République Algérienne Démocratique et Populaire

Ministére de 1l’enseignement supérieur et de la recherche scientifique

?uz?lgﬁﬂ& N Attribué par la bibliothéque ’E‘”!?‘EE{HA
. ‘H‘:ﬁ![).'i.l‘.':-'d‘.\ﬂ \ ‘H‘:ﬁ![}.’&f:-‘ﬁﬁ_ﬂ
/il L oA

Année univ.: 2019/2020

Equations Différentielles Fonctionnelles
Stochastique avec Retard

Mémoire présenté en vue de 'obtention du diplome de

Master Académique

Université de Saida - Dr Moulay Tahar
Discipline : MATHEMATIQUES

Spécialité: Analyse Stochastique, Statistique des Processus et
Applications

par
Meriem HAMRI!

Sous la direction de

Dr k. Mehdi

Soutenue le 15/09/2020 devant le jury composé de

Mme. BENZIADI Université Dr Tahar Moulay - Saida Président
Mme. MEHDI Université Dr Tahar Moulay - Saida Encadreur
Mr. KANDOUCI Université Dr Tahar Moulay - Saida Examinateur
Mlle. BENZIADI Université Dr Tahar Moulay - Saida Examinateur

le-mail: meriem-hamri@yahoo.com



Remerciement

Tout d’abord, je remercie DIEU le tout-puissant pour la volonté, la santé et la patience

qu’il m’a donnée durant ma vie.

Je tiens & remercier particuliérement & mon encadreur, Madame " Khadem Mehdi"
d’avoir encadré ce travail, m’a l'aisser une grande liberté tout au long de ce mémoire.

Elle a toujours été & mon écoute et d’un aide précieuse.

Ma sincére reconnaissance a tous les membres du jury pour ’honneur qu’ils me font
en acceptant de présider et examiner ce travail.
Mme.F.BENZIADI, Pr.A. KANDOUCI, Mlle.F.BENZIADI
Je tiens a remercier mes enseignants du primaire, moyen, lycée et d’université

A tous ceux qui nous ont guidés avec gentillesse et effcacité
Un grand merci a mes collégues pour le soutien qui m’ont donnés .

Merci a tous ceux qui m’ont aidé de prés ou loin a réaliser ce travail.



Dédicaces

Je dédie ce modeste travail
A mes trés chers parents
A mes fréres: Ahmed, Abderrahim,et
Youcef Iyad
A mes trés chers amies kenza ,sthem
et chahira.



CONTENTS

Remerciement i
Dédicaces ii
Abstrat- Résumé v
Introduction Générale 1
1 Préliminéres 4
1.1 Définitions de Base . . . . . . . ... 4
1.1.1 Processus stochastique . . . . . . .. .. .. ... ... ... 4

1.1.2  Régularité des trajectoires . . . . . . . . ... ... 7

1.1.3  Autosimilarité . . . . . . . ... 8

1.1.4  Processus gaussien . . . . . . . . .. ... 9

1.2 Mouvement Brownien . . . . . . . . . ... o 9

1.3 Mouvement Brownien Fractionnaire . . . . . . . . . ... ... ... ... 11
1.3.1 Propriétés du Mouvement Brownien fractionnaire . . . . . .. . .. 12

1.4 La représentation du mouvement Brownien fractionnaire . . . ... .. .. 13
1.4.1 Représentation par Moyenne Mobile . . . . . . ... ... ... ... 13

1.4.2  Représentation harmonizable . . . . . . ... ... ... ... ... 14

1.4.3 Représentation de Levy-Hida . . . . . .. ... ... .. ... ... 14

1.5 Espacede Banach . . . . . . . . .. ... o 15
1.5.1 Le principe de contraction de Banach . . . . . .. .. ... .. ... 16

1.6 Rappels sur les équations différentielles fonctionnelles a retard . . . . . . . 17

1l



CONTENTS

v
1.6.1 Définitions . . . . . . . . .. 18
1.6.2 Théoreme d’existance et unicité de solution . . . . . ... ... .. 19
1.6.3 Intégration par la méthode despas . . . . . ... .. .. ... ... 19
1.7 Lafonction Gamma . . . . . . . . . . ... 21
1.7.1 Définition de la fonction Gamma . . . . . .. ... ... ... ... 21
1.8 Intégrale et dérivée fractionnaire au sens de Riemann-Liouville . . . . . . 22
2 Equations différentielles fractionnaires avec la dérivée de Riemann-liouville
dans I’espace des fonctions sommables 25
2.1 Hypotheéses . . . . . . . 26
2.2 L’équivalence du probléme fractionnaire avec son équation intégrale corre-
spondante . . . . ... 27
2.3 Existence et unicité de la solution pour le probléme du type Cauchy . . . . 28
3 Solution faible presque périodique pour les équations différentielles fonc-

tionnelles stochastique a retard dirigée par un MBF 34
3.1 Notions et Définitions . . . . . . . . . . . . ... . 34
3.2 Solutions faible presque périodiques . . . . . . . .. ... 39
3.3 Example . . . . .. 42

Bibliographie 45



Abstrat

In the present master thesis, we seek to introduce the mean properties of the fractional
Brownian motion and to study the stochastic delay functional differential equations driven
by a fractional Brownian motion.

First, we give some preliminary background of stochastic processes and stochastic in-
tegration in order to solve functional differential equations with delay, then we give an
overview on the existence and uniqueness of the solution of a Nonlinear fractional dif-
ferential problem of the voltérra type with delay in a finite interval . The results of
existence and uniqueness are proved using the theorem of the Banach fixed point. Next,
we establish the result of the existence of quadratic mean soft almost periodic solutions

of a functional differential equations directed by fractional Brownian motion with Hurst

parameter H > %, under certain appropriate assumptions, by means of semi-group of
operators and the method fixed point.

Keywords: Fractional stochastic differential equation, Fixed point principle, Infinite de-
lay, Fractional Brownian motion, Functional differential equations stochastic with delay,

Almost periodic, quadratic mean solution.



Résumé

Dans ce travail, nous cherchons & présenter les propriétés du mouvement Brownien frac-
tionnaire, et a étudier les équations stochastiques différentielles avec retard dirigées par

le mouvement Brownien fractionnaire.
Premiérement nous donnons quelques notions préliminaires sur les processuses stochas-

tiques et I'intégration stochastique afin de résoudre des équations différentielles fonction-
nelle avec retard, puis nous donnons un apercu sur I’éxistence et l'unicité de la solution
d’un probléme différentiel fractionnaire non linéaire du type voltérra avec retard dans un
intervalle fini . Les résultats ’éxistence et 1'unicité sont prouvés en utilisant le théoréme
du point fixe de Banach. Ensuite, nous établissons le résultat de I'existence des solutions

presque périodiques a moyenne quadratique d’une équation différentielle fonctionnelle

1

dirigée par le mouvement Brownien fractionnaire avec parameétre de Hurst H > 3,

sous
certaines hypothéses appropriées, au moyen de semi-groupe d’opérateurs et de la méthode
de point fixe.

Mots clés: Equation différentielle stochastique fractionnaire, Principe de point fixe, Re-
tard infini, Mouvement brownien fractionnaire, Les équations différentielles fonctionnelles

stochastique avec retard, Solution presque périodique a moyen quadratique.

vi



Introduction générale

EN 1993, F.Russo et P.Vallois ont jeté les premiers bases d'un calcul stochastique,

généralisant ceux plus classique d’It6 et Stratonovitch et dont des intéréts est qu’il
permet de donner un sens a des intégrales contre des processus qui ne sont pas forcément
des semimartingales.

Les processus gaussiens fournissent de nombreux exemples de processus qui ne sont pas
des semimartingales. Parmi les processus gaussiens le mouvement Brownien fractionnaire
est trés utilisé, sa fonction de covariance étant particuliérement simple. C’est pourquoi,
dans la suite, ce processus sera plus utilisé pour tester les résultats généraux que nous
établirons. Le mouvement Brownien fractionnaire(MBF) Bf = {BF ¢t > 0} avec le
paramétre de Hurst H € (0, 1) est une moyenne null avec fonction de covariance

Ky (s,t) = S ([t + [ — |t — s[*") (1)

1
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De (1) on déduit que E(|BX — BH|) = |t — s|*! et par conséquence les trajectoires de
B sont presques stire localement 3-hélderiennes continus, pour tout 8 € (0,1) , étant

donné que B n’est pas un semimartigale si H # % on ne peut pas utilisé la théorie

classique d’Ito, pour construire un calcul stochastique par rapport & MBF on peut utilisé

une approche par chemain pour définir les intégrales par rapport MBF avec le paramétre
H > % et cette méthode est basé sur le calcule fractionnaire .
Le but du calcul fractionnaire est de généraliser les dérivées des ordres entiers (clas-
siques) & des ordres non-entiers.
La théorie des dérivées de I'ordre non-entier ne soit pas nouveau, ces origines remon-
tent & la fin du 17€ sciécle, le moment ott Newton et Leibniz ont développé les fondements
an

de calcule d’intégral différentiel. Leibniz a introduit le symbole 7= f(z) pour désigner la

n'™e dérivée d’une fonction f. Quand il a signalé cela dans une lettre & I’'Hopital, qui posa
la question si n = %?, Leibniz réponds qu’il s’agit la d’un paradoxe, mais qu’un jour.

Les avantages des dérivés fractionnaires deviennent apparents dans la modélisation

des propriétés mécaniques et électriques des matériaux réels et dans de nombreux autres

domaines.



