
N̊ Attribué par la bibliothèque

Année univ.: 2019/2020

République Algérienne Démocratique et Populaire
Ministère de l’enseignement supérieur et de la recherche scientifique

Processus Markoviens en temps continu et
applications

Mémoire présenté en vue de l’obtention du diplôme de

Master Académique

Université de Saida - Dr Moulay Tahar

Discipline : MATHEMATIQUES

Spécialité : Analyse Stochastique, Statistique

des Processus et Applications

par

Khaoula MOUMENE 1

Sous la direction de

Pr/A. KANDOUCI

Soutenu le 14/09/2020 devant le jury composé de

Dr.M Kadi Université Dr Tahar Moulay - Saïda Président

Pr.A Kandouci Université Dr Tahar Moulay - Saïda Encadreur
Dr/Mlle.F Benziadi Université Dr Tahar Moulay - Saïda Examinatrice1
Dr/Mlle.N Hachemi Université Dr Tahar Moulay - Saïda Examinatrice2

1. e-mail : khaoulamoumene77@gmail.com



 

 

En tout premier lieu, je remercie le bon Dieu, tout puissant, de 
m’avoir donné la force pour finir ce modeste travail, ainsi que 
l’audace pour dépasser toutes les difficultés. 

Je dédie ce mémoire : 

À ma chère mère qui a toujours aimé me voir arriver à cette étape 
de ma vie . 

 À mon cher père qui a toujours voulu assister à mon succès, 

 À mes frères et mes sœurs. 

À mon encadreur monsieur A.Kandouci qui m’a beaucoup aidé  à 
surmonter les obstacles que  j’ai rencontrés pendant les moments 
difficiles ,ses encouragements et ses recommandations m’ont 
permis de tenir debout afin de réaliser  ce modeste travail  

 À Tous les professeurs de l’université -Dr Moulay Tahar.                      
Département math et Informatique    

À tous mes amies. 

 

 

 

 

 

 



Remerciement

Tout d’abord, je remercie Dieu tout puissant de m’avoir donné la foi, pour pou-
voir d’accomplir ce travail sérieux et de m’avoir permis d’en arriver là.

Je tiens à remercier tout particulièrement mon encadreur le professeur A.Kandouci,
qui s’est montré toujours disponible, avec ses conseils précieux , son aide inestimable,
son soutien régulier et surtout avec ses mots d’encouragement positif et optimiste,
il n’a pas hésité un jour de me soutenir tout au long de l’année.

Je remercie les membres de jury de m’avoir consacrer des moments de leurs temps
pour consulter ce mémoire et me guider par leurs pertinentes observations.

Un grand merci à tous mes enseignants du département de mathématiques de
saïda pour leur aide et pour leur encourage.

J’exprime toute ma reconnaissance à ma famille, mes amies et ma reconnaissance
qui avaient un rôle psychologique considérable dans l’accomplissement de cette re-
cherche. Bref, mes doigts ne veulent pas s’arrêter de décrire ma reconnaissance.

Merci mille fois....

3



Table des matières

Introduction générale 6

1 Quelques généralités sur les processus aléatoires 8
1.1 Filtration et processus . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Processus aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Temps d’arrêt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Espérence conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Le mouvement Brownien . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Processus de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.1 Trois propriétés de la loi exponentielle . . . . . . . . . . . . . 12
1.8 Présentation du processus de Poisson . . . . . . . . . . . . . . . . . . 13

2 Processus stochastiques Markoviens en temps continu 16
2.1 Les processus de Markov à temps continu . . . . . . . . . . . . . . . . 17

2.1.1 Noyaux de transition et propriété de Markov . . . . . . . . . . 18
2.2 Processus markovien de sauts . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Définition et exemples . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Processus de naissance et de mort . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Un exemple typique . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Processus de naissance . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Processus de mort . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Temps de séjour dans les états de processus . . . . . . . . . . . . . . 24
2.5 Probabilités de transition et générateur de Markov . . . . . . . . . . . 26

2.5.1 Générateur de Markov . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1.1 Intensités de transitions . . . . . . . . . . . . . . . . 28

2.6 Théorème limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.1 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Probabilités de transition du mouvement brownien . . . . . . . . . . 34
2.7.1 Le semi-groupe du mouvement brownien . . . . . . . . . . . . 34
2.7.2 La propriété de Markov forte . . . . . . . . . . . . . . . . . . 35

2.8 Quelques notions fondamentales sur les processus de Markov . . . . . 36

4



TABLE DES MATIÈRES 5

2.8.1 Lois de dimension finie d’un processus de Markov . . . . . . . 36
2.9 Propriétés analytiques du semi-groupe brownien . . . . . . . . . . . . 38

2.9.1 Générateurs infinitésimal d’un semi-groupe de Feller . . . . . . 38
2.9.2 La résolvante du mouvement brownien . . . . . . . . . . . . . 42

3 Quelques applications des processus Markoviens en temps continu 47
3.1 Le résultat classique d’Ito . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Existence et unicité de solution . . . . . . . . . . . . . . . . . 47
3.1.2 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Théorème (Fonctionnelle sur l’espace de Wiener) . . . . . . . 49

3.2 La propriété de Markov fort pour une EDS homogène . . . . . . . . 50
3.3 La propriétés Markovienne des solutions . . . . . . . . . . . . . . . . 53
3.4 Explosions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Convergence d’une chaîne de Markov vers une diffusion . . . . . . . . 61
3.6 Quelques exemples d’application des processus Markoviens en pratique 62

3.6.1 File d’attente en temps continu et processus d’Ornstein-Uhlenbeck 62
3.6.2 Modèles de croissance de populations . . . . . . . . . . . . . 63
3.6.3 Les ARNm molécules(acide ribonucléique nucléique messenger) 64

Bibliographie 66



Introduction générale

Une chaîne de Markov à paramètre de temps discret est une séquence de variables
aléatoires X0, X1, X2... tous prenant des valeurs dans un ensemble dénombrable E
les éléments qui sont appelés états, tels que pour tout n, la distribution de Xn

dépend des Xm précédents uniquement via Xn−1. C’est probablement la forme de
dépendance la plus simple que l’on puisse imposer à une séquence de variables aléa-
toires, une seule étape supprimée d’indépendance totale. Pourtant, la théorie qui a
été développée au cours de cette siècle pour les chaînes de Markov est incroyable-
ment riche. S’il y a une zone de processus stochastiques dont on pourrait dire qu’ils
forment le coeur de cette discipline, sentimentalement et historiquement, ce sont les
chaînes de Markov.
De plus, la littérature scientifique et d’ingénierie, et même financière et humaine,
regorge d’exemples de processus aléatoires qui ont été modélisés, à des degrés divers
du succès, par les chaînes de Markov.
Afin d’apporter un plus grand réalisme à une chaîne de Markov, nous incorporer un
paramètre de temps continu t comme suit : on permet à la chaîne de s’attarder un
laps de temps aléatoire Ti dans chaque état i qu’il visite. les variables aléatoires Ti
sont distribuées de manière exponentielle et sont indépendantes les unes des autres.
L’état de la chaîne de Markov au temps t est alors noté X(t).
La collection {X(t), t ≥ O} est appelé une chaîne de Markov stable en temps continu,
le sujet de ce mémoire. Cette définition simple est en fait d’une simplicité trompeuse ;
il y a complications, et même ainsi, les matières les plus satisfaisantes et les plus
élégantes des mathématiques proviennent généralement de débuts aussi simples que
celui-ci.

La première étude systématique des chaînes de Markov en temps continu a été
réalisée par A. N. Kolmogorov (1931)[19], qui a constaté que la loi de probabilité
régissant l’évolution du processus se produit comme la solution de l’un ou l’autre
de deux systèmes des équations différentielles, maintenant appelées équations de
Kolmogorov rétrogrades. Ces études ont été poursuivies dans les années 1940 par
J. L. Doob et W.Feller. En particulier, Feller (1940) a montré comment construire
des solutions des Équations de Kolmogorov au moyen de l’intégrale rétrogrades de
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récursions, et a montré l’existence de la solution minimale, qui porte son nom aujour-
d’hui. Doob (1945) a poursuivi l’étude de la régularité de la fonction de transition,
et observé les propriétés d’asymétrie et de non-unicité des équations de rétrogrades.
Les années cinquante ont vu un grand accord d’activité en Grande-Bretagne et aux
États-Unis, avec D. G. Kendall et G.E. H. Reuter jouant un rôle de premier plan en
Grande-Bretagne, et Doob, Feller, Samuel Karlin, et K. L. Chung aux États-Unis.
Les types de problèmes qui se sont posés pendant ce temps concernant le compor-
tement aux limites et la régularité des trajectoires des chaînes de Markov en temps
continu ont grandement influencé la direction que tout le domaine des processus
stochastiques a pris au cours des trente dernières années.

La fin des années 50 a marqué un peu un tournant pour les Chaînes de Markov
en temps continu, avec deux branches émergentes : une école théorique Doob et
Chung, s’attaquant aux problèmes des chaînes de temps continu leurs trajectoires
d’échantillonnage et en utilisant la théorie des mesures, les martingales et les temps
d’arrêt comme leurs principaux outils ; et une école orientée vers l’application sui-
vant Kendall, Reuter [21] et Karlin [20], étudiant les chaînes continues à travers la
fonction de transition, enrichissant le domaine depuis trente ans avec des concepts
tels que réversibilité, ergodicité et monotonicité stochastique inspirées d’applications
réelles des chaînes de temps continu à la théorie des files d’attente, la démographie
et l’épidémiologie. Les deux écoles se sont répandues et ont prospéré au cours des
trente dernières années.

Le mémoire est structuré comme suit :
En premier chapitre, je présente une synthèse des processus aléatoires (pro-

cessus, filtration, martingale, mouvement Brownien, l’espérance conditionnelle, le
processus de Poisson...).

En deuxième chapitre, je discute sur les processus stochastiques Markoviens
en temps continu dans les deux états discret et continu : leurs probabilités de tran-
sitions, générateur de Markov et la loi de processus de Markov.

Dans le chapitre trois , j’étudie la propriété Markovienne des solutions des
équations différentielles stochastiques et je cite quelques exemples d’application des
processus Markoviens en pratique.

Et je termine par une conclusion.



Chapitre 1

Quelques généralités sur les
processus aléatoires

Dans ce chapitre j’énonce quelques termes sur les processus aléatoires.

1.1 Filtration et processus

Définition 1.1.1. Soit (Ω,F ,P) un espace de probabilité. Une filtration sur cet
espace est une famille croissante (Ft)0≤t≤ ∞ de sous-tribus de F telle que pour s ≤ t,
on a Fs ⊂ Ft.

Proposition 1.1.1. 1. Ft représente la quantité d’information disponible à l’ins-
tant t : il est logique que cette quantité augmente avec le temps.

2. L’ensemble T appelé ensemble de temps (exemple,T = R+ ou [0, t] ou N...)

3. On dira qu’une filtration (Ft)t∈T satisfait les conditions habituelles si elle est
à la fois continue à droite et complète. i.e
– a) La filtration (Ft) est complète lorsque tout Ft contient l’ensemble des
négligeables N ce qui équivaut à F0 contient tous les P-négligeables de F .

– b) (Ft) est continue à droite ; c’est-à-dire Ft = Ft+ =
⋂
s>tFs. ∀t ≥ 0

4. Si Ft est complète à t fixé, on a

Xt = Yt p.s ⇒ {Xt est Ft-mesurable ⇔ Yt est Ft-mesurable }

{Xn
t

p.s−→Xt et ∀n,Xn
t est Ft-mesurable } ⇒ {Xt est Ft-mesurable }

Le résultat reste vrai pour une convergence dans Lp(Ω) avec p ≥ 1, car on peut
alors extraire un sous suite qui converge p.s. vers la même limite et donc la
limite reste une mesure [6].

5. Pour compléter une filtration (Ft), il suffit de remplacer Ft par

σ(A ∪N, (N,A) ⊂ N ×Ft)

8
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1.2 Processus aléatoires

Un processus stochastique est une famille {Xt}t∈T de variables aléatoires indexées
par le temps t.

Les mots processus stochastique signifient fonction aléatoire. Alors qu’une va-
riable aléatoire X associe à chaque ω ∈ Ω une réalisation X(ω), un processus sto-
chastique {Xt}t∈T associe à chaque ω une fonction (ou trajectoire){Xt(ω)}t∈T :

T → E

t 7→ Xt(ω),

E est l’espace d’arrivée des variables aléatoires Xt. A titre d’exemple, la tra-
jectoire d’une mouche en fonction du temps peut être modélisée par un processus
stochastique à valeurs dans E = R3. Lorsque l’ensemble des temps T est au plus
dénombrable (par exemple T = N), on parle de processus stochastiques à temps
discret. Lorsqu’il est continu (i.e. T = [0; t0] ou T = R+), on parle de processus
stochastiques à temps continu (permanent).

Définition 1.2.1. On dit qu’un processus stochastique X = (Xt)t∈T est adaptée à
la filtration (Ft)t∈T si pour tout t ∈ T, Xt est Ft- mesurable.

1.3 Temps d’arrêt

Définition 1.3.1. Soient (Ω,F , (Ft)t∈T,P) est un espace probabilisé filtré et F∞ =

σ(
⋃
t∈TFt) sa tribu terminale. Une variable aléatoire τ définie sur Ω à valeurs dans

T ∪ {+∞} est appelée (Ft)t∈T-temps d’arrêt si pour tout t ∈ T : {τ ≤ t} ∈ Ft. On
pose alors ,

Fτ = {A ∈ F∞ : A ∩ [τ ≤ t] ∈ Ft, t ∈ T}

On vérifie immédiatement que Fτ est une tribu. C’est la tribu des événements anté-
rieurs au temps τ .

Proposition 1.3.1. [7] Soient υ et τ deux temps d’arrêt. Alors

1. τ est une variable aléatoire Fτ mesurable.

2. Si τ = K (constant) alors τ est un temps d’arrêt.

3. υ ∧ τ , υ ∨ τ , τ ∧ t sont des temps d’arrêt.

4. Si υ ≤ τ alors Fυ ⊂ Fτ .

5. Fυ∧τ = Fυ ∩ Fτ
6. Fυ∨τ = σ{Fυ,Fτ}

7. Si Sn est une suite croissante de temps d’arrêt ⇒ S = limn→∞ Sn est aussi un
temps d’arrêt et FS− =

∨
nFSn−
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8. Si Sn est une suite décroissante de temps d’arrêt ⇒ S = limn→∞ Sn est aussi
un temps d’arrêt de la filtration (Ft+) et FS+ =

⋂
nFSn+

9. Si Sn est une suite décroissante stationnaire de temps d’arrêt (ie. ∀ω,∃N(ω),∀n ≥
N(ω), Sn(ω) = S(ω)) ⇒ S = limn Sn est aussi un temps d’arrêt de la filtration
(Ft)t≥0 et FS =

⋂
nFSn

1.4 Espérence conditionnelle

Soit (Ω,F ,P) un espace probabilisé et G une sous-tribu de F . L’espérance condi-
tionnelle est définie pour deux types de variables aléatoires : d’une part les variables
aléatoires non-négatives (sans condition d’intégrabilité) et d’autre part les variables
aléatoires intégrables [1].

Définition 1.4.1. L’espérance conditionnelle d’une variable aléatoire X positive
(resp.dans L1(Ω,F ,P)) relativement à G est l’unique variable aléatoire G-mesurable
positive(resp.dans L1(Ω)),notée E(X|G), telle que pour tout D ∈ G, on a∫

D

E(X|G)dP =

∫
D

XdP (1.1)

Cette relation 1.1 s’appelle la propriété caractéristique de l’espérance conditionnelle.
On notera que si X ≥ 0,

E(X|G) ∈ L1(Ω)⇔ X ∈ L1(Ω)

.

Probabilité conditionnelle : Pour un événement A ∈ F , la probabilité condi-
tionnelle de A sachant G est la variable aléatoire

P(A|G) = E(1A|G)

Propriétés de l’espérance conditionnelle : Si X,X1, X2 sont des variables aléa-
toires avec un moment d’ordre un et si a et b sont des constantes réelles, on a

1. E(aX1 + bX2|G) = aE(X1|G) + bE(X2|G)(linéarité).

2. Si X1 ≤ X2 p.s ⇒ E(X1|G) ≤ E(X2|G) (croissance). En particulier

X ≥ 0⇒ E(X|G) ≥ 0 (positivité)

.

3. σ(X) et G indépendantes ⇒ E(X|G) = E(X) p.s.

4. Pour toute sous tribu D ⊂ G, E(E(X|G)|D) = E(X|D) p.s.

5. Si (Xn)n≥0 est une suite de variables aléatoires positives, on a

E(limn→∞ inf Xn|G) ≤ limn→∞ inf E(Xn|G) (lemme de Fatou) .
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1.5 Martingales

Le nom martingale est synonyme de jeu équitable, c’est-á-dire d’un jeu où le
gain que l’on peut espérer faire en tout temps ultérieur est égal à la somme gagnée
au moment présent. En probabilités, on appelle donc martingale un processus sto-
chastique (Ms)s>0 tel que l’espérance conditionnelle E(Mt|Fs) est égale à Ms pour
tout t > s. Les martingales, ainsi que leurs variantes les sous-martingales et les
sur-martingales, jouissent de nombreuses propriétés qui les rendent très utiles dans
l’étude de processus stochastiques plus généraux.[6]

Définition 1.5.1. (Martingale, sous-martingale et sur-martingale)
Soit (Ω,F , (Ft)t∈R+ ,P) un espace probabilisé filtré. Une martingale par rapport à la
filtration (Ft)t∈R+ est un processus stochastique M = (Mt)t∈R+ tel que

1. E(|Mt |) <∞ pour tout t ∈ R+ ;

2. (Mt)t∈R+ est adapté à la filtration (Ft)t∈R+ ;

3. E(Mt|Fs) = Ms pour tout s ≤ t.

Si la dernière condition est remplacée par E(Mt|Fs) ≤ Ms on dit que (Mt)t∈R+ est
une sur-martingale, et si elle est remplacée par E(Mt|Fs) ≥Ms on dit que (Mt)t∈R+

est une sous-martingale.

