
N̊ Attribué par la bibliothèque

Année univ.: 2019/2020

République Algérienne Démocratique et Populaire
Ministère de l’enseignement supérieur et de la recherche scientifique

Introduction aux files d’attente
Mémoire présenté en vue de l’obtention du diplôme de

Master Académique

Université de Saida - Dr Moulay Tahar
Discipline : MATHEMATIQUES

Spécialité : Analyse Stochastique, Statistique des rocessus et
Application (ASSPA)

par

Mlle. Mokhtaria TAHRI 1

Sous la direction de

Dr. Wahiba BENZATOUT

Soutenue le 15/09/2020 devant le jury composé de

Dr. F.Mokhtari Université Dr Tahar Moulay - Saïda Président

Dr. W.BENZATOUT Université Dr Tahar Moulay - Saïda Encadreur
Dr. M.Kadi Université Dr Tahar Moulay - Saïda Examinateur
Dr. L.Yahiaoui Université Dr Tahar Moulay - Saïda Examinateur

1. e-mail : tahri.mokhatria1995@gmail.com



2

Remerciements
Avant tout nous remercions "Allah" tout puissant qui nous a donné le courage, la volonté et

la force afin d’accomplir ce modeste travail. Merci de nous avoir éclairé le chemin de la réussite.

Je adresse nos plus vifs remerciements à Dr. BENZATOUT d’avoir bien voulu accepter
d’être notre encadreur, de nous avoir aidé et dirigé pour la réalisation de ce Rapport ainsi pour
la bienveillance dont elle a su faire preuve, par son dévouement et sa patience.

Je remercie Dr. MOKHTARI d’avoir accepté à présider le jury de mon mémoire. Je
souhaite également remercier Dr. KADI et Dr. YAHIAOUI de m’avoir fait l’honneur
d’accepter d’ê examinateur de mom mémoir. Leur remarque et précieux conseils out abouti à
une amélioration du ce document

Je remercie Dr. KANDOUCI pour leur aide précieuse, leur soutien moral et leur dispo-
nibilité à tout moment. Je souhaite qu’ils puissent trouver ici le témoignage de notre très vive
et très respectueuse reconnaissance et de notre sincère gratitude.

Je remercie les plus sincères reviennent à nos parents, que dieu les protègent et que la réus-
site soit toujours à notre portée pour que nous puissions leur combler de bonheur.

Je tenons à remercier de tout noter cœur l’ensemble des professeurs pour leur patience,
conseils et leurs précieux cours qui ont enrichi nos connaissances et de je ont guidé durant tous
ces années.

Merci de nous avoir montré les clés du succès : avoir confiance en soi et toujours tenter de
se dépasser.

Je remercie l’ensemble de notre famille et nos amies pour leurs encouragements et leur com-
préhension. Finalement, nous remercions tous ceux ou celles qui ont contribué de près ou de
loin à l’accomplissement de ce mémoire.

A vous grand Merci.



Table des matières

1 Définitions et propriétés de base 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Processus de comptage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Processus de renouvellement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Processus de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 la distribution de poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 la distribution de exponentielle . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Le lien entre la distribution de exponentielle et la distribution de poisson 11
1.4.4 Propriété sans mémoire de la distribution exponentielle . . . . . . . . . . 11
1.4.5 loi Poisson et loi exponentielle . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.6 Processus de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Processus de naissance et de mort : . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Les modèles de file d’attente 14
2.1 Système de files d’attente : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Définitions : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Structure de base : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Classifcation des systèmes d’attentes : . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Notation de Kendall : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Loi de Little : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Terminologie et notations : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 En situation d’équilibre on note : . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Modèle d’attente M/M/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Modèle d’attente M/M/c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Modèle d’attente M/ M/1/ k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Modèle d’attente M/M/ ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9.1 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Variations et extensions 28
3.1 Systèmes avec rejet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Systèmes avec retour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Une file d’attente avec deux serveurs . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Files d’attente prioritaires de préemption . . . . . . . . . . . . . . . . . . . . . . 33

4 Application :Traffic routier 39
4.0.1 Cycle des feux, engorgement, contraintes . . . . . . . . . . . . . . . . . . 39

Conclusion 41

3



bibliographie 41

4



TABLE DES MATIÈRES 5

Introduction
Les phénomrènes de files d’attente pruvent être observer dans plusieurs situations réelles,

quand les équipements de service (compteurs, ascenseurs, lignes téléphoniques, feux de circu-
lation) ne peuvent pas immédiatement rendre la quatité ou le genre de service exigé par leurs
utilisateurs. Ea outre, au niveau de byte en technologies modernes de manipulation de don-
nées (systèmes de communication, réseaux informatiques), on peut se produire des phénomènes
d’attente qui sont en générea mois évidents, mais les effets dont au niveau de l’utilisateur ne
sont habiteuellement as moins sérieux.
Tout à fait souvent, de tels effets de congestion peuvent être proportionnellement étudiés par
des méthodes matématiques de la théorie des files d’attente. Adoptant la terminologie abstraite
de théorie, l’entité rincipale dans le moèles est la station, où les clients qui ont besoin d’ une
certaine quantité de service arrivent. Typiquement, les modès des files d’attente sont à caractère
stochastique, dans le sens où la durée des temps entre arrivées et de service des clients successifs
n’ pas exactement indiquée, mais décrit en termes de distribustion de probabilité. La nature
stochastique des modèles de files d’attente reflète le fait que dans la plupart d’application, il
est intrinsèquement aléatoire ou incertain quand la demande se produit et puor quelle quantité
de service.

Le modèle classique dans la théorie des files d’attente se comose d’ une file d’attente
simple servi par un serveur simple. Les modèle de file simple et serveur simple ont été étu-
diés intensivenment dans la littérateur [16] our un traitement rigoureux des résults analytique
principaux. Dans plusieurs situation, les modèle traditionnels de file-simple serveur-simple se
avérés trés résussis dans la prévision des temps d’attente, des longueurs de file d’attante, et des
probabilités de débordement d’amortissur. Cependant, dans la plupart des applictions récentes.
La théorie des files d’attente fournit un outil très puissant et efficace pour la modélisation des
systèmes admettant un phénomène d’attente. Cette théorie datent du début du XXème siècle
par les travaux de l’ingénieur danois Agner Krarup Erlang(1878, 1929). Ses études sur le trafic
téléphonique de Copenhague pour le mieuxgérer afin de déterminer le nombre de circuits né-
cessaires pour fournir un service téléphonique acceptable, sont considérées comme la première
brique dans cette théorie [8]. Ensuite, les files d’attente ont été intégrés dans la modélisation des
systèmes informatiques et aux réseaux de communication. Cette intégration dans ces domaines
et d’autre a permet une évolution de cette théorie surtout dans l’évaluation des paramètres
de performances des systèmes informatiques et aux réseaux de communication. Actuellement
ce sont les applications dans le domaine de l’analyse de performance des réseaux (téléphone
mobile, Internet, multimédia,...) qui suscitent le plus de travaux.
Depuis les travaux d’Erlang [2] Un grand nombre d’applications dans tous les domaines ont été
mis en oeuvre et publiées. En 1953, David G. Kendall [2] a introduit la notation de Kendall pour
décrire les caractéristiques d’un système de file d’attente. en 1957 d’une manière particulière-
ment élégante et efficace Jackson a traité certains réseaux de files d’attente. En 1961, Thomas
L. Saaty [3], auteur de l’un des premiers livres complets sur la théorie des files d’attente. Ensuite
c’est les contributions des mathématiciens Khintchine, Palm, Pollaczek et Kolmogorov qui ont
vraiment poussés la théorie des files d’attente.