L’étude des problémes fractionnaires est d’actualité et plusieurs méthodes sont ap-
pliquées pour la résolution de ces problémes. Néanmoins les méthodes basées sur le
principe du point fixe jouent un grand role.

Les théorémes du point fixe sont les outils mathématiques de base, montrant I'existence
des solutions dans divers genres d’équations. La théorie de point fixe est au coeur de
I’analyse non linéaire puisqu’elle fournit les outils nécessaires pour avoir des théorémes

d’existence dans nombreux problémes non linéaires différents.

I’objectif de ce mémoire est d’appliquer cette derniére technique pour étudier certaines
classes d’équations différentielles & retard, qui surviennent dans certains modéles dont
I’état & un instant donné, est une fonction qui dépend de son passé. On peut rencontrer
ces équations dans plusieurs domaines d’applications, notamment en économie, physique,
médecine, biologie, écologie ... etc. En effet, dans certains phénomeénes, on s’est apercu
que la connaissance de la solution en un point ne suffit pas pour décrire I’évolution sur
un intervalle de temps donné. Plus précisément, nous intéressons de la périodicité.  La
théorie de presque périodicité a été développée dans le cadre des problémes liés aux

équations différentielles, systémes dynamiques et les autres domaines des mathématiques.

le travail réalisé dans ce mémoire a pour étudier des équations différentielles stochas-
tiques fonctionnelles avec retard dirigé par un mouvement Brownien fractionnaire.
Le sujet principal est I’étude de I'existance et unicité des solutions faible presques péri-

odiques & moyenne quadratique .

On a structuré ce manuscrit en trois chapitres.

Le premier chapitre, est introductif contient des préliminaires nécessaires pour la bonne
compréhension de ce manuscrit , des rappels concernant les équations différentielles fonc-
tionnelles avec retard, notions de base sur calcul stochastique, une base théorique du calcul
fractionnaire nécessaire pour le développement des chapitres qui suivent et le théoréme du
points fixe de banach est aussi présenté dans cette partie comme outil essentiel permettant

de prouver l'existence et 'unicité de la solution de notre probléme.

Le deuxiéme chapitre, contient le premier résultat originale de ce mémoire qui consiste

a démontrer 'existance et 1'unicité d’un probléme différentiel fractionnaire non linéaire



du type voltérra avec retard suivant :

(Dgrx)(t) = f [t,xt, /tK(t, s,azs)ds}, t>0, O<a<l (2)
(I;z°z)(0") = 7, 7€R (3)
x(t) = o) tel-7,0] (4)

z(0) = xz(t+0) 6 € [—,0]. (5)

Dans le cas de la dérivée fractionnaire au sens de Riemann-Liouville dans 1’espace L

défini dans un intervalle fini [0, 7] pour tout 0 < o < 1.

Le troisiéme chapitre, qui est consacré a 1’étude d’existance d’une solution faible
presque périodique a moyenne quadratique pour les équations differentielles fonctionnelles

A retard

dr(t) = (Az(t) +b(t, x(t),z,))dt + ou(t)dBH(t), te[0,T], (©)
z(t) = ), —r<t<0, r=0,

Ou Bf = {Bj(t),t € [0,T]} est un mBf indice de Hurst.H € (3,1)
Certains conditions suffisantes sur I'opérateur A et les coefficients b, oy, assurant I’existance

des solutions faibles presque périodique & moyenne quadratique .

Le mémoire se termine par une conclusion, dans lequel nous résumons les principaux

résultats de ce travail.



CHAPTER 1

PRELIMINERES

Dans ce chapitre, nous donnons quelques définitions, propriétés et lemmes fondamentaux,
qui seront utilisés tout au long du travail. Pour plus de détails concernant les résultats

cités dans ce chapitre ,on peut référer aux [6],[8],[11],[16] et [12]

1.1 Définitions de Base

1.1.1 Processus stochastique

Définition 1.1.1.1. Un processus stochastique X = (X;)i>0 est une famille de variables
aléatoires indexées par un ensemble de temps T, toutes définies sur un méme espace de
probabilité (2, F,P) a valeurs dans un espace mesurable (F,() appelé espace d’états du
processus X : (t,w) — Xy(w).

En général T =10,T] = [0,1] =Ry ou R.

Un processus dépend de deux paramétres : Xy (w) dépend de t (en général le temps) et de

l'aléatoire w € §):

o Poutt €T fizé, w € Q — Xy(w) est une variable aléatoire sur l’espace de probabilité

(Q7 F’ IP)) 7.

o Pourw e T fixé,t € T — Xi(w) est une fonction & valeurs réelles, appelée trajectoire

du processus.



1.1 Définitions de Base

Définition 1.1.1.2. On appelle loi fini-dimentionnelle d’un processus stochastique

X = (Xi)t>0 U'ensemble des lois
{,C(th, ..... ,ti) . tp € T,p € N*}

qut est caracterisé la loi Px du processus X.
Définition 1.1.1.3. Etand donné deux processus stochastiques X etY,

e Deux processus X et'Y ont méme lois s’ils ont méme lois fini-dimensionnelles :

pour tout p € N* et ty,......,t, € T,

L c
On écrira X =Y,

e On dira que Y est une version (ou une modification) du processus X si pour tout

teT,onaP(X;=Y;) =1
o Deuz processus sont dit indistinguables st P(X; =Y, Vt € T) = 1.

Définition 1.1.1.4. Un processus est dit:

e stastionnaire si pour tout h >0, (X¢1n)i>o0 £ (Xt)e>0 ne dépent pas de h .
e 4 accroissements stationnaires sila loi des accroissements Xy p, — X; ne dépent
pas de t,ie Xyip £ X5

e ( accroissements indépendants si pour toutp > 1 et 0 <t; <ty < ..... <t, les

variables aléatoires Xy, Xy, — Xy, ..., Xy, — Xy, sont indépendantes.

Définition 1.1.1.5. Un processus X est a variation finie sur [0,T] si pour tout famille

de subdivision 0 =tg <t;1 < ....<t, =T on a:

Z(Xti+1 - Xti)2

7



6 Préliminéres

qui converge en probabilité vers une variable aléatoire Y. dans ce cas Y sera appelée la

variation quadratique X

Soit (t?)i]i(g) une subdivision de [0,T] et

N n
o(n) = sup (t — 17)-

Définition 1.1.1.6. Soit (2, F,P) un espace de probabilité. Une filtration F = (Fi)i>0

sur cet espace est une famille croissante (Fy)er de sous tribus de F.

Définition 1.1.1.7. Soit (Fy)icr Une filtration est :

o Compléte si les ensembles P-négligeables de F., sont dans Fy et si l’espace de prob-

abilité est complet,

e Continue a droite si Fy, = F;, V>0 ou V>0, F, :ﬂ]—“s

s>t

o Satisfait les conditions habituelles, si elle est continue a droite et complete.
On note F = (F;)i>0 la plus petite filtration qui contient F est satisfait les conditions
habituelles.

Définition 1.1.1.8. On dit qu’un processus X est mesurable si l’application
(t,w) — Xi(w)

définie sur Ry x Q muni de la tribu B(R,) ® F est mesurable. Un processus est dit adapté
si pour tout t > 0, X; est Fy;-mesurable. Le processus X est dit progressif si, pour tout
t > 0 Uapplication

(t,w) — Xi(w)

est mesurable sur [0,T] x Q muni de la tribu B(]0,T)) @ F;, o B([0,T]) est la tribu de
Borel.

Définition 1.1.1.9. Soit (Q, F,P) un espace probabilisé et (F;); une filtration de cet es-
pace.



1.1 Définitions de Base 7

Une famille adapté (My)i>o de variables intégrables (i.e vérifiant E(|M;|) < oo pour tout
t ) est

e Une martingale si, pour tout s <t, E(M;/Fs) = M.
e Une surmartingale si, pour tout s < t, E(M,;/Fy) < M.
e Une soumartingale si, pour tout s < t, E(M;/Fy) > M,.

Définition 1.1.1.10. Soit H? [’espace des martingales continues bornées et de carré in-
tégrable, On définit un produit scalaire sur H? par (M, N) = E(< M,N >,). L’espace

L? est l'espace de Hilbert pour le produit scalaire

“+o00
(H,K) = E( H,K,d < M,M > s),
0

H,, K, deuz processus progressifs M € H?

1.1.2 Reégularité des trajectoires

Définition 1.1.2.1. On dit que le processus stochastique X est continu (respectivement

continu a droite, continu a gauche) si Vw € €, la trajectoire
t— X,
est continue (respectivement continue & droite, continue 4 gauche).

Définition 1.1.2.2. On rappelle qu’une fonction f : R —= R? est dite B-Héldérienne

s’il existe k < 400 tel que :

1/ (@) = f)ll < slle —yllI”

ou ||.|| désigne la norme de RP ou de R%.

Ce théoréme donne une condition suffisante pour qu’un processus stochastique ait une

modification continue avec des trajectoires Héoldériennes.
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Théoréme 1.1.2.1. [12](Kolmogorov) Soit (X;)i>o un processus tel qu’il existe p, e,y >
0 vérifiant pour tout s,t :

E(|1X: = Xf7) < Alt — s

Alors il existe une version continue X de X.

En fait, les trajectoires de X sont mémes B-holdériennes pour tout 5 < 5.