Remarque 1.5.1. Une martingale est un jeu équitable, une sur-martingale est un
jeu perdant, et une sous-martingale est un jeu gagnant.

Exemple 1.1. On dit qu’un processus (Zt, t ≥ 0) est un processus à accroissement
indépendants (PAI) par rapport à la filtration (Ft) si Z est (Ft)-adapté et si, pour
s < t, Zt−Zs est indépendant de la tribu Fs (par exemple un mouvement brownien
est un PAI par rapport à sa filtration canonique, complétée ou non). Si Z est un
PAI par rapport à (Ft) alors[6]

(i) Si Zt ∈ L1 pour tout t ≥ 0, Z̃t = Zt − E[Zt] est une martingale ;

(ii) Si Zt ∈ L2 pour tout t ≥ 0, Xt = Z̃2
t − E[Z̃2

t ] est une martingale ;

(iii) Si pour θ ∈ R, E[eθZt ] <∞ pour tout t ≥ 0,

Xt =
eθZt

E[eθZt ]

est une martingale.

1.6 Le mouvement Brownien

Définition 1.6.1. Un mouvement Brownien (ou processus de Wiener) est un pro-
cessus B = (Bt)t≥0 tel que :

1. B0 = 0 p.s ;
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2. (Bt)t≥0 est à accroissements indépendants pour tout t > s,Bt − Bs est indé-
pendant de (Bu)u≤s ;

3. Les accroissements sont stationnaires (pour tout t > s,l’accroissement Bt−Bs

ne dépend que de la valeur de t − s), Gaussiens ; tel que pour t > s, Bt − Bs

suit une loi normale N(0, t - s).

4. Bt est continue, c’est à dire t 7→ Bt(ω) est continue pour presque tout ω.
Autrement dit, le processus B continu, part de 0, ses accroissements sont in-
dépendants du passé et sont de loi normale centrée et de variance égale à la
longueur de l’intervalle de temps.

Remarque 1.6.1. Le point 2 (dans la définition ci-dessus) implique que ∀n,∀ti, 0 ≤
t0 ≤ t1 ≤ ... ≤ tn les variables aléatoires Bt0 , Bt1 −Bt0 , ..., Btn −Btn−1 sont indépen-
dantes [1].

Exemple 1.2. Si B est un mouvement brownien. on peut prendre Ft = σ(Bs, 0 ≤
s ≤ t),F∞ = σ(Bs, s ≥ 0). Plus généralement, si X = (Xt, t ≥ 0) est un processus
indexé par R+, la filtration canonique de X est Ft = σ(Xs, s ≤ t) (l’augmentation
habituelle de Ft)[6].

Propriétés 1.6.0.1. Soit B = (Bt)t≥0 un mouvement Brownien, (Ft)t≥0 sa filtra-
tion naturelle, Alors :

– Processus gaussien :
Le processus B est est un processus gaussien réel, centré et de fonction de
covariance Coυ(Bt, Bs) = s ∧ t. La réciproque est vraie.

– Propriété de Markov :
La propriété de Markov du mouvement Brownien est utilisée sous la forme (un
peu plus forte que la propriété de Markov) : pour tout s, le processus (Wt)t≥0

défini par Wt = Bt+s −Bs est un mouvement Brownien indépendant de Fs.

Proposition 1.6.0.1. Pour f borélienne bornée,

E(f(Bu)|Ft) = E(f(Bu)|σ(Bt)) pour u > t

.

1.7 Processus de Poisson

1.7.1 Trois propriétés de la loi exponentielle

La loi exponentielle est l’ingrédient de base pour modéliser des temps d’attente
d’évènements "imprévisibles". Cette partie contient quelques-unes de ses proprié-
tés élémentaires. Soit X une v.a suivant la loi exponentielle de paramètre λ, notée
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exp(λ). Sa densité est :

fX(x) = λe−λx1x≥0.

Elle est sans atome, ie. ∀x,P(X = x) = 0. Sa fonction de répartition vaut

FX(x) = P(X ≤ x) = (1− e−λx)1x≥0, (1.2)

En pratique, une v.a. de loi exponentielle représente une durée, typiquement le temps
d’attente d’un évènement ou une durée de vie. La propriété importante des lois
exponentielles est d’être "sans mémoire". Dans le cas particulier d’un composant
électronique dont la durée de vie serait modélisée par une loi exponentielle, cela
signifie que la probabilité pour que le composant vive un temps t est la même,
qu’il soit neuf ou qu’il ait déjà vécu un temps s. Cette absence de mémoire est
caractéristique des lois exponentielles.

Proposition 1.7.1. Une v.a. X à valeurs dans R+ et de fonction de répartition
continue suit une loi exponentielle si et seulement si pour tous réels s, t ≥ 0,

P(X > s+ t | X > s) = P(X > t).

Démonstration : Si X suit la loi exp(λ) alors, d’après 1.2,

P(X > s+ t | X > s) = P(X>s+t)
P(X>s)

= e−λ(s+t)

e−λs

= e−λt = P(X > t).

Proposition 1.7.2. [2] Considérons n v.a. indépendantes X1, ..., Xn de lois respec-
tives exp(λ1), ..., exp(λn). Posons Y = min{X1, ..., Xn}. Alors Y suit la loi expo-
nentielle de paramètre λ1 + ...+ λn et pour tout indice i = 1, ..., n,

P(Y = Xi) =
λi

λ1 + ...+ λn

Proposition 1.7.3. [2] La somme de n v.a. indépendantes de loi exponentielle de
paramètre λ suit une loi Gamma de paramètres n et λ et notée Γ(n, λ), dont la den-
sité est donnée par :

f(x) =
λnxn−1

(n− 1)!
e−λx1x≥0.

1.8 Présentation du processus de Poisson

Définition 1.8.1. Soit (Xn)n≥1 une suite de v.a indépendantes et de même loi,
exponentielle de paramètre λ. Posons S0 = 0 et pour tout entier n ≥ 1, Sn =
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X1 + ...+Xn. Pour tout réel t ≥ 0, définissons la v.a Nt, à valeurs entières, par :

Nt = n⇔ Sn ≤ t ≤ Sn+1.

Le processus stochastique (Nt)t≥0 est appelé processus de Poisson d’intensité λ. Le
processus de Poisson est un modèle de comptage d’évènements aléatoires isolés dans
le temps, comme des "tops" d’horloge séparés par des durées aléatoires. Dans ce
modèle :

– Xn est la durée séparant le (n− 1)e top du ne ;
– Sn est la date à laquelle survient le ne top. D’après la Proposiion 1.7.3 la v.a.
Sn suit la loi Gamma de paramètre n et λ ;

– Nt est le nombre de tops comptés entre l’instant 0 et l’instant t :

Nt =
∑
n≥1

1Sn≤t

Théorème 1.8.1. [2] Le processus de Poisson {Nt} d’intensité λ vérifie les pro-
priétés suivantes :

(P1) {Nt}t≥0 est un processus de comptage ; il est à valeurs entières, vérifie N0 = 0

p.s et pour tous réels 0 ≤ s ≤ t, Ns ≤ Nt

(P2) {Nt}t≥0 est un processus à accroissements indépendants ; pour tout entier k
et pour toute suites d’instants 0 ≤ t1 ≤ t2 ≤ ... ≤ tk, les accroissements
Nt2 −Nt1, ..., Ntk −Ntk−1

sont des v.a indépendantes.
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(P3) Les accroissements du processus {Nt}t≥0 sont Poissonniens ; pour tous réels
0 ≤ s < t, la v.a Nt −Ns suit la loi de Poisson de paramètres λ(t− s) ;

(P4) {Nt}t≥0 est un processus homogène ou à accroissements stationnaires ; pour
tous instants 0 ≤ t1 < t2 et s ≥ 0, la v.a Nt2+s − Nt1+s suit la même loi que
Nt2 −Nt1 ;

(P5) {Nt}t≥0 est un processus d’évènements rares ; P(Nt+h −Nt ≥ 2) = o(h).



Chapitre 2

Processus stochastiques Markoviens
en temps continu

Dans ce chapitre, nous abordons une notion importante dans la théorie des pro-
cessus stochastiques : les processus de Markov (sans mémoire) cela signifie que l’évo-
lution future du processus ne dépend de son passé que par l’intermédiaire du présent.
L’intérêt du choix Markovien réside dans la simplicité et la puissance des techniques
mathématiques disponibles pour ce type de processus. C’est pour cela les processus
de Markov trouvent des applications dans beaucoup de domaines par exemple, la
biologie, la physique, la recherche opérationnelle et l’économie,...

Les processus de Markov portent le nom de leur inventeur mathématicien russe,
Andreï Andreïevitch Markov(1856-1922). Après 1920, il a cherché à généraliser le
théorème central limite de variables aléatoires indépendantes aux variables aléatoires
dépendantes, il a amené à considérer la notion importante d’événements en chaînes,
appelées depuis chaînes de Markov, et il établit une série de lois, fondement de la
théorie des processus de Markov.

Dans ce qu’on a vu sur les chaînes de Markov, les moments (temps) t étaient
discrets ( 0,1,... ). Maintenant, nous allons analyser des situations où les observations
se font de façon continue plutôt qu’à des moments discret.
M + 1 états mutuelement exclusifs : 0, 1, 2, ...,M

L’analyse débute au temps 0 et le temps t s’écoule de façon continue
X(t) = état du systhème au temps t : X(t) ∈ {0, 1, ...,M}
les points de changements d’états t1, t2, .... sont des points aléatoires dans le temps
(pas nécessairement entier).
Considérons trois points consécutifs dans le temps où il y a eu changement d’états :
r (r ≥ 0) temps passé
s (s > r) temps courant (actuel)
s+ t (t ≥ 0) t unité de temps dans le futur.

16
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Supposons que X(s) = i et que X(r) = l, avec i, l ∈ {0, ...,M}
L’évaluation de

P(X(s+t) = j|X(s) = i,X(r) = l) j = 0, ...,M

est facilité par la propriété de Markov (i.e., sans mémoire).

Définition 2.1. Un processus stochastique en temps continu {X(t)}t≥0 a la propriété
de Markov si :

P(X(s+t) = j|X(s) = i,X(r) = l) = P(X(s+t) = j|X(s) = i)

∀i, j, l ∈ {0, ...,M};∀r ≥ 0, s ≥ 0, t ≥ 0

Le processus stochastique est alors une chaîne de Markov en temps continu.

Les probabilités P(X(s+t) = j|X(s) = i) sont des probabilités de transition simi-
laires à celles que nous avons en temps discret.

Les probabilités de transition sont stationnaires puisqu’elles sont indépendantes
de s :

P(X(s+t) = j|X(s) = i) = P(X(t) = j|X(0) = i) ∀s > 0

2.1 Les processus de Markov à temps continu

Un modèle d’évolution dynamique en temps continu dans lequel on fait dépendre
l’évolution future de l’état présent et du hasard est un processus de Markov. On en
rencontre dans de nombreux domaines d’applications, comme par exemple l’étude
des files d’attente.
Un processus X = (Ω,F , (Ft)t∈T, (Xt)t∈T ),P) à valeurs dans l’espace d’états (E,BE)

est de Markov si pour tous s < t(∈ T) la loi de Xt sachant le passé jusqu’à l’instant
s ne dépend que de Xs

(i.e du passé le plus récent).
Dans le cas d’un processus de Markov à temps discret T = N et à espace d’états

discret, ceci se traduit par la condition que pour tout n ∈ N et tous i, j, in−1, ..., i0 ∈ E

, on a :

P(Xn+1 = j/Xn = i,Xn−1 = in−1...X0 = i0) = P(Xn+1 = j/Xn = i).



2.1.1 Noyaux de transition et propriété de Markov 18

La quantité Pn,n+1(i, j) = P(Xn+1 = j/Xn = i) est la probabilité de transition
partant de i à l’instant n d’aller en j à l’instant n+ 1.

Dans le cas où le temps est continu et(ou) l’espace des états est quelconque,la
modélisation d’un processus de Markov est : si pour tous s < t(∈ T) et tout A ∈ BE

on a :

P(Xt ∈ A/Fs) = P(Xt ∈ A/Xs)

Pour abréger on pose :

P(Xt ∈ A/Fs) = P(Xt ∈ A/Xs) = Ps,t(x,A)

et on dit que c’est la probabilité de transition partant de x a l’instant s d’atteindre
l’ensemble d’états A à l’instant t.

2.1.1 Noyaux de transition et propriété de Markov

Soit T = N ou R+ ou [0, a](a > 0) et (E,BE) un espace polonais.

Définition 2.1.1. Une collection {Ps,t; s, t ∈ T et s < t } d’applications de (E×BE)

dans [0, 1] est appelée famille de noyaux de transition si :

1. ∀A ∈ BE,∀s < t, l’application x→ Ps,t(x,A) est mesurable.

2. ∀x ∈ E, ∀s < t,A→ Ps,t(x,A) est une mesure de probabilité sur BE.

3. ∀A ∈ BE,∀s < t < u, on a l’équation de Chapman-Kolmogrov :

Ps,u(x,A) =

∫
E

Ps,t(x, dy)Pt,u(y, A) (2.1)

Remarque 2.1.1. Les noyaux de transition Ps,t agissent comme des opérateurs qui
transforment une fonction f : E→ R borélienne bornée (ou positive) en une fonction
Ps,tf donné par :

Ps,tf(x) =

∫
E

f(y)Ps,t(x, dy) (2.2)

Ps,tf représente l’espérance de f(Xt) sachant que Xs = x. De plus elle est aussi une
fonction borélienne bornée.

Remarque 2.1.2. L’équation de Chapman-Kolmogorov 2.1 se traduit en termes
d’opérateurs sous la forme :

Ps,u = Ps,tPt,u (2.3)
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Définition 2.1.2. Un processus X = (Ω,F , (Ft)t∈T, (Xt)t∈T,P) est un processus de
Markov à valeurs dans E et de famille de noyaux de transition {Ps,t; s, t ∈ T et s < t

} si pour toute fonction f : E→ R borélienne bornée et tout s < t dans T, on a :

E(f(Xt)/Fs) = Ps,tf(Xs) P− p.s (2.4)

Les noyaux de transition Ps,t sont aussi appelés probabilités de transition.
La loi de X0 i.e.la mesure de probabilité ν sur BE définie par :

ν(A) = P(X0 ∈ A),

est appelée loi initiale du processus X.

Remarque 2.1.3. Lorsque Ps,t = P0,s−t ne dépend que de la différence t− s,on dit
que X est un processus de Markov homogène.

Proposition 2.1.1. [1]

a) L’équation (2.4) s’appelle la propriété de Markov si : f = 1A où A ∈ BE, elle
signifie que

P(Xt ∈ A/Fs) = P(Xt ∈ A/Xs)

b) Lorsque le processus de markov X est homogène, la famille des noyaux de tran-
sition ne dépend plus que d’un paramètre car pour tous s et u dans T , Ps,s+u =

P0,u. Pour simplifier les notations on pose P0,u = Pu. On a alors :
∀s ∈ T, Pu(x,A) = P(Xs+u ∈ A/Xs = x),

c) La propriété de Markov (2.4) prend la forme

E(f(Xt)/Fs) = Pt−sf(Xs), P− p.s (2.5)

La propriété de Chapman-Kolmogorov (2.3), s’écrit alors :

∀t, t′ ∈ T, PtPt′ = Pt+t′ .

La famille d’opérateurs (Pt)t∈T est le semi-groupe du processus de Markov ho-
mogène X.

2.2 Processus markovien de sauts

Les processus markoviens de sauts sont la généralisation des chaînes de markov au
temps continu. Le passage du temps discret au temps continu se fait en remplaçant
le pas de temps fixe d’une chaîne de Markov par des intervalles de temps aléatoires
indépendants de loi exponentielle. Le processus de Poisson sera notre exemple de
processus markovien de sauts.
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2.2.1 Définition et exemples

Considérons un ensemble E fini ou dénombrable et une suite croissante de v.a.
(Sn)n∈N à valeurs dans R+. Dans la suite S0 = 0. Un processus de sauts {Xt}t≥0 à
espace d’états E et d’instants de sauts (Sn)n∈N est un processus stochastique dont
la valeur ne peut changer qu’en ses instants de sauts :

∀n ∈ N, ∃!x ∈ E tel que ∀t ∈ [Sn, Sn+1[, Xt = x.

Nous nous intéressons exclusivement à une classe particulière de processus de sauts,
appelés processus markoviens de sauts. Ces processus évoluent de la manière sui-
vante. Supposons que le processus se trouve à l’état x à l’issu du saut intervenant à
l’instant Sn.

1. Le temps de séjour dans l’état x, à savoir la v.a. Sn+1 − Sn, suit la loi expo-
nentielle de paramètre λ(x). Le paramètre de cette loi peut dépendre de l’état
x où le processus se trouve. mais à part cette dépendance en l’état x,la v.a.
Sn+1 − Sn est indépendante du passé du processus.

2. À l’instant Sn+1, le processus saute de l’état x vers l’état y (avec y 6= x) avec
une probabilité qx,y, cette quantité indépendante de Sn+1 − Sn et du passé.

L’évolution du processus est donc déterminée par la suite (λ(x))x∈E et par la matrice
Q = (qx,y)x,y∈E.

