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Introduction générale

Une chaine de Markov a parameétre de temps discret est une séquence de variables
aléatoires X, X1, Xs... tous prenant des valeurs dans un ensemble dénombrable F
les éléments qui sont appelés états, tels que pour tout n, la distribution de X,
dépend des X,, précédents uniquement via X, ;. C’est probablement la forme de
dépendance la plus simple que ’on puisse imposer a une séquence de variables aléa-
toires, une seule étape supprimée d’indépendance totale. Pourtant, la théorie qui a
été développée au cours de cette siécle pour les chaines de Markov est incroyable-
ment riche. S’il y a une zone de processus stochastiques dont on pourrait dire qu’ils
forment le coeur de cette discipline, sentimentalement et historiquement, ce sont les
chaines de Markov.

De plus, la littérature scientifique et d’ingénierie, et méme financiére et humaine,
regorge d’exemples de processus aléatoires qui ont été modélisés, a des degrés divers
du succes, par les chaines de Markov.

Afin d’apporter un plus grand réalisme a une chaine de Markov, nous incorporer un
parameétre de temps continu ¢ comme suit : on permet a la chaine de s’attarder un
laps de temps aléatoire T; dans chaque état ¢ qu’il visite. les variables aléatoires T;
sont distribuées de maniére exponentielle et sont indépendantes les unes des autres.
L’état de la chaine de Markov au temps ¢ est alors noté X ).

La collection { X,z > O} est appelé une chaine de Markov stable en temps continu,
le sujet de ce mémoire. Cette définition simple est en fait d’une simplicité trompeuse ;
il y a complications, et méme ainsi, les matiéres les plus satisfaisantes et les plus
élégantes des mathématiques proviennent généralement de débuts aussi simples que

celui-ci.

La premiére étude systématique des chaines de Markov en temps continu a été
réalisée par A. N. Kolmogorov (1931)[19], qui a constaté que la loi de probabilité
régissant 1’évolution du processus se produit comme la solution de I'un ou l'autre
de deux systémes des équations différentielles, maintenant appelées équations de
Kolmogorov rétrogrades. Ces études ont été poursuivies dans les années 1940 par
J. L. Doob et W.Feller. En particulier, Feller (1940) a montré comment construire

des solutions des Equations de Kolmogorov au moyen de I'intégrale rétrogrades de
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récursions, et a montré l’existence de la solution minimale, qui porte son nom aujour-
d’hui. Doob (1945) a poursuivi I’étude de la régularité de la fonction de transition,
et observé les propriétés d’asymétrie et de non-unicité des équations de rétrogrades.
Les années cinquante ont vu un grand accord d’activité en Grande-Bretagne et aux
Etats-Unis, avec D. G. Kendall et G.E. H. Reuter jouant un role de premier plan en
Grande-Bretagne, et Doob, Feller, Samuel Karlin, et K. L. Chung aux Etats-Unis.
Les types de problémes qui se sont posés pendant ce temps concernant le compor-
tement aux limites et la régularité des trajectoires des chaines de Markov en temps
continu ont grandement influencé la direction que tout le domaine des processus

stochastiques a pris au cours des trente derniéres années.

La fin des années 50 a marqué un peu un tournant pour les Chaines de Markov
en temps continu, avec deux branches émergentes : une école théorique Doob et
Chung, s’attaquant aux problémes des chaines de temps continu leurs trajectoires
d’échantillonnage et en utilisant la théorie des mesures, les martingales et les temps
d’arrét comme leurs principaux outils; et une école orientée vers I'application sui-
vant Kendall, Reuter [21] et Karlin [20], étudiant les chaines continues a travers la
fonction de transition, enrichissant le domaine depuis trente ans avec des concepts
tels que réversibilité, ergodicité et monotonicité stochastique inspirées d’applications
réelles des chaines de temps continu a la théorie des files d’attente, la démographie
et I'épidémiologie. Les deux écoles se sont répandues et ont prospéré au cours des

trente derniéres années.

Le mémoire est structuré comme suit :
En premier chapitre, je présente une synthése des processus aléatoires (pro-
cessus, filtration, martingale, mouvement Brownien, ’espérance conditionnelle, le

processus de Poisson...).

En deuxiéme chapitre, je discute sur les processus stochastiques Markoviens
en temps continu dans les deux états discret et continu : leurs probabilités de tran-

sitions, générateur de Markov et la loi de processus de Markov.
Dans le chapitre trois , j'étudie la propriété Markovienne des solutions des
équations différentielles stochastiques et je cite quelques exemples d’application des

processus Markoviens en pratique.

Et je termine par une conclusion.



Chapitre 1

Quelques généralités sur les

processus aléatoires

Dans ce chapitre j’énonce quelques termes sur les processus aléatoires.

1.1 Filtration et processus

Définition 1.1.1. Soit (2, F,P) un espace de probabilité. Une filtration sur cet
espace est une famille croissante (Fi)o<i< « de sous-tribus de F telle que pour s <t,

on a Fs C Fy.
Proposition 1.1.1. 1. F; représente la quantité d’information disponible a l’ins-
tant t : il est logique que cette quantité augmente avec le temps.
2. L’ensemble T appelé ensemble de temps (exemple, T =R™ ou [0,¢] ou N...)

3. On dira qu’une filtration (Fi)ier satisfait les conditions habituelles si elle est
a la fois continue a droite et compléte. i.e
— a) La filtration (F;) est compléte lorsque tout F; contient 'ensemble des
négligeables N ce qui équivaut a Fo contient tous les P-négligeables de F.
— b) (F) est continue & droite; c’est-a-dire Fy = Fy, = (\yoy Fs- YVt >0

4. S Fy est compléete at fixé, on a
X =Y, p.s = {X; est Fy-mesurable < Y; est Fy-mesurable }

(X 25X, et Vn, XP* est Fy-mesurable } = {X, est F,-mesurable }

Le résultat reste vrai pour une convergence dans LP(Q2) avec p > 1, car on peut
alors extraire un sous suite qui converge p.s. vers la méme limite et donc la

limite reste une mesure [6].

5. Pour compléter une filtration (F;), il suffit de remplacer F; par

oc(AUN,(N,A) C N x F)
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1.2 Processus aléatoires

Un processus stochastique est une famille { X, };cr de variables aléatoires indexées
par le temps t.

Les mots processus stochastique signifient fonction aléatoire. Alors qu’une va-
riable aléatoire X associe a chaque w €  une réalisation X (w), un processus sto-

chastique {X;};er associe a chaque w une fonction (ou trajectoire){ X;(w) }ier :

T — E
t — Xt(W)7

E est lespace d’arrivée des variables aléatoires X;. A titre d’exemple, la tra-
jectoire d’'une mouche en fonction du temps peut étre modélisée par un processus
stochastique & valeurs dans £ = R3. Lorsque I'ensemble des temps T est au plus
dénombrable (par exemple 7' = N), on parle de processus stochastiques a temps
discret. Lorsqu’il est continu (i.e. T' = [0;tg] ou T = R.), on parle de processus

stochastiques & temps continu (permanent).

Définition 1.2.1. On dit qu’un processus stochastique X = (X,)er est adaptée a
la filtration (F;)wer si pour toutt € T, X, est F;- mesurable.

1.3 Temps d’arrét

Définition 1.3.1. Soient (2, F, (Fi)ier, P) est un espace probabilisé filtré et Fuo, =
o(U,er Fr) sa tribu terminale. Une variable aléatoire T définie sur €2 a valeurs dans
T U {+o0} est appelée (Fi)ier-temps d’arrét si pour toutt € T : {7 <t} € F;. On
pose alors

F.={AeF :An[r<tle F,teT}

On vérifie immédiatement que F, est une tribu. C’est la tribu des événements anté-

rieurs au temps T .

Proposition 1.3.1. [7] Soient v et T deux temps d’arrét. Alors
1. 7 est une variable aléatoire F, mesurable.

Si T = K (constant) alors T est un temps d’arrét.

vAT, vV T, TALt sont des temps d’arrét.

Siv <7 alors F, C Fr.

Fore = Fu N F

Fovr = 0{Fy, Fr}

NS G e e

Si .S, est une suite croissante de temps d’arrét = S = lim,,_,, S, est aussi un
temps d’arrét et Fs- = \/, Fsn-
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8. Si S, est une suite décroissante de temps d’arrét = S = lim,_,o S, est aussi
un temps d’arrét de la filtration (Fi1) et Fs+ = (), Fon+

9. Si S, est une suite décroissante stationnaire de temps d’arrét (ie. Yw, AN (w), Vn >
N(w), Sp(w) = S(w)) = S = lim, S, est aussi un temps d’arrét de la filtration
(Fi)i=o et Fs =, Fsn

1.4 Espérence conditionnelle

Soit (£2, F,P) un espace probabilisé et G une sous-tribu de F. L’espérance condi-
tionnelle est définie pour deux types de variables aléatoires : d’une part les variables
aléatoires non-négatives (sans condition d’intégrabilité) et d’autre part les variables

aléatoires intégrables [1].

Définition 1.4.1. L’espérance conditionnelle d’une variable aléatoire X positive
(resp.dans LY(Q, F,P)) relativement a G est l'unique variable aléatoire G-mesurable
positive(resp.dans L1(Q)),notée E(X|G), telle que pour tout D € G, on a

/DIEJ(X|Q)d]P’:/DXdIP’ (1.1)

Cette relation 1.1 s’appelle la propriété caractéristique de l’espérance conditionnelle.

On notera que st X > 0,

E(X|G) € LY(Q) & X € LY(Q)

Probabilité conditionnelle : Pour un événement A € F, la probabilité condi-

tionnelle de A sachant G est la variable aléatoire
P(A|G) = E(1.4]|9)

Propriétés de ’espérance conditionnelle : Si X, X, X5 sont des variables aléa-

toires avec un moment d’ordre un et si a et b sont des constantes réelles, on a
1. E(aX; 4 bX5|G) = aE(X;]G) + bE(X3|G)(linéarité).
2. Si X; < Xy ps = E(X1]G) < E(X3|G) (croissance). En particulier

X > 0= E(X|G) > 0 (positivité)

3. 0(X) et G indépendantes = E(X|G) = E(X) p.s.
4. Pour toute sous tribu D C G, E(E(X|G)|D) = E(X|D) p.s.
5. Si (X,)n>0 est une suite de variables aléatoires positives, on a

E(lim, o inf X,,|G) < lim,, o inf E(X,|G) (lemme de Fatou) .
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1.5 Martingales

Le nom martingale est synonyme de jeu équitable, c’est-a-dire d'un jeu ou le
gain que l'on peut espérer faire en tout temps ultérieur est égal a la somme gagnée
au moment présent. En probabilités, on appelle donc martingale un processus sto-
chastique (Mj)s=o tel que l'espérance conditionnelle E(M;|Fs) est égale a M pour
tout ¢ > s. Les martingales, ainsi que leurs variantes les sous-martingales et les
sur-martingales, jouissent de nombreuses propriétés qui les rendent trés utiles dans

I'étude de processus stochastiques plus généraux.|6|

Définition 1.5.1. (Martingale, sous-martingale et sur-martingale)
Soit (0, F, (Fi)ier, . P) un espace probabilisé filtré. Une martingale par rapport a la
filtration (F)icr, est un processus stochastique M = (My)icr, tel que
1. E(] M; |) < oo pour tout t € Ry ;
2. (My)ier, est adapté a la filtration (Fi)er, ;
3. E(M|Fs) = Mg pour tout s < t.
Si la derniére condition est remplacée par E(M;|Fs) < My on dit que (My)ier, est

une sur-martingale, et si elle est remplacée par E(M,|Fs) > M, on dit que (My)ier,

est une sous-martingale.

Remarque 1.5.1. Une martingale est un jeu équitable, une sur-martingale est un

jeu perdant, et une sous-martingale est un jeu gagnant.

Exemple 1.1. On dit qu’un processus (Z;,t > 0) est un processus & accroissement
indépendants (PAI) par rapport a la filtration (Fy) si Z est (Fy)-adapté et si, pour
s <t, Zy— Zs est indépendant de la tribu F, (par exemple un mouvement brownien
est un PAI par rapport a sa filtration canonique, complétée ou non). Si Z est un
PAI par rapport o (Fi) alors[6]

(i) Si Z; € L' pour tout t > 0, Zy =Ty — E[Z,] est une martingale ;
(ii) Si Z, € L2 pour tout t >0, X, = Z% — E[Z2] est une martingale ;
(iii) Si pour 0 € R, E[e??t] < oo pour tout t > 0,

e@Zt

E[c?%]

Xt:

est une martingale.

1.6 Le mouvement Brownien

Définition 1.6.1. Un mouvement Brownien (ou processus de Wiener) est un pro-

cessus B = (By)i>o tel que :

1. B =0 p.s;
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2. (By)i>o est a accroissements indépendants pour tout t > s, By — By est indé-
pendant de (By)u<s ;

3. Les accroissements sont stationnaires (pour tout t > s,l’accroissement By — By
ne dépend que de la valeur de t — s), Gaussiens; tel que pour t > s, B, — By

suit une loi normale N(0, t - s).

4. By est continue, c’est a dire t — Bi(w) est continue pour presque tout w.
Autrement dit, le processus B continu, part de 0, ses accroissements sont in-
dépendants du passé et sont de loi normale centrée et de variance égale a la

longueur de ["intervalle de temps.

Remarque 1.6.1. Le point 2 (dans la définition ci-dessus) implique que ¥n,Vt;, 0 <
to <ty < ... <ty les variables aléatoires By,, By, — By, ..., By, — By, _, sont indépen-
dantes [1].

Exemple 1.2. Si B est un mouvement brownien. on peut prendre F; = o(Bs,0 <
s <t),Fo = 0(Bs,s > 0). Plus généralement, si X = (X;,t > 0) est un processus
indexé par Ry, la filtration canonique de X est F; = o(Xs, s < t) (l'augmentation
habituelle de F)[0].

Propriétés 1.6.0.1. Soit B = (By)i>0 un mouvement Brownien, (F;)i>o sa filtra-

tion naturelle, Alors :

— Processus gaussien :
Le processus B est est un processus gaussien réel, centré et de fonction de
covariance Cov(By, Bs) = s At. La réciproque est vraie.

— Propriété de Markov :
La propriété de Markov du mouvement Brownien est utilisée sous la forme (un
peu plus forte que la propriété de Markov) : pour tout s, le processus (Wy)i>o

défini par Wy = By s — Bs est un mouvement Brownien indépendant de Fy.

Proposition 1.6.0.1. Pour f borélienne bornée,

E(f(B.)IF) = E(f(B.)|o(B)) pour u>t

1.7 Processus de Poisson

1.7.1 Trois propriétés de la loi exponentielle

La loi exponentielle est I'ingrédient de base pour modéliser des temps d’attente
d’événements "imprévisibles". Cette partie contient quelques-unes de ses proprié-

tés élémentaires. Soit X une v.a suivant la loi exponentielle de paramétre A\, notée
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exp(A). Sa densité est :

fX ($) = )\e_Am]lmzo.

