m¢
n'“me occurrences[31], c-a-d :

VVn - Tn - Tn—l

ime

avec T}, est le temps d’arrivé du n"™ client.

Proposition 1.2.1. Les relations suivantes sont triviales tel que Ty =0 :

T, =Wi+We+...+W,Vn>1;
N(t)=sup{n>0:T, <t};
P[N(t) =n] =P[T, <t < Ths1];
P[N(t) > n] = P[T, <t];

5. Pls < T, <t]=Pn(s) <n < N(t)].
Preuve (1) : Ona W, =T, — T,

e v o=
S~—" ~—

Wi+Wo+ ...+ W, =T —To+To—T1+..+T, 1 —T, o+T,— T,

= _TO + Tn

=T, car Ty=0
Dans la suite nous intéresserons souvent auxr deux propriétés sutvantes des processus stochas-
tique :

Définition 1.2.2. (Processus a accroissements indépendants).

Le processus stochastique {X,,1 € T'}est appelé processus G accroissents indépendanrs si

Vke Ny et Vig <ty <ty <ts<...<ty, lesvariables aléatoires X;, — X3, Xy, — Xy, oo, Xy
sont indépendants.

k - L1 — 1

Définition 1.2.3. (Processus a accroissements stationnaires).

Le processus stochastique {X;,t € T'} est dit a accroissements stationnaires si Vh > 0 les
variables aléatoires X, — X; ont la méme distribution Vi € R,.

Définition 1.2.4. Un processus de comptage{ N (t),t > 0} est un processus de Poisson d’inten-
sité A >0 si

N(0) = 0

e le processus stochastique @ accroissements indépendants ;

le processus stochastique a accroissements stationnaires ;

V0 < s <t les variables aléatoires N (t) — N(s)suit une loi de Poisson de parameétre \(t — s).
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1.3 Processus de renouvellement

Un processus de renouvellement a pour fonction le dénombrement des occurrences dun
phénomeéne donné, lorsque les délais entre deux occurrences consécutives sont des variables
aléatoires indépendantes et identiquement distribuées.

Définition 1.3.1. (Processus de renouvellement).
Un processus de comtage dont la suit des inter-arrivées forme une suit de variables aléatoires
idépendantes et indentiquement distribuées s’appelle processus de renouvellement.

Définition 1.3.2. (Processus de renouvellement).

Un processus de comptage pour lequel les temps entre deux arrivés consécutives sont des va-
riables aléatoires i.i.d. s’appelle processus de renouvellement. Les temps de renouvellement (ou
les temps de la n-iéme arrivée) sont :

n

A, = Z(Li n=12..

i=1

avec a;,1 = 1,2,... est le temps entre deux arrivées consecutives. Il est facile de voir que le
nombre d’arrivées avant le tempst, i.e. le processus

(Ni)ier, = SL}}p{k DA <t}

est un processus de comptage.

1.4 Processus de Poisson

Beaucoup de phénoménes naturels peuvent présenter des changements de valeurs & n’importe
quel moment plutét qu’a des dates fixes. On aura besoin pour modéliser cela de processus en
temps continu c.a.d. des processus {X; : ¢t > 0} indicés par la demi droite positive [0; +00) Les
processus que 1’on analyse ici sont a valeurs entiéres. Le processus de Poisson sert a modéliser
I'occurrence d’événements successifs. Chaque événement est tel que dans un intervalle de temps
(t;t + At) avec At petit Il peut servir & modéliser par exemple :

e les appels téléphoniques arrivant dans une centrale ;
e les temps d’arrivée de clients & une caisse ;

e les temps d’occurrence de sinistres & dédommager par une compagnie d’assurance ... etc.

1.4.1 la distribution de poisson

la loi de Poisson est attribuée & Simeon D. Poisson, mathématician francais (1781 — 1840).
Cette loi fut proposée par Poisson dans un ouvrage qu’il publia en 1837 sous le titre " Recherche
sur la probabilité de hugements en matiére criminelle et en matiére civile".

la distribution de Poisson de paramatére A > 0 et donnée par :

Ak Y

Pk:ﬁe

pour k=0,1,2--- (1.1)
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Soit X une variable aléatoire ayant la distribution de poisson dans(1.1) nous évaluons la
moyenne, ol premier, par :

“+oo
E[X] =) kPg

k=0

=\

Pour trouver la variance, on détermine d’abord

E[X(X — 1) = f k(k —1)P,

=\
alors
E[X? = E[X(X —1)] + E[X]
=\ + A
tandis que
02 = Var[X]
=X +A-N =\

1.4.2 la distribution de exponentielle

Soit ¢ une variable aléatoire avec t > 0 qui suit une distribution exponentielle. La densité de
probabilité de ¢ est f(t) = pe " et la distribution cumulé corresponante est F'(t) = 1 — e #.
L’esprérance et la variance de ¢ sont :

respectivement.
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1.4.3 Le lien entre la distribution de exponentielle et la distribution
de poisson

La densité de probabilité d’une distribution exponentielle f(¢) = pe #*  Supposons 7 est
exponentielle avec espérance %u et n  est poisson de moyenne ;. on a :

Nous P(n,t) la probabilité d’avoir n unités dans le temps t.
P(0,t) = e

PO = [ PO r)dr = e

P(2,t) = /tOIP(l, ) f(1 = 7)dr = (ut)?e " /2!

P(n,t) = / P(n—1,7)f(1 —7)dr = ut)"e " /n!

=0

1.4.4 Propriété sans mémoire de la distribution exponentielle

Une variable aléatoire X est dite sans mémoire (ou sans usure) si :
Vs, t >0

P(X>t+s/X>t)=P(X >5s)

Si X est la durée de vie d'un matériel quelconque 1’équation précédante s’interpréte de
la maniére suivante, sachant le matériel en état de bon fonctionnement au temps ¢, la loi de
probabilité de sa durée de vie future est la méme que celle de sa durée de vie initiale.

En d’autres termes, le matériel ne s’use pas.

1.4.5 loi Poisson et loi exponentielle

Définition 1.4.1. Une variable aléatoire X a valeur entiéres suite loi d Poisson de paramétre
A>0 st

k
A

VEEN, P(X=k)=5e
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Définition 1.4.2. Une variable aléatoire Y a valeur réelles strictement positives suit une loi
exponentille de paramétre ;1 > 0 si :

Vi>0, PY=T)=pe ™

1.4.6 Processus de Poisson

De tels phénoménes peuvent se définir la famille (7),),,cn+ des d’arrivées qui sont des variables
aléatoires. Mais on peut aussi le faire a partir du processus de comptage (N;),cr. IV, est le
nombre d’évéenments apparus jusqu’a l'instant 7.