Définition 2.2.1. Un processus de sauts {Xt}t≥0 à espace d’états E et d’instants
de sauts (Sn)n∈N est markovien s’il existe :

– une suite bornéé (λ(x))x∈E de réels strictement positifs.
– une matrice Q = (qx,y)x,y∈E de de réels positifs vérifiant{

∀x ∈ E, qx,x = 0 et∑
y∈E qx,y = 1.

telles que, pour tout entier n, pour tous états x0, x1, ..., xn, xn+1 et pour tous réels
positifs t1, t2, ..., tn, tn+1 :

P(XSn+1 = xn+1, Sn+1 − Sn > tn+1|XSn = xn, Sn − Sn−1 > tn, ..., XS1 = x1, S1 >

t1, X0 = x0)

= P(XSn+1 = xn+1, Sn+1 − Sn > tn+1|XSn = xn) (2.6)

= e−λ(xn)tn+1qxn,xn+1 . (2.7)
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Exemple 2.1. (Processus de Poisson) :
Le processus de Poisson {Nt}t≥0 (d’intensité λ) est un processus de sauts à espace
d’états E = N : il vaut n sur tout l’intervalle de temps [Sn, Sn+1[. De plus, tous les
temps de séjour suivent la loi exponentielle de paramètre λ et depuis l’état n (qu’il
atteint à l’issu du ne saut ), il saute en n+ 1.

∀n ∈ N, λ(n) = λ et qn,m =

{
1 si m=n+1
0 sinon

Le processus de Poisson remplit aisément la définition d’un processus markovien
de sauts. L’équation 2.6 repose sur l’indépandence des temps de séjour S1, S2 −
S1, ..., Sn+1 − Sn et sur le fait que NSn soit toujours à égale à n. Ce n’est pas plus
difficile pour 2.7 :

P(NSn+1 = n+ 1, Sn+1 − Sn > tn+1|NSn=n) = P(Sn+1 − Sn > tn+1)

= e−λtn+1

= e−λtn+1qn,n+1.

Exemple 2.2. Automate binaire :
Considérons une machine qui peut être soit en état de marche, soit en panne. No-
tons Xt la v.a. égale à 0 si la machine est en panne à l’instant t et égale à 1 si
elle est en état de marche à l’instant t. Nous faisons l’hypothèse que les temps de
fonctionnement de cette machine sont des v.a. de loi exponentielle de paramètre λ et
que les temps de réparation sont des v.a. de loi exponentielle de paramètre µ. Nous
supposons également toutes ces v.a. indépendantes.
Alors, le processus {Xt}t≥0 est un processus markovien de sauts à valeurs dans
E = {0, 1}. Les paramètres qui interviennent sont
λ(0) = µ, λ(1) = λ et q0,1 = q1,0 = 1.

2.3 Processus de naissance et de mort

Processus de Poisson dans ce qui est précédant est un exemple de processus
stochastique à temps continu d’espace d’états discrets a la propriété de Marcov.
Maintenant, nous discutons de la structure probabiliste et certains aspects informa-
tiques de ces processus en mettant l’accent sur Chaînes de naissance et de mort.

2.3.1 Un exemple typique

[3] Soit (Nt, t ≥ 0) un processus de Poisson d’intensité λ. la propriété de ses
incréments indépendants implique ce qui suit : Pour touts points de temps 0 ≤
s1 < ... < sn < s < t et i1, ..., in, i, j dans un espace d’état N = {0, 1, ...} comme
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i1 ≤, ... ≤ in ≤ i ≤ j, on a :

P(Nt = j|Ns1 = i1, ..., Nsn = in, Ns = i) = P(Nt = j|Ns = i).

En effet,

P(Nt = j|Ns1 = i1, ..., Nsn = in, Ns = i)

= P(Ns1 = i1, ..., Nsn = in, Ns = i, Nt = j)/P(Ns1 = i1, ..., Ns = i)

=
P(Ns1=i1,Ns2−Ns1=i2−i1,...,Nt−Ns=j−i)
P(Ns1=i1,Ns2−Ns1=i2−i1,...,Ns−Nsn=i−in)

= P(Nt −Ns = j − i) = P(Nt = j|Ns = i)

En outre,

P(Nt = j|Ns = i) =

{
e−λ(t−s) [λ(t−s)]j−i

(j−i)! si i ≤ j ;
0 si i>j.

De sorte que, pour i, j fixée, la quantité

Pij(s, t) = P(Nt = j|Ns = i)

ne dépend que de t− s. Il suffit de laisser

Pij(t) = P(Ns+t = j|Ns = i), pour s, t ≥ 0, i < j.

On remarque que le processus de Poisson d’intensité λ est non décroissante, car
s < t⇒ Ns ≤ Nt.
Si nous interprétons une occurrence de l’évènement de intérêt comme une "nais-
sance", puis un processus de Poisson est appelé un processus de naissance. La nais-
sance augmente la taille de la population d’une unité. Nous voyons que les probabi-
lités de transition infinitésimales sont

P(Nt+h −Nt = 1|Nt = i) = λh+ o(h), comme h↘ 0.

Le point est le suivant. L’intensité λ ne dépend pas de i. Cependant, l’étude de la
croissance démographique, le taux de natalité pourrait dépendre de la population i
au temps t. Les modèles stochastiques pour de telles situations sont donnés comme
suit.

2.3.2 Processus de naissance

Soit (Xt, t ≥ 0) un processus stochastique avec espace d’états S = {0, 1, 2, ...}.
(Xt) est appelé processus de naissance s’il s’agit d’un processus non décroissant
chaîne de Markov telle que :

P(Xt+h −Xt = 0|Xt = i) = 1− λih+ o(h) (2.8)
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et

P(Xt+h −Xt = 1|Xt = i) = λih+ o(h). (2.9)

Les nombres positifs λi, i ∈ S sont appelés taux de natalité du processus.[3]

Remarque 2.3.1. (i) λi est interprété comme le taux de natalité dans un instant
auquel la taille de la population est i.

(ii) Un processus de Poisson est un processus de naissance avec λi = λ, pour tout
i ∈ S.

(iii) 2.8 et 2.9 implique que

P(Xt+h −Xt ≥ 2|Xt = i) = o(h) comme h↘ 0.

Ainsi, dans un court intervalle de temps, au plus une naissance peut survenir.

(iv) la connaissance du λi est suffisante pour la spécification des P(t), qui à leur
tour, ensemble avec une distribution initiale π0, elle détermine la distribution
de la chaîne.

Exemple 2.3. [3]Considérons une population, disant en biologie ou en physique,
dans laquelle aucun individu ne peut mourir et chaque individu agit indépendamment
lors de l’accouchement à un nouvel individu avec une probabilité λh+ o(h) pendant
(t, t+h). Soit Xt agissait la taille de la population au temps t. Étant donné que Xt =

i, le nombre de naissances pendant (t, t+ h), pour les petits h, suit une distribution
binomiale B(i, λh), de sorte que

P(Xt+h −Xt = k|Xt = i) =

(
i
k

)
(λh)k(1− λh)i−k + o(h).

et donc

P(Xt+h −Xt = 0|Xt = i) = 1− (iλ)h+ o(h)

et

P(Xt+h −Xt = 1|Xt = i) = (iλ)h+ 0(h).

Ainsi λi = iλ. Cette chaine de Markov est appelée un processus de naissance
linéaire ( processus de Yule ).

2.3.3 Processus de mort

Définition 2.3.1. Soit (Xt, t ≥ 0) une chaîne de Markov. (Xt) est appelée un
processus de naissance et de mort si, comme h↘ 0,
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P(Xt+h −Xt = k|Xt = i) =


λih+ o(h), si k = 1 ;
µih+ o(h), si k = -1 ;
o(h), si |K|> 1.

(P(Xt+h −Xt = 0|Xt = i) = 1− (λi + µi)h+ o(h).)

Les λi et µi sont appelés respectivement les taux de natalité et de mortalité.

Remarque 2.3.2. On suppose que les naissances et les décès surviennent indépen-
damment les uns des autres. Bien sûr, λi ≥ 0, µi ≥ 0 avec µ0 = O. Nous allons
discuter du problème de modéliser un processus de naissance et de mort avec λi et
µi donnés plus tard. Si µ0 = O.
Pour tout i ≥ 0, alors la chaîne est appelée chaîne de naissance ;
Si λi pour tout i ≥ 0, alors la chaîne est appelée chaîne de la mort.[3]

Exemple 2.4. Considérons la population dans laquelle les individus ne se repro-
duisent pas. Le taux de mortalité par individu est de µ. De plus, supposons que de
nouveaux individus immigrent dans la population selon un processus de Poisson avec
intensité λ. Soit Xt la taille de la population au temps t. Puis comme h↘ 0, on a

P(Xt+h −Xt = 1|Xt = i) = P(une arrivée, pas de décès)+o(h)

λh(1− µh)i + o(h) = λh+ o(h),

P(Xt+h −Xt = 1|Xt = i) = P(pas d’arrivée, une décès)+o(h)

(1− λh)i(µh)(1− µh)i−1 + o(h) = (iµ)h+ o(h).

(P(|Xt+h −Xt| ≥ 2|Xt = i) = o(h)). Ainsi λi = λ et µi = iµ.

2.4 Temps de séjour dans les états de processus

Jusqu’à présent, le fait a été utilisé que des temps indépendants, répartis de façon
exponentielle entre les changements d’état du système permettent de modéliser le
comportement du système par Chaînes de Markov. Inversement, on peut montrer que
pour tout i ∈ Z le séjour de temps Yi d’une chaîne de Markov homogène X(t), t ≥ 0

dans l’état i a également une exponentielle distribution : Par les propriétés d’une
chaîne de Markov homogène,

P(Yi > t|X0 = i) = P(X(s) = i, 0 < s ≤ t|X0 = i) = lim
n→∞

P

(
X( k

n
t) = i; k = 1, 2, ..., n

∣∣∣∣X0 = i

)
= lim

n→∞

[
pii

(
1
n
t

)]n
= lim

n→∞

[
1− qi tn + o

(
1
n

)]n
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Donc
P(Yi > t|X0 = i) = e−qit, t ≥ 0, (2.10)

puisque e peut être représenté par la limite

e = lim
x→∞

(
1 +

1

x

)x
. (2.11)

Ainsi, Yi a la distribution exponentielle avec le paramètre qi.
Étant donné que X0 = i,X(Yi) = X(Yi + 0) est l’état auquel la chaîne de Markov
fait un transition à la sortie de l’état i. Soit m(nt) le plus grand entier m satisfaisant
à l’inégalité m/n ≤ t ou, de manière équivalente.

nt− 1 < m(nt) ≤ nt

En utilisant la série géométrique, la distribution de probabilité conjointe de le vecteur
aléatoire (Y i,X(Y i)), i 6= j, peut être obtenu comme suit :

P(X(Yi) = j, Yi > t|X(0) = i)

= P(X(Yi) = j,X(s) = i, 0 < s ≤ t|X(0) = i)

= lim
n→∞

∞∑
m=m(nt)

P

((
X

(
m+1
n

)
= j, Yi ∈

[
m
n
, m+1

n

])∣∣∣∣X(0) = i

)
= lim

n→∞

∞∑
m=m(nt)

P

((
X

(
m+1
n

)
= j,X

(
k
n

)
= i, 1 ≤ k ≤ m

∣∣∣∣X(0) = i

)
= lim

n→∞

∞∑
m=m(nt)

[
qij

1
n

+ o

(
1
n

)][
1− qi 1

n
+ o

(
1
n

)]m

= lim
n→∞

[
qij

1
n

+o

(
1
n

)]
qi

1
n

+o

(
1
n

) [
1− qi 1

n
+ o

(
1
n

)]m(nt)

avec 2.11 ,

P(X(Yi) = j, Yi > t|X(0) = i) =
qij
qi
e−qit; i 6= j; i, j ∈ Z. (2.12)

En passant à la distribution marginale de Yi (c’est-à-dire sommer les équations 2.12
avec j ∈ Z) vérifie 2.10. Deux autres conclusions importantes sont :

1. La formule 2.12 donne la probabilité de transition t = 0 en une étape de l’état
i vers état j :

pij = P(X(Yi + 0) = j|X(0) = i) =
qij
qi
, j ∈ Z. (2.13)
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2. L’état suivant l’état i est indépendant de Yi (et, bien sûr, indépendant du
histoire de la chaîne de Markov avant d’arriver à l’état i). La connaissance des
probabilités de transition pij suggère d’observer un temps continu Chaîne de
Markov {X(t), t ≥ 0} uniquement aux moments discrets où les changements
d’état prend place. Soit Xn l’état de la chaîne de Markov immédiatement après
le n ème changement d’état et X0 = X(0). Alors {X0, X1, ...} est un chaîne
de Markov homogène en temps discret avec probabilités de transition données
par 2.13 :

pij = P(X(Yi + 0) = j|X(0) = i) =
qij
qi
, i, j ∈ Z;n = 1, 2, .... (2.14)

En ce sens, la chaîne de Markov à temps discret {X0, X1, ...} est intégrée dans
la chaîne de Markov à temps continu {X(t), t ≥ 0}. Les chaînes de Markov inté-
grées peuvent également être trouvé dans les processus non-Markov. Dans ces cas,
ils peuvent faciliter l’enquête des processus non-Markoviens. En fait, les chaînes
de Markov à temps discret, qui sont intégrées dans les processus stochastiques arbi-
traires à temps continu, sont souvent un moyen efficace (si pas le seul) outil d’analyse
de ces processus.
Exemples d’applications de la La méthode des chaînes de Markov intégrées pour
analyser les systèmes de files d’attente.[4]

2.5 Probabilités de transition et générateur de Mar-
kov

Le résultat suivant est l’analogue de la propriété de Markov et de l’homogénéité
en temps qui définissent habituellement les chaînes de Markov. Comme dans le cas
discret, cela conduit à une caractérisation simple de la loi du processus.

Proposition 2.5.1. Un processus markovien de sauts {Xt}t≥0 à espace d’états E sa-
tisfait les deux égalités suivantes : pour tout entier n, pour tous états x0, x1, ..., xn, xn+1

et pour toute suite croissante de réels positifs 0 < t1 < ... < tn < tn+1

P(Xtn+1 = xn+1|Xtn = xn, ..., Xt1 = x1, X0 = x0) = P(Xtn+1 = xn+1|Xtn = xn)

= P(Xtn+1−tn = xn+1|X0 = xn).

Dés lors, la probabilité conditionnelle P(Xt = y|Xs = x) ne dépend que des états
x, y et de l’accroissement t− s, ce qui justifie la notation suivante.
Pour tout réel positif t et pour tous états x, y, la probabilité de transition de x vers
y sur un intervalle (de temps) de longueur t est définie par :

p(t)
x,y = P(Xt = y|X0 = x)
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La matrice P (t) = (p
(t)
x,y)x,y∈E est appelée matrice de transition sur un intervalle (de

temps) de longueur t et ne précise pas le nombre de sauts pour aller de l’état x à
l’instant 0 à l’état y à l’instant t. Comme dans le cas discret, la taille de la matrice
P (t) dépend du cardinal de E (éventuellement infini), ses coefficients sont des réels
positifs et la somme de ces coefficients sur toute une ligne vaut 1.
Comme dans le cas discret, la loi µt de la v.a. Xt est obtenue par produit matriciel
entre la loi initiale µ0 (i.e. celle de X0) et la matrice de transition P (t) :

µt = µ0P
(t)

.

Proposition 2.5.2. Les deux propositions suivantes fournissent deux autres points
communs entre processus markoviens à temps discret et à temps continue. Par la
donnée de la famille de matrices {P (t)}t≥0 et de loi de X0 suffit à caractériser la loi
d’un processus markovien de sauts :

i) Soit {Xt}t≥0 un processus markovien de sauts de matrices de transitions {P (t)}t≥0.
Pour tout entier n, pour tous états x0, x1, ..., xn et pour toute suite croissante
de réels positifs 0 < t1 < ... < tn on a :

P(Xtn = xn, ..., Xt1 = x1, X0 = x0) = P(X0 = x0)p(t1)
x0,x1

p(t2−t1)
x1,x2

...p(tn−tn−1)
xn−1,xn

ii) Soient s, t ≥ 0. Alors
(relation de Chapman-Kolmogorov) P (t+s) = P (t)P (s).

Ou encore,
p(t+s)
x,y =

∑
z∈E

p(t)
x,zp

(s)
z,y.

Démonstration. Écrivons pour commencer

p(t+s)
x,y = P(Xt+s = y|X0 = x)

=
∑
x∈E

P(Xt+s = y,Xt = z|X0 = x)

=
∑
x∈E

P(Xt+s = y,Xt = z|X0 = x) =
∑
x∈E

P(Xt = z|X0 = x)

en multipliant au numérateur et au dénominateur par la facteur P(Xt = z|X0 = x).
La démonstration s’achève en utilisant la propriété de Markov et l’homogénéité :

P(Xt+s = y|Xt = z,X0 = x) = P(Xt+s = y|Xt = z)

= P(Xs = y|X0 = z)

= p(s)
x,y
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Les similitudes entre les cas discret et continu s’arrêtent ici. En effet, les pro-
babilités de transition p

(t)
x,y sont en général très difficile à calculer, du fait de leur

dépendance en le temps. Cependant, la relation P (t+s) = P (t)P (s) implique que
toute la dynamique de la chaîne est contenue dans P (ε) avec ε > 0 petit. En effet,
pour tout n, il vient P (nε) = (P (ε))n. Sont alors connues les matrices de transition
P (t) pour t = ε, 2ε, 3ε, . . . Autrement dit, il s’agit de comprendre comment varie
l’application t 7→ P (t) sur l’intervalle de temps infinitésimal [0; ε]. Cette idée motive
l’introduction du générateur du processus.

Auparavant remarquons que, puisque le processus markovien de sauts {Xt}t≥0

issu de l’état x, y demeure jusqu’au premier saut S1, il vient

p(0)
x,y := lim

t→0+
p(t)
x,y =

0 si x 6= y

1 si x = y
.

