République Algérienne Démocratique et Populaire

Ministére de 'enseignement supérieur et de la recherchescientifique

- UNERSITY

o o 7 UNVERSTY
‘:thECSfﬂE]& N" Attribué par la bibliothéque f121.of SAIDA
1\ .,' . ‘ﬁﬁ_ﬁ MOULAY L-QR

Année univ.: 2019/2020

Méthodes variationnelles pour problemes
périodiques
Mémoire présenté en vue de I'obtention du diplome de

Master Académique

Université de Saida - Dr Moulay
Tahar
Discipline : MATHEMATIQUES
Spécialité : Analyse mathématique

par

Maamar FELLAH?

Sous la direction de

Dr Fatima DIB

Soutenu le 14/09/2020 devant le jury composé de

Dr N. BEKKOUCHE Université Dr Tahar Moulay - Saida  Président

Dr F. DIB E.S.S.A - Tlemcen Encadreur
Dr H.ABESS Université Dr Tahar Moulay - Saida =~ Examinateur
Dr S. BENMANOUSR E.S.M - Tlemcen Examinateur

t, E-mail : cstag4402@gmail.com



A mes chers parents.



Remerciements

Tout d’abord, je remercie Dieu tout puissant qui m’a donné la volonté et
la force afin de parfaire ce travail et le mener a terme

Mes remerciements vont particuliérement aussi 2 :

Mon encadreur Mme F. DIB pour son aide morale et ses précieux

conseils qui m’ont aidé a déterminer ce travail.

Mme N. BEKKOUCHE d’avoir bien voulu accepter la présidence du
jury.

Mme H. ABESS,

Mme S. BENMANSOUR, qui ont accepté de se pencher sur
I’évaluation de mon travail.

Mr le chet de département de mathématiques DJABBOURUI, et a tous
les enseignants qui ont participé a ma formation.

La famille FELLAH et mes amis.

A tous ceux qui, de pres ou de loin, m’ont apporté leur soutien.



Table des matieres

0.1 Introduction . . . ... ... . . . . .. ... 3

1 Notions préliminaires 5
1.1 Notions d’analyse fonctionnelle . . . . ... .. ... ... .... 5
1.1.1  Quelques notions de convergence . . . . . ... ... ... 5)

1.1.2 Espacesréfléxifs . . . . . . . ... oo 7

1.2 Lesespacesde Sobolev . . . . .. ... ... oL 8
121 Espaces C* . . . . . . . ... ... ... ... ... 8

1.2.2 Espaces de Lebesgue . . ... ... ... .. ...... 8

1.2.3 Espaces de Sobolev . . . .. ... .. .......... 9

1.3 Théoréemes d’injection . . . . . . .. ..o 9
1.3.1 Inégalité de Poincaré . . . . ... ... ... .. .... 10

1.3.2 Espaces de Sobolev avec conditions aux limites périodiques 11

2 Meéthodes variationnelles 12
2.1 Approche variationnelle d’un probléme . . . . . .. ... .. ... 12
2.2 Rappels . . . . . e 13
2.2.1 Points éxtremes . . . . . .. ..o 13

2.2.2 Fonctions convexes . . . . . . . . ... oo 14

2.3 Reésultats de minimisation . . . . ... .. ... ... ....... 14
2.4 Théorie des points critiques . . . . . . .. ..o 15

3 Approche variationnelle pour un probléme périodique 17
3.1 Imtroduction . . . . . . . . . ... 17
3.2 Préliminaires . . . . . .. ... e 19
3.3 Résultats d’existence . . . . . ... ... ... . 21

4 Application 27
4.1 Présentation du Probleme . . . . .. ... ... .. ... ..., 27
4.2 Reésultat d'existence . . . . . . .. . ... Lo 28

5 Conclusion 30



Notations

R:
R"™ .
Rt :
7 -
N:
QO
) de
L,
di2
inf
lim inf

Ensemble des nombres réels

R xR x ... x R n fois.

Ensemble des nombres réels positifs.

Ensemble des nombres relatifs

Ensemble des nombres naturels

Ensemble ouvert de R".

La dérivée de la variable x par rapport au temps t.

La dérivée seconde de la variable = par rapport au temps ¢.
La borne inférieure

La limite inférieure



Introduction Générale

0.1 Introduction

Les équations différentielles permettent d’aborder d’un point de vue mathéma-
tique des phénomeénes observés, elles apparaissent souvent dans la modélisation
de processus de phénomeénes naturels. Elles sont omniprésentes dans les dif-
férentes sciences, Physique, Chimie, Biologie (voir [13, 17]).

Un probléme trés important pour certaines applications est la recherche de
solutions périodiques du systéme du type

o' = f(z,1),

ou f(x,t), est une application continue dans R", supposée périodique par rapport
a la variable réelle t de période T' (cas non autonome), ou encore du type

o = 1),

(cas autonome).

On ne dispose d’aucune méthode d’investigation assez puissante pour répon-
dre a ces questions de maniere générale. Les méthodes existantes sont de deux
catégories. Les unes, méthode de perturbation, méthode de centrage, permet-
tant I’étude de systémes quasi linéaires, c’est-a-dire de systémes dans lesquels la
partie non linéaire apparait multipliée par un parameétre qu’on suppose petit, le
calcul de représentations asymptotiques des solutions périodiques est générale-
ment possible, ainsi que 1’étude de la stabilité de ces solutions. Les autres sont
des méthodes topologiques ou variationnelles [2, 14, (] qui fournissent pour cer-
tains systémes fortement non linéaires des résultats d’existence de solutions péri-
odiques.

Les méthodes variationnelles ont une longue histoire qui remonte & Pierre
Fermat (1657) et Christian Huygens (1690) pour 1’étude de la propagation de
la lumiére (principe de Fermat et principe de Huygens-Fresnel). Néanmoins,
le calcul des variations est né publiquement en 1696, avec le probleme de la
courbe brachistochrone, posé par Jean Bernoulli (& la suite de Galilée dans son
dialogue sur les deux grands systémes du monde paru en 1632), et résolu par
Newton, Leibniz, Jakob et Johann Bernoulli [3]. Le développement extraor-
dinaire de I'analyse fonctionnelle, théorie de la mesure et de I'intégration qui a

3



0. Introduction Générale 4

explosé au cours du XXe siécle (avec I’étude précise des propriétés topologiques et
métriques des espaces vectoriels de dimensions infinies, la théorie de I'intégration
de Lebesgue et beaucoup d’autres techniques) a permis de développer la théorie
du calcul variationnel [2].