Définition 1.4.3. (Processus de Poisson).
Soit (X,,) une suite de variables aléatoires indépendantes et indentiquement distribuées de

loi exponentielle €(\) avec A\ > 0 si
S,=Xi+Xo+ -+ X, Ng=0 et pour tout t >0

Ny = Z ]lsn<t
n=1

(Ny) est un processus de Poisson d’intensité \.

Définition 1.4.4. (Processus de Poisson).

Un processus de poisson N = (N;) d’ntensité \ est un pocessus de comptage a trajectoires
continues a droit [1/] tel que :

1. N(0) =0,
2. N est un processus a accroissement indépendant et stationnaires,

3. pour tout t > 0, Nysuit la loi de poisson P(At).

Proposition 1.4.1. (NV;);~( est un processus de Poisson si es seulement si les quater propriétés
sutvantes sont vérivifiées :

NO =0,
pour tout t > 0, N; une lot de poisson d’espérance \t,

pour tout t > s >0, N, — N suit une loi de poisson d’espérance \(t — s),

Lo e~

pour tout 0 < t; <ty <---<t, lesvariables aléatoire
Ny, Ny — Nyyyo-o Ny, — Ny, sont indépendantes.

Caractérisation d’un procssus de Poisson par ses temps d’arrivé :

Soit 7, Dlinstant de la n'™¢ arrivé : T, = inf{T >0, N, =n} et W, est le temps sépa-
rant le (n —1)%™¢ ¢vénement du n**"® événement pour n € N*W, =T, — T, ; (en convenant
To ) ona:

j—;l, - i: Wiv
=1
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Ny = max{n >0,T,<}.

1.5 Processus de naissance et de mort :

Ces processus permettent de fagons générale décrire 1’évolution temporelle de la taille d’'une
population d’un type donné.
Dans le cas d’systéme d’attente, on considére par exemple des population comprenant tous les
clients qui sont dans le systémea 'instant ¢.
Les processus de de naissance et de mort sont des processus stochastique & temps continu et a
espace d’étars discret n =0, 1,2, ... Ils sont sans mémoire, et a partir d’'un état donné n, des
transitions ne sont possibles que vers I'un ou 'outre des états voisins

(n+1) et (n—1) pour n>1

Les files d’attente de type MarKovien(M /M) sont des cas particuliers trés importas de
processus de nissance et de mort.

Définition 1.5.1. (Processus de naissance et de mort).
On peut réaliser un processus de naissance et de mort de fagon swivante :

o Les arrivées et les départs d’entités obéissent a des lois exponentielle de taus respectifs \(n)
et p(n).
o A laide d’hypothese de régularité : deux événements ne peuvent pas se produire en méme

temps, donc la probabilité que deux événements se produisent dans un intervalle de temps
dt est négligeable.

o Il y a une transition vers un état voisin, soit par l'arrivée d’un client (naissance), soit par le
départ d’un client (mort).

C’est le point de départ de la théorie des files d’attent. On introduit les données suivantes :

o A\, ! taux de naissance quand le nombre de population a n.

o i, : taux de mort quand le nombre de population a n[32]. .



Chapitre 2

Les modéles de file d’attente

2.1 Systéme de files d’attente :

La théorie des files d’attente a commencé en 1909 avec les travaux de recherches de 1'ingé-
nieur danois Agner Krarup Erlang (1878, 1929) sur le trafic téléphonique de Copenhague pour
déterminer le nombre de circuits nécessaires afin de fournir un service téléphonique acceptable.
Par la suite, les files d’attente ont été intégrés dans la modélisation de divers domaines d’acti-
vité[12]. On assista alors a une évolution rapide de la théorie des files d’attente qu’on appliqua
a I’évaluation des performances des systémes informatiques et aux réseaux de communication.
Les chercheurs oeuvrant dans cette branche d’activité ont élaboré plusieurs nouvelles méthodes
qui ont été ensuite appliquées avec succés dans d’autres domaines, notamment dans le secteur
de la fabrication. On a aussi constaté une résurgence des applications pratiques de la théorie des
files d’attente dans des secteurs plus traditionnels de la recherche opérationnelle, un mouvement
mené par Peter Kolesar et Richard Larson|6|. Grace & tous ces développements, la théorie des
files d’attente est aujourd’hui largement utilisé et ses applications sont multiples.

2.1.1 Définitions :

Définition 2.1.1. (File d’attente).
l’ensemble des clients qui attendent d’étre seruvis, a l’exclusion de celui qui est en train de se
faire servir.

Définition 2.1.2. (Systéme d’attente).

I’ensemble des clients qui font la queue, y compris celui qui se fait servir.

Le phénomeéne d’attente s’étend a tous les clients possibles (dans le cas de systémes bouclés, ot
les mémes clients reviennent plus tard a [’entrée par exemple les machines qui tombent en panne
dans un atelier, le nombre des clients est, en général, fini). Ces appellations se généralisent et
prennent surtout leur intérét dans les situations ot il existe plusieurs stations et plusieurs files
d’attente.

2.2 Structure de base :

e Population : La population constitue la source de clients potentiels. Elle est caractérisée par
son nombre d’élément (fini ou infini).

e File d’attente : La file d’attente est caractérisée par le nombre maximum permis de clients
en attente (fini ou infini)

14
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Systeme de file d'attente

clients file

] clients
service [— : >
SErvis

Poﬁulation

A J

entrants | |d'attente

Clients : Les clients (issus de la population) se joignent au systéme avec un taux moyen
d’arrivée.

rvice : rvi ut étr uré par un ou plusieurs serveurs. m ui s’écoule entr

Service : Le service peut étre assuré pa ou plusieurs serveurs. Le temps s’écoule entre
le début et la fin de service d’un client est dénoté le temps de service suivant une loi de
probabilité. Le taux de service est une autre caractéristique du systéme.

Interarriée : est l'itervalle de temps séparant I'arrivée de desux clients successifs.
On suppose que ces Inter-arrivées sont indépendantes les une des autres et suivent la
méme loi de probabilité

Stratégie de service : La stratégie de service référe a l'ordre selon laquelle les clients sont
servis : premier arrivée premier servi; au hasard, selon des priorités. ..

