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Introduction

La théorie des files d’attente, ou des queues, est un des outils analytiques les plus puis-
sants pour la modélisation de systémes de logistiques et de communication. Cette théorie
a pour objet I'étude de systémes et réseaux ou des entités, appelées clients, cherchent
a accéder a des ressources, généralement limitées, afin d’en obtenir un service. La de-
mande concurrente d’'une méme ressource par plusieurs clients engendre des délais dans

la réalisation des services et la formation de file de clients désireux d’accéder a une res-
source indisponible. L’analyse théorique de tels systémes permet d’établir a ’avance les

performances de I’ensemble, d’identifier les éléments critiques ou, encore, d’appréhender

les effets d’une modification des conditions de fonctionnement.

Les systémes de file d’attente avec I'impatience des clients et les vacances du ser-
veur ont été largement étudiés en raison de leurs vastes applications dans les problémes
de congestion réels tels que les systémes de communication, les télécommunications sys-
témes, systémes de circulation et systémes de fabrication / production.

Le comportement impatient du client devrait étre nécessaire dans I’étude du systéme de
files d’attente pour modéliser avec précision les conditions réelles. L’exploitation occasion-
nelle d’un service peut étre économiquement invoquée lorsque le service a temps complet
entrainerait un temps d’inactivité substantiel du serveur ou empécherait 1'utilisation du
serveur dans différents capacités. D’autre part, le serveur ne fonctionnant pas pendant des
périodes de temps pourrait gagner la probabilité des pertes de clients dues a la réticence
et au reniement de Goswami [17].

Les files d’attente avec des vacances ont été largement analysées, Ke et al. [25] a fourni
un résumé succinct des travaux de recherche récents sur les systémes de file d’attente avec
des vacances au cours de la derniére décennie, Tian et Zhang [36] ont discuté de nom-
breux des variantes de politique de vacances et une variété d’applications de modéles de
vacances typiques qui incluent des centres d’appels avec employés polyvalents, fabrication
personnalisée, systémes de télécommunication, activités de maintenance, etc. également

étudié. Yue et coll. [41] ont présenté une analyse pour un systéme de mise en file d’attente
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M/M/1/N avec dérobade, abondanne et les vacances de serveur. En utilisant la méthode
du processus de Markov, les auteurs ont développé les équations du probabilités d’état,
alors, ils ont dérivé la solution sous forme matricielle des probabilités d’état stationnaire,
et ont donné mesures de performance du systéme, aprés quoi ils ont formulé un modéle

de cott pour déterminer le service optimal taux.

Il existe plusieurs situations ou le serveur reste actif pendant la période de vacances
s’appelle "travail-vacances". Le serveur peut fournir service a une vitesse inférieure pen-
dant la période de vacances au lieu d’arréter complétement le service. Si la file d’attente
est vide a la fin des vacances, le serveur prend de nouvelles vacances ; sinon, une période

de service commence par tarif de service normal Goswami [17].

Les systémes de file d’attente avec interruption de vacances ont été étudiés par de nom-
breux auteurs, Baba [8] a étudié un M/PH/1 file d’attente avec type de phase travail-
vacances et interruption de vacances ou suit le temps de vacances une distribution de
type de phase, Chen et al. [II] Considéré comme une file d’attente GI/M/1 avec des
travail-vacances de type phase et interruption de vacances ou le temps de vacances suit
une distribution de type phase. Li et Tian [28] ont étudié la File d’attente M /M /1 avec
travail-vacances et interruptions de vacances, Zhang et Hou [45] ont analysé un M/G/1
file d’attente avec des travail-vacances et une interruption de vacances. En utilisant la
méthode d'une variable supplémentaire et la méthode d’analyse matricielle, les auteurs
ont obtenu la distribution de la longueur de la file d’attente et 1’état du service a un
époque arbitraire en régime permanent. Zhang et Shi [44] ont présenté une file d’attente
M /M /1 avec Bernoulli-schedule vacances et interruption de vacances. Altman et Yechiali
[3] n’ont considéré que I'impatience des clients lorsque les serveurs sont en vacances et
indisponibles pour le service. Selvaraju et Goswami [34] analysés impatients clients dans
une file d’attente markovienne de serveur unique avec des travail-vacances uniques et mul-
tiples.

De nombreux systémes pratiques de mise en file d’attente, en particulier ceux avec des
retention et des abondonnes, ont été largement appliqués & de nombreux problémes de la
vie réelle, tels que les situations impliquant des clients de standard téléphonique impa-
tients, le les salles d'urgence des hopitaux traitant des patients critiques et les systémes
d’inventaire avec stockage des denrées périssables marchandises Robert [31]. Haight [19]
a considéré une file d’attente M /M /1 avec dérobade. Une file d’attente M /M /1 avec les
clients abodonments a également été proposé par Haight [20]. Les effets combinés de la

dérobade et I'abondonne dans un M/M/1/N file d’attente ont été étudiés par Ancker et
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Gafarian ([4],[5]). Abou-EI-Ata et Hariri [2] considéraient le multiple systéme de mise en
file d’attente des serveurs M/M/c/N avec dérobade et abondonne. Wang et Chang [37]
ont étendu ce travail & étudier une file d’attente M /M /c/N avec dérobade , abondonne et
des pannes de serveur. Laxmi et coll. [27] ont étudi¢ M/M/1/N file d’attente de travail-
vacances avec dérobade et abondonne. Yue et coll. [40] ont analysé un systéme de mise en
file d’attente M /M /1 avec des travail-vacances et des clients impatients, les auteurs ont
dérivé les fonctions génératrices de probabilité nombre de clients dans le systéme lorsque
le serveur est en période de service et en travail-vacances , respectivement, puis ils ont

obtenu les expressions de forme fermée pour diverses mesures de performance.

Mon mémoire est composé de trois chapitres :
Dans le premier chapitre, nous présentons les notions de bases de I’étude des systémes de
files d’attente, a savoir les processus stochastiques et Chaines de Markov :

— Processus aléatoire,

— Processus de comptage,

— Processus de renouvellement,

— Processus de Poisson,

— Chaines de Markov,

— Processus de naissance et de mort.
Dans le deuxiéme chapitre, nous introduisons la terminologie de la théorie des files d’at-

tente. Certaines définitions et notations qui sont nécessaires dans 1’étude des systémes de
files d’attente comme (Notation de Kendall, la loi de Little ,...etc ) sont notamment don-
nées. Ensuite nous étudions quelque modeéles de files d’attente ( M /M /1, M/M/1/K, M/M/c,
M/M/oo ) et I'évaluation de leurs paramétres de performance. Enfin dans le troisiéme
chapitre nous présentons une étude de certains modeles d’attente avec vacances et clients
impatients [39] ,[9]. Ensuite nous présentons quelques exemples numériques pour voir com-

ment les différents paramétres du modéle influencent sur le comportement du systéme.



Chapitre 1

Processus Stochastiques

L’étude des processus stochastiques s’insére dans la théorie des probabilités dont elle
constitue 'un des objectifs les plus profonds. Elle souléve des problémes mathématiques

intéressants et souvent tres difficiles.
Par exemple, le prix d’un baril du Pétrole, il a connu au cours de ces cinq derniéres années

des fluctuations, qui ont tiré I'attention de beaucoup des spécialistes économiques. En effet,
Ce prix, dans la bourse, varie tout le temps, cette variation nous donne 1l'idée d’établir
un processus aléatoire, ou encore un processus stochastique, d’ott la modélisation par une
famille de variables aléatoires X (t);cr ott T' est I'ensemble des temps pendant lesquels
le phénomeéne est observé. La famille X (¢),cr est appelée processus aléatoire, ou encore

processus stochastique.

1.1 Processus aléatoire

Définition 1.1.1. [/3] Un processus aléatoire ou un processus stochastique est un
modeéle probabiliste permettant d’étudier un phénomene aléatoire au cours du temps. For-

mellement, un processus stochastique est la donnée :
1. d’un espace probabilisé (Q, F,P)
2. d’un espace mesurable (E, B)
3. d’une famille (Y;)ier de variables aléatoires définies sur (2, F,P) a valeurs dans
(E, B).
L’ensemble E est l’espace des états du processus, [’ensemble T ’espace des temps. Pour
w dans ), Uapplication qui a tout t de T associe Yy(w) est la trajectoire de w. souvent, T

est l’ensemble des entiers N, et alors on dit que le processus est a temps discret, ou bien

T =R et on dit alors que le processus est a temps continu.



1.2 Processus de comptage 10

1.2 Processus de comptage

Définition 1.2.1. Un processus (N;)gr. est appelé processus de comptage si c’est un pro-

+
cessus croissant, c’est-a-dire si pour tout s < t, Ny < N;. La variable aléatoire Ny — Ny

est alors appelée accroissement du processus sur s, t].

Définition 1.2.2. Un processus de comptage (Ny)r, est appelé processus & accroissements
mdépendants st pour tout n € IN* et pour tous ty,....t, tels que t1 < ty < ... < t,, les
accroissements Ny, — No, Ny, — Nyyy ..., Ny, — Ny, sont des variables aléatoires indépen-

dantes.

Définition 1.2.3. Le processus est dit stationnaire (ou homogéne dans le temps), si pour

tout s et pour tout t, l’accroissement Nyys — Ns a méme loi que Ny.

