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Introduction générale

De nombreux phénoménes aléatoires se manifestent dans la nature : Fluctuations
de la température, de la pression atmosphérique, etc. En électronique et en télécom-
munications, l’étude des processus aléatoires est utile notamment dans le contexte
des communications numériques, certains signaux sont impossibles à caractériser
a priori. L’exploitation des processus aléatoires est aussi à la base de nombreuses
approches en traitement du signal, que ce soit pour caractériser le contenu fréquen-
tiel du signal ou pour coder et tatouer un signal de parole. Plus généralement, les
sources d’information telles que le son, les images sont aléatoires et varient dans le
temps. Enfin, les processus aléatoires ont une application dans le cadre du traite-
ment du trafic dans les réseaux et notamment pour l’analyse du temps de transfert
et/ou du temps de traitement d’un paquet d’informations de taille aléatoire, généré
à des intervalles de temps aléatoires (Théorie des Files d’Attente). La théorie des
processus aléatoire vise à introduire les outils de traitement des phénoménes va-
riant aléatoirement dans le temps. Les phénoménes d’attente sont devenus l’une des
préoccupations de l’homme depuis bien longtemps. Attendre, constitue la tâche la
plus désagréable de la vie moderne. Comment gérer un systéme présentant des files
d’attente, afin d’améliorer sa qualité de service ? Cette question a été abordée, pour
la première fois par A.K. Erlang avec ses travaux concernant le réseau téléphonique
de Copenhague [17]. La théorie mathématique s’est ensuite développée notamment
grâce aux contributions de Palm, Kolmogorov, Khintchine, Pollaczek [17] et fait
actuellement toujours l’objet de nombreuses publications scientifiques. Cette théo-
rie s’est ensuite étendue à de nombreux champs d’application comme la gestion de
stocks, les télécommunications en général, la fiabilité de systèmes complexes,. . . Les
problèmes liés à l’attente dans un centre de service sont omniprésents dans notre
société. Les exemples ne manquent pas :
• Attente à un guichet (caisse dans un supermarché, administration),
• traffic urbain ou aérien,
• réseaux téléphoniques,
• circulation de pièces dans un atelier,
• programmes dans un système informatique, . . .

En effet, afin d’analyser le comportement de ces systèmes, évaluer et optimiser
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leurs performances, il faut d’abord les représentés par des modèles mathématiques
qui proviennent de la théorie des files d’attente. Un modèle typique de files d’attente
nécessite la définition des processus d’inter-arrivées et la durée de service de client,
la taille de la file qui peut être fini ou non, ainsi que la discipline de service. Tous ces
paramètres sont indiqués dans la notation dite de Kendall. Dans certains systèmes,
on est amené à imposer des priorités d’utilisation du service. Notre travail consiste
à étudier une classe de systèmes de files d’attente, qui porte le nom de système de
files d’attente simple comprenant une station de service et pour lequel la capacité
de l’espace est infini et de discipline de service FIFO. Dans notre mémoire nous ana-
lysons des modèles de systèmes de files d’attente avec dérobade, abandon, feedback
et deux serveurs hétérogènes. Le mémoire est composée de trois chapitres.

Dans le premier chapitre nous abordons les processus à la base de l’étude de
tels systèmes d’attente qui sont les processus stochastiques. Nous présentons une
introduction aux concepts de base de la théorie des processus stochastiques. Nous
présentons également les relations fondamentales entre les diférents processus sto-
chastiques.

Dans le deuxième chapitre, nous introduisons la terminologie de la théorie des
files d’attente. Certaines définitions et notations qui sont nécessaires dans l’étude
des systèmes de files d’attente (la notation de KANDELL, la formule de LITTLE
· · · ) sont nottamment données. Et nous étudions quelque modèles de files d’attente
(M/M/1, M/M/1/K, M/M/c, M/M/∞) et l’évaluation de leurs paramètres de
performance.

Dans le troisième chapitre, nous traitons le cas d’un système de files d’attente
de deux serveurs hétérogènes M/M/2/N (capacité N finie) avec dérobade, abandon
et feedback. Nous développons d’abord les équations des probabilités d’état stable.
Ensuite, nous donnons quelques mesures de performance du système. Enfin, nous
présentons quelques exemples numériques pour démontrer comment les différents
paramètres du modèle influencent sur le comportement du système.



