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Notations

R : Ensemble des nombres réels
Rn : R� R� :::� R n fois.
R+ : Ensemble des nombres réels positifs.
Z : Ensemble des nombres relatifs
N : Ensemble des nombres naturels

 : Ensemble ouvert de Rn:
x0 = dx

dt
: La dérivée de la variable x par rapport au temps t:

x
00
= d2x

dt2
: La dérivée seconde de la variable x par rapport au temps t:

inf La borne inférieure
lim inf La limite inférieure
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Introduction Générale

0.1 Introduction

Les équations di¤érentielles permettent d�aborder d�un point de vue mathéma-
tique des phénomènes observés, elles apparaissent souvent dans la modélisation
de processus de phénomènes naturels. Elles sont omniprésentes dans les dif-
férentes sciences, Physique, Chimie, Biologie (voir [13, 17]).
Un problème très important pour certaines applications est la recherche de

solutions périodiques du système du type

x0 = f(x; t);

où f(x; t), est une application continue dans Rn, supposée périodique par rapport
à la variable réelle t de période T (cas non autonome), ou encore du type

x0 = f(x);

(cas autonome).
On ne dispose d�aucune méthode d�investigation assez puissante pour répon-

dre à ces questions de manière générale. Les méthodes existantes sont de deux
catégories. Les unes, méthode de perturbation, méthode de centrage, permet-
tant l�étude de systèmes quasi linéaires, c�est-à-dire de systèmes dans lesquels la
partie non linéaire apparaît multipliée par un paramètre qu�on suppose petit, le
calcul de représentations asymptotiques des solutions périodiques est générale-
ment possible, ainsi que l�étude de la stabilité de ces solutions. Les autres sont
des méthodes topologiques ou variationnelles [2, 14, 6] qui fournissent pour cer-
tains systèmes fortement non linéaires des résultats d�existence de solutions péri-
odiques.
Les méthodes variationnelles ont une longue histoire qui remonte à Pierre

Fermat (1657) et Christian Huygens (1690) pour l�étude de la propagation de
la lumière (principe de Fermat et principe de Huygens-Fresnel). Néanmoins,
le calcul des variations est né publiquement en 1696, avec le problème de la
courbe brachistochrone, posé par Jean Bernoulli (à la suite de Galilée dans son
dialogue sur les deux grands systèmes du monde paru en 1632), et résolu par
Newton, Leibniz, Jakob et Johann Bernoulli [3]. Le développement extraor-
dinaire de l�analyse fonctionnelle, théorie de la mesure et de l�intégration qui a

3



0. Introduction Générale 4

explosé au cours du XXe siècle (avec l�étude précise des propriétés topologiques et
métriques des espaces vectoriels de dimensions in�nies, la théorie de l�intégration
de Lebesgue et beaucoup d�autres techniques) a permis de développer la théorie
du calcul variationnel [2].
Dans ce mémoire, nous discutons l�existence de solutions 2�-périodiques non

constantes pour une classe d�équations di¤érentielles du second ordre du type;

x00(t) + f(t; x(t)) = 0: (1)

Notre approche est variationnelle basée sur une minimisation directe sous la
contrainte Z 2�

0

x(t)dt = 0: (2)

Ce travail est constituée de trois chapitres principaux répartis comme suit:
Chapitre 1: intitulé "Notions préliminaires", comprend un rappel de quelques
dé�nitions et notions de base de l�analyse fonctionnelle,
Chapitre 2: intitulé "Méthodes variationnelles" dans lequel nous donnons
un aperçu sur les méthodes variationnelles et leurs applications.
Chapitre 3: intitulé "Approche variationnelle pour un problème péri-
odique", où nous étudions l�existence de solutions 2�-périodiques de notre
problème. Nou ennonçons deux théorèmes ainsi qu�un corollaire illustrés par
des exemples.
Chapitre 4: intitulé "Application" dans lequel nous appliquons l�un de nos
résultats principaux à un problème d�oscillation.
Nous achevons par une conclusion où nous présentons une synthèse du travail
e¤ectué.



Chapitre 1

Notions préliminaires

Sommaire
1.1 Notions d�analyse fonctionnelle . . . . . . . . . . . . . 5

1.1.1 Quelques notions de convergence . . . . . . . . . . . . 5

1.1.2 Espaces ré�éxifs . . . . . . . . . . . . . . . . . . . . . 7

1.2 Les espaces de Sobolev . . . . . . . . . . . . . . . . . . 8

1.2.1 Espaces Ck . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Espaces de Lebesgue . . . . . . . . . . . . . . . . . 8

1.2.3 Espaces de Sobolev . . . . . . . . . . . . . . . . . . 9

1.3 Théorèmes d�injection . . . . . . . . . . . . . . . . . . . 9

1.3.1 Inégalitè de Poincaré . . . . . . . . . . . . . . . . 10

1.3.2 Espaces de Sobolev avec conditions aux limites péri-
odiques . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Dans ce chapitre, nous rappellons quelques outils de l�analyse fonctionnelle,
qui sont nécessaires pour le développement de notre travail.

1.1 Notions d�analyse fonctionnelle

Pour plus de détails sur les notions rappelées dans ce paragraphe voir [5, 9].

1.1.1 Quelques notions de convergence

Soient X et Y deux espaces de Banach.

Dé�nition 1.1.1 Dé�nition 1.1.2 (Convergence d�une suite) Soit (xn)n
une suite de X et x0 2 X .

5



1. Notions préliminaires 6

On dit que (xn)n converge vers x0 (en norme) si lim
n!+1

kxn � x0kx = 0, et on

ecrit xn ! x0 dans X.

Dé�nition 1.1.3 (Opératuer borné) On dit qu�un opératuer T : X ! Y est
borné si l�image de tout borné dans X par T est un borné de Y . i.e : pour tout
ensemble D borné dans X, T (D) est borné dans Y:
On note B(X; Y ) l�ensemble des applications linéaires et bornées de X dans Y:
Le cas Y = R est très important par la suite.