Définition 2.2.1. (File d’ttente simple).
Une file simple (ou station) est un systéeme constitué d’un ou plusieurs serveurs et d’un espace
d’attente. Les clients arrivent de ’extérieur, patientent éventuellement dans la file d’attente,
regotvent un service, puis quittent la station[19]. Afin de spécifier complétement une file simple,
on doit caractériser le processus d’arrivé des clients, le temps de service ainst que la structure
et la discipline de service de la file d’attente.

e Processus d’arrivé :
L’arrivée des clients a la station sera décrite al’aide d’un processus stochastique de comp-
tage (NVi)i>o
Si A, désigne la variable aléatoire mesurant l'instant d’arrivée du n
systéme, on aura ainsi :

ieme

client dans le

Ag=0 et A, =inf{t; N, =n}.

Si T;, désigne la variable aléatoire mesurant le temps séparant I'arrivée du (n — 1)%*™¢ et
du n'™ client [20] , on a alors :

Tn - A'n, - A'n,fl-

e Le processus de service :
qui compris (le nombre de serveus etla loi probabiliste décervant la durée des services)

e Temps de service :
On considére une file a serveur unique.
On note D,, la variable aléatoire mesurant 'instant de départ du n client du systeme
et Y, la variable aléatoire mesurant le temps de service du n’*™¢ client (temps séparant

ieme
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le début et la fin du service).

Un instant de départ correspond toujours a une fin de service, mais ne correspond pas
forcément & un début de service. Il se peut en effet qu'un client qui quitte la station laisse
celle-ci vide. Le serveur est alors inoccupé jusqu’a ’arrivée du prochain client.

On considérera uniquement des stations dont les temps de service consécutifs sont décrits
par des variables Y,, indépendantes et identiquement distribuées (i.i.d.).

2.3 Classifcation des systémes d’attentes :

2.3.1 Notation de Kendall :

Pour la classification des systémes de files d’attente, on a recours a une notation symbolique
introduite par Kendall, comprenant six symboles |[7] :

avec

o A

A/B/s/N/D/O

. indique le processus d’arrivée des clients. Les codes utilisés sont :

e ) ( Markov ) : inter-arrivées des clients sont indépendamment, identiquement distri-
buées selon une loi exponentielle. Il correspond & un processus de Poisson ponctuel
(propriété sans mémoire),

D ( Répartition déterministe ) : les temps inter-arrivées des clients ou les temps de
service sont constants et toujours les mémes.

G ( général indépendant ) : Les inter-arrivées des clients ont une distribution gé-
nérale (il n'y a aucune hypothése sur la distribution mais les interarrivées sont
indépendentes et identiquement distribuées),

G ( général ) : Inter-arrivées de clients ont une distribution générale et peuvent étre
dépendantes,

Ej. : Ce symbole désigne un processus ou les intervalles de temps entre deux arrivées
successives sont des variables aléatoires indépendantes et identiquement distribuées
suivant une loi d’Erlang d’ordre k.

. décrit la distribution des temps de service d’un client. les codes sont les mémes que A,
s : nombre de serveurs,

: capacité de la file (c’est le nombre de places dans le systéme en d’autre térme c’est le

nombre maximal de clients permis dans le systéme Bcompris ceux en service.

: population des usagers.

- discipline de service c’est la facon dont les clients sont ordonnés pour étre servi. Les codes

utilisés sont les suivants :

o FIFO(first in, first out) ou FCF'S (first come, first served) : ¢’est la file standard dans
laquelle les clients sont servis dans leur ordre d’arrivée. Notons que les disciplines
FIFO et FCFS ne sont pas équivalentes lorsque la file contient plusieurs serveurs.
Dans la premiére, le premier client arrivé sera le premier a quitter la file alors que la
deuxiéme, il sera le premier a commencer son service. Rien n’empéche alors qu'un
client qui commence son service aprés lui, dans un autre serveur, termine avant lui.
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O

LIFO (last in, first out) ou LC'F'S (last come, first served). Cela correspond a une pile,
dans laquelle le dernier client arrivé (donc posé sur la pile) sera le premier traité
(retiré de la pile). A nouveau, les disciplines LIFO et LC'F'S ne sont équivalentes
que pour une file mono serveur.

@)

SIRO (Served In Random Order), les clients sont servis aléatoirement.

O

PNPN (Priority service), les clients sont servis selon leur priorité. Tous les clients de
la plus haute priorité sont servis premiers, puis les clients de priorité inférieur sont
servis, et ainsi de suite.

O

PS' ( Processor Sharing ), les clients sont servis de maniére égale. La capacité du systéme
est partagée entre les clients.

2.3.2 Lol de Little :

La loi de little (1961) est une relation trés général qui s’applique & une grande classe
de sysémes. Elle ne concerene que le régime premanet du systéme. Aucune hypothése sur les
variables aléatoires qui caractérisent le systéme ( temps d’inter aarivées, temps de service,. . .)
n’est nécessaire. La seule condition d’application de la loi de Little est que systéme soit stable.

La loi de Little s’exprime dans le théoréme suivant :

Théoréme 2.1. (Formule de Little). Le nombre mouyen de clients L, le temps moyen passé
dand le systeme W et le débit moyen d’un systéme stable d en régime prmanent se relient de
la fagon suivants :

L=WxD

Remarque 2.3.1. La loi de Little s’applique a tous les modéles de file d’attente rencontrés en
pratique (pas seulement a file M/M/1)

2.4 Terminologie et notations :

En lien avec la loi exponentielle[4] :

e )\, : :Le taux moyen d’arrivées (espérance mathématique de nomber d’ arrivées par unité de
temps).
° % : Le temps moyen entre les arrivées lorque les clients sont dans le systéme.
n
e /i, :‘Taux moyen de service d’un client

° ﬂi :‘Temps moyen de service du n
n

ieme client.

L’analyse d’un systéme de file d’attente dépends de I’état initial et du temps écoulé. C’est
la situation transitoire ou 1’étude est trés complexe. Dans la théorie des files d’attente I'étude
se fait une fois que le systéme atteint sa situation d’équilibre ; ou les états du systéme sont es-
sentiellement indépendants de I’état initial et du temps déja écoulé. On suppose que le systéme
est en opération depuis un trés long moment.
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2.5 En situation d’équilibre on note :

P, : Probabilité qu’il y ait n clients dans le systéme.