Dans ce mémoire, nous discutons 'existence de solutions 27-périodiques non
constantes pour une classe d’équations différentielles du second ordre du type;

2(t) + f(t2(t)) = 0. (1)

Notre approche est variationnelle basée sur une minimisation directe sous la
contrainte

/0 (bt = 0. @)

Ce travail est constituée de trois chapitres principaux répartis comme suit:
Chapitre 1: intitulé "Notions préliminaires", comprend un rappel de quelques
définitions et notions de base de I’analyse fonctionnelle,

Chapitre 2: intitulé "Méthodes variationnelles" dans lequel nous donnons
un apercgu sur les méthodes variationnelles et leurs applications.

Chapitre 3: intitulé "Approche variationnelle pour un probléme péri-
odique", ou nous étudions l'existence de solutions 27-périodiques de notre
probléme. Nou ennoncons deux théorémes ainsi qu’un corollaire illustrés par
des exemples.

Chapitre 4: intitulé "Application" dans lequel nous appliquons I'un de nos
résultats principaux & un probléme d’oscillation.

Nous achevons par une conclusion ot nous présentons une synthése du travail
effectué.



Chapitre 1

Notions préliminaires

Sommaire
1.1 Notions d’analyse fonctionnelle . . . . . .. ... ... 5
1.1.1  Quelques notions de convergence . . . .. .. .. ... 5
1.1.2 Espaces réfléxifs . . . . . ... ... .. L. 7
1.2 Les espacesde Sobolev . .. ... ............ 8
1.21 Espaces CF . . . .. ... ... ... ... ... 8
1.2.2 Espaces de Lebesgue . . . ... .. ... ...... 8
1.2.3 Espaces de Sobolev . . . . ... ... .. ... ... 9
1.3 Théorémes d’injection . . . . . ... ... .. ...... 9
1.3.1 Inégalité de Poincaré . .. ... ... ... ... .. 10

1.3.2 Espaces de Sobolev avec conditions aux limites péri-
odiques . . . . ... 11

Dans ce chapitre, nous rappellons quelques outils de I’analyse fonctionnelle,
qui sont nécessaires pour le développement de notre travail.
1.1 Notions d’analyse fonctionnelle

Pour plus de détails sur les notions rappelées dans ce paragraphe voir [5, 9].

1.1.1 Quelques notions de convergence

Soient X et Y deux espaces de Banach.

Définition 1.1.1 Définition 1.1.2 (Convergence d’une suite) Soit (z,),
une suite de X et xg € X .
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On dit que (x,), converge vers xo (en norme) si lir+n |z — x0]l, = 0, et on
n—-roo

ecrit x, — xo dans X.

Définition 1.1.3 (Opératuer borné) On dit qu’'un opératuer T : X — Y est
borné si limage de tout borné dans X par T est un borné de Y. i.e : pour tout
ensemble D borné dans X, T(D) est borné dans Y.

On note B(X,Y') l’ensemble des applications linéaires et bornées de X dansY.
Le cas Y = R est trés important par la suite.

Définition 1.1.4 (Espace dual) La classe des fonctionnelles linéaires et bornés
définies sur X est appelé espace dual de X, et sera notée par X'.
On munit X' de la norme

| Jly, = sup [(J.z)|, pour J € X"

zeX, ||zl <1
X' muni de cette norme est un espace de Banach et nous avons l'inégalité
()| < Tl lally . ¥ € X', Vo € X.

Ezxzemple 1.1.1 (Duals de certains espaces) Soit Q2 un ouvert de R.
1) Soit p avec 1 < p < 400; on pose

LP(Q) = {f:Q—>]R; | mesurable et (/Q|f(a:)dx|p>p}

vy = 1], = ( / If(:c)daslp) g

Pour1 <p <400 on a:

On note

1 1
(LP(Q)) = LY(Q) tel que — + — = 1.
p g
2) On pose
L*(Q)={f:Q —=R; f mesurable eta3M >0 |f(z)| < M p.p sur Q}

On note
L=(Q) = |f| =inf {M; |f(z)] <M p.p sur Q}.

On a

Pour plus détails voir [5].
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Remarque 1.1.1 Nous remarquons que si (x,) C X est une suite telle que:
T, — o dans X alors
VJ e X' (J,x) — (J ).

L implication inverse n’est pas en général vraie.

Définition 1.1.5 (Convergence faible) On dit qu’une suite (x,) C X con-
verge faiblement vers x, si

VJ e X' (J,x,) — (J,x),
et on écrit x,, — x

Proposition 1.1.1 Soit (x,) une suite de X. On a:
1. Six,, — xq, alors x,, — xg.
2. Six, — x0, alors (x,) est bornée et ||z| < liminf, . |||y -
3. Six, — xo, et J, = J dans X', alors (J, x,) — (J, x).

Proposition 1.1.2 Lorsque X est de dimension finie, une suite (x,) converge
faiblement si et seulement si elle converge faiblement.

Définition 1.1.6 Un ensemble A C X est dit faiblement pré-compact si toute
suite de A contient une sous suite faiblement convergente.
Si toutes les limites faibles sont dans A, alors A est dit faiblemenet compact.

1.1.2 Espaces réfléxifs

Comme nous allons voir par la suite, on ne peut pas appliquer les méthodes
variationnelles que lorsque’on travaille dans des espaces de Banach qui ont cette
propriété que toute boule fermée est faiblemenet compact. Les espaces de Banach
qui ont cette propriété sont appelés réflexifs.

Soit X un espace de Banach, X’ son dual et X" son bidual. On a une injection
canonique i : X — X" définie comme suit:

<Z(£L‘), J)X”,X’ = <J, ZL‘>X/7X Vo € X, vJ e X'
7 est linéaire et c’est une isomeétrie.

Proposition 1.1.3 Définition 1.1.7 Remarque 1.1.2 Définition 1.1.8 On
dit que X est réflexf si i(X) = X" (i est surjective de X sur X".)

Exemple 1.1.2 soit Q) un ouvert de R.
1. Un espace de Hilbert est réflexif.
2. Les espaces fonctionnels LP(S2) sont réflexifs pour 1 < p < +o0.
3. LY(Q) nest pas réflexif.