Elle est sans atome, ie. Vo, P(X = z) = 0. Sa fonction de répartition vaut

Fx(r) =P(X <z) = (1—e*)1,0, (1.2)

En pratique, une v.a. de loi exponentielle représente une durée, typiquement le temps
d’attente d’'un événement ou une durée de vie. La propriété importante des lois
exponentielles est d’étre "sans mémoire". Dans le cas particulier d'un composant
électronique dont la durée de vie serait modélisée par une loi exponentielle, cela
signifie que la probabilité pour que le composant vive un temps ¢ est la méme,
qu’il soit neuf ou qu’il ait déja vécu un temps s. Cette absence de mémoire est

caractéristique des lois exponentielles.

Proposition 1.7.1. Une v.a. X a valeurs dans Ry et de fonction de répartition

continue suit une loi exponentielle si et seulement si pour tous réels s,t > 0,

P(X>s+t| X >s)=P(X >1).
Démonstration : Si X suit la loi exp(\) alors, d’apres 1.2,

P(X>s+t]| X >s) = —]P];)((;;Jsf)t)
e—A(s+t)
€7>‘5

= e M=P(X >1t).

Proposition 1.7.2. /2] Considérons n v.a. indépendantes X, ..., X,, de lois respec-
tives exp(A1), ...,exp(A,). Posons Y = min{Xy,..., X,}. Alors Y suit la loi expo-

nentielle de parametre Ay + ... + A\, et pour tout indice 1 = 1,...,n,

Ai
A Y

Proposition 1.7.3. /2] La somme de n v.a. indépendantes de loi exponentielle de
parametre A suit une loi Gamma de paramétres n et X et notée I'(n, \), dont la den-
sité est donnée par :

n,.n—1
A"z

-z
€ ]].mzo.

1.8 Présentation du processus de Poisson

Définition 1.8.1. Soit (X,,)n,>1 une suite de v.a indépendantes et de méme loi,

exponentielle de paramétre A. Posons Sy = 0 et pour tout entier n > 1, S, =
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X1+ ...+ X,,. Pour tout réel t > 0, définissons la v.a N;, a valeurs entiéres, par :
Ny=n< S, <t< S

Le processus stochastique (Ny)¢>o est appelé processus de Poisson d’intensité \. Le
processus de Poisson est un modéle de comptage d’événements aléatoires isolés dans
le temps, comme des "tops" d’horloge séparés par des durées aléatoires. Dans ce
modele :
—- X, est la durée séparant le (n — 1)¢ top du n®;
- S, est la date a laquelle survient le n® top. D’apreés la Proposiion 1.7.3 la v.a.
Sy suit la loi Gamma de parameétre n et A ;

— N; est le nombre de tops comptés entre l'instant 0 et l'instant t :

Ny = Z Ls, <t

n>1

Théoréme 1.8.1. [2] Le processus de Poisson {N;} d’intensité \ vérifie les pro-

Priétés survantes :
(P1) {N:i}i>o est un processus de comptage ; il est a valeurs entiéres, vérifie Ny = 0
p.s et pour tous réels 0 < s < t, Ny < N,

(P2) {Ni}i>o est un processus a accroissements indépendants; pour tout entier k
et pour toute suites d’instants 0 < t; < ty < ... < tg, les accroissements

Ny — Ny, ..., Ny, — Ny, sont des v.a indépendantes.
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(P3) Les accroissements du processus {N;}i>o sont Poissonniens; pour tous réels
0 <s<t, lav.a Ny— Ny suit la loi de Poisson de paramétres A\(t — s) ;

(P4) {N:}i>0 est un processus homogéne ou & accroissements stationnaires; pour
tous instants 0 < t; <ty et s > 0, la v.a Niyys — N¢yys suit la méme loi que
Nt2 - Nt1 ;

(P5) {N:}i>0 est un processus d’événements rares; P(Nyyp, — Ny > 2) = o(h).



Chapitre 2

Processus stochastiques Markoviens

en temps continu

Dans ce chapitre, nous abordons une notion importante dans la théorie des pro-
cessus stochastiques : les processus de Markov (sans mémoire) cela signifie que ’évo-
lution future du processus ne dépend de son passé que par I'intermédiaire du présent.
L’intérét du choix Markovien réside dans la simplicité et la puissance des techniques
mathématiques disponibles pour ce type de processus. C’est pour cela les processus
de Markov trouvent des applications dans beaucoup de domaines par exemple, la

biologie, la physique, la recherche opérationnelle et 1’économie,...

Les processus de Markov portent le nom de leur inventeur mathématicien russe,
Andrei Andreievitch Markov(1856-1922). Aprés 1920, il a cherché a généraliser le
théoréme central limite de variables aléatoires indépendantes aux variables aléatoires
dépendantes, il a amené a considérer la notion importante d’événements en chaines,
appelées depuis chaines de Markov, et il établit une série de lois, fondement de la

théorie des processus de Markov.

Dans ce qu’on a vu sur les chaines de Markov, les moments (temps) ¢ étaient
discrets ( 0,1,... ). Maintenant, nous allons analyser des situations ot les observations
se font de fagon continue plutét qu’a des moments discret.

M + 1 états mutuelement exclusifs : 0,1,2,..., M

L’analyse débute au temps 0 et le temps ¢ s’écoule de fagon continue

X = ¢état du systheme au temps ¢ : Xy € {0,1,..., M}

les points de changements d’états ¢, s, .... sont des points aléatoires dans le temps
(pas nécessairement entier).

Considérons trois points consécutifs dans le temps ot il y a eu changement d’états :
r (r > 0) temps passé

s (s > r) temps courant (actuel)

s+t (t > 0) t unité de temps dans le futur.

16
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Supposons que X5 =i et que Xy = [, avec i,1 € {0, ..., M}
L’évaluation de

P(X (s = J| Xe) =4, Xy = 1) j=0,....M
est facilité par la propriété de Markov (i.e., sans mémoire).

Définition 2.1. Un processus stochastique en temps continu { X }e>0 a la propriété
de Markov si :

Vi, j,l € {0,...,M};Vr>0,5s>0,t>0

Le processus stochastique est alors une chaine de Markov en temps continu.

Les probabilités P(X sy = j|X(s) = i) sont des probabilités de transition simi-

laires a celles que nous avons en temps discret.

Les probabilités de transition sont stationnaires puisqu’elles sont indépendantes

de s :

IP(X(S_H) :j|X(s) = 2) = IP(X(t) = j|X(0) = Z) Vs >0

2.1 Les processus de Markov & temps continu

Un modéle d’évolution dynamique en temps continu dans lequel on fait dépendre
I’évolution future de I’état présent et du hasard est un processus de Markov. On en
rencontre dans de nombreux domaines d’applications, comme par exemple 1’étude
des files d’attente.

Un processus X = (2, F, (Ft)ier, (Xt)ter), P) & valeurs dans l'espace d’états (E, Bg)
est de Markov si pour tous s < t(€ T) la loi de X; sachant le passé jusqu’a 'instant
s ne dépend que de X

(i.e du passé le plus récent).

Dans le cas d’un processus de Markov a temps discret T = N et a espace d’états
discret, ceci se traduit par la condition que pour tout n € Net tous ¢, 7, 2,1, ...,%0 € E

,ona:

P(Xpp1 = /X = iy Xnot = in_1...Xo = i) = P(Xps1 = j/ X = 1).
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La quantité P, ,+1(i,7) = P(X,41 = j/X,, = i) est la probabilité de transition

partant de ¢ a l'instant n d’aller en ;7 a l'instant n + 1.

Dans le cas ou le temps est continu et(ou) 'espace des états est quelconque,la
modélisation d’un processus de Markov est : si pour tous s < t(€ T) et tout A € Bg

on a :

P(X, € A/F,) =P(X, € A/X,)

Pour abréger on pose :

P(X, € A/F,) = P(X; € A/X,) = Pus(z, A)

et on dit que c’est la probabilité de transition partant de x a 'instant s d’atteindre

I’ensemble d’états A a l'instant ¢.

2.1.1 Noyaux de transition et propriété de Markov
Soit T = N ou R} ou [0,a](a > 0) et (E, Bg) un espace polonais.

Définition 2.1.1. Une collection {Ps;s,t € T et s <t } d’applications de (E x Bg)

dans [0, 1] est appelée famille de noyaux de transition si :

1. YA € Bg,Vs < t, Uapplication x — Ps,(x, A) est mesurable.
2. Ve € E,Vs <t,A— Ps(x,A) est une mesure de probabilité sur Bp.

3. VA € Bg,Vs <t <u, on a l’équation de Chapman-Kolmogrov :
Pr(r, A) = / Pos(, dy) Py, A) (2.1)
E

Remarque 2.1.1. Les noyaux de transition Ps; agissent comme des opérateurs qui
transforment une fonction f : E — R borélienne bornée (ou positive) en une fonction

P+ f donné par :
Pyof (@) = / £ () Pl dy) 22)

Py, f représente U'espérance de f(X;) sachant que X5 = x. De plus elle est aussi une

fonction borélienne bornée.

Remarque 2.1.2. L’équation de Chapman-Kolmogorov 2.1 se traduit en termes
d’opérateurs sous la forme :
Ps,u = Ps,tPt,u (23)
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Définition 2.1.2. Un processus X = (2, F, (Fi)ier, (Xi)ieT, P) est un processus de
Markov a valeurs dans E et de famille de noyaux de transition {Ps;s,t € T et s <t

} st pour toute fonction f: E — R borélienne bornée et tout s <t dans T, on a :
E(f(X2)/Fs) = Psuf(Xs)  P—ps (2.4)

Les noyauz de transition Ps; sont aussi appelés probabilités de transition.

La loi de Xq i.e.la mesure de probabilité v sur Bg définie par :

V(A) = P(X, € A),

est appelée loi initiale du processus X .

Remarque 2.1.3. Lorsque P, = Py s_; ne dépend que de la différence t — s,on dit

que X est un processus de Markov homogene.

Proposition 2.1.1. [1/
a) L’équation (2.4) s’appelle la propriété de Markov si : f = 14 ou A € Bg, elle

signifie que

P(X; € AJF,) =P(X;, € A/X,)

b) Lorsque le processus de markov X est homogéne, la famille des noyauz de tran-
sition ne dépend plus que d’un parametre car pour tous s et u dans 1', P 51, =

Py . Pour simplifier les notations on pose Fy,, = P,. On a alors :

VseT, Pyx,A)=P(Xs, € A/Xs=1),
c) La propriété de Markov (2.4) prend la forme

E(f<Xt)/‘FS) = Pt—sf(Xs>7 P—ps (25)
La propriété de Chapman-Kolmogorov (2.3), s’écrit alors :
Vit €T, PPy= Py

La famille d’opérateurs (P;);er est le semi-groupe du processus de Markov ho-

mogéne X.

2.2 Processus markovien de sauts

Les processus markoviens de sauts sont la généralisation des chaines de markov au
temps continu. Le passage du temps discret au temps continu se fait en remplacant
le pas de temps fixe d’une chaine de Markov par des intervalles de temps aléatoires
indépendants de loi exponentielle. Le processus de Poisson sera notre exemple de

processus markovien de sauts.
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2.2.1 Définition et exemples

Considérons un ensemble E fini ou dénombrable et une suite croissante de v.a.
(Sp)nen & valeurs dans R,. Dans la suite Sy = 0. Un processus de sauts {X;}i>0 a
espace d’états E et d’'instants de sauts (S,,),en est un processus stochastique dont

la valeur ne peut changer qu’en ses instants de sauts :

Vn € N,3lx € E tel que Vt € [Sy, Spaa[, X = .

Nous nous intéressons exclusivement a une classe particuliére de processus de sauts,
appelés processus markoviens de sauts. Ces processus évoluent de la maniére sui-
vante. Supposons que le processus se trouve a ’état x a I'issu du saut intervenant a
I'instant S,,.

1. Le temps de s¢jour dans l'état z, a savoir la v.a. 5,11 — 9, suit la loi expo-
nentielle de paramétre A(z). Le paramétre de cette loi peut dépendre de ’état
x ol le processus se trouve. mais a part cette dépendance en 'état z,la v.a.

Sn+1 — Sy, est indépendante du passé du processus.
2. A Tinstant S,41, le processus saute de I'état x vers I'état y (avec y # x) avec

une probabilité ¢, ,, cette quantité indépendante de S,11 — S, et du passé.

L’évolution du processus est donc déterminée par la suite (A(z)),cg et par la matrice
Q = (qu)x,yEE’

Définition 2.2.1. Un processus de sauts {X;}i>0 a espace d’états E et d’instants
de sauts (Sp)nen est markovien s’il existe :
— une suite bornéé (\(x))qcp de réels strictement positifs.

— une matrice QQ = (uy)zyecr de de réels positifs vérifiant

Ve € B,qp, =0 et
ZyEE qxvy = 1'

telles que, pour tout entier n, pour tous états xg, 1, ..., Ty, Tni1 et pour tous réels

positifs t1,ta, ..o tn, tnig -

IP(XSn_H = Tn+1, Sn+1 — Sn > tn+1’XSn = xn,Sn — Snfl > tn, ...,XSI = xq, Sl >
t1, Xo = o)

= IP(XSn+1 = Tp+1, Sn+1 — Sn > tn+1|XSn = $n> (26)

_ efA(:vn)thqwman_ (27)
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Exemple 2.1. (Processus de Poisson) :
Le processus de Poisson {N}i>o (d’intensité \) est un processus de sauts & espace
d’états E =N : il vaut n sur tout Uintervalle de temps [Sy, Sni1[. De plus, tous les
temps de séjour suivent la loi exponentielle de paramétre X et depuis ’état n (qu’il
atteint a lissu du n® saut ), il saute en n + 1.

1 st m=n+1

Vn e NyA(n) = X\ et gnm =

0 sinon
Le processus de Poisson remplit aisément la définition d’un processus markovien

de sauts. L’équation 2.6 repose sur lindépandence des temps de séjour Sy, Sy —
Sty ey Spp1 — Sy et sur le fait que Ng, soit toujours a égale a n. Ce n’est pas plus
difficile pour 2.7 :

]P(Nsn-H =n-+4+ 1, Sn+1 — Sn > tn+1‘NSn:n) = IP(Sn+1 — Sn > tn+1)
— 6_)\tn+1
- e_Atn+1Qn,n+1-

Exemple 2.2. Automate binaire :

Considérons une machine qui peut étre soit en état de marche, soit en panne. No-
tons X; la v.a. égale a 0 si la machine est en panne a l'instant t et égale a 1 si
elle est en état de marche a l’instant t. Nous faisons I'hypothése que les temps de
fonctionnement de cette machine sont des v.a. de loi exponentielle de paramétre \ et
que les temps de réparation sont des v.a. de loi exponentielle de paramétre jn. Nous
supposons également toutes ces v.a. indépendantes.

Alors, le processus {X;hi>0 est un processus markovien de sauts & valeurs dans

E ={0,1}. Les paramétres qui interviennent sont
A0) =, A(L) = A et goq = qro = 1.

2.3 Processus de naissance et de mort

Processus de Poisson dans ce qui est précédant est un exemple de processus
stochastique a temps continu d’espace d’états discrets a la propriété de Marcov.
Maintenant, nous discutons de la structure probabiliste et certains aspects informa-

tiques de ces processus en mettant ’accent sur Chaines de naissance et de mort.