L, : Nombre moyen (espérance mathématique) de client dans le systéme.

L, : Nombre de clients dans la file d’attente (excluant ceux qui sont dans le service).

e IV, : Le temps moyen passée par un client dans le systéme.

W, :Le temps moyen passée par un client dans la file ( excluant le temps de service).

¢ :Nombre de serveurs|24].

2.6 Modéle d’attente M /M /1

La file d’attente M /M /1 est un modéle caractérisé par des arrivées suivants un processus
de Poisson de taux A, Temps de service exponentielle de parameétre o et un seul serveur. Les
clients arrivent a la station selon un processus de Poisson de taux A, si le serveur est vide le
client est pris en charge immédiatement sinon il rejoint la file d’attente ( de capacité illimitée
et discipline FIFO ), les temps des inter-arrivées sont indépendants. Ces clients regoivent le ser-
vice selon une distribution exponentielle de parameétre pi. Ces temps de service sont également
supposés indépendants|21]|. En outre, toutes les variables aléatoires concernés sont censés étre
indépendants les uns des autres. Les clients sont servis dans leur ordre d’arrivée. Cette file est
un cas particulier du processus de naissance et de mort

Vne N, \, =\, u, = .

ie indépendants du nombre de client dans le systéme. sous I'hypothése que A < 1 (le taux d’ar-
rivée est plus petit que le taux de service)
on a :

c’est 'intensité du trafic, avec p < 1:
T, = Top", ;

1
TN = —m—/—/———— = ]_ _—
0 Exioo o P

Remarque 2.6.1. On note my la probabilité d’étre servi immédiatement a ’arrivée. La condi-
tion p < u est bien entendu équivalente a la condition p < 1 Ainsi, un régime stationnaire peut
exister si (et seulement si) lintensité de trafic est inférieure a cent pour cent. on voit aussi le
role de ce parametre lorsque l’on calcule le nombre moyen de clients en régime stationnaire.
avec
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T, ¢ c’est la probabilité d’avoir n client dans le systéme.
T = p"'To
avec
mo=1—p

— Débit :
Ici d = X car A\,, = A\ pour tout n > 0.

donc :

— Taux d’utilisation du serveur U :

U:1—7T0:p.

— Nombre moyen de clients dans le systéme L :

oo A

Sonm = =t
n — — N .

—~ 1—p 1—; pw—A

Remarque 2.6.2. Plus que ['intensité du trafic se rapproche de un, plus que la longueur
moyenne de la file d’attente L tend vers l'infinie.
— Temps moyen de sé¢jour W :

Ce paramétre est obtenu en utilisant la loi de Little :

L 1
W=—-=——-.
d  p(l—=p)
qui peut se décomposer en :
1
W=—4—"
po p(1—p)
— La durée moyenne d’attente en régime stationnaire :
p
B(W) = —F"—.
Al =p)

Proposition 2.6.1. Soit 0 < A\ < p. Dans le systéme M/M/1 la variable aléatoire W égale a

la durée de séjour des clients dans le systéme en régime stationnaire suit une loi exponentielle
de paramétre :
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p(l—p)=p—A

— Démonstration[11] : Temps moyen passé dans la file d’attente W, :

_r
n(l = p)
— Nombre moyen de clients dans la file d’attente L, :

W, =

Ly = AW, =

2.7 Modéle d’attente M /M /c

On considére un systéme identique a la file M/M/1 excepté qu’il comporte C' serveurs
identiques et indépendants les uns des autres. On conserve les hypothéses :
le processus d’arrivée des clients dans la file est un processus de Poisson de taux A\ et le
temps de service d’'un client est une variable aléatoire exponentielle de taux ; (pour chacun
des serveurs). Ce systéme est connu sous le nom de file M/M/c [13]|. L’espace d’états E est
comme pour la M/M/1 infini. Dans ce cas aussi, le processus modélisant le nombre de clients
dans le systéme est un processus de naissance et de mort avec [1] :

A = A

nu pour: n=12..,¢c—1;

Hn =
cy  pour. n > c.

La condition de stabilité de ce modéle est :

A
p=—<1
Cp

FIGURE 2.7 — Reprsentation schmatique d'une file M/M/c

Théoréme 2.2. pour calculer m, le systéme doit étre stable (A < cu donc p < ¢) qui exprime le
fait que le nombre moyen de clients qui arrivent a la file par unité de temps doit étre inférieur
au nombre moyen de clients que les serveurs de la file sont capables de traiter par unité de
temps, de la maniére suivante :

— Temps moyen de séjour W :

Le temps moyen de séjour d'un client se décompose en un temps moyen dans la file
d’attente, plus un temps moyen de service. Il suffit alors d’appliquer la loi de Little a la
seule file :

B L, 1 L, 1
W=W,+ We= 40 =7+
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~
C_‘u,/' i

,f'/ :“‘
ff’ C /
A VN

T
\ 7\

RV Y
salle d’attente m -

L
!-‘\'
J
T
8 serveurs

\ i /

service

Avec : d =\
Il reste alors a calculer le nombre moyen de clients en attente dans la file, L, :
+oo +oo pn
L,= Z(n — o), = Z(n —0) a0
n=c n=c
o] +00
P P\n—c—
=23 -y ing
c+1 1 c+1
= P Ty — P .
cle (1—£2)2 (c—1)

On en déduit le temps moyen de séjour

p° 1
W = + =
ple—Dl(c = p)*mo  p

— Nombre moyen de clients dans le systéme L :

Le nombre moyen de clients s’obtient alors par application de la loi de Little a l’en-
semble de la file :

c+1
p

L=Wxd=Wx\=
p(c = 1)l e—p)

570 + p.
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2.8 Modéle d’attente M/ M /1/ k

On considére un systéme a serveur simple identique a la file M /M /1/k excepté que la ca-
pacité de la file d’attente est finie. On a donc toujours les hypothéses suivantes :

— le processus d’arrivée des clients dans la file est un processus de Poisson de taux .
— le temps de service d’un client est une variable aléatoire exponentielle de taux /.

— Soit K la capacité de la file d’attente : c’est le nombre maximal de clients qui peuvent
étre présents dans le systéme, soit en attente, soit en service.