Définition 1.2.4. Un processus & accroissements indépendants stationnaire (Ny)g, est

dit a événements rares si
lim IP’([Nh > 0]) =0

h—>0+
et st

A8, BN, = 1)

1.3 Processus de renouvellement

Un processus de renouvellement a pour fonction de dénombrer les occurrences d’un
phénomeéne donné, lorsque les délais entre deux occurrences consécutives sont des va-
riables aléatoires indépendantes et identiquement distribuées. Il peut s’agir de compter
le nombre de pannes d’un matériel électronique en théorie de la fiabilité (le matériel est
alors renouvelé aprés chaque panne, d’ou la dénomination), de dénombrer les arrivées de
clients dans une file d’attente, de recenser les occurrence d’un sinistre pour une compagnie

d’assurance...

Définition 1.3.1. Un processus de comptage dont la suite des inter-arrivées forme une
suite de variables aléatoires indépendantes et identiquement distribuées s’appelle processus

de renouvellement. Les temps de renouvellement (ou les temps de la n-iéme arrivée) sont :
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avec a;, i = 1,2, ... est le temps entre deux arrivées consecutives. Il est facile de voir que

le nombre d’arrivées avant le temps t, i.e. le processus

(No)ier, = Sl}ip{ka Ag <t}
est un processus de comptage.

1.4 Processus de Poisson

De nombreux phénomeénes aléatoires se manifestent par des "arrivées" survenant une

par une a des instants aléatoires successifs.

Exemples 1.4.1. Les exemples de processus ne se limitent évidemment pas a la biologie :
~ Appels téléphoniques a un standard,
— Prise d’un poisson par un pécheur,
— Arrivée d’un client a un guichet,

— Passage d’un autobus.

De tels phénomeénes peuvent se définir par la famille (A, ),en+ des temps d’arrivées
qui sont des variables aléatoires [21]. mais on peut aussi le faire a partir du processus de

comptage (Ny)ier. Ny est le nombre d’événements apparus jusqu’a U'instant .

Définition 1.4.1. Un processus de comptage (N;)er, tel que Ny = 0 est un processus de
Poisson si

1. (Ni)ier, est stationnaire,
2. (Nt)teR+ est un processus a accroissements indépendants,

3. (Ni)ier, est un processus a événements rares.
Le nom donné au processus de Poisson s’explique par ce qui suit :

Propriété 1.4.1. [32] Un processus de comptage (N;)ier, tel que No = 0 est un processus
de Poisson si et seulement si :

1. (Ni)ier, est stationnaire,
2. (Ni)ier, est un processus a accroissements indépendants,

3. (Ni)ier, il existe X > 0 tel que, pour tout t > 0, la variable aléatoire Ny suive la loi

de Poisson de parametre At.
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1.4.1 Loi de Poisson et loi exponentielle

Définition 1.4.2. Une variable aléatoire X & valeurs entiéres suit une loi de Poisson de

parametre X > 0 si :
)\k
Vk € IN, P(X =k)= o exp~ M

Espérance et variance :

Fonction génératrice :

G(s) = E(s¥) = 7Y

Définition 1.4.3. Une variable aléatoire Y a valeurs réelles strictement positives suit une

loi exponentielle de parameéetre pu > 0 si :
vt >0, P(Y =t) = pexp )

Sa fonction de densité se présente ainsi, avec > 0 :

f(x):{ 0 si x<0

pe H st x> 0.

Propriété 1.4.2. La loi exponentielle de paramétre j est notée E(p) .
Soit X une variable aléatoire de loi exponentielle (1)

— Sa fonction de répartition est

l—e ™ s t>0
F<t)_{ 0 s t<0.

— Sa fonction génératrice des moments est
00 st t=>pu
_ tX7 _
p(t) =E[e }—{ Ly s t<p

— Sa moyenne et sa variance sont

1.5 Chaines de Markov

1.5.1 Chaines de Markov a temps discret

Définition 1.5.1. [/2] Une suite (X,,)n>0 de variables aléatoires a valeurs dans un en-

semble au plus dénombrable E est une chaine de Markov d’espace d’états E si et seulement
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si [T4)] pour tout k € N, pour tout (Xo, ..., Xpy1) dans E tels que P(Xy = xp, ..., Xo =
33'0) > 0;

P(Xkﬂ = 951<:+1/Xk = Ty ey Xo = xo) = P(Xk—H = 1’k:+1/Xk = 9316)
La chaine est dite homogéne si on a de plus pour tout k € N et tout x et y dans F,
P(Xp1 =y/ Xy =2)=P(X, =y/Xo =2).

Définition 1.5.2. On appelle probabilité de transition pour aller de l’état x a [’état y la
probabilité

Doy = P(Xiy1 = y/ X = )

Lemme 1.5.1. [22] On note vy la loi de Xo(vo(xg) = P(Xo = 20)). On a alors pour tous
(Xo, ..., Xp,) dans E

n—1

P(Xn = Tn, ~'7X0 = ZE()) = VO(:EU) prk,$k+1‘
k=0

Démonstration :Par conditionnements successifs :
]P)(Xn = $n,...,X0 = SC()) = ]P)(Xo = xo)]P)<X1 = $1/X0 = xo)]P)(XQ = xz/Xl = $1,X0 =

n—1

Io)P(Xn = 'rn/Xn—l = Tpn—_1, ...,X() = $0) = V0(1’0> prk)xk+1.
k=0

Définition 1.5.3. On appelle matrice de transition la matrice P = (Pyy)zyeck -

mevTO sz7zl p$01I2

P = | Pzi,x0 Pziz1 Pxiazo

D’apres le lemme précédent, la loi d’une chaine de Markov est caractérisée par la loi vy

de Xy et par sa matrice de transitition.

C’est une matrice finie ou dénombrable, suivant que 1’ensemble des états est fini ou

dénombrable.

Proposition 1.5.1. Toute matrice de transition vérifie les propriétés suivantes :

1. pour tout couple (v,y) de E, 0 < p,, < 1;
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2. pour tout x € E, on a pr,y =1.
yelr

Démonstration : Les nombres p,, sont des probabilités, donc le premier point est
évident. Le second point découle du fait qu’on somme les probabilités sur toutes les

valeurs possibles d’une variable aléatoire.

Théoréme 1.5.1 (Equation de Chapman-Kolmogorov). Soit X = (X,),>0 une
chaine de Markov homogéne sur E de matrice de transition P et de loi initiale pg. Notons
7w la loi de X,,. Alors
— la suite (mp)n>0 v€rifie la relation de récurrence, appelée équation de Chapman-
Kolomogorov, suivante :

Tn+1 = /LnP = 7T0Pn+1,
— pour tous x,y € E,P(X,, =y/Xo=2x) = P"(x,y)

Démonstration : on utilisant la loi total et la propriété de markov.

1.5.2 Chaines de Markov & temps continu

Définition 1.5.4. Le processus aléatoire (X;)i>o d’espace d’états E = {e;}icr, fini ou
dénombrable, est une chaine de Markov a temps continu, si sont vérifiées les deux pro-
PTiELés :
1. propriété de Markov : V(ey, e, ..., en,eny1) € EMTLV(t1, e, ooy by tnyr) € RET tels
que t; < to < ... <t <Tpyt,
IP(th+1 - 6n+1/th = Cny sy th - 61) - IP<th+1 - en-‘rl/th - en)'
2. homogénéité : Vi, ta,t € Ry, Ve;,e; € E -

IP(XtH-t - ej/th = ei) = IP(XtQ-l-t - ej/Xt2 = ei) = pi,j(t)‘

Définition 1.5.5. On rappelle que, si w(t) est la loi de Xy, i.e w(t) = (7.(t))eer 0U
m(t) = P([X; = x]), on a :

pi(t) = w(0)P(t).
Propriété 1.5.1. [/2] La matrice de transition P(t) = (pi;(t))ijer et w(t) la loi de X,

vérifie les propriétés suivants :

(1) Vt,Vi,5€1,p;;(t)>0;
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(2) Vt,‘v’z S ],Zp%](t) = 1.

j
(3) V(t,s) e RT,P(s+t) = P(s)P(t)
(4) V(t,s) e RT, m(s +1) = m(s)P(t)

Contrairement a ce qui se passe pour les chaines de Markov a temps discret, on ne dis-
pose pas ici d'un historique complet du processus : on observe celui-ci a certains instants
dans le temps, choisis aussi nombreux que l'on veut et répartis comme on veut mais la

notion d’"unité de temps" n’a plus de sens ici et la matrice P = P(1) ne permet pas de

déterminer P(t) pour tout t.
L’idée est alors de considérer P(h) lorsque h — 0.

Grace a P(t + h) = P(t)P(h) = P(h)P(t) et & P(0) =1, on a:

P(h) -1 _

Sous réserve d’existence des limites, si on pose A = lim P (0), On a alors :
h

—0

/

P(t)=P(t)A = AP(t) et P0)=1
Cette équation différentielle matricielle admet 1'unique solution :

“+oo

tn
Pt)=et=) A"

n=0

Remarque :
L’évolution d'un processus de Markov & temps continu peut se voir comme une répétition
de deux phases :
— on reste un certain temps (de loi exponentielle) dans un état ;
— lorsqu’on quitte cet état, on choisit ’état vers lequel on sort, cette destination ne
dépendant ni du temps passé dans I’état, ni du chemin par lequel on est arrivé a

I’état. On notera p,, la probabilité de se rendre dans I'état y en quittant 'état x.

Définition 1.5.6. On dit que le processus (Xi)i>o est stationnaire si la loi de X; est

mdépendante de t.
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On a alors 7(t) = m(0) pour tout t > 0 et en dérivant I’équation précédente, on
obtient :

/

0=m(0)P (t) =m(0)P(t)A = n(t)A = 7(0)A.
Définition 1.5.7. On appelle distribution stationnaire toute probabilité m qui vérifie
TA=0.