Chapitre 1

Les processus stochastiques

L’étude des processus stochastiques s’insère dans la théorie des probabilités dont
elle constitue l’un des objectifs les plus profonds. Il existe de nombreuses applica-
tions des processus aléatoires notamment en physique statistique (par exemple le
ferromagnétisme, les transitions de phases, etc.), en biologie (évolution, génétique et
génétique des populations), médecine (croissance de tumeurs, épidémie). Elle soulève
des problèmes mathématiques intéressants et souvent très difficiles. Par exemple, le
prix d’un baril du Pétrole, qui ont tiré l’attention de beaucoup des spécialistes éco-
nomiques. En effet, Ce prix, dans la bourse, varie tout le temps, cette variation nous
donne l’idée d’établir un processus aléatoire, ou encore un processus stochastique,
d’où la modélisation par une famille de variables aléatoires X(t)t∈T où T est l’en-
semble des temps pendant lesquels le phénomène est observé. La famille X(t)t∈T est
appelée processus aléatoire, ou encore processus stochastique.

Définition 1.0.1. Un processus stochastique est une suite de variables aléatoires
indexées par T à valeurs dans un ensemble X. Sa caractéristique de base est le
fait que la loi de la variable X soit fonction de t définies dans le même espace de
probabilité (Ω,F,P) et à valeurs dans l’espace mesurable (E, E), t ∈ T représente
une date.
F Lorsque T ⊆ Z, on parlera de processus à temps discret (suite stochastique) notée
(Xn)n∈N

F lorsque T est un intervalle I ⊆ R, on parlera de processus à temps continu. Il
existe également les processus de Poisson, de Markov et de Yule.

Définition 1.0.2. On appelle espace des états l’ensemble E où les variables Xn

prennent leurs valeurs. L’ensemble E peut être discret ou continu. Par conséquent,
on distingue quatre types de processus :

1. Suite stochastique à espace d’etats discret

2. Suite stochastique à espace d’état continu.

3. Processus continu à espace d’état discret.

8
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4. Processus continu à espace d’état continu.
La loi d’un processus stochastique est caractérisée par la donnée de la loi du
vecteur qui lui est associé.

Définition 1.0.3. {E , t ≥ 0} est à accroissement stationnaire (homogéne), si
∀t1 ∈ R,∀h ∈ R : Xt2+h

−Xt1+h
etXt2−Xt1 sont des variables aléatoire de même loi.

1.1 Le processus de poisson

Parmi les processus stochastiques à temps continu et à espace d’états discret
étudiés , le processus de Poisson occupe une place privilégiée. De nombreux phé-
nomènes aléatoires se manifestent par des "arrivées" survenant une par une à des
instants aléatoires successifs. Il est utilisé avant tout pour décrire la réalisation dans
le temps d’évènements aléatoires d’un type donné.

1.1.1 Le processus de comptage

Définition 1.1.1. Un processus (Nt)t∈R+ est appelé processus de comptage si c’est
un processus croissant, c’est-à-dire si pour tout s ≤ t, Ns ≤ Nt . La variable aléatoire
Nt −Ns est alors appelée accroissement du processus sur ]s, t]. par exemple :
�N(t) = nombre de poissons capturés dans l’intervalle de temps [0, t],
�N(t) = taille d’une population à la date t.

Définition 1.1.2. Un processus de comptage (Nt)t∈R+ est appelé processus à ac-
croissements indépendants si pour tout n ∈ N∗ et pour tous t1, ..., tn tels que
t1 < t2... < tn, les accroissements Nt1 − N0, Nt2 − Nt1 , ..., Ntn − Ntn−1 sont des
variables aléatoires indépendantes.

Définition 1.1.3. Un processus à accroissements indépendants
stationnaire (Nt)t∈R+ est dit à événements rares si

lim
t→0+

P([Nt > 0]) = 0

et si
lim
t→0+

P([Nt>1])

P([Nh=1])
= 0

Définition 1.1.4. Une variable aléatoire X est dite sans mémoire (ou sans usure)
si : ∀s, t ≥ 0 P(X > t+ s/X > t) = P(X > s).
Par exemple Si X est la durée de vie d’un matériel quelconque l’équation précédante
s’interprète de la manière suivante, sachant le matériel en état de bon fonctionne-
ment au temps t, la loi de probabilité de sa durée de vie future est la même que celle
de sa durée de vie initiale. En d’autres termes, le matériel ne s’use pas.
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1.1.1.1 Loi exponentielle et la loi de poisson

Définitions et genéralité :

Définition 1.1.5. Une variable aléatoire X à valeurs entières suit une loi de Poisson
de paramètre λ > 0 si :

∀k ∈ N,P(X = k) =
λk

k!
exp(−λk)

Définition 1.1.6. Une variable aléatoire Y à valeurs réelles strictement positives
suit une loi exponentielle de paramètre µ > 0 si :

∀t > 0,P(X = t) = µ exp(−µt)

Distribution de la loi Poisson

Soit n une variable aléatoire discrète avec n = 0, 1, . . . qui suit une distribution
Poisson.

