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Abstrat

In the present master thesis, we seek to introduce the mean properties of the fractional
Brownian motion and to study the stochastic delay functional differential equations driven
by a fractional Brownian motion.
First, we give some preliminary background of stochastic processes and stochastic in-
tegration in order to solve functional differential equations with delay, then we give an
overview on the existence and uniqueness of the solution of a Nonlinear fractional dif-
ferential problem of the voltérra type with delay in a finite interval . The results of
existence and uniqueness are proved using the theorem of the Banach fixed point. Next,
we establish the result of the existence of quadratic mean soft almost periodic solutions
of a functional differential equations directed by fractional Brownian motion with Hurst

parameter H > 1
2
, under certain appropriate assumptions, by means of semi-group of

operators and the method fixed point.
Keywords: Fractional stochastic differential equation, Fixed point principle, Infinite de-
lay, Fractional Brownian motion, Functional differential equations stochastic with delay,
Almost periodic, quadratic mean solution.
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Résumé

Dans ce travail, nous cherchons à présenter les propriétés du mouvement Brownien frac-
tionnaire, et à étudier les équations stochastiques différentielles avec retard dirigées par
le mouvement Brownien fractionnaire.
Premièrement nous donnons quelques notions préliminaires sur les processuses stochas-
tiques et l’intégration stochastique afin de résoudre des équations différentielles fonction-
nelle avec retard, puis nous donnons un aperçu sur l’éxistence et l’unicité de la solution
d’un problème différentiel fractionnaire non linéaire du type voltérra avec retard dans un
intervalle fini . Les résultats l’éxistence et l’unicité sont prouvés en utilisant le théorème
du point fixe de Banach. Ensuite, nous établissons le résultat de l’existence des solutions
presque périodiques à moyenne quadratique d’une équation différentielle fonctionnelle

dirigée par le mouvement Brownien fractionnaire avec paramètre de Hurst H > 1
2
, sous

certaines hypothèses appropriées, au moyen de semi-groupe d’opérateurs et de la méthode
de point fixe.

Mots clés: Équation différentielle stochastique fractionnaire, Principe de point fixe, Re-
tard infini, Mouvement brownien fractionnaire, Les équations différentielles fonctionnelles
stochastique avec retard, Solution presque périodique à moyen quadratique.
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Introduction générale

En 1993, F.Russo et P.Vallois ont jeté les premiers bases d’un calcul stochastique,
généralisant ceux plus classique d’Itô et Stratonovitch et dont des intérêts est qu’il

permet de donner un sens à des intégrales contre des processus qui ne sont pas forcément
des semimartingales.

Les processus gaussiens fournissent de nombreux exemples de processus qui ne sont pas
des semimartingales. Parmi les processus gaussiens le mouvement Brownien fractionnaire
est trés utilisé, sa fonction de covariance étant particulièrement simple. C’est pourquoi,
dans la suite, ce processus sera plus utilisé pour tester les résultats généraux que nous

établirons. Le mouvement Brownien fractionnaire(MBF) BH = {BH
t , t ≥ 0} avec le

paramètre de Hurst H ∈ (0, 1) est une moyenne null avec fonction de covariance

KH(s, t) =
1

2
(|t|2H + |s|2H − |t− s|2H) (1)

De (1) on déduit que E(|BH
t −BH

s |) = |t− s|2H et par conséquence les trajectoires de

BH sont presques sûre localement β-hölderiennes continus, pour tout β ∈ (0, 1) , étant

donné que BH n’est pas un semimartigale si H 6= 1
2
on ne peut pas utilisé la théorie

classique d’Itô, pour construire un calcul stochastique par rapport à MBF on peut utilisé
une approche par chemain pour définir les intégrales par rapport MBF avec le paramètre

H > 1
2
et cette méthode est basé sur le calcule fractionnaire .

Le but du calcul fractionnaire est de généraliser les dérivées des ordres entiers (clas-

siques) à des ordres non-entiers.
La théorie des dérivées de l’ordre non-entier ne soit pas nouveau, ces origines remon-

tent à la fin du 17me sciècle, le moment où Newton et Leibniz ont développé les fondements

de calcule d’intégral différentiel. Leibniz a introduit le symbole dn

dxn
f(x) pour désigner la

nime dérivée d’une fonction f . Quand il a signalé cela dans une lettre à l’Hôpital, qui posa

la question si n = 1
2
?, Leibniz réponds qu’il s’agit là d’un paradoxe, mais qu’un jour.

Les avantages des dérivés fractionnaires deviennent apparents dans la modélisation
des propriétés mécaniques et électriques des matériaux réels et dans de nombreux autres
domaines.
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L’étude des problèmes fractionnaires est d’actualité et plusieurs méthodes sont ap-
pliquées pour la résolution de ces problèmes. Néanmoins les méthodes basées sur le
principe du point fixe jouent un grand rôle.

Les théorèmes du point fixe sont les outils mathématiques de base, montrant l’existence
des solutions dans divers genres d’équations. La théorie de point fixe est au cœur de
l’analyse non linéaire puisqu’elle fournit les outils nécessaires pour avoir des théorèmes
d’existence dans nombreux problèmes non linéaires différents.

l’objectif de ce mémoire est d’appliquer cette dernière technique pour étudier certaines
classes d’équations différentielles à retard, qui surviennent dans certains modèles dont
l’état à un instant donné, est une fonction qui dépend de son passé. On peut rencontrer
ces équations dans plusieurs domaines d’applications, notamment en économie, physique,
médecine, biologie, écologie ... etc. En effet, dans certains phénomènes, on s’est aperçu
que la connaissance de la solution en un point ne suffit pas pour décrire l’évolution sur
un intervalle de temps donné. Plus précisément, nous intéressons de la périodicité. La
théorie de presque périodicité a été développée dans le cadre des problémes liés aux
équations différentielles, systèmes dynamiques et les autres domaines des mathématiques.

le travail réalisé dans ce mémoire a pour étudier des équations différentielles stochas-
tiques fonctionnelles avec retard dirigé par un mouvement Brownien fractionnaire.

Le sujet principal est l’étude de l’existance et unicité des solutions faible presques péri-
odiques à moyenne quadratique .

On a structuré ce manuscrit en trois chapitres.
Le premier chapitre, est introductif contient des préliminaires nécessaires pour la bonne

compréhension de ce manuscrit , des rappels concernant les équations différentielles fonc-
tionnelles avec retard, notions de base sur calcul stochastique, une base théorique du calcul
fractionnaire nécessaire pour le développement des chapitres qui suivent et le théorème du
points fixe de banach est aussi présenté dans cette partie comme outil essentiel permettant
de prouver l’existence et l’unicité de la solution de notre problème.

Le deuxième chapitre, contient le premier résultat originale de ce mémoire qui consiste
à démontrer l’existance et l’unicité d’un problème différentiel fractionnaire non linéaire

2



du type voltérra avec retard suivant :

(Dα
0+x)(t) = f

[
t, xt,

∫ t

0

K(t, s, xs)ds

]
, t > 0, 0 < α < 1 (2)

(I1−α
0+ x)(0+) = τ, τ ∈ R (3)

x(t) = ϕ(t) t ∈ [−τ, 0] (4)

xt(θ) = x(t+ θ) θ ∈ [−τ, 0]. (5)

Dans le cas de la dérivée fractionnaire au sens de Riemann-Liouville dans l’espace Lα

défini dans un intervalle fini [0, τ ] pour tout 0 < α < 1.

Le troisième chapitre, qui est consacré à l’étude d’existance d’une solution faible
presque périodique à moyenne quadratique pour les équations differentielles fonctionnelles
à retard

dx(t) = (Ax(t) + b(t, x(t), xt))dt+ σH(t)dBH
Q (t), t ∈ [0, T ],

x(t) = ϕ(t), −r ≤ t ≤ 0, r ≥ 0,
(6)

Où BH
Q = {BH

Q (t), t ∈ [0, T ]} est un mBf indice de Hurst.H ∈ (1
2
, 1)

Certains conditions suffisantes sur l’opérateurA et les coefficients b, σH, assurant l’existance
des solutions faibles presque périodique à moyenne quadratique .

Le mémoire se termine par une conclusion, dans lequel nous résumons les principaux
résultats de ce travail.
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CHAPTER 1

PRÉLIMINÈRES

Dans ce chapitre, nous donnons quelques définitions, propriétés et lemmes fondamentaux,
qui seront utilisés tout au long du travail. Pour plus de détails concernant les résultats
cités dans ce chapitre ,on peut référer aux [6],[8],[11],[16] et [12]

1.1 Définitions de Base

1.1.1 Processus stochastique

Définition 1.1.1.1. Un processus stochastique X = (Xt)t≥0 est une famille de variables
aléatoires indexées par un ensemble de temps T , toutes définies sur un même espace de
probabilité (Ω,F ,P) à valeurs dans un espace mesurable (E, ζ) appelé espace d’états du

processus X : (t, ω)→ Xt(ω).

En général T = [0, T ] = [0, 1] = R+ ou R.
Un processus dépend de deux paramètres : Xt(ω) dépend de t (en général le temps) et de
l’aléatoire ω ∈ Ω:

• Pout t ∈ T fixé, ω ∈ Ω→ Xt(ω) est une variable aléatoire sur l’espace de probabilité

(Ω,F ,P);

• Pour ω ∈ T fixé, t ∈ T → Xt(ω) est une fonction à valeurs réelles, appelée trajectoire
du processus.

4



1.1 Définitions de Base 5

Définition 1.1.1.2. On appelle loi fini-dimentionnelle d’un processus stochastique
X = (Xt)t≥0 l’ensemble des lois

{L(Xt1 , ....., Xtp) : tp ∈ T, p ∈ N∗}.

qui est caracterisé la loi PX du processus X.

Définition 1.1.1.3. Etand donné deux processus stochastiques X et Y ,

• Deux processus X et Y ont même lois s’ils ont même lois fini-dimensionnelles :
pour tout p ∈ N∗ et t1, ....., tp ∈ T ,

(Xt1 , ....., Xtp)
L
= (Yt1 , ....., Ytp)

On écrira X L
= Y ,

• On dira que Y est une version (ou une modification) du processus X si pour tout

t ∈ T , on a P(Xt = Yt) = 1

• Deux processus sont dit indistinguables si P(Xt = Yt, ∀t ∈ T ) = 1.