Dé�nition 1.1.4 (Espace dual) La classe des fonctionnelles linéaires et bornés
dé�nies sur X est appelé espace dual de X, et sera notée par X 0:
On munit X 0 de la norme

kJkX0 = sup
x2X;kxkx�1

jhJ; xij ; pour J 2 X 0:

X 0 muni de cette norme est un espace de Banach et nous avons l�inégalité

jhJ; xij � kJkX0 kxkX ; 8J 2 X 0; 8x 2 X:

Exemple 1.1.1 (Duals de certains espaces) Soit 
 un ouvert de R:
1) Soit p avec 1 � p � +1; on pose

Lp(
) =

(
f : 
! R; f mesurable et

�Z



jf(x)dxjp
� 1

p

)
:

On note

jf jLp(
) = jf jp =
�Z




jf(x)dxjp
� 1

p

:

Pour 1 � p � +1 on a:

(Lp(
))0 = Lq(
) tel que
1

p
+
1

q
= 1:

2) On pose

L1(
) = ff : 
! R; f mesurable et9M > 0 jf(x)j �M p.p sur 
g

On note
L1(
) = jf j1 = inf fM ; jf(x)j �M p.p sur 
g :

On a
(L1(
))0 = L1(
):

Pour plus détails voir [5]:
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Remarque 1.1.1 Nous remarquons que si (xn) � X est une suite telle que:
xn ! x0 dans X alors

8J 2 X 0; hJ; xi ! hJ; xi:
L�implication inverse n�est pas en général vraie.

Dé�nition 1.1.5 (Convergence faible) On dit qu�une suite (xn) � X con-
verge faiblement vers x, si

8J 2 X 0; hJ; xni ! hJ; xi;

et on écrit xn * x

Proposition 1.1.1 Soit (xn) une suite de X: On a:
1. Si xn ! x0, alors xn * x0.
2. Si xn * x0, alors (xn) est bornée et kxkX � lim infn!+1 kxnkX :
3. Si xn * x0, et Jn ! J dans X 0, alors hJ; xni ! hJ; xi:

Proposition 1.1.2 Lorsque X est de dimension �nie, une suite (xn) converge
faiblement si et seulement si elle converge faiblement.

Dé�nition 1.1.6 Un ensemble A � X est dit faiblement pré-compact si toute
suite de A contient une sous suite faiblement convergente.
Si toutes les limites faibles sont dans A, alors A est dit faiblemenet compact.

1.1.2 Espaces ré�éxifs

Comme nous allons voir par la suite, on ne peut pas appliquer les méthodes
variationnelles que lorsque�on travaille dans des espaces de Banach qui ont cette
propriété que toute boule fermée est faiblemenet compact. Les espaces de Banach
qui ont cette propriété sont appelés ré�exifs.
SoitX un espace de Banach,X 0 son dual etX

00
son bidual. On a une injection

canonique i : X ! X 00 dé�nie comme suit:

hi(x); JiX00;X0 = hJ; xiX0;X 8x 2 X; 8J 2 X 0

i est linéaire et c�est une isométrie:

Proposition 1.1.3 Dé�nition 1.1.7 Remarque 1.1.2 Dé�nition 1.1.8 On
dit que X est ré�exf si i(X) = X

00
(i est surjective de X sur X

00
.)

Exemple 1.1.2 soit 
 un ouvert de R.
1. Un espace de Hilbert est ré�exif.
2. Les espaces fonctionnels Lp(
) sont ré�exifs pour 1 � p � +1.
3. L1(
) n�est pas ré�exif.

Pour plus de détails voir [5]:

Théorème 1.1.1 Un espace de Banach X est ré�exif si et seulmenet si toute
boule fermée est faiblement compacte.
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Corollaire Si X est un espace de Banach ré�exif alors toute suite bornée
(xn) � X avec kxnkX � M , contient une sous suite qui converge faiblement
vers un élément x 2 X véri�ant kxkX �M .

Corollaire Soit X un espace de Banach. Alors X est ré�exif si et seulement
si X 0 est ré�éxif.

1.2 Les espaces de Sobolev

Les espaces de Sobolev jouent un rôle fondamental dans le calcul variationnel.
Nous commençons par donner quelques dé�nitions et notations nécessaires pour
l�introduction de ces espaces. Pour une présentation plus complète des espaces
de Sobolev se référer à [1].

1.2.1 Espaces Ck

Soit I un intervalle borné de R et k 2 N:
Ck (I) est l�espace des fonctions x de classe Ck sur I; muni de la norme suivante

kxkCk =
kX
i=0

sup
t2I

��x(i)(t)�� :
Si k = 0; C0 (I) = C (I) ; l�espace des fonctions continues sur I: La norme est
dé�nie par

kxk1 = sup
t2I

jx(t)j :

C1c (I) est l�ensemble de toutes les fonctions dé�nies sur I; in�niment dérivables
à support compact.

1.2.2 Espaces de Lebesgue

Lp (I) ; 1 � p < 1 est l�ensemble de toutes les fonctions mesurables x dé�nies
sur I telles que la norme

kxkLp =
�Z

I

jx(t)jp dt
� 1

p

est �nie.
Pour p = 1; L1 (I) est l�ensemble de toutes les fonctions mesurables x

bornées sur I. La norme est dé�nie par

kxkL1 = ess sup
t2I
jx(t)j :

Lp (I) est un espace de Banach pour tout 1 � p � 1:
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Théorème 1.2.1 (Inégalité de Hölder) Pour 1 � p � 1 et p0 le conjugué
de p i.e. 1

p
+ 1

p0 = 1, si f 2 L
p (I) et g 2 Lp0 (I), alors f:g 2 L1 etZ
I

jfgj � kfkLp kgkLp0 : (1.1)

1.2.3 Espaces de Sobolev

Dé�nition 1.2.1 W k;p (I) ; 1 � p < 1; k 2 Z+ est l�espace de toutes les fonc-
tions x 2 Lp (I) telles que x(i) 2 Lp (I) pour i = 1; :::; k; où les dérivées x(i) sont
au sens des distributions.

W k;p (I) est muni de la norme

kxkWk;p(I) =

 Z
I

kX
i=0

��x(i)(t)��p dt! 1
p

: (1.2)

Remarque 1.2.1 1)- La norme
Pk

i=0



x(i)


Lp
est équivalente à kxkWk;p(I) pour

tout x 2 W k;p (I) :
2)- W 0;p (I) = Lp (I) :

Proposition 1.2.1 W k;p (I) est un espace de Banach.

Pour p = 2; W k;2 (I) est souvent noté Hk (I) :

Proposition 1.2.2 Hk (I) muni du produit scalaire réel

(x; y)Wk;2 =

Z
I

kX
i=0

x(i)(t)y(i)(t)dt;

est un espace de Hilbert.

1.3 Théorèmes d�injection

Les thèorèmes d�injection dé�nissent les relations qui existent entre di¤érents
espaces fonctionnels. Ils sont très importants dans l�analyse moderne et les
problèmes aux limites.

