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Introduction

La théorie des files d’attente, ou des queues, est un des outils analytiques les plus puis-
sants pour la modélisation de systèmes de logistiques et de communication. Cette théorie
a pour objet l’étude de systèmes et réseaux où des entités, appelées clients, cherchent
à accéder à des ressources, généralement limitées, afin d’en obtenir un service. La de-
mande concurrente d’une même ressource par plusieurs clients engendre des délais dans
la réalisation des services et la formation de file de clients désireux d’accéder à une res-
source indisponible. L’analyse théorique de tels systèmes permet d’établir à l’avance les
performances de l’ensemble, d’identifier les éléments critiques ou, encore, d’appréhender
les effets d’une modification des conditions de fonctionnement.

Les systèmes de file d’attente avec l’impatience des clients et les vacances du ser-
veur ont été largement étudiés en raison de leurs vastes applications dans les problèmes
de congestion réels tels que les systèmes de communication, les télécommunications sys-
tèmes, systèmes de circulation et systèmes de fabrication / production.
Le comportement impatient du client devrait être nécessaire dans l’étude du système de
files d’attente pour modéliser avec précision les conditions réelles. L’exploitation occasion-
nelle d’un service peut être économiquement invoquée lorsque le service à temps complet
entraînerait un temps d’inactivité substantiel du serveur ou empêcherait l’utilisation du
serveur dans différents capacités. D’autre part, le serveur ne fonctionnant pas pendant des
périodes de temps pourrait gagner la probabilité des pertes de clients dues à la réticence
et au reniement de Goswami [17].

Les files d’attente avec des vacances ont été largement analysées, Ke et al. [25] a fourni
un résumé succinct des travaux de recherche récents sur les systèmes de file d’attente avec
des vacances au cours de la dernière décennie, Tian et Zhang [36] ont discuté de nom-
breux des variantes de politique de vacances et une variété d’applications de modèles de
vacances typiques qui incluent des centres d’appels avec employés polyvalents, fabrication
personnalisée, systèmes de télécommunication, activités de maintenance, etc. également
étudié. Yue et coll. [41] ont présenté une analyse pour un système de mise en file d’attente
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M/M/1/N avec dérobade, abondanne et les vacances de serveur. En utilisant la méthode
du processus de Markov, les auteurs ont développé les équations du probabilités d’état,
alors, ils ont dérivé la solution sous forme matricielle des probabilités d’état stationnaire,
et ont donné mesures de performance du système, après quoi ils ont formulé un modèle
de coût pour déterminer le service optimal taux.

Il existe plusieurs situations où le serveur reste actif pendant la période de vacances
s’appelle "travail-vacances". Le serveur peut fournir service à une vitesse inférieure pen-
dant la période de vacances au lieu d’arrêter complètement le service. Si la file d’attente
est vide à la fin des vacances, le serveur prend de nouvelles vacances ; sinon, une période
de service commence par tarif de service normal Goswami [17].

Les systèmes de file d’attente avec interruption de vacances ont été étudiés par de nom-
breux auteurs, Baba [8] a étudié un M/PH/1 file d’attente avec type de phase travail-
vacances et interruption de vacances où suit le temps de vacances une distribution de
type de phase, Chen et al. [11] Considéré comme une file d’attente GI/M/1 avec des
travail-vacances de type phase et interruption de vacances où le temps de vacances suit
une distribution de type phase. Li et Tian [28] ont étudié la File d’attente M/M/1 avec

travail-vacances et interruptions de vacances, Zhang et Hou [45] ont analysé un M/G/1

file d’attente avec des travail-vacances et une interruption de vacances. En utilisant la
méthode d’une variable supplémentaire et la méthode d’analyse matricielle, les auteurs
ont obtenu la distribution de la longueur de la file d’attente et l’état du service à un
époque arbitraire en régime permanent. Zhang et Shi [44] ont présenté une file d’attente

M/M/1 avec Bernoulli-schedule vacances et interruption de vacances. Altman et Yechiali

[3] n’ont considéré que l’impatience des clients lorsque les serveurs sont en vacances et

indisponibles pour le service. Selvaraju et Goswami [34] analysés impatients clients dans
une file d’attente markovienne de serveur unique avec des travail-vacances uniques et mul-
tiples.
De nombreux systèmes pratiques de mise en file d’attente, en particulier ceux avec des
retention et des abondonnes, ont été largement appliqués à de nombreux problèmes de la
vie réelle, tels que les situations impliquant des clients de standard téléphonique impa-
tients, le les salles d’urgence des hôpitaux traitant des patients critiques et les systèmes
d’inventaire avec stockage des denrées périssables marchandises Robert [31]. Haight [19]

a considéré une file d’attente M/M/1 avec dérobade. Une file d’attente M/M/1 avec les

clients abodonments a également été proposé par Haight [20]. Les effets combinés de la

dérobade et l’abondonne dans un M/M/1/N file d’attente ont été étudiés par Ancker et
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Gafarian ([4],[5]). Abou-EI-Ata et Hariri [2] considéraient le multiple système de mise en

file d’attente des serveurs M/M/c/N avec dérobade et abondonne. Wang et Chang [37]

ont étendu ce travail à étudier une file d’attenteM/M/c/N avec dérobade , abondonne et

des pannes de serveur. Laxmi et coll. [27] ont étudié M/M/1/N file d’attente de travail-

vacances avec dérobade et abondonne. Yue et coll. [40] ont analysé un système de mise en

file d’attente M/M/1 avec des travail-vacances et des clients impatients, les auteurs ont
dérivé les fonctions génératrices de probabilité nombre de clients dans le système lorsque
le serveur est en période de service et en travail-vacances , respectivement, puis ils ont
obtenu les expressions de forme fermée pour diverses mesures de performance.

Mon mémoire est composé de trois chapitres :
Dans le premier chapitre, nous présentons les notions de bases de l’étude des systèmes de
files d’attente, à savoir les processus stochastiques et Chaînes de Markov :

– Processus aléatoire,
– Processus de comptage,
– Processus de renouvellement,
– Processus de Poisson,
– Chaînes de Markov,
– Processus de naissance et de mort.

Dans le deuxième chapitre, nous introduisons la terminologie de la théorie des files d’at-
tente. Certaines définitions et notations qui sont nécessaires dans l’étude des systèmes de
files d’attente comme (Notation de Kendall, la loi de Little ,...etc ) sont notamment don-

nées. Ensuite nous étudions quelque modèles de files d’attente (M/M/1,M/M/1/K,M/M/c,

M/M/∞ ) et l’évaluation de leurs paramètres de performance. Enfin dans le troisième
chapitre nous présentons une étude de certains modèles d’attente avec vacances et clients
impatients [39] ,[9]. Ensuite nous présentons quelques exemples numériques pour voir com-
ment les différents paramètres du modèle influencent sur le comportement du système.



Chapitre 1

Processus Stochastiques

L’étude des processus stochastiques s’insère dans la théorie des probabilités dont elle
constitue l’un des objectifs les plus profonds. Elle soulève des problèmes mathématiques
intéressants et souvent très difficiles.
Par exemple, le prix d’un baril du Pétrole, il a connu au cours de ces cinq dernières années
des fluctuations, qui ont tiré l’attention de beaucoup des spécialistes économiques. En effet,
Ce prix, dans la bourse, varie tout le temps, cette variation nous donne l’idée d’établir
un processus aléatoire, ou encore un processus stochastique, d’où la modélisation par une
famille de variables aléatoires X(t)t∈T où T est l’ensemble des temps pendant lesquels

le phénomène est observé. La famille X(t)t∈T est appelée processus aléatoire, ou encore
processus stochastique.

1.1 Processus aléatoire

Définition 1.1.1. [43] Un processus aléatoire ou un processus stochastique est un
modèle probabiliste permettant d’étudier un phénomène aléatoire au cours du temps. For-
mellement, un processus stochastique est la donnée :

1. d’un espace probabilisé (Ω,F ,P)

2. d’un espace mesurable (E,B)

3. d’une famille (Yt)t∈T de variables aléatoires définies sur (Ω,F ,P) à valeurs dans

(E,B).

L’ensemble E est l’espace des états du processus, l’ensemble T l’espace des temps. Pour
w dans Ω, l’application qui à tout t de T associe Yt(w) est la trajectoire de w. souvent, T
est l’ensemble des entiers N, et alors on dit que le processus est à temps discret, ou bien
T = R et on dit alors que le processus est à temps continu.

9



1.2 Processus de comptage 10

1.2 Processus de comptage

Définition 1.2.1. Un processus (Nt)R+ est appelé processus de comptage si c’est un pro-

cessus croissant, c’est-à-dire si pour tout s ≤ t, Ns ≤ Nt. La variable aléatoire Nt − Ns

est alors appelée accroissement du processus sur ]s, t].

Définition 1.2.2. Un processus de comptage (Nt)R+ est appelé processus à accroissements

indépendants si pour tout n ∈ N∗ et pour tous t1, ..., tn tels que t1 < t2 < ... < tn, les
accroissements Nt1 −N0, Nt2 −Nt1 , ..., Ntn −Ntn−1 sont des variables aléatoires indépen-

dantes.

Définition 1.2.3. Le processus est dit stationnaire (ou homogène dans le temps), si pour
tout s et pour tout t, l’accroissement Nt+s −Ns a même loi que Nt.

Définition 1.2.4. Un processus à accroissements indépendants stationnaire (Nt)R+ est

dit à événements rares si
lim
h→0+

P([Nh > 0]) = 0

et si

lim
h→0+

P([Nh > 1])

P([Nh = 1])
= 0.