Si (X;) converge en loi et si 7 = tlzm 7(t), alors 7 est distribution stationnaire du
—00

processus.

On a (1A), = g Tpllyy = E Tyl y + Ty, AVEC Ay, = — g ay. ainsi :

el TH#Y TF£Y

A =0 quivaut Z Tylyy = Z Tylly o
T#yY TFY

Cette relation traduit I’équilibre (I’équation de Kolomogorov), en régime station-

naire du flux rentrant en y Z Tzl €t du flux sortant de y Z Tyly o
TEY TFy

1.6 Processus de naissance et de mort

Définition 1.6.1. On peut réaliser un processus de naissance et de mort de la fagon

susvante :
— Les arrivées et les départs d’entités obéissent a des lois exponentielles de taux res-

pectifs \(n) et u(n) :

— A laide d’hypotheése de régularité : deux évenmements ne peuvent pas se produire
en méme temps, donc la probabilité que deux évemements se produisent dans un
intervalle de temps dt est négligeable.

— Il y a une transition vers un état voisin, soit par l'arrivée d’un client (naissance),
soit par le départ d’un client (mort).

Si m,(t) est la probabilité pour qu’il a n clients dans le systéme a linstant t, [’équation de

Kolomogorov s’écrit, pour n > 0
To(t +dt) = (1 — (A + pon)dE) T () + g1 Tng1 (8)dt + Ny 17mn—1 (£)dt + o(dt)
C’est-a-dire, en faisant tendre dt vers 0, pour n > 0

d

%ﬂ-n(t) = _(An + /Ln)ﬂ-n(t) + ,unJrlﬂ'nJrl(t) + )\nflﬂ'n—l(t)
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De la méme facon , on obtient pour n =0 .

d

%7(0(]5) = —)\07T0<t) + ﬂ17T1<t>7

1.6.1 Processus de naissance

Définition 1.6.2. Le processus de naissance est la généralisation direct d’un processus
de poisson lorsque le paramétre d’intensité A dépend de [’état courant du processus, il va
nous permettre d’introduire le concept "d’explosion” Si la taille d’une population a une

transition n —> n + 1 donc il correspondant a une naissance.

1.6.2 Processus de mort

Si la taille d’'une population a une transition n — n — 1 une mort
Définition 1.6.3. (Processus de naissance et de mort) C’est un cas particulier de chaine
de Markov [] ot seules les transitions d’un état a un état voisin sont permises, on s’in-

téresse au cas continus avec des taux de transition C’est le point de départ de la théorie

des files d’attente. On introduit les données suivantes :
An ‘taux de naissances quand le nombre de population égale a n.

Ly taux de morts quand le nombre de population égale a n.

H\ f\ ;\

7 I M

FIGURE 1.1 — Diagramme de transition d’'un processus de naissance et de mort



Chapitre 2

Systémes de Files d’Attente Classiques

La théorie de files d’attente est une technique de la recherche opérationnelle qui permet
de modéliser un systéme admettant un phénomeéne d’attente, de calculer ses performances
et de déterminer ses caractéristiques pour aider les praticiens dans leurs prises de décisions.
Des résultats et formulations théoriques sont bien établis pour les modéles de files d’attente

avec arrivées poissonniennes et les durées de services exponentielles [3§].

Définition 2.0.4.
File d’attente :[12] l’ensemble des clients qui attendent d’étre servis, a l’exclusion de

celut qui est en train de se faire servir.
Systéme d’attente : [’ensemble des clients qui font la queue, y compris celui qui se fait

SETVIT.
Le phénomeéne d’attente s’étend a tous les clients possibles (dans le cas de systémes

bouclés, ot les mémes clients reviennent plus tard a [’entrée par exemple les machines
qui tombent en panne dans un atelier, le nombre des clients est, en général, fini). Ces
appellations se généralisent et prennent surtout leur intérét dans les situations ot il existe

plusieurs stations et plusieurs files d’attente.

Classification des systémes d’attente :
Pour identifier un systéme d’attente, on a besoin des spécifications suivantes [33] :
— La nature stochastique du processus des arrivées, qui est défini par la distribution
des intervalles séparant deux arrivées consécutives;
— La distribution du temps aléatoire de service;

— Le nombre ¢ des stations de service ;

La capacité N du systéme. Si N < 00, la file d’attente ne peut dépasser une longueur
de N — ¢ Unités. Dans ce cas, certains clients arrivant vers le systéme n’ont pas la
possibilité d’y entrer ;

— la source des clients potentiels.

18
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Terminologie et notations|6] :

o A : Le taux d’arrivée ; le nombre moyen d’arrivées par unité de temps.

: L’intervalle de temps moyen séparant deux arrivées consécutives.

>

o u : Le taux de service; le nombre moyen de clients servis par unité de temps.

: Temps moyen de service d’un client dans le systéme.

T

o N = E(N) : nombre moyen de clients dans le systéme.
o Ng : nombre moyen de clients en train d’étre servis.

o Ng : nombre moyen de clients dans la file d’attente. Ng, Ng et N sont les v.a. corres-

pondantes.
o T temps moyen qu'un client passe dans le systéme.
o Ty temps moyen de service.

o Tg temps moyen d’attente d’un client dans la file. Ty ; Ts et T sont les v.a. correspon-

dantes.

2.1 File d’attente simple

Une file d’attente simple est un systéme constitué d’un ou plusieurs serveurs et d’'un
espace d’attente. les clients arrivent de ’extérieur, patientent éventuellement dans la file
d’attente, regoivent un service, puis quittent la station [24]. Afin de spécifier complétement
une file d’attente simple, on doit caractériser le processus d’arrivée des clients, le temps
de service ainsi que la structure et la discipline de service de la file d’attente .

Processus d’arrivée
L’arrivée des clients a la station sera décrite a ’aide d’un processus stochastique de comp-

tage (NVi)i>o-

Si A, désigne la variable aléatoire mesurant l'instant d’arrivée du n-iéme client dans le
systéme, on aura ainsi : Ag = 0, A, = inf{¢, N, = n}.

Si T, désigne la variable aléatoire mesurant le temps séparant l'arrivée du (n-1)-iéme client

et du n-iéme client [20], on a alors :

Tn = An - An—l

Temps de service

Considérons tout d’abord une file & serveur unique.
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Afttente Service
Arrivées Départ:
» -
F':r’-:n:n.as:_-,'us Processus
d'arrivée de départ
Discipline Processus
de service de service

FIGURE 2.1 — le systéme de file d’attente

On note D, la variable aléatoire mesurant l'instant de départ du n-iéme client du systéme
et Y, la variable aléatoire mesurant le temps de service du n-iéme client (le temps sépa-
rant le début et la fin du service). Un instant de départ correspond toujours a une fin de
service [29], mais ne correspond pas forcément a un début de service. Il se peut en effet
qu'un client qui quitte la station laisse celle-ci vide. le serveur est alors inoccupé jusqu’a

I’arrivée du prochain client. On note p le taux de service :

l% est la durée moyenne de service.

Structure et discipline de la file :
Nombre de serveurs
Une station peut disposer de plusieurs serveurs en paralléle. Soit C' le nombre de serveurs.

Dés qu'un client arrive a la station, soit il y a un serveur libre, le client entre instanta-
nément en service, soit tous les serveurs sont occupés et le client se place dans la file en
attente de libération d’'un des serveurs. Mais en suppose a la plupart du temps que les
serveurs sont identiques et indépendants les uns des autres. Une station particuliére est la
station I.S (infinité servers) dans la quelle le nombre de serveurs est infini. Cette station
ne comporte donc pas de file d’attente.

Capacité de la file

La capacité de la file a accueillir des clients en attente de service peut étre finie ou infinie.
Soit K la capacité de la file, une file a capacité illimitée vérifie K = 4o00.

Discipline de service

La discipline d’attente, est la régle de priorité déterminant I'ordre dans lequel les clients
vont accéder a la ressource modélisé par le serveur. Les disciplines d’attente classiques,

ainsi que leurs acronymes, [30] sont
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— FIFO (first in, first out) ou FCFS (first come, first served) : c’est la file standard
dans laquelle les clients sont servis dans leur ordre d’arrivée. Notons que les disci-
plines FIFO et FCFS ne sont pas équivalentes lorsque la file contient plusieurs
serveurs. Dans la premiére, le premier client arrivé sera le premier & quitter la file
alors que la deuxiéme, il sera le premier a commencer son service. Rien n’empéche
alors qu’un client qui commence son service aprés lui, dans un autre serveur, termine

avant lui.
— LIFO (last in, first out) ou LCF'S (last come, first served). Cela correspond a une

pile, dans laquelle le dernier client arrivé (donc posé sur la pile) sera le premier traité
(retiré de la pile). A nouveau, les disciplines LIFO et LOFS ne sont équivalentes
que pour une file mono serveur.

— RANDOM (aléatoire) : le prochain client qui sera servi est choisi aléatoirement

dans la file d’attente.
— Round — Robin (cyclique). Tous les clients de la file d’attente entrent en service a

tour de role, effectuant un quantum ) de leur temps de service et sont remplacés
dans la file, jusqu’a ce que leur service soit totalement accompli. Cette discipline de
service a été introduite afin de modéliser les systémes informatiques.

— PS ( Processor Sharing ), les clients sont servis de maniére égale. La capacité du

systéme est partagée entre les clients.