Définition 1.1.1.4. Un processus est dit:

• stastionnaire si pour tout h ≥ 0, (Xt+h)t≥0
L
= (Xt)t≥0 ne dépent pas de h .

• à accroissements stationnaires si la loi des accroissements Xt+h−Xt ne dépent

pas de t,ie Xt+h
L
= Xh

• à accroissements indépendants si pour tout p ≥ 1 et 0 < t1 < t2 < ..... < tp les

variables aléatoires Xt1 , Xt2 −Xt1 ..., Xtp −Xtp−1 sont indépendantes.

Définition 1.1.1.5. Un processus X est à variation finie sur [0, T ] si pour tout famille
de subdivision 0 = t0 ≤ t1 ≤ .... ≤ tn = T on a:

∑
i

(Xti+1
−Xti)

2



6 Préliminères

qui converge en probabilité vers une variable aléatoire Y . dans ce cas Y sera appelée la
variation quadratique X

Soit (tni )
N(n)
i=0 une subdivision de [0, T ] et

δ(n) =
N(n)
sup
i

(tni+1 − tni ).

Définition 1.1.1.6. Soit (Ω,F ,P) un espace de probabilité. Une filtration F = (Ft)t≥0

sur cet espace est une famille croissante (Ft)t∈T de sous tribus de F .

Définition 1.1.1.7. Soit (Ft)t∈T Une filtration est :

• Complète si les ensembles P-négligeables de F∞ sont dans F0 et si l’espace de prob-
abilité est complet,

• Continue à droite si Ft+ = Ft, ∀ > 0 oú ∀ > 0, Ft+ =
⋂
s>t

Fs

• Satisfait les conditions habituelles, si elle est continue à droite et complète.

On note F̄ = (F̄t)t≥0 la plus petite filtration qui contient F est satisfait les conditions
habituelles.

Définition 1.1.1.8. On dit qu’un processus X est mesurable si l’application

(t, ω) −→ Xt(ω)

définie sur R+×Ω muni de la tribu B(R+)⊗F est mesurable. Un processus est dit adapté
si pour tout t ≥ 0, Xt est Ft-mesurable. Le processus X est dit progressif si, pour tout
t ≥ 0 l’application

(t, ω) −→ Xt(ω)

est mesurable sur [0, T ] × Ω muni de la tribu B([0, T ]) ⊗ Ft, où B([0, T ]) est la tribu de
Borel.

Définition 1.1.1.9. Soit (Ω,F ,P) un espace probabilisé et (Ft)t une filtration de cet es-
pace.
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Une famille adapté (Mt)t≥0 de variables intégrables (i.e vérifiant E(|Mt|) < ∞ pour tout

t ) est

• Une martingale si, pour tout s ≤ t, E(Mt/Fs) = Ms.

• Une surmartingale si, pour tout s ≤ t, E(Mt/Fs) ≤Ms.

• Une soumartingale si, pour tout s ≤ t, E(Mt/Fs) ≥Ms.

Définition 1.1.1.10. Soit H2 l’espace des martingales continues bornées et de carré in-

tégrable, On définit un produit scalaire sur H2 par (M,N) = E(< M,N >∞). L’espace

L2 est l’espace de Hilbert pour le produit scalaire

(H,K) = E(

∫ +∞

0

HsKsd < M,M > s),

Ht, Kt deux processus progressifs M ∈ H2

1.1.2 Régularité des trajectoires

Définition 1.1.2.1. On dit que le processus stochastique X est continu (respectivement

continu à droite, continu à gauche) si ∀ω ∈ Ω, la trajectoire

t −→ Xt

est continue (respectivement continue à droite, continue à gauche).

Définition 1.1.2.2. On rappelle qu’une fonction f : Rd 7−→ Rd est dite β-Höldérienne
s’il existe κ < +∞ tel que :

||f(x)− f(y)|| ≤ κ||x− y||β

où ||.|| désigne la norme de Rp ou de Rd.
Ce théorème donne une condition suffisante pour qu’un processus stochastique ait une

modification continue avec des trajectoires Höldériennes.
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Théorème 1.1.2.1. [12](Kolmogorov) Soit (Xt)t≥0 un processus tel qu’il existe p, ε, γ >
0 vérifiant pour tout s, t :

E(|Xt −Xs|p) ≤ γ|t− s|1+ε

Alors il existe une version continue X̃ de X.
En fait, les trajectoires de X̃ sont mêmes β-höldériennes pour tout β < ε

p
.

1.1.3 Autosimilarité

Définition 1.1.3.1. Un processus X est autosimilaire d’indice H si pour tout a > 0 :

{X(αt), t ∈ R} L= {αHX(t), t ∈ R}

au sens de l’égalité des lois fini-dimensionnelles.
Cette propriété montre qu’un changement d’échelle dans le temps est équivalent (en

loi) à un changement d’échelle en espace. Attention, cependant au fait qu’il s’agit d’une
égalité en loi et pas en trajectoire.

Remarque 1.1.3.1. Un processus autosimilaire ne peut pas être en plus stationnaire car
on aurait

X(t)
L
= X(αt)

L
= αHX(t)

On a en particulier E[X(t)] = αHE[X(t)], ce qui donne une contradiction quand on fait

tendre aH → +∞(H > 0).

Cependant, il existe un lien entre les processus autosimilaires et les processus stationnaires.

Proposition 1.1.3.1. Soit (Xt)t≥0 H-autosimilaire, alors

Yt = etHX(et), t ∈ R

est stationnaire. Réciproquement, si (Yt)t∈R est stationnaire alors X(t) = tHY (lnt) est H
autosimilaire.

Proposition 1.1.3.2. Soit (Xt)t un processus autosimilaire et à accroissements station-

naires tel que P(X(1) 6= 0) > 0. On suppose que E[|X(1)|β] < +∞ alors

0 < H <
1

β
si 0 < β < 1,

0 < H ≤ 1 si β ≥ 1.



1.2 Mouvement Brownien 9

1.1.4 Processus gaussien

Définition 1.1.4.1. Soit un processus {Xt}t≥0 à valeurs réelles.

On dit que ce processus est gaussien si tout ses loi fini-dimentionnelle L(Xt1 , ...., Xtp) sont

gaussiens (∀p ∈ N,∀t1, ....., tp).
Autrement dit X = (Xt)t est gaussien si toute combinaison linéaire λ1Xt1 , ...., λpXtp

suit une loi gaussienne (pour tout p ∈ N, t1, ...., tp et λ1, ....., λp ∈ R).

Définition 1.1.4.2. Un espace gaussien est un sous-espace vectoriel fermé de L2(Ω,F ,P)

formé de variables gaussiennes.
Par exemple si X = (X1, ......, Xp) est un vecteur gaussien dans Rp, alors l’espace

vectoriel engendré par {X1, ......., Xp} est un espace gaussien.

Proposition 1.1.4.1. Un processus gaussien X est stationnaire ssi E[Xt] est constante

et K(s, t) = K(s− t) (on parle de stationnarité faible)

Exemples de processus gaussiens :

- Processus d’Ornstien-Uhlenbek: est le processus gaussien centré définit par :

χt = e−
1
2B(et), où B un mouvement Brownien

- Bruit Blanc gaussien : Soit (B, µ) un espace mesuré et

χ = {B ∈ B : µ(B) < +∞} le bruit blanc est un processus gaussien

(XB)B∈B indexé par l’ensemble des mesurables B

Remarque 1.1.4.1. Les processus gaussiens les plus connus sont le mouvement Brownien
et le mouvement Brownien fractionnaire

1.2 Mouvement Brownien

Le mouvement brownien a été exhibé pour représenter des mouvements qui évoluent au
cours du temps de façon particulièrement désordonnée, par exemple en physique pour
représenter des particules microscopiques soumises aux multiples chocs de leur environ-
nement ou en finance pour représenter des cours de bourses trés volatiles. Le mouvement
Brownien joue un rôle central dans la théorie des processus stochastiques (comme la loi
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normale standard N (0, 1) pour les lois de probabilités sur R). Il apparaît dans de nom-
breuses situations aussi bien théoriques qu’appliquées et il offre un cadre assez simple oú
de nombreux calculs peuvent être menés .

Définition 1.2.1. Un mouvement Brownien standard réel (MB) est un processus gaussien

centré, noté B = (Bt)t≥0 à trajectoires continues de fonction de covariance :

cov(Bt, Bs) = min(t, s) = t ∧ s.

On l’appelle aussi processus de Wienner.

Propriétés 1.2.1.

• B0 = 0.

• Pour tout t ≥ 0, Bt  N (0, t).

• Pour tout 0 < t1 < t2 < ..... < tn les variables aléatoires Bt1 , Bt2 − Bt1 , ......, Btn −
Btn−1 sont indépendantes.

• Autosimilarité :Pour tout a > 0, {a 1
2Bat} est un mouvement Brownien.

• Propriétés de symétrie : Le processus (−Bt)t≥0 est aussi un mouvement Brown-
ien.

• Stationnarité : Les accroissements du mouvement Brownien sont stationnaires

• i.e. ∀s ≤ t;Bt −Bs est une variable gaussienne centrée de variance t− s.

• Inversion du temps: Pour t 6= 0 et X0 = 0, Xt = tB 1
t
est un mouvement brownien

standard .

• Retournement du temps :Le processus retourné à l’instant T,Xt = WT −WT−t

est encore un mouvement brownien sur [0, T ] .

Proposition 1.2.1. [12] Presque sûrement, les trajectoires du mouvement Brownien ne
sont pas différentiables .
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1.3 Mouvement Brownien Fractionnaire

Définition 1.3.1. Le mouvement Brownien fractionnaire standard d’exposant de Hurst

H ∈ (0, 1) noté BH
t est un processus gaussien continu centré nul en zéro et est le seul

prcossus vérifiant les propriétés suivantes :

1. autosimilarité :∀a > 0, (a−HBat)t≥0 a même loi que (Bt)t≥0

2. accroissements stationnaires:∀h > 0, (Bt+h −Bh)t≥0 a même loi que (Bt)t≥0

3. gaussien avec E(B1) = 0 et E(B2
1) = 1.

Autrement dit
pour 0 < H ≤ 1, Le mouvement Brownien fractionnaire d’indice H, (BH

t )t≥0 est le
processus gaussien centré de fonction de covariance :

cov(BH
t , B

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H)

Remarque 1.3.1.