2.5.1 Générateur de Markov

2.5.1.1 Intensités de transitions

Les intensités de transitions qx jouent un rôle pour les chaînes de Markov en
temps continue analogue aux probabilité de transition dans le cas des chaînes de
Markov discrète :
qx = − d

dt
px,x(0) = lim

t→0

1−px,x(t)

t
∀x ∈ {0, ...,M}

qx,y = d
dt
px,y(0) = lim

t→0

px,y(t)

t
= qxpx,y ∀x, y ∈ {0, ...,M};x 6= y

Où px,y(t) est la fonction de la probabilité de transition en temps continu et px,y est
décrit à sous forme :
Par symétrie avec le cas discret

px,y(t) = P (X(t) = y|X(0) = x)

lim
t→0

px,y(t) =

{
1 si x=y
0 sinon

Quand le processus quitte l’état x, il passe à l’état y avec une probabilité de px,y
satisfaisant les conditions suivantes :

px,x = 0 ∀x ∈ {0, ..,M},
M∑
y=0

Px,y = 1 ∀x ∈ {0, ..,M}

En particulier :

a) qx = taux de transition à partir de x = 1
E[Tx]

où E[Tx] est la moyenne du temps passé à chaque visite dans l’état x.
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b) qx,y = taux de transition de x vers y
c’est le nombre moyen de fois que le processus passe de x à y par unité de
temps passé dans l’état x.
Il s’ensuit que

qx =
M∑
y=0
x 6=y

qx,y

Par analogie avec qx , qx,y est le paramètre de la distribution exponentielle de la
variable aléatoire définie comme suit :
Chaque fois que le processus atteint x , le temps passé dans x avant une transition
vers y (cette transition étant la première) est une variable aléatoire
Tx,y ∀x, y ∈ {0, ...,M};x 6= y

Les variables Tx,y sont indépendantes, exponentielle avec paramètres qx,y dont les
moyennes

E[Tx,y] =
1

qx,y

Théorème 2.5.1. Soit {Xt}t≥0 un processus markovien de sauts associé à la suite
(λ(x))x∈E et à la matrice Q = (qx,y)x,y∈E soient x, y ∈ E, l’application t 7→ P

(t)
x,y est

dérivable à droite en t = 0 et cette dérivée vaut :

ax,y := lim
t→0+

P
(t)
x,y − P (0)

x,y

t
=

λ(x)qx,y si x 6= y

−λ(x) si x = y
. (2.15)

Lorsque les états x et y sont distincts, cette dérivée est appelée taux de transition de
x vers y. La matrice A = (ax,y)x,y∈E est appelée générateur de Markov du processus
{Xt}t≥0

Soient x et y des états distincts. La probabilité qx,y d’aller en y lorsqu’on quitte
x doit être pondérée par l’intensité λ(x) avec laquelle on quitte x, pour obtenir le
taux de transition ax,y; ax,y = λ(x)qx,y.
Par exemple, si le temps passé en x est en moyenne plutôt long (disons λ(x)−1 = 100)
alors le taux de transition de x vers y sera faible, i.e. ax,y ≤ 0.01, et ce même si
lorsqu’on quitte x c’est pour aller systématiquement en y(qx,y = 1).

Démonstration. Seul le cas où x = y est traité : cela suffit à comprendre la trame
du Théorème (2.5.1) Étant en x au temps 0, supposons que le processus y soit de
nouveau au temps t. Il y a deux possibilités.
Soit le processus n’a pas quitté l’état x, ce qui signifie que le premier instant de saut
S1 survient après t.
Soit le processus a quitté l’état x et y est revenu, ce qui implique au moins deux
sauts avant l’instant t.

P(Xt = x|X0 = x) = P(S1 > t = x|X0 = x) + P(S1 ≤ t, S2 ≤ t,Xt = x|X0 = x)

(2.16)
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Sachant X0 = x, l’instant du premier saut S1 suit la loi exponentielle de paramètre
λ(x). Le premier terme du membre de droite de (2.16) devient

P(S1 > t = x|X0 = x) = e−λ(x)t = 1− λ(x)t+ o(t)

lorsque t tend vers 0. Si le second terme du membre de droite de (2.16) est un
o(t) alors P(S1 > t = x|X0 = x) vaut également 1 − λ(x)t + o(t). D’où la limite
recherchée :

P(Xt = x|X0 = x)− 1

t
= −λ(x) + o(1)

Nous savons ce qu’il reste à faire. Le fait que les deux premiers sauts du processus
{Xt}t≥0 surviennent à des instants très proches de 0 est improbable. C’est la raison
pour laquelle P(S1 ≤ t, S2 ≤ t,Xt = x|X0 = x) est un o(t). Formellement,

P(S1 ≤ t, S2 ≤ t,Xt = x|X0 = x) ≤ P(S1 ≤ t, S2 ≤ t|X0 = x)

≤ P(S1 ≤ t, S2 − S1 ≤ t|X0 = x)

≤
∑
z∈E

P(S1 ≤ t,XS1 = z, S2 − S1 ≤ t|X0 = x)

Soit z ∈ E. Par définition du processus markovien de sauts, il vient :

P(S1 ≤ t,XS1 = z, S2 − S1 ≤ t|X0 = x) = P(XS1 = z, S2 − S1 ≤ t|S1 ≤ t,X0 = x)

× P(S1 ≤ t|X0 = x)

= P(XS1 = z, S2 − S1 ≤ t|S1 ≤ t)(1− e−λ(x)t)

= (1− e−λ(z)t)qx,z(1− e−λ(x)t)

En utilisant l’inégalité e−u ≥ 1−u et le fait que la suite (λ(z))z∈E soit bornée, disons
par une constante M > 0, il vient :

P(S1 ≤ t, S2 ≤ t,Xt = x|X0 = x) ≤
∑
z∈E

P(S1 ≤ t,XS1 = z, S2 − S1 ≤ t|X0 = x)

≤
∑
z∈E

(1− e−λ(z)t)qx,z(1− e−λ(x)t)

≤
∑
z∈E

λ(z)qx,zλ(x)t2

≤Mλ(x)t2
∑
z∈E

qx,z

≤Mλ(x)t2 = o(t)

Le générateur de Markov A = (ax,y)x,y∈E est entièrement déterminé par la suite
(λ(x))x∈E et la matrice Q = (qx,y)x,y∈E définissant le processus markovien de sauts.
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C’est une matrice carrée à coefficients réels positifs excepté sur la diagonale. Le
terme d’ordre x de la diagonale vérifie

ax,x = −λ(x) = −λ(x)
∑
y,y 6=x

qx,y = −
∑
y,y 6=x

ax,y.

La somme des coefficients d’une même ligne de la matrice A vaut donc 0.
Dans les applications, un modèle markovien continu est défini par ses taux de tran-
sition ax,y qui ont en général une signification concrète (nombres moyens d’arrivées,
de services, de pannes ou de réparations par unité de temps). De plus, l’intérêt du
générateur par rapport aux matrices de transition {P (t)}t≥0 est que celui-ci ne dé-
pend plus du temps : c’est une dérivée (à droite) en t = 0. Ainsi, on résume souvent
l’information qu’il contient par un graphe de transition. C’est un graphe orienté et
pondéré dont l’ensemble des sommets est E. Une arête de poids ax,y va de x vers
y 6= x si ax,y > 0.

Exemple 2.5. :
•Processus de Poisson. Pour tout entier x, λ(x) est égal à λ et qx,x+1 égal à 1.
Dès lors, le taux de transition de x vers x+ 1 vaut

ax,x+1 = λ(x)qx,x+1 = λ.

Il est nul vers tout autre entier y : pour tout y ∈ N\{x, x + 1}, ax,y = 0. Enfin, le
coefficient ax,x vaut −λ.

A =



−λ λ 0 0 · · ·
0 −λ λ 0

. . .

0 0 −λ λ
. . .

0 0 0 −λ . . .
... . . . . . . . . . . . .


•Automate binaire. La v.a. Xt est égale à 0 ou 1 selon que la machine soit en
état de panne ou de marche à l’instant t. Rappelons que les temps de fonctionnement
de cette machine sont des v.a. de loi exponentielle de paramètre λ et que les temps
de réparation sont des v.a. de loi exponentielle de paramètre µ, toutes ces v.a. étant
indépendantes. D’après la Proposition (2.5.1), le taux de transition de l’état de panne
vers l’état de fonctionnement est

a0,1 = λ(0)q0,1 = µ

tandis le taux de transition de l’état de fonctionnement vers l’état de panne est

a1,0 = λ(1)q1,0 = λ.

Enfin, les coefficients a0,0 et a1,1 valent respectivement −µ et −λ.
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2.6 Théorème limite

Comme dans le cas discret, l’étude du comportement asymptotique d’un pro-
cessus markovien de sauts passe par l’identification d’une mesure stationnaire sur
l’espace d’états E.

A =

(
−µ µ

λ −λ

)

Définition 2.6.1. Une mesure stationnaire (ou invariante) d’un processus marko-
vien de sauts de matrices de transition {P (t)}t≤0 est une loi de probabilité sur E,
disons π = (π(x))x∈E vérifiant pour tout t la relation π = πP (t).

Rappelons que la loi µt de la v.a. Xt vérifie µt = µ0P
(t). Dès lors, la relation

π = πP (t) s’interprète comme suit : si la v.a. initiale X0 a pour loi la mesure
stationnaire π alors, pour tout temps t, la loi de Xt est encore π.
La relation matricielle π = πP (t) est équivalente au système linéaire

∀y ∈ E,
∑
x∈E

π(x)P (t)
x,y = π(y)

(de taille égale au cardinal de E).
Les matrices de transition {P (t)}t≤0 étant en général inaccessibles, nous privilé-

gierons la caractérisation des mesures stationnaires en termes de générateur.

Proposition 2.6.1. [2] Une loi de probabilité π sur E est une mesure stationnaire
d’un processus markovien de sauts de générateur A si et seulement si πA = 0, ce
qui s’écrit :

∀y ∈ E,
∑
x∈E

π(x)ax,y = 0 (2.17)

2.6.1 Exemples

:
•Processus de Poisson. Pour tout entier x, le taux de transition ax,y vaut λ si et
seulement y = x+1. Il est nul vers tout autre entier y. Les équations de stationnarité
(2.17) donnent : −λπ(x) = 0

λπ(x)− λπ(x+ 1) = 0,∀x ∈ N

ou encore π(x) = 0 pour tout x. Le processus de Poisson en tant que processus
markovien de sauts n’admet donc pas de mesure stationnaire. C’est relativement
intuitif ; il ne peut pas exister d’équilibre en loi pour un processus qui tend p.s. vers



2.6.1 Exemples 33

l’infini.
•Automate binaire. Avec le générateur

A =

(
−µ µ

λ −λ

)
les équations de stationnarité donnent µπ(0) = λπ(1). Puisque π(0) + π(1) = 1, on
trouve comme unique mesure stationnaire

π =

(
λ

λ+ µ
,

µ

λ+ µ

)
La notion de mesure réversible existe aussi pour les processus markoviens de sauts,
exactement comme pour les chaines de Markov

Définition 2.6.2. Une mesure réversible d’un processus markovien de sauts de gé-
nérateur A est une loi de probabilité sur E, disons π = (π(x))x∈E vérifiant

∀x, y ∈ E, π(x)ax,y = π(y)ay,x. (2.18)

Proposition 2.6.2. [2] Toute mesure réversible pour un processus est stationnaire
pour ce processus.

En pratique (et notamment pour les projets), pour obtenir une mesure station-
naire, il est recommandé de commencer par chercher une mesure réversible, plus
facile à identifier quand elle existe. D’ailleurs, la mesure stationnaire

π =

(
λ

λ+ µ
,

µ

λ+ µ

)
de l’automate binaire est également réversible. En effet, elle satisfait l’équation

π(0)a0,1 = π(1)a1,0.

Définition 2.6.3. Un processus markovien de sauts de générateur A est dit irré-
ductible sur E si pour tous états x, y ∈ E distincts il existe des états x1, · · · , xn ∈ E
tous différents tels que :

ax,x1ax1,x2 · · · axn−1,xnaxn,xn+1 > 0.

Comme dans le cas discret, être irréductible signifie que l’on peut passer (en plu-
sieurs étapes si nécessaire) de n’importe quel état x à n’importe quel état y avec
une probabilité strictement positive. Le processus markovien de sauts correspondant
à l’automate binaire est irréductible. Ce n’est pas le cas du processus de Poisson.

Nous admettons le théorème limite suivant

Théorème 2.6.1. [2] Considérons un processus markovien de sauts {Xt}t≥0 de
matrices de transition {P (t)}t≥0, irréductible sur E et admettant une mesure sta-
tionnaire π. Alors :
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(1) π est l’unique mesure stationnaire du processus {Xt}t≥0 ;
(2) la matrice P (t) converge quand t tend vers l’infini vers une matrice dont
toutes les lignes sont égales à π :

∀x, y ∈ E, lim
t→∞

P (t)
x,y = π(y);

(3) quelle que soit la loi de X0, la loi de Xt converge quand t tend vers l’infini
vers π :

∀x ∈ E, lim
t→∞

P(Xt = x) = π(x);

Le comportement asymptotique d’un processus markovien de sauts irréductible
est donc décrit par l’unique mesure stationnaire quand elle existe. Dans ce cas, le
Théorème (2.6.1) exprime qu’au bout d’un certain temps, le système se stabilise
dans un régime d’équilibre appelé régime stationnaire. Une fois ce régime atteint,
la probabilité d’être dans l’état x est donnée par π(x). Remarquons enfin que la
notion de périodicité n’a pas de sens en temps continu, ce qui simplifie d’autant la
discussion. Par contre, celles de récurrence et de transience sont conservées : ce sont
toujours des propriétés de classes irréductibles.

Dans la section suivante, on va considérer les processus en temps continu avec
un espace d’états continu.

2.7 Probabilités de transition du mouvement brow-
nien

2.7.1 Le semi-groupe du mouvement brownien

Soit B = (Ω,F , (Ft)t≥0, (Bt)t≥0,P) un mouvement brownien sur R.

Théorème 2.7.1. [1] B est un processus de Markov homogène sur R, de loi
initiale ν et dont le semi-groupe est de la forme

Ptf(x) =

∫
R

1√
2πt

exp(−1

2

(x− y)2

t
)f(y)dy, (2.19)

pour tout t > 0 et toute fonction f : R → R borélienne bornée. Autrement dit pour
tout borélien A ⊂ R,

Pt(x,A) =

∫
A

1√
2πt

exp(−1

2

(x− y)2

t
)dy,

i.ePt(x, dy) est la mesure gaussienne de moyenne x et de variance t.
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Pour la démonstration on aura besoin d’un résultat bien connu sur l’espérance
conditionnelle :

Lemme 2.7.1.1. [5] Soient g : R2 → R borélienne bornée, X et Y des variables
aléatoire avec X mesurable par rapport à une tribu G et Y indépendante de la tribu
G. Alors si g̃(x) = E(g(x,Y)), on a :

E(g(X,Y)/G) = g̃(X).

Démonstration du théorème 2.7.1 :
Soit f : R→ R une fonction borélienne bornée et 0 < s < t.

Alors en considérant la fonction

f̃(x) = E(f(x+Bt −Bs))

=
∫
R

1√
2π(t−s)

exp(−1
2

(x−y)2

t−s )f(y)dy
(2.20)

et en appliquant le Lemme avec :
X = Bs,Y = Bt −Bs, g(x, y) = f(x+ y),G = Fs,
On a :

E(f(Bt)/Fs) = E(f(Bt −Bs +Bs)/Fs) = f̃(Bs)

=
∫
R

1√
2π(t−s)

exp(−1
2

(Bs−y)2

t−s )f(y)dy

= Pt−sf(Bs)

(2.21)

ce qui prouve d’après 2.5 que B est un processus de Markov homogène dont le
semi groupe Pt est bien de la forme annoncée en (2.19).

2.7.2 La propriété de Markov forte

Nous avons défini le mouvement brownien

B = (Ω,F , (Ft)t≥0, (Bt)t≥0,P)

comme un processus partant de 0 i.e (B0 = 0). Le processus B(x) défini pour tout
t ≥ 0 par :

B
(x)
t = x+Bt

est aussi un processus de Markov homogène de même semi-groupe B que donné par
la formule (2.19). On l’appelle le mouvement brownien partant de x.
Plus généralement, si on considère une variable aléatoire X0 indépandante de B, le
processus (X0 +Bt)t≥0 est encore un processus de Markov de semi groupe (2.19).

Définition 2.7.1. (Temps d’arrêt) Une variable aléatoire τ : Ω → R+ est un
temps d’arrêt par rapport à une filtration (Ft)t≥0 si :

∀t ≥ 0 {τ ≤ t} ∈ Ft
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Théorème 2.7.2. (Propriété de Markov forte)
Pour toute fonction f : R→ R borélienne bornée, pour tout h ≥ 0 et tout temps

d’arrêt presque sûrement fini τ de la filtration de B, on a

E(f(Bτ+h)/Fτ ) = Phf(Bτ )

Démonstration. (Démonstration du Théorème)
On écrit E(f(Bτ+h)/Fτ ) = E(f(Bτ+h−Bτ +Bτ )/Fτ ) et on utilise le lemme avec

X = Bτ ,Y = Bτ+h−Bτ et g(x, y) = f(x+y), la démonstration est alors identique à
celle du Théorème, puisqu’on sait par le théorème que la variable aléatoire Bτ+h−Bτ

est de même loi que Bh et qu’elle est indépendante de Bτ .

Remarque 2.7.1. On peut conclure que :
– Le mouvement brownien est la brique fondamentale pour construire des pro-
cessus de Markov continue sur (R ou Rn).