Pour plus de détails voir [5].

Théoréme 1.1.1 Un espace de Banach X est réflexif si et seulmenet si toute
boule fermée est faiblement compacte.
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Corollaire Si X est un espace de Banach réflexif alors toute suite bornée
(xn) C X avec ||z,||y < M, contient une sous suite qui converge faiblement
vers un élément x € X vérifiant ||z|, < M.

Corollaire Soit X un espace de Banach. Alors X est réflexif si et seulement
si X' est réfléxif.

1.2 Les espaces de Sobolev

Les espaces de Sobolev jouent un role fondamental dans le calcul variationnel.
Nous commencons par donner quelques définitions et notations nécessaires pour
I'introduction de ces espaces. Pour une présentation plus compléte des espaces
de Sobolev se référer a [1].

1.2.1 Espaces C*

Soit I un intervalle borné de R et k € N.
C* (I) est l'espace des fonctions = de classe C* sur I, muni de la norme suivante

k
]| o = ;i&p ERIOIE

Si k=0,C°(I) = C(I), I'espace des fonctions continues sur /. La norme est
définie par
[#]loe = sup |a(t)].
tel

C2 (I) est 'ensemble de toutes les fonctions définies sur 7, infiniment dérivables
a support compact.

1.2.2 Espaces de Lebesgue

LP(I), 1 < p < oo est 'ensemble de toutes les fonctions mesurables x définies

sur [ telles que la norme
1
il = ([ 1atorar)
est finie.

Pour p = oo, L (I) est 'ensemble de toutes les fonctions mesurables x
bornées sur I. La norme est définie par

]| oo = esssup [z(1)]
tel

LP (I) est un espace de Banach pour tout 1 < p < co.
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Théoréme 1.2.1 (Inégalité de Hoélder) Pour 1 < p < oo et p' le conjugué

depie s+ =1sifell(I)etge LP (I), alors f.g € L' et

/] ol < 11w gl (L1)

1.2.3 Espaces de Sobolev

Définition 1.2.1 W*? (1), 1 < p < oo,k € Z* est l’espace de toutes les fonc-
tions x € LP (I) telles que 9 € LP (I) pouri = 1,....k; ou les dérivées ) sont
au sens des distributions.

WP (I) est muni de la norme

a v
1l (ry = (/I > |x(i)(t)\pdt> : (1.2)
i=0

Remarque 1.2.1 1)- La norme Zf:o IES

tout z € WhP (I).
2)- WO (I) = L* (I).

M|, est équivalente a 2\l ey POUT
Proposition 1.2.1 W"? (I) est un espace de Banach.
Pour p = 2, W*2(I) est souvent noté H* (I).

Proposition 1.2.2 H* (I) muni du produit scalaire réel

k
(2,9) e = / SO (1) (1)t
I—o

est un espace de Hilbert.

1.3 Théorémes d’injection

Les théorémes d’injection définissent les relations qui existent entre différents
espaces fonctionnels. Ils sont trés importants dans ’analyse moderne et les
problémes aux limites.

Définition 1.3.1 Soient E; et E, deux espaces de Banach. On dit que E; est
injecté dans Ey et on écrit By — Esy, si pour tout x € Ey on ax € Ey et ||x||E2 <
cllzlly, , ot la constante ¢ ne dépend pas de x € Ey. On définit 'opérateur
dinjection J : Fy — FEs, qui nous permet de considérer le méme élément x € E
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comme un élément de Es.

Ey — FEy est équivalent a dire que ['opérateur d’injection J : Ey — FE5 est un
opérateur linéaire continu.

Si ||zl g, < cllzllg, , pour tout v € Ey, alors ||J| 5, _p < c.

Définition 1.3.2 Si Ey, — FE, et l'opérateur d’injection J : E; — Fy est un
opérateur compact, alors on dit que 1 est injecté de maniére compacte dans Fs,
et on écrit: By —<— Fs.

La compacité de l'opérateur J : E1 — Fy est équivalent a dire que tout sous-
ensemble borné de E; est un sous-ensemble compact de Es.

Théoréme 1.3.1 I] existe une constante C' (dépendante seulement de |I| < c0)
telle que
’u‘Loo S C HUHWLP 9 1 S p S 0,

autrement dit WP (p) C L>(I) avec injection continue pour tout 1 < p < co.
De plus, lorsque I est borné, on a

WP(p) —— C(I) pour 1 < p < oo.
W (I) < LY(I) pour 1< q < .

Théoréme 1.3.2 (Rellich-Kondrachov) Soit N € N et Q un domaine ou-
vert borné de classe C* dans RY. On a :

sip < N alors W' (Q) << L1(Q) pour tout g € [1,p*], ot p* = ]ifv—j;,

sip= N alors WP (Q) << L1(Q) pour tout q € [1,+0o0].

sip> N alors W' (Q) —— C (Q) .

En particulier, on a toujours :H' (Q) —— L*(Q).

Remarque 1.3.1 La condition sur le domaine §2 est nécessaire, si §2 n’est pas
borné alors les injections ne sont pas compactes en général.

1.3.1 Inégalité de Poincaré

L’inégalité de Poincaré est un résultat de la théorie des espaces de Sobolev. Cette
inégalité permet de borner une fonction & partir d’une estimation sur ses dérivées
et de la géométrie du domaine sur lequel elle est considérée.

Soient p, tel que 1 < p < oo et 2 un ouvert borné. Alors il existe une
constante C, dépendant uniquement de €2 et p, telle que, pour toute fonction x
de lespace de Sobolev W™ (),

lzll, < C Vel .
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Remarque 1.3.2 L’inégalité de Poincaré permet d’établir I’équivalence sur VVO1 P (Q)
entre la norme (1.2) et celle définie par

] =) ||V, . (1.3)

1.3.2 Espaces de Sobolev avec conditions aux limites
périodiques

Prenons I = [0,7], pour 1 < p < oo, 'espace de Sobolev W%’p est 'espace des
fonctions = € LP (I,R) ayant une dérivée faible 2’ € LP (I,R) avec xz(0) = z(T).
W;” muni de la norme

[ lly2e = (/OT =) + |2’ ()["] dt> ’ : (1.4)

est un espace de Banach réflexif.
Proposition 1.3.1 Stz € W%’p, alors il existe une constante c telle que

2]l < cllzllyrr (1.5)

de plus si fOT z(t)dt = 0, alors

1]loe < e ll2'll o -

H} est lespace de Hilbert W,>muni du produit scalaire

(2.y) = / w(y(t) + 2/ ()y' (1) dt

et de la norme correspondante ||z|| = ||9:||W%,2 :

Décomposition orthogonale de H}.