2.2 Notation de Kendall

Pour la classification des systémes de files d’attente, on a recours & une notation

symbolique introduite par Kendall [13] , comprenant six symboles rangés dans 'ordre
A/B/C/N/D/O

— A : indique le processus d’arrivée des clients. Les codes utilisés sont :

— M ( Markov ) : inter-arrivées des clients sont indépendamment, identiquement
distribuées selon une loi exponentielle. Il correspond & un processus de Poisson
ponctuel (propriété sans mémoire),

— D ( Répartition déterministe ) : les temps inter-arrivées des clients ou les temps
de service sont constants et toujours les mémes,

— GI ( général indépendant ) : Les inter-arrivées des clients ont une distribution
générale ( il n’y a aucune hypothése sur la distribution mais les interarrivées sont

indépendentes et identiquement distribuées),
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— G ( général ) : Inter-arrivées de clients ont une distribution générale et peuvent
étre dépendantes,

— FE} : Ce symbole désigne un processus ou les intervalles de temps entre deux
arrivées successives sont des variables aléatoires indépendantes et identiquement
distribuées suivant une loi d’Erlang d’ordre k.

— B : décrit la distribution des temps de service d'un client. les codes sont les mémes

que A,

C' : nombre de serveurs,
— N : capacité de la file (c’est le nombre de places dans le systéme en d’autre térme

¢’est le nombre maximal de clients permis dans le systéme B compris ceux en service,

D : population des usagers,

O : discipline de service ( c’est la fagon dont les clients sont ordonnés pour étre servi.

2.3 Loi de Little

La loi de Little est une relation trés générale qui s’applique a une grande classe de
systémes. Elle ne concerne que le régime permanent du systéme. Aucune hypothése sur les
variables aléatoires qui caractérisent le systéme (temps d’inter-arrivées, temps de service,...
etc). La seule condition d’application de la loi de Little est que le systéme soit stable. Le
débit du systéme est alors indifféremment soit le débit d’entrée, soit le débit de sortie La

loi de Little s’exprime telle que dans la propriété suivante :

Théoréme 2.3.1. Le nombre moyen de clients N, le temps moyen passé dans le systéme

T et le débit moyen \ d’un systéme stable en régime permanent se relient de la facon
sutvante :

N =\T
ol N est le tauz d’entrée dans le systeme (Ao = X\ pour une file (M/M/1) On a vu que la
loi de Little nous dit qu’il existe une relation entre le nombre moyen de clients dans la file
(en attente ou en service) et le temps moyen total de séjour d’un client dans la file(temps
d’attente +temps de service).

N =\T
La loi de Little peut aussi s’appliquer en considérant uniquement l'attente dans la queue(sans
le service). Elle permet alors de relier le nombre moyen de clients en attente (Ng) au temps
moyen d’attente d’un client avant service (Tp)

par la relation :Ng = \.Tp
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Enfin, on peut appliquer la loi de Little en ne considérant que le serveur. Dans ce cas, elle
relie le nombre moyen de clients en service (Ng) au temps moyen de séjour d’un client
dans le serveur qui n’est rien d’autre que le temps moyen de service (Ts) par la relation :
Ng = \.Ts On a obtenu trois relations en appliquant la loi de Little successivement au
systeme entier a la file d’attente seule et enfin au serveur seul. Ces trois relations ne sont
bien str pas indépendantes. On peut en effet déduire l'une d’entre elles a partir des deux

autres en remarquant que N = NQ + Ng et T = TQ + Ty

Remarque 2.3.1. La loi de Little s’applique a tous les modeles de file d’attente rencontrés

en pratique (pas seulement a la file M/M/1).

2.3.1 Analyse en régime stationnaire

Il est difficile d’étudier la variable aléatoire N () représentant le nombre de clients au

temps t dans le systéme. On s’intéresse plutot a N = tlz'm (), on parle alors d’analyse
—00

en régime stationnaire (ou analyse a 1’équilibre). Pour qu’une file M /M /1 puisse atteindre
I'équilibre par exemple, il faut que A < p (sinon la taille de la file augmentera a 'infini).

A T’équilibre, on peut montrer que

A

"
=—PWN=n—-1)+ —P(N = 1
B = B =)

P(N = n) y

Il s’agit de la regle des probabilités totales. Le terme /\j\r—#P(N = n — 1) représente la

probabilité qu'un nouveau client arrive avant que le client en service quitte le systéme, et

"
A

P(N = n + 1) est la probabilité que le client en service quitte avant qu'un nouveau

client n’arrive.

2.4 Modéle d’attente M/M /1

Le systéme de files d’attente M/M/1 est le systéme le plus élémentaire de la théorie
des files d’attente. Le flot des arrivées est poissonnier de paramétre A et la durée de service
est exponentielle de paramétre u, la discipline d’attente est FIFO la file d’attente est de
capacité infinie.

La file peut étre considérée comme un processus de naissance et de mort pour lequel

figure (TI)

A=A Vn>0
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Taux de service =

Taux d’arrivée = )
0000000 s

N J
Y

Systéme = file d’attente + servewr

0 Départ

FIGURE 2.2 - La file M/M/1

Régime transitoire :

Soit N(t) le nombre de clients présents dans le systéme a U'instant ¢ (t > 0) grace aux
propriétés fondamentales du processus de Poisson et de la loi exponentielle, N(t) est un
processus markovien homogéne.

Les probabilités d’état p,(t) = P[N(t) = n] peuvent étre calculées par les équations

différentielles de Kolmogorov ci-dessous, connaissant les conditions initiales du processus.

Pr(t) = =N+ )pn(t) + App_1(t) + ppnia(t)

et po(t) = —=Apo(t) + up(t)

Régime stationnaire :

A
Sous la condition de stationarité du systéme p = — < 1, pour laquelle le régime
1
stationnaire existe, il est aisé d’obtenir les probabilités stationnaires

T = lzmpn(t)

t—o00

= (L—p)p", VneN

7 = {mn},~ est appelé distribution stationnaire, elle suit une loi géométrique.

Caractéristiques du systéme :
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— Le nombre moyen de clients dans le systéme est :
N = E(N)
- Yo
n>0
= (1—=p)> np"
n>0
D’ou :
N=_F"_
L=p
— Nombre moyen de clients en train d’étre servis :
Ng=1-m=p (2.1)

— Le nombre moyen de clients dans la file

NQ = Z(n—l)ﬂn

n>1

I—p

Le temps moyen qu’'un client passe dans le systéeme 7', le temps moyen de service

Ty et le temps moyen d’attente dans la file TQ sont obtenus & partir des formules

de Little, ou des distributions du systéme

— Temps moyen qu’un client passe dans le systéme

T — N/A
- _r
AL —=p)
b
w—A
— Temps moyen de service
Ts=1/p
— Temps moyen d’attente
Ty = T—Ts
A

(2.2)



2.5 La file M/M/1/K 26

2.5 La file M/M/1/K

On considére une file d’attente simple avec 1 serveur et une capacité K. Les hypothéses
sont les mémes que pour la file M/M/1
— Le processus d’arrivée des clients dans la file est un processus de Poisson de taux .
— Le temps de service d’un client est une variable aleatoire exponentielle de taux p.
— Soit K la capacité de la file d’attente : c’est le nombre maximal de clients qui peuvent
étre présents dans le systéme, soit en attente, soit en service.
Dans la pratique, les files d’attente sont toujours finie. Dans ce cas, quand un client arrive
alors qu'il y a déja K clients présents devant lui dans le systéme, il est perdu, (par exemple,
les appels téléphoniques).Ce systéme est connu sous le nom de file M/M/1/K.
L’espace d’états E est maintenant fini : £ = 0,1,2,..., K. La capacité de la file étant
limitée, méme si les clients arrivent en moyenne beaucoup plus vite que ce que le serveur
de la file est capable de traiter, dés que celle-ci est pleine, les clients qui se présentent sont

rejetés. Le processus de naissance et de mort modélisant ce type de file d’attente est alors

K
<
File d’attente

Taux d’arivée = ). \
:\ooooooo S

\ J
Y

Systéme = file d’attente + serveur

>

Taux de service =p

0 Départ

FIGURE 2.3 — La file M/M/1/K

défini de la facon suivante :

\ A, osin < K
" 10, sin>K;
L’intégration de ’équation récurrente permettant de calculer m, se fait alors comme
suit :

T, = mep" pour n <K

™ = 0 pour n>K
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et
1 1—0p .
K 1 — ph+1 st AF
T = an
n:(i
s A=
K+1 > a

Caractéristiques du systéme :

— Le nombre moyen de clients dans le systéme est :

K
N = g nmy,
n=0

p 1—(K+1)pf + Kp&K+!
1—/) 1_pK+1

A nouveau, lorsque K tend vers I'infini et p < 1, on retrouve les résultats de la file

M/M/1 :
N=—t_
L—p
— Le nombre moyen de clients dans la file est :
Ng = Z(n - m,
n=1
= N — (1 — 7T0)

Le temps moyen qu'un client passe dans le systéme T et le temps moyen d’attente
dans la file T sont obtenus & partir la loi de Little

— Temps moyen qu’'un client passe dans le systeme :

T =

> =

— Temps moyen d’attente

2.6 La file M/M/C

On considére un systéme identique a la file M /M /1 excepté qu'’il comporte ¢ serveurs

identiques et indépendants les uns des autres. On conserve les hypothéses :
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— Le processus d’arrivée des clients dans la file est un processus de Poisson de taux .

— Le temps de service d'un client est une variable aleatoire exponentielle de taux p.
Ce systéme est connu sous le nom de file M/M/C . L'espace d’états E est comme pour

la M/M/1 infini : E =0,1,2,.... La file d’attente est de capacité infini.