– Le mouvement brownien joue un rôle central dans la théorie des processus
stochastiques d’une part parce que dans de nombreux problèmes appliqués, le
M.B sert à modéliser les erreurs ou les perturbations aléatoires, et d’autre part
parce que le mouvement brownien ou les processus de diffusion qui en découlent
permettent de construire des modèles simples sur lesquels des calculs peuvent
être faits.

2.8 Quelques notions fondamentales sur les proces-
sus de Markov

2.8.1 Lois de dimension finie d’un processus de Markov

Proposition 2.8.1. [1] Soit X un processus de Markov de loi initiale ν et de pro-
babilités de transition Ps,t .Pour tout suite finie d’instants 0 = t0 < t1 < · · · < tk et
tout choix de fonctions Boréliennes bornées fi : E→ R , (0 ≤ i ≤ k) on a

E(f0(X0)f1(Xt1) · · · fk(Xtk))

=

∫
E

νdx0f(x0)

∫
E

P0,t1(x0, dx1)f1(x1) · · ·

= 〈νf0Pt0,t1f1Pt1,t2f2 · · · fk−1Ptk−1,tkfk〉,

où dans la formule précédente, on utilise la notation (3.3) et où chaque opérateur
Pti−1,ti s’applique à toute l’expression située à sa droite alors que chaque fonction fi
est multipliée par toute l’expression située à sa droite .
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Démonstration. En utilisant les propriétés de l’espérance conditionnelle et la pro-
priété de Markov , on a

E

(
k∏
i=0

fi(Xti)

)
= E

(
E(

k∏
i=0

fi(Xti)|Ftk−1
)

)

= E

(
k−1∏
i=0

fi(Xti)E(fk(Xtk)|Ftk−1
)

)

= E

(
k−1∏
i=0

fi(Xti)Ptk−1,tkfk(Xtk−1
)

)

= E

(
k−1∏
i=0

gi(Xti)

)
,

où gi = fi si i ≤ k − 2 et gk−1 = fk−1Ptk−1,tkfk.On arrive alors au résultat par
récurrence descendante sur k .

Corollaire 2.1. sous les hypothèses de la proposition précédente , pour tout A0, A1, · · · , Ak ∈
BE, on a

P (X0 ∈ A0, Xt1 ∈ A1, Xtk ∈ Ak)

=

∫
A0

ν(dx0)

∫
A1

P0,t1(x0, dx1)

∫
A2

Pt1,t2(x1, dx2) · · ·

· · ·
∫
Ak

Ptk−1,tk(xk−1, dxk). (2.22)

Si le processus de Markov X est homogène de semi-groupe (Pu)u≥0 la formule pré-
cédente se récrit sous la forme

P (X0 ∈ A0, Xt1 ∈ A1, Xtk ∈ Ak)

=

∫
A0

ν(dx0)

∫
A1

Pt1(x0, dx1)

∫
A2

Pt2−t1(x1, dx2) · · ·

· · ·
∫
Ak

Ptk−tk−1
(xk−1, dxk). (2.23)

Démonstration. Il suffit d’appliquer la proposition avec fi = 1A1

Remarque 2.8.1. Supposons que (Ft)t∈T soit la filtration naturelle du processus de
Markov X. La restriction de la probabilité P à la tribu F∞ = σ(∪t∈TFt) terminale
de X est parfaitement déterminée par les valeurs P(X0 ∈ A0, Xt1 ∈ A1, · · · , XtkAk)

prises par P sur les ensembles cylindriques

[X0 ∈ A0, Xt1 ∈ A1, · · · , Xtk ∈ Ak] (2.24)

(k ∈ N, (ti) ∈ T k, (Ai) ∈ (BE)k+1) . On voit grâce à (2.22) et (2.23) que cette
probabilité notée parfois Pν est entièrement caractérisés par la loi initiale ν et le
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noyaux de transition (resp. le semi-groupe) de X . En générale , lorsque X est un
Markov homogène , on définit sur F∞ une famille (Px)x∈E de mesures de probabilité
en posant

Px(X0 ∈ A0, Xt1 ∈ A1, · · · , Xtk ∈ Ak)

=

∫
A0

δx(dx0)

∫
A1

Pt1(x0, dx1)

∫
A2

Pt2−t1(x1, dx2) · · ·

· · ·
∫
Ak

Ptk−tk−1
(xk−1, dxk),

où δx est la mesure de Dirac au point x . Cette mesure Px qui s’identifie à la proba-
bilité conditionnelle "sachant [X0 = x]" permet des interprétation très intéressantes
dans l’étude des processus de Markov et permet de simplifier beaucoup d’énoncés .

Pν =

∫
E

Pxdν(x)

2.9 Propriétés analytiques du semi-groupe brownien

2.9.1 Générateurs infinitésimal d’un semi-groupe de Feller

Les processus de Feller constituent une classe particulièrement intéressante de
processus de Markov homogène. Leurs opérateurs de transition forment un semi-
groupe dont la structure analytique est assez riche pour fournir des précieuses pro-
priétés probabilistes du processus. Nous illustrons ces idées sur l’exemple du mou-
vement brownien. Ceci permet d’introduire les outils fondamentaux que sont la
résolvante et le générateur infinitésimal d’un processus de Féller.

Considérons l’espace de Banach (C0(E), ‖.‖∞) des fonctions f : E → R continues
et tendant vers 0 à l’infini , muni de la norme ‖f‖∞ = sup

x∈E
|f(x)| de la convergence

uniforme et soit (Pt)t≥0 une famille d’opérateurs positifs 1 de C0(E) de lui même .

Définition 2.9.1. On dit que (Pt)t≥0 est un semi-groupe de Feller si :

1. P0 = 1 et ‖Pt‖ ≤ 1 pour tout ≥ 0.

2. ∀t, t′ ≥ 0, PtPt′ = Pt+t′

3. ∀f ∈ C0(R), lim
t→0
‖Ptf − f‖∞ = 0

Un processus de Markov homogène sur E dont le semi-groupe (au sens de (3.7))
est de Feller , est appelé processus de Feller 2

Ainsi un processus de Markov homogène sur E est de Feller si ses opérateurs de
transition envoient C0(E) dans lui même et si pour toute fonction
f ∈ C0(E) lim

t→0
‖Ptf − f‖∞ = 0 .

1. i.e. f ≥ 0⇒ Ptf ≥ 0.
2. Pour un tel semi-groupe , les opérateurs sont de plus Markoviens i.e. ∀t ≥ 0, Pt1 = 1.
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Remarque 2.9.1. On déduit immédiatement de 2) et 3) , la continuité à droite du
semi-groupe en tout point t > 0 .i.e.

lim
h→0

Pt+hf = Ptf dans C0(E) (2.25)

Définition 2.9.2. [1] Si f ∈ C0(E) est telle que la limite

lim
t→0

1

t
(Ptf − f) = Af (2.26)

existe dans C0(E) 3 , on dit que f et dans le domaine DA de l’opérateur A ainsi
défini par (2.26) et appelé générateur infinitésimal du semi-groupe (Pt)t≥0.

Remarque 2.9.2. 1) La notion de générateur infinitésimal pour un processus X de
Markov-Feller permet de préciser l’accroissement du processus en temps petit . En
effet avec la notation de (3.6) pour tout instant s > 0 , si H > 0 pour tout f ∈ DA

, on a
E(f(Xs+h)|Fs) = Phf(Xs) = f(Xs) + hAf(Xs) + o(h),

où o(h) ne dépend que de f .
2) L’importance de du générateur infinitésimal dans la théorie moderne des processus
de Markov est due au fait que pour tout fonction f ∈ DA , le processus

f(Xt)− f(X0)−
∫ t

0

(Af)(Xs)ds (t ≥ 0),

est une martingale par rapport à la filtration de X Nous donnerons un aperçu de ces
liens entre générateur infinitésimal et propriétés de martin gale dans l’annexe de ce
chapitre.

Les propriétés analytiques générales liant le semi-groupe et son générateur infi-
nitésimal sont contenues dans le résultat suivant

Proposition 2.9.1. Soit f ∈ DA On a :
i) ∀t ≥ 0, Ptf ∈ DA

ii) pour tout x ∈ R , la fonction t 7−→ Ptf(x) est dérivable, la fonction d
dt
Ptf :

x 7−→ d
dt
Ptf(x) est dans C0(E) et on a

d

dt
Ptf = APtf = PtAf, (2.27)

de plus on a

Ptf − f =

∫ t

0

APsfds =

∫ t

0

PsAfds. (2.28)

3. .i.e. Af ∈ C0(E) et lim
t→0
‖ 1t (Ptf − f)−Af‖∞ = 0.
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Démonstration. Soit t ≥ 0. La propriété de semi-groupe et la continuité de l’opéra-
teur Pt impliquent

lim
u→0

Pu(Ptf)− Ptf
u

= lim
u→0

Pt

(
Puf − f

u

)
= PtAf

= APtf

ce qui prouve l’assertion i). Le même calcul montre que t 7−→ Ptf est dérivable en
tout t > 0 et dérivable à droite en t = 0 et qu’on a (2.27). De plus la fonction∫ t

0
APsfds est dérivable et sa dérivée t 7−→ APtf coïncide avec la dérivée de la

fonction t 7−→ Ptf − f . Ces deux fonctions égales à 0 en t = 0 sont donc égales
partout et on a (2.28).

Remarque 2.9.3. L’équation (2.27) montre que la fonction

(t, x) 7−→ u(t, x) = Ptf(x); (t > 0, x ∈ R),

, est solution de "l’équation de la chaleur"

(
∂

∂t
− A)u = 0

avec la condition initiale u(0, x) ≡ f(x). Cette dénomination trouve son origine dans
le cas du semi-groupe du mouvement brownien dont le générateur infinitésimal est
l’opérateur 1

2
d2

dx2
comme on va le voir ci-dessous.

Théorème 2.9.1. [1] Le mouvement brownien est un processus de Feller. De plus
toute fonction f ∈ C0(R), de classe C2 avec une dérivée seconde f ′′ ∈ C0(R), est
dans le domaine DA du générateur infinitésimal A et pour une telle fonction, on a

Af(x) =
1

2

d2f

dx2
(x).

Démonstration. 1) Montrons d’abord que B est un processus de Feller. pour f ∈
C0(R) la fonction Ptf définie par la formule (3.11), est continue d’après le théo-
rème de continuité d’une intégrale dépendant d’un paramètre. En effet pour tout
y fixé, la fonction sous le signe intégrale est clairement continue en x et on peut
la dominer, si x est dans un intervalle compact, par une fonction intégrable de la
forme ‖f‖∞ exp(−1

2
y2 + Cy), où C > 0 est une constante. Montrons ensuite que

Ptf(x) 7−→ 0 quand |z| 7−→ +∞ :
Soit ε > 0 et M = M(ε) > 0 tel que |y| > M implique |f(y)| < ε

2
.

Comme le noyau intégral de (3.11) est une densité de probabilité, on a

|Ptf(x)| ≤
∫ M

−M

1√
2πt

exp

(
−1

2

(x− y)2

t

)
|f(y)|dy +

ε

2
(2.29)
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Mais en passant à la limite sous le signe somme, l’intégrale du second membre de
2.29 tend vers zéro quand |x| 7−→ ∞ puisque la convergence est dominée par la
fonction continue |f | qui est intégrable sur [−M,M ]. On a ainsi |Ptf(x)| ≤ ε pour
x assez grand, ce qui prouve que Ptf ∈ C0(R). Il reste à prouver le point 3) de la
définition (2.9.1) :
On a

Ptf(x)− f(x) =

∫
R

1√
2πt

exp

(
−1

2

(x− y)2

t

)
(f(y)− f(x))dy

=

∫
R

1√
2πt

exp

(
−1

2

z2

t

)
(f(x+ z)− f(x))dz

(2.30)

Soit ε > 0. Comme f ∈ C0(R), f est uniformément continue sur R et il existe α > 0

tel que pour tout x ∈ R, |z| < α implique qu’on ait la relation |f(x+z)−f(x)| ≤ ε
2
.

E décomposant l’intégrale du second membre de (2.30) en une intégrale sur [−α, α]

et sur [−α, α]c, on déduit aussitôt que

sup
x∈R
|Ptf(x)− f(x)| ≤ ε

2
+ 2‖f‖∞

∫
[−α,α]c

1

2πt
exp

(
−1

2

z2

t

)
dz. (2.31)

Mais l’intégrale dans le second membre de (2.31) tend vers 0 quand t → ∞. Le
premier membre de (2.31) peut donc être rendu inférieur à ε pour t assez grand,
d’où l’assertion 3).
2) Considérons maintenant f ∈ C0(R) ∩ C2(R) avec f” ∈ C0(R). Si on fait le
changement de variable y = x+ z

√
t dans la formule (3.11), on a

Ptf(x) =

∫
R

1√
2π

exp

(
−1

2
z2

)
f(x+ z

√
t)dz.

La formule de Taylor-Lagrange appliquée à l’ordre 2 au point x avec l’accroissement
h = z

√
t, montre qu’on peut écrire

f(x+ z
√
t) = f(x) + z

√
tf ′(x) +

1

2
z2tf ′′(x) +

1

2
z2t(f ′′(x+ θz

√
t)− f ′′(x)) (2.32)

où θ = θ(x, z
√
t) ∈ [0, 1]. Ainsi lorsqu’on intégrer la relation (2.32) par rapport à la

mesure 1√
2π

exp
(
−1

2
z2
)
dz , en tenant compte du fait que∫

R

1√
2π
z exp

(
−1

2
z2

)
dz = 0 et

∫
R

1√
2π
z2 exp

(
−1

2
z2

)
dz = 1

on voit que

1

t
(Ptf(x)− f(x))− 1

2
f ′′(x) =

1

2

∫
R

1√
2π
z2 exp

(
−1

2
z2

)(
f ′′(x+ θz

√
t)− f ′′(x)

)
dz

(2.33)

Il nous reste à prouver que le second membre de (2.33), tend vers 0 uniformément en
x ∈ R quand t→ 0. On doit procéder délicatement. D’abord, on fait le changement
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de variable u = z
√
t et l’intégrale de (2.33), s’écrit

r(t, x) =
1

2

∫
R

1√
2π

1

t
√
t
u2 exp

(
−u

2

2t

)
(f ′′(x+ θu)− f ′′(x))du

Comme f” est uniformément continue sur R, à tout ε > 0, on peut associer α > 0 tel
que |h| ≤ α implique |f”(x+h)−f”(x)| < ε. Si on décompose l’intégrale précédente,
en une intégrale sur [−α, α] et sur [−α, α]c, on obtient

|r(t, x)| ≤ ε

2
+ ‖f ′′‖∞

∫
[−α,α]c

1√
2π

1

t
√
t
u2 exp

(
−u

2

2t

)
du

|r(t, x)| ≤ ε

2
+ 2‖f ′′‖∞

∫ +∞

α√
t

1√
2π
z2 exp

(
−z

2

2

)
dz (2.34)

Comme l’intégrale du second membre de (2.34) tend vers 0 quand t→ 0, ceci montre
que |r(t, x)| < ε uniformément en x, pour t assez petit. La deuxième assertion du
théorème en résulte aussitôt.

2.9.2 La résolvante du mouvement brownien

Pour déterminer complètement le domaine DA du générateur infinitésimal du
mouvement brownien, on a besoin de la notion de résolvante :

Définition 2.9.3. On appelle résolvante 4 d’un semi-groupe de Feller (Pt)t≤0, la
famille (Rλ)λ>0 des opérateurs définis sur C0(E) par :

Rλf(x) =

∫ +∞

0

e−λtPtf(x)dt (x ∈ E) (2.35)

On notera que la fonction t → Ptf(x) est borélienne (puisque continue à droite
d’après (2.25)) et qu’elle est bornée (par ‖f‖..) donc elle est intégrable pour la mesure
e−λtdt. L’expression Rλf(x) est donc bien définie. De plus, par continuité sous le
signe somme et par convergence dominée, on voit clairement que Rλf ∈ C0(E).

Proposition 2.9.2. [1] La résolvante (Rλ)λ>0 d’un semi-groupe de Feller (Pt)t≥0

vérifie les propriétés suivantes :
1) ∀λ > 0,∀t ≥ 0, PtRλ = RλPt.

2) ∀λ, µ > 0, RλRµ = RµRλ

3) ∀λ, µ > 0, Rλ −Rµ = (µ− λ)RλRµ (équation résolvante) 5

4) ∀λ > 0,∀f ∈ C0(E), ‖λRλf‖∞ ≤ ‖f‖∞

Démonstration. Les propriétés de commutation 1) et 2) sont faciles à établir et sont
laissées en exercice.

4. ou transformée de Laplace.
5. On notera que l’équation résolvante implique la propriété de commutation 2).
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La propriété 4) est immédiate puisque pour tout x, |Ptf(x)| ≤ ‖f‖∞. Établissons
l ?équation résolvante. Pour f ∈ C0(E), on a

RλRµf(x) =

∫ ∞
0

e−λtPt

(∫ ∞
0

eµsPsf(x)ds

)
dt (2.36)

et comme Pt est un opérateur continu, on voit facilement qu’on peut le passer à
l’intérieur de la deuxième intégrale du membre de droite de (2.36), ce qui compte
tenu de la propriété de semi-groupe donne :

RλRµf(x) =

∫ ∞
0

e−λt
(∫ ∞

0

eµsPt+sf(x)ds

)
dt (2.37)

Le changement de variable s = u − t dans l’intégrale centrale de (2.37) puis une
interversion des intégrations donne alors

RλRµf(x) =

∫ ∞
0

e−λt
(∫ ∞

t

eµ(u−t)Puf(x)ds

)
dt

=

∫ ∞
0

e−µuPuf(x)

(∫ u

0

e−(λ−µ)tdt

)
du

=
1

λ− µ

∫ ∞
0

e−µuPuf(x)
(
1− e−(λ−µ)u

)
du

=
1

λ− µ
(Rµf(x)−Rλf(x))

=
1

µ− λ
(Rλ −Rµ)f(x).