• La densité de probabilité de n est Pn = λnexp−λ/n!,

• L’espérence de n est E(x) = λ,

• et la variance de n est V ar(x) = λ.

Remarque
La distribution de Poisson peut également être définie en unités de temps t. Dans
ce cas, la variable discrète n représente le nombre d’occurrences dans le temps t
devient,

P (n, t) = (λt)nexp−(λt)/n!

Distribution de la loi exponentielle

Soit t une variable aléatoire avec t ≥ 0 qui suit une distribution exponentielle.

• La densité de probabilité de t est f(t) = µexp(−µt),

• la distribution cumulée correspondante est F (t) = 1− exp(−µt),

• L’espérence de t est E(x) = 1/µ,

• et la variance de t est V ar(x) = 1/µ2.

1.1.1.2 Relation entre la distribution Exponentielle et la distribution de
Poisson

La densité de probabilité d’une distribution exponentielle f(t) = λe−λt Suppo-

sons τ est exponentielle avec une espérence
1

λ
, et n est de Poisson de moyenne µ on
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a :

P (τ > t) = 1− F (t)

= e−λt

= P (n = 0 en t)

= P (0, t)

Notons P (n, t) la probabilité d’avoir n unité dans le temps t.
P (0, t) = e−λt

P (1, t) =
∫ t
τ=0

P (0, τ)f(1− τ)dτ = λte−λt

P (2, t) =
∫ t
τ=0

P (1, τ)f(1− τ)dτ = (λt)2e−λt/2!

· · ·
P (n, t) =

∫ t
τ=0

P (n− 1, τ)f(1− τ)dτ = (λt)ne−λt/n!

1.1.2 processus de poisson

Un processus de comptage (Nt)t∈R+ tel que N0 = 0 est un processus de Poisson
si
X(Nt)t∈R+ est stationnaire,
X(Nt)t∈R+ est un processus à accroissements indépendants,
X(Nt)t∈R+ est un processus à événements rares.
On s’intéresse ici au comptage du nombre d’occurrences d’un événement, par exemple
la naissance d’un individu.De tels phénomènes peuvent se définir par la famille
(An)n ∈ N∗ des temps d’arrivées qui sont des variables aléatoires et on note N(t) le
nombre d’événements survenus dans l’intervalle [0, t]. Un tel processus a une trajec-
toire en escalier (voir figure 1.1). L’événement d’intérêt survient aux dates t1, t2, . . . ,
à chacune de ces dates, le comptage N(t) augmente de 1 :

N(t) = 0 si t < t1,

= 1 si t1 ≤ t ≤ t2,
...
= k si tk ≤ t ≤ tk+1,

etc

• Appels téléphoniques à un standard ;
• passage de véhicules à un péage d’autoroute ;
• prise d’un poisson par un pêcheur ;
• arrivée d’un client à un guichet ;
• passage d’un autobus.

Définition 1.1.7. On dit qu’un processus est poissonnien s’il vérifie les hypothèses
suivantes :
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Figure 1.1 – Le processus de comptage

A Le processus est sans mémoire : l’occurrence d’événements avant la date t n’in-
flue en rien sur l’occurrence d’événements après t :

N(t+ h)−N(t) ⊥ N(t)−N(t− k).

B Le processus est homogène dans le temps : la loi de l’accroissement
[N(t+ h)−N(t)] du processus ne dépend que de h et pas de t (et est donc la même
que celle de N(h)) :

N(t+ h)−N(t) = 1N(h)−N(0).

Un processus de comptage (Nt)t∈R+ tel que N0 = 0 est un processus de Poisson
si et seulement si :
C1 : (Nt)t∈R+ : est stationnaire,
C2 : (Nt)t∈R+ : est un processus à accroissements indépendants,
C3 : il existe λ > 0 tel que, pour tout t ≥ 0, la variable aléatoire Nt suive la loi de
Poisson de paramètre λt.

Proposition 1.1.1. Si (Nt)t∈R+ est un processus de Poisson de paramètre λ, le
temps aléatoire U qui sépare un instant θ du prochain événement et le temps aléatoire
V qui sépare θ du dernier événement suivent la loi exponentielle E(λ).

1.1.3 Processus de renouvellement

Définition 1.1.8. Un processus de comptage dont la suite des inter-arrivées forme
une suite de variables aléatoires indépandantes et identiquement distribuées s’ap-

1. La notation signifie que les variables aléatoires ont la même loi de probabilité.pas la même
valeur
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pelle processus de renouvellement. Les temps de la nime arrivée (ou les temps de
renouvellement) sont :

An =
n∑
i=1

ai, n = 0, 1, 2, . . .