2.3.1 Un exemple typique

[3] Soit (N¢,t > 0) un processus de Poisson d’intensité . la propriété de ses
incréments indépendants implique ce qui suit : Pour touts points de temps 0 <

§1 < .. < 8y < 8§ < tetiy,.. iy, j dans un espace d’état IN = {0,1,...} comme
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1 <,..<i,<i1<j,ona:
P(Ny = j|Ns, = i1, ..., N, = i, Ny = i) = P(N; = j|Ns = 1).
En effet,
P(N; = j|Ns, = i1, ..., N, = i, Ny = 17)
= P(Ng, =1i1,...,Ng, =1y, Ns =1, Ny = j)/P(Ng, =iy, ..., Ny = 1)
_ P(Nsy=i1,Nsy—Ns, =ig—i1,...,Ny—Ns=j—i)
P(Ns; =i1,Nsy —Nsy =io—i1,\Ns— Ny, —i—in)
= P(Ny— Ny=j—1i)=P(N, = j|Ns, =1)
En outre,
—A(t—s) P\(t'—s?}j_i 1<
P(N, = jIN, =i) =1 © G S
si i>].

De sorte que, pour 7, j fixée, la quantité

Py(s.1) = P(N, = j|N, = )

ne dépend que de t — s. Il suffit de laisser
P,i(t) = P(Ngyy = j|Ns = i), pour s,t > 0,7 < j.

On remarque que le processus de Poisson d’intensité A\ est non décroissante, car
s<t= N, <N,

Si nous interprétons une occurrence de I’événement de intérét comme une "nais-
sance", puis un processus de Poisson est appelé un processus de naissance. La nais-
sance augmente la taille de la population d’une unité. Nous voyons que les probabi-

lités de transition infinitésimales sont

P(Niyn — Ny = 1[Ny = i) = Ah + o(h), comme h N\ 0.

Le point est le suivant. L’intensité A ne dépend pas de i. Cependant, I’étude de la
croissance démographique, le taux de natalité pourrait dépendre de la population @
au temps t. Les modeéles stochastiques pour de telles situations sont donnés comme

suit.

2.3.2 Processus de naissance

Soit (Xy,t > 0) un processus stochastique avec espace d’états S = {0, 1,2, ...}.
(X;) est appelé processus de naissance s’il s’agit d’un processus non décroissant

chaine de Markov telle que :
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et

P(Xpn — Xy =1|X; =) = Mh + o(h). (2.9)

Les nombres positifs \;,7 € S sont appelés taux de natalité du processus.|3|
Remarque 2.3.1. (i) \; est interprété comme le tauzr de natalité dans un instant

auquel la taille de la population est 1.
(ii) Un processus de Poisson est un processus de naissance avec \; = A, pour tout

1€ S.
(iii) 2.8 et 2.9 implique que

P(Xiyn — Xt > 2| Xy = i) = o(h) comme h 0.
Ainsi, dans un court intervalle de temps, au plus une naissance peut survenir.

(iv) la connaissance du \; est suffisante pour la spécification des P(t), qui a leur
tour, ensemble avec une distribution initiale my, elle détermine la distribution

de la chaine.

Exemple 2.3. [3/Considérons une population, disant en biologie ou en physique,
dans laquelle aucun individu ne peut mourir et chaque individu agit indépendamment
lors de ’accouchement a un nouvel individu avec une probabilité \h + o(h) pendant
(t,t+h). Soit X, agissait la taille de la population au temps t. Etant donné que X, =
i, le nombre de naissances pendant (t,t+ h), pour les petits h, suit une distribution

binomiale B(i, Ah), de sorte que

P(Xies — X0 = X, =) = (1) (L= )+ o),
et donc
et

Ainsi \; = i\. Cette chaine de Markov est appelée un processus de naissance

linéaire ( processus de Yule ).

2.3.3 Processus de mort

Définition 2.3.1. Soit (X;,t > 0) une chaine de Markov. (X;) est appelée un

processus de naissance et de mort si, comme h 0,
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Aih+o(h), sik=1;
P(Xipn — Xp = k[ Xy = i) = § pih+o(h), sik=-1;
o(h), si [K[> 1.

(P(Xiin— X, = 01X, = i) = 1 — (A + )b + o(h))
Les \; et p; sont appelés respectivement les tauzx de natalité et de mortalité.

Remarque 2.3.2. On suppose que les naissances et les décés surviennent indépen-
damment les uns des autres. Bien sir, \; > 0, u; > 0 avec pg = O. Nous allons
discuter du probleme de modéliser un processus de naissance et de mort avec \; et
Wi donnés plus tard. Si pg = O.

Pour tout © > 0, alors la chaine est appelée chaine de naissance ;

Si A; pour tout i > 0, alors la chaine est appelée chaine de la mort.[3]

Exemple 2.4. Considérons la population dans laquelle les individus ne se repro-
duisent pas. Le taux de mortalité par individu est de . De plus, supposons que de
nouveaux individus immigrent dans la population selon un processus de Poisson avec

intensité . Soit X, la taille de la population au temps t. Puis comme h 0, on a

P(Xih — Xy = 1|X; = i) = P(une arrivée, pas de décés)+o(h)
Ma(1 — ph)t + o(h) = Ah + o(h),
P(Xion — Xy = 1| X = i) = P(pas d’arrivée, une décés)+o(h)
(1 — AR)i(uh)(1 — ph)=' + o(h) = (ip)h + o(h).

(P(| Xpn — X¢| > 2| Xy =1i) =o0(h)). Ainsi \; = X et p; = ipu.

2.4 Temps de séjour dans les états de processus

Jusqu’a présent, le fait a été utilisé que des temps indépendants, répartis de fagon
exponentielle entre les changements d’état du systéme permettent de modéliser le
comportement du systéme par Chaines de Markov. Inversement, on peut montrer que
pour tout i € Z le séjour de temps Y; d’une chaine de Markov homogene X, > 0
dans I’état ¢ a également une exponentielle distribution : Par les propriétés d'une

chaine de Markov homogéne,

P(Y; >tXg=1i)=P(X,) =i,0<s<t|Xo=14) = limP{X(Et)=ik=1,2,..

n—o0

)
n—oo

= lim [1-¢t+o(2
n—oo

,n

Xo=i)



2.4 Temps de séjour dans les états de processus 25

Donc
P(Y; > t| Xy =1) = e %"t >0, (2.10)

puisque e peut étre représenté par la limite

1 x
e = lim (1 + —) . (2.11)
xr

T—r0o0

Ainsi, Y; a la distribution exponentielle avec le paramétre g;.
Etant donné que Xy = i, X (Y;) = X(Y; + 0) est I'état auquel la chaine de Markov
fait un transition a la sortie de 'état i. Soit m(nt) le plus grand entier m satisfaisant

a l'inégalité m/n <t ou, de maniére équivalente.
nt —1 <m(nt) <nt

En utilisant la série géométrique, la distribution de probabilité conjointe de le vecteur

aléatoire (Y4, X(y4),1 # j, peut étre obtenu comme suit :

P(X(Y;) = j,Yi > t|X(0) = 1)

avec 2.11 |

P(X(Y;) = .Y > 1|X(0) = i) = Wematii % jii j € 7. (2.12)

En passant a la distribution marginale de Y; (c’est-a-dire sommer les équations 2.12

avec j € 7) vérifie 2.10. Deux autres conclusions importantes sont :

1. La formule 2.12 donne la probabilité de transition £ = 0 en une étape de 1’état
1 vers état j :
qij

pij = P(X(Yi 4 0) = j|X(0) = i) = PR Z. (2.13)
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2. L’état suivant 'état i est indépendant de Y; (et, bien str, indépendant du
histoire de la chaine de Markov avant d’arriver a 1’état ). La connaissance des
probabilités de transition p;; suggére d’observer un temps continu Chaine de
Markov {X(),t > 0} uniquement aux moments discrets ot les changements
d’état prend place. Soit X, I’état de la chaine de Markov immédiatement aprés
le n éme changement d’état et Xy = X(0). Alors {X, X3,...} est un chaine
de Markov homogéne en temps discret avec probabilités de transition données
par 2.13 :

Py =P(X(Yi+0)=j|X(0)=i) =22 G jeZn=12. . (2.14)

i
En ce sens, la chaine de Markov a temps discret {Xy, Xi,...} est intégrée dans
la chaine de Markov a temps continu {X,t > 0}. Les chaines de Markov inté-
grées peuvent également étre trouvé dans les processus non-Markov. Dans ces cas,
ils peuvent faciliter ’enquéte des processus non-Markoviens. En fait, les chaines
de Markov a temps discret, qui sont intégrées dans les processus stochastiques arbi-
traires & temps continu, sont souvent un moyen efficace (si pas le seul) outil d’analyse
de ces processus.

Exemples d’applications de la La méthode des chaines de Markov intégrées pour

analyser les systémes de files d’attente.|4]

2.5 Probabilités de transition et générateur de Mar-

kov

Le résultat suivant est ’analogue de la propriété de Markov et de I’homogénéité
en temps qui définissent habituellement les chaines de Markov. Comme dans le cas

discret, cela conduit a une caractérisation simple de la loi du processus.

Proposition 2.5.1. Un processus markovien de sauts {X;}i>o0 @ espace d’états E sa-
tisfait les deux égalités suivantes : pour tout entier n, pour tous états xo, X1, ..., Tp, Tpi1

et pour toute suite croissante de réels positifs 0 < t; < ... < t, < t, 1

IP(thH = $n+1|th = Tp, ey Xy = 21, Xo = on) = P(thH = $n+1|th = xn)
= ]P(th+l_tn = xn+1|X0 = xn)

Dés lors, la probabilité conditionnelle P(X; = y|Xs = ) ne dépend que des états
x,y et de l'accroissement t — s, ce qui justifie la notation suivante.
Pour tout réel positif t et pour tous états x,y, la probabilité de transition de x vers

y sur un intervalle (de temps) de longueur t est définie par :

Py, =P(X, = y|Xo = 2)
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La matrice P = (p;(,i)y)%yeE est appelée matrice de transition sur un intervalle (de
temps) de longueur t et ne précise pas le nombre de sauts pour aller de 'état x a
I'instant 0 a létat y a linstant t. Comme dans le cas discret, la taille de la matrice
PY dépend du cardinal de E (éventuellement infini), ses coefficients sont des réels
positifs et la somme de ces coefficients sur toute une ligne vaut 1.

Comme dans le cas discret, la loi y; de la v.a. X; est obtenue par produit matriciel

entre la loi initiale o (i.e. celle de Xy) et la matrice de transition P® :

pe = po P

Proposition 2.5.2. Les deux propositions suivantes fournissent deux autres points
communs entre processus markoviens a temps discret et a temps continue. Par la
donnée de la famille de matrices {P®}>q et de loi de Xy suffit a caractériser la loi

d’un processus markovien de sauts :

i) Soit {X;}i>0 un processus markovien de sauts de matrices de transitions { P®}o.
Pour tout entier n, pour tous états xg,x1, ..., x, et pour toute suite croissante

de réels positifs 0 < t; < ...<t, ona:

P(Xp = Ty ooy Xoy = 71, Xo = 20) = P(Xo = 29)p{2), pli2 1) plin=in-1)

1 pxow1pthz ‘“pxn—hxn

ii) Soient s,t > 0. Alors
(relation de Chapman-Kolmogorov) plt+s) = pt) p(s),

Ou encore,
Pl => " ppl).
zeE

Démonstration. Ecrivons pour commencer
P = P(Xips = ylXo = @)
=Y P(Xpo =y, X, = 2|Xo = 2)

z€E
=Y PN =y, Xi = 2|Xo =1) = > P(X; = 2| X, = 1)
ek el

en multipliant au numérateur et au dénominateur par la facteur P(X, = z| Xy = ).

La démonstration s’achéve en utilisant la propriété de Markov et I’homogénéité :

P(Xi1s = y|Xi = 2,Xo =) = P(Xyys = y| Xy = 2)
=P(X, =y|Xo = 2)

= i)
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Les similitudes entre les cas discret et continu s’arrétent ici. En effet, les pro-
babilités de transition pg(f)y sont en général tres difficile a calculer, du fait de leur
dépendance en le temps. Cependant, la relation P**s) = P® PG implique que
toute la dynamique de la chaine est contenue dans P avec € > 0 petit. En effet,
pour tout n, il vient P9 = (P())" Sont alors connues les matrices de transition
P® pour t = €,2¢,3e,... Autrement dit, il s’agit de comprendre comment varie
Iapplication ¢ —» P® sur Iintervalle de temps infinitésimal [0; ¢]. Cette idée motive
I'introduction du générateur du processus.

Auparavant remarquons que, puisque le processus markovien de sauts {X;}i>o

issu de I'état x,y demeure jusqu’au premier saut S, il vient

O — Ly 5 — Osiz#y

’ =0+ lsiz=y

2.5.1 Générateur de Markov
2.5.1.1 Intensités de transitions

Les intensités de transitions ¢, jouent un role pour les chaines de Markov en
temps continue analogue aux probabilité de transition dans le cas des chaines de
Markov discréte :

G = —pea(0) = lim == vz € {0,.., M}

. o (t
Qoy = %px,y(o) = lg% p+() = (zDay Ve,y € {0,....M};x #y
Ot p, ,(t) est la fonction de la probabilité de transition en temps continu et p, , est
décrit a sous forme :

Par symétrie avec le cas discret

Pay(t) = P(X (1) = y|X(0) = x)

1 six=y
limp, ., (t) =
ol »(t) { 0 sinon

Quand le processus quitte I'état x, il passe a I'état y avec une probabilité de p,,

satisfaisant les conditions suivantes :
M
Pea=0 Voe{0, ,M}> P,=1 Vze{0,. M}
y=0

En particulier :

a) ¢, = taux de transition a partir de x = _E[lT,.]

ou E[T,] est la moyenne du temps passé a chaque visite dans 'état z.
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b) ¢., = taux de transition de z vers y
c’est le nombre moyen de fois que le processus passe de x a y par unité de
temps passé dans l'état x.

Il s’ensuit que

M
dz = Z Qz.y
y=0

oty
Par analogie avec ¢, , g5, est le paramétre de la distribution exponentielle de la
variable aléatoire définie comme suit :

Chaque fois que le processus atteint z , le temps passé dans z avant une transition
vers y (cette transition étant la premiére) est une variable aléatoire

T,y Vae,y € {0,.... M};x #y

Les variables T}, sont indépendantes, exponentielle avec parameétres ¢, dont les

moyennes
1

QI,y

Théoréme 2.5.1. Soit {X;}i>0 un processus markovien de sauts associé a la suite

E[ch,y] =

(AN(2))zer et a la matrice Q = (Guy)zyer sotent x,y € E, Uapplication t — Paﬁtg est
dériwable a droite ent = 0 et cette dérivée vaut :
Uy y = lim M _ M@y stz Ay : (2.15)
t—0F t —ANz) six=y

Lorsque les états x et y sont distincts, cette dérivée est appelée taux de transition de
x vers y. La matrice A = (Gqy)zycp €st appelée générateur de Markov du processus
{Xi}exo

Sotent x ety des états distincts. La probabilité g, d’aller en y lorsqu’on quitte
x doit étre pondérée par l'intensité A\(z) avec laquelle on quitte x, pour obtenir le
tauz de transition a,y; az, = M)y y-
Par exemple, si le temps passé en x est en moyenne plutét long (disons A(x)~1 = 100)
alors le taux de transition de x vers y sera faible, i.e. az, < 0.01, et ce méme si

lorsqu’on quitte x c’est pour aller systématiquement en y(qy, = 1).