1.3 Processus de renouvellement

Un processus de renouvellement à pour fonction de dénombrer les occurrences d’un
phénomène donné, lorsque les délais entre deux occurrences consécutives sont des va-
riables aléatoires indépendantes et identiquement distribuées. Il peut s’agir de compter
le nombre de pannes d’un matériel électronique en théorie de la fiabilité (le matériel est

alors renouvelé après chaque panne, d’où la dénomination), de dénombrer les arrivées de
clients dans une file d’attente, de recenser les occurrence d’un sinistre pour une compagnie
d’assurance...

Définition 1.3.1. Un processus de comptage dont la suite des inter-arrivées forme une
suite de variables aléatoires indépendantes et identiquement distribuées s’appelle processus
de renouvellement. Les temps de renouvellement (ou les temps de la n-ième arrivée) sont :

An =
n∑
i=1

ai, n = 1, 2, ...
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avec ai, i = 1, 2, ... est le temps entre deux arrivées consecutives. Il est facile de voir que
le nombre d’arrivées avant le temps t, i.e. le processus

(Nt)t∈R+ = sup
k
{k,AK ≤ t}

est un processus de comptage.

1.4 Processus de Poisson

De nombreux phénomènes aléatoires se manifestent par des "arrivées" survenant une
par une à des instants aléatoires successifs.

Exemples 1.4.1. Les exemples de processus ne se limitent évidemment pas à la biologie :
– Appels téléphoniques à un standard,
– Prise d’un poisson par un pêcheur,
– Arrivée d’un client à un guichet,
– Passage d’un autobus.

De tels phénomènes peuvent se définir par la famille (An)n∈N∗ des temps d’arrivées

qui sont des variables aléatoires [21]. mais on peut aussi le faire a partir du processus de

comptage (Nt)t∈R. Nt est le nombre d’événements apparus jusqu’a l’instant t.

Définition 1.4.1. Un processus de comptage (Nt)t∈R+ tel que N0 = 0 est un processus de

Poisson si

1. (Nt)t∈R+ est stationnaire,

2. (Nt)t∈R+ est un processus à accroissements indépendants,

3. (Nt)t∈R+ est un processus à événements rares.

Le nom donné au processus de Poisson s’explique par ce qui suit :

Propriété 1.4.1. [32] Un processus de comptage (Nt)t∈R+ tel que N0 = 0 est un processus

de Poisson si et seulement si :

1. (Nt)t∈R+ est stationnaire,

2. (Nt)t∈R+ est un processus à accroissements indépendants,

3. (Nt)t∈R+ il existe λ > 0 tel que, pour tout t ≥ 0, la variable aléatoire Nt suive la loi

de Poisson de paramètre λt.
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1.4.1 Loi de Poisson et loi exponentielle

Définition 1.4.2. Une variable aléatoire X à valeurs entières suit une loi de Poisson de
paramètre λ > 0 si :

∀k ∈ N, P(X = k) =
λk

k!
exp−(λ)

Espérance et variance :

E(X) = V(X) = λ

Fonction génératrice :

G(s) = E(sX) = eλ(s−1)

Définition 1.4.3. Une variable aléatoire Y à valeurs réelles strictement positives suit une
loi exponentielle de paramètre µ > 0 si :

∀t > 0, P(Y = t) = µ exp−(µt)

Sa fonction de densité se présente ainsi, avec µ > 0 :

f(x) =

{
0 si x < 0

µe−µx si x ≥ 0.

Propriété 1.4.2. La loi exponentielle de paramètre µ est notée E(µ) .

Soit X une variable aléatoire de loi exponentielle E(µ)

– Sa fonction de répartition est

F (t) =

{
1− e−µt si t ≥ 0

0 si t < 0.

– Sa fonction génératrice des moments est

ϕ(t) = E
[
etX
]

=

{
∞ si t > µ
µ

µ− t si t < µ

– Sa moyenne et sa variance sont

E[X] =
1

µ
Var(X) =

1

µ2

1.5 Chaînes de Markov

1.5.1 Chaînes de Markov à temps discret

Définition 1.5.1. [42] Une suite (Xn)n≥0 de variables aléatoires à valeurs dans un en-
semble au plus dénombrable E est une chaîne de Markov d’espace d’états E si et seulement
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si [14] pour tout k ∈ N, pour tout (X0, ..., Xk+1) dans E tels que P(Xk = xk, ..., X0 =

x0) > 0,

P(Xk+1 = xk+1/Xk = xk, ..., X0 = x0) = P(Xk+1 = xk+1/Xk = xk).

La chaîne est dite homogène si on a de plus pour tout k ∈ N et tout x et y dans E,

P(Xk+1 = y/Xk = x) = P(X1 = y/X0 = x).

Définition 1.5.2. On appelle probabilité de transition pour aller de l’état x à l’état y la
probabilité

px,y = P(Xk+1 = y/Xk = x)

Lemme 1.5.1. [22] On note ν0 la loi de X0(ν0(x0) = P(X0 = x0)). On a alors pour tous

(X0, ..., Xn) dans E

P(Xn = xn, ..., X0 = x0) = ν0(x0)
n−1∏
k=0

pxk,xk+1
.

Démonstration :Par conditionnements successifs :
P(Xn = xn, ..., X0 = x0) = P(X0 = x0)P(X1 = x1/X0 = x0)P(X2 = x2/X1 = x1, X0 =

x0)...P(Xn = xn/Xn−1 = xn−1, ..., X0 = x0) = ν0(x0)
n−1∏
k=0

pxk,xk+1
.

Définition 1.5.3. On appelle matrice de transition la matrice P = (Px,y)x,y∈E :

P =

px0,x0 px0,x1 px0,x2 . . .
px1,x0 px1,x1 px1,x2 . . .
...

...
... . . .

 .

D’après le lemme précédent, la loi d’une chaîne de Markov est caractérisée par la loi ν0
de X0 et par sa matrice de transitition.

C’est une matrice finie ou dénombrable, suivant que l’ensemble des états est fini ou
dénombrable.

Proposition 1.5.1. Toute matrice de transition vérifie les propriétés suivantes :

1. pour tout couple (x, y) de E, 0 ≤ px,y ≤ 1;
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2. pour tout x ∈ E, on a
∑
y∈E

px,y = 1.

Démonstration : Les nombres px,y sont des probabilités, donc le premier point est
évident. Le second point découle du fait qu’on somme les probabilités sur toutes les
valeurs possibles d’une variable aléatoire.

Théorème 1.5.1 (Equation de Chapman-Kolmogorov). Soit X = (Xn)n≥0 une
chaîne de Markov homogéne sur E de matrice de transition P et de loi initiale µ0. Notons
πn la loi de Xn. Alors

– la suite (πn)n≥0 vérifie la relation de récurrence, appelée équation de Chapman-
Kolomogorov, suivante :

πn+1 = µnP = π0P
n+1,

– pour tous x, y ∈ E,P(Xn = y/X0 = x) = P n(x, y)

Démonstration : on utilisant la loi total et la propriété de markov.

1.5.2 Chaînes de Markov à temps continu

Définition 1.5.4. Le processus aléatoire (Xt)t≥0 d’espace d’états E = {ei}i∈I , fini ou
dénombrable, est une chaîne de Markov à temps continu, si sont vérifiées les deux pro-
priétés :

1. propriété de Markov : ∀(e1, e2, ..., en, en+1) ∈ En+1,∀(t1, t2, ..., tn, tn+1) ∈ Rn+1
+ tels

que t1 < t2 < ... < tn < tn+1,

P(Xtn+1 = en+1/Xtn = en, ..., Xt1 = e1) = P(Xtn+1 = en+1/Xtn = en).

2. homogénéité : ∀t1, t2, t ∈ R+,∀ei, ej ∈ E :

P(Xt1+t = ej/Xt1 = ei) = P(Xt2+t = ej/Xt2 = ei) = pi,j(t).

Définition 1.5.5. On rappelle que, si π(t) est la loi de Xt, i.e π(t) = (πx(t))x∈E où

πx(t) = P ([Xt = x]), on a :

pi(t) = π(0)P (t).

Propriété 1.5.1. [42] La matrice de transition P (t) = (pi,j(t))i,j∈I et π(t) la loi de Xt

vérifie les propriétés suivants :

(1) ∀t, ∀i, j ∈ I, pi,j(t) ≥ 0 ;
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(2) ∀t,∀i ∈ I,
∑
j

pi,j(t) = 1.

(3) ∀(t, s) ∈ R+, P (s+ t) = P (s)P (t)

(4) ∀(t, s) ∈ R+, π(s+ t) = π(s)P (t)

Contrairement à ce qui se passe pour les chaînes de Markov à temps discret, on ne dis-
pose pas ici d’un historique complet du processus : on observe celui-ci à certains instants
dans le temps, choisis aussi nombreux que l’on veut et répartis comme on veut mais la
notion d’"unité de temps" n’a plus de sens ici et la matrice P = P (1) ne permet pas de

déterminer P (t) pour tout t.

L’idée est alors de considérer P (h) lorsque h→ 0.

Grâce à P (t+ h) = P (t)P (h) = P (h)P (t) et à P (0) = I, on a :

P (t+ h)− P (t)

h
= P (t)

P (h)− I
h

P (t).

Sous réserve d’existence des limites, si on pose A = lim
h→0

P (h)− I
h

= P
′
(0), On a alors :

P
′
(t) = P (t)A = AP (t) et P (0) = I

Cette équation différentielle matricielle admet l’unique solution :

P (t) = etA =
+∞∑
n=0

tn

n!
An.

Remarque :
L’évolution d’un processus de Markov à temps continu peut se voir comme une répétition
de deux phases :

– on reste un certain temps (de loi exponentielle) dans un état ;
– lorsqu’on quitte cet état, on choisit l’état vers lequel on sort, cette destination ne

dépendant ni du temps passé dans l’état, ni du chemin par lequel on est arrivé à
l’état. On notera px,y la probabilité de se rendre dans l’état y en quittant l’état x.