1.1.3 Autosimilarité

Définition 1.1.3.1. Un processus X est autosimilaire d’indice H si pour tout a > 0 :

{X(at),t € R} £ (o X(1),t € R}

au sens de [’égalité des lois fini-dimensionnelles.

Cette propriété montre qu’un changement d’échelle dans le temps est équivalent (en
loi) a un changement d’échelle en espace. Attention, cependant au fait qu’il s’agit d’une
égalité en loi et pas en trajectoire.

Remarque 1.1.3.1. Un processus autosimilaire ne peut pas étre en plus stationnaire car

on aurait

£

X(t) £ X(at) £ "X (1)

On a en particulier E[X (t)] = o'E[X (t)], ce qui donne une contradiction quand on fait

tendre a” — +oo(H > 0).

Cependant, il existe un lien entre les processus autosimilaires et les processus stationnaires.

Proposition 1.1.3.1. Soit (X;)i>0 H-autosimilaire, alors
Y, =X, teR

est stationnaire. Réciproquement, si (Y;)ier est stationnaire alors X (t) = t2Y (Int) est H

autosimilaire.

Proposition 1.1.3.2. Soit (X;); un processus autosimilaire et & accroissements station-

naires tel que P(X (1) # 0) > 0. On suppose que E[| X (1)|°] < +oo alors

1
O<H<B si 0< B <1,

0<H<1 si g>1.
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1.1.4 Processus gaussien

Définition 1.1.4.1. Soit un processus {X;}i>0 @ valeurs réelles.
On dit que ce processus est gaussien si tout ses loi fini-dimentionnelle L(Xy,, ..., Xy,) sont
gaussiens (Vp € N, Vtq, ..., t,).

Autrement dit X = (X); est gaussien si toute combinaison linéaire A1 Xy, ..., Ap X,

suit une loi gaussienne (pour tout p € N t1,.....t, et Ay, .....; A, € R).

Définition 1.1.4.2. Un espace gaussien est un sous-espace vectoriel fermé de L*(Q, F,P)
formé de variables gaussiennes.

Par exemple si X = (Xq,...... , X,) est un vecteur gaussien dans RP, alors l’espace

vectoriel engendré par { X, ....... . X} est un espace gaussien.

Proposition 1.1.4.1. Un processus gaussien X est stationnaire ssi E[X| est constante

et K(s,t) = K(s—t) (on parle de stationnarité faible)
Exemples de processus gaussiens :

- Processus d’Ornstien-Uhlenbek: est le processus gaussien centré définit par :

1 . :
X: = e 2B(e'), o B un mouvement Brownien

- Bruit Blanc gaussien : Soit (B, ;1) un espace mesuré et
X ={B €B: u(B) < +oo} le bruit blanc est un processus gaussien

(XB)pes indexé par 'ensemble des mesurables B

Remarque 1.1.4.1. Les processus gaussiens les plus connus sont le mouvement Brownien

et le mouvement Brownien fractionnaire

1.2 Mouvement Brownien

Le mouvement brownien a été exhibé pour représenter des mouvements qui évoluent au
cours du temps de facon particuliérement désordonnée, par exemple en physique pour
représenter des particules microscopiques soumises aux multiples chocs de leur environ-
nement ou en finance pour représenter des cours de bourses trés volatiles. Le mouvement

Brownien joue un role central dans la théorie des processus stochastiques (comme la loi
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normale standard N (0, 1) pour les lois de probabilités sur R). Il apparait dans de nom-
breuses situations aussi bien théoriques qu’appliquées et il offre un cadre assez simple ot

de nombreux calculs peuvent étre menés .

Définition 1.2.1. Un mouvement Brownien standard réel (M B) est un processus gaussien

centré, noté B = (By)i>o 4 trajectoires continues de fonction de covariance :
cov(By, By) = min(t,s) =t A s.
On Uappelle aussi processus de Wienner.
Propriétés 1.2.1.
e By=0.
e Pour tout t > 0, B, ~ N(0,1).

o Pour tout 0 < t; <ty < ... < t,, les variables aléatoires By, , By, — By, ...... , By, —

By, , sont indépendantes.

. . vy . 1 .
o Autosimilarité :Pour tout a > 0,{az B} est un mouvement Brownien.

e Propriétés de symétrie : Le processus (—By)i>o est aussi un mouvement Brown-

1en.
e Stationnarité : Les accroissements du mouvement Brownien sont stationnaires

e i.e. Vs <t; B, — By est une variable gaussienne centrée de variance t — s.

e Inversion du temps: Pourt #0 et Xqg=0,X; = tB% est un mouvement brownien

standard .

e Retournement du temps :Le processus retourné a linstant T, X, = Wy — Wr_y

est encore un mouvement brownien sur [0,T] .

Proposition 1.2.1. [12] Presque sirement, les trajectoires du mouvement Brownien ne

sont pas différentiables .
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1.3 Mouvement Brownien Fractionnaire

Définition 1.3.1. Le mouvement Brownien fractionnaire standard d’exposant de Hurst
H € (0,1) noté Bl est un processus gaussien continu centré nul en zéro et est le seul

preossus vérifiant les propriétés suivantes :
1. autosimilarité Na > 0,(a™ By)i>0 a méme loi que (By)i>o
2. accroissements stationnairesNh > 0, (Byin, — Bp)i>o a méme loi que (By)i>o
3. gaussien avec E(By) =0 et E(B}) = 1.

Autrement dit
pour 0 < H < 1, Le mouvement Brownien fractionnaire d’indice H, (BH);>o est le

processus gaussien centré de fonction de covariance :

1
cov(Bi', By) = S (It + [s|*"" — [t = s/*")
Remarque 1.3.1.

n

e Le mouvement Brownien fractionnaire "non-standard” a la fonction de covariance

suvante :
H pH _V(H) 20 2H 14 _2H
cov(By", By') = ——([s]™" + [t it —s[*)
avec

['(2 —2H) cos(mH)
TH(1 —2H)

v H) —

0t T'(.) est la fonction gamma définie par: T(Z) = [/ t*~Te~tdt

Nous n’aurons jamais considéré un tel cas.

e Soit (Bf');>0 un mouvement Brownien fractionnaire, pour H = % on obtient le

mouvement Brownien (By)>o.
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Propriétés 1.3.1.

- Le mouvement Brownien fractionnaire (B);>o est un processus gaussien de variance

2H .
=

- Le mouvement Brownien fractionnaire (Bf') de parametre de Hurst H € (0,1)/{3} n’est

pas un processus de Markov.

1.3.1 Propriétés du Mouvement Brownien fractionnaire
La propriété de Holder et la différentiabilité

Proposition 1.3.1.1. pour H € (0,1), le mouvement Brownien fractionnaire (B™) est
B-Hdéldérien pour tout < H
Preuve:

B(BY ~ BIP) = BB — 2B BY + B

Par Uapplication de la linéarité de ’espérance, on a :

E(1B" = 2B B + B"|) = E(|B"|) - 2B(1B B{|) + E(|B"])
— ‘t2H‘ + |S2H‘ - ’tZH—FSQH— (t—S)ZH‘

= (t—s)?H.

Théoréme 1.3.1.1. Le mouvement Brownien fractionnaire BY n’est pas différentiable,

pour tous H € (0,1). De plus pour tout ty € [0, 00|

BH — pH
P = (limsup }4‘ = oo)
t—to t—1o
Preuve:
. B'—-BI'
Désignons que Ty, = — utilisons la propriété d’autosimilarité, on a :
— 1o

L _
T = (t —t0)" ' By’
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BH
On définit Z(t,w) = { sup ‘ = > d‘} Puis, pour toute suite (t,),en qui décroit vers 0.
0<s<t S
ona: Z(tyi1,w) CZ(t,,w).
Ainsi
P(lim Z(t,)) = lim P(Z(t,))
et

tn

Pz > P |

n

> d) =P(|Bf| > t:"7d) — 1
propriétés 1.3.1.1. Le mouvement Brwonien fractionnaire a aussi ces immédiates pro-
PTiEtés :

e Bll=0 P-ps

e Pour toust > 0,E((Bf)?) = t*#;

e La variation quadratique du mouvement Brownien fractionnaire est équivalente p.s
1-2H

an
1.4 La représentation du mouvement Brownien frac-
tionnaire

Soit BH = (Bf)i>0, H € (0,1) un mouvement Brownien fractionnaire. Il existe de nom-
breuses représentations d’un mouvement Brownien fractionnaire. Plus ou moins com-
pliquées selon que 1'on souhaite obtenir une représentation sur un compact de R ou sur

R tout entier

1.4.1 Représentation par Moyenne Mobile

Soit 0 < H < 1, B Le mouvement Brownien ordinaire.

Le Processus définie par:

Bl = ﬁ/}z <(t— s)H-z — (—s)H$>dBS. teR (1.1)
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ol

1
2

Ci(H) = (/R((Hs)H—é _SH_%)zds-f-%)

est Le mouvement Brownien fractionnaire d’indice de H (issue de Mandelbort et Van

Ness(1968)[13])

1.4.2 Représentation harmonizable

Samorodnitsky et Taqqu (1994) ont montré que le mouvement brownien fractionnaire

peut étre représenté par 'intégrale stochastique suivante :

itr -
JET i 2|~ 2)dB teR
t - T
R 1T

Avec

™

HTI'(2H) sin(HW))

N

C(H) = (

et B est un mouvement Brownien a valeur complexe.