Mon mémoire organisé comme suit : Le chapitre 1 présente les notions de bases de l’étude
des systèmes de files d’attente, à savoir les processus stochastiques :Processus de comptage,
processus de renouvellement, Processus de Poisson, et processus de naissance et de mort. Dans
le chapitre 2, nous introduison : la terminologie de la théorie des files d’attente. Certaines dé-
finitions et notations qui sont nécessaires dans l’étude des systèmes de files d’attente comme
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(Notation de Kendall, la loi de Little ,...etc ) sont notamment données. Ensuite nous étudions
quelque modèles de files d’attente ( M/M/1, M/M/1/K, M/M/c, M/M/1 ) et l’évaluation de
leurs paramètres de performance avec des exmples . Le chapitre 3 nous présentons Variations
et extensions : Systèmes avec rejet, Systèmes avec retour, Une file d’attente avec deux serveurs,
Files d’attente prioritaires de préemption.Enfin chapitre 4 nous présentons un’application :Traf-
fic routier.



Chapitre 1

Définitions et propriétés de base

1.1 Introduction
Les processus stochastiques décrivent l’évolution d’une grandeur aléatoire en fonction du

temps (ou de l’espace). Il existe de nombreuses applications des processus aléatoires notamment
en physique statistique[22].Les processus stochastiques ont outil trèe puissant pour la modélia-
tion des phénomèenes aléatoires évoluant dans le temps. leurs utilisations pour la description
et l’analyse des propriétés des systémes dynamiques(files d’attente, réseaux informatique et
téléphoniques, physique, boilogie ou économie...etc.)

Définition 1.1.1. (Processus stochastique).
Un processus stochastique est une famille (X(t); t ∈ T ) de variables aléatoires définie sur un
même espace de probabilité.
Généralement X(t) représente l’état du processus stochastique au temps t [32].

• Si T est dénombrable, i.e. T ⊆ N alors nous disons que (X(t); t ∈ T) est un processus à
temps discret ;

• Si T est un intervalle de [0;∞) alors le processus stochastique est dit un processus à temps
continu,

L’ensembele des valeurs de X(t) est applé l’espace d’état, qui peut également être soit discert
(fini ou infini dénombrable) ou continu (un sous-ensemble de R ou Rn), donc nous écrivons
(Xn)n≥0 pour le processus à temps discret et (Xt)t≥0 pour le prossus à temps continu.

1.2 Processus de comptage
Définition 1.2.1. (Processus de comptage).
Un processus stochastique N(t) est appelé processus de comptage si N(t) représente le nombre
total des événements qui sont arrivés avant l’instant t. Tout processus de comptage vérifie les
propriétés suivantes :

1. Pour tout t ≥ 0 le nombre N(t) est à valeurs entiéres positives ;
2. La fonction t 7−→ N(t) est croissante ;

7
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3. Pour tout couple (s; t)(0 < s < t) , la différence N(t)−N(s) représente le nombre d’évè-
nement se produisant dans l’intervalle de temps ]s; t].

Un processus de comptage est un processus discret à temps continu. Un second processus
peut être associé au processus des temps d’occurrence ; le processus des temps d’interarrivées
{Wn;n ∈ N0} ou ∀n ∈ N0 la variable aléatoire Wn est le temps d’attente entre les(n− 1)ieme ,
nieme occurrences[31], c-à-d :

Wn = Tn − Tn−1

avec Tn est le temps d’arrivé du nime client.

Proposition 1.2.1. Les relations suivantes sont triviales tel que T0 = 0 :

1. Tn = W1 +W2 + . . .+Wn∀n ≥ 1 ;
2. N(t) = sup{n ≥ 0 : Tn ≤ t} ;
3. P[N(t) = n] = P[Tn ≤ t < Tn+1] ;
4. P[N(t) ≥ n] = P[Tn ≤ t] ;
5. P[s < Tn < t] = P[n(s) < n ≤ N(t)].

Preuve (1) : Ona Wn = Tn − Tn−1

W1 +W2 + . . .+Wn = T1 − T0 + T2 − T1 + ...+ Tn−1 − Tn−2 + Tn − Tn−1
= −T0 + Tn

= Tn car T0 = 0
Dans la suite nous intéresserons souvent aux deux propriétés suivantes des processus stochas-
tique :

Définition 1.2.2. (Processus à accroissements indépendants).
Le processus stochastique {Xt, t ∈ T}est appelé processus à accroissents indépendanrs si
∀k ∈ N0 et ∀t0 < t1 < t2 < t3 < . . . < tk, les variables aléatoires Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtk −Xtk−1

,
sont indépendants.

Définition 1.2.3. (Processus à accroissements stationnaires).

Le processus stochastique {Xt, t ∈ T} est dit à accroissements stationnaires si ∀h > 0 les
variables aléatoires Xt+h −Xt ont la même distribution ∀t ∈ R+.

Définition 1.2.4. Un processus de comptage{N(t), t ≥ 0} est un processus de Poisson d’inten-
sité λ > 0 si

• N(0) = 0;

• le processus stochastique à accroissements indépendants ;
• le processus stochastique à accroissements stationnaires ;
• ∀0 ≤ s < t les variables aléatoires N(t)−N(s)suit une loi de Poisson de paramètre λ(t− s).
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1.3 Processus de renouvellement
Un processus de renouvellement a pour fonction le dénombrement des occurrences d’un

phénomène donné, lorsque les délais entre deux occurrences consécutives sont des variables
aléatoires indépendantes et identiquement distribuées.

Définition 1.3.1. (Processus de renouvellement).
Un processus de comtage dont la suit des inter-arrivées forme une suit de variables aléatoires
indépendantes et indentiquement distribuées s’appelle processus de renouvellement.

Définition 1.3.2. (Processus de renouvellement).
Un processus de comptage pour lequel les temps entre deux arrivés consécutives sont des va-
riables aléatoires i.i.d. s’appelle processus de renouvellement. Les temps de renouvellement (ou
les temps de la n-ième arrivée) sont :

An =
n∑
i=1

ai n = 1, 2, ...

avec ai, i = 1, 2, . . . est le temps entre deux arrivées consecutives. Il est facile de voir que le
nombre d’arrivées avant le tempst, i.e. le processus

(Nt)t∈R+ = sup
k
{k : Ak ≤ t}

est un processus de comptage.

1.4 Processus de Poisson
Beaucoup de phénomènes naturels peuvent présenter des changements de valeurs à n’importe

quel moment plutôt qu’à des dates fixes. On aura besoin pour modéliser cela de processus en
temps continu c.à.d. des processus {Xt : t > 0} indicés par la demi droite positive [0; +∞) Les
processus que l’on analyse ici sont à valeurs entières. Le processus de Poisson sert à modéliser
l’occurrence d’événements successifs. Chaque évènement est tel que dans un intervalle de temps
(t; t+4t) avec 4t petit Il peut servir à modéliser par exemple :
• les appels téléphoniques arrivant dans une centrale ;
• les temps d’arrivée de clients à une caisse ;
• les temps d’occurrence de sinistres à dédommager par une compagnie d’assurance . . . etc.

1.4.1 la distribution de poisson

la loi de Poisson est attribuée à Simeon D. Poisson, mathématician français (1781− 1840).
Cette loi fut proposée par Poisson dans un ouvrage qu’il publia en 1837 sous le titre " Recherche
sur la probabilité de hugements en matiére criminelle et en matière civile".

la distribution de Poisson de paramatère λ > 0 et donnée par :

Pk =
λk

k!
e−λ pour k = 0, 1, 2 · · · (1.1)



1.4.2 la distribution de exponentielle 10

Soit X une variable aléatoire ayant la distribution de poisson dans(1.1) nous évaluons la
moyenne, où premier, par :

E[X] =
+∞∑
k=0

kPK

= λ.

Pour trouver la variance, on détermine d’abord

E[X(X − 1)] =
+∞∑
k=2

k(k − 1)Pk

= λ2;

alors

E[X2] = E[X(X − 1)] + E[X]

= λ2 + λ.

tandis que

σ2
x = V ar[X]

= λ2 + λ− λ2 = λ.