• Le mouvement Brownien fractionnaire "non-standard" a la fonction de covariance
suivante :

cov(BH
t , B

H
s ) =

V (H)

2
(|s|2H + |t|2H − |t− s|2H)

avec

V (H) =
Γ(2− 2H) cos(πH)

πH(1− 2H)

oú Γ(.) est la fonction gamma définie par: Γ(Z) =
∫ +∞

0
tz−1e−tdt

Nous n’aurons jamais considéré un tel cas.

• Soit (BH
t )t≥0 un mouvement Brownien fractionnaire, pour H = 1

2
on obtient le

mouvement Brownien (Bt)t≥0.
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Propriétés 1.3.1.

- Le mouvement Brownien fractionnaire (BH
t )t≥0 est un processus gaussien de variance

t2H ;

- Le mouvement Brownien fractionnaire (BH
t ) de paramètre de Hurst H ∈ (0, 1)/{1

2
} n’est

pas un processus de Markov.

1.3.1 Propriétés du Mouvement Brownien fractionnaire

La propriété de Hölder et la différentiabilité

Proposition 1.3.1.1. pour H ∈ (0, 1), le mouvement Brownien fractionnaire (BH) est
β-Höldérien pour tout β < H

Preuve:
E
(
|BH

t −BH
s |2
)

= E(|B2H
t − 2BH

t B
H
s +B2H

s |)

Par l’application de la linéarité de l’espérance, on a :

E(|B2H
t − 2BH

t B
H
s +B2H

s |) = E(|B2H
t |)− 2E(|BH

t B
H
s |) + E(|B2H

s |)

= |t2H |+ |s2H | − |t2H + s2H − (t− s)2H |

= (t− s)2H .

Théorème 1.3.1.1. Le mouvement Brownien fractionnaire BH n’est pas différentiable,
pour tous H ∈ (0, 1). De plus pour tout t0 ∈ [0,∞[

P =
(

lim sup
t→t0

∣∣BH
t −BH

s

t− t0
∣∣ =∞

)
Preuve:

Désignons que Tt,t0 =
BH
t −BH

s

t− t0
utilisons la propriété d’autosimilarité, on a :

Tt,t0
L
= (t− t0)H−1BH

1
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On définit I(t, ω) = { sup
0≤s≤t

∣∣BH
s

s
> d
∣∣} .Puis, pour toute suite (tn)n∈N qui décroit vers 0.

on a : I(tn+1, ω) ⊆ I(tn, ω).
Ainsi

P( lim
n→∞

I(tn)) = lim
n→∞

P(I(tn))

et

P(I(tn)) ≥ P
(∣∣∣∣Btn

s

tn

∣∣∣∣ > d

)
= P(|BH

1 | > t1−Hn d) −→ 1

propriétés 1.3.1.1. Le mouvement Brwonien fractionnaire a aussi ces immédiates pro-
priétés :

• BH
0 = 0 P-p.s

• Pour tous t ≥ 0,E((BH
t )2) = t2H ;

• La variation quadratique du mouvement Brownien fractionnaire est équivalente p.s

à n1−2H .

1.4 La représentation du mouvement Brownien frac-
tionnaire

Soit BH = (BH
t )t≥0, H ∈ (0, 1) un mouvement Brownien fractionnaire. Il existe de nom-

breuses représentations d’un mouvement Brownien fractionnaire. Plus ou moins com-
pliquées selon que l’on souhaite obtenir une représentation sur un compact de R ou sur
R tout entier

1.4.1 Représentation par Moyenne Mobile

Soit 0 < H < 1, B Le mouvement Brownien ordinaire.
Le Processus définie par:

BH
t =

1

C1(H)

∫
R

(
(t− s)H−

1
2 − (−s)H−

1
2

)
dBs. t ∈ R (1.1)
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oú

C1(H) =

(∫
R

(
(1 + s)H−

1
2 − sH−

1
2

)2
ds+

1

2H

) 1
2

est Le mouvement Brownien fractionnaire d’indice de H (issue de Mandelbort et Van

Ness(1968)[13])

1.4.2 Représentation harmonizable

Samorodnitsky et Taqqu (1994) ont montré que le mouvement brownien fractionnaire
peut être représenté par l’intégrale stochastique suivante :

BH
t =

1

C(H)

∫
R

eitx − 1

ix
|x|−(H− 1

2
)dB̃x, t ∈ R

Avec

C(H) =
( π

HΓ(2H) sin(Hπ)

) 1
2

et B̃ est un mouvement Brownien à valeur complexe.

1.4.3 Représentation de Levy-Hida

la représentation de Levy-Hida du mouvement Brownien fractionnaire est la suivante :

BH
t =

∫ t

0

KH(t, s)dBs, 0 < s < t < 1

oú KH(t, s), est donné par

KH(t, s) = dH(t− s)H−
1
2 + sH−

1
2F1

( t
s

)
avec dH est une constante et

F1 = dH
(1

2
−H

) ∫ z−1

0

θH−
3
2 (1− (θ + 1)H−

1
2 )dθ
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si H ∈ (0, 1
2
)

le noyau KH est donné par :

KH(t, s) = bH

(( t
s

)H− 1
2 (t− s)H−

1
2 −

(
H − 1

2
s

1
2
−H
)∫ t

s

(u− s)H−
1
2uH−

3
2dt

)
oú

bH =

(
2H

1− 2HB(1− 2H,H + 1
2
)

) 1
2

avec B est la fonction Bêta (B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt)

si H ∈ (1
2
, 1) :

Le noyau a la simple expression suivante :

KH(t, s) = cHs
1
2
−H
∫ t

s

|u− s|H−
3
2uH−

1
2du, t > s,

oú

cH =

(
H(2H − 1)

β(2− 2H,H − 1)

) 1
2

1.5 Espace de Banach

Soit (X, d) un espace mérique, (xn)n∈N une suite de X.

Définition 1.5.1. Soit (X, d) un espace métrique, (xn)n∈N une suite de X. On dit que

la suite (xn) est une suite de Cauchy si

∀ε > 0,∃N ∈ N,∀(p, n) ∈ N, (p > N et n > N)⇒ ‖xp − xn‖ < ε

Proposition 1.5.1. Toute suite convergente est évidemment de Cauchy.
La réciproque est fausse.

Définition 1.5.2. Un espace métrique (X, d) est complet si toute suite de Cauchy dans
X est convergente.
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Définition 1.5.3. On appelle espace de Banach (E, ‖.‖E) tout espace vectoriel normé et
complet pour la distance déduit de la norme.

Définition 1.5.4. On dit qu’une fonction f : E −→ E, est lipschitzienne s’il existe k ≥ 0

tel que

‖f(x)− f(y)‖ ≤ K‖x− y‖

pour tout x, y ∈ E. La plus petite valeur k satisfaisant cette propriété pour la fonction f
est appelée la constante de Lipschitz.

Définition 1.5.5. On dit que la fonction f est localement lipschitzienne, si pour tout
point x0 de E il existe un voisinage de x0 dans lequel f est lipschitzienne dans ce voisinage
autrement dit k dépend de x0.
Une fonction lipschitzienne est continue.

1.5.1 Le principe de contraction de Banach

Théorème 1.5.1. [6] Soient (E, ‖.‖) un espace de Banach, f : E −→ E une contraction,
alors f admet un point fixe unique.

Preuve.[6]

i) Existence
Soit k une constante de contraction de la fonction f , et soit x0 un élément arbitraire mais
fixe dans E. On construit une suite (xn)n∈N dans E par

xn = f(xn−1), pour tout n ≥ 1 (1.2)

On doit prouver que (xn) est une suite de Cauchy dans E. Comme f est une contraction,
on a

‖xn+1 − xn‖ = ‖f(xn)− f(xn−1)‖ ≤ k‖xn − xn−1‖, pour tout n ≥ 1 (1.3)

Ainsi, on obtient

‖xn+1 − xn‖ ≤ kn‖x1 − x0‖, pour tout n ≥ 1 (1.4)
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Par conséquent, pour tout m > n, on utilise l’inégalité triangulaire

‖xn − xm‖ = ‖xn − xn+1 + xn+1 − xn+2 + xn+2 − ...+ xm−1 − xm‖

≤ ‖xn − xn+1‖+ ‖xn+1 − xn+2‖+ ...+ ‖xm−1 − xm‖

≤ (kn + kn+1 + ...+ km−1)‖x1 − x0‖

≤ k(1 + k + ....+ km−n−1‖x1 − x0‖

≤ kn

1− k
‖x1 − x0‖ −→ 0 quand n −→ 0

et donc la suite (xn) est de Cauchy. Comme E est un espace de Banach, elle converge
donc vers une limite p ∈ E, p = lim

n−→∞
xn.

Par la continuité de f , on obtient

p = lim
n−→∞

xn = lim
n−→∞

f(xn−1) = f( lim
n−→∞

xn−1) = f(p)

alors f admet un ponit fixe.

ii) Unicité
Supposons qu’il existe deux points fixes p et q de f , alors on a

‖p− q‖ = ‖f(p)− f(q)‖ ≤ ‖p− q‖,

et comme k < 1, ceci n’est possible que si p = q.

1.6 Rappels sur les équations différentielles fonction-
nelles à retard

Dans cette partie, nous rappelons quelques définitions et résultats sur les équations dif-
férentielles fonctionnelles à retard, le théorème d’existence et d’unicité des solutions, la
méthode des pas, ainsi que quelques propriétés de ces équations. Pour plus de détails on
peut référez aux livres [11] ,[16]
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1.6.1 Définitions

Etant donné un nombre τ ≥ 0, t0 ∈ R, On note par C = C([t0−τ ],R), l’espace de Banach

des fonctions continues définies sur l’intervalle [t0 − τ, t0] à valeurs dans R , muni de la

norme de la convergence uniforme ‖.‖, t0 ∈ R.

Définition 1.6.1. On appelle équation différentielle à retard, une équation de la forme

x
′
(t) = f(t, x(t), x(t− τ)) t ≥ t0, (1.5)

oú f : R3 −→ R, une fonction continue.

Définition 1.6.2. Une condition initiale pour l’équation (1.5)est donné par la fonction

x(t) = ϕ(t), t ∈ [t0 − τ, t0],

Oú ϕ ∈ C.