D’où le résultat.

Une conséquence cruciale de l’équation résolvante, concerne la constance de
l’image de C0(E) par les opérateurs Rλ :

Corollaire 2.2. L’espace D = Rλ(C0(E)) ne dépend pas de λ > 0.

Démonstration. Grâce à l’équation résolvante, pour f ∈ C0(E) on a

Rλf = Rµf + (µ− λ)RµRλf

= Rµ(f + (µ− λ)Rλf),

ce qui signifie que Rλ(C0(E)) ⊂ Rµ(C0(E)) ; mais comme λ > 0 et µ > 0 sont quel-
conques, on a aussiRµ(C0(E)) ⊂ Rλ(C0(E)), d’où l’égalitéRλ(C0(E)) = Rµ(C0(E)).

Cet espace D, image commune de C0(E) par les opérateurs résolvants Rλ, coïn-
cide en fait avec le domaine DA du générateur infinitésimal A du semi-groupe ! Plus
précisément on a le théorème fondamental suivant :
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Théorème 2.9.2.
[1] Soient λ > 0 et f, g ∈ C0(E). Alors g = Rλf si et seulement si g ∈ DA et

λg = Ag = f.

Autrement dit D = DA et (λI −A)Rλ = I , où I est l’opérateur identité de C0(E) 6

Démonstration.
i) (condition nécessaire) Supposons que g = Rλf . Alors pour tout h > 0, on a

1

h
(Ph − I)g(x) =

1

h

∫ ∞
0

e−λtPt+hf(x)dt− 1

h

∫ ∞
0

e−λtPtf(x)dt (2.38)

Le changement de variable s = t + h dans la première intégrale de (2.38)
conduit à .

1

h
(Ph − I)g(x) =

eλh − 1

h

∫ ∞
0

e−λsPsf(x)ds− eλh

h

∫ h

0

e−λsPsf(x)ds

=
eλh − 1

h

(
g(x)− 1

λ
f(x)

)
− eλh

h

∫ h

0

e−λs (Psf(x)− f(x)) ds

(2.39)

Comme Ptf(x) − f(x) → 0 uniformément en x, quand t → 0, l’intégrale du
second membre de (2.39) tend vers 0 quand h → 0 (uniformément en x), ce
qui implique

lim
h→0

1

h
(Ph − I)g = λ

(
g − 1

λ
f

)
dans C0(E).

Donc g ∈ DA et Ag = λg− f i.e. f = (λI −A)g. D’où la condition nécessaire.
ii) (condition suffisante) Soit v ∈ DA. On a donc lim

h→0

1
h
(Ph − I)v = Av dans

C0(E) et comme l’opérateur Rλ est continu et commute avec Ph, ceci implique

lim
h→0

1

h
(Ph − I)Rλv = RλAv (2.40)

Mais, dans la condition nécessaire, on a vu que la limite du membre de gauche
de (2.40) est égale à λRλv − v. On a donc RλAv = λRλ − v, ce qui montre
que v ∈ Rλ(Cλ(E)) et comme Rλ et A commutent, on obtient aussi v =

(λI?A)Rλv. D’où le théorème.

Théorème 2.9.3.
i) La résolvante du mouvement brownien est la famille des opérateurs intégraux

(Rλ)λ≥0 de la forme :

Rλf(x) =

∫
R

1√
2λ

exp
(
−
√

2λ|x− y|
)
f(y)dy (f ∈ C0(R)) (2.41)

6. On notera qu’on a alors aussi Rλ(λI −A) = IDA
, où IDA

est l’opérateur identité de DA car
Rλ et A commutent sur DA.
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ii) Le domaine DA du générateur infinitésimal du mouvement brownien est consti-
tué des f ∈ C0(R) de classe C2 et telles que f” appartienne aussi à C0(R).
Pour f ∈ DA, on a alors

Af =
1

2
f ′′

Démonstration.
1) Pour une fonction f ∈ C0(R) positive, le théorème de Fubini-Tonelli permet

d’écrire :

Rλf(x) =

∫
R

(∫ ∞
0

e−λt
1√
2πt

exp(−(x− y)2

2t
)dt

)
f(y)dy.

Pour prouver (2.41), il suffit donc de montrer que

φ(z) :=

∫ ∞
0

e−λt
1√
2πt

exp(−z
2

2t
)dt =

1√
2λ
e−
√

2λ|z|. (2.42)

Pour z > 0, on peut dériver φ(z) sous le signe intégrale, ce qui donne

φ′(z) = −
∫ ∞

0

e−λt
z

t

1√
2πt

exp(−z
2

2t
)dt. (2.43)

Si on fait le changement de variable s = z2

2λt
dans l’intégrale (2.43), on obtient

aussitôt
φ′(z) = −

√
2λφ(z),

ce qui implique que φ(z) = Ce−
√

2λz, (z > 0) : mais C = φ(0) = 1√
2λ

comme
on peut le voir aussitôt par un changement de variable évident 7.
On en déduit (2.42) puisque φ(z) est une fonction paire.

2) Si on récrit la formule (2.41) sous la forme

Rλf(x) = e−
√

2λx

∫ x

−∞

1√
2λ
e
√

2λyf(y)dy + e
√

2λx

∫ +∞

x

1√
2λ
e−
√

2λyf(y)dy.

on voit facilement que la fonction g(x) := Rλf(x) a des dérivées première et
seconde données par

g′(x) = −e−
√

2λx

∫ x

−∞
e
√

2λyf(y)dy + e
√

2λx

∫ +∞

x

e−
√

2λyf(y)dy (2.44)

et

g′′(x) = 2λg(x)− 2f(x). (2.45)

La relation (2.45) montre que g” ∈ C0(R). L’image de C0(R) par Rλ égale
à DA (d’après le Théorème (2.9.2)) est donc contenue dans l’ensemble C2

0(R)

des fonctions g ∈ C0(R) de classe C2 telles que g” ∈ C0(R) qui est lui même
inclus dans DA d’après le Théorème (2.9.1). Donc DA = C2

0(R) et le théorème
en découle.

7. dans l’intégrale donnant f(0) faire le changement de variable λt s
2

2 pour se ramener à une
intégrale de Gauss
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Remarque 2.9.4. La formule (2.44) montre que l’on a

|g′(x)| ≤ e−
√

2λx

∫ x

−∞
e
√

2λy|f(y)|dy + e
√

2λx

∫ +∞

x

e−
√

2λy|f(y)|dy =
√

2λRλ|f |(x),

donc g′(x) → 0 quand |x| → ∞. Ainsi les fonctions f ∈ DA sont aussi telles que
f ′ ∈ C0(R), ce qui n’était pas clair a priori (on essayera de montrer directement
qu’une fonction f ∈ C0(R) de classe C2 et telle que f” ∈ C0(R), vérifie aussi
f ′ ∈ C0(R)).



Chapitre 3

Quelques applications des processus
Markoviens en temps continu

Dans ce chapitre, je rappelle tout d’abord le théorème d’existence et d’unicité
sur les équations différentielles stochastiques - EDS en abrégé dans la suite - puis je
m’intéresse à la propriété de Markov de la solution de l’EDS.

3.1 Le résultat classique d’Ito

Les équations différentielles ont été d’abord étudiées par Itô, dans le but de
construire les diffusions ( c’est-à-dire, processus continus et fortement markoviens
dont les générateurs sont des opérateurs différentiels du second ordre). c’est d’ailleurs
dans ce but qu’il avait introduit le calcul stochastique.

3.1.1 Existence et unicité de solution

Soit (Ω,F , (Ft),P) un espace de probabilité filtré, et soit B un (F)t-mouvement
brownien. Soient σ : R+ × R → R et b : R+ × R → R des fonctions masurables [8].
On considère l’équation différentielle stochastique (EDS) suivante :

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs. (3.1)

3.1.2 Définition

Une solution pour l’EDS 3.1 est un processus (Xt, t ≥ 0) continu adapté tel que
∀t,
∫ t

0
σ(s,Xs)

2ds <∞,
∫ t

0
|b(s,Xs)|ds <∞, p.s, et que

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs.

47
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Remarque 3.1.1. (i) Si σ et b sont localement bornées (c’est-à-dire, bornées sur
tout compact), alors pour tout processus continu adapté (Xt), on a automati-
quement
∀t,
∫ t

0
σ(s,Xs)

2ds <∞,
∫ t

0
|b(s,Xs)|ds <∞,

(ii) On écrit souvent la forme différentielle de l’équation :

dXt = b(t,Xt)dt+ σ(t,Xt)dBt.

Plus généralement, on peut considérer les EDS en dimension quelconque. Soit
B = (B(1), ..., B(m)) un (Ft)-mouvement brownien à valeurs dans Rm (avec m ≥ 1),
et soient σ : R+ × Rd → Rd×m et b : R+ × Rd → Rd des fonctions mesurables.
On écrit σ = (σik)1≤i≤d,1≤k≤m et b = (bi)1≤i≤d. On considère l’(EDS) suivante :

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs.

Une solution pour cette EDS est un processus X = (X(1), ..., X(d)),oû pour tout
1 ≤ i ≤ d, (X i

t , t ≥ 0) est un processus continu adapté,
tel que ∀t,∀1 ≤ k ≤ m,

∫ t
0
σik(s,Xs)

2ds <∞,
∫ t

0
|bi(s,Xs)|ds <∞, p.s, et que

X i
t = X i

0 +

∫ t

0

bi(s,Xs)ds+
m∑
k=1

∫ t

0

σik(s,Xs)dB
(k)
s . 1 ≤ i ≤ d

Théorème 3.1.1. [8] Supposons que σ et b sont des fonctions continues telles que
pour une certaine constante K > 0, et pour tout t ≥ 0, x, y ∈ Rd.

1. condition de Lipschitz en espace, uniforme en temps :

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|,

2. croissance linéaire : |b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|),

3. supposons que E(|ξ|2) <∞.

Alors il existe une unique solution (Xt, t ≥ 0) telle que X0 = ξ. De plus, pour tout
t, E(sups∈[0,t]|Xs|2) <∞.

Remarque 3.1.2. Dans l’énoncé du théorème 3.1.1 |.| désigne la norme euclidienne.
En plus, pour tout réel T > 0, il y a uncité de solution pour l’EDS sur [0, T ].

Exemple 3.1. [9] On donne un exemple classique d’EDS est emprunté au monde
de la finance. Le prix d’une action est généralement modélisé par l’EDS :

dSt = St(µdt+ σdWt), S0 donné ;

le paramètre σ s’appelle la volatilité et est très important. On montre facilement à
l’aide de la formule d’Itô que

St = S0 exp{(µ− σ2/2)t+ σWt}
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Ce processus est appelé le "mouvement brownien géométrique".
Commentaire
S0 est le cours observé à la date 0. Cela signifie que l’on cherche un processus adapté
(St)t≥0 tels que les intégrales

∫ t
0
Ssds et

∫ t
0
SsdBs aient un sens, et qui vérifie :

St = x0 +

∫ t

0

µSsds+

∫ t

0

σSsdBs ∀t.

Faisons tout d’abord un calcul formel : Posons Yt = log(St) où St est un processus
d’Itô avec Ks = µSs et Hs = σSs.
Appliquons la formule d’Itô à f(x) = log x on obtient, en supposant que St est
positif :

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d < X,X >s

log(St) = log(S0) +

∫ t

0

1

Ss
dSs +

1

2

∫ t

0

− 1

Ss

2

d < S, S >s

On a :
< S, S >s = <

∫ t
0
σSsdBs,

∫ t
0
σSsdBs >=<

∫ t
0
σSsdBs >

=
∫ t

0
σ2S2

sd < B,B >s=
∫ t

0
σ2S2

sds

et dSs = Ss(µds+ σdBs)

log(St) = log(S0) +
∫ t

0
Ss(µds+σdBs)

Ss
+ 1

2

∫ t
0
− 1
Ss

2
ds

= log(S0) +
∫ t

0
(µ− σ2

2
)ds+

∫
0
tσdBs

En utilisant 3.1 :

Yt = Y0 +

∫ t

0

(µ− σ2

2
)ds+

∫
0

tσdBs

On en déduit que :

Yt = log(St) = log(S0) + (µ− σ2

2
)t+ σBt

exp(log(St)) = exp(log(S0)) exp((µ− σ2

2
)t+ σBt)

Il semble donc que :

St = S0 exp{(µ− σ2/2)t+ σBt} avec : S0 = x0

soit une solution de l’équation de 3.1

3.1.3 Théorème (Fonctionnelle sur l’espace de Wiener)

Sous les hypothèses lipschitziennes, pour tout x ∈ Rd, il existe

Fx :

{
C(R+,Rm)→ C(R+,Rd),

ω 7→ Fx(ω). .

mesurable et satisfaisant les propriétés suivantes :
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– i) pour tout t ≥ 0, Fx(ω)t coîncide W(dω)-ps avec une fonction mesurable de
[ω]t = (ω(r) : 0 ≤ r ≤ t); avec un abus de notation, on écrira Fx(t, [B]t);

– ii) pour tout ω ∈ C(R+,Rm), l’application

{
Rd → C(R+,Rm),

x 7→ Fx(ω). .
est conti-

nue ;
– iii) pour tout x ∈ Rd, pour tout choix d’espace de probabilité filtré (Ω,F , (Ft)t≥0,P)

et tout (Ft)t≥0-mouvement brownien B en dimensionm, le processus X définie
par Xt = Fx(B)t est l’unique solution de E(b, σ) avec valeur initiale x ; de plus,
si Z est une variable aléatoire F0-mesurable, le processus FZ(B)t est l’unique
solution avec valeur initiale Z (pour plus de détails, voir [10]).

3.2 La propriété de Markov fort pour une EDS
homogène

Dans cette section, on suppose toujours les hypothèses lipschitziennes :
Les fonctions b et σ sont continues sur R+ × Rd et lipschitziennes en x, ie. il existe
une constante K > 0, et pour tout t ≥ 0, x, y ∈ Rd.

|b(t, x)− b(t, y)| ≤ K|x− y|,

|σ(t, x)− σ(t, y)| ≤ K|x− y|

et ∀t,
∫ T

0
|b(t, 0)|+|σ(t, 0)|2dt <∞ pour tout T où |b| et |σ| représentent la norme

du vecteur b et de la matrice σ.
Pour avoir des propriétés markoviennes homogènes, on suppose en outre que l’EDS
est homogène, c’est à dire que les coefficients de l’EDS ne dépendent pas du temps :

σ(t, y) = σ(y), b(t, y) = b(y).

Pour chaque x ∈ Rd, on note Px la loi sur C(R+,Rd) des solutions de Ex(b, σ) (d’après
le théorème 3.1.3, on a Px = WF−1

x ). L’assertion ii) dans le Théorème 3.1.3 montre
que x 7→ Px est continue pour la topologie de la convergence étroite : soit xn → x ,
pour f ∈ Cb(C(R+,Rd))∫

fdPxn =

∫
f(Fxn(ω))dW(ω)→

∫
f(Fx(ω))dW(ω) =

∫
fdPx

où on utilise Fxn(ω) → Fx(ω) dû au Théorème 3.1.3 et la convergence dominée
puisque f ∈ Cb(C(R+,Rd)). On déduit alors d’un argument de classe monotone que
pour toute fonction Φ borélienne de C(R+,Rd) dans R , l’application x 7→ Ex[Φ] est
elle aussi mesurable.

Théorème 3.2.1. [10](Markov fort pour les EDS homogène ) Soit X une solution
de E(b, σ) sur un espace de probabilité filtré (Ω,F , (Ft)t≥0,P). Soit aussi T un temps
d’arrêt fini p.s. Alors pour Φ : C(R+,Rd)→ R+ borélienne, on a

E[Φ(XT+t : t ≥ 0)|FT ] = EXT [Φ]
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C’est à dire pour toute variable aléatoire U positive FT -mesurable

E[UΦ(XT+t : t ≥ 0)] = E[UEXT [Φ]]

i.e
L((XT+t)t≥0|FT ) = L((Xt)t≥0|XT ).

Remarque 3.2.1. Ce résultat signifie que la solution X de l’EDS vérifie la propriété
de Markov forte par rapport à la filtration (Ft)t≥0 :
Pour tout temps d’arrêt fini T , la loi conditionnelle du "furur" (XT+t : t ≥ 0)

connaissant le "passé" FT est la loi de X partant de XT , qui ne dépend que du
présent à l’instant T .
Dans le cas particulier σ = Id et b = 0, on retrouve la propriété de Markov forte pour
le mouvement brownien. C’est du reste sur celle-ci qu’on s’appuie pour la preuve.

Preuve 3.2.1. (du théorème )
Pour simplifier la présentation de la preuve, on suppose encore que m = 1, d = 1.
Notons B(T )

t = BT+t − BT . Il s’agit d’un mouvement brownien indépendant de Ft
(propriété de Markov forte pour le brownien B). On pose aussi X ′t = XT+t et on
remarque que le processus X ′ est adapté par rapport à la filtration (F

′
t )t≥0 où F ′t =

FT+t et que cette filtration satisfait les conditions habituelles. De plus, d’après l’EDS
satisfaite par X,

X
′

t = XT +

∫ T+t

T

b(Xs)ds+

∫ T+t

T

σ(Xs)dBs.

Par changement de variable, on a de suite∫ T+t

T

b(Xs)ds =

∫ t

0

b(X
′

s)ds

[10] (comme il s’agit d’une intégrale de Stieltjes définie ω par ω, on peut faire le
changement de variable sans problème ω par ω, la valeur T = T (ω) étant alors
figée). On fait aussi un changement de variable dans l’intégrale stochastique à l’aide
du lemme suivant :

Lemme 3.2.1. Si h est un processus continu adapté, on a∫ T+t

T

h(s, ω)dBs =

∫ t

0

h(T + s, ω)dB(T )
s .