Définition 1.1.9. Un processus de renouvellement à pour fonction de dénombrer les
occurrences d’un phénomène donné, lorsque les délais entre deux occurrences consé-
cutives sont des variables aléatoires indépendantes et identiquement distribuées. Il
peut s’agir de compter le nombre de pannes d’un matériel électronique en théorie de
la fiabilité (le matériel est alors renouvelé après chaque panne, d’où la dénomina-
tion), de dénombrer les arrivées de clients dans une file d’attente, de recenser les
occurrence d’un sinistre pour une compagnie d’assurance....

1.1.4 Caractérisation d’un processus de Poisson par ses temps
d’arrivée

Soit An l’instant de la nime arrivée : An = {inf t ≥ 0;Nt = n} et Tn le nime temps
d’attente pour
n ∈ N∗ : Tn = An − An−1 (en convenant A0 = 0).

On a An =
n∑
i=1

Ti

et Nt = max
n≥0

An ≤ t.

Théorème 1.1.4.1. (Nt)t∈R+ est un processus de Poisson de paramètre λ si et
seulement si les variables aléatoires Tn sont indépendantes de même loi exponentielle
E(λ) de densité

fTn(t) = λ exp(−λt)1]0,+∞[(t)

1.1.5 Processus de naissance et de mort

Les valeurs dans l’espace des états N et dont les seules transitions possibles à
partir de l’état n se font vers les états (n− 1) et (n+ 1). Les processus de naissance
et de mort sont utilisés pour modéliser les systémes d’attente et l’évolution de po-
pulations. Le processus de Poisson est un processus de naissance et de mort pour
lequel la seule transition possible à partir de l’état n se fait vers l’état (n+ 1). Dans
le cas d’un système d’attente, on considère par exemple des populations comprenant
tous les clients qui sont dans le système à l’instant t. Les processus de naissance et
de mort sont des processus stochastiques à temps continu et à espace d’états discret
n = 0, 1, 2, . . .. Ils sont caractérisés par deux conditions importantes :
ils sont sans mémoire, et à partir d’un état donné n, des transitions ne sont possibles
que vers l’un ou l’autre des états voisins (n+1) et (n−1) pour n ≥ 1. Les processus
de Poisson ne connaissent que des incrémentations avec un taux constant. Dans la



1.1.5.1 Diagramme de transition et interprétation intuitive 14

suite, nous introduisons des processus sans mémoire qui admettent des incrémen-
tations et des décrémentations avec des taux variables, dépendants de l’état actuel
du processus. Ces processus, intervenant dans la modélisation de larges classes de
phénomènes d’attente, sont appelés processus de naissance et de mort.

1.1.5.1 Diagramme de transition et interprétation intuitive

On associe à un processus de naissance et de mort un graphe fini ou infini (suivant
la finitude ou l’infinitude du processus), valué de la façon suivante :
associé au processus. Les valeurs associées aux arcs ne sont pas des probabilités de
transitions, mais des taux de probabilités de transitions :
• Pour voir une interprétation intuitive de l’équation différentielle portant sur la
probabilité d’être dans l’état Ek , analysons le flux de probabilité entrant en Ek et
le flux de probabilité sortant de Ek

Figure 1.2 – Diagramme de transition d’un processus de naissance et de mort



Chapitre 2

Système des Files d’attente

La théorie des files d’attente s’attache à modéliser et à analyser de nombreuses
situations. Pour acheter un timbre à la poste, pour se faire enregistrer à l’aéroport,. . .
etc. Ces situations qui sont différentes en apparences, mais qui relévent néanmoins
du schéma descriptif général suivant : Des clients arrivent à intervalles aléatoires
dans un systéme comportant un ou plusieurs serveurs. Chaque client doit attendre
son tour pour adresser sa requête. La durée du service auprès de chaque serveurs est
elle même aléatoire. Après avoir été servis les clients quittent le système.
Considérons l’exemple d’une file d’attente aux caisses d’un grand magasin. Le client
pourra alors se poser plusieurs questions :
� Combien de temps va-t-il attendre en moyenne dans la queue ?
� Quelle probabilité a-t-il d’attendre plus d’un temps t ?
� Combien de clients va-t-il trouver devant lui ?
Si nous essayions de répondre aux questions ci-dessus de maniére analytique, il nous
serait impossible de tenir compte du fait que les clients arrivent de façon aléatoire
au magasin. Nous serions obligés de considérer que les clients arrivent de maniére
réguliére, ou au moins à des moments connus, et que les temps de service soient
eux aussi connus. Or, il est certain qu’il y a beaucoup plus de clients aux heures
de pointe qu’aux heures creuses de la journée. Les moments exacts où les clients
arrivent et les temps de service sont tout sauf connus à l’avance. La prise en compte
des différents aléas n’entre guére dans un modéle déterministe. Pour pouvoir résoudre
un tel probléme, nous avons besoin de différentes notions que nous verrons dans ce
chapitre, nous présentons les éléments essentiels et quelques résultats concernant les
systémes de files d’attente.