1.4.2 la distribution de exponentielle

Soit t une variable aléatoire avec t > 0 qui suit une distribution exponentielle. La densité de
probabilité de t est f(t) = µe−µt et la distribution cumulé corresponante est F (t) = 1− e−µt.
L’esprérance et la variance de t sont :

E[X] =
1

µ
et V (t) =

1

µ2

respectivement.
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1.4.3 Le lien entre la distribution de exponentielle et la distribution
de poisson

La densité de probabilité d’une distribution exponentielle f(t) = µe−µt Supposons τ est
exponentielle avec espérance 1

µ
, et n est poisson de moyenne µ on a :

P(τ > t) = 1− F (t)
= e−µt

= P(n = 0 en t)

= P(0, t).

Nous P(n, t) la probabilité d’avoir n unités dans le temps t.

P(0, t) = e−µt

P(1, t) =

∫ t

τ=0

P(0, τ)f(1− τ)dτ = µte−µt

P(2, t) =

∫ t

τ=0

P(1, τ)f(1− τ)dτ = (µt)2e−µt/2!

· · ·

P(n, t) =

∫ t

τ=0

P(n− 1, τ)f(1− τ)dτ = µt)ne−µt/n!

1.4.4 Propriété sans mémoire de la distribution exponentielle

Une variable aléatoire X est dite sans mémoire (ou sans usure) si :
∀s, t ≥ 0

P(X > t+ s/X > t) = P(X > s)

Si X est la durée de vie d’un matériel quelconque l’équation précédante s’interprète de
la manière suivante, sachant le matériel en état de bon fonctionnement au temps t, la loi de
probabilité de sa durée de vie future est la même que celle de sa durée de vie initiale.
En d’autres termes, le matériel ne s’use pas.

1.4.5 loi Poisson et loi exponentielle

Définition 1.4.1. Une variable aléatoire X à valeur entières suite loi d Poisson de paramètre
λ > 0 si :

∀k ∈ N, P(X = k) =
λk

k!
e−λk
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Définition 1.4.2. Une variable aléatoire Y à valeur réelles strictement positives suit une loi
exponentille de paramètre µ > 0 si :

∀t > 0, P(Y = T ) = µe−µt

1.4.6 Processus de Poisson

De tels phénomènes peuvent se définir la famille (Tn)n∈N∗ des d’arrivées qui sont des variables
aléatoires. Mais on peut aussi le faire a partir du processus de comptage (Nt)n∈R. Nt est le
nombre d’évéenments apparus jusqu’a l’instant t.

Définition 1.4.3. (Processus de Poisson).

Soit (Xn) une suite de variables aléatoires indépendantes et indentiquement distribuées de
loi exponentielle ε(λ) avec λ > 0 si
Sn = X1 +X2 + · · ·+Xn, N0 = 0 et pour tout t > 0

Nt =
∞∑
n=1

1Sn<t

(Nt) est un processus de Poisson d’intensité λ.

Définition 1.4.4. (Processus de Poisson).

Un processus de poisson N = (Nt) d’ntensité λ est un pocessus de comptage à trajectoires
continues à droit [14] tel que :

1. N(0) = 0,
2. N est un processus à accroissement indépendant et stationnaires,
3. pour tout t > 0, Ntsuit la loi de poisson P(λt).

Proposition 1.4.1. (Nt)t≥0 est un processus de Poisson si es seulement si les quater propriétés
suivantes sont vérivifiées :

1. N0 = 0,
2. pour tout t > 0, Nt une loi de poisson d’espérance λt,
3. pour tout t > s > 0, Nt −Ns suit une loi de poisson d’espérance λ(t− s),
4. pour tout 0 < t1 < t2 < · · · < tn les variables aléatoire

Nt1 , Nt2 −Nt1 , · · · , Ntn −Ntn−1 sont indépendantes.

Caractérisation d’un procssus de Poisson par ses temps d’arrivé :

Soit Tn l’instant de la nime arrivé : Tn = inf{T ≥ 0, Nt = n} et Wn est le temps sépa-
rant le (n− 1)ieme évènement du nieme évènement pour n ∈ N∗Wn = Tn − Tn−1 (en convenant
T0 ) on a :

Tn =
n∑
i=1

Wi,
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Nt = max{n ≥ 0, Tn≤t}.

1.5 Processus de naissance et de mort :
Ces processus permettent de façons générale décrire l’évolution temporelle de la taille d’une

population d’un type donné.
Dans le cas d’systéme d’attente, on considère par exemple des population comprenant tous les
clients qui sont dans le systèmeà l’instant t.
Les processus de de naissance et de mort sont des processus stochastique à temps continu et à
espace d’étars discret n = 0, 1, 2, . . . Ils sont sans mémoire, et à partir d’un état donné n, des
transitions ne sont possibles que vers l’un ou l’outre des états voisins

(n+ 1) et (n− 1) pour n ≥ 1

Les files d’attente de type MarKovien(M/M) sont des cas particuliers très importas de
processus de nissance et de mort.

Définition 1.5.1. (Processus de naissance et de mort).
On peut réaliser un processus de naissance et de mort de façon suivante :

� Les arrivées et les départs d’entités obéissent à des lois exponentielle de taus respectifs λ(n)
et µ(n).

� A l’aide d’hypothèse de régularité : deux événements ne peuvent pas se produire en même
temps, donc la probabilité que deux événements se produisent dans un intervalle de temps
dt est négligeable.

� Il y a une transition vers un état voisin, soit par l’arrivée d’un client (naissance), soit par le
départ d’un client (mort).

C’est le point de départ de la théorie des files d’attent. On introduit les données suivantes :

◦ λn : taux de naissance quand le nombre de population à n.
◦ µn : taux de mort quand le nombre de population à n[32]. .



Chapitre 2

Les modèles de file d’attente

2.1 Système de files d’attente :
La théorie des files d’attente a commencé en 1909 avec les travaux de recherches de l’ingé-

nieur danois Agner Krarup Erlang (1878, 1929) sur le trafic téléphonique de Copenhague pour
déterminer le nombre de circuits nécessaires afin de fournir un service téléphonique acceptable.
Par la suite, les files d’attente ont été intégrés dans la modélisation de divers domaines d’acti-
vité[12]. On assista alors à une évolution rapide de la théorie des files d’attente qu’on appliqua
à l’évaluation des performances des systèmes informatiques et aux réseaux de communication.
Les chercheurs oeuvrant dans cette branche d’activité ont élaboré plusieurs nouvelles méthodes
qui ont été ensuite appliquées avec succés dans d’autres domaines, notamment dans le secteur
de la fabrication. On a aussi constaté une résurgence des applications pratiques de la théorie des
files d’attente dans des secteurs plus traditionnels de la recherche opérationnelle, un mouvement
mené par Peter Kolesar et Richard Larson[6]. Grace à tous ces développements, la théorie des
files d’attente est aujourd’hui largement utilisé et ses applications sont multiples.

2.1.1 Définitions :

Définition 2.1.1. (File d’attente).
l’ensemble des clients qui attendent d’être servis, à l’exclusion de celui qui est en train de se
faire servir.

Définition 2.1.2. (Système d’attente).
l’ensemble des clients qui font la queue, y compris celui qui se fait servir.
Le phénomène d’attente s’étend à tous les clients possibles (dans le cas de systèmes bouclés, où
les mêmes clients reviennent plus tard à l’entrée par exemple les machines qui tombent en panne
dans un atelier, le nombre des clients est, en général, fini). Ces appellations se généralisent et
prennent surtout leur intérêt dans les situations où il existe plusieurs stations et plusieurs files
d’attente.

2.2 Structure de base :
• Population : La population constitue la source de clients potentiels. Elle est caractérisée par

son nombre d’élément (fini ou infini).
• File d’attente : La file d’attente est caractérisée par le nombre maximum permis de clients

en attente (fini ou infini)

14
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• Clients : Les clients (issus de la population) se joignent au système avec un taux moyen
d’arrivée.

• Service : Le service peut être assuré par un ou plusieurs serveurs. Le temps qui s’écoule entre
le début et la fin de service d’un client est dénoté le temps de service suivant une loi de
probabilité. Le taux de service est une autre caractéristique du système.