Démonstration. Pour démontrer le lemme en approchant h par des combinaisons li-
néaires finies de processus de la forme h(s, ω) = ϕ(ω)1]r,r′ ](s) où ϕ est Fr-mesurable.
Pour simplifier on prend même h de la forme h(s, ω) = ϕ(ω)1]T+r,T+r′ ](s) où ϕ est
FT+r-mesurable, il suffit de montrer le changement de variables pour ces fonctions
particulières :
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∫ T+t

T
h(s, ω)dBs =

∫ T+t

T
ϕ(ω)1]T+r,T+r′ ](s)dBs

= ϕ(ω)
∫ (T+r

′
)∧(T+t)

(T+r)∧(T+t)
dBs

= ϕ(ω)(B((T + r
′
) ∧ (T + t))−B((T + r) ∧ (T + t)))

= ϕ(ω)(B((T + r
′
) ∧ (T + t))−BT −B((T + r) ∧ (T + t)) +BT )

= ϕ(ω)(BT (r
′ ∧ t)−BT (r ∧ t))

= ϕ(ω)
∫ r′∧t
r∧t dBT

u

=
∫ r′∧t
r∧t ϕ(ω)dBT

u

=
∫ t

0
ϕ(ω)1]r,r′ ](u)dBT

u

=
∫ t

0
ϕ(ω)1]T+r,T+r′ ](T + u)dBT

u

=
∫ t

0
h(T + u, ω)dB

(T )
u

On déduit alors du lemme que∫ T+t

T

σ(Xs)dBs =

∫ t

0

σ(XT+u)dB
(T )
u =

∫ t

0

σ(X
′

u)dB
(T )
u

et on a donc

X
′

T+t = XT +

∫ t

0

b(X
′

s)ds+

∫ t

0

σ(X
′

s)dB
(T )
s

On remarque que X ′ est adapté par rapport à la filtration (F ′t)t≥0, B(T ) est un (F ′t)-
mouvement brownien et XT est F ′0-mesurable. D’aprée iii) dans le Théorème 3.1.3,
on doit avoir ps X ′ = FXT (B(T )). Le résultat du théorème suit alors facilement :
comme XT est FT -mesurable et B(T ) est indépendant de FT , on a

E[Φ(X
′
t : t ≥ 0)|FT ] = E[Φ(FXT (B(T )))|FT ]

=
∫
C(R+,Rm)

Φ(FXT (ω))W(dω)

= EXT [Φ(Xt : t ≥ 0)]

Lemme 3.2.2. Soit M une martingale locale universellement réductible pour tous
les P z, et β > 0 . Alors M peut être décomposé en M = N + B, où N est une
martingale locale pour tous les P z et B ∈ ψ. Il existe un ensemble nul A (c’est-
à-dire P z(A) = 0 pour tout z) tel que | ∆Ns |5 β pour tous les s ∈ R+, hors
A.

Lemme 3.2.3. Soit η0
t = W0, et

ηn+1
t = W0 +

m∑
i=1

∫ t

0

fi(s, η
n
s−)dY i

s (3.2)
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où Y i sont des P -semi-martingales, et chaque fi satisfait les conditions lipschit-
ziennes. Soit Wt une solution de

Wt = W0 +
m∑
i=1

∫ t

0

fi(s,Ws−)dY i
s .

Alors ηnt → Wt en probabilité.

Proposition 3.2.1. Soit (Xx
t ) et (Xt) comme dans .

Xx
t = X0 +

∫ t

0

f(s,Xx
s−)dZs +

∫ t

0

g(s,Xx
s−)dAs, (3.3)

Xt = X0 +

∫ t

0

f(s,Xs−)dZs +

∫ t

0

g(s,Xs−)dAs. (3.4)

Soit H ∈ bF , et Ĥ(ω) = H(ω1)1R(x) , où ω = (x, ω1). Alors

i) Xt et Xx
t sont P x,z indistinguables pour tous les z.

ii) Pour toute f ∈ bB ⊗ B,Ex,z[f(Xt, Ĥ)] = Ez[f(Xx
t , H)].

iii) Ex,z[Ĥ|Gt] = Ez[H|Ft]1R.

3.3 La propriétés Markovienne des solutions

Une diffusion Dt peut être définie comme un processus de Markov fort avec des
trajectoires continus. Si l’on exige des conditions sur les incréments conditionnés
pour qu’ils soient approximativement Gaussien, alors on peut exprimer Dt comme
la solution d’un type Itô équation différentielle stochastique.

Dt = D0 +

∫ t

0

f(s,Ds)dWs +

∫ t

0

g(s,Ds)ds (3.5)

où Wt est le processus de Wiener. (Voir Gihman et Skorhod [14]). Si l’on considère
un modèle dans lequel la continuité des trajectoires n’est pas essentielle, on peut
considérer des processus de Markov autres que le mouvement brownien, et aléatoires
mesures, comme des écarts. Soit f , g satisfaisons les conditions lipschitziennes, Z
soit (disons) un processus de Hunt qui est une semi-martingale complète par rapport
à P x,z et At une fonction additive de Z. Soit X0 comme dans 3.2.3, et soit Xt la
solution de l’équation suivante :

Xt = X0 +

∫ t

0

f(s,Xs−)dZs +

∫ t

0

g(s,Xs−)dAs. (3.6)

On pourrait alors espérer que Xt serait un processus de Markov. Ce n’est pas vrai en
général, comme le montrent des exemples simples. (Utilisez une chaîne de Markov
pour que X devienne la solution d’une équation de différence et s’étendent au temps
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continu). Il n’est pas nécessaire que les processus avec des incréments indépendants
soient des semi-martingales. En effet, si Zt a des incréments indépendants,

Yt = Zt −
∑
s≤t

∆Zs1{|∆Zs|≥1},

alors Z est une semi-martingale si et seulement si la fonction t → E[Yt] est de
variation bornée. Nous obtenons l’extension suivante du résultat classique d’Itô :

Théorème 3.3.1. [11] Soit Z une semi-martingale ayant des incréments indépen-
dants, Z0 = 0. Soient f et g deux fonctions satisfaisant les conditions lipschitziennes.
Soit X0 tel que X0(ω) = x, lorsque ω = (x, ω1) et soit Xt une solution de

Xt = X0 +

∫ t

0

f(s,Xs−)dZs +

∫ t

0

g(s,Xs)ds. (3.7)

Alors Xt est un processus de Markov fort.
Si Z est un processus de Lévy et f et g sont autonomes (c’est-à-dire, f(t, x) =

f(x), g(t, x) = g(x)), alors Xt est un processus de Markov fort (homogène dans le
temps), avec sa transition le semi-groupe donné par

Pth(x) = Ex,0[h(Xt)].

Démonstration. Soit T un temps d’arrêt et HT = σ{ZT+u − ZT ;u = 0}. Alors HT

est une σ-algèbre dans Ω1 et HT est indépendant de FT sous P 0. Soit η0(x, s) = x,
définir X(x, t, s) et pour s > t définir inductive-ment ηn(x, s) par

Xx,t,s = x+

∫ s

t

f(u,X(x, t, u−))dZu +

∫ s

t

g(u,X(x, t, u−))du. (3.8)

ηn+1(x, s) = x+

∫ s

t

f(u, ηn(x, u−))dZu +

∫ s

t

g(u, ηn(x, u−))du.

Puisque ηn est une semi-martingale, il a des trajectoires càdlàg, donc (comme
c’est facile à vérifier)

ηn+1(x, s) = lim
∑
ui∈Pm

f(ui, η
n(x, ui))(Zui+1

−Zui) +
∑
ui∈Pm

g(ui, η
n(x, ui))(ui+1− ui).

où la convergence est en probabilité P 0 et la limite est prise comme maillage
(Pm)→ 0, où Pm sont des partitions de [t, s]. Un argument inductif montre ηn ∈ Ht,
et Le lemme 3.2.3 montre que X(x, t, s) ∈ Ht. Par l’unicité des solutions (pour
plus des détails voir [15] et [17]), on peut montrer Xx

S = X(X(x, 0, T ), T, S) pour
les temps d’arrêt S, T avec S = T . Si Xt est la solution de 3.7, on écrit Xt =

X(X0, 0, t) et aussi Xx
t = X(x, 0, t). Par l’indépendance de FT et HT et en utilisant

la proposition 3.2.1, nous avons pour tout h ∈ bB et les temps d’arrêt S = T ,

Ex,0[h(XS)|GT ] = E0[h(Xx
S)|FT ]1R

= E0[h(X(Xx
T , T, S))|FT ]1R

= j(Xx
T )1R

(3.9)
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où
j(y) = E0[h(X(y, T, S))] = Ey,0[h(X(X0, T, S))]

, et la dernière égalité ci-dessus est la conséquence d’un lemme élémentaire dans
Gihman et Skorohod [14].
On observe enfin que sous P x,0 on a

j(Xx
T )1R = j(XT ). (3.10)

Supposons maintenant que f et g soient autonomes, Z est un processus de Lévy
et Xt est une solution de 3.7. Il est bien connu que pour un processus de Lévy Z,
le processus ZT+s−ZT est identique en droit à Zs . Il est alors facile de vérifier que
X(x, T, T + u), u = 0 est indépendant de FT et est identique en droit (sous P 0) à
Xx
u , u = 0. Par 3.9 et 3.10 nous avons

Ex,0[h(XS)|GT ] = j(XT ),

mais dans ce cas, nous avons

j(y) = E0[h(X(y, T, S))]

= E0[h(Xy
S−T )]

= Ey,0[h(XS−T )]

(3.11)

où la deuxième égalité ci-dessus est due à l’identification en droit de Xx
u et

X(x, T, T + u). Ceci complète la preuve du théorème 3.3.1.
Dans le théorème 3.3.1, nous avons supposé que le différentiel Z avait des incréments
indépendants et on a pu conclure que la solution X de 3.7 était un processus de
Markov fort.
Si nous affaiblissons les conditions sur Z de sorte que ce soit simplement un processus
de Markov fort, la solution n’a pas besoin d’être Markov. Cependant, le processus
vectoriel (X,Z) est un Processus de Markov.

Ω = R× Ω1

G0
t = B ⊗ F0

t

P x,z = εx × P z

(3.12)

Théorème 3.3.2. [11] Soit Z = (Ω,M,Mt,Zt, P ) une semi-martingale ayant la
propriété de Markov (fort). On note 3.12 et soit Xt une solution de

Xt = X0 +

∫ t

0

f(s,Xs−)dZs +

∫ t

0

g(s,Xs−)ds.

où X0 ∈M0. Alors le processus vectoriel (X,Z) est Markov (fort) sur (Ω,M,Mt, P ).
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Démonstration. Soit X(x, t, s) et ηn+1(x, s) comme donné en 3.8. Alors les résultats
de Doléans [15] et un argument inductif montre que (x, t, ω)→ ηn(x, t, ω) est mesu-
rable conjointement pour chaque n. Puisque ηn(x, t, ω) → X(x, t, ω) en probabilité
P pour chaque x par le lemme 3.2.3, −K ∨ (ηn ∧ K) converge en (L1,L∞) vers
−K ∨ (X ∧K) pour chaque K.
Une application du lemme de Doob [16] donne que (x, t, ω)→ X(x, t, ω) est conjoin-
tement mesurable. En effet, cela donneX(x, t, ω) ∈ B⊗Ht, où B est l’ensemble Borel
sur R et Ht = σ{Zt+u−Zu;u ≥ O}. Par l’unicité des solutions, on vérifie facilement
que pour les temps d’arrêt S ≥ T,XS = X(XT , T, S). Soient h ∈ bB et K ∈ bHt.
Alors

E{h(Xt)K|Mt} = h(Xt)E{K|Mt}
= h(Xt)E{K|Zt}
= j(Xt, Zt).

(3.13)

Donc
E{h(Xt)K|Mt} = E{h(Xt)K|Xt, Zt}.

Si Z est supposé être Markov fort, le précédent vaut pour les temps d’arrêt S, T .
Le théorème suit maintenant par une application du théorème de classe monotone.
Nous annonçons maintenant notre résultat principal. Observez que le temps a changé
les processus de Lévy tels que ceux décrits dans l’expression :

N̂t∧T̂n = (M̂n
t + F

n

t − F̃
n

t ) + F̃
n

t

satisfont aux conditions imposées à Z dans le théorème suivant.

Théorème 3.3.3. [11]Soit Z un processus de Hunt qu’est une semi-martingale uni-
versellement réductible.
Soit A une fonction additive de Z. Soit f et g autonomes satisfont aux conditions
lipschitziennes. Soit X0 tel que X0(ω) = x, lorsque ω = (x, ω1), et soit Xt la solution
de

Xt = X0 +

∫ t

0

f(Xs−)dZs +

∫ t

0

g(Xs−)dAs. (3.14)

Alors le processus vectoriel (X,Z) est un Markov fort, avec un semi-groupe de tran-
sition

Pth(x, z) = Ex,z[h(Xt, Zt)].

Avant de prouver ce résultat, nous établissons une notation et un lemme. Pour
u fixé, soit M̃t = Mt ◦ θu , pour un processus M . Soit F̃t = θ−1

u (Ft) . L’expression
C ·Y désigne l’intégrale stochastique

∫ t
0
CsdYs pour une semi-martingale Y . le lemme

suivant est utilisé dans la démonstration du théorème 3.3.3.

Lemme 3.3.1. Soit Y une semi-martingale universellement réductible. Soit C
un intégrant prévisible qui est borné universellement localement.
Alors C̃ · Ỹ = C̃ · Y , pour tout u fixer.
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Démonstration. Soit Yt = Y0 + Mt + Bt être une décomposition universelle et un
arrêt (T n) fois tendant à∞ tel queMTn est une P z martingale pour chaque n. Arrêt
implicite Y à T n pour certains n fixer, par Lemme 3.2.2 on peut écrire

M = N +B (3.15)

où N est une martingale bornée localement (universellement), B ∈ ψ , et N0 = B0 =

0.
Soit G ∈ F̃s, où G = H ◦ θu, H ∈ Fs. En arrêtant N si nécessaire nous supposons
sans perte de généralité que N est borné. alors

Ez[(Ñt − Ñs)G] = Ez[EZu(Nt −Ns)H] = 0,

par conséquent Ñ est une F̃s martingale. Si M est une Ft martingale de carré
intégrable , on a

Ez[(M̃tÑt − 〈M̃,N〉t)G] = Ez[EZu [(MtNt − 〈M,N〉t)H]]

= Ez[EZu [(MsNs − 〈M,N〉s)H]]

= Ez[(M̃sÑs − 〈M̃,N〉s)G]

(3.16)

et si 〈M̃,N〉t est F̃t-prévisible, par l’unicité de 〈·, ·〉 nous pouvons conclure

〈M̃, Ñ〉t = 〈M̃,N〉t. (3.17)

Soit P(Ft) désignant l’algèbre prévisible pour une filtration (Ft). Soit H = {Y ∈
bP(Ft)} : Ỹ ∈ bP(F̃t). Alors H contient clairement les processus continus à gauche
et Ft-adaptés, et donc un argument de classe monotone montre que le déplacement
préserve prévisibilité.
Pour un processus B ∈ ψ, l’instruction C̃ · B̃ = C̃ ·B n’est qu’une notation.
Pour N borné localement, en utilisant 3.17 nous avons

〈C̃ · Ñ − C̃ ·N, C̃ · Ñ − C̃ ·N〉 = (C̃)2 · 〈Ñ , Ñ〉 − 2C̃ · 〈Ñ , C̃ ·N〉+ 〈C̃ ·N, C̃ ·N〉
= (C̃)2 · 〈Ñ,N〉 − 2C̃ · ( ˜C · 〈N,N〉) + ( ˜C2 · 〈N,N〉)
= (C̃)2 · 〈Ñ,N〉 − 2C̃ · C̃ · 〈Ñ,N〉+ (C̃2) · 〈Ñ,N〉
= 0.

(3.18)
Puisque C̃ · Ñ0 − C̃ ·N0 = 0 implique que C̃ · Ñ = C̃ ·N . Par l’utilisation de la
décomposition 3.15 nous avons

C̃ ·M = C̃ ·N + C̃ ·B = C̃ · Ñ + C̃ · B̃ = C̃ · M̃

et le lemme est prouvé.
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Démonstration. du Théorème3.3.3
Nous définissons X(x, t, s) puis par induction µn(x, t, s) par µ0(x, t, s) ≡ x et pour
s > t,

µn+1(x, t, s) = x+
∫ s
t
f(µn(x, t, u−))dZu +

∫ s
t
g(µn(x, t, u−))dAu

X(x, t, s) = x+
∫ s
t
f((x, t, u−))dZu +

∫ s
t
g(X(x, t, u−))dAu.

(3.19)

Nous écrivons également X(x, t) pour X(x, 0, t) et µn(x, t) pour µn(x, 0, t). Nous
constatons que

µ1(x, t, s) = x+ f(x)(Zs − Zt) + g(x)(As − At)
= (x+ f(x)(Zs−t − Z0) + g(x)(As−t − A0)) ◦ θt
= µ1(x, s− t) ◦ θt.