Dé�nition 1.3.1 Soient E1 et E2 deux espaces de Banach. On dit que E1 est
injecté dans E2 et on écrit E1 ,! E2; si pour tout x 2 E1 on a x 2 E2 et kxkE2 �
c kxkE1 ; où la constante c ne dépend pas de x 2 E1: On dé�nit l�opérateur
d�injection J : E1 ! E2; qui nous permet de considérer le même élément x 2 E1
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comme un élément de E2:
E1 ,! E2 est équivalent à dire que l�opérateur d�injection J : E1 ! E2 est un
opérateur linéaire continu.
Si kxkE2 � c kxkE1 ; pour tout x 2 E1; alors kJkE1!E2 � c:

Dé�nition 1.3.2 Si E1 ,! E2 et l�opérateur d�injection J : E1 ! E2 est un
opérateur compact, alors on dit que E1 est injecté de manière compacte dans E2;
et on écrit: E1 ,!,! E2.
La compacité de l�opérateur J : E1 ! E2 est équivalent à dire que tout sous-
ensemble borné de E1 est un sous-ensemble compact de E2:

Théorème 1.3.1 Il existe une constante C (dépendante seulement de jIj � 1)
telle que

jujL1 � C kukW 1;p ; 1 � p � 1;
autrement dit W 1;p(p) � L1(I) avec injection continue pour tout 1 � p � 1.
De plus, lorsque I est borné, on a

W 1;p(p) ,!,! C(I) pour 1 � p � 1:

W 1;1(I) ,!,! Lq(I) pour 1 � q � 1:

Théorème 1.3.2 (Rellich-Kondrachov) Soit N 2 N et 
 un domaine ou-
vert borné de classe C1 dans RN . On a :
si p < N alors W 1;p (
) ,!,! Lq (
) pour tout q 2 [1; p�[ ; où p� = N .p

N�p ;

si p = N alors W 1;p (
) ,!,! Lq (
) pour tout q 2 [1;+1[ :
si p > N alors W 1;p (
) ,!,! C

�


�
:

En particulier, on a toujours :H1 (
) ,!,! L2 (
) :

Remarque 1.3.1 La condition sur le domaine 
 est nécessaire, si 
 n�est pas
borné alors les injections ne sont pas compactes en général.

1.3.1 Inégalitè de Poincaré

L�inégalité de Poincaré est un résultat de la théorie des espaces de Sobolev. Cette
inégalité permet de borner une fonction à partir d�une estimation sur ses dérivées
et de la géométrie du domaine sur lequel elle est considérée.
Soient p, tel que 1 � p < 1 et 
 un ouvert borné. Alors il existe une

constante C, dépendant uniquement de 
 et p, telle que, pour toute fonction x
de l�espace de Sobolev W 1;p

0 (
),

kxkp � C krxkp .
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Remarque 1.3.2 L�inégalité de Poincaré permet d�établir l�équivalence surW 1;p
0 (
)

entre la norme (1:2) et celle dé�nie par

kxk =
mX
k=0



rkx



p : (1.3)

1.3.2 Espaces de Sobolev avec conditions aux limites
périodiques

Prenons I = [0; T ] ; pour 1 < p < 1, l�espace de Sobolev W 1;p
T est l�espace des

fonctions x 2 Lp (I;R) ayant une dérivée faible x0 2 Lp (I;R) avec x(0) = x(T ):
W 1;p
T muni de la norme

kxkW 1;p
T
=

�Z T

0

�
jx(t)jp + jx0(t)jp

�
dt

� 1
P

; (1.4)

est un espace de Banach ré�exif.

Proposition 1.3.1 Si x 2 W 1;p
T ; alors il existe une constante c telle que

kxk1 � c kxkW 1;p
T
; (1.5)

de plus si
R T
0
x(t)dt = 0, alors

kxk1 � c kx0kLp :
H1
T est l�espace de Hilbert W

1;2
T muni du produit scalaire

(x; y) =

Z T

0

[x(t)y(t) + x0(t)y0(t)] dt

et de la norme correspondante kxk = kxkW 1;2
T
:

Décomposition orthogonale de H1
T

H1
T se décompose en somme directe H

1
T = H

+ �H�, où H+ dénote le sous-
espace de H1

T de fonctions à valeur moyenne nulle et H
� le sous-espace de H1

T

de fonctions constantes: H+ et H�sont orthogonaux.
Dans ce cas, nous obtenons les estimations suivantes.

Proposition 1.3.2 Si x 2 H+; alorsZ T

0

jx(t)j2 dt � T 2

4�2

Z T

0

jx0(t)j2 dt; (1.6)

( Inégalité de Wirtinger) et

kxk21 �
T

12

Z T

0

jx0(t)j2 dt;

(Inégalité de Sobolev).



Chapitre 2

Méthodes variationnelles

Sommaire
2.1 Approche variationnelle d�un problème . . . . . . . . 12

2.2 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Points êxtremes . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Fonctions convexes . . . . . . . . . . . . . . . . . . . . 14

2.3 Résultats de minimisation . . . . . . . . . . . . . . . . 14

2.4 Théorie des points critiques . . . . . . . . . . . . . . . 15

Les méthodes variationnelles constituent une technique puissante dans l�analyse
non linéaire. Elles sont utilisées dans di¤érentes disciplines des mathématiques
pures et appliquées, faisant intervenir les problèmes aux limites associés à des
équations di¤érentielles ordinaires et aux dérivées partielles.

2.1 Approche variationnelle d�un problème

Un certain nombre de problèmes dans la théorie des équations di¤érentielles
peuvent être exprimés sous la forme d�une équation

Ax = 0; (2.1)

où A : X ! Y , X et Y sont des espaces de Banach. Cette équation a une
structure variationnelle, s�il existe une fonctionnelle ' : X ! R telle que

(A(x); y) = lim
t!0

'(x+ ty)� '(x)
t

;

où Y = X 0, le dual de X; (:; :) est le couple de dualité entre X et X 0. Dans ce
cas, nous pouvons écrire A = '0 et l�équation (2:1) devient

('0(x); y) = 0; pour tout y 2 X: (2.2)

12
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En écrivant l�équation (2:2), nous avons exprimé l�équation (2:1) sous une forme
faible. Le problème se transforme alors, en la recherche des points critiques de la
fonctionnelle ' qui représentent les solutions de (2:1). Si X = RN , les candidats
évidents pour les points critiques sont les maximums et minimums locaux de '.
La situation est plus compliquée si ' est une fonction dé�nie sur un espace de
dimension in�nie.
Dans la suite, nous présenterons des arguments pour prouver l�existence de

points critiques d�une fonctionnelle réelle ' dé�nie sur un espace de Banach X.