1.4.3 Représentation de Levy-Hida

la représentation de Levy-Hida du mouvement Brownien fractionnaire est la suivante :
t
Bf{:/KH(t,s)dB57 0<s<t<l
0
ou Ky(t,s), est donné par

1 1 t
KH(t, S) = dH(t — S)H_§ + SH_§F1(—)
S

avec dy est une constante et

1 z—1
Fy=dy(; — H) / 013 (1— (0+1)"2)de
0
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si H € (0,3)

le noyau Ky est donné par :

Kutos) = bu ()= = (= 3) [y dur- )

ou

- 2H :
" \1-2HB(1-2H,H + 1)

avec B est la fonction Béta (B(a,b) = fol ta1(1 —t)b-dt)
siH e (3,1):

Le noyau a la simple expression suivante :
1 t 3 1
Ky(t,s) = cHs?‘H/ lu — s 20t "2 du, t>s,
S

ou

= ()

1.5 Espace de Banach

Soit (X, d) un espace mérique, (x,)nen une suite de X.

Définition 1.5.1. Soit (X,d) un espace métrique, (x,)nen une suite de X. On dit que

la suite (x,,) est une suite de Cauchy si
Ve>0,IN e NV(p,n) e N,(p> Netn>N)= |z, —xz,| <e

Proposition 1.5.1. Toute suite convergente est évidemment de Cauchy.

La réciproque est fausse.

Définition 1.5.2. Un espace métrique (X,d) est complet si toute suite de Cauchy dans

X est convergente.
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Définition 1.5.3. On appelle espace de Banach (E,||.||g) tout espace vectoriel normé et

complet pour la distance déduit de la norme.

Définition 1.5.4. On dit qu’une fonction f : E — E, est lipschitzienne s’il existe k > 0
tel que

1/ () = FW)ll < K|z =yl

pour tout x,y € K. La plus petite valeur k satisfaisant cette propriété pour la fonction f

est appelée la constante de Lipschitz.

Définition 1.5.5. On dit que la fonction f est localement lipschitzienne, si pour tout
point xg de E il existe un voisinage de xo dans lequel f est lipschitzienne dans ce voisinage
autrement dit k dépend de xy.

Une fonction lipschitzienne est continue.

1.5.1 Le principe de contraction de Banach

Théoréme 1.5.1. [6] Soient (E, ||.||) un espace de Banach, f : E — E une contraction,

alors f admet un point fixe unique.
Preuve.|6]

i) Existence
Soit k une constante de contraction de la fonction f, et soit xy un élément arbitraire mais

fixe dans E. On construit une suite (z,),eny dans E par
Ty = f(xn_1), pour tout n>1 (1.2)

On doit prouver que (z,) est une suite de Cauchy dans E. Comme f est une contraction,
on a

[2ns1 = zall = [[f(@n) = f(@n-n) | < kllan =2l pour tout n=1  (1.3)
Ainsi, on obtient

|Tni1 — zn|| < E"||x1 — 20|, pour tout n>1 (1.4)
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Par conséquent, pour tout m > n, on utilise 'inégalité triangulaire

|Tn — 2wl = ||Tn — Tpy1 + Tpi1 — Tnao + Tpao — oo + T — Ta|
< n = Tmeall + 701 — Zasall + o+ [T — 2
< (B4 B L B ||l — |
< kE(Q+k+ ..+ B Yz — x|
< 1k_nka1—on—>O quand n — 0

et donc la suite (z,,) est de Cauchy. Comme E est un espace de Banach, elle converge

donc vers une limite p e B, p= lim =z,.
n—=o0

Par la continuité de f, on obtient

p= lim z,= lim f(x,_1)=f(lim z,.1)= f(p)

n—>o00 n—>o00 n—>0o0
alors f admet un ponit fixe.
ii) Unicité
Supposons qu’il existe deux points fixes p et ¢ de f, alors on a

lp —all = 11f(p) = F( DI < llp—all,

et comme k < 1, ceci n’est possible que si p = g.

1.6 Rappels sur les équations différentielles fonction-
nelles a retard

Dans cette partie, nous rappelons quelques définitions et résultats sur les équations dif-
férentielles fonctionnelles & retard, le théoréme d’existence et d’unicité des solutions, la
méthode des pas, ainsi que quelques propriétés de ces équations. Pour plus de détails on

peut référez aux livres [11] ,[16]
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1.6.1 Deéfinitions

Etant donné un nombre 7 > 0,¢y € R, On note par C = C([to — 7], R), 'espace de Banach
des fonctions continues définies sur l'intervalle [t) — 7, %] & valeurs dans R , muni de la

norme de la convergence uniforme ||.||, ¢y € R.

Définition 1.6.1. On appelle équation différentielle a retard, une équation de la forme

!

x(t)= f(t,z(t),x(t — 7)) t>to, (1.5)
oi f: R® — R, une fonction continue.

Définition 1.6.2. Une condition initiale pour [’équation (1.5)est donné par la fonction

z(t) = @(t), te€to—T,to),
OuypeC.

Définition 1.6.3. On dit que x est une solution de l’équation (1.5) s’il existe o > 0 tels
que

e x définie et continue sur [ty — r to + «f.
e x dérivable sur [ty,to + af et satisfait I’équation (1.5) sur Uintervalle [to, to + .

Définition 1.6.4. = est dite solution du probléeme de Cauchy,

() = f(t,x(t),2(t = 7)), t=to,
{ 2(t) = p(t) t € [to — 7, to], (16)

s’il existe o > 0 tel que x soit solution de l’équation (1.5) sur [to,to + «f, et
z(t) = o(t), t€ [to—7,to].

Proposition 1.6.1. [11] soit to € R, € C donné et f : R3 — R, une fonction
continue. Une fonction x est solution du probleme (1.6) si et seulement si elle est solution

du probléeme suivant

x(t
(

x(t

= gtto + [ Sto.a(onats — s, ¢2 0 )
(t),

)
)=
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1.6.2 Théoréme d’existance et unicité de solution

Considérons le probléme de Cauchy (1.6),

{ () = f(t,z(t),z(t — 7)), t>ty,
z(t) = p(t) t € [to — 7, tol,

Théoréme 1.6.1. Si f : R® — R est continue, alors le probleme (1.6) admet au moins
une solution, si de plus f est localement lipschitzienne par rapport aux deux derniéres

variables, alors cette solution est unique.
Propriétés 1.6.1.

i) Pour résoudre ’équation différentielle a retard (1.5)

’

w(t) = f(tx(t),z(t = 7)), t=tlo,

il faut connaitre x(t) sur un intervalle [ty — T,to|, de longueur T.

ii) Une équation différentielle a retard linéaire et homogéne, peut avoir des solutions os-
cillantes non triviales, c’est-a-dire des solutions qui s’annulent plusieurs fois, mais

elles me sont pas identiquement nulles.

iii) Deux solutions, d’une équation différentielle & retard peuvent se rencontrer en plusieurs

points, sans qu’elles soient égales.

1.6.3 Intégration par la méthode des pas

Pour simplifier les calculs nous considérons ¢ty = 0. Alors le probléme de Cauchy (1.6)

devient

x,(t) = f(t,.l’(t),:(](t - 7_))7 t > 07
{ (1) = o(t) te [0, (1.8)

i) La résolution sur [0, 7] ;

Soit t € [0, 7], alors t — 7 € [—7,0] et de la on a

2t —7) = ¢t —7),
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et le probleme de Cauchy (1.8) devient

{ z(t) = f(t,x(t),z(t —71)), telo,71],
z(t) = ¢(0),

d’aprés la proposition (1.6.1) I'équation ' (t) = f(t,2(t), p(t — 7)),t € [0, 7], s’écrit sous

la forme intégrale suivante z(t — 7) = @(t — 1)

£(t) = p(0) + / F(s,2(s),0(s — ))ds, t € [0,7],

donc, la solution sur [0, 7], qu’on notera x;(t) est donnée par

z1(t) = ¢(0) +/O f(s,x(s),p(s —71))ds, tel0,7] (1.9)
ii) La résolution sur [r, 27]

On refait 'opération sur [, 27], en considérant comme condition initiale z(t) = x;(¢)

sur [0, 7].
Soit t € [1,27], alors t — 7 € [0, 7] et de la on a

x(t—71)=mz(t —7)

et le probleme de Cauchy (1.8) devient

{ o' (t) = f(t,z(t), z(t — 7)), t€[r,27],

x1(7),

Péquation 2 (t) = f(t,z(t), v, (t — 7)), t€ [r,27],

s’écrit sous la forme intégrale suivante

x(t) =z (1) —I—/ f(s,z(s),z1(s —7))ds, t€]|r,27]

donc, la solution sur [r,2r], qu'on notera xz5(t) est donnée par

xo(t) = 1(7) +/ f(s,z(s),x1(s —7))ds, te€|[r,27]
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et ainsi de suite.
Cette méthode s’appelle la méthode des pas.

1.7 La fonction Gamma

La fonction Gamma a été introduite par le mathématicien suisse Leonhard Euler (1707-
1783) dans son objectif de généraliser la factorielle des valeurs non entiéres. Plus tard,
en raison de sa grande importance, elle a été étudiée par d’autres éminents mathémati-
ciens comme Adrien -Marie Legendre (1752-1833) , Carl Friedrich Gauss (1777-1855) ,
Christoph Gudermann (1798- 1852) , Joseph Liouville (1809-1882) , Karl Weierstrass
(1815-1897) , Charles Hermite (1822-1901) et beaucoup d’autres. Elle apparait également
dans divers domaines, comme les séries asymptotiques , I'intégration définie , série hyper-
géométrique , fonction zéta de Riemann , théorie des nombres ...Pour plus de détails sur

cette fonction (voir [2],[9]).