Définition 1.5.6. On dit que le processus (Xt)t≥0 est stationnaire si la loi de Xt est
indépendante de t.
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On a alors π(t) = π(0) pour tout t ≥ 0 et en dérivant l’équation précédente, on
obtient :

0 = π(0)P
′
(t) = π(0)P (t)A = π(t)A = π(0)A.

Définition 1.5.7. On appelle distribution stationnaire toute probabilité π qui vérifie

πA = 0.

Si (Xt) converge en loi et si π∞ = lim
t→∞

π(t), alors π∞ est distribution stationnaire du

processus.

On a (πA)y =
∑
x∈E

πxax,y =
∑
x 6=y

πxax,y + πyay,y avec ay,y = −
∑
x 6=y

ay,x ainsi :

πA = 0 quivaut
∑
x 6=y

πxax,y =
∑
x 6=y

πyay,x.

Cette relation traduit l’équilibre (l’équation de Kolomogorov), en régime station-

naire du flux rentrant en y
∑
x 6=y

πxax,y et du flux sortant de y
∑
x 6=y

πyay,x.

1.6 Processus de naissance et de mort

Définition 1.6.1. On peut réaliser un processus de naissance et de mort de la façon
suivante :

– Les arrivées et les départs d’entités obéissent à des lois exponentielles de taux res-
pectifs λ(n) et µ(n) :

– A l’aide d’hypothèse de régularité : deux évènements ne peuvent pas se produire
en même temps, donc la probabilité que deux évènements se produisent dans un
intervalle de temps dt est négligeable.

– Il y a une transition vers un état voisin, soit par l’arrivée d’un client (naissance),

soit par le départ d’un client (mort).

Si πn(t) est la probabilité pour qu’il a n clients dans le système à l’instant t, l’équation de
Kolomogorov s’écrit, pour n > 0

πn(t+ dt) = (1− (λn + µn)dt)πn(t) + µn+1πn+1(t)dt+ λn−1πn−1(t)dt+ o(dt)

C’est-à-dire, en faisant tendre dt vers 0, pour n > 0

d

dt
πn(t) = −(λn + µn)πn(t) + µn+1πn+1(t) + λn−1πn−1(t)
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De la même façon , on obtient pour n = 0 .

d

dt
π0(t) = −λ0π0(t) + µ1π1(t),

1.6.1 Processus de naissance

Définition 1.6.2. Le processus de naissance est la généralisation direct d’un processus
de poisson lorsque le paramètre d’intensité λ dépend de l’état courant du processus, il va
nous permettre d’introduire le concept "d’explosion" Si la taille d’une population a une
transition n −→ n+ 1 donc il correspondant à une naissance.

1.6.2 Processus de mort

Si la taille d’une population a une transition n −→ n− 1 une mort

Définition 1.6.3. (Processus de naissance et de mort) C’est un cas particulier de chaîne

de Markov [7] où seules les transitions d’un état à un état voisin sont permises, on s’in-
téresse au cas continus avec des taux de transition C’est le point de départ de la théorie
des files d’attente. On introduit les données suivantes :

λn :taux de naissances quand le nombre de population égale à n.

µn :taux de morts quand le nombre de population égale à n.

Figure 1.1 – Diagramme de transition d’un processus de naissance et de mort



Chapitre 2

Systèmes de Files d’Attente Classiques

La théorie de files d’attente est une technique de la recherche opérationnelle qui permet
de modéliser un système admettant un phénomène d’attente, de calculer ses performances
et de déterminer ses caractéristiques pour aider les praticiens dans leurs prises de décisions.
Des résultats et formulations théoriques sont bien établis pour les modèles de files d’attente
avec arrivées poissonniennes et les durées de services exponentielles [38].

Définition 2.0.4.
File d’attente :[12] l’ensemble des clients qui attendent d’être servis, à l’exclusion de
celui qui est en train de se faire servir.
Système d’attente : l’ensemble des clients qui font la queue, y compris celui qui se fait
servir.
Le phénomène d’attente s’étend à tous les clients possibles (dans le cas de systèmes
bouclés, où les mêmes clients reviennent plus tard à l’entrée par exemple les machines
qui tombent en panne dans un atelier, le nombre des clients est, en général, fini). Ces
appellations se généralisent et prennent surtout leur intérêt dans les situations où il existe
plusieurs stations et plusieurs files d’attente.

Classification des systèmes d’attente :
Pour identifier un système d’attente, on a besoin des spécifications suivantes [33] :

– La nature stochastique du processus des arrivées, qui est défini par la distribution
des intervalles séparant deux arrivées consécutives ;

– La distribution du temps aléatoire de service ;
– Le nombre c des stations de service ;
– La capacité N du système. Si N <∞, la file d’attente ne peut dépasser une longueur

de N − c Unités. Dans ce cas, certains clients arrivant vers le système n’ont pas la
possibilité d’y entrer ;

– la source des clients potentiels.

18
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Terminologie et notations[6] :

◦ λ : Le taux d’arrivée ; le nombre moyen d’arrivées par unité de temps.

◦ 1
λ
: L’intervalle de temps moyen séparant deux arrivées consécutives.

◦ µ : Le taux de service ; le nombre moyen de clients servis par unité de temps.

◦ 1
µ
: Temps moyen de service d’un client dans le système.

◦ N̄ = E(N) : nombre moyen de clients dans le système.

◦ N̄S : nombre moyen de clients en train d’être servis.

◦ N̄Q : nombre moyen de clients dans la file d’attente. NQ, NS et N sont les v.a. corres-
pondantes.

◦ T̄ temps moyen qu’un client passe dans le système.

◦ T̄S temps moyen de service.

◦ T̄Q temps moyen d’attente d’un client dans la file. TQ ; TS et T sont les v.a. correspon-
dantes.

2.1 File d’attente simple

Une file d’attente simple est un système constitué d’un ou plusieurs serveurs et d’un
espace d’attente. les clients arrivent de l’extérieur, patientent éventuellement dans la file
d’attente, reçoivent un service, puis quittent la station [24]. Afin de spécifier complètement
une file d’attente simple, on doit caractériser le processus d’arrivée des clients, le temps
de service ainsi que la structure et la discipline de service de la file d’attente .

Processus d’arrivée
L’arrivée des clients à la station sera décrite à l’aide d’un processus stochastique de comp-
tage (Nt)t≥0.
Si An désigne la variable aléatoire mesurant l’instant d’arrivée du n-ième client dans le
système, on aura ainsi : A0 = 0, An = inf{t, Nt = n}.
Si Tn désigne la variable aléatoire mesurant le temps séparant l’arrivée du (n-1)-ième client

et du n-ième client [26], on a alors :

Tn = An − An−1

Temps de service
Considérons tout d’abord une file à serveur unique.
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Figure 2.1 – le système de file d’attente

On note Dn la variable aléatoire mesurant l’instant de départ du n-ième client du système
et Yn la variable aléatoire mesurant le temps de service du n-ième client (le temps sépa-

rant le début et la fin du service). Un instant de départ correspond toujours à une fin de

service [29], mais ne correspond pas forcément à un début de service. Il se peut en effet
qu’un client qui quitte la station laisse celle-ci vide. le serveur est alors inoccupé jusqu’à
l’arrivée du prochain client. On note µ le taux de service :

1
µ
est la durée moyenne de service.

Structure et discipline de la file :
Nombre de serveurs
Une station peut disposer de plusieurs serveurs en parallèle. Soit C le nombre de serveurs.
Dès qu’un client arrive à la station, soit il y a un serveur libre, le client entre instanta-
nément en service, soit tous les serveurs sont occupés et le client se place dans la file en
attente de libération d’un des serveurs. Mais en suppose à la plupart du temps que les
serveurs sont identiques et indépendants les uns des autres. Une station particulière est la
station IS (infinité servers) dans la quelle le nombre de serveurs est infini. Cette station
ne comporte donc pas de file d’attente.
Capacité de la file

La capacité de la file à accueillir des clients en attente de service peut être finie ou infinie.
Soit K la capacité de la file, une file à capacité illimitée vérifie K = +∞.
Discipline de service

La discipline d’attente, est la règle de priorité déterminant l’ordre dans lequel les clients
vont accéder à la ressource modélisé par le serveur. Les disciplines d’attente classiques,
ainsi que leurs acronymes, [30] sont
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– FIFO (first in, first out) ou FCFS (first come, first served) : c’est la file standard
dans laquelle les clients sont servis dans leur ordre d’arrivée. Notons que les disci-
plines FIFO et FCFS ne sont pas équivalentes lorsque la file contient plusieurs
serveurs. Dans la première, le premier client arrivé sera le premier à quitter la file
alors que la deuxième, il sera le premier à commencer son service. Rien n’empêche
alors qu’un client qui commence son service après lui, dans un autre serveur, termine
avant lui.

– LIFO (last in, first out) ou LCFS (last come, first served). Cela correspond à une

pile, dans laquelle le dernier client arrivé (donc posé sur la pile) sera le premier traité

(retiré de la pile). À nouveau, les disciplines LIFO et LCFS ne sont équivalentes
que pour une file mono serveur.

– RANDOM (aléatoire) : le prochain client qui sera servi est choisi aléatoirement
dans la file d’attente.

– Round − Robin (cyclique). Tous les clients de la file d’attente entrent en service à
tour de rôle, effectuant un quantum Q de leur temps de service et sont remplacés
dans la file, jusqu’à ce que leur service soit totalement accompli. Cette discipline de
service a été introduite afin de modéliser les systèmes informatiques.

– PS ( Processor Sharing ), les clients sont servis de manière égale. La capacité du
système est partagée entre les clients.