H}2 se décompose en somme directe H+ = HT & H~, ou H' dénote le sous-
espace de H1 de fonctions a valeur moyenne nulle et H~ le sous-espace de H
de fonctions constantes. H* et H sont orthogonaux.

Dans ce cas, nous obtenons les estimations suivantes.

Proposition 1.3.2 Siz € H*, alors

T ) T2 T )
< — ' 1.
| oras = [Cworae (1.6

( Inégalité de Wirtinger) et
T

T
N A A

Il < 15 |

(Inégalité de Sobolev).
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Méthodes variationnelles
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Les méthodes variationnelles constituent une technique puissante dans I’analyse
non linéaire. Elles sont utilisées dans différentes disciplines des mathématiques
pures et appliquées, faisant intervenir les problémes aux limites associés a des
équations différentielles ordinaires et aux dérivées partielles.

2.1 Approche variationnelle d’un probléme

Un certain nombre de problémes dans la théorie des équations différentielles
peuvent étre exprimés sous la forme d’une équation

Az =0, (2.1)

oun A: X — Y , X etY sont des espaces de Banach. Cette équation a une
structure variationnelle, s’il existe une fonctionnelle ¢ : X — R telle que

t —
(Ala).y) = lim 2T = 20)
oY = X', le dual de X, (.,.) est le couple de dualité entre X et X’'. Dans ce
cas, nous pouvons écrire A = ¢’ et I’équation (2.1) devient

Y

(¢'(z),y) =0, pour tout y € X. (2.2)

12
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En écrivant I’équation (2.2), nous avons exprimé I’équation (2.1) sous une forme
faible. Le probléme se transforme alors, en la recherche des points critiques de la
fonctionnelle ¢ qui représentent les solutions de (2.1). Si X = RY, les candidats
évidents pour les points critiques sont les maximums et minimums locaux de ¢.
La situation est plus compliquée si ¢ est une fonction définie sur un espace de
dimension infinie.

Dans la suite, nous présenterons des arguments pour prouver l’existence de
points critiques d’une fonctionnelle réelle ¢ définie sur un espace de Banach X.

2.2 Rappels

Nous rappelons les définitions nécessaires pour I’énoncé des théorémes d’existence
de ces points critiques. pour plus de détails voir les références [, 9, 12, 16, 14].

2.2.1 Points éxtremes

Définition 2.2.1 Soit ¢ : X — R wune fonctionnelle. Un point o € X est
appelé extrémum de ¢ s’il existe un voisinage U(xo) de xq tel que :ou bien

o(z) < ¢(z0), Yo € U(xo), (¢ est maximal en o),

ou bien
o(x) > p(xo), Yo € U(xg), (¢ est minimal en xy).

Définition 2.2.2 (Point critique d’une fonction) Un "point critique” de ¢
e C' (X,R) est un point x € X pour lequel ¢'(x) = 0.

Définition 2.2.3 ( valeur critique d’une fontion) Une "valeur critique” de
@ est un nombre c tel que ¢'(x) = ¢ ot = est un point critique de p.

L’exemple le plus simple de point critique d'une fonctionnelle ¢ € C* (X, R)
est le point extrémal c’est-a-dire un point ol ¢ atteint un minimum ou un max-
imum, local ou global.

Théoréme 2.2.1 Soit ¢ une fonctionnelle définie sur un domaine (ouvert et
borné) E C X et xg un point intérieur de E.

Supposons que ¢ est Gateaux-différentiable en xo. Alors si xg est un extrémum
de @, il est donc un point critique de X.

Remarque 2.2.1 Comme on peut voir par la suite, si o € OF alors on n’a pas
nécessairement Dy(xg) = 0.
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Définition 2.2.4 (Semi-continuité inférieure) Soit un espace normé .Une
suite minimisante pour une fonction ¢ : X — |—00, +00| est une suite (xy,) telle
que

¢ (x) — inf ¢ quand k — oo.

Une fonction ¢ : X — |—00,400| est semi-continue inférieurement (respective-
ment faiblement semi-continue inférieurement) si

()
().

xzp — o= liminfe(zg) > ¢
(resp. x, — x = liminf (zx) > ¢

2.2.2 Fonctions convexes

Définition 2.2.5 (Ensemble convexe) On dit qu'une partie E de X est con-
vexe Si :

Ve,y € EVt € [0,1], (tz+ (1 —1t)y) € E.

Définition 2.2.6 (Fonction convexe) Soit X un espace de Banach, soit E C
X un sous-ensemble convexe, une fonctionelle p : X — R est dite convexe sur
E si pour tous u,v € E ett € [0,1] on a:

p(tu+ (1= t)v) < tp(u) + (1 = t)p(v).

La fonctionelle ¢ est dite strictement convexe sur E si pour tous u,v € E; u # v
ette (0,1) on a:

o(tu+ (1 —t)v) < to(u) + (1 —t)p(v).

Théoréme 2.2.2 Soit X un espace de Banach et ¢ € C' (X, R) convexe. Alors
xo € X est un minimum de p si et seulement si xg est un point critique de ¢;
c’est a dire:

p(z0) = inf () & Dep(o) = 0.

Théoréme 2.2.3 Soit ¢ : X —] — 00, +00] une fonctionnelle convexe. Alors ¢
est faiblement semi-continue inférieurement si seulement si elle est semi-continue
inférieurement.

2.3 Résultats de minimisation

Théoréme 2.3.1 ( voir [Th. 1.1 dans [12]]) Soit X un espace de Banach
refléxif, £ un sous enemble faiblement fermé de X, et ¢ : E — R est faiblement
semi-continue inférieurement, alors ¢ a un minimun sur E si et seulement si
elle admet une suite minimisante bornée sur E.
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Remarque 2.3.1 L’existence d’une suite minimisante bornée est assurée quand
@ est coercive, i.e., @ est telle que

¢ (z) = 400 si ||z||y — +o0.