2.2 Rappels

Nous rappelons les dé�nitions nécessaires pour l�énoncé des théorèmes d�existence
de ces points critiques. pour plus de détails voir les références [5, 9, 12, 16, 14].

2.2.1 Points êxtremes

Dé�nition 2.2.1 Soit ' : X ! R une fonctionnelle. Un point x0 2 X est
appelé extrémum de ' s�il existe un voisinage U(x0) de x0 tel que :ou bien

'(x) � '(x0); 8x 2 U(x0); (' est maximal en x0);

ou bien
'(x) � '(x0); 8x 2 U(x0); (' est minimal en x0):

Dé�nition 2.2.2 (Point critique d�une fonction) Un "point critique" de '
2 C1 (X;R) est un point x 2 X pour lequel '0(x) = 0.

Dé�nition 2.2.3 ( valeur critique d�une fontion) Une "valeur critique" de
' est un nombre c tel que '0(x) = c où x est un point critique de '.

L�exemple le plus simple de point critique d�une fonctionnelle ' 2 C1 (X;R)
est le point extrémal c�est-à-dire un point où ' atteint un minimum ou un max-
imum, local ou global.

Théorème 2.2.1 Soit ' une fonctionnelle dé�nie sur un domaine (ouvert et
borné) E � X et x0 un point intérieur de E:
Supposons que ' est Gâteaux-di¤érentiable en x0. Alors si x0 est un extrémum
de ', il est donc un point critique de X.

Remarque 2.2.1 Comme on peut voir par la suite, si x0 2 @E alors on n�a pas
nécessairement D'(x0) = 0:
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Dé�nition 2.2.4 (Semi-continuité inférieure) Soit un espace normé .Une
suite minimisante pour une fonction ' : X ! ]�1;+1] est une suite (xk) telle
que

' (xk)! inf ' quand k !1:
Une fonction ' : X ! ]�1;+1] est semi-continue inférieurement (respective-
ment faiblement semi-continue inférieurement) si

xk ! x) lim inf ' (xk) � ' (x)
(resp. xk * x) lim inf ' (xk) � ' (x)):

2.2.2 Fonctions convexes

Dé�nition 2.2.5 (Ensemble convexe) On dit qu�une partie E de X est con-
vexe si :

8x; y 2 E; 8t 2 [0; 1]; (tx+ (1� t)y) 2 E:

Dé�nition 2.2.6 (Fonction convexe) Soit X un espace de Banach, soit E �
X un sous-ensemble convexe, une fonctionelle ' : X ! R est dite convexe sur
E si pour tous u; v 2 E et t 2 [0; 1] on a:

'(tu+ (1� t)v) � t'(u) + (1� t)'(v):

La fonctionelle ' est dite strictement convexe sur E si pour tous u; v 2 E; u 6= v
et t 2 (0; 1) on a:

'(tu+ (1� t)v) < t'(u) + (1� t)'(v):

Théorème 2.2.2 Soit X un espace de Banach et ' 2 C1 (X;R) convexe. Alors
x0 2 X est un minimum de ' si et seulement si x0 est un point critique de ';
c�est à dire:

'(x0) = inf
x2X

'(x), D'(x0) = 0:

Théorème 2.2.3 Soit ' : X !]�1;+1] une fonctionnelle convexe. Alors '
est faiblement semi-continue inférieurement si seulement si elle est semi-continue
inférieurement.

2.3 Résultats de minimisation

Théorème 2.3.1 ( voir [Th. 1.1 dans [12]]) Soit X un espace de Banach
re�éxif; E un sous enemble faiblement fermé de X, et ' : E ! R est faiblement
semi-continue inférieurement, alors ' a un minimun sur E si et seulement si
elle admet une suite minimisante bornée sur E:
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Remarque 2.3.1 L�existence d�une suite minimisante bornée est assurée quand
' est coercive, i.e., ' est telle que

' (x)! +1 si kxkX ! +1:

Dans le cas où la fonction ' est minorée (respectivement majorée), il est
raisonnable d�essayer de montrer que le minimum (respectivement le maximum)
est atteint.
Pour les fonctionnelles convexes, un résultat classique est donné par le théorème
suivant:

Théorème 2.3.2 (voir [5] page 46) Soit une fonctionnelle réelle F dé�nie sur
un espace de Banach ré�éxif X. Supposons que:
i) F est semi-continue inférieurement,
ii) F est convexe,
iii) F est coercive, i.e.

lim
kxkX!+1

F (x) =1:

Alors F atteint son minimum, i.e. il existe x0 2 X tel que :

F (x0) = min
x2X

F (x):

2.4 Théorie des points critiques

Si ' n�est pas convexe, elle n�a pas besoin d�atteindre son in�mum. Toute fois, le
résultat d�Ekeland montre l�existence de points qui sont presque des minimum.

Théorème 2.4.1 (voir [16] page 51) Soit X un espace métrique complet et F
semi-continue inférieurement sur X et minorée. Alors il existe x0 2 X tel que:

F (x) > F (x0)� dist(x; x0); pour tout x 2 X; x 6= x0:

Une condition de compacité qui est habituellement employée pour prouver
l�existence de points stationnaires est la condition de Palais-Smale (P-S), pour
une fonction ' 2 C1 :

Dé�nition 2.4.1 (Condition (P-S)) Toute suite fxjg 2 X telle que: j'(xj)j
< M et '0(xj) ! 0 en norme dans X 0 (l�espace dual de X) admet une sous-
suite fortement convergence, où '0(x) représente la dérivée de ' en x, et est un
élément du dual X 0l�espace des fonctions linéaires continues sur X. Une telle
fonction atteint toujours son in�mum.