2.2 Notation de Kendall

Pour la classification des systèmes de files d’attente, on a recours à une notation
symbolique introduite par Kendall [13] , comprenant six symboles rangés dans l’ordre

A/B/C/N/D/O

– A : indique le processus d’arrivée des clients. Les codes utilisés sont :
– M ( Markov ) : inter-arrivées des clients sont indépendamment, identiquement

distribuées selon une loi exponentielle. Il correspond à un processus de Poisson
ponctuel (propriété sans mémoire),

– D ( Répartition déterministe ) : les temps inter-arrivées des clients ou les temps
de service sont constants et toujours les mêmes,

– GI ( général indépendant ) : Les inter-arrivées des clients ont une distribution

générale ( il n’y a aucune hypothèse sur la distribution mais les interarrivées sont

indépendentes et identiquement distribuées),
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– G ( général ) : Inter-arrivées de clients ont une distribution générale et peuvent
être dépendantes,

– Ek : Ce symbole désigne un processus où les intervalles de temps entre deux
arrivées successives sont des variables aléatoires indépendantes et identiquement
distribuées suivant une loi d’Erlang d’ordre k.

– B : décrit la distribution des temps de service d’un client. les codes sont les mêmes
que A,

– C : nombre de serveurs,
– N : capacité de la file (c’est le nombre de places dans le système en d’autre tèrme

c’est le nombre maximal de clients permis dans le système B compris ceux en service,
– D : population des usagers,
– O : discipline de service ( c’est la façon dont les clients sont ordonnés pour être servi.

2.3 Loi de Little

La loi de Little est une relation très générale qui s’applique à une grande classe de
systèmes. Elle ne concerne que le régime permanent du systéme. Aucune hypothèse sur les
variables aléatoires qui caractérisent le système (temps d’inter-arrivées, temps de service,...

etc). La seule condition d’application de la loi de Little est que le système soit stable. Le
débit du système est alors indifféremment soit le débit d’entrée, soit le débit de sortie La
loi de Little s’exprime telle que dans la propriété suivante :

Théorème 2.3.1. Le nombre moyen de clients N̄ , le temps moyen passé dans le système

T̄ et le débit moyen λ d’un système stable en régime permanent se relient de la façon
suivante :

N̄ = λeT̄

où λe est le taux d’entrée dans le système ( λe = λ pour une file (M/M/1) On a vu que la
loi de Little nous dit qu’il existe une relation entre le nombre moyen de clients dans la file
(en attente ou en service) et le temps moyen total de séjour d’un client dans la file(temps

d’attente +temps de service).

N̄ = λeT̄

La loi de Little peut aussi s’appliquer en considérant uniquement l’attente dans la queue(sans

le service). Elle permet alors de relier le nombre moyen de clients en attente (N̄Q) au temps

moyen d’attente d’un client avant service (T̄Q)

par la relation :N̄Q = λeT̄Q
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Enfin, on peut appliquer la loi de Little en ne considérant que le serveur. Dans ce cas, elle

relie le nombre moyen de clients en service (N̄S) au temps moyen de séjour d’un client

dans le serveur qui n’est rien d’autre que le temps moyen de service (T̄S) par la relation :

N̄S = λeT̄S On a obtenu trois relations en appliquant la loi de Little successivement au
système entier à la file d’attente seule et enfin au serveur seul. Ces trois relations ne sont
bien sûr pas indépendantes. On peut en effet déduire l’une d’entre elles à partir des deux

autres en remarquant que N̄ = N̄Q + N̄S et T̄ = T̄Q + TS

Remarque 2.3.1. La loi de Little s’applique à tous les modèles de file d’attente rencontrés
en pratique (pas seulement à la file M/M/1).

2.3.1 Analyse en régime stationnaire

Il est difficile d’étudier la variable aléatoire N(t) représentant le nombre de clients au

temps t dans le système. On s’intéresse plutôt à N = lim
t→∞

N(t), on parle alors d’analyse

en régime stationnaire (ou analyse à l’équilibre). Pour qu’une fileM/M/1 puisse atteindre

l’équilibre par exemple, il faut que λ < µ (sinon la taille de la file augmentera à l’infini).

À l’équilibre, on peut montrer que

P(N = n) =
λ

λ+ µ
P(N = n− 1) +

µ

λ+ µ
P(N = n+ 1)

Il s’agit de la règle des probabilités totales. Le terme λ
λ+µ

P(N = n − 1) représente la

probabilité qu’un nouveau client arrive avant que le client en service quitte le système, et
µ

λ+µ
P(N = n + 1) est la probabilité que le client en service quitte avant qu’un nouveau

client n’arrive.

2.4 Modèle d’attente M/M/1

Le système de files d’attente M/M/1 est le système le plus élémentaire de la théorie
des files d’attente. Le flot des arrivées est poissonnier de paramètre λ et la durée de service
est exponentielle de paramètre µ, la discipline d’attente est FIFO la file d’attente est de
capacité infinie.

La file peut être considérée comme un processus de naissance et de mort pour lequel
figure (1.1)

λn = λ ∀n ≥ 0
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Figure 2.2 – La file M/M/1

µn =

{
µ ∀n ≥ 1
0 si n = 0

Régime transitoire :

Soit N(t) le nombre de clients présents dans le système à l’instant t (t ≥ 0) grâce aux

propriétés fondamentales du processus de Poisson et de la loi exponentielle, N(t) est un
processus markovien homogène.

Les probabilités d’état pn(t) = P[N(t) = n] peuvent être calculées par les équations
différentielles de Kolmogorov ci-dessous, connaissant les conditions initiales du processus.

p′n(t) = −(λ+ µ)pn(t) + λpn−1(t) + µpn+1(t)

et p′0(t) = −λp0(t) + µp1(t)

Régime stationnaire :

Sous la condition de stationarité du système ρ =
λ

µ
< 1, pour laquelle le régime

stationnaire existe, il est aisé d’obtenir les probabilités stationnaires

πn = lim
t→∞

pn(t)

= (1− ρ)ρn, ∀n ∈ N

π = {πn}n≥0 est appelé distribution stationnaire, elle suit une loi géométrique.

Caractéristiques du système :
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– Le nombre moyen de clients dans le système est :

N = E(N)

=
∑
n≥0

nπn

= (1− ρ)
∑
n≥0

nρn

D’où :

N =
ρ

1− ρ

– Nombre moyen de clients en train d’être servis :

NS = 1− π0 = ρ (2.1)

– Le nombre moyen de clients dans la file

NQ =
∑
n≥1

(n− 1)πn

=
ρ2

1− ρ

Le temps moyen qu’un client passe dans le système T , le temps moyen de service

T S et le temps moyen d’attente dans la file TQ sont obtenus à partir des formules
de Little, ou des distributions du système

– Temps moyen qu’un client passe dans le système

T = N/λ

=
ρ

λ(1− ρ)

=
1

µ− λ

– Temps moyen de service

T S = 1/µ (2.2)

– Temps moyen d’attente

TQ = T − T S

=
λ

µ(µ− λ)
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2.5 La file M/M/1/K

On considère une file d’attente simple avec 1 serveur et une capacitéK. Les hypothèses
sont les mêmes que pour la file M/M/1

– Le processus d’arrivée des clients dans la file est un processus de Poisson de taux λ.
– Le temps de service d’un client est une variable aleatoire exponentielle de taux µ.
– SoitK la capacité de la file d’attente : c’est le nombre maximal de clients qui peuvent

être présents dans le système, soit en attente, soit en service.
Dans la pratique, les files d’attente sont toujours finie. Dans ce cas, quand un client arrive
alors qu’il y a déjàK clients présents devant lui dans le système, il est perdu, (par exemple,

les appels téléphoniques).Ce système est connu sous le nom de file M/M/1/K.
L’espace d’états E est maintenant fini : E = 0, 1, 2, ..., K. La capacité de la file étant
limitée, même si les clients arrivent en moyenne beaucoup plus vite que ce que le serveur
de la file est capable de traiter, dès que celle-ci est pleine, les clients qui se présentent sont
rejetés. Le processus de naissance et de mort modélisant ce type de file d’attente est alors

Figure 2.3 – La file M/M/1/K

défini de la façon suivante :

λn =

{
λ, si n < K ;
0, si n > K ;

L’intégration de l’équation récurrente permettant de calculer πn se fait alors comme
suit :

πn = π0ρ
n pour n ≤ K

πn = 0 pour n > K
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et

π0 =


1

K∑
n=0

ρn

=
1− ρ

1− ρK+1
, si λ 6= µ;

1

K + 1
si λ = µ.

Caractéristiques du système :

– Le nombre moyen de clients dans le système est :

N =
K∑
n=0

nπn

=
ρ

1− ρ
1− (K + 1)ρK +KρK+1

1− ρK+1

À nouveau, lorsque K tend vers l’infini et ρ < 1, on retrouve les résultats de la file
M/M/1 :

N =
ρ

1− ρ
– Le nombre moyen de clients dans la file est :

NQ =
∞∑
n=1

(n− 1)πn

= N − (1− π0)

Le temps moyen qu’un client passe dans le système T et le temps moyen d’attente

dans la file TQ sont obtenus à partir la loi de Little :
– Temps moyen qu’un client passe dans le système :

T =
N

λ
(2.3)

– Temps moyen d’attente

TQ =
NQ

λ
(2.4)

2.6 La file M/M/C

On considère un système identique à la file M/M/1 excepté qu’il comporte c serveurs
identiques et indépendants les uns des autres. On conserve les hypothèses :
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– Le processus d’arrivée des clients dans la file est un processus de Poisson de taux λ.
– Le temps de service d’un client est une variable aleatoire exponentielle de taux µ.

Ce système est connu sous le nom de file M/M/C . L’espace d’états E est comme pour

la M/M/1 infini : E = 0, 1, 2, .... La file d’attente est de capacité infini.