Démonstration. Seul le cas o x = y est traité : cela suffit & comprendre la trame
du Théoréme (2.5.1) Etant en z au temps 0, supposons que le processus y soit de
nouveau au temps t. Il y a deux possibilités.

Soit le processus n’a pas quitté 1’état x, ce qui signifie que le premier instant de saut
S} survient aprés t.

Soit le processus a quitté ’état x et y est revenu, ce qui implique au moins deux

sauts avant 'instant ¢.

P(X;=zXog=2)=P(S1 >t=a|Xg=2)+P(S; <t,59 <t,X;, =x|Xy=1x)
(2.16)
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Sachant X, = x, I'instant du premier saut S; suit la loi exponentielle de paramétre

A(x). Le premier terme du membre de droite de (2.16) devient
P(S; >t =z|Xo =) = e 2@ =1 — \(2)t + o(t)

lorsque ¢ tend vers 0. Si le second terme du membre de droite de (2.16) est un
o(t) alors P(S; > t = x| Xy = z) vaut également 1 — A(z)t 4 o(t). D’ou la limite

recherchée :

P(X,=z[Xo=2)—1
- =
Nous savons ce qu’il reste a faire. Le fait que les deux premiers sauts du processus

—A(z) 4+ o(1)

{Xi}i>0 surviennent a des instants trés proches de 0 est improbable. C’est la raison
pour laquelle P(S; <t¢,5; <t, Xy = z|Xo = z) est un o(t). Formellement,

IP(Sl S t, S2 S t,Xt = ZL’lXO == l’) S IP(Sl S t,SQ S thO == I)

P(Sl S t, SQ — Sl S t‘XO = $)
Z]P(Sl S t7X51 = Z,SQ - Sl S t|X0 = ZL‘)
zeE

IN

IN

Soit z € E. Par définition du processus markovien de sauts, il vient :
IP(Sl S t,XSI =z, SQ - Sl S t|X0 = .Z') = IP(XSI = Z,SQ - Sl S tlSl S t,XO = [L‘)
X IP(Sl < t’XO = Zﬂ)
= IP(XSI =z, SQ — Sl S tlSl S t)(l — B_A(I)t)
= (1= e, (1 =

En utilisant 'inégalité e™* > 1 —u et le fait que la suite (A(2)).ep soit bornée, disons

par une constante M > 0, il vient :

IP(Sl St,SQ St,thfElXO:J}) S Z]P(Sl St,XSl :Z,SQ—Sl §t|X0:ZL‘)

zelE

<Y (1= e, (1- e
zeE

<A@ e A (@)
zelE

< MA(z)t? Z Qo2

zeE

< MM(2)t* = oft)
O

Le générateur de Markov A = (a,.,)syer €st entiérement déterminé par la suite

(AM(z))zer et la matrice Q = (¢uy)syer définissant le processus markovien de sauts.
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C’est une matrice carrée a coefficients réels positifs excepté sur la diagonale. Le

terme d’ordre x de la diagonale vérifie

Uy = —AN2) = =\ (2) Z Qoy = — Z Ay y-

y,yFT Y,y#T

La somme des coefficients d’'une méme ligne de la matrice A vaut donc 0.

Dans les applications, un modéle markovien continu est défini par ses taux de tran-
sition a,, qui ont en général une signification concréte (nombres moyens d’arrivées,
de services, de pannes ou de réparations par unité de temps). De plus, I'intérét du
générateur par rapport aux matrices de transition {P(t)}tzo est que celui-ci ne dé-
pend plus du temps : ¢’est une dérivée (a droite) en t = 0. Ainsi, on résume souvent
I'information qu’il contient par un graphe de transition. C’est un graphe orienté et
pondéré dont 'ensemble des sommets est E. Une aréte de poids a,, va de = vers
Yy # sl ag, > 0.

Exemple 2.5. :
e Processus de Poisson. Pour tout entier x, \(x) est égal a X et gy .41 €gal a 1.
Dés lors, le taux de transition de x vers x + 1 vaut

Qg x41 = /\(I)Qz,x—i-l = A\

Il est nul vers tout autre entier y : pour tout y € N\{z,z + 1}, a,, = 0. Enfin, le

coefficient a, , vaut —\.

-2 A 0 0
0O =2 X 0

- _ e S S o
A=10 0 —Xx X . . . .

0O 0 0 =X

e Automate binaire. La v.a. X; est égale a 0 ou 1 selon que la machine soit en
état de panne ou de marche a l'instant t. Rappelons que les temps de fonctionnement
de cette machine sont des v.a. de loi exponentielle de paramétre \ et que les temps
de réparation sont des v.a. de loi exponentielle de parameéetre i, toutes ces v.a. étant
indépendantes. D’apres la Proposition (2.5.1), le tauz de transition de [’état de panne

vers l’état de fonctionnement est
ap,1 = M0)qoa = p

tandis le taux de transition de l’état de fonctionnement vers l’état de panne est
a0 = A(1)gi0 = A

Enfin, les coefficients ago et a1, valent respectivement —p et —\.
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2.6 Théoréme limite

Comme dans le cas discret, I’étude du comportement asymptotique d’un pro-
cessus markovien de sauts passe par l'identification d’une mesure stationnaire sur

I’espace d’états F.
_M M /,-------_ _--\H“"
() o Ee>

Définition 2.6.1. Une mesure stationnaire (ou invariante) d’un processus marko-
vien de sauts de matrices de transition {P®},<q est une loi de probabilité sur E,

disons ™ = (7(x))ep vérifiant pour tout t la relation T = TP®),

Rappelons que la loi y; de la v.a. X, vérifie g, = puoP®. Dés lors, la relation
7 = 7P® g'interpréte comme suit : si la v.a. initiale X, a pour loi la mesure
stationnaire 7 alors, pour tout temps ¢, la loi de X; est encore 7.

La relation matricielle 7 = 7P® est équivalente au systéme linéaire

Vy e B, w(x)Pl) =x(y)
el
(de taille égale au cardinal de E).
Les matrices de transition {P®},.o étant en général inaccessibles, nous privilé-

gierons la caractérisation des mesures stationnaires en termes de générateur.

Proposition 2.6.1. [2/ Une loi de probabilité m sur E est une mesure stationnaire
d’un processus markovien de sauts de générateur A si et seulement si TA = 0, ce
qui s’écrit :

Yy € E, Zﬂ(x)a%y =0 (2.17)

zeFE

2.6.1 Exemples

eProcessus de Poisson. Pour tout entier z, le taux de transition a,, vaut A si et
seulement y = x4+ 1. Il est nul vers tout autre entier y. Les équations de stationnarité
(2.17) donnent :

—Ar(z) =0

Am(x) — Ar(z+1) =0,Vz € N

ou encore w(z) = 0 pour tout z. Le processus de Poisson en tant que processus
markovien de sauts n’admet donc pas de mesure stationnaire. C’est relativement

intuitif ; il ne peut pas exister d’équilibre en loi pour un processus qui tend p.s. vers
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I'infini.

eAutomate binaire. Avec le générateur

= (30

les équations de stationnarité donnent pm(0) = An(1). Puisque 7(0) + 7(1) = 1, on

trouve comme unique mesure stationnaire

et
S\ A A+

La notion de mesure réversible existe aussi pour les processus markoviens de sauts,

exactement comme pour les chaines de Markov

Définition 2.6.2. Une mesure réversible d’un processus markovien de sauts de gé-

nérateur A est une loi de probabilité sur E, disons m = (7(x))zep vérifiant
Ve, y € B, n(z)ay, = 7(y)ay . (2.18)

Proposition 2.6.2. [2] Toute mesure réversible pour un processus est stationnaire
POUT CE PrOCESSUS.

En pratique (et notamment pour les projets), pour obtenir une mesure station-
naire, il est recommandé de commencer par chercher une mesure réversible, plus

facile a identifier quand elle existe. D’ailleurs, la mesure stationnaire

(a7)

T=— —

Ap A+ p

de l’automate binaire est également réversible. En effet, elle satisfait I’équation

7T(O>CLO’1 = 7T(].)CL1’0.

Définition 2.6.3. Un processus markovien de sauts de générateur A est dit irré-
ductible sur E si pour tous états v,y € E distincts il existe des états xy,--- ,x, € K

tous différents tels que :

Q21 Qzy,z0 " Qxgy 1,20 Vg 2011 > 0.

Comme dans le cas discret, étre irréductible signifie que l'on peut passer (en plu-
sieurs €tapes si nécessaire) de n'importe quel état x a n’importe quel état y avec
une probabilité strictement positive. Le processus markovien de sauts correspondant

a l'automate binaire est irréductible. Ce n’est pas le cas du processus de Poisson.
Nous admettons le théoréme limite suivant

Théoréme 2.6.1. [2/ Considérons un processus markovien de sauts {Xi}i>o de
matrices de transition {P(t)}i>o, wrréductible sur E et admettant une mesure sta-

tionnaire w. Alors :
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(1) 7 est l'unique mesure stationnaire du processus { X} i>o;
(2) la matrice PY converge quand t tend vers Uinfini vers une matrice dont

toutes les lignes sont égales a m :
; t) — .
Va,y € E, thm Py, =7(y);

(3) quelle que soit la loi de Xq, la loi de X; converge quand t tend vers l'infini

vers m:
Vo € E,tlirn P(X; =z) = m(x);
—00

Le comportement asymptotique d’un processus markovien de sauts irréductible
est donc décrit par I'unique mesure stationnaire quand elle existe. Dans ce cas, le
Théoréme (2.6.1) exprime qu’au bout d’un certain temps, le systéme se stabilise
dans un régime d’équilibre appelé régime stationnaire. Une fois ce régime atteint,
la probabilité d’étre dans l'état = est donnée par 7(x). Remarquons enfin que la
notion de périodicité n’a pas de sens en temps continu, ce qui simplifie d’autant la
discussion. Par contre, celles de récurrence et de transience sont conservées : ce sont

toujours des propriétés de classes irréductibles.

Dans la section suivante, on va considérer les processus en temps continu avec

un espace d’états continu.

2.7 Probabilités de transition du mouvement brow-
nien
2.7.1 Le semi-groupe du mouvement brownien
Soit B = (2, F, (Ft)t>0, (Bt)t>0, P) un mouvement brownien sur R.

Théoréme 2.7.1. [I] B est un processus de Markov homogéne sur R, de loi

initiale v et dont le semi-groupe est de la forme

Ri@) = [ = enl-5 s (2.19)

pour tout t > 0 et toute fonction f : R — R borélienne bornée. Autrement dit pour
tout borélien A C R,

_ 1 Lz —y)?
Rle.A) = [ e,

i.ePy(z,dy) est la mesure gaussienne de moyenne x et de variance t.
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Pour la démonstration on aura besoin d’un résultat bien connu sur I'espérance

conditionnelle :

Lemme 2.7.1.1.  [5] Soient g : R* — R borélienne bornée, X et Y des variables
aléatoire avec X mesurable par rapport a une tribu G et Y indépendante de la tribu

G. Alors si g(x) =E(g(x,Y)), on a :

E(9(X,Y)/9) = 9(X).

Démonstration du théoréme 2.7.1 :
Soit f : R — R une fonction borélienne bornée et 0 < s < t.
Alors en considérant la fonction
flz) = E(f(x + B, — By))

1

— e ki el -3 )y (220

et en appliquant le Lemme avec :
X = BsyY: Bt_Bsyg(w7y) = f(l"l‘y),g :FSa
On a:

E(f(B)/F.) = E(f(Bi— Bi+ B.)/F.) = F(B,)
ZJkﬁ%:fmkégﬁiﬁwﬂy (2.21)
= Pt—sf(Bs)

ce qui prouve d’aprés 2.5 que B est un processus de Markov homogéne dont le

semi groupe P; est bien de la forme annoncée en (2.19).

2.7.2 La propriété de Markov forte

Nous avons défini le mouvement brownien

B = (O F, (F)s0, (B0, P)

comme un processus partant de 0 i.e (By = 0). Le processus B® défini pour tout
t >0 par :
B =z + B,

est aussi un processus de Markov homogéne de méme semi-groupe B que donné par
la formule (2.19). On 'appelle le mouvement brownien partant de x.
Plus généralement, si on considére une variable aléatoire X, indépandante de B, le

processus (Xo + Bi)i>o est encore un processus de Markov de semi groupe (2.19).

Définition 2.7.1. (Temps d’arrét) Une variable aléatoire T : Q@ — RT est un

temps d’arrét par rapport & une filtration (F;)io Si :

V>0 {r<t}eF
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Théoréme 2.7.2. (Propriété de Markov forte)
Pour toute fonction f : R — R borélienne bornée, pour tout h > 0 et tout temps

d’arrét presque sirement fini T de la filtration de B, on a

E(f(BT—i-h)/F’r) - th(BT)

Démonstration. (Démonstration du Théoréme)

On écrit E(f(Br1n)/Fr) = E(f(Brin — B-+ B;)/F;) et on utilise le lemme avec
X=B;,Y =B;,—B;et g(z,y) = f(z+vy), la démonstration est alors identique &
celle du Théoréme, puisqu’on sait par le théoréme que la variable aléatoire B, — B,

est de méme loi que Bj, et qu’elle est indépendante de B.. O

Remarque 2.7.1. On peut conclure que :

— Le mouvement brownien est la brique fondamentale pour construire des pro-
cessus de Markov continue sur (R ou R™).

— Le mouvement brownien joue un rdle central dans la théorie des processus
stochastiques d’une part parce que dans de nombreux problémes appliqués, le
M. B sert a modéliser les erreurs ou les perturbations aléatoires, et d’autre part
parce que le mouvement brownien ou les processus de diffusion qui en découlent
permettent de construire des modéles simples sur lesquels des calculs peuvent

étre faits.