Lemme 2.4.1 Soit ' une fonction réelle de classe C1 dé�nie sur un espace de
Banach X satisfaisant la condition (P-S) et bornée inférieurement. Alors '
atteint un minimum en un certain point x0 de X:
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Pour une fonction qui n�est pas bornée, chercher ses points critiques revient
à chercher des points selles de la fonctionnelle associée au problème étudié. Ces
points sont déterminés par des arguments de type minimax. Ce qui nous ramène
à l�utilisation du théorème du col et ses variantes:

Théorème 2.4.2 (Theorème du col) [Th. 4.10 dans [12]] Soit X un espace
de Banach et ' 2 C1(X;R): Supposons qu�il existe u0 2 X; u1 2 X; et un
voisinage ouvert borné I de u0 tel que u1 2 X=I et

inf
@I
' > max (' (u0) ; ' (u1)) :

Soit
� = fg 2 C ([0; 1] ;X) ; g(0) = u0; g(1) = u0g ;

et
c = inf

g2�
max
0�s�1

'(g(s)):

Si ' satisfait la condition de Palais-Smale, alors c est une valeure critique de '
et

c > max (' (u0) ; ' (u1)) :

Théorème 2.4.3 ([ Th. 9.1 dans [14]]) Soit E un espace de Banach réel, ' 2
C1(E;R) est une fonctionnelle paire qui satisfait la condition de Palais-Smale, '
est bornée inférieurement et '(0) = 0; supposons qu�il existe un ensemble K � E
tel que K est homéomorphe à Sn�1 (la sphère unité (n� 1)-dimensionnelle ) par
une application impaire et supx2K '(x) < 0, alors ' a au moins n paires de
points critiques non triviaux distincts .
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Cette partie est largement inspirée par le travail de X. L. Liu et X. Y. Shi
[11].

3.1 Introduction

Dans cette partie, nous nous intéressons à l�équation di¤érentielle non autonome
du second ordre suivante

x00(t) + f(t; x(t)) = 0; t 2 I; (3.1)

avec les conditions aux limites intégrales:

x(0)� x(2�) = x0(0)� x0(2�) = 0;
Z 2�

0

x(t)dt = 0; (3.2)

où I = [0; 2�] et f 2 C (R2) est 2��périodique en t:
Les problèmes aux limites avec les conditions intégrales ont fait l�objet de

plusieurs travaux ces dernières années [4, 10, 19, 20]. En particulier, pour les
problèmes aux limites de second ordre avec les conditions périodique-intégrales
(voir [7, 8]).

17
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Dans la littérature, certains outils classiques ont été utilisés pour étudier ces
problèmes: les théorèmes du point �xe [4], la méthode des sur et sous solutions
[19], la théorie des opérateurs monotones mixtes [10], la méthode d�estimation à
priori avec le théorème du point �xe de Leray-Schauder [21].
En particulier, dans l�article [8], les auteurs ont étudié le problème (3:1)�(3:2)

par une forme bilinéaire en utilisant le théorème du point �xe de Leray-Schauder,
dans le cas de non résonance. Leur résultat principal est le suivant:

Théorème 3.1.1 Supposons que:
C1) f 2 C(I;R) est 2��périodique en t;
C2) Il existe N 2 Z+ et " > 0 tels que

N2 + " � fx(t; x) � (N + 1)2 � "; pour tout (t; x) 2 I � R:

Alors le problème (3:1)� (3:2) admet une solution unique.

Nous savons que dans le cas de résonance, i.e.

fx(t; x) = N
2; N 2 Z;

le problème (3:1)� (3:2) peut avoir une in�nité de solutions.
Par exemple, si

f(t; x) = N2x; pour (t; x) 2 I � R:
admet des solutions de la forme

x(t) = c1 cos (Nt) + c2 sin (Nt) ; où c1; c2 2 R:

où c1; c2 2 R; sont des constantes arbitraires.
Nous remarquons que dans le résultat de [8], les conditions imposées à f(t; x)

sont très restreintes.
Si ces conditions ne sont pas véri�ées, l�existence de solutions pour le problème
(3:1)� (3:2) n�est pas garantie, en e¤et:
Considérons un cas particulier du problème (3:1)� (3:2) où

f(t; x) = a sin x(t)� e(t); pour (t; x) 2 I � R; (3.3)

où a est une constante donnée et e 2 C ([0; 2�]) est une fonction 2��périodique
véri�ant

R 2�
0
e(t)dt = 0:

Il est clair que dans (3:3) ; on a

fx(t; x) = a cosx(t);

si a < 1; la condition (C2) du théorème 3.1.1 n�est pas satisfaite et donc le
problème (3:1) � (3:2) n�a pas de solutions par conséquent la méthode utilisée
dans [8] n�est pas applicable.
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D�un autre côté, une théorie de base des méthodes variationnelles a été in-
troduite dans [22] pour étudier ce cas particulier du problème (3:1)� (3:2) :
Motivés par tous ces travaux et en se basant sur l�article [11], notre but dans

ce mémoire est d�étudier l�existence des solutions pour le problème (3:1)� (3:2)
sous des hypothèses su¢ santes, en utilisant une approche variationnelle basée
sur une minimisation directe sous contrainte.

3.2 Préliminaires

Nous nous intéressons à l�existence des solutions 2��périodiques avec valeur
moyenne nulle, nous considérons donc le sous-espace faiblement fermé E de H1

2�

dé�ni par:

E = H+ =

�
x 2 H1

2�;

Z 2�

0

x(t)dt = 0

�
;

équipé de la norme

kxk =
�Z 2�

0

jx0(t)j2 dt
� 1

2

;

équivalente à la norme k:kH1
2�
(1:4) ; à l�aide de l�inégalité de Wirtinger (1:6).

Soit y 2 E; multiplions les deux membres de l�égalité (3:1) par y et intégrons
entre 0 et 2�, nous obtenonsZ 2�

0

[x00(t) + f(t; x(t))] y(t)dt = 0:

De plus, puisque y(0) = y(2�), nous avonsZ 2�

0

x0(t)y0(t)dt�
Z 2�

0

f(t; x(t))y(t)dt = 0:

Dé�nition 3.2.1 Une solution faible du problème (3:1)� (3:2) est une fonction
x 2 E telle que Z 2�

0

x0(t)y0(t)dt�
Z 2�

0

f(t; x(t))y(t)dt = 0;

pour tout y 2 E:

Soit la fonctionnelle d�énergie associée au problème (3:1)�(3:2) ; � : H1
2� ! R

dé�nie par

�(x) =

Z 2�

0

1

2
jx0(t)j2 dt�

Z 2�

0

F (t; x(t))dt; (3.4)

où

F (t; x) =

Z x

0

f(t; s)ds;
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et

N(x) =

Z 2�

0

x(t)dt = 0:

Sous la contrainte N(x), le point minimum x0 2 C2(I)\H1
2� de la fonctionnelle

�(x) est la solution du problème (3:1)� (3:2) ; autrement dit

�(x0) = min
x2H1

2�\N�1(0)
�(x):

Remarque 3.2.1 1- Sous la contrainte N(x) = 0; les multiplicateurs de La-
grange sont nuls par conséquent les solutions du problème (3:1) � (3:2) sont les
minimums de la fonctionnelle �(x):
2- La fonctionnelle �(x) n�est pas coercive sur H1

2�; nous nous intéressons donc
aux minimums de la fonctionnelle �(x) sur le sous-espace faiblement fermé E
de H1

2� dé�ni ci- dessus.