Figure 2.4 – La file M/M/C

Le processus de naissance et de mort modélisant ce type de file d’attente est alors
défini de la façon suivante :

λn = λ ∀n ≥ 0

µn =


0 si n = 0
nµ ∀n = 1, . . . , c
cµ ∀n ≥ c

Du diagramme, on déduit les résultats qui suivent. L’analyse du système en régime
stationnaire, à l’aide de la procédure des équations de Chapman Kolmogorov aboutit aux
équations suivantes :

λπ0 = µπ1

(λ+ nµ)πn = λπn−1 + (n+ 1)µπn+1 1 ≤ n < c

(λ+ cµ)πn = λπn−1 + cµπn+1 n ≥ c

avec
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∞∑
n=0

πn = 1

La résolution du système ci-dessus présente la distribution stationnaire suivante :

NQ =
∞∑
n=1

(n− 1)πn

= N − (1− π0)

πn =
ρc

c!
(A)n−cπ0, n ≥ c (2.5)

où

π0 =

[
c−1∑
n=0

ρn

n!
+
ρc

c!

∞∑
n=c

ρn−c

]−1

ρ =
λ

µ

et

A =
λ

cµ

Cette dernière existe si : λ < Cµ

Caractéristiques du système : A partir de la distribution stationnaire du processus

{N(t), t ≥ 0}, on peut calculer les caractéristiques du système. En effet,
– Le nombre moyen de clients dans le système est :

N = ρ+
ρc+1

c.c!(1− A)2
ρ0 (2.6)

– Le nombre moyen de clients dans la file est :

NQ =
ρc+1

c.c!(1− A)2
ρ0 (2.7)

– Temps moyen qu’un client passe dans le système :

T =
cµρc

c!(cµ− λ)2
ρ0 (2.8)

– Temps moyen d’attente :

TQ =
1

µ
+

ρc

µc · c!(1− A)2
ρ0 (2.9)
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2.7 La file M/M/∞

On considère un système composé d’un nombre illimité de serveurs identiques et in-
dépendants les uns des autres. Dès qu’un client arrive, il rentre donc instantanément en
service. Donc cette file particulière, il n’y a donc pas d’attente. On suppose toujours que
le processus d’arrivée des clients est poissonien de taux λ et que les temps de service sont
exponentiels de taux µ (pour tous les serveurs). Ce système est connu sous le nom de file

M/M/∞
Comme cela a été fait pour la file M/M/C, on peut facilement démontrer que le taux

de transition d’un état n quelconque vers l’état n− 1 est égal à nµ et correspond au taux
de sortie d’un des n clients en service. De même, le taux de transition d’un état n vers
l’état n+ 1 est égal à λ et correspond au taux d’arrivée d’un client.

De façon intuitive, la capacité de traitement de la file est infinie puisque tout nouveau
client se présentant à l’entrée de la file est instantanément traité. La condition de stabilité
exprimant que "le nombre moyen de client arrivant à la file par unité de temps doit être
inférieure à la capacité de traitement de la file" est donc toujours satisfaite.

Soit πn la probabilité stationnaire d’être dans l’état n. Les équations d’équilibre nous
donnent

πn−1λ = πnnµ pour n = 1, 2, . . .

soit πn =
ρ

n
πn−1 pour n = 1, 2, . . . ,

où ρ =
λ

µ

On peut alors exprimer toutes les probabilités en fonction de πn.

πn =
ρn

n!
π0 pour n = 1, 2, . . .

La condition de normalisation nous donne alors immédiatement πn

πn =
1

+∞∑
n=0

ρn

n!

= e−ρ

Notons que la série
+∞∑
n=0

ρn

n!
converge pour toutes valeurs de ρ (donc de λ et de µ), ce



2.7 La file M/M/∞ 31

qui est cohérent avec la stabilité inconditionnelle de la file. On obtient finalement

πn =
ρn

n!
e−ρ pour n = 1, 2, . . .

Caractéristiques du système :

– Nombre moyen de clients N :

N =
+∞∑
n=1

nπn

= e−ρ
+∞∑
n=1

ρn

(n− 1)!

= e−ρρeρ = ρ

– Temps moyen de séjour T :
Intuitivement, le temps moyen passé dans les ystème est réduit au temps moyen de

service, soit
1

µ
. On peut redémontrer ce résultat en utilisant la loi de Little :

T =
N

λ0

=
1

µ



Chapitre 3

Systèmes markoviens avec vacances et
clients impatients

3.1 Modèles de file d’attente avec des clients impa-
tients

L’impatience prend généralement trois formes. Le premier dérobade (le client qui refuse
d’entrer dans la file d’attente s’il voit que la file d’attente est très grande ou le temps
d’attente est trop long.), le second abandon( Après un moment passé dans la file, le client

décide de quitter le système sans être servi), et le troisième jockeying entre les lignes

lorsque chacun de nombre deles lignes parallèles ont leur propre file d’attente. [18].
L’impatience "dérobade et abandonż est une fonctionnalité intéressante dans une

grande variété de modèles de mise en file d’attente avec des clients impatients qui peuvent
être satisfaites dans les applications de santé, les centres d’appels, les réseaux de télé-
communications, les systèmes de fabrication où les commandes accumulées peuvent être
annulées, la fabrication systèmes de denrées périssables.

3.1.1 Modèles intégrant l’impatience du client

Les modèles incluant l’impatience des clients sont plus proches de la réalité et conduisent
à une analyse plus précise. Citons quelques applications.

– Applications de la santé.
Pour divers processus médicaux, les patients sont confrontés à un risque élevé de
complications ou de décès lorsqu’ils le traitement (par exemple dans le cas d’une

transplantation d’organe) est surteint. Dans une telle situation, s’il y a beaucoup de

patients en attente de traitement (une file d’attente se forme), ce sera plus adapté
pour servir les patients en fonction de l’urgence de leurs besoins. Quand l’état d’un

32
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patient se détériore à un certain niveau, le traitement peut devenir non plus né-
cessaire. Dans un tel cas, le patient est retiré de la file d’attente sans service (un

patient abandonné).
– Biens périssables.

Il existe de nombreux exemples de produits périssables, citons par exemple les pro-
duits alimentaires, les produits chimiques, les produits pharmaceutiques, les maté-
riaux adhésifs utilisés pour le contreplaqué, le sang, etc. [23] a rapporté qu’en 2004,
22des biens de consommation emballés étaient dus à des produits périmés et 5,8de
sang traité pour transfusion étaient dépassés. Par conséquent, il est extrêmement
important de comprendre ces systèmes et étudier l’impact de la finitude des durées
de vie des produits sur décisions de production et de contrôle des stocks. Une litté-
rature liée à la modélisation des systèmes d’inventaire périssables via des systèmes
de mise en file d’attente avec des clients impatients est considérable, sachant que
l’abandon du client et la perte de produit sont des phénomènes similaires. Cette est,
un client dont le temps de patience expire quitte le fichier d’attente et de même un
produit fait à un stock dont la durée de vie expire est retiré de l’inventaire.

– Avions en file d’attente pour l’atterrissage, les applications militaires et
les centres d’appels.

* Les avions en attente d’atterrissage sont un autre exemple de clients impatients.
Avions sont prêts à attendre, mais seulement jusqu’à un certain point. Un avion
peut manquer de carburant et doit ont donc priorité pour l’atterrissage.

* Dans les applications militaires, l’abandon est une caractéristique importante. Par
exemple, l’ennemi les aéronefs ou les missiles (clients) mettent un temps limité
pour transiter vers une zone où l’interception est possible et ils s’échappent
(abandonnent) s’ils ne sont pas interceptés (servis) dans ce délai.

* Dans la plupart des cas, les clients qui attendent en ligne sont impatients. Un
client va attendez un certain temps pour que le service commence. Si le service
n’a pas commencé par cette fois, il abandonnera et sera perdu.

3.2 Modèles de file d’attente pour les vacances

Les systèmes de mise en file d’attente avec des vacances de serveur ont fait l’objet de
recherches approfondies en raison de leur applications étendues dans plusieurs domaines,
y compris les systèmes de communication informatique, les systèmes de fabrication et de
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production et les systèmes d’inventaire. Dans un système de file d’attente de vacances,
le serveur peut ne pas être disponible pendant un certain temps (utiliser le temps d’in-

activité à des fins différentes) pour de nombreuses raisons telles que la vérification de la

maintenance, le travail sur d’autres files d’attente, recherche de nouveaux travaux (un

aspect typique de nombreux systèmes de communication) ou simplement faire une pause.
Cette période, lorsque le serveur n’est pas disponible pour les clients principaux, est appelé
vacances [10]. Pour plus de détails à ce sujet de merveilleuses enquêtes sur les modèles de

vacances de serveurs dans la littérature sur les files d’attente ([16], [35]).

Une vacance dans une file d’attente est une période pendant laquelle le serveur est
indisponible pour fournir le service. Les arrivées qui arrivent pendant les vacances ne
peuvent entrer en service après le retour du serveur de ses vacances. Il existe de nom-
breuses situations qui entraînent les vacances du serveur, c’est-à-dire les pannes de la
machine (pannes), la maintenance des systèmes et serveurs (où le serveur sert plus d’une

file d’attente dans le système ou plus d’une système).

Le modèle de file d’attente avec vacances de serveur (absences de serveur) a été bien
étudié dans le depuis trois décennies et appliqué avec succès dans de nombreux domaines
tels que la fabrication / le service et systèmes de réseaux informatiques / de communica-
tion et de nombreuses autres situations réelles.

3.2.1 Différents types de modèles de vacances

Les modèles de files d’attente avec vacances peuvent être classés en fonction des pro-
cessus d’arrivée, des processus de service et des politiques de vacances. Ainsi, comme il a
été mentionné ci-dessus, d’excellentes enquêtes sur des travaux antérieurs de modèles de
vacances ont été donnés par [16], [35], et [36].