File d’attente

Serveurs

FIGURE 2.4 — La file M/M/C

Le processus de naissance et de mort modélisant ce type de file d’attente est alors
défini de la facon suivante :

A=A Yn>0

0 sin=20
n=<% nu Yn=1,... ¢
cp Vn>c

Du diagramme, on déduit les résultats qui suivent. L’analyse du systéme en régime

stationnaire, a ’aide de la procédure des équations de Chapman Kolmogorov aboutit aux

équations suivantes :

ATy = pmy
AN+ np)m, =AMpa+(n+ Dumr 1<n<c
(N + cp)Tn = M1 + Cumppr n>c

avec
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f: T, =1
n=0

La résolution du systéme ci-dessus présente la distribution stationnaire suivante :

Ng = Z(n—l)wn
n=1
= N—(l—ﬂ'o)
_ P gyne
Wn——'(A) To, M >c (2.5)
cl
ou
_ -1
_ p_ n—c
A
pP=—
I
et
A=
cp

Cette derniére existe si : A < C'u

Caractéristiques du systéme : A partir de la distribution stationnaire du processus

{N(t),t > 0}, on peut calculer les caractéristiques du systéme. En effet,

— Le nombre moyen de clients dans le systeme est :

. pC-‘rl
N = _— 2.6
Pt c.cl(l— A)2’00 (2:6)
— Le nombre moyen de clients dans la file est :
. pc+1
No=—— 2.7
©7 (1 - A)2p0 (2.7)
— Temps moyen qu’un client passe dans le systéme :
= cpp’
T=—"-— 2.8
C!(CILL _ )\)2 Po ( )
— Temps moyen d’attente :
— 1 pc
Tog=— 2.9
Q M+MCC'(1—A)2pO ( )
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2.7 La file M/M /oo

On considére un systéme composé d’un nombre illimité de serveurs identiques et in-
dépendants les uns des autres. Dés qu’un client arrive, il rentre donc instantanément en
service. Donc cette file particuliére, il n’y a donc pas d’attente. On suppose toujours que
le processus d’arrivée des clients est poissonien de taux A et que les temps de service sont
exponentiels de taux p (pour tous les serveurs). Ce systéme est connu sous le nom de file

Comme cela a été fait pour la file M/M/C, on peut facilement démontrer que le taux
de transition d'un état n quelconque vers ’état n — 1 est égal & nu et correspond au taux
de sortie d’un des n clients en service. De méme, le taux de transition d’un état n vers
I'état n + 1 est égal a \ et correspond au taux d’arrivée d’un client.

De fagon intuitive, la capacité de traitement de la file est infinie puisque tout nouveau
client se présentant a I’entrée de la file est instantanément traité. La condition de stabilité
exprimant que "le nombre moyen de client arrivant a la file par unité de temps doit étre
inférieure a la capacité de traitement de la file" est donc toujours satisfaite.

Soit m, la probabilité stationnaire d’étre dans I'état n. Les équations d’équilibre nous

donnent
Tp A =Tpnu pour n=12 ...

. P
soit m,=-—-m,_1 pour n=12...,
n

. A
ou p=—

On peut alors exprimer toutes les probabilités en fonction de 7.

V2
Wn:ﬁﬂ'o pour n=1,2,...

La condition de normalisation nous donne alors immédiatement 7,

+oo
Notons que la série E p_' converge pour toutes valeurs de p (donc de A et de p), ce
n!

n=0
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qui est cohérent avec la stabilité inconditionnelle de la file. On obtient finalement

Ty = —'e_p pour n=12 ...
n!

Caractéristiques du systéme :

— Nombre moyen de clients N :

+o0o
N o= Y,
n=1
+o0 pn
B
e’y (n— 1)
n=1
= e ’pef =p

— Temps moyen de séjour T :
Intuitivement, le temps moyen passé dans les ystéme est réduit au temps moyen de

1
service, soit —. On peut redémontrer ce résultat en utilisant la loi de Little :

N
[
==zl



Chapitre 3

Systémes markoviens avec vacances et
clients impatients

3.1 Modéles de file d’attente avec des clients impa-
tients

L’impatience prend généralement trois formes. Le premier dérobade (le client qui refuse
d’entrer dans la file d’attente s’il voit que la file d’attente est trés grande ou le temps
d’attente est trop long.), le second abandon( Aprés un moment passé dans la file, le client
décide de quitter le systéme sans étre servi), et le troisiéme jockeying entre les lignes
lorsque chacun de nombre deles lignes paralléles ont leur propre file d’attente. [1§].

L’impatience "dérobade et abandonz est une fonctionnalité intéressante dans une
grande variété de modéles de mise en file d’attente avec des clients impatients qui peuvent
étre satisfaites dans les applications de santé, les centres d’appels, les réseaux de télé-
communications, les systémes de fabrication ou les commandes accumulées peuvent étre

annulées, la fabrication systémes de denrées périssables.

3.1.1 Modéles intégrant I’impatience du client

Les modeéles incluant I'impatience des clients sont plus proches de la réalité et conduisent
a une analyse plus précise. Citons quelques applications.
— Applications de la santé.
Pour divers processus médicaux, les patients sont confrontés a un risque élevé de
complications ou de décés lorsqu’ils le traitement (par exemple dans le cas d'une
transplantation d’organe) est surteint. Dans une telle situation, s’il y a beaucoup de
patients en attente de traitement (une file d’attente se forme), ce sera plus adapté

pour servir les patients en fonction de 'urgence de leurs besoins. Quand 'état d’un

32
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patient se détériore a un certain niveau, le traitement peut devenir non plus né-
cessaire. Dans un tel cas, le patient est retiré de la file d’attente sans service (un
patient abandonné).

— Biens périssables.
Il existe de nombreux exemples de produits périssables, citons par exemple les pro-
duits alimentaires, les produits chimiques, les produits pharmaceutiques, les maté-
riaux adhésifs utilisés pour le contreplaqué, le sang, etc. [23] a rapporté qu’en 2004,
22des biens de consommation emballés étaient dus a des produits périmés et 5,8de
sang traité pour transfusion étaient dépassés. Par conséquent, il est extrémement
important de comprendre ces systémes et étudier 'impact de la finitude des durées
de vie des produits sur décisions de production et de controle des stocks. Une litté-
rature liée a la modélisation des systémes d’inventaire périssables via des systémes
de mise en file d’attente avec des clients impatients est considérable, sachant que
I’abandon du client et la perte de produit sont des phénomeénes similaires. Cette est,
un client dont le temps de patience expire quitte le fichier d’attente et de méme un
produit fait & un stock dont la durée de vie expire est retiré de l'inventaire.

— Avions en file d’attente pour P’atterrissage, les applications militaires et

les centres d’appels.

* Les avions en attente d’atterrissage sont un autre exemple de clients impatients.
Avions sont préts a attendre, mais seulement jusqu’a un certain point. Un avion

peut manquer de carburant et doit ont donc priorité pour I'atterrissage.

* Dans les applications militaires, ’abandon est une caractéristique importante. Par
exemple, 'ennemi les aéronefs ou les missiles (clients) mettent un temps limité
pour transiter vers une zone ou l'interception est possible et ils s’échappent

(abandonnent) §’ils ne sont pas interceptés (servis) dans ce délai.

* Dans la plupart des cas, les clients qui attendent en ligne sont impatients. Un
client va attendez un certain temps pour que le service commence. Si le service

n’a pas commencé par cette fois, il abandonnera et sera perdu.

3.2 Modéles de file d’attente pour les vacances

Les systémes de mise en file d’attente avec des vacances de serveur ont fait ’objet de
recherches approfondies en raison de leur applications étendues dans plusieurs domaines,

y compris les systémes de communication informatique, les systémes de fabrication et de
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production et les systémes d’inventaire. Dans un systéme de file d’attente de vacances,
le serveur peut ne pas étre disponible pendant un certain temps (utiliser le temps d’in-
activité a des fins différentes) pour de nombreuses raisons telles que la vérification de la
maintenance, le travail sur d’autres files d’attente, recherche de nouveaux travaux (un
aspect typique de nombreux systémes de communication) ou simplement faire une pause.
Cette période, lorsque le serveur n’est pas disponible pour les clients principaux, est appelé
vacances [10]. Pour plus de détails a ce sujet de merveilleuses enquétes sur les modéles de

vacances de serveurs dans la littérature sur les files d’attente ([16], [35]).

Une vacance dans une file d’attente est une période pendant laquelle le serveur est
indisponible pour fournir le service. Les arrivées qui arrivent pendant les vacances ne
peuvent entrer en service apreés le retour du serveur de ses vacances. Il existe de nom-
breuses situations qui entrainent les vacances du serveur, c’est-a-dire les pannes de la
machine (pannes), la maintenance des systémes et serveurs (ou le serveur sert plus d’une

file d’attente dans le systéme ou plus d’une systéme).

Le modeéle de file d’attente avec vacances de serveur (absences de serveur) a été bien
étudié dans le depuis trois décennies et appliqué avec succés dans de nombreux domaines
tels que la fabrication / le service et systémes de réseaux informatiques / de communica-

tion et de nombreuses autres situations réelles.

3.2.1 Différents types de modéles de vacances

Les modéles de files d’attente avec vacances peuvent étre classés en fonction des pro-
cessus d’arrivée, des processus de service et des politiques de vacances. Ainsi, comme il a
été mentionné ci-dessus, d’excellentes enquétes sur des travaux antérieurs de modéles de

vacances ont été donnés par [16], [35], et [36].