1.7.1 Définition de la fonction Gamma

L'une des fonctions de base du calcul fractionnaire est la fonction Gamma d’Euler I'(2):

La fonction Gamma I'(2) est définie par 'intégrale suivante :

+o00o
['(z) = / t*=te~tdt,
0

avec I'(1) = 1,I'(04) = 400, ['(2) est une fonction strictement décroissante pour 0 < z <

1. Quelques propriétés de la fonction Gamma
L(z+1) =2I'(2)

qu’on peut la démontrer par une intégration par parties

t=4o00

+oo +oo
F(Z + 1) — / t(Z+1)_1e—tdt — |: _ tze—t:| _I_ Z/ tz_le_tdt — ZF(Z)
0 0

t=0
La fonction Gamma d’Euler généralise la factorielle car I'(n + 1) = n!,Vn € N.

I

sin(7z)

DD~ 2) = (= ¢ Zy:0 < R(:) < 1):T(5) = v
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La fonction beta est définie par
1
B(z,w) = / 71 — ) Lt (R(2) > 0); (R(w) > 0),
0

Cette fonction est reliée aux fonctions gamma par la relation suivante

B(z,w) = %,(2,&) ¢ ZO_)
1.8 Intégrale et dérivée fractionnaire au sens de Riemann-
Liouville

Soit f € C(€Q).On définie l'intégrale fractionnaire d’ordre @ € R(aw > 0) au sens de

Riemann-liouville (& droite) notée %, par

1 [" f(s)ds
I = 1.1
B0 = o | G (> 00> 0) (1.10)
ou I est la fonction gamma d’Fuler définie par
[(z) = / t*le7tdt (R(z) > 0), (1.11)
0
a—1

Sia =0, en écrit (I, )(t) = f(t)*pa(t), telle que pq(t) = pourt >0 et @,(t) =0

()
pour t < 0.

Définition 1.8.1. La dérivée fractionnaire au sens de Riemann-liowville (& droite) notée

D& x d’ordre o € R(0 < 7 < 1) est définie par

N B 1 d (" x(s)ds
Dra®) = e | e

(1.12)
d -«
_dt([‘ﬁ z)(t), (t>a,0<a<]l)

lorsque le membre de droite existe

Dans ce qui suit nous rappelons quelques résultats essentiels utiles pour motre étude.
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Le premier est le résultat bien connu qui caractérise les fonctions absolument contin-
ues comme les fonctions qui sont primitives de fonctions sommables. On a une relation
qui lie L’intégrale fractionnaire et la dérivée fractionnaire qui est donnée par le lemme

suwvant :

Lemme 1.8.1. /5] Si f € L'(a,b) et (I'7*f) € AC[a,b] et si 0 < a < 1 alors

(1,=°f)(a)

o) (x —a)*™ (1.13)

(L5 Dgs (@) = f(x) —
Le deuxieme montre que I, est un opérateur continue de L, dans luis méme
AC(a,b] Uespace des fonctions absolument continues sur [a, b
Lemme 1.8.2. L’espace ACa,b] coincide avec l’espace des primitives de fonctions sommables

de Lebesgue, c’est-a-dire

feACa,b) & f(z) = c+/ o(x)dt, (¢ € L(a,b)). (1.14)
Ainsi une fonction absolument continue f(z) a une dérivée sommable f(x) = f'(x)
dans [a,b], Alors (1.14) signifie que
p(t) = f'(t) et c = f(a)
Lemme 1.8.3. [5] L'opérateur I%, avec a > Oest bornée dans L,(a,b) (0 < p < +o00)

« (b_ a)a
1155 fllp < mﬂfﬂp (1.15)

Le troisieme affirme que 12 est bien linverse a droite de D¢,
Lemme 1.8.4. Sia >0 et f € Ly(a,b) (1 <p<+o00) alors

(DI f)(x) = f(x), presque partout dans |a, b (1.16)
Le lemme suivant donne une loi de composition pour I%,

Lemme 1.8.5. [5] Sia >0 et B> 0 alors

( ;i]f:rf)(x) = (I*M° f)(x), presque partout dans [a,b] (1.17)

a
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Propriétés 1.8.1. [1/

e Vi=1,23 .. laJ+1l,a>0o0na

(Dg+ (t— a)”‘_J) () =0
e Sia>0etfeR(B>0) alors

L'(s)

(1. - @) = o P

a)a+6—1



CHAPTER 2

L EQUATIONS DIFFERENTIELLES FRACTIONNAIRES

AVEC LA DERIVEE DE RIEMANN-LIOUVILLE DANS
L’ESPACE DES FONCTIONS SOMMABLES

Dans ce chapitre nous étudions 'existance et 'unicité de la du probléme différentiel frac-

tionnaire non linéaire du type voltérra avec retard suivant

(Dgrx)(t) = f {t, Ty, /t K(t, s,xs)ds], t>0, 0<a<l (2.1)
(I;r%2)(07) = T, TeR (2.2)
z(t) = (t) te[-7,0] (2.3)

z(0) = z(t+0) 0 € [—,0]. (2.4)

Dans le cas de la dérivée fractionnaire au sens de Riemann-Liouville dans 'espace L

défini pour tout 0 < a < 1 par
L*(0,7) =2 € L(0,7) : (Dg+z) € L(0,7) (2.5)

La méthode que nous utilisons consiste a réduire le probléme (2.1)-(2.2)-(2.3)-(2.4) a une
équation intégrale de voltérra et en utilisant le théoreme de point fixe de banach nous
prouvons 'unicité de la solution pour le le probléme (2.1)-(2.2)-(2.3)-(2.4)

On commence d’abord par énoncer les hypothéses sur f et K permettant la réduc-

tion du probléme fractionnaire avec retard a une équation intégrale.

25
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2.1 Hypothéses

o (H.1) Soit f: (0,7] x G xR = R, f(t,X,Z) € L(0,7),YX € G et VZ € R. On

suppose qu'il existe deux fonctions [1(t), l5(t) positives telles que

| f(t, X1, Z1) — f(t, Xa, Z2)|| no,m) < L)X = Xolleq-ror)
(2.6)
+l2<t>HZl — ZzHL(O’T),Vt € (O,T],VXl,XQ € G,VZl, Z2 eR
Ou
X;=al et Z;= /Ktsx (1=1,2) (2.7)
et on pose
te(0,7]

e (H.2) Soit K : D x G — R telle que K(t,s,z5) € L(0,7),Y0 < s < t,Vag €
C([-7,0,R)ou D = (t,5) e R*: t > 0,0 < s <t < 7 et il existe une fonction H(t, s) €
C(D,R") telle que

K (t,s,20) — K(t, s,22) ||, < H(t, s)||zh — 2] om0 R)s (2.9)
Vt,s € D,Vz!l, 2% € C([-7,0],R) (2.10)
et on note par
¢
H* = sup {/ H(t,s)ds,t,s € D} < 400 (2.11)
tE(O,Tl]

e (H.3) Soit M : RT — R* une fonction continue telle que M soit indépendant de
z(t) et Vo, x5 € L(0,7) alors z}, 22 € C([-7,0],R) et

lzf — 27 || cror) < M @)z — 2|0 (2.12)

on pose
M* = sup {M(t)} < 400 (2.13)

te[0,7m1]
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2.2 L’équivalence du probléme fractionnaire avec son
équation intégrale correspondante

Définition 2.2.1. [3] La fonction x est dite solution du probleme (2.1)-(2.2)-(2.3)-(2.4)
si x satisfait 'équation (2.1) et la condition initiale (2.2) dans (0, 7| et la condition (2.3)
et (2.4) dans [—T,0].

Théoréme 2.2.1. [1] Soit 0 < o < 1, soit G un sous ensemble ouvert de R et soit
f:(0,7] x G xR — R, (7 > 0) une fonction telle que f(t,X,Z) € L(0,7) pour tout
XeGetZeR

Six € L(0,7) alors x satisfait les relations (2.1)-(2.2) si et seulement si x satisfait

[’équation intégrale suivante

(t) = F(T / fls ”Cs’fo (5,2 2:lds oy (2.14)

Preuve. Nous démontrons
i) la nécessité.
Soit X € L(0,7) satisfaisant les relations (2.1) et (2.2). puisque f(t,X,Z) € L(0,7),
(2.2) signifie qu’il existe dans [0, 7] la derivée fractionnaire D,z € L(0,7T) on a
d l1—a l1—a
(Dgr)(t) = = (L "x)(8), (I "2)(t)) = 2(¢) (2.15)
Il suit du lemme 1.8.2 que (1);*) € AC[0,7] car

(2.1) & ;i(fé#")()Zf(t,X(t),Z(t));‘(féla)(t)chr/O (s, X(s), Z(s))ds, (2.16)

o
c=(I,7)(0) =T (2.17)

Alors nous pouvons appliqué le lemme 1.8.1 (avec f(z) = z(t)) on a

([Qlwfa)(o)ta—l _ T ta—l

(I3 D) (1) = alt) = 55207 = alt) = s

(2.18)
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D’apres le lemme 1.8.3 Uintégrale (I, f) € L(0,7) i.e existe dans [0, 7] Appliquons
Vopérateur sur les deux membres de (2.1) et utilisons (2.18) et (1.10) on obtient I’équation

(2.14) ce qui montre la nécessité .

ii) la suffisance.
Soit v € L(0,7) satisfait l'équation (2.14). Appliquons lopérateur sur DS, les deux
membres de (2.14), on a d’une part

(D2 2)(t) = —— (Dg 5= )(t)(D(‘)ﬂ]gif{s,xS, /Otms,z,xz)dzb(t) (2.19)

F(&)
la propriété 1.8.1 et lemme 1.8.4 (avec f(x) est remplacé par f[s,acs,fot K(s,z,x,)dz])
nous donne l'équation (2.1).