Conformément aux précédents chapitres et livres de l’enquête en particulier celui de
[16], différents types de modèles de vacances sont les suivants :

X Le modèle de vacances simple, il n’y a qu’une seule vacance après la fin de chaque
occupation période. Si le serveur revient de ces vacances, il ne repart pas même en
vacances si le système est encore vide à ce moment-là. Ce type de vacances peut
provenir de cas tels que comme maintenance dans les systèmes de production (la

maintenance peut être considérée comme des vacances).

X Le modèle de vacances multiples, ce type de vacances peut provenir de cas tels que
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maintenance dans les systèmes informatiques et de communication où les proces-
seurs en informatique et les systèmes de communication effectuent des tests et une
maintenance approfondis en plus de leur principales fonctions (traitement des appels

téléphoniques, réception et transmission de données, etc.). le les travaux d’entretien
nécessaires sont divisés en segments courts.Chaque fois que les clients sont absents,
le processeur effectue un segment de travail de maintenance. Lorsque le système est
inactif, le serveur prend des vacances (fonctionne sur un segment de maintenance).
Au retour de vacances, le serveur démarre le service uniquement s’il trouve K ou
plusieurs clients en attente dans la file d’attente, le nombre de clients en attente est
inférieur à K puis un autre congé a lieu (segment Maintenance).

X Le modèle de vacances à service limité dans lequel le serveur prend des vacances pour
devenir inactif ou après avoir servi m clients consécutifs, ou après un certain temps T .

La façon dont le serveur sert un client est liée au type de vacances. Dans ([16])
certains des modèles de service sont discutés comme suit :
– Service fermé, dès que le serveur revient de vacances il met une porte derrière

le dernier client en attente. Il commence alors à servir uniquement les clients la
porte, basée sur certaines règles de combien ou de combien de temps elle pourrait
servir.

– Service exhaustif, le serveur fonctionne (sert les clients) jusqu’à ce que le système
soit vidé, après son départ en vacances.

– Service limité, une limite fixe de K est fixée au nombre maximum de clients qui
peut être servi avant le départ du serveur pour les vacances. Le serveur part en
vacances soit : (a) lorsque le système est vide, ou (b) lorsque les K clients ont été
servis.

3.3 Description de modèle

Nous considérons le système de files d’attente de vacances multiples M/M/1 avec des
interruptions de vacances de Bernoulli, et les clients s’impatientent en raison aux vacances
des serveurs. Les clients arrivent selon un processus de Poisson avec un taux d’arrivée λ.
Les temps de service pendant une période de service normale, les temps de service pen-
dant une période de travail-vacances et les période de vacances sont distribué de façon
exponentielle avec les taux µ, α et θ, respectivement.

Les clients sont supposés être impatients pendant les travail-vacances . Chaque fois
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qu’un client arrive au système et que le système est en travail-vacances , le client active
une minuterie impatiente T , qui est distribué exponentiellement avec le taux ϑ. Si le
serveur termine les travail-vacances avant l’impatience la minuterie expire, le client reste
dans le système jusqu’à la fin de son service.

Pendant la période de travail-vacances, un client est servi à un taux inférieur aux taux
du service en la période normale, les vacances sont interrompues et le serveur reprend
une période d’occupation régulière avec probabilité 1 − β (s’il y a des clients dans la

file d’attente) ou reste en vacances avec une probabilité β. Les temps inter-arrivées, les
durées de service, les durées de vacances et les périodes d’impatience sont considérées
comme indépendantes les unes des autres. le les clients sont servis selon une discipline de
file d’attente du premier arrivé, premier servi

Soit N(t) le nombre de clients dans le système au temps t, et soit S(t) l’état du serveur
au temps t avec

S(t) =

{
0, si le serveur est en période de travail-vacances ,
1, si le serveur est en période d’occupation normale.

Ensuite, la paire (N(t), S(t), t ≥ 0) est un processus de Markov en temps continu

avec espace d’états Ω = [(0, 0) ∪ (i, j), i = 1, 2, ..., j = 0, 1]. tel que πi,j = lim
t→∞

P{N(t) =

i, S(t) = j}, (i, j) ∈ Ω.
Soit πi0, i ≥ 0 la probabilité qu’il y ait i clients dans le système lorsque le serveur dans

la période de travail-vacances et soit πi1, i ≥ 1 la probabilité qu’il y ait i clients dans le
système lorsque le serveur est en période de servicce normale

3.4 Résultat principal

Dans cette partie , nous étudions une analyse stationnaire pour notre modèle. Dans
un premier temps, nous développons les fonctions génératrice des probabilités du nombre
de clients dans le système lorsque le serveur est en période de travail-vacances et pendant
la période de service normale, respectivement. Ensuite, nous dérivons les expressions ex-
plicites pour diverses mesures performances.

Régime stationnaire :
Via la théorie du processus de Markov, nous obtenons l’ensemble suivant d’équations

stationnaires :
λπ00 = (ϑ+ α)π10 + µπ11 (3.1)
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(λ+ α + θ + nϑ)πn0 = λπn−10 + (βα + (n+ 1)ϑ)πn+10, n ≥ 1 (3.2)

(λ+ µ)π11 = θπ10 + βαπ20 + µπ21 (3.3)

(λ+ µ)πn1 = θπn0 + λπn−11 + µπn+11 + βαπn+10, n ≥ 2 (3.4)

où β = 1− β. Définissons les fonctions génératrices de probabilité comme

Π0(z) =
∑
n=0

πn0z
n, Π0(z) =

∑
n=1

πn1z
n, (3.5)

où Π0(1) + Π1(1) = 1 et Π′0(z) =
∑
n=1

nzn−1πn0.

En multipliant la puissance appropriée de zn en 3.1 et 3.2, en 3.3 et 3.4, respectivement,
puis en additionnant sur tout valeurs possibles de n , on obtient

ϑz(1−z)Π′0(z)+(λz2−(λ+α+θ)z+βα)Π0(z)+(µπ11+(θ+βα)π00+βαπ10)z+βαπ00(1−z) = 0.

(3.6)

(λz−µ)(1−z)Π1(z) = (θz+βα)Π0(z)−(µπ11+(θ+βα)π00)+βαπ10z−βα(1−z)π00. (3.7)

Ensuite, résolvez Eq 3.7, nous obtenons

Π0(z) =
−(µπ11 + (θ + βα)π00 + βαπ10)Φ1(z) + βαΦ2(z)

ϑe−(
λ
ϑ
)zz

βα
ϑ (1− z)

(θ+βα)
ϑ

, (3.8)

où

Φ1(z) =

∫ z

0

e−(
λ
ϑ
)xx

βα
ϑ (1− x)

(θ+βα)
ϑ
−1dx, (3.9)

Φ1(z) =

∫ z

0

e−(
λ
ϑ
)xx

βα
ϑ
−1(1− x)

(θ+βα)
ϑ dx, (3.10)

où ϑ 6= 0, x 6= 0 et ϑ 6= 1. Maintenant, nous devrions trouver les probabilités π00, π10 et
π11, puis quelques mesures de performance importantes sont obtenu.
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3.4.1 Calculer les probabilités π00, π10, π11, et les nombres moyens
E(L0) , E(L1)

Supposons que E(L0) et E(L1) sont le nombre attendu de clients dans le système
lorsque le serveur est allumé une période de vacances-travail et une période normale de
pointe, respectivement.

Donc, en ajoutant 3.3 et 3.4 sur toutes les valeurs possibles de n, on obtient

(θ + βα)Π0(1) = (µπ11 + (θ + βα)π00) + βαπ10. (3.11)

Et en utilisant 3.7, nous avons

Π1(z) =
(θz + βα)Π0(z)− z(θ + βα)Π0(1)

(λz − µ)(1− z)
− βαπ00

(λz − µ)
(3.12)

En utilisant la règle de L’Hopital, nous obtenons

Π1(1) =

(
θ + βα

µ− λ

)
Π′0(1) +

(
βα

µ− λ

)
(π00 − Π0(1)), (3.13)

où Π′0(1) = E(L0), le nombre attendu de clients dans le système lorsque le serveur est en

fonctionnement période de vacances. Puisque Π1(1) = 1− Π0(1), et en utilisant 3.13, on
obtient

E(L0) =

(
µ− λ
θ + βα

)
(1− Π0(1))−

(
βα

θ + βα

)
(π00 − Π0(1)). (3.14)

Maintenant, nous devons déduire la proportion de temps pendant laquelle le serveur est
en période de travail-vacances de π0(1), de sorte que E(L0) peut être dérivé. En ajoutant
3.2− 3.4 et en réorganisant les termes, nous obtenons

λπn0 + λπn1 − ((α + (n+ 1)ϑ)πn+1,0 + µπn+1,1)

= λπn−1,0 + λπn−1,1

+ ((α + nϑ)πn0 + µπn1), n ≥ 1 (3.15)

Utilisation récursive 3.15 et application 3.1

λπn0 + λπn1 = (α + (n+ 1)ϑ)πn+1,0 + µπn+1,1, n ≥ 0 (3.16)

En additionnant toutes les valeurs possibles de n dans 3.16, on obtient

λΠ0(1) + λΠ1(1) = µΠ1(1) + α(Π0(1)− π00) + ϑΣ∞n=0(n+ 1)πn+1,0, n ≥ 0 (3.17)
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Notez que E(L0) = Σ∞n=0(n+ 1)πn+1,0 et Π1(1) = 1− Π0(1).