Conformément aux précédents chapitres et livres de I'enquéte en particulier celui de

[16], différents types de modeéles de vacances sont les suivants :

v' Le modéle de vacances simple, il n’y a qu’'une seule vacance aprés la fin de chaque
occupation période. Si le serveur revient de ces vacances, il ne repart pas méme en
vacances si le systéme est encore vide & ce moment-la. Ce type de vacances peut
provenir de cas tels que comme maintenance dans les systémes de production (la

maintenance peut étre considérée comme des vacances).

v' Le modéle de vacances multiples, ce type de vacances peut provenir de cas tels que
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maintenance dans les systémes informatiques et de communication ol les proces-
seurs en informatique et les systémes de communication effectuent des tests et une
maintenance approfondis en plus de leur principales fonctions (traitement des appels
téléphoniques, réception et transmission de données, etc.). le les travaux d’entretien
nécessaires sont divisés en segments courts.Chaque fois que les clients sont absents,
le processeur effectue un segment de travail de maintenance. Lorsque le systéme est
inactif, le serveur prend des vacances (fonctionne sur un segment de maintenance).
Au retour de vacances, le serveur démarre le service uniquement s’il trouve K ou
plusieurs clients en attente dans la file d’attente, le nombre de clients en attente est

inférieur a K puis un autre congé a lieu (segment Maintenance).

v' Le modéle de vacances a service limité dans lequel le serveur prend des vacances pour

3.3

devenir inactif ou aprés avoir servi m clients consécutifs, ou aprés un certain temps 7.

La fagon dont le serveur sert un client est liée au type de vacances. Dans ([16])

certains des modeles de service sont discutés comme suit :

— Service fermé, dés que le serveur revient de vacances il met une porte derriére
le dernier client en attente. Il commence alors a servir uniquement les clients la
porte, basée sur certaines régles de combien ou de combien de temps elle pourrait
Servir.

— Service exhaustif, le serveur fonctionne (sert les clients) jusqu’a ce que le systéme
soit vidé, aprés son départ en vacances.

— Service limité, une limite fixe de K est fixée au nombre maximum de clients qui
peut étre servi avant le départ du serveur pour les vacances. Le serveur part en
vacances soit : (a) lorsque le systéme est vide, ou (b) lorsque les K clients ont été

servis.

Description de modéle

Nous considérons le systéme de files d’attente de vacances multiples M /M /1 avec des

interruptions de vacances de Bernoulli, et les clients s’impatientent en raison aux vacances

des serveurs. Les clients arrivent selon un processus de Poisson avec un taux d’arrivée .

Les temps de service pendant une période de service normale, les temps de service pen-

dant une période de travail-vacances et les période de vacances sont distribué de fagon

exponentielle avec les taux pu, o et 6, respectivement.

Les clients sont supposés étre impatients pendant les travail-vacances . Chaque fois
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qu’un client arrive au systéme et que le systéme est en travail-vacances , le client active
une minuterie impatiente T, qui est distribué exponentiellement avec le taux ¢. Si le
serveur termine les travail-vacances avant I'impatience la minuterie expire, le client reste
dans le systéme jusqu’a la fin de son service.

Pendant la période de travail-vacances, un client est servi a un taux inférieur aux taux
du service en la période normale, les vacances sont interrompues et le serveur reprend
une période d’occupation réguliére avec probabilité 1 — 5 (s’il y a des clients dans la
file d’attente) ou reste en vacances avec une probabilité 5. Les temps inter-arrivées, les
durées de service, les durées de vacances et les périodes d’impatience sont considérées
comme indépendantes les unes des autres. le les clients sont servis selon une discipline de
file d’attente du premier arrivé, premier servi

Soit N (t) le nombre de clients dans le systéme au temps t, et soit S(t) I'état du serveur

au temps t avec

S(t) = 0, si le serveur est en période de travail-vacances ,
1, sile serveur est en période d’occupation normale.

Ensuite, la paire (N(t),S(t),t > 0) est un processus de Markov en temps continu

avec espace d’états @ = [(0,0) U (4,7),e=1,2,...,5 =0,1]. tel que m;; = 1tlzm P{N(t) =
—00

i, 5(t) = j}, (i, ) € Q.
Soit m;0, ¢ > 0 la probabilité qu’il y ait ¢ clients dans le systéme lorsque le serveur dans
la période de travail-vacances et soit m;;1, ¢ > 1 la probabilité qu’il y ait ¢ clients dans le

systéme lorsque le serveur est en période de servicce normale

3.4 Reésultat principal

Dans cette partie , nous étudions une analyse stationnaire pour notre modeéle. Dans
un premier temps, nous développons les fonctions génératrice des probabilités du nombre
de clients dans le systéme lorsque le serveur est en période de travail-vacances et pendant
la période de service normale, respectivement. Ensuite, nous dérivons les expressions ex-

plicites pour diverses mesures performances.

Régime stationnaire :
Via la théorie du processus de Markov, nous obtenons I’ensemble suivant d’équations

stationnaires :
)\7'('00 = (19 + Oé)ﬂ'l(] + U711 (31)
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(A4 a+ 0+ nd)mp = Amp—10 + (Ba+ (n+ 1)) T 410, n>1 (3.2)
()\ -+ ,U,)7T11 = 87’(’10 + BO(TFQ(] + U721 (33)
(A + )01 = 070 + Mp_11 + pimtngn + Bam o, n>2 (3.4)

ott B =1 — . Définissons les fonctions génératrices de probabilité comme

[y(z) = anozn, Iy(z) = anlz", (3.5)
n=0 n=1

ot Iy(1) + I (1) = 1 et IT(2) = ann_lﬂno.
n=1

En multipliant la puissance appropriée de 2" en[3.1]et [3.2] en[3.3]et[3.4] respectivement,
puis en additionnant sur tout valeurs possibles de n , on obtient

92(1—2)II) (2) + (A2 — (A a+0) z+Ba)ly(2)+(umiy +(0+Ba)moo+Bamyy) 2+ Bame (1—2) = 0.
(3.6)

(Az—p)(1=2)y(2) = (0z+Ba)ly(2) — (umi1+(0+Ba) T )+ Bamigz—Ba(l—2)me. (3.7)

Ensuite, résolvez Eq [3.7], nous obtenons

M1 + (9 + BO&)WOO + B(Jé?’(’lo)q)l(Z) + BCK@Q(Z’)

—(
Io(2) = = 7 (3.8)
ﬁe’(g)zz%a(l —2) e
ou
Di(2) = / e_(%)g’x%a(l —x) (tha)_ldx, (3.9)
0
®(2) = / e_(%ﬁx%a_l(l —x) e dx, (3.10)
0

oud # 0, x # 0 et ¥ # 1. Maintenant, nous devrions trouver les probabilités myy, 7o et

11, puis quelques mesures de performance importantes sont obtenu.
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3.4.1 Calculer les probabilités my, 719, 711, €t les nombres moyens
E(Lo) , E(L1)

Supposons que E(Lg) et E(Ly) sont le nombre attendu de clients dans le systéme
lorsque le serveur est allumé une période de vacances-travail et une période normale de

pointe, respectivement.

Donc, en ajoutant [3.3] et [3.4] sur toutes les valeurs possibles de n, on obtient

(0 + Ba)ly(1) = (umy + (0 + Ba)mo) + Bamo. (3.11)

Et en utilisant nous avons
(62 4 Ba)lly(2) — 2(6 + Ba)lly(1)  Bamg

Mhiz) = e — w1 —2) T e (812)

En utilisant la régle de L’Hopital, nous obtenons

(1) = (QMJF_BS)H()(I) + (%) (700 — (1)), (3.13)

ou ITj(1) = E(Ly), le nombre attendu de clients dans le systéme lorsque le serveur est en
fonctionnement période de vacances. Puisque I1;(1) = 1 — IIg(1), et en utilisant [3.13] on
obtient

E(Ly) = (9’:;&) (1 - Io(1)) — (9 f‘%&) (100 — Io(1)). (3.14)

Maintenant, nous devons déduire la proportion de temps pendant laquelle le serveur est
en période de travail-vacances de my(1), de sorte que E(Lg) peut étre dérivé. En ajoutant
—3.4] et en réorganisant les termes, nous obtenons

Mo+ A1 — ((a+ (n+ 1)0)Tpi10 + 4Tnt11)
= Ap_10 + ATp_11

+ (@ + nd)mao + prnr), n>1 (3.15)
Utilisation récursive [3.15| et application 3.1
Mo + A1 = (a4 (n 4+ D)) Tpp10 + fmnr11, n>0 (3.16)
En additionnant toutes les valeurs possibles de n dans[3.16] on obtient

)\Ho(:l) + >\H1(1) = /LHI(].) + Oé(Ho(].) — 7T()0) + 19220:()(” + ].)7Tn+170, n Z 0 (317)
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Notez que E(Ly) = 32 o(n+ 1)m,110 et II;(1) = 1 — II(1).