Quand un client arrive alors qu’il y a déja Kclients présents dans le systéme, il est perdu.
Ce systéme est connu sous le nom de file M /M/1/K. L’espace d’états E est maintenant fini :
E =1{0,1,2,..., K}. La capacité de la file étant limitée, méme si les clients arrivent en moyenne
beaucoup plus vite que ce que le serveur de la file est capable de traiter, dés que celle-ci est
pleine, les clients qui se présentent sont rejetés [26]. Le nombre de clients dans la file ne peut
donc jamais "partir" & l'infini. De plus, dés qu’un client est autorisé a entrer, il sortira un jour
et son temps de séjour dans la file est fini, puisqu’il correspond au temps de service de tous
les clients devant lui et que ce nombre est limité par /A . Sur un trés long, le débit de sortie
sera donc bien égal au débit d’entrée, ce qui correspond bien & la stabilité inconditionnelle du
systéme. Donc ce processus est considéré comme un processus de naissance et de mort avec :

¢ un taux de naissance A\, = A, pour tout n < K

o et le taux de mortalité p,, = u, pour tout 7 # 0.

soit m(,),n = 0,1,2,..., K, la probabilité pour qu’il ait n clients dans le systéme a l'instant

Ao = UT k¢

()\ + M)’ﬂ'n = >\7Tn_1 + U1
pour n=0,1,2, ..., K —1

AT 1 = UTK.

puisque la capacité est limitée, nous obtenons un régime stationnaire indépendant des condi-
tions initiales quelle que soit la valeur de I'intensité de trafic p

Théoréme 2.3. Le calcul dem, se fait de la maniére suivante [18] :

1— n
i_pﬁ?ﬁl pour : n < K;

0 pour. n > K.

Cas particulier p = 1
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dans ce cas

m, =0 pour n > K

— Taux d’utilisation du serveur U(K) :
Le taux d’utilisation du serveur est la probabilité pour que le serveur de la file soit occupé
donc au moins il y a un client dans la file

K
= E T, = 1— 7
n=1

1—pF
— PR

Remarque 2.8.1.
p pour: p<l;
K—+o00

1 pour. p>1.

qui représente le tauzx d’utilisation du serveur Dans le cas M /M /1
— Nombre moyen de clients L :

L= Zmn_ 1_£+1Z”Pv

p 1= (K+1)p" + Kpt*t
1—p 1_pK+1 ’

Pareille que le taux d’utilisation du serveur, lorsque/X’ —> +00 on obtient

L=-"_
I—p

qui représente le nombre moyen de clients pour la file M/M/1
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— Temps moyen de séjour W :
Le calcul du temps moyen de séjour W ce fait on applicant la formule de Little qui relie
Nombre moyen de client L et débit d de la file :

L
W—E.

2.9 Modéle d’attente M/M/ oo

Description du modéle :

Pour ce modele de file d’attente, le systéme est composé d’'un nombre illimité de serveurs
identiques et indépendants les uns des autres. Dés qu’un client arrive, il est immédiatement
servi (c’est le cas ou il n’y a pas d’attente ). Dans cette file les clients arrivent a des instants
0 <ty <ty < ... formant un processus de Poisson de taux A et les temps de service sont ex-
ponentiels de taux g . le taux de transition d’un état n quelconque vers 1’état n — 1 est égal a
np et correspond au taux de sortie d'un client parmi les n clients en service [5]. De méme, le
taux de transition d'un état n vers 'état n + 1 est égal & A\ qui correspond au taux d’arrivée
d’un client, donc c¢’est un processus de naissance est de mort avec :

Vne N, Ay = A, p = npu

V2

Ty = — 7.
n!
avec
1 1
o = +oo pn T 5
n=0 n!
+00 ,0n
Notons que la série E — converge pour toutes valeurs de p , ce qui est cohérent avec la

n!

n—
stabilité inconditionnelle de la file. On obtient finalement :
7

Ty = %6_” pour n=1,2, ...

— Le débit d :
Le service s’effectue avec un taux nu dans chaque état ou le systéme contient n clients :

+oo n

p
d= Zmrn,u—epz( 1)|u—eppepu A

n=1

On retrouve la stabilité inconditionnelle de la file.

— Taux d’utilisation du serveur U :

U:1—7T0.
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— Nombre moyen de clients dans le systéme L :

+o00 +o00 pn
d= e
2= L Gy

— Temps moyen de séjour W :
Ce paramétre est obtenu en utilisant la loi de Little :

=e Ppe’ = p.
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2.9.1 Exemples

Exemple 2.9.1. Toux de service d’un systéme informatique

— Objectif : choisir taux de service p pour que temps systé moyen d’une tdche inférieur a
0,5 seconde

— Tauz d’arrivée de X\ =1 tdches /seconde

— Arrivée selon loi de poisson et temps de service selon loi exponentielle (systéme M/M/1)

~ En utilisant W = % = ‘u,(llfp) avec p=ANp=1/p

1
W=—-—7-—
p(l—1/p)
— Donc, il faut quep > 3 taches /seconde.

<0,5 = 0,5p<1,5

Exemple 2.9.2. Teauz d’arrivée maximum d’un systéme de télécommunication
— Objectif : choisir taux d’arrivée X de messages mazximum pour que temps d’attente moyen
d’un message inférieur a 1 seconde
— Messages de longeur de K bits, distribué selon lot exponentialle de moyenne de 600 bits
— Vitesse de transmission du systéme de C1200 bits/s
— Messages requiert enmoyenne K/C secondes pour étre transmis, donc p = K/C =
600/1200 = 2 messages/seconde

- En utilisant Wy = = avec p = Ap=M\2
A2
Wy=——"""—"=<1 = A<4/3
ANTOESE) /

— 1l faut donc X < 4/3 messages/seconde, ce qui correspond & utilisation de p = 2/3.