2.1 File d’Attente Simple

Une file d’attente simple est un système constitué d’un ou plusieurs serveurs et
d’un espace d’attente. les clients arrivent de l’extérieur, patientent éventuellement
dans la file d’attente, reçoivent un service, puis quittent la station. Afin de spécifier

15
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complètement une file d’attente simple, on doit caractériser le processus d’arrivée
des clients, le temps de service ainsi que la structure et la discipline de service de la
file d’attente .

Figure 2.1 – Système de file d’attente

2.1.1 Processus d’arrivée

L’arrivée des clients à la station sera décrite à l’aide d’un processus stochastique
de comptage (Nt)t≥0. Si An désigne la variable aléatoire mesurant l’instant d’arrivée
du nime client dans le système, on aura ainsi : A0 = 0 et An = inf{t;Nt = n}. Si
Tn désigne la variable aléatoire mesurant le temps séparant l’arrivée du (n − 1)ime

client et du nime client, on a alors :

Tn = An − An−1.

2.1.2 Temps de service

Considérons tout d’abord une file à serveur unique.
On note Dn la variable aléatoire mesurant l’instant de départ du nime client du
système et Yn la variable aléatoire mesurant le temps de service du nime client
(le temps séparant le début et la fin du service). Un instant de départ correspond
toujours à une fin de service, mais ne correspond pas forcément à un début de service.
Il se peut en effet qu’un client qui quitte la station laisse celle-ci vide. le serveur est
alors inoccupé jusqu’à l’arrivée du prochain client. On note µ le taux de service :

1
µ
est la durée moyenne de service.

2.1.3 Structure de la file :

Nombre de serveurs
Une station peut disposer de plusieurs serveurs en parallèle. Soit C le nombre de
serveurs. Dès qu’un client arrive à la station, soit il y a un serveur de libre et le
client entre instantanément en service, soit tous les serveurs sont occupés et le client
se place dans la file en attente de libération d’un des serveurs. Mais en suppose à
la plupart du temps que les serveurs sont identiques et indépendants les uns des
autres. Une station particulière est la station IS (infinite servers) dans la quelle le
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nombre de serveurs est infini. Cette station ne comporte donc pas de file d’attente.
Capacité de la file :
La capacité de la file à accueillir des clients en attente de service peut ètre finie ou
infinie. Soit K la capacité de la file, une file à capacité illimitée vérifie K = +∞.

Remarque
Quand nous commençons à analyser un système de file d’attente, l’état de ce

dernier dépend beaucoup de l’état initial et du temps écoulé. Nous disons alors que
le système est en situation t ransitoire, et son étude est alors très complexe.
C’est pourquoi dans la théorie des files d’attente, nous préférons faire l’étude une
fois que le système a atteint sa situation d’équilibre où les états du système sont
essentiellement indépendantes de l’état initial et du temps déjà écoulé. On suppose
en quelque sorte que le système est en opération depuis un très long moment.

2.1.4 Notation de Kendall :

Pour la classification des systèmes d’attente, on a recours à la notation symbo-
lique introduite parKendall au début des années cinquante. Cette notation comprend
des symboles rangés dans l’ordre T/Y/C/K/m/Z oú

– T : indique le processus d’arrivée des clients. Les codes utilisés sont :

• M : Interarrivées des clients sont identiquement distribuées selon une loi
exponentielle. Il correspond à un processus de Poisson ponctuel (propriété
sans mémoire).

• D : Les temps interarrivées des clients ou les temps de service sont constants
et toujours les mêmes.

• GI : Interarrivées des clients ont une distribution générale (il n’y a aucune
hypothèse sur la distribution mais les interarrivées sont indépendantes et
identiquement distribuées).

• G : Interarrivées des clients ont une distribution générale et peuvent être
dépendantes.

• Ek : Ce symbole désinge un processus où les intervalles de temps entre
deux arrivées succesives sont des variables aléatoires indépendantes et
identiquement distribuées suivant une loi d’Erlang d’ordre k.