En substituant la valeur de E(Lg) de|3.14] dans|3.17, on obtient

@ +0+Ba) (=X = (=) + (u—a)d+ Ba) —JBa)lly(1)
+  (9Ba+ a(f + Ba))m. (3.18)
Lorsque z — oo dans [3.8 et en utilisant [3.6] et [3.12] on obtient

A0

Io(1) = GT(_(Q + Ba)TTo(1) @1 (1) + BameP2(1)) ZZ_Z;TOO(l - Z)_(HB&M9 (3.19)

oo
comme 0 < II(1) = Z Tno < 1 et lin’lb(l — 2)"0HB/Y 56 donc nous devrions avoir
2
n=0

— (0 + Ba)y(1)®4 (1) + Bam®s(1) = 0. (3.20)
Ensuite, en utilisant et 13.20, nous obtenons

(64 Ba)®y (1)
Moo =g ol (3.21)

et
Mo(1) = ((0+0+Ba)(u—N)P(1)) x (B9 + 60 + Ba)(8 + Ba)P:(1))
+ (0= A) + (=) (0 + Ba) x fPy(1))" (3.22)
Ainsi, E(Lg) est trouvé a partir de . En utilisant et les inconnues my et

sont obtenues comme suit :

(0 + Ba) <()\ + 64 Ba)® (1) — 50@2(1))
(¥ + Ba)Bady(1)

o = Io(1), (3.23)
m = (0 +Ba){(9 + a)Baa(1) — By (1)(NFa + (9 +a)(0 + Fa))})
X (Bpa®y(1)(9 + fa)) (1), (3.24)

Maintenant, les probabilités stationnaires m,y et m,1 peuvent étre dérivées en utilisant
3.2 {3.4 en termes de mgg, m10, €t 1.
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Le nombre attendu de clients dans le systéme lorsque le serveur est dans une période
d’occupation normale E(L;) peut étre obtenu a partir de [3.12]

En utilisant la régle de L’Hopital, nous obtenons

o B 0 + Ba I17(1) 1
A=) = T e B
X (Ot ABo)(1 (1)) + FBa(T(1) — ). (3.25)

En différenciant deux fois en z = 1, on obtient
1 (DIo(1) +2(f(1) — 9)H(1) + (f(1) — 29)I5(1) = 0, (3.26)

ott f(1) = —(0 + Ba), f/(1) = A — (a + ) et f” = 2)\. Ensuite, & partir de , nous

obtenons
Ly = (#)Ho(l) - (w) x E(Lo) (3.27)
2 0+ Ba + 29 0+ Ba + 29

En utilisant [3.27] et [3.14] dans [3.25] nous obtenons E(L;). Le nombre attendu de clients
dans le systéme peut étre calculé comme E(L) = E(Lg) + E(L;).

3.4.1.1 Les autres mesures de performance

Maintenant, nous définissons les temps de séjour, soit W le temps de séjour total d’un
client dans le systéme, évalué de l'instant d’arrivée au départ, le départ étant soit di a

I’achévement de service ou a la suite d'un abandon. Nous avons selon la régle de Little
1
E(W) = X(E(LO) +E(Ly)). (3.28)

Soit. A la proportion de clients servis, et © le taux d’abandon da a I'impatience. Le
attendu le nombre de clients servis par unité de temps est pIl;(1)+a(Ily(1)—mgg) signifiant

que la proportion des clients servis est
1
A= X(NHl(l) + a(Ilp(1) — moo)). (3.29)

Le taux d’abandon © d’un client pour impatience est donné par

O = VE(Lo) = A — (I (1) + (T (1) — mo0)), (3.30)
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qui découle de[3.17. La probabilité que le systéme soit en période de pointe normale I' et

la probabilité que le systéme est en vacances-travail €2 sont respectivement données par

[=> m=1IL(1), Q= o =Io(1). (3.31)
n=1 n=0

3.5 Exemples numériques

Tableau 1 : Impact de 9 et § sur certaines mesures du rendement

B |9 |E(Ly) |E(L) |E(@L) [EW)] A o] T Q

04 0411 | 0.319 | 0.730 | 0.365 | 0.917 | 0.164 | 0.165 | 0.834
0.15 | 1.2 | 0.356 | 0.233 | 0.590 | 0.295 | 0.786 | 0.427 | 0.129 | 0.870
2 | 0.313 | 0.183 | 0.497 | 0.248 | 0.686 | 0.627 | 0.105 | 0.894
0.4 | 0.459 | 0.204 | 0.754 | 0.377 | 0.908 | 0.183 | 0.149 | 0.850
0.5 | 1.2 0.384 | 0.209 | 0.594 | 0.297 | 0.769 | 0.461 | 0.114 | 0.885
2 | 0.331 | 0.163 | 0.494 | 0.247 | 0.668 | 0.662 | 0.093 | 0.906
0.4 | 0543 | 0.251 | 0.794 | 0.397 | 0.891 | 0.217 | 0.123 | 0.876
0.9 | 1.2 0425 | 0.174 | 0.599 | 0.299 | 0.744 | 0.510 | 0.0939 | 0.906
2 | 0.355 | 0.136 | 0.491 | 0.245 | 0.644 | 0.710 | 0.077 | 0.922
0.4 0572 | 0.235 | 0.808 | 0.404 | 0.885 | 0.229 | 0.114 | 0.885
1 |12 0438 | 0.163 | 0.601 | 0.300 | 0.737 | 0.525 | 0.087 | 0.912
2 | 0.362 | 0.128 | 0.490 | 0.245 | 0.637 | 0.724 | 0.0724 | 0.927

Dans cette partie , nous présentons quelques exemples numériques pour démontrer
comment les différents parameétres du modele influence le comportement du systéme et
montre 'impact des différents paramétres et sa relation avec le nombre attendu de clients
lorsque le systéme est en travail-vacances E(Lg), le nombre attendu de clients lorsque le
systéme est en période deservice normale F(L;), le nombre attendu de clients dans le
systéme F(L), le temps d’attente attendu dans le systéme E(W), la proportion de clients
desservis, le taux d’abandon , la probabilité que le systéme soit en période de pointe

normale et la probabilité que le systéme fonctionne vacances .

v' Tout d’abord, présentons I’évolution du systéme en faisant varier 3, v et a.

— Les parameétres du tableau [3.5 sont pris comme suit : A =2, 4 =6,0 = 0.8 et a =
3. Le tableau 3.5 montre tout d’abord que pour ¥ fixe, E(Ly), E(L;), E(L), E(W),
Q) et © augmente a mesure que 3 augmente, sinon A et I' décéder & mesure que
augmente. Maintenant, pour § fixe, E(Ly), E(Ly), E(L), E(W), ' et A diminuez

a mesure que ¥ augmente. Mais le taux d’abandon © d’un client di a 'impatience
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et a la probabilité que le le systéme est en vacances-travail €2 augmentent & mesure
que v augmente.

— Les parameétres du tableau sont pris comme suit : A =3, p =7, 0 = 0.4 et
¥ = 0.6.

Tableau 2 : Impact de § et « sur certaines mesures du rendement

B [a |E(Ly) |E(L) [E(L) [EW)] A o T QO
2 [ 0.851 | 0.605 | 1.456 | 0.485 | 0.829 | 0.510 | 0.233 | 0.766
03| 4 | 0531 | 0.444 | 0.976 | 0.325 | 0.893 | 0.319 | 0.193 | 0.806
5| 0.449 | 0.392 | 0.841 | 0.280 | 0.910 | 0.269 | 0.177 | 0.822
2 [ 1.005 | 0.552 | 1.557 | 0.519 | 0.798 | 0.603 | 0.206 | 0.793
06| 4 | 0.622 | 0.382 | 1.004 | 0.334 | 0.875 | 0.373 | 0.162 | 0.837
5| 0.520 | 0.328 | 0.848 | 0.282 | 0.895 | 0.312 | 0.145 | 0.854
2 [ 1.159 | 0.496 | 1.656 | 0.552 | 0.768 | 0.695 | 0.179 | 0.820
08| 4 | 0.714 | 0.317 | 1.031 | 0.343 | 0.857 | 0.428 | 0.131 | 0.868
51 0.590 | 0.263 | 0.854 | 0.284 | 0.881 | 0.354 | 0.114 | 0.885
2 [ 1.396 | 0.405 | 1.802 | 0.600 | 0.720 | 0.837 | 0.139 | 0.860
1 | 4] 085 | 0214 | 1.070 | 0.356 | 0.828 | 0.513 | 0.085 | 0.914
5| 0.697 | 0.165 | 0.863 | 0.287 | 0.860 | 0.418 | 0.069 | 0.930

Le tableau [3.5 montre pour « fixe, E(Lg) , E(L), E(W), Q et © augmente lorsque
[ augmente, sinon F(L;) ,A et I diminuer.
Cependant, pour 5 fixe, E(Ly), E(L1), E(L), E(W), T et © diminuent lorsque a aug-
mente, sinon, et augmenter & mesure que a augmente. Tous ces résultats (tableaux

B.53.5) concordent absolument avec notre intuition.

v' Présentons maintenant I'impact du taux de service pendant les vacances a sur le nombre
attendu de clients en le systéme pour différentes valeurs de taux de vacances 6, tandis
que A =2, p =519 =1et § =1, Les résultats numériques sont donnés sur la
figure 3.1}

A partir de la figure , nous observons que le nombre attendu de clients dans le
systéme diminue avec I'augmentation de «, de plus lorsque a > 1.5, F(L) augmente
lorsque 6 augmente, cependant, lorsque o < 1.5, E(L) diminue lorsque le taux de

vacances augmente.

v' Ensuite, nous présentons l'effet du taux d’arrivée A sur le taux d’abandon d’un client
par impatience, © , et l'effet du taux d’arrivée A\ sur E(L) et sur E(W) pour divers
paramétres ¥ et . On prend =6, 0 = 0.5 et a = 4.