Dans la suite nous aurons besoin du lemme suivant:

Lemme 3.2.1 ( voir [22]) Soit x� 2 W 1;r(J;Rn) un point minimum de la fonc-
tionnelle

'(x) =

Z
J

L(t; x; y)dt;

où J = [a; b] est un intervale �ni de R, 1 < r <1.
Supposons que:
(i) jL(t; x; yj+ jLx(t; x; y)j+ jLy(t; x; y)j � C(1 + jyj2):
(ii) La matrice Lyiyj(t; x; y) est positive pour tout (t; x; y) 2 J � Rn � Rn:
Alors u� 2 C2 (I) dans le sens où u� change de valeur sur un ensemble de mesure
nulle.

Proposition 3.2.1 La fonctionnelle �(x) est continue, di¤érentiable et faible-
ment semi-continue inférieurement. De plus, les points critiques de �(x) sont
les solutions faibles du problème (3:1)� (3:2).

Preuve: La continuité de f nous donne la continuité de �:
� est di¤érentiable en e¤et:

Pour tout x; y 2 E et " > 0, nous avons

�(x+ "y) =

Z 2�

0

1

2

��(x+ "y)0 (t)��2 dt� Z 2�

0

F (t; (x+ "y) (t))dt

=

Z 2�

0

[
1

2
x0(t)2dt+ "x0(t)y0(t)dt+

"2

2
(y0(t))

2
]dt�

Z 2�

0

F (t; x(t))dt

�
�Z 2�

0

F (t; x(t) + "y(t))dt�
Z 2�

0

F (t; x(t))dt

�
;
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et en utilisant la formule des accroissements �nis on obtient

�(x+ "y) = �(x) + "[

Z 2�

0

x0(t)y0(t)dt�
Z 2�

0

f(t; x(t) + "�(t)y(t))y(t)dt]

+
"2

2

Z 2r

0

(y0(t))
2
dt;

où 0 < �(t) < 1: Ainsi

lim
"!0

�(x+ "y)� �(x)
"

= lim
"!0

Z 2�

0

x0(t)y0(t)dt�
Z 2�

0

f(t; x(t) + "�(t)y(t))y(t)dt

+
"

2

Z 2r

0

(y0(t))
2
dt

=

Z 2�

0

x0(t)y0(t)dt�
Z 2�

0

f(t; x(t))y(t)dt:

Ainsi, � 2 C1(E;R) et il est facile de voir que

�0(x)y = lim
"!0

1

"
(�(x+ "y)� �(x))

=

Z 2�

0

x0(t)y0(t)dt�
Z 2�

0

f(t; x(t))y(t)dt:

Par conséquent, les solutions faibles du problème (3:1)�(3:2) correspondent aux
points critiques de �:
Montrons maintenant que � est faiblement semi continue inférieurement.

Soient (xn) � E; x 2 E, tels que xn * x; alors (xn) converge uniformément vers x
sur I et xn ! x dans L2 (I) ; et en combinant le fait que lim infn!1 kxnk � kxk ;
nous avons,

lim inf
n!1

� (xn) = lim inf
n!1

�Z 2�

0

1

2
jx0n(t)j

2
dt�

Z 2�

0

F (t; xn(t))dt

�
= lim inf

n!1

�
1

2
kxnk2 �

Z 2�

0

F (t; xn(t))dt

�
� 1

2
kxk2 �

Z 2�

0

F (t; x(t))dt

= � (x) :

3.3 Résultats d�existence

Dans cette partie nous ennonçons quelques résultats d�existence. Leurs preuves
se basent essentiellement sur le théorème 2.3.1.
Nous commençons par le thèorème suivant:
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Théorème 3.3.1 Supposons que:
(H1) f(t; x) 2 C (R2) et 2��périodique en t;
(H2) f(t; x) et F (t; x) sont toutes les deux bornées; c0est� �a� dire : ils existent
M1;M2 2 R+� tels que8<:

jf(t; x)j �M1

et
jF (t; x)j �M2

; pour (t; x) 2 I � R:

Alors le problème (3:1)� (3:2) admet au moins une solution.

Preuve: D�après la proposition 3.2.1, la fonctionnelle � 2 C1(E;R) et est
faiblement semicontinue inférieurement.
Il reste à prouver qu�elle admet une suite minimisante bornée sur E.
D�après (H2); nous avons

�(x) =

Z 2�

0

1

2
jx0(t)j2 dt�

Z 2�

0

F (t; x(t))dt

� 1

2
kxk2 � 2�M2;

d�où,
� (x)! +1 quand kxkE ! +1:

Alors, � est coercive sur E, ce qui garantie l�existence d�un suite minimisante
bornée surE, un sous-espace faiblement fermé deH1

2�: En appliquant le théorème
2.3.1, la fonctionnelle � admet un minimum x0 2 E, et par conséquent le prob-
lème (3:1)� (3:2) admet au moins une solution faible.
Pour montrer que cette solution est classique, posons

L(t; x(t); x0(t)) :=
1

2
jx0(t)j2 � F (t; x(t));

et véri�ons les conditions du lemme 3.2.1.
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1- D�après (H2); nous avons

jL(t; x(t); x0(t))j+ jLx(t; x(t); x0(t))j+ jLx0(t; x(t); x0(t))j =
����12 jx0(t)j2 � F (t; x(t))

����
+ jf(t; x(t))j+ jx0(t)j

�
����12 jx0(t)j2

����
+ jF (t; x(t))j+ jf(t; x(t))j+ jx0(t)j

�
����12 jx0(t)j2

����+M1 +M2 + jx0(t)j

� 1

2

�
jx0(t)j2 + 2 jx0(t)j+ 1

�
+M

=
1

2
(1 + jx0(t)j2) +M

�
�
M +

1

2

�
(1 + jx0(t)j2);

où M :=M1 +M2; une constante positive.
Ainsi,

jL(t; x(t); x0(t))j+ jLx(t; x(t); x0(t))j+ jLx0(t; x(t); x0(t))j � C(1 + jx0(t)j2):

où C :=
�
M + 1

2

�
; une constante positive.