Dans le cas ou la fonction ¢ est minorée (respectivement majorée), il est
raisonnable d’essayer de montrer que le minimum (respectivement le maximum)
est atteint.

Pour les fonctionnelles convexes, un résultat classique est donné par le théoréme
suivant:

Théoréme 2.3.2 (voir [5] page 46) Soit une fonctionnelle réelle F' définie sur
un espace de Banach réfléxif X. Supposons que:

i) F est semi-continue inférieurement,

ii) F est conveze,

ii1) F est coercive, i.e.

lim F(z) = oo.
ll]l x =00

Alors F atteint son minimum, i.e. il existe xo € X tel que :

F(xy) = min F(z).

rzeX

2.4 Théorie des points critiques

Si o n’est pas convexe, elle n’a pas besoin d’atteindre son infimum. Toute fois, le
résultat d’Ekeland montre ’existence de points qui sont presque des minimum.

Théoréme 2.4.1 (voir [10] page 51) Soit X un espace métrique complet et F
semi-continue inférieurement sur X et minorée. Alors il existe xqg € X tel que:

F(x) > F(zo) — dist(z,x0); pour tout x € X; = # xy.

Une condition de compacité qui est habituellement employée pour prouver
I'existence de points stationnaires est la condition de Palais-Smale (P-S), pour
une fonction ¢ € C* :

Définition 2.4.1 (Condition (P-S)) Toute suite {z;} € X telle que: |p(x;)|
< M et ¢'(xj) — 0 en norme dans X' (I’espace dual de X ) admet une sous-
suite fortement convergence, ot ¢'(x) représente la dérivée de ¢ en x, et est un
élément du dual X'l’espace des fonctions linéaires continues sur X. Une telle
fonction atteint toujours son infimum.

Lemme 2.4.1 Soit ¢ une fonction réelle de classe C* définie sur un espace de
Banach X satisfaisant la condition (P-S) et bornée inférieurement. Alors ¢
atteint un minimum en un certain point xy de X.
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Pour une fonction qui n’est pas bornée, chercher ses points critiques revient
a chercher des points selles de la fonctionnelle associée au probléme étudié. Ces
points sont déterminés par des arguments de type minimax. Ce qui nous raméne
a 'utilisation du théoréeme du col et ses variantes:

Théoréme 2.4.2 (Theoréme du col) [Th. 4.10 dans [12]] Soit X un espace
de Banach et ¢ € CY(X,R). Supposons qu’il existe ug € X,u; € X, et un
voisinage ouvert borné I de ug tel que uy € X/I et

inf o > max (¢ (uo) , ¢ (u1))

Soit
I'={geC([0,1];X); g(0) = u, g(1) = uo},
et

c = inf max p(g(s)).

Si ¢ satisfait la condition de Palais-Smale, alors ¢ est une valeure critique de ¢
et

¢ >max (¢ (ug), e (u1)) -

Théoréme 2.4.3 ([ Th. 9.1 dans [1/]]) Soit E un espace de Banach réel, p €
CY(E,R) est une fonctionnelle paire qui satisfait la condition de Palais-Smale, ¢
est bornée inférieurement et p(0) = 0; supposons qu’il existe un ensemble K C FE
tel que K est homéomorphe a S™™' (la sphere unité (n — 1)-dimensionnelle ) par
une application impaire et sup,cx @(x) < 0, alors ¢ a au moins n paires de
points critiques non triviaux distincts .
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Cette partie est largement inspirée par le travail de X. L. Liu et X. Y. Shi

[11].

3.1 Introduction

Dans cette partie, nous nous intéressons a ’équation différentielle non autonome
du second ordre suivante

2"(t)+ f(t,z(t)) =0, te€l, (3.1)

avec les conditions aux limites intégrales:

z(0) — xz(2m) = 2'(0) — 2'(27w) = 0, /0 ’ z(t)dt = 0, (3.2)

ou I =10,27] et f € C (R?) est 2r—périodique en ¢.

Les problémes aux limites avec les conditions intégrales ont fait 1’objet de
plusieurs travaux ces derniéres années |1, 10, 19, 20]. En particulier, pour les
problémes aux limites de second ordre avec les conditions périodique-intégrales
(voir [7, &]).

17
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Dans la littérature, certains outils classiques ont été utilisés pour étudier ces
problémes: les théorémes du point fixe [1], la méthode des sur et sous solutions
[19], 1a théorie des opérateurs monotones mixtes [10], la méthode d’estimation a
priori avec le théoréme du point fixe de Leray-Schauder [21].

En particulier, dans I’article [3], les auteurs ont étudié le probléme (3.1)—(3.2)
par une forme bilinéaire en utilisant le théoréme du point fixe de Leray-Schauder,
dans le cas de non résonance. Leur résultat principal est le suivant:

Théoréme 3.1.1 Supposons que:
C1) f € C(I,R) est 2m—périodique en t,
C2) Il existe N € Z* et e > 0 tels que

N? 4 e < fo(t,z) < (N +1)° —¢, pour tout (t,z) € I x R.
Alors le probléeme (3.1) — (3.2) admet une solution unique.

Nous savons que dans le cas de résonance, i.e.
fo(t,x) = N* N €Z,

le probléme (3.1) — (3.2) peut avoir une infinité de solutions.
Par exemple, si

f(t,z) = Nz, pour (t,z) € I x R.

admet des solutions de la forme
z(t) = ¢y cos (Nt) + casin (Nt), ol ¢1,¢2 € R.

ol ¢y, ¢y € R, sont des constantes arbitraires.

Nous remarquons que dans le résultat de [8], les conditions imposées a f (¢, x)
sont tres restreintes.
Si ces conditions ne sont pas vérifiées, 'existence de solutions pour le probléme
(3.1) — (3.2) n’est pas garantie, en effet:

Considérons un cas particulier du probléme (3.1) — (3.2) ou

f(t,x) = asinx(t) —e(t), pour (t,x) € I x R, (3.3)

ol a est une constante donnée et e € C ([0, 27]) est une fonction 27 —périodique
vérifiant fo% e(t)dt = 0.
Il est clair que dans (3.3), on a

fu(t,z) = acosx(t),

si a < 1, la condition (C2) du théoreme 3.1.1 n’est pas satisfaite et donc le
probléme (3.1) — (3.2) n’a pas de solutions par conséquent la méthode utilisée
dans [3] n’est pas applicable.
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D’un autre coté, une théorie de base des méthodes variationnelles a été in-
troduite dans [22] pour étudier ce cas particulier du probléme (3.1) — (3.2).