Exemple 2.9.3. Systéme manufacturier avec une seule machine et capacité finie de stocage de
pieces (systeme M/M/1/K)
— Obhectif, mois de 10% des piéces seront blouées :

K

— Tauz d’arrivée de X pices/minute
— Trois chois de machines

1. pn=0,5 pieces / minute au coite de 100 euro

2. pn=1,2 iéces / minute au cotte de 300 euro

3. u=2 pieces / minute au codte de 500 euro
— codte de stocage de 80 euro par emplacement (piéce)

1. Premier choiz (n= 0,5, p=2)

- 7Tn(]() = %
— Avec K =1,7,(1)=2/3>0,1
— limg oo T (K) = 0,5 = solution non faisable comme m,(K) toujour plus grand que
0,1.
2. Deuziéme choiz (u=1,2, p=>5/6)
K
- ma(K) = MW
- m(1)=5/9>0,1



2.9.1 Exemples

27

- m,(5) ~ 0,1007 > 0,1, m,(6) ~0,0774 < 0,1

— Avec K =6, coite total de 3004 6 x 80 = 780 euro
3. Troisieme choix (u =2, p=0,5)

- m(K) = ﬁ

- m(1)=1/3>0,1

- m(2)=1/7> 0,1, m,(3) ~0,0667 < 0,1

— Avec K =3, coite total de 500+ 3 x 80 = 740 euro

Troisieme option avec K = 3 espaces de stocage est solution optimale



Chapitre 3

Variations et extensions

Dans ce chapiter nous considérons quelques variantes des modéles simples étudiés jusqu’a
présent , Nous nous limitons & des arrivées de Poisson et des temps de service exponentielles.

3.1 Systémes avec rejet

Supposons qu’un client qui arrive quand il y a n clients dans le systéme entre avec une
probabilité p, et part avec la probabilité ¢, = 1 — p,, Si une longue file d’attente décourage les
clients, alors p,, est une fonction décroissante de n .

Comme un cas particulier 8’il y a une salle d’attente fini de capacité A nous pouvons sup-
poser que :

1 pour: n < K;

Pn =
0 pour. n> K.

Indiquant que, une fois la salle d’attente est remplie de capacité K, aucun plus de clients
ne peuvent entrer dans le systéme .
Soit & présent, X (¢) le nombre de clients dans le systéme a l'instant ¢ .
Nous admettons que si le processus d’arrivées est Poisson de taux A et les clients qui arrivent
quand il y a n clients dans le systéme entrent avec la probabilité p,, alors les paramétres de
naissances sont :

An = App, pour n=1,2 ..

Dans le cas d’un seul serveur,

Wy = pour n=1,2, ...

Nous pouvons évaluer la loi stationnaire 7, de la longueur de la file d’attente par les moyens
habituels.
Dans des systémes avec rejet, pas tous les clients arrivants entrent dans le systéme et certains

28
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sont perdus .
Alors le taux d’entrée est le taux au quel les clients entrent effectivement au systéme a 1’état
stationnaire et est donné par

)\I =A i TnPn
n=0

o0

le taux au quel les clients sont perdus est :\ Z TnGn
n=0
Examinons en détail le cas d'un systéme M /M /c dans lequel;le client arrivant entre dans le

systéme si et seulement si un serveur est libre, alors

A pour: k=0,1,...c—1;

AL =
0 pour. k= c.
et
e =kp pour k=0,1,...;c
Pour déterminer la distribution stationnaire on a :
AoAL Ak
prp= "
Hopt2-- -k
A
= E(;)k pour k=0,1,...,c
et comme :
M= —F
ZZOZO Pk
Alors,

= —J pour k=0,1,...,c (3.1)

3.2 Systémes avec retour

Considérons un systéme avec un seul serveur avec des arrivées de Poisson et des temps de
service exponentielles mais supposons qu’un certain client en départ du serveur retourne a la
fin de la file d’attente pour un service supplémentaire. Supposons en particulier qu’'un client
quittant le serveur s’écarte du systéme avec la probabilité q et retourne a la file d’attente pour
un service supplémentaire avec la probabilité p = 1 — ¢g. Comme le montre le schéma suivant :
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Feedback
III
% -# N Kx x| - 1 j 1
Arrivale Input i SCTVET J Dutput Departures

Ainsi que toutes telles décisions sont statistiquement indépendantes et que les demandes
d’un client retournant au service sont statistiquement les mémes que ceux d’un client arrivant
de l'extérieur le systéme.

Soient,

e )\ : le taux d’arrivée au systéme.
e ;i : le taux de service.

e X (t) : le nombre de clients dans le systéme a l'instant .

Il s’en suit que X (¢) est bien un processus de naissance et de mort. Avec;

A=A pour n=0,1,...

fn = qu pour n=0,1,...

Pk ="
Hof2---Hi
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Donc, quand A < kpu

3.3 Une file d’attente avec deux serveurs

Considérons un systéme a deux serveurs ou le serveur ¢ a le taux p; pour 7 =1,2. Les
arrivées dans le systéme suivent un processus de Poisson de taux A. Un client qui arrive au
systéme quand il est vide va directement au premier serveur.

Si un client arrive au systéme quand le premier serveur est occupé s’oriente au deuxiéme serveur.
comme le montre le schéma suivant

Poimos Arrivals I::r'.-'rlﬂﬂl g Overflow lost
Hate = A | if #1 is busy l f #1 and 22 busy
I |
Server #1 | Server #2
Rate u, | Kate p,
1
|

Lyt l

Et si les deux serveurs sont occupés, le client est perdu.
Le systéme est décrit par la paire (X (¢), Y (f)) ou,

1 sile serveur 1 est occupé

0 sile serveur 1 est inoccupé

et

1 sile serveur 2 est occupé
Y, =
0 sile serveur 2 est inoccupé

Les quatre états du systeéme sont : {f(0,0), (1,0),(0,1),(1,1)} et les transitions entre ces états
sont données dans le tableau suivant :
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De I’état a4 1’état taux de transition Description
(0,0) (1,0) A arrivée lorsque le systéme est vide
(1,0) (0,0) 1 la fin du service 1 quand le service 2 est libre
(1,0) (1,1) A arrivée lorsque le service 1 est occupé
(1,1) (1,0) Lo la fin du service 2 quand 1 est occupé
(1,1) (0,1) m la fin du service 1 lorsque 2 est occupé
(0,1) (1,1) A arrivée quand 2 est occupé et 1 libre
(0,1) (0,0) Lo la fin du service 2 quand 1 est libre

Le processus (X (7),Y(t))a états finis, est une chaine de Markov continue et les taux de
transitions donnent la matrice infinitésimal de la chaine de Markov

-\ 0 A 0
pe  —(A+ p2) 0 A

A= 3.2
0 1 fho — (1 + p2)

On trouve la loi stationnaire
™ = (7(0,0), T(0,1), T(1,0) T(1,1))

par résolvant 1’équation :