(3.20)

Supposons µn(x, t, s) = µn(x, s− t) ◦ θt. On a donc

µn+1(x, t, s) = x+
∫ s
t
f(µ̃n(x, (u− t)−))dZ̃u−t +

∫ s
t
g(µ̃n(x, (u− t)−))dÃu−t

= x+
∫ s−t

0
f(µ̃n(x, u−))dZ̃u +

∫ s−t
0

g(µ̃n(x, u−))dÃu

=

(
x+

∫ s−t
0

f(µn(x, u−))dZu +
∫ s−t

0
g(µn(x, u−))dAu

)
◦ θt

(3.21)
où la dernière égalité utilise le lemme 3.3.1. L’induction montre alors que pour tout
n

µn(x, t, s) = µn(x, s− t) ◦ θt. (3.22)

Nous établissons ensuite l’égalité

Ez{h(X(x, t, s), Zs)|Ft} = EZt{h(X(x, s− t), Zs−t)} (3.23)

Pour h ∈ bB ⊗ B Considérons d’abord h de la forme h(x, y) = h1(x)h2(y), avec hi
continu avec un support compact. Par le lemme 3.2.3 et la continuité uniforme de
h1, h1(µn(x, t, s))→ h1(X(x, t, s)) dans la moyenne. En utilisant 3.22, nous avons

Ez{h1(X(x, t, s))h2(Zs)|Ft} = lim
n→∞

Ez{h1(µn(x, t, s))h2(Zs)|Ft}

= lim
n→∞

Ez{h1(µn(x, s− t))h2(Zs−t) ◦ θt|Ft}

= lim
n→∞

EZt{h1(µn(x, s− t))h2(Zs−t)}

= EZt{h1(X(x, s− t))h2(Zs−t)}.
(3.24)

Un argument de classe monotone donne maintenant 3.23. Notons que 3.23 est
également valable pour temps d’arrêt S = T .
Soit (Xt) tel que donné en 3.14, et fixons une mesure P x,z. Soit Xx

t la solution de

Xx
t = x+

∫ t

0

f(Xx
u−)dZu +

∫ t

0

g(Xx
u−)dAu (3.25)
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Pour la loi P z sur Ω1. Soit h ∈ bB ⊗ B, F ∈ bF0
t , et k ∈ bB. Utilisation de la

proposition 3.2.1 on a

Ex,z[h(Xs, Zs)Fk(X0)] = Ez[h(Xx
s , Zs)F ]k(x)

= Ez[h(X(Xx
t , t, s), Zs)F ]k(x)

(3.26)

Par l’unicité des solutions. Comme l’a montré la preuve du théorème 3.3.2, Xx
t est

mesurable conjointement en (x, t, ω). Un argument de classe monotone donne alors

Ez[h(X(Xx
t , t, s), Zs)F ]k(x) = Ez[Ez[h(X(Xx

t , t, s), Zs)|F0
t ]F ]k(x)

= Ez[Ez[h(X(y, k, s), Zs)|F0
t ]|y=Xx

t
F ]k(x)

= Ez[EXx
t ,z[h(X(X0, t, s), Zs)|G0

t ]F ]k(x)

= Ex,z[EXt,z[h(X(X0, t, s), Zs)|G0
t ]Fk(X0)].

(3.27)
Ensemble 3.26 et 3.27 établissent que

Ex,z[h(Xs, Zs)|Gt] = EXt,z[h(X(X0, t, s), Zs)|G0
t ]. (3.28)

Soit
j(y) = Ey,z[h(X(X0, t, s), Zs)|G0

t ]. (3.29)

Alors j(y) est aussi une version de Ez[h(X(y, t, s), Zs)|Ft], et ainsi

j(y) = EZt [h(X(y, s− t), Zs−t)]
= Ey,Zt [h(Xs−t, Zs−t)]

(3.30)

où nous avons utilisé 3.23 et 3.2.1. Combinaison des rendements 3.28, 3.29 et 3.30

Ex,z[h(Xs, Zs)|Gt] = EXt,Zt [h(Xs−t, Zs−t)].

Pour montrer que (X,Z) est un Markov fort, il suffit de montrer

Ex,z[h(XT+s, ZT+s)|Gt] = Ex,z[h(XT+s, ZT+s)|XT , ZT ]

pour tout temps d’arrêt T , et s > 0. La preuve de 3.23 est valable pour les temps
d’arrêt. Pour h ∈ bB ⊗ B on a

Ex,z[h(Xs, Zs)|Gt] = Ez{h(Xx
T+s, ZT+s)|Ft}

= Ez{h(X(Xx
T+s, T, T + s), ZT+s)|Ft}.

(3.31)

Pour un P z fixe on sait que X(x, T, T + s, ω), la solution relative à (Ω,F z,F zt , P z),
est mesurable conjointement ; il suffit de constater que pour h1, h2 ∈ bB on a

Ez{h1(Xx
T )h2(X(y, T, T + s), ZT+s)|Ft} = h1(Xx

T )EZT {h2(X(y, s), Zs)}
= j(s,XT , ZT )a.s, P x,z.

(3.32)
Ceci complète la preuve du théorème 3.3.3.
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Algorithme 1(Construction algorithmique de la chaîne de Markov en temps
continu)

– Soit Xn, n ≥ 0, une chaîne de Markov à temps discret de matrice de transition
Q. Soit la distribution initiale de cette chaîne soit notée α de sorte que P{X0 =

k} = αk.
– Soit En, n ≥ 0, une suite de variables aléatoires exponentielles unitaires indé-

pendantes.
Construction algorithmique :

1. Sélectionnez X(0) = X0 selon la distribution initiale α.

2. Soit T0 = 0 et définissant W (0) = E0/λ(X(0)), qui est exponentielle avec le
paramètre λ(X(0)), pour être le temps d’attente dans l’état X(0).

3. Soit T1 = T0 +W (0), et définissant Xt = X(0) pour tout t ∈ [T0, T1)

4. Soit X1 choisi en fonction de la matrice de transition Q, et définissant W (1) =

E1/λ(X1).

5. Soit T2 = T1 +W (1) et définissant X(t) = X1 pour tout t ∈ [T1, T2)

6. Continuez le processus.

3.4 Explosions

Maintenant nous avons une bonne idée de ce qu’est une chaîne de Markov en
temps continu, nous démontrons un comportement qui n’est pas possible dans la
mise à l’heure discrète : les explosions. Rappel que dans l’algorithme 1 3.3, qui
construit une chaîne de Markov en temps continu, la valeur Tn représente le temps
de la nième transition de la chaîne. Par conséquent, la chaîne ainsi construit n’est
défini que jusqu’au moment (aléatoire)

T∞
def
= lim

n→∞
Tn.

Si T∞ <∞, alors nous disons qu’une explosion s’est produite [13].

Définition 3.4.1. Si

Pi{T∞ =∞} def= P{T∞ =∞ | X(0) = i} = 1, pour tout i ∈ S,

que nous dirons que le processus est non explosif. Sinon, nous dirons que le processus
est explosif. Notez qu’un processus peut être explosif même si

Pi{T∞ =∞} = 1,
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3.5 Convergence d’une chaîne de Markov vers une
diffusion

L’objectif de cette section est d’énoncer un théorème permettant de démontrer la
convergence en loi d’une suite de chaînes de Markov convenablement renormalisées
en temps vers un processus de diffusion dont les coefficients de diffusion et de dérive
sont explicites et on termine notre section par des exemples illustra-tifs montrant
l’importance de la propriété Markovienne dans des différents phénomènes de la vie
courante. Le résultat suivant montre que la convergence en loi d’une suite de chaînes
de Markov vers un processus de diffusion se lit sur un pas de la chaîne.

Théorème 3.5.1. Soit A le générateur infinitésimal d’un processus de diffusion,
c’est-à-dire que, pour toute fonction régulière f ,

Af(x) =
1

2
a(x)f ′′(x) + b(x),

avec a et b régulières. Soit (µN)N une suite de noyaux de transition sur R et posons

bN(x) = N

∫
|y−x|≤1

(y − x)µN(x, dy)

et
aN(x) = N

∫
|y−x|≤1

(y − x)2µN(x, dy).

Supposons que pour tous r > 0 et ε > 0,

sup
|x|≤r
| bN(x)− b(x) |→ 0, et sup

|x|≤r
| aN(x)− a(x) |→ 0

et

sup
|x|≤r

NµN (x, {y, | y − x |≥ ε})→ 0.

Soit (Y N(n))n≥0 la chaîne de Markov de noyau de transition µN et XN le processus
défini par XN

t = Y N([Nt]).
Si (Y N(0))N converge en loi vers ν alors (XN) converge en loi vers la diffusion de
générateur A et de loi initial ν.[12]

Remarque 3.5.1. En pratique, la chaîne de Markov Y N est en général à valeurs
dans un sous-ensemble IN discret (et souvent fini) de R. Ainsi, son noyau de tran-
sition n’est-il pas défini sur tout R. Dans ce cas, il convient d’adapter le théorème
ci-dessus en remplaçant x par une suite (xN) telle que xN ∈ IN et qui converge vers
x.
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3.6 Quelques exemples d’application des processus
Markoviens en pratique

La convergence des processus de Markov se voit sur la convergence des généra-
teurs infinitésimaux en toute généralité.

3.6.1 File d’attente en temps continu et processus d’Ornstein-
Uhlenbeck

File d’attente :La salle de réservation d’une grande gare SNCF donne une bonne
représentation d’une file d’attente. Elle comprend un certain nombre de guichets
et des clients qui sont soit en train d’être servis, soit en attente qu’un guichet se
libère. Le nombre total de ces clients présents dans la salle de réservation au temps
t est noté Nt. Le hasard intervient dans les arrivées des clients ainsi que dans la
durée des services. La suite (Nt)t≥0 est un processus stochastique à temps continu
et à valeurs dans E = N . L’objectif est d’étudier l’évolution de Nt au cours du
temps afin d’optimiser le nombre de guichets nécessaires pour satisfaire en un temps
raisonnable les clients .

On montre ici un exemple de chaîne de Markov à temps continu célèbre qui
converge vers un processus de diffusion non moins célèbre. Soit λ et µ deux réels
strictement positifs. On définit le processus de Markov Z à temps continu à valeurs
dans N de générateur infinitésimal A donné par

A(i, j) =


λ si j=i+1,
iµ si j=i-1,
−(λ+ iµ) j=i,
0 sinon.

Partant de i, le processus Z reste un temps exponentiel de paramètre λ + iµ puis
saute en i+ 1 avec probabilité λ/(λ+ iµ) ou en i− 1 avec probabilité iµ/(λ+ iµ).
Ce processus s’appelle la file M/M/∞ : elle modélise le nombre de clients dans une
file d’attente ou les personnes arrivent selon un processus de Poisson de paramètre
λ et sont servis aussitôt arrivés en un temps exponentiel de paramètre µ. On peut
se convaincre que

∀k ∈ N, L(Zt|Z0=k) = B(k, e−µt) ∗ P
(
λ

1− e−µt

µ

)
.

En particulier, Z admet P(λ/µ) pour mesure invariante (symétrique) pour plus
des détails voir[12].

Proposition 3.6.1. Pour tout N ≥ 1, notons ZN le processus M/M/∞(Nλ, µ) et
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XN le processus défini par

XN
t =

√
N

(
ZN
t

N
− λ

µ

)
avec

ZN
0 = [Nλ/µ+

√
Nx].

Alors la suite (XN) converge en loi vers le processus de diffusion X solution de
l’équation différentielle stochastique suivante :

dXt =
√

2λdBt − µXtdt avec X0 = x

,
c’est-à-dire vers un processus d’Ornstein-Uhlenbeck [12].

3.6.2 Modèles de croissance de populations

Modélisons la taille d’une population par un processus de vie et mort à temps
continu dont la dynamique est la suivante ; Chaque individu meurt avec un taux µ
et se dédouble avec un taux λ indépendamment des autres. Nous allons supposer
que la population et le temps sont grands (mesurés en unités de taille N). [12]
Si λ−µ n’est pas de l’ordre de 1/N cette renormalisation sera triviale (la population
devient nulle ou infinie immédiatement).
Supposons que N(λ−µ) = b et λ+µ = 2a+O(1/N). SiXN

t est le nombre d’individus
du processus au temps t, on considère qu’il y a NXN

t dans notre population. Chacun
des XN

t individus a deux horloges exponentielles qui tournent au dessus de sa tête.
L’instant (aléatoire) où un évènement (mort ou division) va se produire est donc de
loi E(N(λ+ µ)) et il s’agit d’une mort avec probabilité µ/(λ+ µ).
Pour le processus Y N , chaque individu meurt avec un taux µN et se dédouble avec
un taux λN indépendamment des autres et on note XN le processus défini par
XN(t) = Y N([tN ])/N . Le processus XN est à valeurs dans KN = (1/N)N et son
générateur infinitésimal est défini par

∀i, j ∈ N, LN
(
i

N
,
j

N

)
=


iλN si j=i+1,
iµN si j=i-1,
−i(λN + µN) j=i,
0 sinon.

En particulier, pour toute fonction de classe C2 sur R+,

LNf

(
i
N

)
= iλN

[(
i+1
N

)
− f

(
i
N

)]
+ iµN

(
f

(
i−1
N

)
− f

(
i
N

))
= (λN − µN) i

N
f ′
(

i
N

)
+ λN+µN

2N
i
N
f ′′
(

i
N

)
+O

(
(λN+µN )i

N3

)
.
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Supposons que λN − µN converge vers b et (λN + µN)/N converge vers 2a en choi-
sissant par exemple

λN = aN + b
2
et µ = aN − b

2

On obtient alors que si (xN)N est une suite de réels telle que xN ∈ KN pour tout N
et qui converge vers x > 0 alors

LNf(xN) −→
N→∞

Lf(x) := axf ′′(x) + bxf ′(x).

La suite de processus de Markov à espaces d’états discrets converge donc vers
une diffusion X solution de l’équation différentielle stochastique suivante

dXt =
√

2aXtdBt + bXtdt.

Donc la diffusion X (solution de l’équation différentielle sthocastique ) permet
de trouver la suite de chaîne de Markov XN

t dans les deux exemples :
– La file M/M/∞.
– Le nombre des individus du processus au temps t.

grâce à la convergence en loi d’une suite de chaîne de Markov vers un processus de
diffusion.

3.6.3 Les ARNmmolécules(acide ribonucléique nucléique mes-
senger)

On va modéliser le comportement dynamique d’un seul gène( les molécules de
ARNm produites, les protéines résultantes) via une chaîne de Markov en temps
continu. C’est une question tout à fait raisonnable de se demander s’il est logique de
modéliser les temps de réaction de tels processus cellulaires via des variables aléa-
toires exponentielles. la réponse est presque indubitablement «non», mais le modèle
doit être interprété comme une approximation de la réalité et il a très bien réussi à
élucider la dynamique cellulaire. C’est aussi un modèle beaucoup plus réaliste qu’une
approche classique d’équations différentielles ordinaires , qu’est elle même une ap-
proximation grossière du modèle de chaîne de Markov en temps continu. Considérons
un seul gène qui produit de l’ARNm (ce processus est appelé transcription) avec un
taux constant de λ1, où les unités de temps sont des heures, par exemple. De plus,
nous supposons que les molécules d’ARNm produisent des protéines (ce processus est
appelé traduction) à un taux de λ2 · (]ARNm), pour certains λ2 > 0. Ensuite, nous
supposons que l’ARNm les molécules sont diminués à un taux de dm · (]ARNm),
et les protéines sont dégradé à un taux de dp · (]protines). Graphiquement, nous
pouvons représenter ce système via

G
λ(1)→ G+M
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M
λ(2)→ M + P

M
dm→ ∅

P
dp→ ∅

Il est important de noter que ce n’est pas la seule façon d’écrire ces réactions.
Par exemple, beaucoup dans les communautés biologiques écriraient M → P , par
opposition àM →M+P . Cependant, nous pensons qu’il est important de souligner,
à travers la notation M → M + P , que la molécule d’ARNm n’est pas perdue au
cours de la réaction. Comme le nombre de gènes dans le modèle est supposé constant
dans le temps, l’état d’espace doit être considéré comme Z2

≥0. Par conséquent, on
laisse X(t) ∈ Z2

≥0 être l’état du processus au temps t où le premier composant donne
le nombre de molécules d’ARNm et le second donne le nombre de protéines.
Maintenant, nous demandons : quelles sont les transitions possibles dans le modèle,
et quelles sont les taux ? On voit que les transitions possibles sont données par
addition de la réaction des vecteurs[

1

0

]
,

[
0

1

]
,

[
−1

0

]
,

[
0

−1

]
,

avec taux respectifs

λ1, λ2X1(t), dmX1(t), dpX2(t).

Notez que la vitesse de réaction 3, respectivement 4, sera nulle lorsque X1(t) = 0,
respectivement X2(t) = 0. Par conséquent, la non-négativité des molécules est assu-
rée [13].



Conclusion générale

Dans ce mémoire, je me souciais aux processus de Markov en temps continu qui
sont des processus stochastiques ayant la propriété de Markov (qui signifie que pour
définir le futur il suffit seulement le présent), ce type de processus se trouve dans
deux cas :

1. Le 1er cas, les processus Markoviens de sauts comme étant la généralisation
des chaînes de Markov au temps continu en remplaçant le pas de temps fixe
d’une chaîne de Markov par des intervalles de temps aléatoires indépendants
de loi exponentielle donc sont des processus stochastiques {Xt}t≥0 à espace
d’états {E = N} et d’instants de sauts (Sn)n∈N et l’exemple le plus connu
et utilisé c’est le processus de Poisson, je trouve aussi que les processus de
naissance et de mort sont des cas particuliers de processus de Markov en temps
continu, leurs applications apparaissent dans la dynamique des populations et
la théorie des files d’attente, et on a vu que les chaînes de Markov intégrées
sont les processus de Markov en temps continu.

2. Le 2 ième cas, les processus de Markov en temps continu à espace d’états
continu où le mouvement brownien est la brique fondamentale pour construire
des processus de Markov continue sur (R ou Rn).

J’ai étudié la propriété Markovienne qui joue un rôle important dans l’analyse sto-
chastique, j’ai détaillé aussi des calculs compliqués trouvés dans des différentes ré-
férences utilisées, et j’ai présenté des applications liées à la vie quotidienne, les
systèmes des files d’attentes M/M/∞ et l’ARN message mais j’ai trouvé un peu de
difficulté en raison du manque de références puisque la plupart des applications se
font en temps discret.
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