• Interarriée : est l’itervalle de temps séparant l’arrivée de desux clients successifs.
On suppose que ces Inter-arrivées sont indépendantes les une des autres et suivent la
même loi de probabilité

• Stratégie de service : La stratégie de service réfère à l’ordre selon laquelle les clients sont
servis : premier arrivée premier servi ; au hasard, selon des priorités. . .

Définition 2.2.1. (File d’ttente simple).
Une file simple (ou station) est un système constitué d’un ou plusieurs serveurs et d’un espace
d’attente. Les clients arrivent de l’extérieur, patientent éventuellement dans la file d’attente,
reçoivent un service, puis quittent la station[19]. Afin de spécifier complètement une file simple,
on doit caractériser le processus d’arrivé des clients, le temps de service ainsi que la structure
et la discipline de service de la file d’attente.

• Processus d’arrivé :
L’arrivée des clients à la station sera décrite àl’aide d’un processus stochastique de comp-
tage (Nt)t≥0
Si An désigne la variable aléatoire mesurant l’instant d’arrivée du nieme client dans le
système, on aura ainsi :

A0 = 0 et An = inf{t;Nt = n}.

Si Tn désigne la variable aléatoire mesurant le temps séparant l’arrivée du (n− 1)ieme et
du nieme client [20] , on a alors :

Tn = An − An−1.

• Le processus de service :
qui compris (le nombre de serveus etla loi probabiliste décervant la durée des services)

• Temps de service :
On considère une file à serveur unique.
On note Dn la variable aléatoire mesurant l’instant de départ du nieme client du système
et Yn la variable aléatoire mesurant le temps de service du nieme client (temps séparant
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le début et la fin du service).
Un instant de départ correspond toujours à une fin de service, mais ne correspond pas
forcément à un début de service. Il se peut en effet qu’un client qui quitte la station laisse
celle-ci vide. Le serveur est alors inoccupé jusqu’à l’arrivée du prochain client.
On considèrera uniquement des stations dont les temps de service consécutifs sont décrits
par des variables Yn indépendantes et identiquement distribuées (i.i.d.).

2.3 Classifcation des systèmes d’attentes :

2.3.1 Notation de Kendall :

Pour la classification des systèmes de files d’attente, on a recours à une notation symbolique
introduite par Kendall, comprenant six symboles [7] :

A/B/s/N/D/O

avec
• A : indique le processus d’arrivée des clients. Les codes utilisés sont :

• M ( Markov ) : inter-arrivées des clients sont indépendamment, identiquement distri-
buées selon une loi exponentielle. Il correspond à un processus de Poisson ponctuel
(propriété sans mémoire),

• D ( Répartition déterministe ) : les temps inter-arrivées des clients ou les temps de
service sont constants et toujours les mêmes.

• GI ( général indépendant ) : Les inter-arrivées des clients ont une distribution gé-
nérale ( il n’y a aucune hypothèse sur la distribution mais les interarrivées sont
indépendentes et identiquement distribuées),

• G ( général ) : Inter-arrivées de clients ont une distribution générale et peuvent être
dépendantes,

• Ek : Ce symbole désigne un processus où les intervalles de temps entre deux arrivées
successives sont des variables aléatoires indépendantes et identiquement distribuées
suivant une loi d’Erlang d’ordre k.

• B : décrit la distribution des temps de service d’un client. les codes sont les mêmes que A,
• s : nombre de serveurs,
• N : capacité de la file (c’est le nombre de places dans le système en d’autre tèrme c’est le

nombre maximal de clients permis dans le système Bcompris ceux en service.
• D : population des usagers.
• O : discipline de service c’est la façon dont les clients sont ordonnés pour être servi. Les codes

utilisés sont les suivants :

◦ FIFO(first in, first out) ou FCFS (first come, first served) : c’est la file standard dans
laquelle les clients sont servis dans leur ordre d’arrivée. Notons que les disciplines
FIFO et FCFS ne sont pas équivalentes lorsque la file contient plusieurs serveurs.
Dans la première, le premier client arrivé sera le premier à quitter la file alors que la
deuxième, il sera le premier à commencer son service. Rien n’empêche alors qu’un
client qui commence son service après lui, dans un autre serveur, termine avant lui.
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◦ LIFO (last in, first out) ou LCFS (last come, first served). Cela correspond à une pile,
dans laquelle le dernier client arrivé (donc posé sur la pile) sera le premier traité
(retiré de la pile). A nouveau, les disciplines LIFO et LCFS ne sont équivalentes
que pour une file mono serveur.

◦ SIRO (Served In Random Order), les clients sont servis aléatoirement.
◦ PNPN (Priority service), les clients sont servis selon leur priorité. Tous les clients de

la plus haute priorité sont servis premiers, puis les clients de priorité inférieur sont
servis, et ainsi de suite.

◦ PS ( Processor Sharing ), les clients sont servis de manière égale. La capacité du système
est partagée entre les clients.

2.3.2 Loi de Little :

La loi de little (1961) est une relation très général qui s’applique à une grande classe
de sysémes. Elle ne concerene que le régime premanet du système. Aucune hypothèse sur les
variables aléatoires qui caractérisent le systéme ( temps d’inter aarivées, temps de service,. . .)
n’est nécessaire. La seule condition d’application de la loi de Little est que système soit stable.

de = de = d

La loi de Little s’exprime dans le théorème suivant :

Théorème 2.1. (Formule de Little). Le nombre mouyen de clients L, le temps moyen passé
dand le système W et le débit moyen d’un système stable d en régime prmanent se relient de
la façon suivants :

L = W ×D

Remarque 2.3.1. La loi de Little s’applique à tous les modéles de file d’attente rencontrés en
pratique (pas seulement à file M/M/1)

2.4 Terminologie et notations :
En lien avec la loi exponentielle[4] :

• λn : :Le taux moyen d’arrivées (espérance mathématique de nomber d’ arrivées par unité de
temps).

• 1
λn

: Le temps moyen entre les arrivées lorque les clients sont dans le système.
• µn :Taux moyen de service d’un client
• 1

µn
:Temps moyen de service du nieme client.

L’analyse d’un système de file d’attente dépends de l’état initial et du temps écoulé. C’est
la situation transitoire où l’étude est très complexe. Dans la théorie des files d’attente l’étude
se fait une fois que le système atteint sa situation d’équilibre ; où les états du système sont es-
sentiellement indépendants de l’état initial et du temps déjà écoulé. On suppose que le système
est en opération depuis un très long moment.
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2.5 En situation d’équilibre on note :
• Pn : Probabilité qu’il y ait n clients dans le système.
• Ls : Nombre moyen (espérance mathématique) de client dans le système.
• Lq : Nombre de clients dans la file d’attente (excluant ceux qui sont dans le service).
• Ws : Le temps moyen passée par un client dans le système.
• Wq :Le temps moyen passée par un client dans la file ( excluant le temps de service).
• c :Nombre de serveurs[24].

2.6 Modèle d’attente M/M/1
La file d’attente M/M/1 est un modèle caractérisé par des arrivées suivants un processus

de Poisson de taux λ, Temps de service exponentielle de paramètre µ et un seul serveur. Les
clients arrivent à la station selon un processus de Poisson de taux λ, si le serveur est vide le
client est pris en charge immédiatement sinon il rejoint la file d’attente ( de capacité illimitée
et discipline FIFO ), les temps des inter-arrivées sont indépendants. Ces clients reçoivent le ser-
vice selon une distribution exponentielle de paramètre µ. Ces temps de service sont également
supposés indépendants[21]. En outre, toutes les variables aléatoires concernés sont censés être
indépendants les uns des autres. Les clients sont servis dans leur ordre d’arrivée. Cette file est
un cas particulier du processus de naissance et de mort

∀n ∈ N, λn = λ, µn = µ.

ie indépendants du nombre de client dans le système. sous l’hypothèse que λ < µ (le taux d’ar-
rivée est plus petit que le taux de service)
on a :

ρ =
λ

µ
.

c’est l’intensité du trafic, avec ρ < 1 :
πn = π0ρ

n, ;

π0 =
1∑+∞

n=0 ρ
n = 1− ρ, .