TA=0

qui donne naissance au systéme d’équation :

—AT(0,0) + 2T (0,1) +117(1,0) =
—AA + p2)mo,1) T (1) =0

AT (0,0) —A(A A+ p1) (1,09 2T (1,1) =

AT (0,1) AT (1,0) —(p1 + p2)T1y =

Avec

(0,00 + T(0,1) + T1,0) T,y = 1

Par un calcul d’algebre élémentaire nous obtenons la solution :

T(0.0) = M1u2(2>\gul+uz)
2
T(0,1) = 5 53
3.3
TL0) = >\,u2(>\+;1+#2)

2
Ty = A ()\DJruz)
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ol

D = papa(2A + piy + pi2) + N gy + Miz(A + p1 + p2) + N (A+ o)

3.4 Files d’attente prioritaires de préemption

Envisageons un processus de file d’attente de serveur unique qui a deux catégories de
clients ;prioritaires et non prioritaires, formant un processus d’arrivée de Poisson,indépendantes
avec des taux « etf respectivement.

Les temps de services sont indépendantes et exponentiellement distribués avec les parameétres
v etd respectivement.
Dans cette étude la discipline du systéme est la suivante :

e Premier arrivé premier servi pour les clients non prioritaires.

e Le service des clients prioritaires n’est jamais interrompu.

e Si un client prioritaire arrive lors d’un service d’un client non prioritaire, alors le service de
ce dernier est immédiatement arrété en faveur au client prioritaire.

e Le service interrompu du client est repris quand il n’y a pas de clients prioritaires actuels.

Pour notre étude nous introduisons les outils suivants :

1. Le taux d’arrivée du systéme est :

A=a+pj

2. La fraction
o«
=
Dont sont les clients prioritaires dans le systéme.
3. La fraction
q= é
A

Dont sont les clients non prioritaire dans le systéme.

4. Dans le systéme le temps moyen de service est donnée par les moyens pondérées de maniére
appropriée :

2| =
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Pour les clients prioritaire et

SN

Pour les clients non prioritaires. et pour la somme est :

L= p(2)+a(3) (34)
= 35+3% (3.5)

=

Oty est le taux du service du systéme Finalement nous introduisons

5. l'intensité du trafic pour le systéme :

A
pP=—
1
6. pour les clients prioritaires :
!
0' _ —
Y
7. pour les clients non prioritaires :
r=?
4]
Par la formule [3.5]On remarque que :
p=0+T

L’état du systéme est décris par la paire ((X (), Y (¢))ou X (¢) est le nombre de clients prio-
ritaires dans le systéme et Y (¢) le nombre de clients non prioritaires dans le systéme.
Observant a présent que les clients prioritaires regardent le systéme comme une simple file
d’attente M /M /1 ;Par conséquence on a la distribution stationnaire donnée par la 1’équation
[2.6]

T = tgnOOIP’(X(t) =m) (3.6)
= (1—0)o™ (3.7)
Ainsi que pour la longueur de la fie :
L,=-—2
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Le temps moyen de service

h

Ly 1
o e’

Mais ce n’est pas le cas pour les clients non prioritaire et n’est pas aussi facile d’obtenir des
informations puisque ces arrivées sont fortement affectés par les clients prioritaires. Cependant
(X(t),Y())est un état discret, alors la chaine de Markov en temps continu et ses techniques
nous permettra de décrire la distribution limite quand elle existe.

Les transitions sont décrites dans la table suivante :

De I'état a I'état  taux de transition Description

(m.n) (m+1.n) Q arrivee d'un prioritaire

(111.1) (m.n+1) 15 arrivée d'un non prioritaire

(0,n)n>1  (0,n—1) d service d'un non prioritaire est complet

(ma)m >1 (m-1.n) ¥ service d'un prioritaire est complet
Considérons

Tmn = lim P(X(t) =m,Y(t) =n)

t— o0

La loi stationnaire du processus.
Par un raisonnement analogue

(a+B)mo = mp +om, (1)
(@+B4+M)Tm1 = VTmt1r0 +am,_10  (2)
(@a+B4+7)m0m = AMin  OTop—1 +BTon—1 (3)
(O‘ + 8+ V)Wm,n = TYTm+in +67Tm,n—1 +am,—1n (4)

Nous allons nous contenter de déterminer le nombre moyen L,, des clients non prioritaires dans
le systéme al’état d’équilibre donné par :

L, = Zﬁ:o Zozonﬁmm (3.8)
Nous introduisons la notation :
My = S0 = S M (3.9)
et donc :
L, = M +M +.. (3.10)

Par [3.7|nous obtenons :

pn = P{X({t)=m} = > Tmn = (L—0)o™ (3.11)
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et

T o= PIY(t)=n} = S Tmn (3.12)

Nous commengons par additionner les deux cotés de (1) et (2) pour m = 0,1, ... Pour obtenir :

(a+ B)mop + ZZOZO Tmo = 7 ZZ‘LO Tmo +0mo1 —+amg

Aprés simplification ;

Bro = 0moa (3.13)

Maintenant nous sommons (3)et(4) surm = 0,1, ...
Pour obtenir :

(a+B4+0)mon+ (@+B4+7)> 0 o Tmn = VT + 0Tont1 + BTon1 +
Y anozo Tmti,n + B anozo Tmn—1 T Q Z;O:O Tm—1,n

Par suite :

(a + B)Trn + 571—0,n + v Ziﬂ Tmn — 7 Z;.rj:l Tm,n + 577—0,n+1 + ﬁﬂ-nfl
“+ay,

Par suite :
ﬁﬂ'n + 577'0,n = Bﬂ-nfl + 57T0,n+1
Par induction avec [3.13], nous obtenons :

B, = Omonp+1 pour n=0,1,.. (3.14)

Sommant [3.14] et utilisant le fait que >, m, =1
Nous avons

B= 6> mons1 = OP{X(t)=0,Y(t) >0}
Or

P{X(t)=0,Y(t) >0} = > 7on

>

=T (3.15)

Comme [3.5] affime que

P{X(H) =0} — 1-
O B (t) = 0.Y(t) >0} — BLX(1) = OVPLX(t) = 0.Y(r) > 0)

E=1-0
5

- 1—

SISy

=1l—-0o—r1

=2

ouc +7 <1
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Avec les résultats préliminaires, nous nous tournons vers la détermination de