– Y :décrit la distribution des temps de service d’un client. Les codes sont les
mêmes que T

– C : nombre de serveurs
– K : capacité de la file c’est le nombre de places dans le système en d’autre

terme c’est le nombre maximal de clients dans le système y compris ceux en
service

– m : population des usagers.
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– Z : discipline de service c’est la façon dont les clients sont ordonnés pour être
servi. Les codes utilisés sont les suivants :

Discipline de service :
– FIFO (first in, first out) ou FCFS (first come first served) : c’est la file standard

dans laquelle les clients sont servis dans leur ordre d’arrivée. Notons que les
disciplines FIFO et FCFS ne sont pas équivalentes lorsque la file contient
plusieurs serveurs. Dans la première, le premier client arrivé sera le premier à
quitter la file alors que dans la deuxième, il sera le premier à commencer son
service. Rien n’empêche alors qu’un client qui commence son service après lui,

– LIFO (last in, first out) ou LCFS (last come, first served). Cela correspond à
une pile, dans laquelle le dernier client arrivé (donc posé sur la pile) sera le
premier traité (retiré de la pile). A nouveau, les disciplines LIFO et LCFS ne
sont équivalentes que pour une file monoserveur

– SIRO (Served In Random Order), les clients sont servis aléatoirement.
– PNPN (Priority service), les clients sont servis selon leur priorité. Tous les

clients de la plus haute priorité sont servis premiers, puis les clients de priorité
inférieur sont servis, et ainsi de suite.

– PS ( Processor Sharing ), les clients sont servis de manière égale. La capacité
du système est partagée entre les clients.

2.2 Loi de Little

La loi de Little est une relation très générale qui s’applique à une grande classe de
systèmes. Elle ne concerne que le régime permanent du systéme. Aucune hypothèse
sur les variables aléatoires qui caractérisent le système (temps d’inter-arrivées, temps
de service,...etc). La seule condition d’application de la loi de Little est que le système
soit stable. Le débit du système est alors indifféremment soit le débit d’entrée, soit
le débit de sortie :ds = de = d La loi de Little s’exprime telle que dans la propriété
suivante :

Théorème 2.2.1. (Formule de Little) : Le nombre moyen de clients N , le temps
moyen passé dans le système T et le débit moyen d’un système stable en régime
permanent λe se relient de la façon suivante :

N = λeT

pour une file(M/M/1) λe = λ

On a vu que la loi de Little nous dit qu’il existe une relation entre le nombre
moyen de clients dans la file (en attente ou en service) et le temps moyen total de
séjour d’un client dans la file(temps d’attente +temps de service)

Remarque 2.2.1. La loi de Little s’applique à tous les modèles de file d’attente
rencontrés en pratique (pas seulement à la file M/M/1).



2.2.0.1 Remarque 19

2.2.0.1 Remarque

La loi de Little s’applique à tous les modèles de file d’attente rencontrés en
pratique (pas seulement à la file M/M/1).

2.2.1 Mesures de performance d’une file d’attente

L’étude d’une file d’attente ou d’un réseau de files d’attente a pour but de calculer
ou d’estimer les performances d’un système dans des conditions de fonctionnement
données, et les mesures les plus fréquemment utilisées sont :
N = E(N) : nombre moyen de clients dans le système,
Ns : nombre moyen de clients en train d’être servis,
NQ : nombre moyen de clients dans la file d’attente. NQ, NS et N : sont les v.a.
correspondantes.
T : temps moyen qu’un client passe dans le système,
Ts : temps moyen de service,
Ts : temps moyen d’attente d’un client dans la file. TQ, Ts et T : sont les v.a.
correspondantes.
De manière générale, une file est stable si et seulement si le nombre moyen d’arrivées
de clients par unité de temps, noté λ, est inférieur au nombre moyen de clients
pouvant être servis par unité de temps. Si chaque serveur peut traiter µ clients par
unité de temps et si le nombre de serveurs est c, une file est stable si et seulement si

λ < mµ⇔ ρ = λ/cµ < 1,

où, ρ est appelé l’intensité du trafic.

2.3 Arrivée avant un départ et départ avant une
arrivée

� Temps pour qu’une nouvelle arrivée se produise :

A ∼ exp(λ)

.
� Temps pour qu’un nouveau départ se produise :

D ∼ Exp(µ).

(A et D sont indépendantes).
� Probabilité qu’une arrivée se produise avant un départ :

P (A < D) =
λ

λ+ µ
.
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� Probabilité qu’un départ se produise avant une arrivée :

P (D < A) =
µ

λ+ µ
.

2.4 Le système M/M/1

Le système de files d’attente M/M/1 est le système le plus élémentaire de la
théorie des files d’attente. Le flot des arrivées est poissonnien de paramètre λ et la
durée de service est exponentielle de paramètre µ, la discipline d’attente est FIFO,
la file d’attente est de capacité infinie.
La file peut être considérée comme un processus de naissance et de mort, pour
lequel :

λn = λ ∀n ≥ 0

µn =

{
µ ∀n ≥ 1

0 si n = 0

2.4.1 Rigime transitoire

Pour ce système, le plus simple de la théorie des files d’attente, le flux des ar-
rivées est poissonnien de paramètre λ et la durée de service est exponentielle de
paramètre µ. La capacité d’attente est illimitée et il y a une seule station de service.
Le processus (Xt) est markovien (doté de la propriété d’absence de mémoire), ce qui
rend son étude aisée. Grâce aux propriétés fondamentales du processus de Poisson
et de loi exponentielle, nous avons pour un petit intervalle de temps ∆t les équations
différentielles de Kolmogorov :{