Remarque 2.6.1. On note π0 la probabilité d’être servi immédiatement a l’arrivée. La condi-
tion ρ < µ est bien entendu équivalente à la condition ρ < 1 Ainsi, un régime stationnaire peut
exister si (et seulement si) l’intensité de trafic est inférieure a cent pour cent. on voit aussi le
rôle de ce paramètre lorsque l’on calcule le nombre moyen de clients en régime stationnaire.
avec

∞∑
n=0

(
λ

µ
)n =

1

1− λ
µ

.
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πn : c’est la probabilité d’avoir n client dans le système.

πn = ρnπ0

avec

π0 = 1− ρ

– Débit :
Ici d = λ car λn = λ pour tout n ≥ 0.

d =
∞∑
n=0

πnµ = (1− π0)µ = ρµ = λ;

donc :

d = de = ds.

– Taux d’utilisation du serveur U :

U = 1− π0 = ρ.

– Nombre moyen de clients dans le système L :

∞∑
n=0

nπn =
ρ

1− ρ
=

λ
µ

1− λ
µ

=
λ

µ− λ
.

Remarque 2.6.2. Plus que l’intensité du trafic se rapproche de un, plus que la longueur
moyenne de la file d’attente L tend vers l’infinie.

– Temps moyen de séjour W :
Ce paramètre est obtenu en utilisant la loi de Little :

W =
L

d
=

1

µ(1− ρ)
.

qui peut se décomposer en :

W =
1

µ
+

ρ

µ(1− ρ)
– La durée moyenne d’attente en régime stationnaire :

E(W ) =
ρ

λ(1− ρ)
.

Proposition 2.6.1. Soit 0 < λ < µ. Dans le système M/M/1 la variable aléatoire W égale à
la durée de séjour des clients dans le système en régime stationnaire suit une loi exponentielle
de paramètre :
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µ(1− ρ) = µ− λ

– Démonstration[11] : Temps moyen passé dans la file d’attente Wq :

Wq =
ρ

µ(1− ρ)
.

– Nombre moyen de clients dans la file d’attente Lq :

Lq = λWq =
ρ2

1− ρ
.

2.7 Modèle d’attente M/M/c
On considère un système identique à la file M/M/1 excepté qu’il comporte C serveurs

identiques et indépendants les uns des autres. On conserve les hypothèses :
le processus d’arrivée des clients dans la file est un processus de Poisson de taux λ et le
temps de service d’un client est une variable aléatoire exponentielle de taux µ (pour chacun
des serveurs). Ce système est connu sous le nom de file M/M/c [13]. L’espace d’états E est
comme pour la M/M/1 infini. Dans ce cas aussi, le processus modélisant le nombre de clients
dans le système est un processus de naissance et de mort avec [1] :

λn = λ

µn =


nµ pour : n = 1, 2, ..., c− 1;

cµ pour. n ≥ c.

La condition de stabilité de ce modèle est :

ρ =
λ

cµ
< 1.

F IGURE 2.7−Reprsentation schmatique d′une file M/M/c

Théorème 2.2. pour calculer πn le système doit être stable (λ < cµ donc ρ < c) qui exprime le
fait que le nombre moyen de clients qui arrivent à la file par unité de temps doit être inférieur
au nombre moyen de clients que les serveurs de la file sont capables de traiter par unité de
temps, de la manière suivante :

– Temps moyen de séjour W :

Le temps moyen de séjour d’un client se décompose en un temps moyen dans la file
d’attente, plus un temps moyen de service. Il suffit alors d’appliquer la loi de Little à la
seule file :

W = Wq +Wc =
Lq
d

+
1

µ
=
Lq
λ

+
1

µ
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Avec : d = λ
Il reste alors à calculer le nombre moyen de clients en attente dans la file, Lq :

Lq =
+∞∑
n=c

(n− c)πn =
+∞∑
n=c

(n− c) ρn

c!cn−c
π0;

=
ρc+1

c!c

+∞∑
n=c

(n− c)(ρ
c
)n−c−1π0;

=
ρc+1

c!c

1

(1− ρ
c
)2
π0 =

ρc+1

(c− 1)
.

On en déduit le temps moyen de séjour

W =
ρc

µ(c− 1)!(c− ρ)2π0
+

1

µ
.

– Nombre moyen de clients dans le système L :

Le nombre moyen de clients s’obtient alors par application de la loi de Little à l’en-
semble de la file :

L = W × d = W × λ =
ρc+1

µ(c− 1)!(c− ρ)2
π0 + ρ.
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2.8 Modèle d’attente M/ M/1/ k
On considère un système à serveur simple identique à la file M/M/1/k excepté que la ca-

pacité de la file d’attente est finie. On a donc toujours les hypothèses suivantes :

– le processus d’arrivée des clients dans la file est un processus de Poisson de taux λ.

– le temps de service d’un client est une variable aléatoire exponentielle de taux µ.

– Soit K la capacité de la file d’attente : c’est le nombre maximal de clients qui peuvent
être présents dans le système, soit en attente, soit en service.

Quand un client arrive alors qu’il y a déjà Kclients présents dans le système, il est perdu.
Ce système est connu sous le nom de file M/M/1/K. L’espace d’états E est maintenant fini :
E = {0, 1, 2, ..., K}. La capacité de la file étant limitée, même si les clients arrivent en moyenne
beaucoup plus vite que ce que le serveur de la file est capable de traiter, dés que celle-ci est
pleine, les clients qui se présentent sont rejetés [26]. Le nombre de clients dans la file ne peut
donc jamais "partir" à l’infini. De plus, dés qu’un client est autorisé à entrer, il sortira un jour
et son temps de séjour dans la file est fini, puisqu’il correspond au temps de service de tous
les clients devant lui et que ce nombre est limité par K . Sur un très long, le débit de sortie
sera donc bien égal au débit d’entrée, ce qui correspond bien à la stabilité inconditionnelle du
système. Donc ce processus est considéré comme un processus de naissance et de mort avec :

� un taux de naissance λn = λ, pour tout n < K

� et le taux de mortalité µn = µ, pour tout i 6= 0.
soit π(n), n = 0, 1, 2, ..., K, la probabilité pour qu’il ait n clients dans le système à l’instant

t.

λπ0 = µπK

(λ+ µ)πn = λπn−1 + µπn+1

pour n = 0, 1, 2, ..., K − 1

λπK−1 = µπK .

puisque la capacité est limitée, nous obtenons un régime stationnaire indépendant des condi-
tions initiales quelle que soit la valeur de l’intensité de trafic ρ

Théorème 2.3. Le calcul deπn se fait de la manière suivante [18] :

πn =


(1−ρ)ρn
1−ρK+1 pour : n ≤ K;

0 pour. n > K.

Cas particulier ρ = 1
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dans ce cas

πn =
1

K + 1

πn = 0 pour n > K

– Taux d’utilisation du serveur U(K) :
Le taux d’utilisation du serveur est la probabilité pour que le serveur de la file soit occupé
donc au moins il y a un client dans la file

U(K) =
K∑
n=1

πn = 1− π0

= ρ
1− ρk

1− ρK+1

Remarque 2.8.1.

lim
K−→+∞

UK =


ρ pour : ρ < 1;

1 pour. ρ > 1.

qui représente le taux d’utilisation du serveur Dans le cas M/M/1
– Nombre moyen de clients L :

L =
K∑
n=0

iπn =
1− ρ

1− ρK+1

K∑
n=1

nρn;

=
ρ(1− ρ)
1− ρK+1

K∑
n=1

nρn−1;

ρ

1− ρ
1− (K + 1)ρK +KρK+1

1− ρK+1
;

Pareille que le taux d’utilisation du serveur, lorsqueK −→ +∞ on obtient

L =
ρ

1− ρ
.

qui représente le nombre moyen de clients pour la file M/M/1
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– Temps moyen de séjour W :
Le calcul du temps moyen de séjour W ce fait on applicant la formule de Little qui relie
Nombre moyen de client L et débit d de la file :

W =
L

d
.