La figure montre que © les premiéres augmentations diminuent ensuite avec
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FIGURE 3.2 — Taux d’arrivée \ versus 6

I’augmentation du taux d’arrivée lorsque = 0.5 et § = 1, ce qui correspond abso-
lument a notre attente, le taux d’abandon d’un client augmente lorsque 9 augmente

car plus de clients renient et quittent le systéme.
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Les figures 3.3 et [3.4) montre les augmentations de E(L) et E(W) avec les augmen-

tations de \. Ce résultat est tout & fait raisonnable.
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v' Ensuite, nous présentons la dépendance de la proportion de clients servis et du taux

d’abandon A et © avec 0 et . Soit A =3, u =5, a =0.65 et § =0.5.

Les figures 3.5 et [3.6] montre que pour 6 fixe, A diminue et © augmente lorsque ¥
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augmente. De plus, pour ¢ fixe, A augmente et © diminue lorsque # augmente.



Conclusion

Dans ce mémoire, une analyse d'un systéme de file d’attente Markovien avec travail-
vacances multiple du serveur et clients impatients, les expressions explicites pour diverses
mesures de performances sont dérivées. Quelques exemples numériques sont présentés
pour montrer comment les différents parameétres du modéle influencent le comportement
du systéme. Pour des travaux ultérieurs, ce modeéle peut étre étudié avec un accés et un
taux de service en fonction du temps. L’analyse cotit-bénéfice du modeéle peut également

étre effectuée pour étudier son analyse économique.

47



Bibliographie

[1] A. Gomez-Corral and M.F. Ramalhoto. On the waiting time distribution and the
busy period of a retrial queue with constant retrial rate. Stochastic Modelling and
Applications, 3, 37-47, (2000).

[2] Abou El-Ata, M. O., Hariri, A.M.A. : The M/M/c/N queue with balking and reneging.
Comput. Oper. Res. 19(13), 713-716 (1992)

[3] Altman, E.; Yechiali, U. : Analysis of customers impatience in queues with server

vacations. Queueing Syst. Theory Appl. 52(4), 261-279 (2006)

[4] Ancker Jr., C.J.; Gafarian, A.V. : Some queuing problems with balking and reneging :
L. Oper. Res. 11(1), 88-100 (1963)

[5] Ancker Jr., C.J., Gafarian, A.V. : Some queuing problems with balking and reneging :
II. Oper. Res. 11(6), 928-937 (1963)

[6] Anisimov, V. V., Zakusilo, O. K., and Donchenko, V. S. 1987. Elements of Queueing
Theory and Asymptotic System Analysis. Vishcha Shkola, Kiev (in Russian).

[7] Arnaud GUYADER , Processus Markoviens de sauts , Université de Rennes
2006,/2007.

[8] Baba, Y. : The M/P H/1 queue with working vacations and vacation interruption. J.
Syst. Sci. Syst. Eng. 19(4), 496-503 (2010)

[9] Bouchentouf, A.A. and Yahiaoui, L. (2017). On feedback queueing system with re-
neging and retention of reneged customers, multiple working vacations and Bernoulli

schedule vacation interruption, Arabian Journal of Mathematics, 6(1), 111.

[10] Chandrasekaran, V.M., Indhira, K., Saravanarajan, M.C. and Rajadurai P. (2016). A
survey on working vacation queueing models. International Journal of Pure and Applied
Mathematics., 106(6) :33-41.

[11] Chen, H., Li, J.; Tian, N. : The GI/M/I queue with phase type working vacations
and vacation interruption. J. Appl. Math. Comput. 30(1-2), 121-141 (2009)

48



BIBLIOGRAPHIE 49

[12] Cheprasov, V. P. 1985. Elements of Queueing Theory. Kazan Aviation Institute (in
Russian).

[13] Claudie Hasseforder CHABRIAC , Eléments de Théorie des files d’attente, page05,
Janvier 2008.

[14] David Coupier, Processus Stochastiques, Polytech’Lille GIS 4.

[15] Djouhra. D. Modélisation et simulation du flux dans un réseaux pour la regulation

du trafic. Ingénierie des données et connaissances.

[16] Doshi, B. T. (1986). Queueing systems with vacation-a survey. Queueing Systems.,
1:29-66.

[17] Goswami, V. : Analysis of impatient customers in queues with Bernoulli schedule
working vacations and vacation interruption. J. Stoch. 2014, 1-10, Article ID 207285
(2014).

[18] Gupta, N. and Garg, R. (2012). A view of queue analysis with customer behaviour,
balking and reneging. Proceedings of the National Conference on Trends and Advances

in Mechanical Engineering, YMCA University of Science and Technology, Faridabad,
Haryana., 19-20.

[19] Haight, F.A. : Queueing with balking. Biometrika 44, 360-369 (1957)
[20] Haight, F.A. : Queueing with reneging. Metrika 2, 186-197 (1959)
[21] Jean Louis Poss, Probabilité et statistique version 2.1 Mai 2003 p74.

[22] Jean-Jacques Ruch-Marie-Line Chabanol, CHAINES DE MARKOV, Préparation a
I’Agrégation Bordeaux 1, Année 2012-2013.

[23] Karaesmen, I., Deniz, B. (2011). Managing Perishable and Aging Invetories : Re-

view and Future Research Directions. in Planning Production and Inventories in the
Extended Enterprise, A State of the Art Handbook., 1 : 393-438.

[24] K.B, GK, Techniques de modélisation : Méthodes analytiques.

[25] Ke, J.C.; Wu, C.H.; Zhang, Z.G. : Recent developments in vacation queueing models :
a short survey. Int. J. Oper. Res. 7(4), 3-8 (2010)

[26] Khintchine, A.Y 1969. Mathematical Methods in the Theory of Queueing.

[27] . Laxmi, P.V., Goswami, V, Jyothsna, K. : Analysis of finite buffer Markovian queue
with balking, reneging and working vacations. Int. J. Strateg. Decis. Sci. 4(1), 1-24
(2013)



BIBLIOGRAPHIE 50

[28] Li, J.; Tian, N. : The M/M/1 queue with working vacations and vacation interrup-
tions. J. Syst. Sci. Syst. Eng. 16(1), 121-127 (2007)

[29] M.Petito , Introduction & la modélisation des réseaux, page21, 26 Octobre 2010.

[30] Raj J.(2008). Introduction to queueing theory. Technical report. Washington univer-
sity.

[31] Robert, E. : Reneging phenomenon of single channel queues. Math. Oper. Res. 4(2),
162-178 (1979)

[32] Rubino. G., Processus Stochastiques, Février 2006.

[33] Rugg. R. Processus stochastique. Presses Polytechniques Romandes, 1989.

[34] Selvaraju, N, Goswami, C. : Impatient customers in an M/M/1 queue with single

and multiple working vacations. Comput. Ind. Eng. 65(2), 207-215 (2013)

[35] Takagi, H.(1991). Queueing Analysis, Volume 1 : Vacation and Priority Systems.
NorthHolland, Amsterdam.

[36] Tian, N.; Zhang, Z.G. : Vacation Queueing Models. Springer, New York (2006)

[37] Wang, K.-H.; Chang, Y.-C. : Cost analysis of a finite M/M/R queueing system with
balking, reneging and server breakdowns. Math. Methods Oper. Res. 56(2), 169-180
(2002)

[38] Willing. A. A short introduction to queueing thehory. Technical University Berlin,
Telecommunication Networks Group, 1999.

[39] Yahiaoui, L. (2017).Stability study of queueing systems with impa-
tience. . Thése de doctorat, université de saida. https : //www.univ —
saida.dz/busc/doc,um.php?explnum;d = 414

[40] Yue, D., Yue, W.; Xu, G. : Analysis of customers’ impatience in an M/M/1 queue
with working vacations. J. Ind. Manag. Optim. 8(4), 895-908 (2012)

[41] Yue, D., Zhang, Y.; Yue, W. : Optimal performance analysis of an M/M/1/N queue
system with balking, reneging and server vacation. Int. J. Pure Appl. Math. 28(1),
101-115 (2006)

[42] Yves Caumel,Probabilités et processus stochastiques.

[43] Zakhar Kabluchko, Stochastic Processes (Stochastik II), University of Ulm Institute
of Stochastics, (2013-2014). Second edition, Hafner Publishing Company, New York
(First edition : Griffin,London, 1960 ; Russian original : 1955). 859-866.



BIBLIOGRAPHIE 51

[44] Zhang, H.; Shi, D. : The M/M/1 queue with Bernoulli schedule-controlled vacation
and vacation interruption. Int. J. Inf. Manag. Sci. 20(4), 579-587 (2009)

[45] Zhang, M., Hou, Z. : Performance analysis of M/G/1 queue with working vacations
and vacation interruption. J. Comput. Appl. Math. 234(10), 2977-2985 (2010)



	Processus Stochastiques
	Processus aléatoire
	Processus de comptage
	Processus de renouvellement
	Processus de Poisson
	Loi de Poisson et loi exponentielle

	Chaînes de Markov
	Chaînes de Markov à temps discret
	Chaînes de Markov à temps continu

	Processus de naissance et de mort
	Processus de naissance
	Processus de mort


	Systèmes de Files d'Attente Classiques
	File d'attente simple
	Notation de Kendall
	Loi de Little
	 Analyse en régime stationnaire

	Modèle d'attente M/M/1
	La file M/M/1/K
	La file M/M/C
	La file M/M/

	Systèmes markoviens avec vacances et clients impatients
	 Modèles de file d'attente avec des clients impatients
	Modèles intégrant l'impatience du client

	Modèles de file d'attente pour les vacances
	Différents types de modèles de vacances

	Description de modèle
	Résultat principal
	Calculer les probabilités 00, 10, 11, et les nombres moyens E(L0) , E(L1)
	Les autres mesures de performance 


	Exemples numériques

	Bibliographie