Définition 1.6.3. On dit que x est une solution de l’équation (1.5) s’il existe α > 0 tels
que

• x définie et continue sur [t0 − r, t0 + α[.

• x dérivable sur [t0, t0 + α[ et satisfait l’équation (1.5) sur l’intervalle [t0, t0 + α[.

Définition 1.6.4. x est dite solution du problème de Cauchy,{
x
′
(t) = f(t, x(t), x(t− τ)), t ≥ t0,

x(t) = ϕ(t) t ∈ [t0 − τ, t0],
(1.6)

s’il existe α > 0 tel que x soit solution de l’équation (1.5) sur [t0, t0 + α[, et

x(t) = ϕ(t), t ∈ [t0 − τ, t0].

Proposition 1.6.1. [11] soit t0 ∈ R, ϕ ∈ C donné et f : R3 −→ R, une fonction

continue. Une fonction x est solution du problème (1.6) si et seulement si elle est solution
du problème suivant x(t) = ϕ(t0) +

∫ t

t0

f(s, x(s), x(s− τ))ds, t ≥ t0

x(t) = ϕ(t), t ∈ [t0 − τ, t0]
(1.7)
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1.6.2 Théorème d’existance et unicité de solution

Considérons le problème de Cauchy (1.6),

{
x
′
(t) = f(t, x(t), x(t− τ)), t ≥ t0,

x(t) = ϕ(t) t ∈ [t0 − τ, t0],

Théorème 1.6.1. Si f : R3 −→ R est continue, alors le problème (1.6) admet au moins
une solution, si de plus f est localement lipschitzienne par rapport aux deux dernières
variables, alors cette solution est unique.

Propriétés 1.6.1.

i) Pour résoudre l’équation différentielle à retard (1.5)

x
′
(t) = f(t, x(t), x(t− τ)), t ≥ t0,

il faut connaître x(t) sur un intervalle [t0 − τ, t0], de longueur τ .

ii) Une équation différentielle à retard linéaire et homogène, peut avoir des solutions os-
cillantes non triviales, c’est-à-dire des solutions qui s’annulent plusieurs fois, mais
elles ne sont pas identiquement nulles.

iii) Deux solutions, d’une équation différentielle à retard peuvent se rencontrer en plusieurs
points, sans qu’elles soient égales.

1.6.3 Intégration par la méthode des pas

Pour simplifier les calculs nous considérons t0 = 0. Alors le problème de Cauchy (1.6)
devient {

x
′
(t) = f(t, x(t), x(t− τ)), t ≥ 0,

x(t) = ϕ(t) t ∈ [−τ, 0],
(1.8)

i) La résolution sur [0, τ ] ;

Soit t ∈ [0, τ ], alors t− τ ∈ [−τ, 0] et de la on a

x(t− τ) = ϕ(t− τ),
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et le problème de Cauchy (1.8) devient{
x
′
(t) = f(t, x(t), x(t− τ)), t ∈ [0, τ ],

x(t) = ϕ(0),

d’aprés la proposition (1.6.1) l’équation x′(t) = f(t, x(t), ϕ(t − τ)), t ∈ [0, τ ], s’écrit sous

la forme intégrale suivante x(t− τ) = ϕ(t− τ)

x(t) = ϕ(0) +

∫ t

0

f(s, x(s), ϕ(s− τ))ds, t ∈ [0, τ ],

donc, la solution sur [0, τ ], qu’on notera x1(t) est donnée par

x1(t) = ϕ(0) +

∫ t

0

f(s, x(s), ϕ(s− τ))ds, t ∈ [0, τ ] (1.9)

ii) La résolution sur [τ, 2τ ]

On refait l’opération sur [τ, 2τ ], en considérant comme condition initiale x(t) = x1(t)

sur [0, τ ].

Soit t ∈ [τ, 2τ ], alors t− τ ∈ [0, τ ] et de la on a

x(t− τ) = x1(t− τ)

et le problème de Cauchy (1.8) devient{
x
′
(t) = f(t, x(t), x1(t− τ)), t ∈ [τ, 2τ ],

x(τ) = x1(τ),

l’équation x′(t) = f(t, x(t), x1(t− τ)), t ∈ [τ, 2τ ],
s’écrit sous la forme intégrale suivante

x(t) = x1(τ) +

∫ t

τ

f(s, x(s), x1(s− τ))ds, t ∈ [τ, 2τ ]

donc, la solution sur [r, 2r], qu’on notera x2(t) est donnée par

x2(t) = x1(τ) +

∫ t

τ

f(s, x(s), x1(s− τ))ds, t ∈ [τ, 2τ ]
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et ainsi de suite.
Cette méthode s’appelle la méthode des pas.

1.7 La fonction Gamma

La fonction Gamma a été introduite par le mathématicien suisse Leonhard Euler (1707-

1783) dans son objectif de généraliser la factorielle des valeurs non entières. Plus tard,
en raison de sa grande importance, elle a été étudiée par d’autres éminents mathémati-
ciens comme Adrien -Marie Legendre (1752-1833) , Carl Friedrich Gauss (1777-1855) ,

Christoph Gudermann (1798- 1852) , Joseph Liouville (1809-1882) , Karl Weierstrass

(1815-1897) , Charles Hermite (1822-1901) et beaucoup d’autres. Elle apparaît également
dans divers domaines, comme les séries asymptotiques , l’intégration définie , série hyper-
géométrique , fonction zêta de Riemann , théorie des nombres ...Pour plus de détails sur
cette fonction (voir [2],[9]).

1.7.1 Définition de la fonction Gamma

L’une des fonctions de base du calcul fractionnaire est la fonction Gamma d’Euler Γ(z):

La fonction Gamma Γ(z) est définie par l’intégrale suivante :

Γ(z) =

∫ +∞

0

tz−1e−tdt,

avec Γ(1) = 1,Γ(0+) = +∞, Γ(z) est une fonction strictement décroissante pour 0 < z ≤
1. Quelques propriétés de la fonction Gamma

Γ(z + 1) = zΓ(z)

qu’on peut la démontrer par une intégration par parties

Γ(z + 1) =

∫ +∞

0

t(z+1)−1e−tdt =

[
− tze−t

]t=+∞

t=0

+ z

∫ +∞

0

tz−1e−tdt = zΓ(z).

La fonction Gamma d’Euler généralise la factorielle car Γ(n+ 1) = n!,∀n ∈ N.

Γ(z)Γ(1− z) =
Π

sin(πz)
(z /∈ Z0; 0 < <(z) < 1); Γ(

1

2
) =
√
π
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La fonction beta est définie par

B(z, w) =

∫ 1

0

tz−1(1− t)ω−1dt(<(z) > 0); (<(ω) > 0),

Cette fonction est reliée aux fonctions gamma par la relation suivante

B(z, w) =
Γ(z)Γ(ω)

Γ(z + ω)
, (z, ω /∈ Z−0 )

1.8 Intégrale et dérivée fractionnaire au sens de Riemann-
Liouville

Soit f ∈ C(Ω).On définie l’intégrale fractionnaire d’ordre α ∈ R(α > 0) au sens de

Riemann-liouville (à droite) notée Iαa+ par

(Iαa+f)(t) =
1

Γ(α)

∫ t

a

f(s)ds

(t− s)1−α , (t > a, α > 0) (1.10)

ou Γ est la fonction gamma d’Euler définie par

Γ(z) =

∫ ∞
0

tz−1e−tdt (<(z) > 0), (1.11)

Si a = 0, en écrit (Iα0+)(t) = f(t)∗ϕα(t), telle que ϕα(t) =
tα−1

Γ(α)
pour t > 0 et ϕα(t) = 0

pour t ≤ 0.

Définition 1.8.1. La dérivée fractionnaire au sens de Riemann-liouville (à droite) notée

Dα
a+x d’ordre α ∈ R(0 < τ < 1) est définie par

(Dα
a+x)(t) =

1

Γ(1− α)

d

dt

∫ t

0

x(s)ds

(t− s)α

=
d

dt
(I1−α
a+ x)(t), (t > a, 0 < α < 1)

(1.12)

lorsque le membre de droite existe
Dans ce qui suit nous rappelons quelques résultats essentiels utiles pour notre étude.
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Le premier est le résultat bien connu qui caractérise les fonctions absolument contin-
ues comme les fonctions qui sont primitives de fonctions sommables. On a une relation
qui lie L’intégrale fractionnaire et la dérivée fractionnaire qui est donnée par le lemme
suivant :

Lemme 1.8.1. [5] Si f ∈ L1(a, b) et (I1−α
a+ f) ∈ AC[a, b] et si 0 < α < 1 alors

(Iαa+D
α
a+f)(x) = f(x)−

(I1−α
a+ f)(a)

Γ(α)
(x− a)α−1 (1.13)

Le deuxième montre que Iαa+ est un opérateur continue de Lp dans luis même

AC[a, b] l’espace des fonctions absolument continues sur [a, b]

Lemme 1.8.2. L’espace AC[a, b] coincide avec l’espace des primitives de fonctions sommables
de Lebesgue, c’est-à-dire

f ∈ AC[a, b]⇔ f(x) = c+

∫ x

a

ϕ(x)dt, (ϕ ∈ L(a, b)). (1.14)

Ainsi une fonction absolument continue f(x) a une dérivée sommable f(x) = f ′(x)

dans [a, b], Alors (1.14) signifie que

ϕ(t) = f ′(t) et c = f(a)

Lemme 1.8.3. [5] L’opérateur Iαa+ avec α > 0est bornée dans Lp(a, b) (0 ≤ p ≤ +∞)

‖Iαa+f‖p ≤
(b− a)α

Γ(α + 1)
‖f‖p (1.15)

Le troisième affirme que Iαa+ est bien l’inverse à droite de Dα
a+

Lemme 1.8.4. Si α > 0 et f ∈ Lp(a, b) (1 ≤ p ≤ +∞) alors

(Dα
a+I

α
a+f)(x) = f(x), presque partout dans [a, b] (1.16)

Le lemme suivant donne une loi de composition pour Iαa+

Lemme 1.8.5. [5] Si α > 0 et β > 0 alors

(Iαa+I
β
a+f)(x) = (Iα+β

a+ f)(x), presque partout dans [a, b] (1.17)
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Propriétés 1.8.1. [1]

• ∀j = 1, 2, 3, ..., [α] + 1, α > 0 on a

(
Dα
a+

(t− a)α−j
)