2.9 Modèle d’attente M/M/ ∞
Description du modèle :

Pour ce modèle de file d’attente, le système est composé d’un nombre illimité de serveurs
identiques et indépendants les uns des autres. Dés qu’un client arrive, il est immédiatement
servi (c’est le cas ou il n’y a pas d’attente ). Dans cette file les clients arrivent à des instants
0 < t1 < t2 < ... formant un processus de Poisson de taux λ et les temps de service sont ex-
ponentiels de taux µ . le taux de transition d’un êtat n quelconque vers l’état n− 1 est égal à
nµ et correspond au taux de sortie d’un client parmi les n clients en service [5]. De même, le
taux de transition d’un état n vers l’état n+ 1 est égal à λ qui correspond au taux d’arrivée
d’un client, donc c’est un processus de naissance est de mort avec :

∀n ∈ N, λn = λ, µn = nµ

πn =
ρn

n!
π0.

avec

π0 =
1∑+∞

n=0
ρn

n!

=
1

eρ
.

Notons que la série
+∞∑
n=0

ρn

n!
converge pour toutes valeurs de ρ , ce qui est cohérent avec la

stabilité inconditionnelle de la file. On obtient finalement :

πn =
ρn

n!
e−ρ pour n = 1, 2, ...

– Le débit d :
Le service s’effectue avec un taux nµ dans chaque état où le système contient n clients :

d =
+∞∑
n=0

nπnµ = e−ρ
+∞∑
n=1

ρn

(n− 1)!
µ = e−ρρeρµ = λ.

On retrouve la stabilité inconditionnelle de la file.

– Taux d’utilisation du serveur U :

U = 1− π0.
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– Nombre moyen de clients dans le système L :

d =
+∞∑
n=1

nπn = e−ρ
+∞∑
n=1

ρn

(n− 1)!
= e−ρρeρ = ρ.

– Temps moyen de séjour W :
Ce paramètre est obtenu en utilisant la loi de Little :

W =
L

d
=
ρ

λ
=

1

µ
.



2.9.1 Exemples 26

2.9.1 Exemples

Exemple 2.9.1. Taux de service d’un système informatique

– Objectif : choisir taux de service µ pour que temps systè moyen d’une tâche inférieur à
0, 5 seconde

– Taux d’arrivée de λ = 1 tâches /seconde
– Arrivée selon loi de poisson et temps de service selon loi exponentielle (système M/M/1)
– En utilisant W = L

D
= 1

µ(1−ρ) avec ρ = λ/µ = 1/µ

W =
1

µ(1− 1/µ)
< 0, 5 ⇒ 0, 5µ < 1, 5

– Donc, il faut queµ > 3 tâches /seconde.

Exemple 2.9.2. Teaux d’arrivée maximum d’un système de télécommunication
– Objectif : choisir taux d’arrivée λ de messages maximum pour que temps d’attente moyen
d’un message inférieur à 1 seconde

– Messages de longeur de K bits, distribué selon loi exponentialle de moyenne de 600 bits
– Vitesse de transmission du système de C1200 bits/s
– Messages requiert enmoyenne K/C secondes pour être transmis, donc µ = K/C =
600/1200 = 2 messages/seconde

– En utilisant Wq =
ρ

µ(1−ρ) avec ρ = λ/µ = λ/2

Wq =
λ/2

µ(1− λ/2)
< 1 ⇒ λ < 4/3

– Il faut donc λ < 4/3 messages/seconde, ce qui correspond à utilisation de ρ = 2/3.

Exemple 2.9.3. Système manufacturier avec une seule machine et capacité finie de stocage de
pièces (système M/M/1/K)

– Obhectif, mois de 10% des pièces seront blouées :

πn = (1− ρ) ρK

1− ρK+1
< 0, 1

– Taux d’arrivée de λ pices/minute
– Trois chois de machines

1. µ = 0, 5 pièces / minute au coûte de 100 euro

2. µ = 1, 2 ièces / minute au coûte de 300 euro

3. µ = 2 pièces / minute au coûte de 500 euro

– coûte de stocage de 80 euro par emplacement (pièce)

1. Premier choix (µ = 0, 5, ρ = 2)

– πn(K) = 2K

2K+1−1
– Avec K = 1, πn(1) = 2/3 > 0, 1
– limK→∞ πn(K) = 0, 5 ⇒ solution non faisable comme πn(K) toujour plus grand que
0, 1.

2. Deuxième choix (µ = 1, 2, ρ = 5/6)

– πn(K) = 5K

6K+1−5K+1

– πn(1) = 5/9 > 0, 1



2.9.1 Exemples 27

– πn(5) ' 0, 1007 > 0, 1, πn(6) ' 0, 0774 < 0, 1
– Avec K = 6, coûte total de 300 + 6× 80 = 780 euro

3. Troisième choix (µ = 2, ρ = 0, 5)
– πn(K) = 1

2K+1−1
– πn(1) = 1/3 > 0, 1
– πn(2) = 1/7 > 0, 1, πn(3) ' 0, 0667 < 0, 1
– Avec K = 3, coûte total de 500 + 3× 80 = 740 euro

Troisième option avec K = 3 espaces de stocage est solution optimale



Chapitre 3

Variations et extensions

Dans ce chapiter nous considérons quelques variantes des modèles simples étudiés jusqu’à
présent , Nous nous limitons à des arrivées de Poisson et des temps de service exponentielles.

3.1 Systèmes avec rejet
Supposons qu’un client qui arrive quand il y a n clients dans le système entre avec une

probabilité pn et part avec la probabilité qn = 1− pn Si une longue file d’attente décourage les
clients, alors pn est une fonction décroissante de n .

Comme un cas particulier s’il y a une salle d’attente fini de capacité K nous pouvons sup-
poser que :

pn =


1 pour : n < K;

0 pour. n ≥ K.

Indiquant que, une fois la salle d’attente est remplie de capacité K, aucun plus de clients
ne peuvent entrer dans le système .
Soit à présent, X(t) le nombre de clients dans le système à l’instant t .
Nous admettons que si le processus d’arrivées est Poisson de taux λ et les clients qui arrivent
quand il y a n clients dans le système entrent avec la probabilité pn, alors les paramètres de
naissances sont :

λn = λpn pour n = 1, 2, ...

Dans le cas d’un seul serveur,

µn = µ pour n = 1, 2, ...

Nous pouvons évaluer la loi stationnaire πk de la longueur de la file d’attente par les moyens
habituels.
Dans des systèmes avec rejet, pas tous les clients arrivants entrent dans le système et certains

28
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sont perdus .
Alors le taux d’entrée est le taux au quel les clients entrent effectivement au systéme à l’état
stationnaire et est donné par

λI = λ
∞∑
n=0

πnpn

le taux au quel les clients sont perdus est :λ
∞∑
n=0

πnqn

Examinons en détail le cas d’un système M/M/c dans lequel ;le client arrivant entre dans le
système si et seulement si un serveur est libre, alors

λk =


λ pour : k = 0, 1, ..., c− 1;

0 pour. k = c.

et

µk = kµ pour k = 0, 1, ..., c

Pour déterminer la distribution stationnaire on a :

ρk =
λ0λ1...λk−1
µ0µ2...µk

=
1

k!
(
λ

µ
)k pour k = 0, 1, ..., c

et comme :

πk =
ρk∑∞
k=0 ρk

Alors,

πk =

1
k!
(λ
µ
)k∑

1
j!
(λ
µ
)j

pour k = 0, 1, ..., c (3.1)

3.2 Systèmes avec retour
Considérons un système avec un seul serveur avec des arrivées de Poisson et des temps de

service exponentielles mais supposons qu’un certain client en départ du serveur retourne à la
fin de la file d’attente pour un service supplémentaire. Supposons en particulier qu’un client
quittant le serveur s’écarte du système avec la probabilité q et retourne à la file d’attente pour
un service supplémentaire avec la probabilité p = 1− q. Comme le montre le schéma suivant :
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Ainsi que toutes telles décisions sont statistiquement indépendantes et que les demandes
d’un client retournant au service sont statistiquement les mêmes que ceux d’un client arrivant
de l’extérieur le système.
Soient,

• λ : le taux d’arrivée au système.