En substituant la valeur de E(L0) de 3.14 dans 3.17, on obtient

(ϑ+ θ + βα)(µ− λ) = (ϑ(µ− λ) + (µ− α)(θ + βα)− ϑβα)Π0(1)

+ (ϑβα + α(θ + βα))π00. (3.18)

Lorsque z →∞ dans 3.8 et en utilisant 3.6, 3.7 et 3.12, on obtient

Π0(1) =
eλ/ϑ

ϑ
(−(θ + βα)Π0(1)Φ1(1) + βαπ00Φ2(1)) lim

z→+∞
(1− z)−(θ+βα)/ϑ (3.19)

comme 0 ≤ Π0(1) =
∞∑
n=0

πn0 ≤ 1 et lim
z→1

(1− z)−(θ+βα)/ϑ →∞, donc nous devrions avoir

− (θ + βα)Π0(1)Φ1(1) + βαπ00Φ2(1) = 0. (3.20)

Ensuite, en utilisant 3.19 et 3.20, nous obtenons

π00 =
(θ + βα)Φ1(1)

βαΦ2(1)
Π0(1), (3.21)

et

Π0(1) = ((ϑ+ θ + βα)(µ− λ)βΦ2(1))× ((βϑ+ θ + βα)(θ + βα)Φ1(1))

+ (ϑ(µ− λ) + (µ− α)(θ + βα)× βΦ2(1))−1 (3.22)

Ainsi, E(L0) est trouvé à partir de 3.14. En utilisant 3.1 et 3.11 les inconnues π10 et π11
sont obtenues comme suit :

π10 =

(θ + βα)

(
(λ+ θ + βα)Φ1(1)− βαΦ2(1)

)
(ϑ+ βα)βαΦ2(1)

Π0(1), (3.23)

π11 = (((θ + βα){(ϑ+ α)βαΦ2(1)− Φ1(1)(λβα + (ϑ+ α)(θ + βα))})

× (βµαΦ2(1)(ϑ+ βα))−1)Π0(1). (3.24)

Maintenant, les probabilités stationnaires πn0 et πn1 peuvent être dérivées en utilisant
3.2− 3.4 en termes de π00, π10, et π11.
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Le nombre attendu de clients dans le système lorsque le serveur est dans une période
d’occupation normale E(L1) peut être obtenu à partir de 3.12.

En utilisant la règle de L’Hopital, nous obtenons

E(L1) = Π′1(1) =
θ + βα

µ− λ
Π′′0(1)

2
+

1

(θ + βα)(µ− λ)

× ((θµ+ λβα)(1− Π0(1)) + θβα(Π0(1)− π00)). (3.25)

En différenciant 3.6 deux fois en z = 1, on obtient

f ′′(1)Π0(1) + 2(f ′(1)− ϑ)Π′0(1) + (f(1)− 2ϑ)Π′′0(1) = 0, (3.26)

où f(1) = −(θ + βα), f ′(1) = λ − (α + θ) et f ′′ = 2λ. Ensuite, à partir de 3.26, nous
obtenons

1

2
Π′′0(1) =

(
λ

θ + βα + 2ϑ

)
Π0(1)−

(
ϑ+ α + θ − λ
θ + βα + 2ϑ

)
× E(L0) (3.27)

En utilisant 3.27 et 3.14 dans 3.25, nous obtenons E(L1). Le nombre attendu de clients

dans le système peut être calculé comme E(L) = E(L0) + E(L1).

3.4.1.1 Les autres mesures de performance

Maintenant, nous définissons les temps de séjour, soit W le temps de séjour total d’un
client dans le système, évalué de l’instant d’arrivée au départ, le départ étant soit dû à
l’achèvement de service ou à la suite d’un abandon. Nous avons selon la règle de Little

E(W ) =
1

λ
(E(L0) + E(L1)). (3.28)

Soit ∆ la proportion de clients servis, et Θ le taux d’abandon dû à l’impatience. Le
attendu le nombre de clients servis par unité de temps est µΠ1(1)+α(Π0(1)−π00) signifiant
que la proportion des clients servis est

∆ =
1

λ
(µΠ1(1) + α(Π0(1)− π00)). (3.29)

Le taux d’abandon Θ d’un client pour impatience est donné par

Θ = ϑE(L0) = λ− (µΠ1(1) + α(Π0(1)− π00)), (3.30)
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qui découle de 3.17. La probabilité que le système soit en période de pointe normale Γ et
la probabilité que le système est en vacances-travail Ω sont respectivement données par

Γ =
∞∑
n=1

πn,1 = Π1(1), Ω =
∞∑
n=0

πn0 = Π0(1). (3.31)

3.5 Exemples numériques

Tableau 1 : Impact de ϑ et β sur certaines mesures du rendement

β ϑ E(L0) E(L1) E(L) E(W ) ∆ Θ Γ Ω
0.4 0.411 0.319 0.730 0.365 0.917 0.164 0.165 0.834

0.15 1.2 0.356 0.233 0.590 0.295 0.786 0.427 0.129 0.870
2 0.313 0.183 0.497 0.248 0.686 0.627 0.105 0.894
0.4 0.459 0.294 0.754 0.377 0.908 0.183 0.149 0.850

0.5 1.2 0.384 0.209 0.594 0.297 0.769 0.461 0.114 0.885
2 0.331 0.163 0.494 0.247 0.668 0.662 0.093 0.906
0.4 0.543 0.251 0.794 0.397 0.891 0.217 0.123 0.876

0.9 1.2 0.425 0.174 0.599 0.299 0.744 0.510 0.0939 0.906
2 0.355 0.136 0.491 0.245 0.644 0.710 0.077 0.922
0.4 0.572 0.235 0.808 0.404 0.885 0.229 0.114 0.885

1 1.2 0.438 0.163 0.601 0.300 0.737 0.525 0.087 0.912
2 0.362 0.128 0.490 0.245 0.637 0.724 0.0724 0.927

Dans cette partie , nous présentons quelques exemples numériques pour démontrer
comment les différents paramètres du modèle influence le comportement du système et
montre l’impact des différents paramètres et sa relation avec le nombre attendu de clients
lorsque le système est en travail-vacances E(L0), le nombre attendu de clients lorsque le

système est en période deservice normale E(L1), le nombre attendu de clients dans le

système E(L), le temps d’attente attendu dans le système E(W ), la proportion de clients
desservis, le taux d’abandon , la probabilité que le système soit en période de pointe
normale et la probabilité que le système fonctionne vacances .

X Tout d’abord, présentons l’évolution du système en faisant varier β, ϑ et α.

– Les paramètres du tableau 3.5 sont pris comme suit : λ = 2, µ = 6, θ = 0.8 et α =

3. Le tableau 3.5 montre tout d’abord que pour ϑ fixe, E(L0), E(L1), E(L), E(W ),
Ω et Θ augmente à mesure que β augmente, sinon ∆ et Γ décéder à mesure que β
augmente. Maintenant, pour β fixe, E(L0), E(L1), E(L), E(W ), Γ et ∆ diminuez
à mesure que ϑ augmente. Mais le taux d’abandon Θ d’un client dû à l’impatience
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et à la probabilité que le le système est en vacances-travail Ω augmentent à mesure
que ϑ augmente.

– Les paramètres du tableau 3.5 sont pris comme suit : λ = 3, µ = 7, θ = 0.4 et
ϑ = 0.6.

Tableau 2 : Impact de β et α sur certaines mesures du rendement

β α E(L0) E(L1) E(L) E(W ) ∆ Θ Γ Ω
2 0.851 0.605 1.456 0.485 0.829 0.510 0.233 0.766

0.3 4 0.531 0.444 0.976 0.325 0.893 0.319 0.193 0.806
5 0.449 0.392 0.841 0.280 0.910 0.269 0.177 0.822
2 1.005 0.552 1.557 0.519 0.798 0.603 0.206 0.793

0.6 4 0.622 0.382 1.004 0.334 0.875 0.373 0.162 0.837
5 0.520 0.328 0.848 0.282 0.895 0.312 0.145 0.854
2 1.159 0.496 1.656 0.552 0.768 0.695 0.179 0.820

0.8 4 0.714 0.317 1.031 0.343 0.857 0.428 0.131 0.868
5 0.590 0.263 0.854 0.284 0.881 0.354 0.114 0.885
2 1.396 0.405 1.802 0.600 0.720 0.837 0.139 0.860

1 4 0.856 0.214 1.070 0.356 0.828 0.513 0.085 0.914
5 0.697 0.165 0.863 0.287 0.860 0.418 0.069 0.930

Le tableau 3.5 montre pour α fixe, E(L0) , E(L), E(W ), Ω et Θ augmente lorsque

β augmente, sinon E(L1) ,∆ et Γ diminuer.

Cependant, pour β fixe, E(L0), E(L1), E(L), E(W ), Γ et Θ diminuent lorsque a aug-

mente, sinon, et augmenter à mesure que a augmente. Tous ces résultats (tableaux

3.5,3.5) concordent absolument avec notre intuition.

X Présentons maintenant l’impact du taux de service pendant les vacances a sur le nombre
attendu de clients en le système pour différentes valeurs de taux de vacances θ, tandis
que λ = 2, µ = 5, ϑ = 1 et β = 1,. Les résultats numériques sont donnés sur la
figure 3.1.

À partir de la figure 3.1 , nous observons que le nombre attendu de clients dans le
système diminue avec l’augmentation de α, de plus lorsque α > 1.5, E(L) augmente

lorsque θ augmente, cependant, lorsque α < 1.5, E(L) diminue lorsque le taux de
vacances augmente.

X Ensuite, nous présentons l’effet du taux d’arrivée λ sur le taux d’abandon d’un client
par impatience, Θ , et l’effet du taux d’arrivée λ sur E(L) et sur E(W ) pour divers
paramètres ϑ et β. On prend µ = 6, θ = 0.5 et α = 4.