2.8 Quelques notions fondamentales sur les proces-

sus de Markov

2.8.1 Lois de dimension finie d’un processus de Markov

Proposition 2.8.1. [1] Soit X un processus de Markov de loi initiale v et de pro-
babilités de transition Ps; .Pour tout suite finie d’instants 0 =ty <t; < --- <1ty et

tout choix de fonctions Boréliennes bornées f; : E —R , (0<i<k) ona

E(fo(Xo)f1(Xe,) - fr(Xy))
= /Eydftof(xo) / Py, (zo,dxy) fi(z1) - - -

E
= (Vfopto,tlflpztl,tzfz te fk—lPtk_l,tkfk:>7

ot dans la formule précédente, on utilise la notation (3.3) et o chaque opérateur
P, |+, s’applique a toute 'expression située a sa droite alors que chaque fonction f;

est multipliée par toute l’expression située a sa droite .
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Démonstration. En utilisant les propriétés de I'espérance conditionnelle et la pro-
priété de Markov , on a

=K Hfz(th)]E<fk(th>’Ftkl)>

k—1
=K H fi(Xti)Ptk_l,tkfk(th—l)>

=E ﬁ%’@%)) ;

ong; = fisii < k—2et g1 = fi1P,_, 4. fx-On arrive alors au résultat par

récurrence descendante sur k . OJ

Corollaire 2.1. sous les hypothéses de la proposition précédente , pour tout Ag, Ay, -+ , Ax €

Bg, on a

P(Xy € Ap, Xy, € A1, Xy, € Ay)

— [ vldw) [ Poafandm) [ Polonde)
Ao Ay Ag
y / Py o (zer,dze). (2.22)
Ay

Si le processus de Markov X est homogéne de semi-groupe (P,)y>0 la formule pré-

cédente se récrit sous la forme

P(Xy € Ap, Xy, € A1, Xy, € Ay)

:/ I/(d$0)/ Pt1($0,dx1)/ P,y (x1,dxs) - -
Ao Ay Ao
/ Ptk—tk_l(zk—ladxk)- (223)
A

Démonstration. Il suffit d’appliquer la proposition avec f; = 14, O

Remarque 2.8.1. Supposons que (Fi)ier soit la filtration naturelle du processus de
Markov X. La restriction de la probabilité P a la tribu Foo = 0(UerFy) terminale
de X est parfaitement déterminée par les valeurs P(Xo € Ao, X3, € Ay, -+, Xy Ax)

prises par P sur les ensembles cylindriques
[Xo € Ao, Xy, € Ay, , Xy, € Ay (2.24)

(k € N,(t;) € T (A) € (Bg)kt) . On wvoit grace a (2.22) et (2.23) que cette

probabilité notée parfois P, est entierement caractérisés par la lov initiale v et le
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noyaux de transition (resp. le semi-groupe) de X . En générale , lorsque X est un
Markov homogéne , on définit sur Fo, une famille (P,).cp de mesures de probabilité

en posant

P.(Xo € Ag, X, € Ay, -+, Xy, € Ag)

= [ buldee) [ Putansde) [ P Gor.d)
Ao Ay Ao
'./ -Ptk—tkfl(xk—:bdxk)?
Ay,

ot 0, est la mesure de Dirac au point x . Cette mesure P, qui s’identifie a la proba-
bilité conditionnelle "sachant [Xo = x]" permet des interprétation trés intéressantes

dans U’étude des processus de Markov et permet de simplifier beaucoup d’énoncés .

m:ém@m

2.9 Propriétés analytiques du semi-groupe brownien

2.9.1 Générateurs infinitésimal d’un semi-groupe de Feller

Les processus de Feller constituent une classe particulierement intéressante de
processus de Markov homogéne. Leurs opérateurs de transition forment un semi-
groupe dont la structure analytique est assez riche pour fournir des précieuses pro-
priétés probabilistes du processus. Nous illustrons ces idées sur I'exemple du mou-
vement brownien. Ceci permet d’introduire les outils fondamentaux que sont la
résolvante et le générateur infinitésimal d’'un processus de Féller.

Considérons l'espace de Banach (Cy(E), ||.||) des fonctions f : E — R continues

et tendant vers 0 & l'infini , muni de la norme || f||.c = sup |f(x)| de la convergence
€L

uniforme et soit (P;);>o une famille d’opérateurs positifs ' de Cy(E) de lui méme .
Définition 2.9.1. On dit que (P,)>o est un semi-groupe de Feller si :

1. PBy=1 et||P| <1 pour tout > 0.

2.Vt >0, PPy = Pyyy

5. Vf e CO(R)ag% |Pef = fllo =0

Un processus de Markov homogéne sur E dont le semi-groupe (au sens de (3.7))
est de Feller , est appelé processus de Feller?

Ainsi un processus de Markov homogéne sur E est de Feller si ses opérateurs de

transition envoient Co(E) dans lui méme et si pour toute fonction
E)lim||Pf — =0.
f € CoB)lim | Pif — fll =0

l.ie. f>20= P f>0.
2. Pour un tel semi-groupe , les opérateurs sont de plus Markoviens i.e. V¢t > 0, P,1 = 1.
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Remarque 2.9.1. On déduit immédiatement de 2) et 3) , la continuité a droite du

semi-groupe en tout pointt > 0 .i.e.
lim Py f = Pf dans Cy(E) (2.25)
h—0
Définition 2.9.2. [1] Si f € Cy(E) est telle que la limite
1
i = — )= 2.2
lim (P.f — f) = Af (2.26)
eziste dans Co(E)? , on dit que f et dans le domaine Dy de lopérateur A ainsi

défini par (2.26) et appelé générateur infinitésimal du semi-groupe (P;)i>o.

Remarque 2.9.2. 1) La notion de générateur infinitésimal pour un processus X de
Markov-Feller permet de préciser l’accroissement du processus en temps petit . En
effet avec la notation de (3.6) pour tout instant s >0 , st H > 0 pour tout f € D4

, 0N a

E(f(Xs+h)|fs) = th(Xs) = f(Xs) + hAf(Xs) + O(h>7

ot o(h) ne dépend que de f .
2) L’importance de du générateur infinitésimal dans la théorie moderne des processus

de Markov est due au fait que pour tout fonction f € D, , le processus

FX0) — F(Xo) / (Af)(X)ds (t>0),

est une martingale par rapport a la filtration de X Nous donnerons un aper¢u de ces
liens entre générateur infinitésimal et propriétés de martin gale dans ’annexe de ce

chapitre.

Les propriétés analytiques générales liant le semi-groupe et son générateur infi-

nitésimal sont contenues dans le résultat suivant

Proposition 2.9.1. Soit f € Dy On a :
i) Yt > 0,Pf € Dy
ii) pour tout x € R | la fonction t — P, f(x) est dérivable, la fonction %Ptf :
x— 4P f(z) est dans Co(E) et on a

d
ZPf = ARf = RAF. (2.27)

de plus on a

Ptf—f:/OtAPsfds:/ot P,Afds. (2.28)

3. ie. Af € Co(E) et lim [[{(Pf — f) = Af|| = 0.
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Démonstration. Soit t > 0. La propriété de semi-groupe et la continuité de 'opéra-

teur P, impliquent

ti PP =B (—P“f_f)
u—0 U u—0 U
:PtAf
= AP, f

ce qui prouve 'assertion i). Le méme calcul montre que ¢t — P, f est dérivable en
tout t > 0 et dérivable a droite en ¢t = 0 et qu'on a (2.27). De plus la fonction
fot AP, fds est dérivable et sa dérivée t —— AP, f coincide avec la dérivée de la
fonction t —— P, f — f. Ces deux fonctions égales & 0 en ¢t = 0 sont donc égales
partout et on a (2.28). O

Remarque 2.9.3. L’équation (2.27) montre que la fonction
(t2) —> ult,z) = Pf(a); (t > 0,2 € R),

, est solution de "l’équation de la chaleur”

0
A=
((915 Ju =0

avec la condition initiale u(0, x) = f(x). Cette dénomination trouve son origine dans

le cas du semi-groupe du mouvement brownien dont le générateur infinitésimal est

1 d?

lopérateur 54— comme on va le voir ci-dessous.

Théoréme 2.9.1. [1] Le mouvement brownien est un processus de Feller. De plus
toute fonction f € Co(R), de classe C* avec une dérivée seconde f € Co(R), est
dans le domaine D, du générateur infinitésimal A et pour une telle fonction, on a
1d*f
Af(x) = =—5(x).
fla) = 5 75 (@)

Démonstration. 1) Montrons d’abord que B est un processus de Feller. pour f €
Co(R) la fonction P.f définie par la formule (3.11), est continue d’aprés le théo-
réme de continuité d’une intégrale dépendant d’un parameétre. En effet pour tout
y fixé, la fonction sous le signe intégrale est clairement continue en x et on peut
la dominer, si x est dans un intervalle compact, par une fonction intégrable de la
forme | f|| exp(—34? 4+ Cy), ou C' > 0 est une constante. Montrons ensuite que
P, f(z) — 0 quand |z| — +o00 :
Soit € > 0 et M = M(e) > 0 tel que |y| > M implique |f(y)| < 5.
Comme le noyau intégral de (3.11) est une densité de probabilité, on a

L (-5 o +

€

2

> (2.29)

Pf()] < /

-M 27Tt
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Mais en passant a la limite sous le signe somme, l'intégrale du second membre de
2.29 tend vers zéro quand || — oo puisque la convergence est dominée par la
fonction continue |f| qui est intégrable sur [—M, M]. On a ainsi |P,f(z)| < € pour
x assez grand, ce qui prouve que P, f € Cy(R). Il reste & prouver le point 3) de la
définition (2.9.1) :

On a

P () (———”2) (F() — F(@))dy

‘/ﬁ (2.30)

\/ﬁ

Soit € > 0. Comme f € Cy(R), f est uniformément continue sur R et il existe o > 0
tel que pour tout x € R, |z| < o implique qu’on ait la relation | f(z+2) — f(z)| < 5.
E décomposant I'intégrale du second membre de (2.30) en une intégrale sur [—a, o

et sur [—a, o] on déduit aussitot que

sup P~ [l <5 4200 [ Lew(-35)dn ea

z€eR [704,(1]6 2 t 2 t

Mais l'intégrale dans le second membre de (2.31) tend vers 0 quand ¢ — oco. Le
premier membre de (2.31) peut donc étre rendu inférieur a € pour ¢ assez grand,
d’ou lassertion 3).

2) Considérons maintenant f € Co(R) N C*(R) avec f7 € Co(R). Si on fait le
changement de variable y = x + 21/t dans la formule (3.11), on a

\/ﬂ exp <—lz ) fx+ 2vt)dz

La formule de Taylor-Lagrange appliquée a I'ordre 2 au point x avec ’accroissement

h = z+/t, montre qu’on peut écrire

Flo+ 2A) = (o) + 2V (1) + 520" (@) + 521w+ 02V) — () (2:32)

2
oil § = 6(x, z\/t) € [0,1]. Ainsi lorsqu’on intégrer la relation (2.32) par rapport a la

\/% exp (—%22) dz , en tenant compte du fait que

[ gmrow (-g7) =0 [ ow (-5 @ =1
zexp | —=z z2=0e 2Zexp | —=2 7=
R V2T P 2 R V2T P 2

on voit que

mesure

HRI@) = Ja) = 5w = [ e (—%) (/e +62vD) - 1/(@) d=

(2.33)

I nous reste a prouver que le second membre de (2.33), tend vers 0 uniformément en

x € R quand £ — 0. On doit procéder délicatement. D’abord, on fait le changement
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de variable u = z+/t et I'intégrale de (2.33), s’écrit

1 1 1 u?
rit,z) == | ———uexp | —— (x4 0u) — f"(z))du
1) = [ =i (—2) (" 0w - ')
Comme f” est uniformément continue sur R, & tout € > 0, on peut associer a > 0 tel
que |h| < o implique | f”(z+h)— f7(z)| < e. Si on décompose l'intégrale précédente,

en une intégrale sur [—a, o et sur [—«, @] on obtient

€ 1 1 u?
r(t, )| < =+ |If" / —— ——ulex <——) du

€ +o0 1 22
peolssorle [ men(-S)a @a
Vi

Comme l'intégrale du second membre de (2.34) tend vers 0 quand ¢ — 0, ceci montre
que |r(t,x)| < e uniformément en x, pour ¢ assez petit. La deuxiéme assertion du

théoréme en résulte aussitot. O

2.9.2 La résolvante du mouvement brownien

Pour déterminer complétement le domaine Dy du générateur infinitésimal du

mouvement brownien, on a besoin de la notion de résolvante :

Définition 2.9.3. On appelle résolvante® d’un semi-groupe de Feller (P;)i<o, la

famille (Ry) =0 des opérateurs définis sur Co(E) par :

Ryf(x) = /0+°° e MPf(x)dt (v € E) (2.35)

On notera que la fonction t — P,f(x) est borélienne (puisque continue a droite
d’apres (2.25)) et qu’elle est bornée (par || f]|..) donc elle est intégrable pour la mesure
e Mdt. Lexpression Ryf(x) est donc bien définie. De plus, par continuité sous le

signe somme et par convergence dominée, on voit clairement que Ryf € Co(FE).

Proposition 2.9.2. [1] La résolvante (Rx)xso d’un semi-groupe de Feller (P;)i>o
vérifie les propriétés suivantes :

1) YA > 0,Vt >0, PR\, = R\P..

2) VA, u>0,R\R, = R,R»

3) VA, u>0,R\ — R, = (u— A\)R\R,, (équation résolvante)®

4) VA > 0,f € Go(E), [[ARAflloe < [ fle

Démonstration. Les propriétés de commutation 1) et 2) sont faciles a établir et sont

laissées en exercice.

4. ou transformée de Laplace.
5. On notera que I’équation résolvante implique la propriété de commutation 2).
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La propriété 4) est immédiate puisque pour tout z, |P.f(x)| < ||f|ls. Etablissons

1 7équation résolvante. Pour f € Cy(F), on a

mamu o) = [T enn ([T ennas) i (2.36)

0

et comme P, est un opérateur continu, on voit facilement qu’on peut le passer a
I'intérieur de la deuxiéme intégrale du membre de droite de (2.36), ce qui compte

tenu de la propriété de semi-groupe donne :

Rt o) = [ ([T e p s a (237)

Le changement de variable s = u — t dans l'intégrale centrale de (2.37) puis une

interversion des intégrations donne alors

R\R,f(z) = /0 T ( /t N et p, f(x)ds) dt

_ /0 T emp, f(a) ( /0 ' e—<*—ﬂ>tdt) du

o)

_ ﬁ P (@) (1-e 0 du
1

— H(Ruf(x) — Ryf(x))
1

= H(Rx - R,)f(x).

D’ou le résultat. O

Une conséquence cruciale de 1’équation résolvante, concerne la constance de

I'image de Cy(FE) par les opérateurs R}, :
Corollaire 2.2. L’espace D = R)(Co(E)) ne dépend pas de X > 0.

Démonstration. Grace a I’équation résolvante, pour f € Cy(E) on a

Ryf=R.f+ (0 — )‘)RMRAJC
= Ru(f+ (n—ANRrS),

ce qui signifie que Ry(Cy(E)) C R,(Co(E)); mais comme A > 0 et > 0 sont quel-
conques, on a aussi R,,(Co(E)) C R\(Cy(E)), d’oulégalité Ry(Co(E)) = R, (Co(E)).
0

Cet espace D, image commune de Cy(E) par les opérateurs résolvants R, coin-
cide en fait avec le domaine D, du générateur infinitésimal A du semi-groupe! Plus

précisément on a le théoréeme fondamental suivant :
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Théoréme 2.9.2.
[1] Soient A > 0 et f,g € Co(E). Alors g = Ry f si et seulement si g € D4 et

Ag=Ag=f.
Autrement dit D= Dy et (N[ — A)Ryx =1 , ou I est l'opérateur identité de Co(E)°

Démonstration.
i) (condition nécessaire) Supposons que g = R, f. Alors pour tout A > 0, on a
1 1 [ 1 [
— (P, — Dg(x) = —/ e MPy f(z)dt — —/ e MP, f(x)dt (2.38)
h h J, h Jo

Le changement de variable s = t + h dans la premiére intégrale de (2.38)

conduit a .