(x) = 0

• Si α > 0 et β ∈ R(β > 0) alors

(
Iαa+(t− a)β−j

)
(x) =

Γ(β)

Γ(α + β)
(x− a)α+β−1



CHAPTER 2

ÉQUATIONS DIFFÉRENTIELLES FRACTIONNAIRES
AVEC LA DÉRIVÉE DE RIEMANN-LIOUVILLE DANS

L’ESPACE DES FONCTIONS SOMMABLES

Dans ce chapitre nous étudions l’existance et l’unicité de la du problème différentiel frac-
tionnaire non linéaire du type voltérra avec retard suivant

(Dα
0+x)(t) = f

[
t, xt,

∫ t

0

K(t, s, xs)ds

]
, t > 0, 0 < α < 1 (2.1)

(I1−α
0+ x)(0+) = τ, τ ∈ R (2.2)

x(t) = ϕ(t) t ∈ [−τ, 0] (2.3)

xt(θ) = x(t+ θ) θ ∈ [−τ, 0]. (2.4)

Dans le cas de la dérivée fractionnaire au sens de Riemann-Liouville dans l’espace Lα

défini pour tout 0 < α < 1 par

Lα(0, τ) = x ∈ L(0, τ) : (Dα
0+x) ∈ L(0, τ) (2.5)

La méthode que nous utilisons consiste à réduire le problème (2.1)-(2.2)-(2.3)-(2.4) à une
équation intégrale de voltérra et en utilisant le théoreme de point fixe de banach nous
prouvons l’unicité de la solution pour le le problème (2.1)-(2.2)-(2.3)-(2.4)

On commence d’abord par énoncer les hypothèses sur f et K permettant la réduc-
tion du problème fractionnaire avec retard à une équation intégrale.
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2.1 Hypothèses

• (H.1) Soit f : (0, τ ] × G × R → R, f(t,X, Z) ∈ L(0, τ), ∀X ∈ G et ∀Z ∈ R. On

suppose qu’il existe deux fonctions l1(t), l2(t) positives telles que

‖f(t,X1, Z1)− f(t,X2, Z2)‖L(0,τ) ≤ l1(t)‖X1 −X2‖C([−τ,0],R)

+l2(t)‖Z1 − Z2‖L(0,τ), ∀t ∈ (0, τ ],∀X1, X2 ∈ G,∀Z1, Z2 ∈ R
(2.6)

Oú

Xi = xit et Zi =

∫ t

0

K(t, s, xis)ds (i = 1, 2) (2.7)

et on pose

l∗ = sup
t∈(0,τ ]

{l1(t)− l2(t)} (2.8)

• (H.2) Soit K : D × G → R telle que K(t, s, xs) ∈ L(0, τ),∀0 ≤ s ≤ t, ∀xs ∈
C([−τ, 0],R) oúD = (t, s) ∈ R2 : t > 0, 0 ≤ s ≤ t ≤ τ et il existe une fonctionH(t, s) ∈
C(D,R+) telle que

‖K(t, s, x1
s)−K(t, s, x2

s)‖L(0,τ) ≤ H(t, s)‖x1
s − x2

s‖C([−τ,0],R), (2.9)

∀t, s ∈ D, ∀x1
s, x

2
s ∈ C([−τ, 0],R) (2.10)

et on note par

H∗ = sup
t∈(0,τ1]

{∫ t

0

H(t, s)ds, t, s ∈ D
}
< +∞ (2.11)

• (H.3) Soit M : R+ → R+ une fonction continue telle que M soit indépendant de

x(t) et ∀x1, x2 ∈ L(0, τ) alors x1
t , x

2
t ∈ C([−τ, 0],R) et

‖x1
t − x2

t‖C([−τ,0],R) ≤M(t)‖x1 − x2‖L(0,τ) (2.12)

on pose

M∗ = sup
t∈[0,τ1]

{M(t)} < +∞ (2.13)
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2.2 L’équivalence du problème fractionnaire avec son
équation intégrale correspondante

Définition 2.2.1. [3] La fonction x est dite solution du problème (2.1)-(2.2)-(2.3)-(2.4)

si x satisfait l’équation (2.1) et la condition initiale (2.2) dans (0, τ ] et la condition (2.3)

et (2.4) dans [−τ, 0].

Théorème 2.2.1. [1] Soit 0 < α < 1, soit G un sous ensemble ouvert de R et soit

f : (0, τ ] × G × R → R, (τ > 0) une fonction telle que f(t,X, Z) ∈ L(0, τ) pour tout
X ∈ G et Z ∈ R

Si x ∈ L(0, τ) alors x satisfait les relations (2.1)-(2.2) si et seulement si x satisfait
l’équation intégrale suivante

x(t) =
τ

Γ(α)
tα−1 +

1

Γ(α)

∫ t

0

f [s, xs,
∫ s

0
K(s, z, xz]ds

(t− s)1−α , (t > 0) (2.14)

Preuve. Nous démontrons

i) la nécessité.

Soit X ∈ L(0, τ) satisfaisant les relations (2.1) et (2.2). puisque f(t,X, Z) ∈ L(0, τ),

(2.2) signifie qu’il existe dans [0, τ ] la derivée fractionnaire Dα
0+x ∈ L(0, τ) on a

(Dα
0+x)(t) =

d

dt
(I1−α

0+ x)(t), (I1−α
0+ x)(t)) = x(t) (2.15)

Il suit du lemme 1.8.2 que (I1−α
0+ ) ∈ AC[0, τ ] car

(2.1)⇔ d

dt
(I1−α

0+ )(t) = f(t,X(t), Z(t))⇒ (I1−α
0+ )(t) = c+

∫ t

0

f(s,X(s), Z(s))ds, (2.16)

Où
c = (I1−α

0+ )(0) = τ. (2.17)

Alors nous pouvons appliqué le lemme 1.8.1 (avec f(x) = x(t)) on a

(Iα0+D
α
0+x)(t) = x(t)−

(I1−α
0+ )(0)

Γ(α)
tα−1 = x(t)− τ

Γ(α)
tα−1 (2.18)
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D’après le lemme 1.8.3 l’intégrale (Iα0+f) ∈ L(0, τ) i.e existe dans [0, τ ] Appliquons

l’opérateur sur les deux membres de (2.1) et utilisons (2.18) et (1.10) on obtient l’équation

(2.14) ce qui montre la nécessité .

ii) la suffisance.

Soit x ∈ L(0, τ) satisfait l’équation (2.14). Appliquons l’opérateur sur Dα
0+ les deux

membres de (2.14), on a d’une part

(Dα
0+x)(t) =

τ

Γ(α)
(Dα

0+s
α−1)(t)

(
Dα

0+I
α
0+f

[
s, xs,

∫ t

0

K(s, z, xz)dz

])
(t) (2.19)

la propriété 1.8.1 et lemme 1.8.4 (avec f(x) est remplacé par f [s, xs,
∫ t

0
K(s, z, xz)dz])

nous donne l’équation (2.1).

D’autre part on démontre que la condition initiale (2.2) est satisfaite. pour ceci on ap-

plique l’opérateur I1−α
0+ à (2.14) on obtient

(I1−α
0+ x)(t) =

τ

Γ(α)
(I1−α

0+ sα−1)(t)

(
I1−α

0+ Iα0+f

[
s, xs,

∫ t

0

K(s, z, xz)dz

])
(t) (2.20)

on utilise le lemme 1.8.5 et la propriété 1.8.1 on trouve que

(I1−α
0+ x)(t) = τ +

∫ t

0

f

[
s, xs,

∫ s

0

K(s, z, xz)dz

]
ds, (2.21)

Le passage à la limite quant t → 0+ dans la dernière relation nous donne la condition
initiale (2.2) ce qui montre la suffisance, et donc la démonstration du théorème 2.2.1 est
achevée.

2.3 Existence et unicité de la solution pour le problème
du type Cauchy

Soit

Y = {x : [−τ, τ ]→ R : x|[−τ,0] ∈ C([−τ, 0],R), et x|(0,τ ] ∈ C((0, τ ],R) ∩ L(0, τ)}
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Théorème 2.3.1. Soit 0 < α < 1, soit G un sous ensemble ouvert de R. Si les hypothèses
(H.1)-(H.2)-(H.3) sont satisfaites alors le problème (2.1)-(2.2)-(2.3)- (2.4) admet une

solution unique dans l’espace C([−τ, 0],R) ∩ C((0, τ ], R) ∩ L ∈ (0, τ)

Preuve. D’abord nous démontrons l’existence de la solution x ∈ L(0, τ) : Alors

suivant le théorème 2.2.1, il suffit de démontrer l’existence de la solution x ∈ L(0, τ) pour

l’equation intégrale non linéaire de voltérra (2.14) . Pour cela
On applique la méthode connue, pour démontrer le résultat dans une partie de l’intervalle
[0, τ ].

L’équation (2.14) a un sens dans tout intervalle [0, τ1] ⊂ [0, τ ] (0 < τ1 < τ).
Choisissons τ1 tel que

(1 +H∗)
τα1 M

∗l∗

Γ(α + 1)
< 1 (2.22)

et démontrons l’existence de la solution x ∈ L(0, τ1) pour l’équation intégrale (2.14) dans

l’intervalle [0, τ1]. Pour cela on utilise le théorème du point fixe de Banach dans l’espace

L(0, τ1) dont la norme est

‖x‖L(0,τ1) =

∫ τ1

0

|x(t)|dt (2.23)

Il est clair que L(0, τ1) est un espace métrique complète avec la distance

d(x1, x2) = ‖x1 − x2‖L(0,τ1) =

∫ τ1

0

|x1(t)− x2(t)|dt (2.24)

Considérons l’opérateur T : Y → Y défini par

(Tx)(t) =


ϕ(t), si t ∈ [−τ, 0]

x0(t) + 1
Γ(α)

∫ t

0

f [s, xs,
∫ s

0
K(s, z, xzdz]ds

(t− s)1−α , si t ∈ (0, τ ].
(2.25)

oú

x0(t) =
τ

Γ(α)
tα−1 (2.26)

Soit x(t) : [−τ, τ ]→ R est la fonction définie par

x(t) =

{
ϕ(t), si t ∈ [−τ, 0]
0, si t ∈ (0, τ ].