• µ : le taux de service.

• X(t) : le nombre de clients dans le système à l’instant t.
Il s’en suit que X(t) est bien un processus de naissance et de mort. Avec ;

λn = λ pour n = 0, 1, ...

µn = qµ pour n = 0, 1, ...

ρk =
λ0λ1...λk−1
µ0µ2...µk

= (
λ

qµ
)k

π0 =
1∑∞
k=0 ρk

=
1∑∞

k=0(
λ
qµ
)k

= (1− λ

qµ
)
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Donc, quand λ < kµ

πk = (1− λ

qµ
)(
λ

qµ
)k

3.3 Une file d’attente avec deux serveurs
Considérons un système à deux serveurs où le serveur i a le taux µi pour i = 1, 2. Les

arrivées dans le système suivent un processus de Poisson de taux λ. Un client qui arrive au
systéme quand il est vide va directement au premier serveur.
Si un client arrive au système quand le premier serveur est occupé s’oriente au deuxième serveur.
comme le montre le schéma suivant

Et si les deux serveurs sont occupés, le client est perdu.
Le système est décrit par la paire (X(t), Y (t)) où,

Xt =


1 si le serveur 1 est occupé ;

0 si le serveur 1 est inoccupé .

et

Yt =


1 si le serveur 2 est occupé ;

0 si le serveur 2 est inoccupé .

Les quatre états du système sont : {f(0, 0), (1, 0), (0, 1), (1, 1)} et les transitions entre ces états
sont données dans le tableau suivant :
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Le processus (X(t), Y (t))à états finis, est une chaîne de Markov continue et les taux de
transitions donnent la matrice infinitésimal de la chaîne de Markov

A =

∥∥∥∥∥∥∥∥
−λ 0 λ 0
µ2 −(λ+ µ2) 0 λ
µ1 0 −(λ+ µ1) λ
0 µ1 µ2 −(µ1 + µ2)

∥∥∥∥∥∥∥∥ (3.2)

On trouve la loi stationnaire

π = (π(0,0), π(0,1), π(1,0), π(1,1))

par résolvant l’équation :

πA = 0

qui donne naissance au système d’équation :

−λπ(0,0) +µ2π(0,1) +µ1π(1,0) = 0
−λ(λ+ µ2)π(0,1) +µ1π(1,1) = 0

λπ(0,0) −λ(λ+ µ1)π(1,0) +µ2π(1,1) = 0
λπ(0,1) λπ(1,0) −(µ1 + µ2)π(1,1) = 0

Avec

π(0,0) + π(0,1) + π(1,0) + π(1,1) = 1

Par un calcul d’algèbre élémentaire nous obtenons la solution :

π(0,0) =
µ1µ2(2λ+µ1+µ2)

D

π(0,1) =
λ2µ1
D

π(1,0) =
λµ2(λ+µ1+µ2)

D

π(1,1) =
λ2(λ+µ2)

D

(3.3)
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où

D = µ1µ2(2λ+ µ1 + µ2) + λ2µ1 + λµ2(λ+ µ1 + µ2) + λ2(λ+ µ2)

3.4 Files d’attente prioritaires de préemption
Envisageons un processus de file d’attente de serveur unique qui a deux catégories de

clients ;prioritaires et non prioritaires, formant un processus d’arrivée de Poisson,indépendantes
avec des taux α etβ respectivement.
Les temps de services sont indépendantes et exponentiellement distribués avec les paramètres
γ etδ respectivement.
Dans cette étude la discipline du système est la suivante :
• Premier arrivé premier servi pour les clients non prioritaires.

• Le service des clients prioritaires n’est jamais interrompu.

• Si un client prioritaire arrive lors d’un service d’un client non prioritaire, alors le service de
ce dernier est immédiatement arrêté en faveur au client prioritaire.

• Le service interrompu du client est repris quand il n’y a pas de clients prioritaires actuels.
Pour notre étude nous introduisons les outils suivants :

1. Le taux d’arrivée du système est :

λ = α + β

2. La fraction

p =
α

λ

Dont sont les clients prioritaires dans le système.

3. La fraction

q =
β

λ

Dont sont les clients non prioritaire dans le système.

4. Dans le système le temps moyen de service est donnée par les moyens pondérées de manière
appropriée :

1

γ
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Pour les clients prioritaire et

1

δ

Pour les clients non prioritaires. et pour la somme est :

1
µ
= p( 1

γ
) + q(1

δ
) (3.4)

= 1
λ
(α
γ
+ β

δ
) (3.5)

Oùµ est le taux du service du système Finalement nous introduisons

5. l’intensité du trafic pour le système :

ρ =
λ

µ

6. pour les clients prioritaires :

σ =
α

γ

7. pour les clients non prioritaires :

τ =
β

δ

Par la formule [3.5]On remarque que :

ρ = σ + τ

L’état du système est décris par la paire ((X(t), Y (t))où X(t) est le nombre de clients prio-
ritaires dans le système et Y (t) le nombre de clients non prioritaires dans le système.
Observant à présent que les clients prioritaires regardent le système comme une simple file
d’attente M/M/1 ;Par conséquence on a la distribution stationnaire donnée par la l’équation
[2.6]

πm = lim
t−→∞

P(X(t) = m) (3.6)

= (1− σ)σm (3.7)

Ainsi que pour la longueur de la fie :

Lp =
σ

1− σ
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Le temps moyen de service

W =
Lp
α

=
1

γ − α

Mais ce n’est pas le cas pour les clients non prioritaire et n’est pas aussi facile d’obtenir des
informations puisque ces arrivées sont fortement affectés par les clients prioritaires. Cependant
(X(t), Y (t))est un état discret, alors la chaine de Markov en temps continu et ses techniques
nous permettra de décrire la distribution limite quand elle existe.
Les transitions sont décrites dans la table suivante :

Considérons

πm,n = lim
t−→∞

P(X(t) = m,Y (t) = n)

La loi stationnaire du processus.
Par un raisonnement analogue

(α + β)π1,0 = γπ1,0 +δπ0,1 (1)
(α + β + γ)πm,1 = γπm+1,0 +απm−1,0 (2)
(α + β + γ)π0,n = γπ1,n δπ0,n−1 +βπ0,n−1 (3)
(α + β + γ)πm,n = γπm+1,n +βπm,n−1 +απm−1,n (4)

Nous allons nous contenter de déterminer le nombre moyen Ln des clients non prioritaires dans
le système àl’état d’équilibre donné par :

Ln =
∑∞

m=0

∑∞
n=0 nπm,n (3.8)

Nous introduisons la notation :

Mn =
∑∞

n=0 nπm,n =
∑∞

n=0 nπm,n (3.9)

et donc :

Ln = M +M +... (3.10)

Par [3.7]nous obtenons :

pn = P{X(t) = m} =
∑∞

n=0 πm,n = (1− σ)σm (3.11)
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et

πn = P{Y (t) = n} =
∑∞

n=0 πm,n (3.12)

Nous commençons par additionner les deux cotés de (1) et (2) pour m = 0, 1, ... Pour obtenir :

(α + β)π0,0 +γ
∑∞

n=0 πm,0 = γ
∑∞

n=0 πm,0 +δπ0,1 +απ0

Après simplification ;

βπ0 = δπ0,1 (3.13)

Maintenant nous sommons (3)et(4) surm = 0, 1, ...
Pour obtenir :

(α + β + δ)π0,n + (α + β + γ)
∑∞

m=0 πm,n = γπ1,n + δπ0,n+1 + βπ0,n−1 +
γ
∑∞

m=0 πm+1,n + β
∑∞

m=0 πm,n−1 + α
∑∞

m=0 πm−1,n

Par suite :

(α + β)πn + δπ0,n + γ
∑∞

m=1 πm,n = γ
∑∞

m=1 πm,n + δπ0,n+1 + βπn−1
+απn

Par suite :