1 A [ A h

—(P, — Dyg(x) = / e P, f(x)ds — — | e MP,f(x)ds
h h 0 hJo

eAh -1 1 6/\h h \
= —_ — - —AS P _
(o0 - 31@) - 5 [ e o) - s
(2.39)
Comme P, f(z) — f(z) — 0 uniformément en z, quand ¢ — 0, I'intégrale du

second membre de (2.39) tend vers 0 quand h — 0 (uniformément en z), ce

qui implique
li ! P, —1T)g= X\ 1f d Co(E
lim - (Ph—I)g=Alg— 5 ans  Co(E).

Donc g € Dy et Ag = A g— fie. f= (M —A)g. Dot la condition nécessaire.
ii) (condition suffisante) Soit v € D4. On a donc hm # (P, — I)v = Av dans

Co(E) et comme l'opérateur Ry est continu et commute avec Py, ceci implique
hm h(Ph — I)R)\’U = R)\A’U (240)

Mais, dans la condition nécessaire, on a vu que la limite du membre de gauche
de (2.40) est égale & ARyv — v. On a donc RyAv = AR, — v, ce qui montre
que v € Ry(Cy(E)) et comme Ry, et A commutent, on obtient aussi v =
(A?A)Ryv. D’ou le théoréme.

O]

Théoréme 2.9.3.
i) La résolvante du mouvement brownien est la famille des opérateurs intégraux
(R))a>0 de la forme :

Raf@) = [ e (<VBle—yl) fdy (7€ Co®) (241

6. On notera qu’on a alors aussi Ry\(A] — A) = Ip, , ou Ip, est l'opérateur identité de D4 car

Ry et A commutent sur Dy.
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ii) Le domaine D4 du générateur infinitésimal du mouvement brownien est consti-
tué des f € Co(R) de classe C? et telles que f” appartienne aussi a Co(R).

Pour f € Dy, on a alors
1
A — 1!
f=f
Démonstration.
1) Pour une fonction f € Cy(R) positive, le théoréme de Fubini-Tonelli permet
d’écrire :
(z —y)?
R ———=)dt dy.
(@ /( \/—eXp( 5 At ) fy)dy

Pour prouver (2.41), il suffit donc de montrer que

———exp(——)dt = ——e¢ 2l 2.42
/ \/27Tt p( t) V2 ( )

Pour z > 0, on peut dériver ¢(z) sous le signe intégrale, ce qui donne

¢’(z):—/oooe—”tm p(—;)dt. (2.43)

Si on fait le changement de variable s = -5, ° dans Dintégrale (2.43), on obtient

aussitot
¢'(2) = —V2Xo(2),
1

ce qui implique que ¢(z) = Ce~ vk ,(z > 0) : mais C = ¢(0) = % comme
on peut le voir aussitot par un changement de variable évident 7.
On en déduit (2.42) puisque ¢(z) est une fonction paire.

2) Si on récrit la formule (2.41) sous la forme

Ry f() / ffyf< dy+e”/ F e~V f(y)dy.

on voit facilement que la fonction g(z) := R, f(z) a des dérivées premiére et

seconde données par

x “+oo
g(x) = —e VP / VP f(y)dy + eV / e VNF(y)dy  (244)

T

et

9" (x) = 2xg(z) — 2f (). (2.45)

La relation (2.45) montre que g” € Cy(R). L’image de Cy(R) par Ry égale
a D4 (d’apres le Théoréeme (2.9.2)) est donc contenue dans 'ensemble C2(R)
des fonctions g € Cy(R) de classe C? telles que g” € Cy(R) qui est lui méme
inclus dans D4 d’apres le Théoréme (2.9.1). Donc D4 = CZ(R) et le théoréme
en découle.

7. dans lintégrale donnant f(0) faire le changement de variable At% pour se ramener a une
intégrale de Gauss
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Remarque 2.9.4. La formule (2.44) montre que l'on a

x “+o00
§/(@)] < e V2 / VP ()| dy + P / VI F(y)]dy = VENRY|f|(x),

donc ¢'(x) — 0 quand |x| — oo. Ainsi les fonctions f € Dy sont aussi telles que
e Co(R), ce qui n'était pas clair a priori (on essayera de montrer directement
qu'une fonction f € Co(R) de classe C? et telle que f7 € Co(R), vérifie aussi
f € Co(R)).



Chapitre 3

Quelques applications des processus

Markoviens en temps continu

Dans ce chapitre, je rappelle tout d’abord le théoréme d’existence et d’unicité
sur les équations différentielles stochastiques - EDS en abrégé dans la suite - puis je

m’intéresse a la propriété de Markov de la solution de I’'EDS.

3.1 Le résultat classique d’Ito

Les équations différentielles ont été d’abord étudiées par Ito6, dans le but de
construire les diffusions ( c’est-a-dire, processus continus et fortement markoviens
dont les générateurs sont des opérateurs différentiels du second ordre). c¢’est d’ailleurs

dans ce but qu’il avait introduit le calcul stochastique.

3.1.1 Existence et unicité de solution

Soit (2, F, (F;),P) un espace de probabilité filtré, et soit B un (F)-mouvement
brownien. Soient 0 : Ry x R - R et b: Ry x R — R des fonctions masurables [8|.

On considére I’équation différentielle stochastique (EDS) suivante :
t ¢
X = Xo —|—/ b(s,XS)ds—i—/ o(s, Xs)dBs. (3.1)
0 0

3.1.2 Définition

Une solution pour I'EDS 3.1 est un processus (X;,t > 0) continu adapté tel que
Vi, f(f o(s, X,)%ds < oo, fg |b(s, Xs)|ds < 00, p.s, et que

t t
X=Xy + / b(s, X)ds +/ o(s, Xs)dBs.
0 0

47



3.1.2 Définition 48

Remarque 3.1.1. (i) Si o et b sont localement bornées (c’est-a-dire, bornées sur
tout compact), alors pour tout processus continu adapté (X;), on a automati-

quement

Vi, fot o(s, X)*ds < oo, fot |b(s, X)|ds < o0,

(ii) On écrit souvent la forme différentielle de I’équation :
dXt = b(t, Xt)dt + O'(t, Xt)dBt

Plus généralement, on peut considérer les EDS en dimension quelconque. Soit
B = (BW, ..., B™) un (F,)-mouvement brownien & valeurs dans R™ (avec m > 1),
et soient 0 : Ry x R4 — R™>™ et b: R, x RY — R? des fonctions mesurables.

On écrit 0 = (k) 1<i<di<k<m €t b= (b;)1<i<a. On considére I’(EDS) suivante :
t t
X, = X0+/ b(s,Xs)d8+/ o(s, Xs)dBs.
0 0

Une solution pour cette EDS est un processus X = (XU, ..., XD) od pour tout
1<i<d, (X}, t>0) est un processus continu adapté,
tel que Vt,V1 < k < m, fot oi(s, Xs)?ds < oo, fg |b;(s, Xs)|ds < o0, p.s, et que

t m t
X;:Xg+/ bi(s,Xs)derZ/ oi(s, X,)dB®.  1<i<d
0 1 Y0

Théoréme 3.1.1. /8] Supposons que o et b sont des fonctions continues telles que

pour une certaine constante K > 0, et pour tout t > 0, x,y € R,

1. condition de Lipschitz en espace, uniforme en temps :
b(t,2) = b(t,y)| + |o(t,z) — o(t,y)| < K|z —yl,

2. croissance linéaire : |b(t,x)| + |o(t,z)| < K(1 + |z|),
3. supposons que E(|¢[*) < oo.

Alors il existe une unique solution (X;,t > 0) telle que Xo = £. De plus, pour tout
t, E(supse[o,t]|Xs|2) < 00.

Remarque 3.1.2. Dans l’énoncé du théoréeme 3.1.1|.| désigne la norme euclidienne.

En plus, pour tout réel T > 0, il y a uncité de solution pour I’EDS sur [0,T].

Exemple 3.1. /9] On donne un exemple classique d’EDS est emprunté au monde

de la finance. Le priz d’une action est généralement modélisé par I’EDS :
dSt = St(,udt -+ O'th), S(] dO’ﬂ,TLé,’

le paramétre o s’appelle la volatilité et est trés important. On montre facilement a
laide de la formule d’It6 que

S, = Syexp{(n — 0*/2)t + oW}
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Ce processus est appelé le "mouvement brownien géométrique”.
Commentaire
So est le cours observé a la date 0. Cela signifie que [’on cherche un processus adapté

(St)e>0 tels que les intégrales fot Syds et f(f SsdBs aient un sens, et qui vérifie :

t t
S = xo + / wSsds + / 0S,dB, Vt.
0 0

Faisons tout d’abord un calcul formel : Posons Y; = log(S;) ou Sy est un processus
d’It6 avec K, = uSs et Hy = 0S;.

Appliquons la formule d’Ité a f(z) = logx on obtient, en supposant que S; est
positif :

FX) = F(X) + /f dX+/f” i< X, X >,

log(S;) = log(S,) + /1dS+1/t—12d<SS>
t 0 0 Ss s 9 0 Ss ) s

<S,8>, = < [/0SdB,, [0S, dB, >=< [, 0S,dB, >
[y 02S2d < B, B >,= [| 025%d,
et dSs = Ss(pds + odBy)

log(S;) = log(S —I—ft Ss ( uds+adB ! fo
= Log(So) + Jy ”—7 d8+f0t0st

En utilisant 3.1 : " 9
Yt=Yo+/ (M—U—)der/tOst
0 2 0

On en déduit que :

Y =log(S) = log(So) + (u— %)t + 0B,
exp(log(S;)) = exp(log(Sp))exp((n — %2)75 + oBy)

1l semble donc que :
Sy = Spexp{(u — 02/2)t + 0By} avec : Sy = xg

soit une solution de [’équation de 3.1

3.1.3 Théoréme (Fonctionnelle sur I’espace de Wiener)

Sous les hypothéses lipschitziennes, pour tout = € R?, il existe

.} CRL,R™) — C(R4,RY),
T we Fy(w).

mesurable et satisfaisant les propriétés suivantes :
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— i) pour tout t > 0, F,(w); coincide W(dw)-ps avec une fonction mesurable de
[w]t = (w(r) : 0 < r < t); avec un abus de notation, on écrira F, (¢, [B]);
R? — C(R,R™),

est conti-
= F(w).

— ii) pour tout w € C(R,,R™), I'application {
nue;

— iii) pour tout z € R%, pour tout choix d’espace de probabilité filtré (Q, F, (F;)i>0, P)
et tout (F)i>o-mouvement brownien B en dimension m, le processus X définie
par X; = F,(B); est I'unique solution de E(b, o) avec valeur initiale x ; de plus,
si Z est une variable aléatoire Fy-mesurable, le processus Fiz(B); est 'unique

solution avec valeur initiale Z (pour plus de détails, voir [10]).

3.2 La propriété de Markov fort pour une EDS

homogéne

Dans cette section, on suppose toujours les hypothéses lipschitziennes :
Les fonctions b et o sont continues sur R, x R? et lipschitziennes en z, ie. il existe

une constante K > 0, et pour tout ¢t > 0, z,y € R?
[b(t,z) — b(t,y)| < K|z —yl,
’O—(ta IL’) - O—(tay)‘ < K’aj - y’
et Vt, fOT b(t,0)|+|o(t,0)|?dt < oo pour tout T ot |b] et |o| représentent la norme
du vecteur b et de la matrice o.

Pour avoir des propriétés markoviennes homogénes, on suppose en outre que ’EDS

est homogeéne, c’est a dire que les coefficients de 'EDS ne dépendent pas du temps :

o(t,y) =o(y),blt, y) = bly).
Pour chaque z € R?, on note P,, la loi sur C(R, R?) des solutions de E, (b, o) (d’aprés

le théoréme 3.1.3, on a P, = WF!). L’assertion ii) dans le Théoréme 3.1.3 montre

que x — P, est continue pour la topologie de la convergence étroite : soit x,, — x ,
pour f € Cy(C(R,R?))

[ fipe, = [ E @pawew) — [ sE@)awe) = [ fip,

ou on utilise F, (w) — F,(w) dit au Théoréme 3.1.3 et la convergence dominée
puisque f € Cp(C(R,,R?)). On déduit alors d'un argument de classe monotone que
pour toute fonction ® borélienne de C(R,,R?) dans R , Papplication x — E,[®] est

elle aussi mesurable.

Théoréme 3.2.1. [10/(Markov fort pour les EDS homogéne ) Soit X une solution
de E(b,0) sur un espace de probabilité filtré (2, F, (Fi)i>0, P). Soit aussi T un temps
d’arrét fini p.s. Alors pour ® : C(R,,R?) — R, borélienne, on a

E[®(Xrye : t 2 0)[Fr] = Ex, [P]
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C’est a dire pour toute variable aléatoire U positive Fr-mesurable
EU®(Xry:t >0)] = E[UEx, [P]]

L((X71e)iz0lFr) = LUX) =0l X).

Remarque 3.2.1. Ce résultat signifie que la solution X de I’EDS vérifie la propriété
de Markov forte par rapport a la filtration (Fi)iso -

Pour tout temps d’arrét fini T, la loi conditionnelle du "furur” (Xpy, @ t > 0)
connaissant le "passé" Fr est la loi de X partant de Xr , qui ne dépend que du
présent a l'instant T .

Dans le cas particulier o = Id et b = 0, on retrouve la propriété de Markov forte pour

le mouvement brownien. C’est du reste sur celle-ci qu’on s’appuie pour la preuve.

Preuve 3.2.1. (du théoréme )

Pour simplifier la présentation de la preuve, on suppose encore que m = 1,d = 1.
Notons Bt(T) = Bryy — Brp. 1l s’agit d’un mouvement brownien indépendant de JF;
(propriété de Markov forte pour le brownien B). On pose aussi X; = Xpys et on
remarque que le processus X est adapté par rapport a la filtration (Ft,)tzo o .7-"; =
Frs et que cette filtration satisfait les conditions habituelles. De plus, d’aprés I’EDS
satisfaite par X,

/ T+t T+t
X, =Xr +/ b(X,)ds —I—/ o(Xs)dBs.
T T

Par changement de variable, on a de suite

/ o b(X,)ds = /O t b(X.)ds

T

[10] (comme il s’agit d’une intégrale de Stieltjes définie w par w, on peut faire le
changement de variable sans probléme w par w, la valeur T = T(w) étant alors
figée). On fait aussi un changement de variable dans l'intégrale stochastique a l’aide

du lemme suivant :

Lemme 3.2.1. Si h est un processus continu adapté, on a

T+t t
/ h(s,w)st:/ WT + s,w)dB).
T 0

Démonstration. Pour démontrer le lemme en approchant h par des combinaisons li-
néaires finies de processus de la forme h(s, w) = p(w)1y, /() ot ¢ est F,-mesurable.
Pour simplifier on prend méme £ de la forme h(s,w) = o(w)ljp,, 7,,(s) ot @ est
Fri.-mesurable, il suffit de montrer le changement de variables pour ces fonctions

particuliéres :
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Jp " h(s,w)dB, = ff%( W)Ly 7y ()dB,
= () ST s
= so( JBUT +7) AT +1t)) — BT +r) AT +1)))
= W)(B(T+r)YN(T+1t))—Bp—B(T+7r)A(T+t)) + Br)
= pw )(BT(T'M) BY(r At))

= ¢ w) [10" BT

rAt

= frT/\;\t gO( )dBT
fO ]]‘]rr ] )dBT

- fo ]l]T—H' T—H‘J(T +u)dB,
= [T +u,w)dBy

On déduit alors du lemme que

T+t t t ,
/ o(X,)dB, = / o(Xp4y)dBT) = / o(X,)dB
0 0

T

et on a donc . .
Xpoy = X1+ / b(X.)ds + / o(X,)dBM
0 0

On remarque que X' est adapté par rapport a la filtration (F,);s0, BT est un (F,)-
mouvement brownien et X est fé—mesumble. D’aprée iii) dans le Théoreme 3.1.3,
on doit avoir ps X' = Fx,.(B™). Le résultat du théoréme suit alors facilement :

comme X est Fp-mesurable et BT est indépendant de Fr , on a

E[®(X,:t>0)|Fr] =  E[®(Fx,(B™"))F7]

- fC(R+,Rm) P (Fyp(w))W(dw)
= Ex,.[®(X;:t > 0)]

Lemme 3.2.2. Soit M une martingale locale universellement réductible pour tous
les P, et B > 0 . Alors M peut étre décomposé en M = N + B, ou N est une
martingale locale pour tous les P* et B € 1. Il existe un ensemble nul A (c’est-
a-dire P*(A) = 0 pour tout z) tel que | ANs |S B pour tous les s € Ry, hors
A.