D’autre part on démontre que la condition initiale (2.2) est satisfaite. pour ceci on ap-

plique ’opérateur ]éjo‘ a (2.14) on obtient

(I'72)(t) = F(a) (I (e )(11 auf[s x/ K(s, 2, 2.)dz D(t) (2.20)

on utilise le lemme 1.8.5 et la propriété 1.8.1 on trouve que

(L7 %2)(t) =7+ /Otf[s,xs,/osK(s,z,xz)dz] ds, (2.21)

Le passage a la limite quant t — 0% dans la derniére relation nous donne la condition
initiale (2.2) ce qui montre la suffisance, et donc la démonstration du théoréeme 2.2.1 est

achevée.

2.3 Existence et unicité de la solution pour le probléme
du type Cauchy

Soit

Y ={x:[-7,7] 2 R:z|_rq € O([-7,0],R), et z|o € C((0,7],R) N L(0,7)}
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Théoréme 2.3.1. Soit 0 < a < 1, soit G un sous ensemble ouvert de R. Si les hypothéses
(H.1)-(H.2)-(H.3) sont satisfaites alors le probléeme (2.1)-(2.2)-(2.3)- (2.4) admet une
solution unique dans l’espace C([—T,0],R)NC((0,7], R)N L € (0,7)

Preuve. D’abord nous démontrons ’existence de la solution z € L(0,7) : Alors
suivant le théoréme 2.2.1, il suffit de démontrer I'existence de la solution x € L(0, ) pour
'equation intégrale non linéaire de voltérra (2.14) . Pour cela
On applique la méthode connue, pour démontrer le résultat dans une partie de I'intervalle
[0, 7].

L’équation (2.14) a un sens dans tout intervalle [0,7] C [0,7] (0 < 7 < 7).
Choisissons 7 tel que
T M*T*

(1+ H*>F(a +1)

<1 (2.22)

et démontrons l'existence de la solution z € L(0, 71) pour 'équation intégrale (2.14) dans
'intervalle [0, 7;]. Pour cela on utilise le théoréme du point fixe de Banach dans espace

L(0,7;) dont la norme est
T1
fellom = [ la®ld (223)
0
Il est clair que L(0,7;) est un espace métrique compléte avec la distance

T1
d([L‘l,[Eg) = ||ZE1 — x2||L(077—1) = / |[L’1(t> — ZEQ(t>|dt (224)
0

Considérons l'opérateur T : Y — Y défini par

o(t), t . si te[-T,0]
(T)(t) = xo(t) + ﬁ/o fls, 2., {2 f(S;_Z;xzdz]ds, si te(0,7]. (2.25)
wo(t) = ﬁt%l (2.26)

Soit x(t) : [—7,7] — R est la fonction définie par

x(t):{ 3@)’ sl EEEEL’}(_}] (2.27)

S1
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Pour tout r € C((0, 7], R) avec r(t) = zo(t) on définit la fonction 7 par

. 0, si te[-T,0]
r(t) = { r(t), si te(0,7], (2.28)

Si x satisfait I’équation intégrale (2.14), on peut décomposé z(.) en x(t) = 7(t)+y(t),t > 0,

ce qui implique que x; = 7, + y;, pour tout ¢ > 0, et la fonction r(.) satisfait

1 tf{sa(ft‘i‘yt),/otf([&z, (74 + y¢)|dz | ds
r(t) =ro(t) + ¢ @ /0 (P (2.29)

Soit
Co=reC([-7,0,R)NnC((0,7]R)
L’espace Cy est un espace de Banach dont la norme est

[7llcy = sup |r(t)] (2.30)

te(0,7]

Soit maintenant 'opérateur P : Cy — Cjy définit par

1 tf|:37 (fs+ys),/0 K[s,z,(fz—iryz)]dz ds
Pr)(e) = rolt) + s | T te@. (@31

Il est clair que 'opérateur T a un point fixe équivalent a 'opérateur P et donc on applique
le théoréme du point fixe de Banach, (c-a-d) on va démontrer que si r € L(0,7) , alors

Pr € L(0,7) et pour tout 7,75 € L(0,71) on a l'estimation

T MI*

PP = Prallin < sl = rallson, = (14 H) s

<1 (2.32)

Il suit du (2.26) que ro(t) € L(0,7) car

ol T / e tdr = < (2.33)
T o) = = = 00 )
OO T ) fg al ()
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Puisque f(t, X, Z) € L(0,7), alors par suite du lemme 1.8.3 avec b = 7 et a = 0 I'intégrale
I§ f € L(0,71) et donc Pr € L(0,7)
Démontrons maintenant 'estimation (2.32), on a P : L(0,7) — L(0,7)

Soit 71,79 € L(0, 1), alors

|Pry — Praflpor) <

]g;('f s,(f;—i—a:s),/ K[s, z, (f;—i—xz)]dz
0

s, [ Kl 024w )
0 L(O,Tl)
S ﬁ” ‘f|:$, (T’A; + I‘S),/O' K[S,Z, (72; + .fz)]dz-
—f&@f+%%/ﬁwaA@+wM¢f)
0 L(Ole)
< S — L(s)|IFt = 72|l eqeror) +
—_ F(a+1) S S RSB

ZQ(S)

/Os {K[S,z, 7+ 2.)] — K[s, 2, (7 +xz)]}dz

L(O,Tl))

et comme

H / K[s, z, (fL +2.)] — K[s, z, (7* + IZ)]] dz
0 L L(O,Tl)

dz
L(0,71)

< [ its s 2+ ) - Ko 24 0]
0
< [ Hs. )i = Plogrond:

0

S( sup / H(S,Z)dZ)Ilfi—ﬁfllcqnOLR)
0

s€(0,71]

< H*|7] = 72|l e (=r0)R)
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Alors
[Pr1 = Praflron) < FT(Z) (L (s) + la(s) H)7s = 72l om0 m)
< P0G + bH I = ralloram
s (U HO)lln = raleq-nons

Ce qui implique l'estimation (2.32) et de (2.22) ona 0 < k < 1, et alors P est un opérateur
contractant dans L(0,7) et d’aprés le théoréme du point fixe de Banach, il existe une
solution unique z*(t) € L(0, 1) pour l’équation (2.14) dans 'intervalle(0, 7].

On considére maintenant Uintervalle [ry, 72|, 71 = 71 + hi, by > 0 et 75 < 7.

On peut écrire I'quation (2.14) sous la forme

o(t) = T / fls xs,fo (s,2,1,)dz]ds
(o)
(2.34)
P fls xs, [y K (s, 2, 2.)dz]ds
(t —s)l—@
Puisque la fonction x(t) est bien définie sur 'intervalle (0, 7], on peut écrire que
T L fls, @, [o K(s, 2, x.)dz]ds
_ 2.35
17 ) (t —s)l-a (2.35)
et ’équation (2.34) devient
fls, @, [ K(s,2,x.)dz]ds
t 2.36
l’( ) / t— S)l—oz ( )

et de la méme maniére on deduit qu’il existe une solution unique x*(t) € L(7y,72) pour
I'équation (2.14) dans l'intervalle |1y, 7] :

Si on prend l'autre intervalle [19; 73] ot 73 = 7o + ho,ho > 0 et 73 < 7, on répéte ce
processus

on conclut alors qu'il existe une solution unique x(t) = x*(¢t) € L(0,7) pour I’équation
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intégrale de voltérra (2.14) dans U'intervalle (0, 7| et par suite pour le probléme (2.1)-(2.2)-
(2.3)-(2.4) dans l'espace Cy N L(0, 7).

Pour terminer la preuve on doit démontrer que la solution unique z(t) dans L(0, 7)
appartient a l'espace L%(0,7), pour cela d’aprés (2.5) il suit de démontrer que Df,x €
L(0,7) . Alors on sait d’aprés le théoréme du point fixe que la solution unique x(t) est

obtenue comme une limite d’une suite convergente ., (t) € L(0,7) , (i,e)

lim ||z — x|/ Lo =0 (2.37)
m——+0o0
avec le choix de certaine y,, dans un certain intervalle (0, 7], ..., [7—1, 7]. En effet, d’aprés

(2.1) et les hypothéses (H.1)-(H.2)-(H.3) on a

| Dot & — Dy || 0,1y = Hf[t x ,/ K(t,s,z } {t a:t,/ K(t,s, ol }

L(0,7)

< L2 = zello(—ror)

+io(t H/ (t,s,27") — K(t,s,xs)|ds

L(0,7)

IA

L — zilloqror) + @) H |25 — zsllc(-ror)
< UM+ HY)||#m — 2| 20,5

la relation (2.37) affirme que

ml_sz | D5+ 2m — Dg+ x| Lo =0

et donc D (t)xr € L(0,7). Alors le probleme (2.1)-(2.2)-(2.3)-(2.4) admet une solution

unique dans l'espace Cy N LY(0, 7), et la preuve du théoréme 2.3.1 est terminée.