Motivés par tous ces travaux et en se basant sur I'article [1 1], notre but dans
ce mémoire est d’étudier l'existence des solutions pour le probléme (3.1) — (3.2)
sous des hypothéses suffisantes, en utilisant une approche variationnelle basée
sur une minimisation directe sous contrainte.

3.2 Préliminaires

Nous nous intéressons a l'existence des solutions 2m—périodiques avec valeur
moyenne nulle, nous considérons donc le sous-espace faiblement fermé E de H,
défini par:

27
E=H'= {x € H;W,/ x(t)dt = o},
0

équipé de la norme
27 9 %
lall = ([ eofar)
0

équivalente a la norme ||.| H (1.4), a l’aide de I'inégalité de Wirtinger (1.6).
Soit y € E, multiplions les deux membres de I’égalité (3.1) par y et intégrons
entre 0 et 27, nous obtenons

Aﬂu%w+fwx@nmwmzo.

De plus, puisque y(0) = y(27), nous avons

| = [ st -o

Définition 3.2.1 Une solution faible du probléme (3.1) — (3.2) est une fonction
x € F telle que

t/lwwww—/fmw@w@w:a
0 0
pour tout y € E.

Soit la fonctionnelle d’énergie associée au probléme (3.1)—(3.2), ¢ : Hy  — R

définie par
2 1

o(x) = /0 §|x’(t)|2dt— /O WF(t,x(t))dt, (3.4)

F(t,x) = /OJC f(t,s)ds,



3. Approche variationnelle pour un probléme périodique 20

et

Sous la contrainte N(z), le point minimum z, € C?*(I) N H,,_ de la fonctionnelle
¢(z) est la solution du probléme (3.1) — (3.2) , autrement dit

Xg) = min ).
oao) = min o)

Remarque 3.2.1 1- Sous la contrainte N(z) = 0, les multiplicateurs de La-
grange sont nuls par conséquent les solutions du probléeme (3.1) — (3.2) sont les
minimums de la fonctionnelle ¢(z).

- , €T C . 4
2- La fonctionnelle n’est pas coercive sur Hj_, nous nous intéressons donc

aur minimums de la fonctionnelle ¢(x) sur le sous-espace faiblement fermé E
de H)_ défini ci- dessus.

Dans la suite nous aurons besoin du lemme suivant:

Lemme 3.2.1 (woir [22]) Soit x* € W (J,R™) un point minimum de la fonc-
tionnelle

o) = / L(t,z.y)dt,

ou J = [a,b] est un intervale fini de R, 1 < r < oco.

Supposons que:

() [L(t, 2, 5] + | Lot 2, 9)] + 1Ly (62 )] < OO+ Jg2).

(it) La matrice Ly, (t,x,y) est positive pour tout (t,z,y) € J x R" x R™.
Alors u* € C? (I) dans le sens ot u* change de valeur sur un ensemble de mesure
nulle.

Proposition 3.2.1 La fonctionnelle ¢p(x) est continue, différentiable et faible-

ment semi-continue inférieurement. De plus, les points critiques de ¢(x) sont
les solutions faibles du probléme (3.1) — (3.2).

Preuve: La continuité de f nous donne la continuité de ¢.
¢ est différentiable en effet:
Pour tout x,y € E et € > 0, nous avons

o(r+ey) = /Oﬂ%|(:v+ey)’(t)‘2dt—/0ﬂF(t, (x +ey) (t))dt

2 2
_ ( /0 Rt (t) + ey ()t — /0 TR a:(t))dt) |

= /0 W[lx’(tfdt +ex' (t)y (t)dt + i (y'(t))g]dt — /0 ’ F(t,x(t))dt
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et en utilisant la formule des accroissements finis on obtient

oo +ey) = w>+4/wx< dt(/ F(t () + <B(E)y(6))y(t)d]

/21”
ou 0 < 0(t) < 1. Ainsi

i QEEW) =0 T e — [ ) + B0y ()t

e—0 g e—0 0 0

5 |

- /Oﬂx’(t)y’(t)dt—/o Wf(m(t))y(t)dt

Ainsi, ¢ € C'(E,R) et il est facile de voir que

Py = mnlw@+fw

e—0 &

:/0 dt—/ f(t,z(t)y(t)dt

Par conséquent, les solutions faibles du probléme (3.1) — (3.2) correspondent aux
points critiques de ¢.

Montrons maintenant que ¢ est faiblement semi continue inférieurement.
Soient (x,) C E, x € E, tels que x,, — x, alors (x,,) converge uniformément vers x
sur I et z,, — x dans L? (I), et en combinant le fait que liminf,, . ||z,| > ||z,
nous avons,

21 27
liminf ¢ (z,) = liminf ( / %u;(t)y?dt— / F(t,xn(t))dt)
0 0

n—oo n—oo

1 2m
= liminf (5\\:1:””2—/ F(t,xn(t))dt)
n—oo 0

> 5lel = [ Fattar
~ o).

3.3 Reésultats d’existence

Dans cette partie nous ennongons quelques résultats d’existence. Leurs preuves
se basent essentiellement sur le théoréme 2.3.1.
Nous commencons par le theoréme suivant:
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Théoréme 3.3.1 Supposons que:

(H1) f(t,x) € C(R?) et 2nr—périodique en t,

(H2) f(t,x) et F(t,x) sont toutes les deuz bornées, c'est — a — dire : ils existent
My, My € RT™ tels que

et ,pour (t,z) € I x R.
|F(t,z)| < My

Alors le probléme (3.1) — (3.2) admet au moins une solution.