2- Nous avons

Lx0(t; x(t); x
0(t)) = jx0(t)j � 0; pour tout (t; x(t); x0(t)) 2 I � R� R:

Les conditions du lemme 3.2.1 étant véri�ées, le problème (3:1) � (3:2) admet
une solution.

Exemple 3.3.1 Considérons l�équation di¤érentielle

x00(t) + x(t)e�x
2(t) sin t = 0; (3.5)

sous les conditions aux limites suivantes

x(0)� x(2�) = x0(0)� x0(2�) = 0;
Z 2�

0

x(t)dt = 0;

où
f(t; x(t)) = x(t)e�x

2(t) sin t;

alors,

F (t; x(t)) = �1
2
e�x

2(t) sin t:
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ce qui montre que f(t; x(t)) et F (t; x(t)) sont bornées sur I � R en e¤et:

jf(t; x(t))j =
���x(t)e�x2(t) sin t��� � 1p

2
e�

1
2 ;

et

jF (t; x(t))j =
����12e�x2(t) sin t

���� � 1

2
:

D�où le problème (3:1)� (3:2) admet au moins une solution.

Remarque 3.3.1 Si nous nous prenons:

f(t; x(t)) = sin t;

alors,
F (t; x(t)) = x(t) sin t:

Nous avons f(t; x(t)) bornée et F (t; x(t)) non bornée sur I � R.
Cepandant, le problème (3:1)� (3:2) admet une solution unique x(t) = sin t:

Cette remarque nous inspire à considérer le cas faible du problème (3:1)�(3:2)
et donc chercher ses solutions faibles comme points minimums de la fonctionnelle
�:
Nous ennonçons dans la suite un second théorème ainsi qu�un corollaire.

Théorème 3.3.2 Supposons que l�hypothèse (H1) est satisfaite. Si de plus on
a:
(H2)0 limx!1

F (t;x)
x2

= l < 1
2
; pour (t; x) 2 I� R.

Alors le problème (3:1)� (3:2) admet au moins une solution faible.

Preuve: D�après la proposition 3.2.1, la fonctionnelle � 2 C1(E;R) est faible-
ment semi continue inférieurement.
Il reste à prouver qu�elle admet une suite minimisante bornée sur E.

D�après (H2)0; nous avons pour tout " > 0;
���F (t;x(t))
(x(t))2

� l
��� < ", i.e.

F (t; x(t)) < ("+ l) (x(t))2 :

Soit " tel que 0 < " < 1
2
� l; en utilisant l�inégalité de Wirtinger (1:6), nous
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obtenons,

�(x) =

Z 2�

0

1

2
jx0(t)j2 dt�

Z 2�

0

F (t; x(t))dt

� 1

2
kxk2 � (l + ")

Z 2�

0

x2(t)dt

� 1

2
kxk2 � (l + ")

Z 2�

0

x2(t)dt

� 1

2
kxk2 � (l + ")

Z 2�

0

x2(t)dt

�
�
1

2
� (l + ")

�
kxk2 ;

d�où,
� (x)! +1 quand kxkE ! +1:

Alors, � est coercive sur E, ce qui garantie l�existence d�un suite minimisante
bornée surE, un sous-espace faiblement fermé deH1

2�: En appliquant le théorème
2.3.1, la fonctionnelle � admet un minimum x0 2 E, et par conséquent le prob-
lème (3:1)� (3:2) admet au moins une solution faible.

Exemple 3.3.2 Considérons l�équation di¤érentielle

x00(t) +
x(t)

2
+ sin t = 0; (3.6)

sous les conditions aux limites suivantes

x(0)� x(2�) = x0(0)� x0(2�) = 0;
Z 2�

0

x(t)dt = 0;

où
f(t; x) = sin t+

x

2
et

F (t; x) = x sin t+
x2

4
:

Il est facile de voir que

lim
x!1

F (t; x)

x2
=
1

4
<
1

2
:

En appliquant le théorème 3.3.2, le problème (3:6) � (3:2) admet au moins
une solution faible.

Remarque 3.3.2 Si F satisfait la condition suivante à la place de (H2)0:
(H2)00 F (t; x) � ax2 + bx+ c pour tout (t; x) 2 [0; 2�]�R, où a < 1

2
; b et c sont

des constantes réelles, alors � est coercive sur E.

Par suite, nous pouvons énnoncer le corollaire suivant.
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Corollaire Supposons (H1) et (H2)�sont satisfaites, alors le problème (3:1)�
(3:2) admet au moins une solution faible.

Preuve: D�après (H2)00; nous avons:

�(x) =

Z 2�

0

1

2
jx0(t)j2 dt�

Z 2�

0

F (t; x(t))dt

� 1

2
kxk2 �

Z 2�

0

ax2(t)dt�
Z 2�

0

bx(t)dt� 2�c:

Et en utilisant l�inégalité de Wirtinger et la condition
R 2�
0
x(t)dt = 0, on trouve

�(x) � 1

2
kxk2 � a kxk2 � 2�c

�
�
1

2
� a
�
kxk2 � 2�c:

d�où,
� (x)! +1 quand kxkE ! +1:

Alors, �(x) est coercive sur E, un sous-espace faiblement fermé de H1
2�; et

puisque, � est semi continue inférieurement, alors, d�après le théorème 2.3.1, la
fonctionnelle � admet un minimum x1 2 E; et le problème (3:1) � (3:2) admet
au moins une solution faible. Ce qui achève la preuve.

Exemple 3.3.3 Considérons l�équation

x00(t) +
x(t)

2
sin2 (t) + 1 = 0; (3.7)

sous les conditions aux limites suivantes

x(0)� x(2�) = x0(0)� x0(2�) = 0;
Z 2�

0

x(t)dt = 0;

où
f(t; x) =

x

2
sin2 (t) + 1;

et

F (t; x) =
1

4
x2 sin2 (t) + x:

Il est clair que F véri�e (H2)00, en e¤et

F (t; x) � 1

4
x2 + x pour tout t 2 [0; 2�]� R:

En appliquant le corollaire 3.3, le problème (3:7) � (3:2) admet au moins une
solution faible.
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Application
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Dans ce chapitre, nous appliquons le théorème 3.3.2 à un problème d�oscillation.
Nous montrons l�existence d�au moins une solution au sens faible, puis en util-
isant le lemme 3.2.1, nous prouvons que c�est une solution classique.