(2.27)
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Pour tout r ∈ C((0, τ ],R) avec r0(t) = x0(t) on définit la fonction r̂ par

r̂(t) =

{
0, si t ∈ [−τ, 0]
r(t), si t ∈ (0, τ ],

(2.28)

Si x satisfait l’équation intégrale (2.14), on peut décomposé x(.) en x(t) = r̂(t)+y(t), t > 0,

ce qui implique que xt = r̂t + yt, pour tout t > 0, et la fonction r(.) satisfait

r(t) = r0(t) +
1

Γ(α)

∫ t

0

f

[
s, (r̂t + yt),

∫ t

0

K[s, z, (r̂t + yt)]dz

]
ds

(t− s)1−α (2.29)

Soit

C0 = r ∈ C([−τ, 0],R) ∩ C((0, τ ]R)

L’espace C0 est un espace de Banach dont la norme est

‖r‖C0 = sup
t∈(0,τ ]

|r(t)| (2.30)

Soit maintenant l’opérateur P : C0 → C0 définit par

(Pr)(t) = r0(t) +
1

Γ(α)

∫ t

0

f

[
s, (r̂s + ys),

∫ t

0

K[s, z, (r̂z + yz)]dz

]
ds

(t− s)1−α , t ∈ (0, τ ]. (2.31)

Il est clair que l’opérateur T a un point fixe équivalent à l’opérateur P et donc on applique
le théorème du point fixe de Banach, (c-à-d) on va démontrer que si r ∈ L(0, τ1) , alors

Pr ∈ L(0, τ1) et pour tout r1, r2 ∈ L(0, τ1) on a l’estimation

‖Pr1 −Pr2‖L(0,τ1) ≤ κ‖r1 − r2‖L(0,τ1), κ = (1 +H∗)
τα1 M∗l

∗

Γ(α + 1)
< 1 (2.32)

Il suit du (2.26) que r0(t) ∈ L(0, τ1) car

‖r0(t)‖L(0,τ1) =
τ

Γ(α)

∫ τ1

0

|tα−1|dt =
ττα1
αΓ(α)

< +∞ (2.33)
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Puisque f(t,X, Z) ∈ L(0, τ), alors par suite du lemme 1.8.3 avec b = τ1 et a = 0 l’intégrale

Iα0+f ∈ L(0, τ1) et donc Pr ∈ L(0, τ1)

Démontrons maintenant l’estimation (2.32), on a P : L(0, τ1)→ L(0, τ1)

Soit r1, r2 ∈ L(0, τ1), alors

‖Pr1 −Pr2‖L(0,τ1) ≤
∥∥∥∥Iα0+(∣∣∣∣f[s, (r̂1

s + xs),

∫ s

0

K[s, z, (r̂1
z + xz)]dz

]
−f
[
s, (r̂2

s + xs),

∫ s

0

K[s, z, (r̂2
z + xz)]dz

]∣∣∣∣)∥∥∥∥
L(0,τ1)

≤ τα1
Γ(α + 1)

∥∥∥∥(∣∣∣∣f[s, (r̂1
s + xs),

∫ s

0

K[s, z, (r̂1
z + xz)]dz

]
−f
[
s, (r̂2

s + xs),

∫ s

0

K[s, z, (r̂2
z + xz)]dz

]∣∣∣∣)∥∥∥∥
L(0,τ1)

≤ τα1
Γ(α + 1)

(
l1(s)‖r̂1

s − r̂2
s‖C([−τ,0],R)+

l2(s)

∥∥∥∥∫ s

0

[
K[s, z, (r̂1

z + xz)]−K[s, z, (r̂2
z + xz)]

]
dz

∥∥∥∥
L(0,τ1)

)

et comme

∥∥∥∥∫ s

0

[
K[s, z, (r̂1

z + xz)]−K[s, z, (r̂2
z + xz)]

]
dz

∥∥∥∥
L(0,τ1)

≤
∫ s

0

∥∥∥∥[K[s, z, (r̂1
z + xz)]−K[s, z, (r̂2

z + xz)]]

∥∥∥∥
L(0,τ1)

dz

≤
∫ s

0

H(s, z)‖r̂1
z − r̂2

z‖C([−τ,0],R)dz

≤
(

sup
s∈(0,τ1]

∫ s

0

H(s, z)dz

)
‖r̂1

z − r̂2
z‖C([−τ,0],R)

≤ H∗‖r̂1
z − r̂2

z‖C([−τ,0],R)
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Alors

‖Pr1 −Pr2‖L(0,τ1) ≤
τα1

Γ(α)
(l1(s) + l2(s)H∗)‖r̂1

s − r̂2
s‖C([−τ,0],R)

≤ τα1 M(s)

Γ(α + 1)
(l1(s) + l2(s)H∗)‖r1 − r2‖C([−τ,0],R)

≤ τα1 M
∗l∗

Γ(α + 1)
(1 +H∗)‖r1 − r2‖C([−τ,0],R)

Ce qui implique l’estimation (2.32) et de (2.22) on a 0 < κ < 1, et alors P est un opérateur

contractant dans L(0, τ1) et d’après le théorème du point fixe de Banach, il existe une

solution unique x∗(t) ∈ L(0, τ1) pour l’équation (2.14) dans l’intervalle(0, τ1].

On considère maintenant l’intervalle [τ1, τ2], τ1 = τ1 + h1, h1 > 0 et τ2 < τ .

On peut écrire l’quation (2.14) sous la forme

x(t) =
τ

Γ(α)
tα−1 +

1

Γ(α)

∫ t

0

f [s, xs,
∫ s

0
K(s, z, xz)dz]ds

(t− s)1−α

+
1

Γ(α)

∫ t

τ1

f [s, xs,
∫ s

0
K(s, z, xz)dz]ds

(t− s)1−α

(2.34)

Puisque la fonction x(t) est bien définie sur l’intervalle (0, τ1], on peut écrire que

x1 =
τ

Γ(α)
tα−1 +

1

Γ(α)

∫ t

0

f [s, xs,
∫ s

0
K(s, z, xz)dz]ds

(t− s)1−α (2.35)

et l’équation (2.34) devient

x(t) = x1 +
1

Γ(α)

∫ t

τ1

f [s, xs,
∫ s

0
K(s, z, xz)dz]ds

(t− s)1−α (2.36)

et de la même manière on deduit qu’il existe une solution unique x∗(t) ∈ L(τ1, τ2) pour

l’équation (2.14) dans l’intervalle [τ1, τ2] :

Si on prend l’autre intervalle [τ2; τ3] où τ3 = τ2 + h2, h2 > 0 et τ3 < τ , on répéte ce
processus
on conclut alors qu’il existe une solution unique x(t) = x∗(t) ∈ L(0, τ) pour l’équation
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intégrale de voltérra (2.14) dans l’intervalle (0, τ ] et par suite pour le problème (2.1)-(2.2)-

(2.3)-(2.4) dans l’espace C0 ∩ L(0, τ).

Pour terminer la preuve on doit démontrer que la solution unique x(t) dans L(0, τ)

appartient a l’espace Lα(0, τ), pour cela d’après (2.5) il suit de démontrer que Dα
0+x ∈

L(0, τ) . Alors on sait d’après le théorème du point fixe que la solution unique x(t) est

obtenue comme une limite d’une suite convergente xm(t) ∈ L(0, τ) , (i,e)

lim
m→+∞

‖xm − x‖L(0,τ) = 0 (2.37)

avec le choix de certaine ym dans un certain intervalle (0, τ1], ..., [τl−1, τ ]. En effet, d’après

(2.1) et les hypothèses (H.1)-(H.2)-(H.3) on a

‖Dα
0+xm −Dα

0+x‖L(0,τ) =

∥∥∥∥f[t, xmt ,∫ t

0

K(t, s, xms )

]
− f

[
t, xt,

∫ t

0

K(t, s, xms )

]∥∥∥∥
L(0,τ)

≤ l1(t)‖xmt − xt‖C([−τ,0],R)

+l2(t)

∥∥∥∥∫ t

0

[K(t, s, xms )−K(t, s, xs)]ds

∥∥∥∥
L(0,τ)

≤ l1(t)‖xmt − xt‖C([−τ,0],R) + l2(t)H∗‖xms − xs‖C([−τ,0],R)

≤ l∗M∗(1 +H∗)‖xm − x‖L(0,τ).

la relation (2.37) affirme que

lim
m→+∞

‖Dα
0+xm −Dα

0+x‖L(0,τ) = 0

et donc Dα
0+(t)x ∈ L(0, τ). Alors le problème (2.1)-(2.2)-(2.3)-(2.4) admet une solution

unique dans l’espace C0 ∩ Lα(0, τ), et la preuve du théorème 2.3.1 est terminée.



CHAPTER 3

SOLUTION FAIBLE PRESQUE PÉRIODIQUE POUR LES
ÉQUATIONS DIFFÉRENTIELLES FONCTIONNELLES
STOCHASTIQUE À RETARD DIRIGÉE PAR UN MBF

Ce chapitre est motivé par [4],[7],[17] basé sur la méthode de semi-groupes d’opérateurs et
la méthode de point fixe, nous étudions l’existance d’une solution faible presque périodique
à moyenne quadratique pour les équations differentielles stochastique fonctionnelles à
retard

{
dx(t) = (Ax(t) + b(t, x(t), xt))dt+ σH(t)dBH

Q (t), t ∈ [0, T ]
x(t) = ϕ(t), −τ ≤ t ≤ 0, τ ≥ 0,

(3.1)

Où BH
Q = {BH

Q (t), t ∈ [0, T ]} est un MBF d’indice de Hurst H ∈ (1
2
, 1). Certains condi-

tions suffisantes sur l’opérateur A et les coefficients b, σH , assurant l’existance des solutions
presque périodique à moyenne quadratique .

3.1 Notions et Définitions

Dans cette section nous introduisons quelques notions, définitions et des lemmes de tech-
niques qui sont utilisés dans ce qui suit.

Soit T > 0 et notons Υ l’espace linéaire des fonctions de pas a valeur dans R sur [0, T ],

34
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i.e φ ∈ Υ si

φ(t) =
n−1∑
i=1

ziχ[ti,ti+1)(t),

Où t ∈ [0, T ], zi ∈ R et 0 = t1 < t2 < . < tn = T . pour φ ∈ Υ . son intégral de Wiener

par rapport à BH est

∫ T

0

φ(s)dBH(s) =
n−1∑
i=1

zi(B
H(ti+1)−BH(ti)).