Preuve: D’apres la proposition 3.2.1, la fonctionnelle ¢ € C'(E,R) et est
faiblement semicontinue inférieurement.
Il reste a prouver qu’elle admet une suite minimisante bornée sur FE.
D’apres (H2), nous avons

27r1 ) 2
= [ ZWwwPd— | F(txt)d
ow) = [ era- [ Feao
> el — 2mh,

d’ou,
¢ () — +oo quand ||z||; — +o0.
Alors, ¢ est coercive sur F, ce qui garantie I'existence d’un suite minimisante
bornée sur E, un sous-espace faiblement fermé de H. . En appliquant le théoréme
2.3.1, la fonctionnelle ¢ admet un minimum zy € E, et par conséquent le prob-

leme (3.1) — (3.2) admet au moins une solution faible.
Pour montrer que cette solution est classique, posons

L(t,2(1),2'(1)) = 5 |7 () — F(t,2(0)),

et vérifions les conditions du lemme 3.2.1.
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1- D’aprés (H2), nous avons

|Lt, 2 (t), 2'(1))] + [ Lo (8, 2(t), 2" ()| + | Lo (8, 2(2), 2" (1)) = %Iw'(t)lz—F(w(t))

+[f (2 ()] + 12'(2)]

IA
|
B
=
SN~—
T

VAN
|
"
+
=
+
=
+
5

IN

A
NN

_|_

|

~

—

_l’_

8

=

=

ou M := M, + M,, une constante positive.
Ainsi,

(8, (t), 2" (1)) + |La(t, 2(8), ' (1))] + | Lo (8, 2(8), 2/ ()] < C(1+ |2 (2)).

ou C := (M + %) , une constante positive.
2- Nous avons

Ly(t,z(t),2'(t)) = |2/ (t)] > 0, pour tout (¢, z(t),2'(t)) € I x R x R.

Les conditions du lemme 3.2.1 étant vérifiées, le probleme (3.1) — (3.2) admet
une solution. m

Exemple 3.3.1 Considérons l’équation différentielle
2" (t) + z(t)e > Dsint = 0, (3.5)

sous les conditions aux limites suivantes

2T
2(0) — 2(27) = 2/(0) — 2/(27) = 0, / w(#)dt = 0,
0

ot

Flt,z(t) = z(t)e " D sint,
alors,

1 _ >
F(t,z(t)) = —56_”’ ® sin¢.
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ce qui montre que f(t,x(t)) et F(t,z(t)) sont bornées sur I x R en effet:

£t ()] = [r()e O sini| < %e 5
et

1 1
|F(t,x(t))| = ‘56_””2('5) sint| < 7

D’ou le probléeme (3.1) — (3.2) admet au moins une solution.

Remarque 3.3.1 Si nous nous prenons:

f(t,xz(t)) = sint,

alors,
F(t,z(t)) = z(t)sint.

Nous avons f(t,z(t)) bornée et F(t,z(t)) non bornée sur I x R.
Cepandant, le probléme (3.1) — (3.2) admet une solution unique x(t) = sint.

Cette remarque nous inspire a considérer le cas faible du probléme (3.1)—(3.2)
et donc chercher ses solutions faibles comme points minimums de la fonctionnelle
0.

Nous ennoncons dans la suite un second théoréme ainsi qu’un corollaire.

Théoréme 3.3.2 Supposons que I’ hypothése (H1) est satisfaite. Si de plus on
a:

(H2) lim, o Fgf) =1< 2 pour (t,z) € Ix R.

Alors le probléme (3.1) — (3.2) admet au moins une solution faible.

Preuve: D’apres la proposition 3.2.1, la fonctionnelle ¢ € C'(E, R) est faible-
ment semi continue inférieurement.

Il reste & prouver qu’elle admet une suite minimisante bornée sur F.

F(tz(t)

D’apres (H2)', nous avons pour tout € > 0, (x(t))z) — l’ < e, ie.

F(t,z(t)) < (e +1) (z(t)*.

Soit ¢ tel que 0 < ¢ < % — 1, en utilisant l'inégalité de Wirtinger (1.6), nous
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obtenons,
271'1 ) 5 2T
o) = [ gl [ P
0 0
21
> —HxHZ—(l—l—e)/ 2 (t)dt
2 0
L 2 T
> — ||z —(l—l—e)/ x*(t)dt
2 0
1 ) 2T )
> Ll —(z+g)/ 2(t)dt
2 0
1 2
2 |5~ +e) )=l
d’ou,

¢ () — +oo quand ||z|, — +o0.

Alors, ¢ est coercive sur F, ce qui garantie I’existence d’un suite minimisante
bornée sur E, un sous-espace faiblement fermé de H, . En appliquant le théoréme
2.3.1, la fonctionnelle ¢ admet un minimum ¢ € E, et par conséquent le prob-

léme (3.1) — (3.2) admet au moins une solution faible. m

Exemple 3.3.2 Considérons l’équation différentielle

t
() + ? +sint =0,

sous les conditions aux limites suivantes

2(0) — 2(27) = 2/(0) — 2/(27) = 0, /O " ()t =0,

ou .
f(t,x) =sint + 5
et

22
F(t,z) = xsint + R

Il est facile de voir que
. F(t,z) 1 1
lim =-< =

z—oo 2 4 2

En appliquant le théoréme 3.3.2, le probléme (3.6) — (3.2) admet au moins

une solution faible.

Remarque 3.3.2 Si F' satisfait la condition suivante a la place de (H2)':

(H2)" F(t,z) < ax? 4 bz + ¢ pour tout (t,x) € [0,27] X R, ot a < 3; b et ¢ sont

des constantes réelles, alors ¢ est coercive sur F.

Par suite, nous pouvons énnoncer le corollaire suivant.
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Corollaire Supposons (H1) et (H2)” sont satisfaites, alors le probléme (3.1) —
(3.2) admet au moins une solution faible.

Preuve: D’apres (H2)”, nous avons:
2m 1 5 2w
ow) = [ gl [ P
0 0

1 2m 21
> Slel = [ et - [ bettat -2
0 0

Et en utilisant I'inégalité de Wirtinger et la condition fo% x(t)dt = 0, on trouve

1
o(z) = §|19€H2—@Hx”2—2m
1 2
> 5@ |z||” — 2me.

d’o,
¢ () — +oo0 quand ||z||; — +o0.