4.1 Présentation du Problème

Dans cette section, nous étudions l�existence solutions 2��périodiques non con-
stantes pour l�équation d�oscillation non linéaire

x00(t) + a sin x(t) = e(t); t 2 [0; 2�] ;

où a est une constante donnée et le terme forçant e 2 C ([0; 2�]) est une fonction
2��périodique véri�ant

R 2�
0
e(t)dt = 0:

Nous considérons donc le problème:8<:
x00(t) + a sin x(t) = e(t); t 2 [0; 2�] ;
x(0)� x(2�) = x0(0)� x0(2�) = 0;R 2�

0
x(t)dt = 0;

(4.1)

qui est un cas particulier de (3:1)� (3:2) avec

f(t; x) = a sin x� e(t):

27
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4.2 Résultat d�existence

Nous ennonçons alors le théorème suivant:

Théorème 4.2.1 Si e 2 C ([0; 2�]) est une fonction 2��périodique telle queR 2�
0
e(t)dt = 0; alors le problème (4:1) admet au moins une solution.

Preuve: La preuve se base sur l�application du théorème 3.3.2 et le lemme
3.2.1.
Nous dé�nissons la fonctionnelle ' : E ! R dé�nie par

'(x) =

Z 2�

0

�
1

2
jx0(t)j2 + a cosx(t)� e(t)x(t)

�
dt: (4.2)

Soit la fonction

F (t; x) =

Z x

0

f(t; s)ds = a cosx� e(t)x;

primitive de f(t; x):
Nous véri�ons que les fonctions f et F satisfont bien les conditions du

théorème 3.3.2, en e¤et:
-(H1) Sachant que e 2 C ([0; 2�]) est une fonction 2��périodique, nous dé-
duisons que f 2 C (R2) et 2��périodique en t comme somme algébrique de
deux fonctions continues et 2��périodiques.
-(H2)0 limx!1

F (t;x)
x2

= l < 1
2
; pour (t; x) 2 [0; 2�]� R, en e¤et:

lim
x!1

F (t; x)

x2
= lim

x!1

a cosx� e(t)x
x2

= lim
x!1

a cosx

x2
� e(t)

x
= 0 <

1

2
:

Par conséquent la fonctionnelle ' admet un minimum et donc le problème (4:1)
admet au moins une solution faible.
Montrons maintenant que cette solution est classique.

Soit

E(t) :=

Z t

0

e(s)ds;

En utilisant le fait que
R 2�
0
e(s)ds = 0; nous avons

E(2�) = E(0) = 0:

Ceci implique queZ 2�

0

e(t)x(t)dt = E(t)x(t)
��2�
0 �

Z 2�

0

E(t)x(t)dt

= E(2�)x(2�)� E(0)x(0)�
Z 2�

0

E(t)x(t)dt

= �
Z 2�

0

E(t)x(t)dt:
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Posons maintenant

L(t; x(t); x0(t)) :=
1

2
jx0(t)j2 + a cosx(t)� e(t)x(t);

D�où
L(t; x(t); x0(t)) =

1

2
jx0(t)j2 + a cosx(t) + E(t)x0(t):

1- Véri�ons que pour tout (t; x(t); x0(t)) 2 I �R�R; il existe une constante
C > 0 telle que

jL(t; x(t); x0(t))j+ jLx(t; x(t); x0(t))j+ jLx0(t; x(t); x0(t))j � C(1 + jx0(t)j2):

Nous avons

jL(t; x(t); x0(t))j+ jLx(t; x(t); x0(t))j+ jLx0(t; x(t); x0(t))j =
����12 jx0(t)j2 + a cosx(t) + E(t)x0(t)

����
+ ja sin x(t)j+ jE(t) + jx0(t)jj

� 1

2
jx0(t)j2 + jx0(t)j+ 2 jaj+ jE(t)j

� 1

2
jx0(t)j2 + 2 jx0(t)j+ 2 jaj+K

� 1

2
(1 + jx0(t)j2) +K 0

�
�
1

2
+K 0

�
(1 + jx0(t)j2)

où K 0 := 2 jaj+K; une constante positive.
Ainsi,

jL(t; x(t); x0(t))j+ jLx(t; x(t); x0(t))j+ jLx0(t; x(t); x0(t))j � C(1 + jx0(t)j2):

où C :=
�
K 0 + 1

2

�
; une constante positive.

2- Nous avons

Lx0(t; x(t); x
0(t)) = jx0(t)j � 0; pour tout (t; x(t); x0(t)) 2 I � R� R:

Les conditions du lemme 3.2.1 étant véri�ées, le problème (4:1) admet une solu-
tion.



Chapitre 5

Conclusion

Dans ce mémoire, nous nous sommes intéressés à la recherche de solutions péri-
odiques pour des problèmes associés à des équations di¤érentielles non linéaires
et non autonomes du second ordre.
Nous avons utilisé un outil trés puissant dans l�analyse nonlinéaire qui est les

méthodes variationnelles.
Appliquer ces methodes revient à transformer le problème initial en la minimi-
sation d�une certaine fonctionnelle d�énergie dé�nie sur un espace de Banach.
Les points critiques de cette fonctionnelle représentent les solutions faibles du
problème initial.
L�approche variationnelle utilisée dans cette étude, est basée sur une minimi-

sation directe sous l�e¤et d�une contrainte.
Nous avons montré l�existence d�au moins une solution de notre problème péri-
odique.
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    Résumé 

    Dans ce mémoire, nous nous sommes intéressés à la recherche de solutions 

périodiques pour des problèmes associés à des équations différentielles non 

linéaires du second ordre. 

L'approche utilisée, est variationnelle basée sur une minimisation directe sous 

l'effet d'une contrainte. 

Mots clés :  Equation différentielle du second ordre, solution périodique, 

méthode variationnelle. 

 

 

  Abstract 

    In this thesis, we study the existence of solutions for periodic boundary 

problems associated to nonlinear second-order differential equations. 

We use variational approach, with constraints.  

Key words: second order differential equation, periodic solution, variational 

method. 

 

 

 

 ملخص

 بالمعادلات المرتبطة الدوریة الحدیة المسائل من لصنف الحلول وجود اشكالیة رةمذكال ھذه في ناقشنا
٠قیود مع التغیرات أسالیب باستخدام وذلك تم وقد ٠الثانیة الدرجة من التفاضلیة                                                                                 

٠التغیرات أسالیب دوري، حل ،الثانیة الدرجة من تفاضلیة معادلة :المفتاحیة الكلمات   

. 
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