Lemme 3.2.3. Soit ) = Wy, et

et =W, +Z/ fils,n)dY? (3.2)
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ou Y sont des P-semi-martingales, et chaque f; satisfait les conditions lipschit-

ziennes. Soit W, une solution de
Wiy =Wy + Z/ fi(s, W=)dY.
i=1 70

Alors ni — W, en probabilité.

Proposition 3.2.1. Soit (X7) et (X;) comme dans .

t t
X/ =Xo+ / f(s, X3 )dZ, +/ g(s, X2 )dAs, (3.3)
0 0

t t
X, = Xo+ / F(s, X )dZ, + / o(s, X, )dA,. (3.4)
0 0

Soit H € bF, et H(w) = H(wi)1r(z) , 0t w = (z,w,). Alors

i) X; et X} sont P™* indistinguables pour tous les z.

~

ii) Pour toute f € bB ® B,E**[f(X:, H)] = E*[f (X[, H)].
iii) E**[H|G,] = E*[H|F;|1z.

3.3 La propriétés Markovienne des solutions

Une diffusion D; peut étre définie comme un processus de Markov fort avec des
trajectoires continus. Si l'on exige des conditions sur les incréments conditionnés
pour qu’ils soient approximativement Gaussien, alors on peut exprimer D; comme

la solution d’un type It6 équation différentielle stochastique.

D, = D, +/ f(s,DS)dWS+/ g(s, Ds)ds (3.5)
0 0

ou W; est le processus de Wiener. (Voir Gihman et Skorhod [14]). Si 'on considére
un modele dans lequel la continuité des trajectoires n’est pas essentielle, on peut
considérer des processus de Markov autres que le mouvement brownien, et aléatoires
mesures, comme des écarts. Soit f, g satisfaisons les conditions lipschitziennes, Z
soit (disons) un processus de Hunt qui est une semi-martingale compléte par rapport
a P™* et A; une fonction additive de Z. Soit Xy comme dans 3.2.3, et soit X; la

solution de I’équation suivante :

t t
Xt:X0+/ f(s,Xs_)dZSJr/ (s, X,-)dA,. (3.6)
0 0

On pourrait alors espérer que X; serait un processus de Markov. Ce n’est pas vrai en
général, comme le montrent des exemples simples. (Utilisez une chaine de Markov

pour que X devienne la solution d’une équation de différence et s’étendent au temps
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continu). Il n’est pas nécessaire que les processus avec des incréments indépendants

soient des semi-martingales. En effet, si Z; a des incréments indépendants,

Y, =7, — Z AZdyaz,>1}
s<t
alors Z est une semi-martingale si et seulement si la fonction t — E[Y] est de

variation bornée. Nous obtenons 'extension suivante du résultat classique d’'It6 :

Théoréme 3.3.1. [11] Soit Z une semi-martingale ayant des incréments indépen-
dants, Zy = 0. Soient f et g deuz fonctions satisfaisant les conditions lipschitziennes.

Soit Xy tel que Xo(w) = z, lorsque w = (z,w;) et soit X; une solution de

Xt:XOJr/tf(s,Xs-)dZSJr/tg(s,XS)ds. (3.7)
0 0

Alors X, est un processus de Markov fort.
Si Z est un processus de Lévy et f et g sont autonomes (c’est-a-dire, f(t,x) =
f(x),g(t,x) = g(x)), alors X; est un processus de Markov fort (homogéne dans le

temps), avec sa transition le semi-groupe donné par
Pih(x) = E*O[h(X,)].

Démonstration. Soit T un temps d’arrét et HY = o{Zr, — Zr;u = 0}. Alors HT
est une o-algebre dans ) et H” est indépendant de Fr sous P°. Soit n°(x,s) = z,

définir X (z,t,s) et pour s > ¢ définir inductive-ment 1™ (z, s) par

Xots=x+ /S flu, X (x,t,u™))dZ, + /sg(u,X(x,t,u_))du. (3.8)

"z, s) =+ /ts flu,n™(x,u™))dZ, + /tsg(um”(x,u))du.

Puisque 1" est une semi-martingale, il a des trajectoires cadlag, donc (comme

c’est facile & vérifier)

7 ) =l 3 ) Zus = Zu) + 3 gl ) (s — ).
u;eP™ u; eP™

ou la convergence est en probabilité P° et la limite est prise comme maillage
(P™) — 0, ot P™ sont des partitions de [t, s|. Un argument inductif montre n™* € H,
et Le lemme 3.2.3 montre que X (z,t,s) € H'. Par l'unicité des solutions (pour
plus des détails voir [15] et [17]), on peut montrer X% = X (X (z,0,7),T,S) pour
les temps d’arrét S, T avec S = T. Si X, est la solution de 3.7, on écrit X; =
X (Xo,0,t) et aussi X¥ = X(z,0,t). Par I'indépendance de Fr et H' et en utilisant
la proposition 3.2.1, nous avons pour tout kA € bB et les temps d’arrét S = T,

E*Oh(Xs)|Gr] = E°[h(XE)|Fr]ln
= Eo[h<X(X%v T, S>)|]:T]]1R (39)
= J(X7)1r
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i(y) =E[M(X(y, T,5))] = B*°[h(X (X0, T 5))]

, et la derniére égalité ci-dessus est la conséquence d’un lemme élémentaire dans
Gihman et Skorohod [14].

On observe enfin que sous P* on a
J(X7) e = j(X7). (3.10)

Supposons maintenant que f et g soient autonomes, Z est un processus de Lévy
et X; est une solution de 3.7. Il est bien connu que pour un processus de Lévy Z,
le processus Zr,, — Z7 est identique en droit & Z, . Il est alors facile de vérifier que
X(z, T, T +u),u = 0 est indépendant de Fr et est identique en droit (sous PY) a
XZ, u=0.Par 3.9 et 3.10 nous avons

E*°[h(Xs)|Gr] = 7(X7),

mais dans ce cas, nous avons

ily) =Eh(X(y,T,9))]
= E°[n(X§_1)] (3.11)
= E*O[h(Xs-7)]
ou la deuxiéme égalité ci-dessus est due a l'identification en droit de X7 et

X(x,T,T + u). Ceci compléte la preuve du théoréme 3.3.1.
Dans le théoréme 3.3.1, nous avons supposé que le différentiel Z avait des incréments
indépendants et on a pu conclure que la solution X de 3.7 était un processus de
Markov fort.
Si nous affaiblissons les conditions sur Z de sorte que ce soit simplement un processus

de Markov fort, la solution n’a pas besoin d’étre Markov. Cependant, le processus

vectoriel (X, Z) est un Processus de Markov. O
Q R x Ql
g = BaR (3.12)

P™ = g, x P?

Théoréme 3.3.2. [11] Soit Z = (2, M, My, 24, P) une semi-martingale ayant la
propriété de Markov (fort). On note 3.12 et soit X, une solution de

t t
Xt:XOJr/ f(s,Xs-)dZSJr/ g(s, X,-)ds.
0 0

ot Xo € My. Alors le processus vectoriel (X, Z) est Markov (fort) sur (2, M, My, P).
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Démonstration. Soit X (z,t,s) et n""!(z, s) comme donné en 3.8. Alors les résultats
de Doléans [15] et un argument inductif montre que (z,¢,w) — n"(x,t,w) est mesu-
rable conjointement pour chaque n. Puisque " (z,t,w) — X (z,t,w) en probabilité
P pour chaque z par le lemme 3.2.3, —K V (" A K) converge en (L', L>°) vers
—K Vv (X A K) pour chaque K.

Une application du lemme de Doob [16] donne que (z,t,w) — X (z,t,w) est conjoin-
tement mesurable. En effet, cela donne X (z,¢,w) € BQH?!, ou B est 'ensemble Borel
sur R et H' = 0{Z; 1, — Z,;u > O}. Par 'unicité des solutions, on vérifie facilement
que pour les temps d’arrét S > T, Xg = X (X7, T, S). Soient h € bB et K € bH'.

Alors

E{h(Xt)K|Mt} = h(Xt)E{K|Mt}
h(X)E{K|Z} (3.13)
= j(Xt7Zt>'

Donc
E{n(X) KM} = E{h(X;) K| Xy, Z;}.

Si Z est supposé étre Markov fort, le précédent vaut pour les temps d’arrét S, T'.
Le théoréeme suit maintenant par une application du théoréme de classe monotone.
Nous annonc¢ons maintenant notre résultat principal. Observez que le temps a changé

les processus de Lévy tels que ceux décrits dans 'expression :

~

Nogn = (M + F, = F))+ F,

t

satisfont aux conditions imposées a Z dans le théoréme suivant.

[]

Théoréme 3.3.3. [11/Soit Z un processus de Hunt qu’est une semi-martingale uni-
versellement réductible.

Soit A une fonction additive de Z. Soit f et g autonomes satisfont aux conditions
lipschitziennes. Soit Xq tel que Xo(w) = x, lorsque w = (x,w1), et soit X, la solution

de
Xt =X Xsf dZS Xsf dAS 3.14
0 +/0 f(X-) +/O 9(Xs-) (3.14)

Alors le processus vectoriel (X, Z) est un Markov fort, avec un semi-groupe de tran-
sition
Ph(x, z) = E**[h(Xy, Zy)].
Avant de prouver ce résultat, nous établissons une notation et un lemme. Pour
u fixé, soit M, = M, 08, , pour un processus M. Soit F, = 0. (F;) . L'expression
C-Y désigne lintégrale stochastique fot CsdY; pour une semi-martingale Y. le lemme

suivant est utilisé dans la démonstration du théoreme 5.5.5.

Lemme 3.3.1. Soit Y une semi-martingale universellement réductible. Soit C

un intégrant prévisible qui est borné universellement localement.

—_~—

Alors C-Y = C Y, pour tout u fixer.
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Démonstration. Soit Y; = Yy + M; + B, étre une décomposition universelle et un
arrét (T™) fois tendant & oo tel que MT" est une P? martingale pour chaque n. Arrét

implicite Y & T™ pour certains n fixer, par Lemme 3.2.2 on peut écrire
M=N+B (3.15)

ou N est une martingale bornée localement (universellement), B € ¢ , et Ny = By =
0.
Soit G € F,, ou G = Ho#6, H € F,. En arrétant N si nécessaire nous supposons

sans perte de généralité que IV est borné. alors
E*[(Ny — N,)G] = E*[E?*(N, — N,)H] =0,

par conséquent N est une F, martingale. Si M est une F, martingale de carré

intégrable , on a

E*[(M{N, — (M, N),)G] = E*[E*

||
=
=
=
=

Mst - <M7 N)s)HH (316>

P

et si (M, N); est Fy-prévisible, par 'unicité de (-, -) nous pouvons conclure

Soit P(F;) désignant ’algeébre prévisible pour une filtration (F;). Soit H = {Y €
bP(F,)} : Y € bP(F,). Alors H contient clairement les processus continus a gauche
et Fi-adaptés, et donc un argument de classe monotone montre que le déplacement
préserve prévisibilité.

Pour un processus B € 1, Vinstruction C - B = C B nest qu’une notation.

Pour N borné localement, en utilisant 3.17 nous avons

(- N-C-N,C-N—C-N) = (C)?-(N,N)Y—2C-(N,C-N)+(C-N,C-N)
= (0)2-(N,N) —2C-(C(N,N)) + (C*- (N, N))
= (C)2-(N,N)—2C - C-(N,N)+(C?)-(N,N)
= 0.

(3.18)

Puisque C - Ny — m = 0 implique que C' - N = m Par l'utilisation de la

décomposition 3.15 nous avons

C M=C-N+C-B=C-N+

.B=C-M

@F

et le lemme est prouvé.
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Démonstration. du Théoréme3.3.3
Nous définissons X (z,t, s) puis par induction u™(z,t,s) par u°(x,t,s) = x et pour
s > t,

ptzts) = x+ [0 f(pt(,tu)dZ, + [ g(pt(x,tuT))dA,

3.19
X(z,t,8) = 934—ft x,t,u )dZ, + [ g( a:,t,u ))dA,. (3.19)

Nous écrivons également X (z,t) pour X(x,0,t) et p™(z,t) pour pu™(z,0,t). Nous

constatons que

pH(z,t,s) = o+ f(2)(Zs — Ze) + g(2)(As — Ay
= (x4 f(x)(Zs—t — Zo) + g(x)(As_y — Ap)) 0 b, (3.20)
pt(z,s —t)ob,.

Supposons p"(x,t,s) = p"(z,s —t) o 6. On a donc

prwts) = x4+ [ (" (e, (u—1t)7))dZ, t+ft ﬁ"(as,(u;t)*))dflu-t
= o+ [T f(a (e, un))dZy + [ gl (x,um))dA,
— (:B—l— fos_tf(u”(x,u*))dZu + fos_tg(u"(:v,u))dAu) 00,
(3.21)

ol la derniére égalité utilise le lemme 3.3.1. L’induction montre alors que pour tout

n
w(z,t,s) = p(x,s —t) o b (3.22)

Nous établissons ensuite 1’égalité
E*{h(X (z,t,5), Zs)|Fi} = E“{h(X (z,5 — 1), Zs_4)} (3.23)

Pour h € bB ® B Considérons d’abord h de la forme h(z,y) = hi(x)ha(y), avec h;
continu avec un support compact. Par le lemme 3.2.3 et la continuité uniforme de
hy, ha(p™(z,t,s)) — hy(X(x,t,s)) dans la moyenne. En utilisant 3.22, nous avons

B (I (X(x,t,)hal(Z)IF} =l B (.1, 9)al Z) i}
= lim E*{hy(u"(z,s — t))ho(Zs_s) 0 0| F;}

n—oo

= lim EZ{hy(u"(z,s —t))ha(Zs_4)}

n—oo

= EZ{hi(X (2,5 —1)h2(Zs-0)}-
(3.24)

Un argument de classe monotone donne maintenant 3.23. Notons que 3.23 est
également valable pour temps d’arrét S = T

Soit (X}) tel que donné en 3.14, et fixons une mesure P**. Soit X7 la solution de

Xf:x+/ f(ng_)dZu+/ 9(X2)dA, (3.25)
0 0
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Pour la loi P? sur . Soit h € bB® B, F € bFy, et k € bB. Utilisation de la

proposition 3.2.1 on a

B, Z)FRE) )

Par 'unicité des solutions. Comme I’a montré la preuve du théoréme 3.3.2, X7 est

mesurable conjointement en (x,t, w). Un argument de classe monotone donne alors

E[W(X(X],t,5), Zs)Flk(z) = EAE[M(X(X],t,5), Z,)| FP1F]k(x)

= BA[E (X (y. K, 5), Zo)| FP]ly=xz F]k(x)
A (X (Xo,t s), Z:)|G) 1 F]k(x)
= E"[E**[h(X (X0, 1, 5), Z,)|G} ] Fk(Xo)].