Alors, ¢(z) est coercive sur E, un sous-espace faiblement fermé de H,_, et
puisque, ¢ est semi continue inférieurement, alors, d’apres le théoreme 2.3.1, la
fonctionnelle ¢ admet un minimum x; € E, et le probléme (3.1) — (3.2) admet
au moins une solution faible. Ce qui acheéve la preuve. =

Exemple 3.3.3 Considérons [’équation

2" (t) + ? sin? (1) + 1 =0, (3.7)

sous les conditions aux limites suivantes
27
2(0) — 2(27) = 2/(0) — 2/(27) = 0, / 2(#)dt = 0,
0
ol .
Flb ) = 3 sin? (1) + 1,
et

1
F(t,z) = Zx2 sin’ (t) + x.

Il est clair que F vérifie (H2)", en effet
1
F(t,x) < 112 + x pour tout t € [0, 27| x R.

En appliquant le corollaire 3.3, le probléeme (3.7) — (3.2) admet au moins une
solution faible.
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Dans ce chapitre, nous appliquons le théoréme 3.3.2 & un probléme d’oscillation.
Nous montrons ’existence d’au moins une solution au sens faible, puis en util-
isant le lemme 3.2.1, nous prouvons que c’est une solution classique.

4.1 Présentation du Probléme

Dans cette section, nous étudions 'existence solutions 2w —périodiques non con-
stantes pour 1’équation d’oscillation non linéaire

2"(t) + asinz(t) = e(t), t € [0,2n],

ol @ est une constante donnée et le terme forgant e € C' ([0, 27]) est une fonction
2m—périodique vérifiant fo% e(t)dt = 0.
Nous considérons donc le probléme:

2"(t) + asinx(t) = e(t), t€[0,2n],
z(0) — z(27) = 2/(0) — 2/ (27) = 0, (4.1)
JZma(t)dt =0,

qui est un cas particulier de (3.1) — (3.2) avec

f(t,z) = asinx — e(t).

27
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4.2 Reésultat d’existence

Nous ennoncons alors le théoréme suivant:

Théoréme 4.2.1 Si e € C ([0,27]) est une fonction 2m—périodique telle que
fo% e(t)dt = 0, alors le probléme (4.1) admet au moins une solution.

Preuve: La preuve se base sur 'application du théoréeme 3.3.2 et le lemme
3.2.1.
Nous définissons la fonctionnelle ¢ : £ — R définie par

o(z) = /0 " (% 2 (8)[2 + a cos z(¢) — e(t)a:(t)) dt. (4.2)

Soit la fonction
F(t,x) = / f(t,s)ds = acosz — e(t)z,
0

primitive de f(¢,x).

Nous vérifions que les fonctions f et F' satisfont bien les conditions du
théoréeme 3.3.2, en effet:
-(H1) Sachant que e € C([0,27]) est une fonction 2w—périodique, nous dé-
duisons que f € C(R?) et 2r—périodique en ¢ comme somme algébrique de
deux fonctions continues et 2r—périodiques.

S(H2)' lim, oo 282 =] < 1, pour (t,z) € [0,27]x R, en effet:

72

lim F(t,x) ~ lim acosx — e(t)z _ iy 8608% e(t) _0< 1
T—00 an T—00 12‘2 r—00 $2 x 2

Par conséquent la fonctionnelle ¢ admet un minimum et donc le probléme (4.1)
admet au moins une solution faible.

Montrons maintenant que cette solution est classique.
Soit

En utilisant le fait que fo% e(s)ds = 0, nous avons
E(27) = E(0) =0.

Ceci implique que

/Owe(t)fb(t)dt = E(t)x(t) g” _/OWE(t)ZL‘@)dt

—  E@m)x(2r) — E(0)2(0) — /0 " Bt)e(t)dt

S / " E()a(t)dt.
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Posons maintenant

L(t,z(t),2'(t)) := % 12/(8)|° + acosz(t) — e(t)z(t),
D’ou 1
L(t,x(t).2' (1) = 5 ' ()° + acosz(t) + E(t)z'(t).

1- Vérifions que pour tout (¢,x(t),z'(t)) € I x R x R, il existe une constante
C > 0 telle que

[L(t, 2(t), 2" (1)) + |La(t, 2(8), ' (1))] + | Lo (£, 2(1), 2/ ()] < C(1+ |2 (1)).

Nous avons

|L(t, x(t), ' ()] + |La(t, 2(t), ()] + Lo (t, 2(8), 2'(1))] = % |2/ (t)* + acos x(t) + E(t)a'(1)
+lasinx(t)| + |E(t) + |2'(¢)]]

S I OF +12'(0)] + 2]a] + | E(1)

1
5 17 (OF +2|'(0)] + 2 al + K

IN

IN

S+ (O + K

< (% + K’) (1+[2'(1)]%)

IN

ou K’ := 2]a| 4+ K, une constante positive.
Ainsi,

[L(t, 2 (t), 2" ()] + [La(t, 2(t), 2" ()] + [ Lo (¢, 2(t), 2 ()] < C(L+ 2" (1)]).

ou C := (K’ + %) , une constante positive.
2- Nous avons

Ly (t,z(t),2'(t)) = |2/ (t)] > 0, pour tout (¢, z(t),2'(t)) € I x R x R.

Les conditions du lemme 3.2.1 étant vérifiées, le probléme (4.1) admet une solu-
tion. m



Chapitre 5

Conclusion

Dans ce mémoire, nous nous sommes intéressés a la recherche de solutions péri-
odiques pour des problémes associés a des équations différentielles non linéaires
et non autonomes du second ordre.

Nous avons utilisé un outil trés puissant dans ’analyse nonlinéaire qui est les
méthodes variationnelles.
Appliquer ces methodes revient & transformer le probléme initial en la minimi-
sation d’une certaine fonctionnelle d’énergie définie sur un espace de Banach.
Les points critiques de cette fonctionnelle représentent les solutions faibles du
probléme initial.

L’approche variationnelle utilisée dans cette étude, est basée sur une minimi-
sation directe sous 'effet d’une contrainte.
Nous avons montré ’existence d’au moins une solution de notre probléme péri-
odique.
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Résumé

Dans ce mémoire, nous nous sommes intéressés a la recherche de solutions
périodiques pour des problémes associés a des équations différentielles non
linéaires du second ordre.

L'approche utilisée, est variationnelle basée sur une minimisation directe sous
I'effet d'une contrainte.

Mots clés : Equation différentielle du second ordre, solution périodique,
méthode variationnelle.

Abstract

In this thesis, we study the existence of solutions for periodic boundary
problems associated to nonlinear second-order differential equations.
We use variational approach, with constraints.

Key words: second order differential equation, periodic solution, variational
method.
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