P0(t) = λP0(t) + µP1(t), n=0,
P ′n(t) = −(λ+ µ)Pn(t) + λPn−1(t) + µPn+1(t) n=1,2,3,.....

où
Pn(t) = P(Xt = n)

2.4.2 Régime stationnaire

Quand t −→ ∞, on peut montrer que limt→∞ Pn(t) = Pn existent et sont indé-
pendante de l’état initial du processus et que

πn = lim
t→∞

pn(t) = (1− ρ)ρn, ∀n ∈ N

π = {πn}n≥0 est appelé distribution stationnaire, elle suit une loi géométrique
On obtient alors un système d’équations linéaires homogènes{

µP1 = λP0, n=0 ;
λPn−1 + µPn+1 = (λ+ µ)Pn, n=1,2,...
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aux quelles on ajoute la condition
∑∞

n=0 Pn = 1. En additionnent les (n+1) premières
equations , on trouve

µPn+1 = λPn.

D’où
Pn =

(
λ

µ

)n
P0, n ∈ N,

∞∑
n=0

Pn = 1⇒ P0

∞∑
n=0

(
λ

µ

)n
= 1

alors
Pn = (1− ρ)(ρ)n n = 0, 1, 2, ...

à condition que
λ

µ
= ρ < 1.

On constate que la file M/M/1 est gouvernée par la loi géométrique.
•λ
µ

= ρ est le coefficient d’utilisation du système ou intensité du trafic.
ρ correspond au nombre moyen d’arrivées par la durée moyenne du service.
•P0 = 1− ρ correspond à la probabilité que le système soit inoccupé. Si ρ ≥ 1, alors

lim
t→∞

Pn(t) = 0, n = 0, 1, 2, ...

ie : la longueur de la file d’attente dépasse toute mesure.

2.4.3 Caractéristiques du système

Une importante caractéristique des systèmes de files d’attente est
X le nombre moyen de clients dans le système :

N = E(N)

=
∑
n≥0

nπn

= (1− ρ)
∑
n≥0

nρn,

=
ρ

1− ρ

=
λ

µ− λ

X Nombre moyen de clients en train d’être servis :

N s = 1− π0 = ρ

X Nombre moyen de clients en train d’être servis :

N s = 1− π0 = ρ



2.4.3.1 Remarque 22

X Nombre moyen de clients dans la file :

NQ =
∑
n≥1

(n− 1)πn =
ρ2

1− ρ

De la même manière, on peut trouver,
• La variance du nombre de clients dans le système

σ2 = V ar(X)

= (1− ρ)
∞∑
k=0

(K −N)2ρK =
ρ

(1− ρ)2

Le temps moyen de séjour dans le système. On peut l’obtenir en appliquant La
formule de Little.
X Temps moyen qu’un client passe dans le système :

T =
N

λ

=
ρ

1− ρ
1

λ
=

1
µ

1− ρ

=
1

µ− λ

X Temps moyen de service :

T s = 1/µ

X Temps moyen d’attente :

TQ = T − T s =
λ

µ(µ− λ)

2.4.3.1 Remarque

D’autres caractéristiques peuvent être déduites à partir de ces relations, en uti-
lisant les formules de Little

2.5 Le système M/M/1/K

On considère un système à serveur simple identique à la file M/M/1 excepté que
la capacité de la file d’attente est finie. On a donc toujours les hypothèses suivantes :
le processus d’arrivée des clients dans la file est un processus de Poisson de taux λ
et le temps de service d’un client est une variable aléatoire exponentielle de taux
µ. Soit K la capacité de la file d’attente : c’est le nombre maximal de clients qui
peuvent être présents dans le système, soit en attente, soit en service. Quand un
client arrive alors qu’il y a déjà K clients présents dans le système, il est perdu.
Ce système est connu sous le nom de file M//M/1//K. L’espace d’états E est
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maintenant infini :E = {0, 1, 2, . . .} La capacité de la file étant limitée, même si les
clients arrivent en moyenne beaucoup plus vite que ce que le serveur de la file est
capable de traiter, dès que celle-ci est pleine, les clients qui se présentent sont rejetés.
Le nombre de clients dans la file ne peut donc jamais "partir" à l’infini. De plus, dès
qu’un client est autorisé à entrer, il sortira un jour et son temps de séjour dans la
file est fini, puisqu’il correspond au temps de service de tous les clients devant lui et
que ce nombre est limité par K. Sur un temps très long, le débit de sortie sera donc
bien égal au débit d’entrée, ce qui correspond bien à la stabilité inconditionnelle du
système. Le processus de naissance et de mort modélisant ce type de file d’attente
est alors défini de la façon suivante :