La figure 3.2 montre que Θ les premières augmentations diminuent ensuite avec
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Figure 3.1 – Effet de α sur E(L) et E(W ).
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Figure 3.2 – Taux d’arrivée λ versus θ

l’augmentation du taux d’arrivée lorsque β = 0.5 et β = 1, ce qui correspond abso-
lument à notre attente, le taux d’abandon d’un client augmente lorsque ϑ augmente
car plus de clients renient et quittent le système.
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Figure 3.3 – Taux d’arrivée λ versus E(L)
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Figure 3.4 – Taux d’arrivée λ versus E(W )

Les figures 3.3 et 3.4 montre les augmentations de E(L) et E(W ) avec les augmen-
tations de λ. Ce résultat est tout à fait raisonnable.
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X Ensuite, nous présentons la dépendance de la proportion de clients servis et du taux
d’abandon ∆ et Θ avec θ et ϑ. Soit λ = 3, µ = 5, α = 0.65 et β = 0.5.

Les figures 3.5 et 3.6 montre que pour θ fixe, ∆ diminue et Θ augmente lorsque ϑ
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augmente. De plus, pour ϑ fixe, ∆ augmente et Θ diminue lorsque θ augmente.



Conclusion

Dans ce mémoire, une analyse d’un système de file d’attente Markovien avec travail-
vacances multiple du serveur et clients impatients, les expressions explicites pour diverses
mesures de performances sont dérivées. Quelques exemples numériques sont présentés
pour montrer comment les différents paramètres du modèle influencent le comportement
du système. Pour des travaux ultérieurs, ce modèle peut être étudié avec un accès et un
taux de service en fonction du temps. L’analyse coût-bénéfice du modèle peut également
être effectuée pour étudier son analyse économique.

47



Bibliographie

[1] A. Gomez-Corral and M.F. Ramalhoto. On the waiting time distribution and the
busy period of a retrial queue with constant retrial rate. Stochastic Modelling and
Applications, 3, 37-47, (2000).

[2] Abou El-Ata, M. O., Hariri, A.M.A. : The M/M/c/N queue with balking and reneging.

Comput. Oper. Res. 19(13), 713-716 (1992)

[3] Altman, E. ; Yechiali, U. : Analysis of customers impatience in queues with server

vacations. Queueing Syst. Theory Appl. 52(4), 261-279 (2006)

[4] Ancker Jr., C.J. ; Gafarian, A.V. : Some queuing problems with balking and reneging :

I. Oper. Res. 11(1), 88-100 (1963)

[5] Ancker Jr., C.J., Gafarian, A.V. : Some queuing problems with balking and reneging :

II. Oper. Res. 11(6), 928-937 (1963)

[6] Anisimov, V. V., Zakusilo, O. K., and Donchenko, V. S. 1987. Elements of Queueing

Theory and Asymptotic System Analysis. Vishcha Shkola, Kiev (in Russian).

[7] Arnaud GUYADER , Processus Markoviens de sauts , Université de Rennes

2006/2007.

[8] Baba, Y. : The M/P H/1 queue with working vacations and vacation interruption. J.

Syst. Sci. Syst. Eng. 19(4), 496-503 (2010)

[9] Bouchentouf, A.A. and Yahiaoui, L. (2017). On feedback queueing system with re-
neging and retention of reneged customers, multiple working vacations and Bernoulli
schedule vacation interruption, Arabian Journal of Mathematics, 6(1), 111.

[10] Chandrasekaran, V.M., Indhira, K., Saravanarajan, M.C. and Rajadurai P. (2016). A
survey on working vacation queueing models. International Journal of Pure and Applied
Mathematics., 106(6) :33-41.

[11] Chen, H., Li, J. ; Tian, N. : The GI/M/I queue with phase type working vacations

and vacation interruption. J. Appl. Math. Comput. 30(1-2), 121-141 (2009)

48



BIBLIOGRAPHIE 49

[12] Cheprasov, V. P. 1985. Elements of Queueing Theory. Kazan Aviation Institute (in

Russian).

[13] Claudie Hasseforder CHABRIAC , Eléments de Théorie des files d’attente, page05,
Janvier 2008.

[14] David Coupier, Processus Stochastiques, Polytech’Lille GIS 4.

[15] Djouhra. D. Modélisation et simulation du flux dans un réseaux pour la regulation
du trafic. Ingénierie des données et connaissances.

[16] Doshi, B. T. (1986). Queueing systems with vacation-a survey. Queueing Systems.,
1 : 29-66.

[17] Goswami, V. : Analysis of impatient customers in queues with Bernoulli schedule
working vacations and vacation interruption. J. Stoch. 2014, 1-10, Article ID 207285
(2014).

[18] Gupta, N. and Garg, R. (2012). A view of queue analysis with customer behaviour,
balking and reneging. Proceedings of the National Conference on Trends and Advances
in Mechanical Engineering, YMCA University of Science and Technology, Faridabad,
Haryana., 19-20.

[19] Haight, F.A. : Queueing with balking. Biometrika 44, 360-369 (1957)

[20] Haight, F.A. : Queueing with reneging. Metrika 2, 186-197 (1959)

[21] Jean Louis Poss, Probabilité et statistique version 2.1 Mai 2003 p74.

[22] Jean-Jacques Ruch-Marie-Line Chabanol, CHAÎNES DE MARKOV, Préparation à
l’Agrégation Bordeaux 1, Année 2012-2013.

[23] Karaesmen, I., Deniz, B. (2011). Managing Perishable and Aging Invetories : Re-
view and Future Research Directions. in Planning Production and Inventories in the
Extended Enterprise, A State of the Art Handbook., 1 : 393-438.

[24] K.B, GK, Techniques de modélisation : Méthodes analytiques.

[25] Ke, J.C. ; Wu, C.H. ; Zhang, Z.G. : Recent developments in vacation queueing models :

a short survey. Int. J. Oper. Res. 7(4), 3-8 (2010)

[26] Khintchine, A. Y 1969. Mathematical Methods in the Theory of Queueing.

[27] . Laxmi, P.V., Goswami, V, Jyothsna, K. : Analysis of finite buffer Markovian queue

with balking, reneging and working vacations. Int. J. Strateg. Decis. Sci. 4(1), 1-24

(2013)



BIBLIOGRAPHIE 50

[28] Li, J. ; Tian, N. : The M/M/1 queue with working vacations and vacation interrup-

tions. J. Syst. Sci. Syst. Eng. 16(1), 121-127 (2007)

[29] M.Petito , Introduction à la modélisation des réseaux, page21, 26 Octobre 2010.

[30] Raj J.(2008). Introduction to queueing theory. Technical report. Washington univer-
sity.

[31] Robert, E. : Reneging phenomenon of single channel queues. Math. Oper. Res. 4(2),

162-178 (1979)

[32] Rubino. G., Processus Stochastiques, Février 2006.

[33] Rugg. R. Processus stochastique. Presses Polytechniques Romandes, 1989.

[34] Selvaraju, N, Goswami, C. : Impatient customers in an M/M/1 queue with single

and multiple working vacations. Comput. Ind. Eng. 65(2), 207-215 (2013)

[35] Takagi, H.(1991). Queueing Analysis, Volume 1 : Vacation and Priority Systems.
NorthHolland, Amsterdam.

[36] Tian, N. ; Zhang, Z.G. : Vacation Queueing Models. Springer, New York (2006)

[37] Wang, K.-H. ; Chang, Y.-C. : Cost analysis of a finite M/M/R queueing system with

balking, reneging and server breakdowns. Math. Methods Oper. Res. 56(2), 169-180

(2002)

[38] Willing. A. A short introduction to queueing thehory. Technical University Berlin,
Telecommunication Networks Group, 1999.

[39] Yahiaoui, L. (2017).Stability study of queueing systems with impa-

tience. . Thèse de doctorat, université de saida. https : //www.univ −
saida.dz/busc/docnum.php?explnumid = 414

[40] Yue, D., Yue, W. ; Xu, G. : Analysis of customers’ impatience in an M/M/1 queue

with working vacations. J. Ind. Manag. Optim. 8(4), 895-908 (2012)

[41] Yue, D., Zhang, Y. ; Yue, W. : Optimal performance analysis of an M/M/1/N queue

system with balking, reneging and server vacation. Int. J. Pure Appl. Math. 28(1),

101-115 (2006)

[42] Yves Caumel,Probabilités et processus stochastiques.

[43] Zakhar Kabluchko, Stochastic Processes (Stochastik II), University of Ulm Institute

of Stochastics, (2013-2014). Second edition, Hafner Publishing Company, New York

(First edition : Griffin,London, 1960 ; Russian original : 1955). 859-866.



BIBLIOGRAPHIE 51

[44] Zhang, H. ; Shi, D. : The M/M/1 queue with Bernoulli schedule-controlled vacation

and vacation interruption. Int. J. Inf. Manag. Sci. 20(4), 579-587 (2009)

[45] Zhang, M., Hou, Z. : Performance analysis of M/G/1 queue with working vacations

and vacation interruption. J. Comput. Appl. Math. 234(10), 2977-2985 (2010)


	Processus Stochastiques
	Processus aléatoire
	Processus de comptage
	Processus de renouvellement
	Processus de Poisson
	Loi de Poisson et loi exponentielle

	Chaînes de Markov
	Chaînes de Markov à temps discret
	Chaînes de Markov à temps continu

	Processus de naissance et de mort
	Processus de naissance
	Processus de mort


	Systèmes de Files d'Attente Classiques
	File d'attente simple
	Notation de Kendall
	Loi de Little
	 Analyse en régime stationnaire

	Modèle d'attente M/M/1
	La file M/M/1/K
	La file M/M/C
	La file M/M/

	Systèmes markoviens avec vacances et clients impatients
	 Modèles de file d'attente avec des clients impatients
	Modèles intégrant l'impatience du client

	Modèles de file d'attente pour les vacances
	Différents types de modèles de vacances

	Description de modèle
	Résultat principal
	Calculer les probabilités 00, 10, 11, et les nombres moyens E(L0) , E(L1)
	Les autres mesures de performance 


	Exemples numériques

	Bibliographie