CHAPTER 3

LSOLUTION FAIBLE PRESQUE PERIODIQUE POUR LES
EQUATIONS DIFFERENTIELLES FONCTIONNELLES
STOCHASTIQUE A RETARD DIRIGEE PAR UN MBF

Ce chapitre est motivé par [4],|7],[17] basé sur la méthode de semi-groupes d’opérateurs et
la méthode de point fixe, nous étudions ’existance d’une solution faible presque périodique
a moyenne quadratique pour les équations differentielles stochastique fonctionnelles a

retard

{ dx(t) x(t) + b(t, x(t), z;))dt + o (t)dB5 (t), te[0,T] (3.1)
t<0 ‘

(A
z(t) = o), —7T< , 720,

Ou Bf = {Bj(t),t € [0,T]} est un MBF d’indice de Hurst H € (3,1). Certains condi-
tions suffisantes sur I'opérateur A et les coefficients b, oy, assurant ’existance des solutions

presque périodique a moyenne quadratique .

3.1 Notions et Définitions

Dans cette section nous introduisons quelques notions, définitions et des lemmes de tech-
niques qui sont utilisés dans ce qui suit.

Soit T' > 0 et notons T 'espace linéaire des fonctions de pas a valeur dans R sur [0, 77,

34
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iegpe ¥ si
n—1
= Z ZiX[tiyti+1)(t)
=1

Oute|0,T],zz€e Ret0=1t; <ty <.<t,=T. pour ¢ € T . son intégral de Wiener
par rapport a B est

n—1
/¢ )dB" (s) =Y " z(B"(tix1) — B" (t:)).
=1

Soit H ’espace de Hilbert défini comme la fermeture de T par rapport au produit scalaire

(X[0,0> X[0,5])% = Ru(t,s). Ensuite

n—1 T
— Zzix[tivtwl)(t) — / (b(s)dBH(S)
i=1 0

est une isometrie entre T et I'espace linéaire span { B¥ (t),t € [0,T]}, qui peut étre étendu
a une isometrie entre H et le premier chaos de Wiener de MBF span™ @ {BH(t),t
0,71}, (voir[14]). L’image d'un élément ¢ € H par cette isometrie est appelée I'intégrale

de Wiener de ¢ en ce qui concerne B .

considérons maintenant le noyau

t
KH(t, S) = CHsé_H/ (U _ S)H—S/QuH—l/Qdu

( H(2H-1)

Ou cy = oY H—l))% , Ou g la fonction Béta et ce n’est pas difficile de voir que
’ 2

Oy gy = m(Lyr=be - sy
St s) = H(D) (e — )4,

Soit K : T+ L?([0,T]) opérateur linéaire donné par

Kud(s) /¢> aKH(t s)dt.
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alors (Kpxjo4)(s) = Ku(t,s)Xp4(s) et Kg est une isometrie entre T et L*([0,7]) qui
peut étre étendu a H.
Soit L3,([0,T]) = {¢ € H,Ku¢ € L*([0,T])}. puisque H > 1/2, nous avons

LY7([0,71) < L3,((0, 7). (3.2)
De plus le resultat suivant est valable:

Lemme 3.1.1. [1/]. pour ¢ € L'H([0,T]),

T T
H(2H ~ 1) / / () |6 I — ulPH~2drdu < cull8|[2: o)

Considérons maintenant deus espaces de Hilbert séparable
(U, |-|lu, (-, v) et (Vi |-|v, (-, )v), L(V,U) désigne I'espace de tout opérateur linéaire borné
de V a Uet Qe L(V,V) d'un opérateur auto-adjoint non négative. Notons L (V,U)

I'espace de tout & € L(V,U) tel que §Q% est un opérateur de Hilbert-schmidt. La norme

est donné par
’fﬁ%(vﬂ) = [€Q2 35 = tr(€QEY).

Alors £ est appelé un opérateur @-Hilbert-Schmidt de V' a U.

Soit { B (t)},en une séquence de MBF (two — sideone — dimensional) naturellement
indépandant sur 'espace de probabilité complet (€2, F,P), {e, }nen soit une base orthog-
onal compléte dans V.

Définir le processus stochastique Bg (t) a valeur dans V par
1
BY(t)=> Bl (t)Q7e,,t > 0.
n=1

Si () est un opérateur de classe de trace auto-adjoint non négatif alors cette serie converge
dans I'espace V' ,i.e qu'il tient que Bf(t) € L*(€, V). Alors, nous disons que B (t) est

un mBf @ cylindrique a valeur dans V' avec 'opérateur de covariance

> K @Q)enll 2 om0y < 0. (3.3)
n=1
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Définition 3.1.1. Soit ¢ : [0,T] — L(V,U) satisfait (3.3). Alors lintégral stochastique

de v par rapport a MBF Bg est définit pour t > 0 comme

/ $(s)dBU (s Z / $(5)Q e, dBH(s) Z / (VQ'2€,)) (5)dW (s),

Ou W est un processus de Wiener

notez que si
1
Z [v@Qz2enll L1/ om0y < 00, (3.4)
n=1

puis en particulier (3.4) tient, ce qui suivent immédiatement de (3.3).
Le lemme suivant est prouvé dans [14] et obtenu comme une simple application du

lemme 3.1.1.

Lemme 3.1.2. ([14]). pour tout ¢ : [0,T] — L(V,U) telle que (3.4) soit vrai et pour
tout o, B € [0, T] avec o > 3,

(% 2 9] o 2
]E‘/ Y(s)dB(s)| < cH2H —1)(a— BT 03" [ 4Qze,| ds,
B U n=11/8 U
ot c=c(H). Si de plus
Z ’1/162%6” est converge uni formement pour t € [0,T), (3.5)
U
n=1
Ensuite
IE‘/ ¢(s)ng(s) < cH(2H —1)(a — B)®H-Y / () 20, v @ (3.6)
B

Les définitions suivantes suivent la référence [4]

Définition 3.1.2. Un processus continue X : [0,T] — L*(Q,U) est dit pesque périodique

a condition que pour chaque € > 0, [’ensemble

J(X,€) = {k L sup E|X(t+ k) — X(0))% < e}

te[0,7)
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est relativement dense dans R. i.e qu’il existe une constante ¢ = c(e) > 0 telle que
J(X,e)N[t,t+c] #2,,,, pourtoutt € [0,T].

Notons ’ensemble de tout les processus stochastiques presque périodique & moyenne
quadratique par C([0,T], L2(Q,U))
notez que cet ensemle est un sous-espace fermé de C'([0,T]; L*(Q2,U)). Par conséquence

~

C([0,T], L*(2,U)) équipé avec la norme sup est un espace de Banach .

Définition 3.1.3. Une fonction b(t,Y) : [0,T] x L*(Q,U) — L*(Q, V), qui est congoin-
tement continue, est dit presque périodique pour t € [0,T], et uniformement pour Y € K,
ou K C L*(Q,U) est compact, si pour tout € > 0, il existe une constante c(e,K) > 0 telle

que tout intervalle de longueure c(e,K) > 0 contient au moins un nombre k satisfait

sup (E[b(t+k,Y) —b(t,Y)]}) <e,
t€[0,T]

pour chaque processus stochastique Y : [0, T] — K.

Lensembre de ces fonctions sera désignées par C([0,T] x L2(Q,U), L2(, V).

Le lemme suivant est également prouvé dans [4].

Lemme 3.1.3. Soit C([—,0]; L2(Q, U)) Uespace des fonctions continues de [—7,0] en

L*(Q,U) avec la norme sup
21| (—r o200y = sup{lZ(s)|v: Z € C, =7 < s < 0},

K c L*(Q,U) x 5([—7, 0]; L*(Q,U)) soit ensemble compact. Supposons que la fonction
bt,z,y) : [0,T] x L2(Q,U) x C([—7,0); LX(Q,U)) — L2(Q, V) Soit presque périodique a
moyenne quadratique pour t € [0,T], et uniformement pour (z,y) € K, de plus il existe

un constante ¢; > 0 tel que
b(t, x,y) = b(t, 7, 9) [} < & <|$ — &l +|ly - gHaQ([fT,O];L?(Q’U))) )

pourt € [0,T] and (z,y), (,9) € L*(%, U)Xé([—T, 0]; L*(Q,U)), alors pour tout processus
stochastique presque périodique & moyenne quadratique v : [0, T] — L*(,U), le processus

stochastique t — b(t,1(t), ;) est presque périodique a moyenne quadratique
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3.2 Solutions faible presque périodiques

Dans cette section, nous étudions I'éxistance de solutions faibles presque périodige a

moyenne quadratique pour I’équation différentielle fonctionelle a retard stochastique

de(t) = (Az(t)+0b(t, x(t),z,))dt + op(t)dBH(t), te[0,T],

a(t) = @(t), —r<t<0, r>0, (3.7)

ol Bg (t) est le mouvement Brownien fractionnaire qui a été introduit dans la section
précédente

La condition initiale ¢ € C([—7,0]; L*(, U)) est une fonction définie par
wi(s) = p(t+s),s € [-7,0], et A: Dom(A) C U — U est le générateur infinitésimal d’un

semi-groupe fortement continu S(.) sur U, C’est-a~dire que pour tout ¢ > 0,

S|y < Me", M > 1,peR

Les coefficients b : [0,7] x U x C([—7,0);U) = U et o : [0,T] — L (U, V) sont des

fonctions appropriées.