Soit H l’espace de Hilbert défini comme la fermeture de Υ par rapport au produit scalaire
〈χ[0,t], χ[0,s]〉H = RH(t, s). Ensuite

φ =
n−1∑
i=1

ziχ[ti,ti+1)(t) 7→
∫ T

0

φ(s)dBH(s)

est une isometrie entre Υ et l’espace linéaire span {BH(t), t ∈ [0, T ]}, qui peut être étendu

à une isometrie entre H et le premier chaos de Wiener de MBF spanL
2(Ω){BH(t), t ∈

[0, T ]}, (voir[14]). L’image d’un élément φ ∈ H par cette isometrie est appelée l’intégrale

de Wiener de φ en ce qui concerne BH .

considérons maintenant le noyau

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−3/2uH−1/2du

Où cH = ( H(2H−1)

β(2−2H,H− 1
2

)
)
1
2 , Où β la fonction Béta et ce n’est pas difficile de voir que

∂KH

∂t
(t, s) = H(

t

s
)H−

1
2 (t− s)H−

3
2 .

Soit KH : Υ 7→ L2([0, T ]) opérateur linéaire donné par

KHφ(s)(s) =

∫ t

s

φ(t)
∂KH

∂t
(t, s)dt.
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alors (KHχ[0,t])(s) = KH(t, s)χ[0,t](s) et KH est une isometrie entre Υ et L2([0, T ]) qui

peut être étendu a H.
Soit L2

H([0, T ]) = {φ ∈ H,KHφ ∈ L2([0, T ])}. puisque H > 1/2, nous avons

L1/H([0, T ]) ⊂ L2
H([0, T ]). (3.2)

De plus le resultat suivant est valable:

Lemme 3.1.1. [14]. pour φ ∈ L1/H([0, T ]),

H(2H − 1)

∫ T

0

∫ T

0

|φ(τ)||φ(u)||τ − u|2H−2dτdu ≤ cH ||φ||2L1/H([0,T ]).

Considérons maintenant deus espaces de Hilbert séparable
(U, |·|U , 〈·, ·〉U) et (V, |·|V , 〈·, ·〉V ), L(V, U) désigne l’espace de tout opérateur linéaire borné

de V à U et Q ∈ L(V, V ) d’un opérateur auto-adjoint non négative. Notons L0
Q(V, U)

l’espace de tout ξ ∈ L(V, U) tel que ξQ
1
2 est un opérateur de Hilbert-schmidt. La norme

est donné par

|ξ|2L0
Q(V,U) = |ξQ

1
2 |2HS = tr(ξQξ∗).

Alors ξ est appelé un opérateur Q-Hilbert-Schmidt de V à U.

Soit {BH
n (t)}n∈N une séquence de MBF (two− sideone− dimensional) naturellement

indépandant sur l’espace de probabilité complet (Ω,F ,P), {en}n∈N soit une base orthog-
onal complète dans V .

Définir le processus stochastique BH
Q (t) a valeur dans V par

BH
Q (t) =

∞∑
n=1

BH
n (t)Q

1
2 en, t ≥ 0.

Si Q est un opérateur de classe de trace auto-adjoint non négatif alors cette serie converge

dans l’espace V ,i.e qu’il tient que BH
Q (t) ∈ L2(Ω, V ). Alors, nous disons que BH

Q (t) est

un mBf Q cylindrique a valeur dans V avec l’opérateur de covariance

∞∑
n=1

‖KH(ψQ
1
2 )en‖L2([0,T ],U) <∞. (3.3)
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Définition 3.1.1. Soit ψ : [0, T ]→ L0
Q(V, U) satisfait (3.3). Alors l’intégral stochastique

de ψ par rapport a MBF BH
Q est défini pour t ≥ 0 comme

∫ t

0

ψ(s)dBH
Q (s) =

∞∑
n=1

∫ t

0

ψ(s)Q1/2endB
H
n (s) =

∞∑
n=1

∫ t

0

(KH(ψQ1/2en))(s)dW (s),

Où W est un processus de Wiener

notez que si
∞∑
n=1

‖ψQ
1
2 en‖L1/H([0,T ],U) <∞, (3.4)

puis en particulier (3.4) tient, ce qui suivent immédiatement de (3.3).

Le lemme suivant est prouvé dans [14] et obtenu comme une simple application du
lemme 3.1.1.

Lemme 3.1.2. ([14]). pour tout ψ : [0, T ] → L0
Q(V, U) telle que (3.4) soit vrai et pour

tout α, β ∈ [0, T ] avec α > β,

E
∣∣∣∣∫ α

β

ψ(s)dBH
Q (s)

∣∣∣∣2
U

≤ cH(2H − 1)(α− β)(2H−1)

∞∑
n=1

∣∣∣∣∫ α

β

ψQ
1
2 en

∣∣∣∣2
U

ds,

où c = c(H). Si de plus

∞∑
n=1

∣∣∣ψQ 1
2 en

∣∣∣
U

est converge uniformement pour t ∈ [0, T ], (3.5)

Ensuite

E
∣∣∣∣∫ α

β

ψ(s)dBH
Q (s)

∣∣∣∣2
U

≤ cH(2H − 1)(α− β)(2H−1)

∫ α

β

|ψ(s)|2L0
Q(V,U)ds. (3.6)

Les définitions suivantes suivent la référence [4]

Définition 3.1.2. Un processus continue X : [0, T ]→ L2(Ω, U) est dit pesque périodique
à condition que pour chaque ε > 0, l’ensemble

J(X, ε) =

{
k : sup

t∈[0,T ]

E|X(t+ k)−X(t)|2U < ε

}
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est relativement dense dans R. i.e qu’il existe une constante c = c(ε) > 0 telle que

J(X, ε) ∩ [t, t+ c] 6= ∅, , , , pour tout t ∈ [0, T ].

Notons l’ensemble de tout les processus stochastiques presque périodique à moyenne

quadratique par Ĉ([0, T ], L2(Ω, U))

notez que cet ensemle est un sous-espace fermé de C([0, T ];L2(Ω, U)). Par conséquence

Ĉ([0, T ], L2(Ω, U)) équipé avec la norme sup est un espace de Banach .

Définition 3.1.3. Une fonction b(t, Y ) : [0, T ] × L2(Ω, U) → L2(Ω, V ), qui est congoin-

tement continue, est dit presque périodique pour t ∈ [0, T ], et uniformement pour Y ∈ K,

où K ⊂ L2(Ω, U) est compact, si pour tout ε > 0, il existe une constante c(ε,K) > 0 telle

que tout intervalle de longueure c(ε,K) > 0 contient au moins un nombre k satisfait

sup
t∈[0,T ]

(
E|b(t+ k, Y )− b(t, Y )|2V

)
< ε,

pour chaque processus stochastique Y : [0, T ]→ K.

L’ensembre de ces fonctions sera désignées par Ĉ([0, T ]× L2(Ω, U), L2(Ω, V )).

Le lemme suivant est également prouvé dans [4].

Lemme 3.1.3. Soit C̃([−τ, 0];L2(Ω, U)) l’espace des fonctions continues de [−τ, 0] en

L2(Ω, U) avec la norme sup

||Z||C̃([−τ,0];L2(Ω,U)) = sup{|Z(s)|U ;Z ∈ C̃,−τ ≤ s ≤ 0},

K ⊂ L2(Ω, U) × C̃([−τ, 0];L2(Ω, U)) soit ensemble compact. Supposons que la fonction

b(t, x, y) : [0, T ]× L2(Ω, U)× C̃([−τ, 0];L2(Ω, U))→ L2(Ω, V )) Soit presque périodique a

moyenne quadratique pour t ∈ [0, T ], et uniformement pour (x, y) ∈ K, de plus il existe
un constante c1 > 0 tel que

|b(t, x, y)− b(t, x̃, ỹ)|2V ≤ c1

(
|x− x̃|2U + ||y − ỹ||C̃2([−τ,0];L2(Ω,U))

)
,

pour t ∈ [0, T ] and (x, y), (x̃, ỹ) ∈ L2(Ω, U)×C̃([−τ, 0];L2(Ω, U)), alors pour tout processus

stochastique presque périodique à moyenne quadratique ψ : [0, T ]→ L2(Ω, U), le processus

stochastique t→ b(t, ψ(t), ψt) est presque périodique à moyenne quadratique
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3.2 Solutions faible presque périodiques

Dans cette section, nous étudions l’éxistance de solutions faibles presque périodiqe à
moyenne quadratique pour l’équation différentielle fonctionelle à retard stochastique

dx(t) = (Ax(t) + b(t, x(t), xt))dt+ σH(t)dBH
Q (t), t ∈ [0, T ],

x(t) = ϕ(t), −r ≤ t ≤ 0, r ≥ 0,
(3.7)

où BH
Q (t) est le mouvement Brownien fractionnaire qui a été introduit dans la section

précédente

La condition initiale ϕ ∈ C̃([−τ, 0];L2(Ω, U)) est une fonction définie par

ϕt(s) = ϕ(t+ s), s ∈ [−τ, 0], et A : Dom(A) ⊂ U → U est le générateur infinitésimal d’un

semi-groupe fortement continu S(.) sur U , C’est-a-dire que pour tout t ≥ 0,

|S(t)|U ≤Meρt,M ≥ 1, ρ ∈ R

.

Les coefficients b : [0, T ]× U × C̃([−τ, 0];U)→ U et σH : [0, T ]→ L0
Q(U, V ) sont des

fonctions appropriées.

Définition 3.2.1. Un processus X à valeur dans U est appelé une solution faible de (3.7)

si x ∈ C̃([−τ, T ];L2(Ω, U)), x(t) = ϕ(t) pour t ∈ [−τ, 0], et pour t ∈ [0, T ], satisfait

x(t) = S(t)ϕ(0) +

∫ t

0

S(t− s)b(s, x(s), xs)ds+

∫ t

0

S(t− s)σH(s)dBH
Q (s) P− a · s. (3.8)

Maintenant, nous énonçons notre premier résultat principal, et utilisons les hypothèses
suivantes sur les coefficients

• (Hb) la fonction b ∈ Ĉ([0, T ]×U × C̃, U), et il existe une constante cb > 0 telle que

|b(t, x, y)− b(t, x̃, ỹ)|2U ≤ cb
(
|x− x̃|2U + ||y − ỹ||2

C̃

)
,

où l’espace C̃ est définie dans la section 1, (x, y), (x̃, ỹ) ∈ U × C̃, t ∈ [0, T ].
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• (HσH) La fonction σH : [0, T ] → L0
Q(U, V ) satisfait les conditions suivantes: pour

la base horthonormal complète {en}n∈N on V , nous avons

∞∑
n=1

‖σHQ
1
2 en‖L2([0,T ],U) <∞.