I
=

(3.27)
Ensemble 3.26 et 3.27 établissent que
E™*[W(Xs, Z)|Gi] = EX*[h(X (X, t,5), Zs)|GP]. (3.28)
Soit
J(y) = E¥*[(X (Xo, 1, 5), Zs)|G7). (3.29)
Alors j(y) est aussi une version de E*[h(X (y,t,s), Zs)|F], et ainsi
' = E?[h(X —t), Zs_

= Ev7 [h<Xs—t, Zsft)]
ol nous avons utilisé 3.23 et 3.2.1. Combinaison des rendements 3.28, 3.29 et 3.30
E™*[h(X,, Z,)|Gi]) = BN [M(X oy, Zsy)].
Pour montrer que (X, Z) est un Markov fort, il suffit de montrer
B (M X1ss, Z145)|Ge) = BV [W(X1ts, Zr4s)| X, Z7]

pour tout temps d’arrét T', et s > 0. La preuve de 3.23 est valable pour les temps
d’arrét. Pour h € bB ® B on a

E*?[W(Xs, Zs)|G:] = Ez{h(X%erZTﬂ-S)‘}—t}

B {M(X (X3, LT + ), Zrs)| ). (3:31)

Pour un P* fixe on sait que X (z,7,T + s,w), la solution relative a (§2, F*, F7, P?),

est mesurable conjointement ; il suffit de constater que pour hy, hy € bB on a

E*{hi (X7 ho(X (y, T, T + s), Zr1s)|Ft} = h'l(X%ﬂEZT{hQ(X(y,S),ZS)}
= j(s, Xr, Zr)a.s, P**.
(3.32)

Ceci compléte la preuve du théoréme 3.3.3. O
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Algorithme 1(Construction algorithmique de la chaine de Markov en temps

continu)

— Soit X,,,n > 0, une chaine de Markov a temps discret de matrice de transition
(). Soit la distribution initiale de cette chaine soit notée a de sorte que P{X, =
k} = ag.

— Soit E,,n > 0, une suite de variables aléatoires exponentielles unitaires indé-
pendantes.

Construction algorithmique :
1. Sélectionnez X (0) = X, selon la distribution initiale a.

2. Soit Ty = 0 et définissant W (0) = Ey/A(X(0)), qui est exponentielle avec le
parameétre A(X(0)), pour étre le temps d’attente dans 'état X (0).

3. Soit Ty = Ty + W(0), et définissant X; = X (0) pour tout ¢ € [T, T7)

4. Soit X choisi en fonction de la matrice de transition @, et définissant W (1) =
E1 /A (X7).

5. Soit T, =Ty + W (1) et définissant X ;) = X; pour tout t € [T3,T3)

6. Continuez le processus.

3.4 Explosions

Maintenant nous avons une bonne idée de ce qu’est une chaine de Markov en
temps continu, nous démontrons un comportement qui n’est pas possible dans la
mise a ’heure discréte : les explosions. Rappel que dans l'algorithme 1 3.3, qui
construit une chaine de Markov en temps continu, la valeur 7,, représente le temps
de la niéme transition de la chaine. Par conséquent, la chaine ainsi construit n’est
défini que jusqu’au moment (aléatoire)

T ™ lim T,
n—oo

Si T, < 00, alors nous disons qu’une explosion s’est produite [13].

Définition 3.4.1. 5%
PA{T,, = oo} «f P{Ty =00 | X(0) =i} =1, pour tout i € S,

que nous dirons que le processus est non explosif. Sinon, nous dirons que le processus

est explosif. Notez qu’un processus peut étre explosif méme si
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3.5 Convergence d’une chaine de Markov vers une

diffusion

L’objectif de cette section est d’énoncer un théoréme permettant de démontrer la
convergence en loi d'une suite de chaines de Markov convenablement renormalisées
en temps vers un processus de diffusion dont les coefficients de diffusion et de dérive
sont explicites et on termine notre section par des exemples illustra-tifs montrant
I'importance de la propriété Markovienne dans des différents phénoménes de la vie
courante. Le résultat suivant montre que la convergence en loi d’une suite de chaines

de Markov vers un processus de diffusion se lit sur un pas de la chaine.

Théoréme 3.5.1. Soit A le générateur infinitésimal d’un processus de diffusion,

c’est-a-dire que, pour toute fonction réguliere f,

Af(e) = sa(@) " () + (o),

avec a et b régulieres. Soit (pun)n une suite de noyauz de transition sur R et posons

by(z) =N (y — x)pn (2, dy)

ly—=z|<1

ay(z) = N (y — x)*pn(x, dy).

ly—z|<1
Supposons que pour tous r > 0 et € > 0,

sup | by(z) —b(x) |— 0, et sup | an(z) —a(z) |- 0

|z <r || <r

et

sup N,y (@, {y,| y —x |> €}) = 0.

lz|<r

Soit (YN (n))n>o la chaine de Markov de noyau de transition uy et XN le processus
défini par XY = YN ([Ny]).

Si (YN(0))n converge en loi vers v alors (X)) converge en loi vers la diffusion de
générateur A et de loi initial v.[12]

Remarque 3.5.1. En pratique, la chaine de Markov YN est en général a valeurs
dans un sous-ensemble Iy discret (et souvent fini) de R. Ainsi, son noyau de tran-
sition n’est-il pas défini sur tout R. Dans ce cas, il convient d’adapter le théoréme
ci-dessus en remplagant x par une suite (xy) telle que xn € Ix et qui converge vers

x.
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3.6 Quelques exemples d’application des processus

Markoviens en pratique

La convergence des processus de Markov se voit sur la convergence des généra-

teurs infinitésimaux en toute généralité.

3.6.1 File d’attente en temps continu et processus d’Ornstein-
Uhlenbeck

File d’attente :La salle de réservation d’une grande gare SNCF donne une bonne
représentation d’une file d’attente. Elle comprend un certain nombre de guichets
et des clients qui sont soit en train d’étre servis, soit en attente qu'un guichet se
libére. Le nombre total de ces clients présents dans la salle de réservation au temps
t est noté N;. Le hasard intervient dans les arrivées des clients ainsi que dans la
durée des services. La suite (IV;);>¢ est un processus stochastique a temps continu
et & valeurs dans F = N. L’objectif est d’étudier 1’évolution de N; au cours du
temps afin d’optimiser le nombre de guichets nécessaires pour satisfaire en un temps
raisonnable les clients .

On montre ici un exemple de chaine de Markov & temps continu célébre qui
converge vers un processus de diffusion non moins célébre. Soit A et pu deux réels
strictement positifs. On définit le processus de Markov Z a temps continu a valeurs

dans N de générateur infinitésimal A donné par

A si j=i+1,
A, §) = T si j=i-1,

—(A+ip) =i,

0 sinon.

Partant de i, le processus Z reste un temps exponentiel de paramétre A + iu puis
saute en i + 1 avec probabilité /(A + iu) ou en i — 1 avec probabilité ipu/(A + ip).
Ce processus s’appelle la file M /M /oo : elle modélise le nombre de clients dans une
file d’attente ou les personnes arrivent selon un processus de Poisson de paramétre
A et sont servis aussitot arrivés en un temps exponentiel de paramétre p. On peut

se convaincre que

1 —e M
VkEN,  L(Z|Zos) = B(k, e M) % P(AT)

En particulier, Z admet P(\/u) pour mesure invariante (symétrique) pour plus
des détails voir|12].

Proposition 3.6.1. Pour tout N > 1, notons Z% le processus M/M/oo(NX, 1) et
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XN le processus défini par

avec

= [NA/p+ VNz).

Alors la suite (X™) converge en loi vers le processus de diffusion X solution de

I’équation différentielle stochastique suivante :

dX; = V2\dB; — pX,dt avec Xg = x
c’est-a-dire vers un processus d’Ornstein- Uhlenbeck [12].

3.6.2 Modéles de croissance de populations

Modélisons la taille d’'une population par un processus de vie et mort a temps
continu dont la dynamique est la suivante ; Chaque individu meurt avec un taux p
et se dédouble avec un taux A indépendamment des autres. Nous allons supposer
que la population et le temps sont grands (mesurés en unités de taille N). [12]

Si A—p n’est pas de Uordre de 1/N cette renormalisation sera triviale (la population
devient nulle ou infinie immédiatement).

Supposons que N(A—p) = bet A4+pu = 2a+O(1/N). Si X} est le nombre d’individus
du processus au temps ¢, on considére qu’il y a N XV dans notre population. Chacun
des X} individus a deux horloges exponentielles qui tournent au dessus de sa téte.
L’instant (aléatoire) ot un événement (mort ou division) va se produire est donc de
loi E(N(XA+ p)) et il s’agit d’une mort avec probabilité pu/(A + u).

Pour le processus Y, chaque individu meurt avec un taux puy et se dédouble avec
un taux Ay indépendamment des autres et on note X le processus défini par
XN(t) = YN([tN])/N. Le processus X est a valeurs dans Ky = (1/N)N et son

générateur infinitésimal est défini par

iy si j=it1,
L N si j=i-1,
Vi,7 € N, L =
¥ N(N N> i\ + py) i
0 sinon.

En particulier, pour toute fonction de classe C? sur RY,

i) = () 6] o))
= Ow—mnkr (#) + 2540 (4) + o ),
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Supposons que Ay — py converge vers b et (Ay + pn)/N converge vers 2a en choi-

sissant par exemple
)\N:aN—i-%etu:aN—g

On obtient alors que si (zx)y est une suite de réels telle que z € Ky pour tout N

et qui converge vers x > 0 alors

Lyf(zy) e Lf(z) :=axf"(z) + bx f'(x).

La suite de processus de Markov a espaces d’états discrets converge donc vers

une diffusion X solution de I’équation différentielle stochastique suivante
dXt =\ 2aXtdBt + bXtdt

Donc la diffusion X (solution de 'équation différentielle sthocastique ) permet
de trouver la suite de chaine de Markov X}V dans les deux exemples :

— La file M/M/o0.

— Le nombre des individus du processus au temps t.
grace a la convergence en loi d’une suite de chaine de Markov vers un processus de

diffusion.

3.6.3 Les ARNm molécules(acide ribonucléique nucléique mes-

senger)

On va modéliser le comportement dynamique d'un seul géne( les molécules de
ARNm produites, les protéines résultantes) via une chaine de Markov en temps
continu. C’est une question tout a fait raisonnable de se demander s’il est logique de
modéliser les temps de réaction de tels processus cellulaires via des variables aléa-
toires exponentielles. la réponse est presque indubitablement «non», mais le modéle
doit étre interprété comme une approximation de la réalité et il a tres bien réussi a
élucider la dynamique cellulaire. C’est aussi un modeéle beaucoup plus réaliste qu’une
approche classique d’équations différentielles ordinaires , qu’est elle méme une ap-
proximation grossiére du modéle de chaine de Markov en temps continu. Considérons
un seul géne qui produit de ’ARNm (ce processus est appelé transcription) avec un
taux constant de A\, ol les unités de temps sont des heures, par exemple. De plus,
nous supposons que les molécules d’ARNm produisent des protéines (ce processus est
appelé traduction) a un taux de Ay - (JARNm), pour certains Ay > 0. Ensuite, nous
supposons que PARNm les molécules sont diminués a un taux de d,, - (fFARNm),
et les protéines sont dégradé a un taux de d, - (§protines). Graphiquement, nous

pouvons représenter ce systéme via

aWatm



3.6.3 Les ARNm molécules(acide ribonucléique nucléique messenger) 65

M yep

M &0

P&y

Il est important de noter que ce n’est pas la seule fagon d’écrire ces réactions.
Par exemple, beaucoup dans les communautés biologiques écriraient M — P, par
opposition & M — M+ P. Cependant, nous pensons qu’il est important de souligner,
a travers la notation M — M + P, que la molécule d’ARNm n’est pas perdue au
cours de la réaction. Comme le nombre de génes dans le modéle est supposé constant
dans le temps, I'état d’espace doit étre considéré comme Z;O. Par conséquent, on
laisse X () € Zio étre I’état du processus au temps ¢ ou le premier composant donne
le nombre de molécules d’ARNm et le second donne le nombre de protéines.
Maintenant, nous demandons : quelles sont les transitions possibles dans le modéle,

et quelles sont les taux? On voit que les transitions possibles sont données par
addition de la réaction des vecteurs

I P

Ay A X1 (8), dXi(t), dyXalt).

avec taux respectifs

Notez que la vitesse de réaction 3, respectivement 4, sera nulle lorsque X (t) = 0,
respectivement X5 (t) = 0. Par conséquent, la non-négativité des molécules est assu-
rée [13].



Conclusion générale

Dans ce mémoire, je me souciais aux processus de Markov en temps continu qui
sont des processus stochastiques ayant la propriété de Markov (qui signifie que pour
définir le futur il suffit seulement le présent), ce type de processus se trouve dans

deux cas :

1. Le ler cas, les processus Markoviens de sauts comme étant la généralisation
des chaines de Markov au temps continu en remplacant le pas de temps fixe
d’une chaine de Markov par des intervalles de temps aléatoires indépendants
de loi exponentielle donc sont des processus stochastiques {X:}:>o & espace
d’états {E = N} et d’instants de sauts (S,)nen et I'exemple le plus connu
et utilisé c’est le processus de Poisson, je trouve aussi que les processus de
naissance et de mort sont des cas particuliers de processus de Markov en temps
continu, leurs applications apparaissent dans la dynamique des populations et
la théorie des files d’attente, et on a vu que les chaines de Markov intégrées

sont les processus de Markov en temps continu.

2. Le 2 iéme cas, les processus de Markov en temps continu a espace d’états
continu ot le mouvement brownien est la brique fondamentale pour construire

des processus de Markov continue sur (R ou R").

J’ai étudié la propriété Markovienne qui joue un role important dans I’analyse sto-
chastique, j’ai détaillé aussi des calculs compliqués trouvés dans des différentes ré-
férences utilisées, et j’ai présenté des applications liées a la vie quotidienne, les
systémes des files d’attentes M /M /oo et ’ARN message mais j’ai trouvé un peu de
difficulté en raison du manque de références puisque la plupart des applications se

font en temps discret.
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