βπn + δπ0,n = βπn−1 + δπ0,n+1

Par induction avec [3.13], nous obtenons :

βπn = δπ0,n+1 pour n = 0, 1, ... (3.14)

Sommant [3.14] et utilisant le fait que :
∑

n πn = 1
Nous avons

β = δ
∑∞

n=0 π0,n+1 = δP{X(t) = 0, Y (t) > 0}

Or

P{X(t) = 0, Y (t) > 0} =
∑∞

n=0 π0,n = β
δ
= τ (3.15)

Comme [3.5] affime que

P{X(t) = 0} = 1− α
γ
= 1− σ

On a :
π0,0 = P{X(t) = 0, Y (t) > 0} = P{X(t) = 0}P{X(t) = 0, Y (t) > 0}

= 1− α
γ
− β

δ
= 1− σ − τ

oùσ + τ < 1
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Avec les résultats préliminaires, nous nous tournons vers la détermination de

Mm =
∑∞

n=1 nπm,n

et ceci en multipliant (3) par n et en sommant, nous tirons :

(α + β + δ)M0 = γM1 + δ
∑∞

n=1 nπ0,n+1 + β
∑∞

n=1 nπ0,n−1

= γM1 + δM0 − δ
∑∞

n=1 nπ0,n+1 + βM0 + β
∑∞

n=1 nπ0,n−1

= γM1 + δM0 − δ(βδ ) + βM0 + β(1− σ)

où la dernière ligne est un résultat de [3.9]et[3.15].
Après simplification et réarrangement, le résultat et :

M1 = σM0 +
β
γ
σ (3.16)

Par suite nous multiplions (4) par n et nous sommons ;
Alors

(α + β + δ)Mm = γM1 + β
∑∞

n=1 nπm,n−1 + αMm−1
= γMm+1 + βMm + β

∑∞
n=1 nπm,n−1 + αMm−1

Nous nous référons à [3.11]et nous simplifions la formule ;

(α + δ)Mm = γMm+1 + αMm−1 + β(1− σ)σm pour m = 1, 2, ... (3.17)

Après quelques calculs, nous arrivons à la résolution des équation (3.20)et(3.21) qui donnent :

Mm = M0σ
m + β

γ
σm pour m = 1, 2, ...

nous sommons sur m pour obtenir le résultat que nous désirons :

Ln =
∑∞

m=0Mm = 1
1−σ [M0 +

β
γ

σ
(1−σ) ] (3.18)

Ce résultat détermine Ln en fonction de M0

Pour obtenir la seconde relation, nous multiplions (3.18) par n et nous sommons :

β
∑∞

m=0 nπ0,n+1 = βLn = δ
∑∞

m=0 nπ0,n+1

= δM0 −
∑∞

m=0 nπ0,n+1

= δM0 − δ(βδ )

Du coup :

M0 = β
δ
(Ln + 1) = τ(Ln + 1) (3.19)
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Nous remplaçons [3.18]dans [3.19] :

Ln = 1
1−σ [M0 +

β
γ

σ
(1−σ) ]

= 1
1−σ [τ(Ln + 1) + β

γ
σ

(1−σ) ]

Ln − τ
1−σLn = 1

1−σ [τ +
β
γ

σ
(1−σ) ]

(1− τ
1−σ )Ln = 1

1−σ [τ +
β
γ

σ
(1−σ) ]

Ln = τ
1−σ−τ [1 + ( δ

γ
σ

(1−σ))] (3.20)

Donc la condition pour queLn soit fini(et la loi stationnaire existe) est

ρ = σ + τ < 1

Autrement dit, l’intensité du trafic du système doit être inférieure à 1.



Chapitre 4

Application :Traffic routier

Nous avons travaillé sur un document réalisé par Daniel FLIPO en (2013) qui traite une
situation routière basique se rapprochant des systèmes M/M/1. Le modèle est le suivant :

1. La route est une voie à deux directions en ligne droite
2. Un entrepreneur souhaite efectuer des réparations sur une des voies, il va devoir faire un

chantier qui bloquera la voie concernée sur une certaine longueur
3. il installe des feux tricolores de part et d’autre du chantier, permettant à chaque file de

passer alternativement le chantier sur la file restante Les paramètres du modèle sont :

. L : La longueur du chantier (en m).

. λ1, λ2 : Les paramètres des processus de Poisson modèlisant les arrivées de véhicules
dans un sens et dans l’autre.

. v : La vitesse des véhicules (en m/s).

. d1, d2 :La durée durant laquelle chaque feu est au vert/ au rouge (en s).

. K1, K2 :Le nombre de voitures que l’on veut laisser passer dans chaque sens.

. a : Le temps qu’une voiture met pour démarrer (en s).

4.0.1 Cycle des feux, engorgement, contraintes

Cycle des feux

Un cycle des feux se déroule de la façon suivante :

. à l’instant 0 le feu 1 passe au vert.

. à l’instant d1 il passe au rouge.

. à l’instant d1 + L
v

(le temps qu’il faut pour évacuer la dernière voiture passée au feu
vert de la zone du chantier) le feu 2 passe au vert.

. à l’instant d1 + L
v
+ d2 le feu 2 passe au rouge.

. à l’instant d1 + L
v
+ d2 +

L
v
le cycle est fini, on revient à l’instant zéro.

39
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Engorgement, contraintes

Si on veut faire passer K véhicules dans un sens, on doit laisser le feu au vert pendant un
laps de temps au moins égal à a.K, ce qui donne ici :

d1 ≥ aK1, ;

d2 ≥ aK1, .

Le risque principal d’un mauvais ajustement des paramètres des feux est la situation où la
longueur de la file d’attente d’un des feux augmente plus qu’elle ne réduit ; sa longueur aug-
mente sans borne et le système s’engorge. Dans ce modèle M . Flipo suggère que l’engorgement
peut s’éviter en respectant ces inégalités :

d1 ≥ aλ1(d1 + d2 + 2L
v
), ;

d2 ≥ aλ2(d1 + d2 + 2L
v
), .

Il considère ici que la durée pendant laquelle un feu est au vert doit être au moins égale à
la durée laissant passer le nombre moyen de véhicules arrivés pendant un cycle. Il n’y a donc
théoriquement que très peu de chance que le système s’engorge, il faudrait que le flux d’arrivée
se comporte pendant longtemps largement au dessus sa moyenne.
On peut discuter le fait que ces différentes minorations de d1 et d2 ne prennent pas en compte la
distance entre le feu et le véhicule qui démarre, l’auteur considérant que chaque voiture démarre
directement du feu.
Ceci est contrebalancé par le fait que le coeffcient appliqué à a est la durée totale d’un cycle
(le feu reste au vert assez longtemps pour laisser passer le nombre théorique moyen d’arrivants
pendant la durée qu’il passe au rougeET au vert). Néanmoins dans certaines simulations on a
rencontré des (rares) cas où ces inégalités s’avèrent insuffsantes.
n pourra aussi (par exemple) inffuencer le fonctionnement du système dans l’autre sens en
augmentant artiffciellement le temps a de réaction d’un automobiliste avant de démarrer afin
de prendre en compte la distance moyenne qui le sépare du feu dans la file d’attente.



4.0.1 Cycle des feux, engorgement, contraintes 41

Conclusion

Dans ce mémoire nous illustrons l’utilité de la théorie des files d’attente . Ce travail nous a
également permis de montrer l’importance de cette étude qui s’agit de prédire le comportement
des systémes d’attente.
Comme nous venons de voir ; les phénomènes d’attente sont retrouvés dans certains systèmes
tels les réseaux téléphoniques, les systèmes informatiques, dans les banques ,dans la route,
etc...
Si jamais vous avez vu une caricature dans votre journal local, vous savez ce que vous avez
regardé n’est pas la photo d’une personne particulière, mais malgré cela vous reconnaissez de
qui il s’agit ; parce que l’artiste pour renseigner le lecteur a représenter par quelques coups de
crayons bien choisis les trais caractéristiques de son visage.
C’est exactement ce que fait un bon modèle des files d’attente .
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