Définition 3.2.1. Un processus X a valeur dans U est appelé une solution faible de (3.7)

siz € C([—7,T); LA(Q,U)), z(t) = p(t) pour t € [—7,0], et pour t € [0,T), satisfait

x(t) :S(t)go(())—i-/o S(t—s)b(s,x(s),xs)ds—i—/o S(t—s)ag(s)ng(s) P—a-s. (3.8)

Maintenant, nous énongons notre premier résultat principal, et utilisons les hypothéses

suivantes sur les coefficients

e (Hb) la fonction b € C([0,T] x U x C, U), et il existe une constante ¢, > 0 telle que

ot l'espace C est définie dans la section 1, (z,y),(Z,y) € U x C.te [0, 7.
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e (Hoy) La fonction op : [0,7] — L%(U, V') satisfait les conditions suivantes: pour

la base horthonormal compléte {e, },en on V', nous avons

o0
1
Z lorQ2en| 120,10y < 00

Z log(t, z(t Q?en]U est converge uni formemt pour t € [0, 7).

Notez que I'hypothése (Hoy) implique immédiatement que pour tout ¢ € [0, 7],

t
2
[ lon By <o

Théoréme 3.2.1. Sous les conditions de A, les hypothéses (Hb) et (Hoy), pour tout

Y € 5([—7’, T); L2(Q,U)), Eq. (3.7) a une solution unique faible présque périodique a

moyenne quadratique x quand

v =2Me""\/Te, < 1,

ot ¢ est une constant positive

Preuve.
On peut supposer que p > 0, sinon on peut prend py > 0,telle que, pour tout ¢ > 0,

1S(t)| < Mem*. Définir Vopérateur £ sur C([0,T],U) par

(Lx)(t) = S(t)e(0) / S(t b(s, x(s),xzs)ds + /tS(t — s)ou(s)dBg (s)
= S(t)p(0) + Pz(t) + ¥(t). ’ P—a-s.
(3.9)

D’abord il suffit de montrer ®x(.) est presque périodige & moyenne quadratique chaque
fois que X est presque périodique & moyenne quadratique .

En effet, en supposant que x est presque périodique a moyenne quadratique , en
utilisant I'hypothése (Hb) et Lemme 3.1.3, On peut voir que c’est s — b(s,z(s),xs) est
presque périodique & moyenne quadratique. Alors pour chaque € > 0, il existe ¢(e¢) > 0
tel que tout intervalle de longueur c(€) contient au moins x satisfaisant

sup EIb(t + 5, o(t + ), 211x) — bt 2(t), 2)[} < s

—_— 3.10
0<t<T (TMerT)?’ (3.10)
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Pour T > 0 fixé. De plus
E|®z(t + k) — Pz(t)|?
¢
/ S(t—s)b(s+ Rk, x(s+ K), Tsix)d / S(t— s)b(s,z(s),xs)ds
0
tE/ 1S(t — 5) (b(s + K, (s + k), Torn) — b5, 2(5), 2,))[7 ds

tM?3e QPTE/ |S(t — ) (b(s + K, 7(5 + K), o) — b(s,2(8), 25)) |7ds

2
= E

U

IA

IN

< TM? 2PT/ sup E’b(T + K, 37(7- + K)? x‘r+ﬁ) - b(Tv 513'(7-), x7)>|2Ud8
0

0<7<s
< €

Ensuite, pour v > 0 choisi assez petit ,nous avons

E|WU(t +v) — ¥(t)]?
/0 S(t+v—s)ou(s)dBf(s) — /0 St — s)ou(s)dBg (s)

t 2 t+v
/0 [St+v—15)—S(t—s)]ou(s)dBs(s)| +2E /t S(t — s)ou(s)dBf (s)
- [1 -+ IQ.

2
= E

2
2E

IN

En appliquant 'inégalité (3.5) a Iy nous obtenons

t
I, < 2cH(2H — 1)t2H—1/ |S(t — s)(S(v) — [d)JH(S)‘iDQ(U,V) ds
0
t
< 2cH(2H — 1)t2H_1M262"T/ |(S(v) — Id)aH(s)IQL%(MU) ds
0

t
< 2cH(2H — 1)2H- M7 (1 4 62”“)/ 11 () g vy ds-
0
En appliquant maintenant inégalité (3.5) a I nous obtenons
t+v
I, < 2cH(2H — 1)v* =1 M2ev / |UH(5)|i%(V,U) ds.
0

On observe que la condiion (Hop) assure l'existance de constantes positives ¢; et co tel
que

¢
2cH(2H — )71 e (1 62”“)/ ‘O’H(S)E/OQ(V’U) ds < ¢4,
0
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et

t+v
2cH(2H — 1)U2H1M262”“/0 \JH(S)EOQ(V’U) ds < cs.

par conséquance, pour v > 0 choisi ,et tout £ > 0 nous avons
E|U(t+v) — U (t))? < e+ = cs.

D’aprés la discussions ci-dessus,il est claire que l'opérateur £ mappe C ([0,7],U) en lui

meme.
Enfin affirmons que £ est un contraction sur C([0, 7], U). nous avons

2

E|(Lx)(t) — (Ly)H)? = E /0 S(t — s)[b(s, 2(s), x5) = b(s,y(s),ys)]ds

t
QM2 / 1b(s, 2(s), 25) — b(s, y(s), ys) |3 s
0

IN

t
< OMPHTE / sup |b(r, (), 2,) — b(r, y(r), y,) [2ds
0 0<7r<s
< 2TM?e*Tey, sup (|z —ylf + ||z — yl|%)
0<7r<s
< ATM?e*T sup ||z — yl|%.
0<7<s

par conséquent

1(£2)(t) = (Ly) (Dl < 2Me?" v/ Tarllx = yllow = Iz = ylloc. (3.11)

comme v < 1,par (3.11), nous savons que L est un contraction par le principe de contrac-
tion, £ a un point fixe unique z, qui est évidemment la solution faible presque périodique

a moyenne quadratique a Eq. (3.7).

3.3 Example

Les équations a retard jouent un role cruciale dans la modélisation de nombreux domaines.

Dans cette section nous présentons un exemple d’équation d’évolution stochastique suiv-
ante

o
—~
“H-
o
S~—
I
o
—~ Q?
3
S—
I
o

(3.12)
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ou 7 € (0,1),¢(-,z) € C([-r,0,R) et Bf(t) est un mouvement brownien fractionnaire

Q-cylindrique avec le paramétre de Hurst H € (%, 1) satisfaisant tr(Q) = 1.

Notons U = L?(P; L?[0, 7r]), et définissez A : D(A) C U — U donné par A = 88—;2 avec

D(A)={£(.) e U :&" €U,¢& €U est absolument continue sur [0, 7], £(0) = &(7) = 0}.
Il est bien connu qu’un semi-groupe S fortement continu, généré par l'opérateur A,

vérifie |S(t)| < e™*, pour ¢t > 0. En prenant b(t, ¢, ¢;)(0) = §[@(6)(sin(t) + sin(v/2t))], et

oy satisfait I'hypothése (Hoy). Ainsi on a
[b(t, @, 20) = b(t,y, yo)[5r < 46%|2 — yl7-

Par conséquent, Eq. 3.12 a une solution faible presque périodique & moyenne quadratique,
a condition que, § < \/?g selon le théoreme 3.2.1.

Soit 1, (t) = 0, (t) = 6%(sin(t) + sin(v/2t))? pour n € N, Eq. 3.12 a une solution faible
presque périodique & moyenne quadratique selon le théoréme 3.2.1.

Soit n(t) = 6,(t) = 6%(sin(t) + sin(v/2t))?, Eq. 3.12 a une solution faible presque

périodique & moyenne quadratique selon le théoréme (3.4, [10]).



Conclusion

On a vu au cours de ce travail, une introduction de plusieurs notions théoriques rela-
tives aux équations différentielles dont les équations différentielles a retard et équations
différentielles a retard dirigé par un MBF, ces deux catégories d’équations occupent une
place de premier importance dans différents domaines d’applications.

Notre travail consiste a prouver ’éxistence et I'unicité de solution d’une équation différen-

tielle fractionnaires & retard dans le cas de la dérivée de Riemann-Liouville. Pour cette
raison, on a appliqué le théoréme du point fixe de Banach. dans ce cas nous avons traité le

probléme frationnaire dans ’espace de fonctions sommables. Nous avons imposé quelques
hypothéses sur f et K permettant la réeduction du probléme fractionnaire avec retard a
une équation intégrale.

Ensuite, on a éffectué une étude sur les équations différentielles stochastiques a retard
dirigées par un mouvement Brownien fractionnaire sous des conditions sur les coefficients
qui assurent I’existence et 'unicité d’une solution presque périodique & moyenne quadra-
tique,ce qui est nouveau et nous permet de développer l'existence de diverses équations
différentielles fractionnaires & retard et équations différentielles fractionnaires stochas-
tiques avec retard, en utilisant certains théorémes de point fixe appropriés et la théorie
des systémes d’évolution et un exemple est fourni pour illustrer 'applicabilité du nouveau

résultat.
Nous espérons étudier au futur quelques problémes pour l'existence et I'unicité d’une

solution d’une équation différentielle & retard infini dirigé par Mouvement Brownien gris.
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