[e.e]
Mm = Zn:l nﬂ—mvn

et ceci en multipliant (3) par n et en sommant, nous tirons :
(a+pB+0)My = YMy 4030 nTon1 + B Yoy T -1
= YMy+0My—0Y o0 nmoni1 + Mo+ B 0 nTon_1
= VM + 6Mo = 8(5) + BMo + B(1 = 0)

ou la derniére ligne est un résultat de [3.9]et[3.15].
Aprés simplification et réarrangement, le résultat et :

My = oMo+ %o (3.16)

Par suite nous multiplions (4) par n et nous sommons;

Alors

O+ B4 DMy = My B nt + aMiy
= YMyq1 + BM,, + 2211 NTmn—1 + aMpy,

Nous nous référons a [3.11]et nous simplifions la formule;

(+0)M,, = YMpyi1+abMy, 1+ (1 —0)o™ pour m=1,2, .. (3.17)

Aprés quelques calculs, nous arrivons a la résolution des équation (3.20)et(3.21) qui donnent :

M, = Moam—l—;am pour m=1,2 ..

nous sommons sur m pour obtenir le résultat que nous désirons :

Ly = YoooMw = Mo+ 55%] (3.18)

Ce résultat détermine L, en fonction de M,
Pour obtenir la seconde relation, nous multiplions (3.18) par n et nous sommons :

6 ano:() nNTon+1 = BLn =0 Zz::() nmo n+1
0
5MO - Zm:O NTon+1

SMo — 5(8)

Du coup :

My = 8(L,+1) = 7(L,+1) (3.19)
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Nous remplagons [3.18|dans [3.19] :
L - ﬁ[MO + 5(130)]
= ﬁ[T(Ln +1) + %(130)]
Ly —i5Ln = T+ 5(130)]
1—g /M 1—0o v (1—0)
Ln = 1—;—7' [1 + (% (li(f) )] (320)

Donc la condition pour quelL,, soit fini(et la loi stationnaire existe) est

p = o+7<l1

Autrement dit, 'intensité du trafic du systéme doit étre inférieure a 1.



Chapitre 4

Application :Traffic routier

Nous avons travaillé sur un document réalisé par Daniel FLIPO en (2013) qui traite une
situation routiére basique se rapprochant des systémes M /M /1. Le modéle est le suivant :

1. La route est une voie a deux directions en ligne droite

2. Un entrepreneur souhaite efectuer des réparations sur une des voies, il va devoir faire un
chantier qui bloquera la voie concernée sur une certaine longueur

3. il installe des feux tricolores de part et d’autre du chantier, permettant a chaque file de
passer alternativement le chantier sur la file restante Les paramétres du modéle sont :

> L : La longueur du chantier (en m).

> A, Ao : Les parameétres des processus de Poisson modélisant les arrivées de véhicules
dans un sens et dans 'autre.

> v : La vitesse des véhicules (en m/s).

> dy,dsy :La durée durant laquelle chaque feu est au vert/ au rouge (en s).

> Ky, Ky :Le nombre de voitures que 'on veut laisser passer dans chaque sens.
>

a : Le temps qu'une voiture met pour démarrer (en s).

4.0.1 Cycle des feux, engorgement, contraintes
Cycle des feux

Un cycle des feux se déroule de la facon suivante :

> a 'instant 0 le feu 1 passe au vert.

> a l'instant d; il passe au rouge.

> a l'instant d; + % (le temps qu'il faut pour évacuer la derniére voiture passée au feu
vert de la zone du chantier) le feu 2 passe au vert.

> a l'instant dy + % + dy le feu 2 passe au rouge.

> a l'instant d; + % +dy + %le cycle est fini, on revient a l'instant zéro.

39
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Engorgement, contraintes

Si on veut faire passer /K véhicules dans un sens, on doit laisser le feu au vert pendant un
laps de temps au moins égal & a. /K, ce qui donne ici :

dl Z(IKl, N

d2 Z aKlJ

Le risque principal d’un mauvais ajustement des parameétres des feux est la situation ou la
longueur de la file d’attente d’'un des feux augmente plus qu’elle ne réduit ; sa longueur aug-
mente sans borne et le systéme s’engorge. Dans ce modéle M. Flipo suggére que I'engorgement
peut s’éviter en respectant ces inégalités :

d1 Z G)\l(dl—i‘dg—i‘Q%), ;

dQ Z (l)\g(dl + dg + 2%),

Il considére ici que la durée pendant laquelle un feu est au vert doit étre au moins égale a
la durée laissant passer le nombre moyen de véhicules arrivés pendant un cycle. Il n’y a donc
théoriquement que trés peu de chance que le systéme s’engorge, il faudrait que le flux d’arrivée
se comporte pendant longtemps largement au dessus sa moyenne.

On peut discuter le fait que ces différentes minorations de d; et dy ne prennent pas en compte la
distance entre le feu et le véhicule qui démarre, ’auteur considérant que chaque voiture démarre
directement du feu.

Ceci est contrebalancé par le fait que le coeffcient appliqué & a est la durée totale d'un cycle
(le feu reste au vert assez longtemps pour laisser passer le nombre théorique moyen d’arrivants
pendant la durée qu’il passe au rougeET au vert). Néanmoins dans certaines simulations on a
rencontré des (rares) cas oul ces inégalités s’avérent insuffsantes.

n pourra aussi (par exemple) inffuencer le fonctionnement du systéme dans l'autre sens en
augmentant artiffciellement le temps a de réaction d’un automobiliste avant de démarrer afin
de prendre en compte la distance moyenne qui le sépare du feu dans la file d’attente.
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Conclusion

Dans ce mémoire nous illustrons 1'utilité de la théorie des files d’attente . Ce travail nous a
également permis de montrer I'importance de cette étude qui s’agit de prédire le comportement
des systémes d’attente.

Comme nous venons de voir; les phénoménes d’attente sont retrouvés dans certains systémes
tels les réseaux téléphoniques, les systémes informatiques, dans les banques ,dans la route,
etc...

Si jamais vous avez vu une caricature dans votre journal local, vous savez ce que vous avez
regardé n’est pas la photo d’une personne particuliére, mais malgré cela vous reconnaissez de
qui il s’agit ; parce que l'artiste pour renseigner le lecteur a représenter par quelques coups de
crayons bien choisis les trais caractéristiques de son visage.

C’est exactement ce que fait un bon modéle des files d’attente .
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