∞∑
n=1

|σH(t, x(t))Q
1
2 en|U est converge uniformemt pour t ∈ [0, T ].

Notez que l’hypothèse (HσH) implique immédiatement que pour tout t ∈ [0, T ],∫ t

0

|σH(s)|2L0
Q(U,V ) <∞.

Théorème 3.2.1. Sous les conditions de A, les hypothèses (Hb) et (HσH), pour tout

ϕ ∈ C̃([−τ, T ];L2(Ω, U)), Eq. (3.7) a une solution unique faible prêsque périodique à
moyenne quadratique x quand

γ = 2MeρT
√
Tcb < 1,

où cb est une constant positive

Preuve.
On peut supposer que ρ > 0, sinon on peut prend ρ0 > 0,telle que, pour tout t ≥ 0,

|S(t)| ≤Meρ0t. Définir l’opérateur L sur Ĉ([0, T ], U) par

(Lx)(t) = S(t)ϕ(0) +

∫ t

0

S(t− s)b(s, x(s), xs)ds+

∫ t

0

S(t− s)σH(s)dBH
Q (s)

= S(t)ϕ(0) + Φx(t) + Ψ(t). P− a · s.

(3.9)

D’abord il suffit de montrer Φx(.) est presque périodiqe à moyenne quadratique chaque
fois que X est presque périodique à moyenne quadratique .

En effet, en supposant que x est presque périodique à moyenne quadratique , en
utilisant l’hypothèse (Hb) et Lemme 3.1.3, On peut voir que c’est s 7→ b(s, x(s), xs) est

presque périodique à moyenne quadratique. Alors pour chaque ε > 0, il existe c(ε) > 0

tel que tout intervalle de longueur c(ε) contient au moins κ satisfaisant

sup
0≤t≤T

E|b(t+ κ, x(t+ κ), xt+κ)− b(t, x(t), xt)|2U ≤
ε

(TMeρT )2
, (3.10)
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Pour T > 0 fixé. De plus

E|Φx(t+ κ)− Φx(t)|2U

= E
∣∣∣∣∫ t

0

S(t− s)b(s+ κ, x(s+ κ), xs+κ)ds−
∫ t

0

S(t− s)b(s, x(s), xs)ds

∣∣∣∣2
U

≤ tE
∫ t

0

|S(t− s) (b(s+ κ, x(s+ κ), xs+κ)− b(s, x(s), xs))|2U ds

≤ tM2e2ρTE
∫ t

0

|S(t− s)(b(s+ κ, x(s+ κ), xs+κ)− b(s, x(s), xs))|2Uds

≤ TM2e2ρT

∫ t

0

sup
0≤τ≤s

E|b(τ + κ, x(τ + κ), xτ+κ)− b(τ, x(τ), xτ ))|2Uds

< ε.

Ensuite, pour υ > 0 choisi assez petit ,nous avons

E|Ψ(t+ υ)−Ψ(t)|2

= E
∣∣∣∣∫ t+υ

0

S(t+ υ − s)σH(s)dBH
Q (s)−

∫ t

0

S(t− s)σH(s)dBH
Q (s)

∣∣∣∣2
≤ 2E

∣∣∣∣∫ t

0

[S(t+ υ − s)− S(t− s)]σH(s)dBH
Q (s)

∣∣∣∣2 + 2E
∣∣∣∣∫ t+υ

t

S(t− s)σH(s)dBH
Q (s)

∣∣∣∣2
= I1 + I2.

En appliquant l’inégalité (3.5) a I2 nous obtenons

I1 ≤ 2cH(2H − 1)t2H−1

∫ t

0

|S(t− s)(S(υ)− Id)σH(s)|2L0
Q(U,V ) ds

≤ 2cH(2H − 1)t2H−1M2e2ρT

∫ t

0

|(S(υ)− Id)σH(s)|2L0
Q(V,U) ds

≤ 2cH(2H − 1)t2H−1M4e2ρT (1 + e2ρυ)

∫ t

0

|σH(s)|2L0
Q(V,U) ds.

En appliquant maintenant inégalité (3.5) a I2 nous obtenons

I2 ≤ 2cH(2H − 1)υ2H−1M2e2ρυ

∫ t+υ

0

|σH(s)|2L0
Q(V,U) ds.

On observe que la condiion (HσH) assure l’existance de constantes positives c1 et c2 tel
que

2cH(2H − 1)t2H−1M4e2ρT (1 + e2ρυ)

∫ t

0

|σH(s)|2L0
Q(V,U) ds ≤ c1,
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et

2cH(2H − 1)υ2H−1M2e2ρυ

∫ t+υ

0

|σH(s)|2L0
Q(V,U) ds ≤ c2.

par conséquance, pour υ > 0 choisi ,et tout t ≥ 0 nous avons

E|Ψ(t+ υ)−Ψ(t)|2 ≤ c1 + c2 = c3.

D’aprés la discussions ci-dessus,il est claire que l’opérateur L mappe Ĉ([0, T ], U) en lui
même.

Enfin affirmons que L est un contraction sur Ĉ([0, T ], U). nous avons

E|(Lx)(t)− (Ly)(t)|2 = E
∣∣∣∣∫ t

0

S(t− s)
[
b(s, x(s), xs)− b(s, y(s), ys)

]
ds

∣∣∣∣2
≤ 2M2e2ρTE

∫ t

0

|b(s, x(s), xs)− b(s, y(s), ys)|2Uds

≤ 2M2e2ρTE
∫ t

0

sup
0≤τ≤s

|b(τ, x(τ), xτ )− b(τ, y(τ), yτ )|2Uds

≤ 2TM2e2ρT cb sup
0≤τ≤s

(
|x− y|2U + ||x− y||2

C̃

)
≤ 4TM2e2ρT sup

0≤τ≤s
||x− y||2∞.

par conséquent

||(Lx)(t)− (Ly)(t)||∞ ≤ 2MeρT
√
Tcb||x− y||∞ = γ||x− y||∞. (3.11)

comme γ < 1,par (3.11), nous savons que L est un contraction par le principe de contrac-
tion, L a un point fixe unique x, qui est évidemment la solution faible presque périodique
à moyenne quadratique à Eq. (3.7).

3.3 Example

Les équations à retard jouent un rôle cruciale dans la modélisation de nombreux domaines.
Dans cette section nous présentons un exemple d’équation d’évolution stochastique suiv-
ante

dξ(t, x) =
[
∂2

∂x2
ξ(t, x) + δ[ξ(t, x)(sin(t) + sin(

√
2t))]

]
dt+ σH(t)dBH

Q (t), t ∈ [0, t], x ∈ [0, π]

ξ(t, 0) = ξ(t, π) = 0,
ξ(t, x) = ϕ(t, x) = 0, t ∈ [−τ, 0],

(3.12)
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où τ ∈ (0, 1), ϕ(·, x) ∈ C̃([−r, 0],R) et BH
Q (t) est un mouvement brownien fractionnaire

Q-cylindrique avec le paramètre de Hurst H ∈ (1
2
, 1) satisfaisant tr(Q) = 1.

Notons U = L2(P;L2[0, π]), et définissez A : D(A) ⊂ U → U donné par A = ∂2

∂x2
avec

D(A) = {ξ(.) ∈ U : ξ′′ ∈ U, ξ′ ∈ U est absolument continue sur [0, π], ξ(0) = ξ(π) = 0}.
Il est bien connu qu’un semi-groupe S fortement continu, généré par l’opérateur A,

vérifie |S(t)| ≤ e−t, pour t ≥ 0. En prenant b(t, ϕ, ϕt)(θ) = δ[ϕ(θ)(sin(t) + sin(
√

2t))], et

σH satisfait l’hypothèse (HσH). Ainsi on a

|b(t, x, xt)− b(t, y, yt)|2U ≤ 4δ2|x− y|2U .

Par conséquent, Eq. 3.12 a une solution faible presque périodique à moyenne quadratique,

à condition que, δ ≤
√

3
6

selon le théorème 3.2.1.

Soit ηn(t) = δn(t) = δ2(sin(t) + sin(
√

2t))2 pour n ∈ N, Eq. 3.12 a une solution faible
presque périodique à moyenne quadratique selon le théorème 3.2.1.

Soit η(t) = δn(t) = δ2(sin(t) + sin(
√

2t))2, Eq. 3.12 a une solution faible presque

périodique à moyenne quadratique selon le théorème (3.4, [10]).



Conclusion
On a vu au cours de ce travail, une introduction de plusieurs notions théoriques rela-

tives aux équations différentielles dont les équations différentielles à retard et équations
différentielles à retard dirigé par un MBF, ces deux catégories d’équations occupent une
place de premier importance dans différents domaines d’applications.
Notre travail consiste à prouver l’éxistence et l’unicité de solution d’une équation différen-
tielle fractionnaires à retard dans le cas de la dérivée de Riemann-Liouville. Pour cette
raison, on a appliqué le théorème du point fixe de Banach. dans ce cas nous avons traité le
probléme frationnaire dans l’espace de fonctions sommables. Nous avons imposé quelques
hypothèses sur f et K permettant la rèduction du problème fractionnaire avec retard à
une équation intégrale.
Ensuite, on a éffectué une étude sur les équations différentielles stochastiques à retard
dirigées par un mouvement Brownien fractionnaire sous des conditions sur les coefficients
qui assurent l’existence et l’unicité d’une solution presque périodique à moyenne quadra-
tique,ce qui est nouveau et nous permet de développer l’existence de diverses équations
différentielles fractionnaires à retard et équations différentielles fractionnaires stochas-
tiques avec retard, en utilisant certains théorèmes de point fixe appropriés et la théorie
des systèmes d’évolution et un exemple est fourni pour illustrer l’applicabilité du nouveau
résultat.
Nous espérons étudier au futur quelques problèmes pour l’existence et l’unicité d’une
solution d’une équation différentielle à retard infini dirigé par Mouvement Brownien gris.
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