λn =

{
λ, si n < K ;
0, si n > K ;

L’intégration de l’équation récurrente permettant de calculer πn se fait alors
comme suit :

πn = π0ρ
n pour n ≤ K

πn = 0 pour n > K

π0 =
1∑K

n=0 ρ
n

=
1− ρ

1− ρK+1
si λ 6= µ

(
et

1

K + 1
si λ = µ

)

2.5.1 Caractéristiques du système

– Le nombre moyen de clients dans le système est :

N =
K∑
n=0

nπn =
ρ

1− ρ
1− (K + 1)ρK +KρK+1

1− ρK+1

À nouveau, lorsque K tend vers l’infini et ρ < 1, on retrouve les résultats de
la file M/ M/1 :

N =
ρ

1− ρ
– Le nombre moyen de clients dans la file est :

NQ =
∞∑
n=1

(n− 1)πn = N − (1− π0)

Le temps moyen qu’un client passe dans le système T et le temps moyen
d’attente dans la file TQ sont obtenus à partir la loi de Little :

– Temps moyen qu’un client passe dans le système :

T =
N

λ

– Temps moyen d’attente

TQ =
NQ

λ
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2.6 Le système M/M/C

On considère un système identique à la file M/M/l excepté qu’il comporte C
serveurs identiques et indépendants les uns des autres. On conserve les hypothèses :
processus d’arrivée des clients poissonien de taux λ et temps de service exponentiel
de taux µ, (pour chacun des serveurs) Ce système est connu sous le nom de file
M/M/C. L’espace d’états E est, comme pour laM/M/1 infini : E (0, 1,2, ...) La file
d’attente est de capacité infini. Si l’un des serveurs est libre, le client qui arrive se
dirige immédiatement vers ce serveur. Dans le cas contraire, le client prend sa place
dans une file d’attente commune pour tous les serveurs. Lorsqu’un serveur se libère,
le client en tête de la file occupe ce serveur. Par conséquent, la discipline d’attente
est FIFO.
Le processus de naissance et de mort modélisant ce type de file d’attente est alors
défini de la façon suivante :

λn = λ ∀n ≥ 0

µn =


0 si n = 0

nµ ∀n = 1, . . . , C

Cµ ∀n ≥ C

Du diagramme, on déduit les résultats qui suivent. L’analyse du système en régime
stationnaire, à l’aide de la procédure des équations de Chapman Kolmogorov aboutit
aux équations suivantes :

λπ0 = µπ1

(λ+ nµ)πn = λπn−1 + (n+ 1)µπn+1 1 ≤ n < c

(λ+ cµ)πn = λπn−1 + cµπn+1 n ≥ c

avec
∞∑
n=0

πn = 1

La résolution du système ci-dessus présente la distribution stationnaire suivante :

NQ =
∞∑
n=1

(n− 1)πn = N − (1− π0) (2.1)

πn =
ρC

C!
(A)n−Cπ0, n ≥ C (2.2)

où

π0 =
[∑C−1

n=0
ρn

n!
+ ρC

C!

∑∞
n=C ρ

n−C
]−1

, ρ = λ
µ
et A = λ

Cµ

Cette denière existe si : λ < Cµ
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2.6.1 Caractéristiques du système

A partir de la distribution stationnaire du processus {N(t), t ≥ 0}, on peut
calculer les caractéristiques du système. En effet,

– Le nombre moyen de clients dans le système est :

N = ρ+
ρC+1

C.C!(1− A)2
ρ0 (2.3)

– Le nombre moyen de clients dans la file est :

NQ =
ρC+1

C.C!(1− A)2
ρ0 (2.4)

– Temps moyen qu’un client passe dans le système :

T =
CµρC

C!(Cµ− λ)2
ρ0 (2.5)

– Temps moyen d’attente

TQ =
1

µ
+

ρC

µC · C!(1− A)2
ρ0 (2.6)

2.7 Le système M/M/∞
On considère un système composé d’un nombre illimité de serveurs identiques et

indépendants les uns des autres. Dès qu’un client arrive, il rentre donc instantané-
ment en service. Danc cette file particulière, il n’y a donc pas d’attente. On suppose
toujours que le processus d’arrivée des clients est poissonien de taux λ et que les
temps de service sont exponentiels de taux µ(pour tous les serveurs). Ce système
est connu sous le nom de file M/M/∞

Comme cela a été fait pour la file M/M/C, on peut facilement démontrer que le
taux de transition d’un état n quelconque vers l’état n−1 est égal à nµ et correspond
au taux de sortie d’un des n clients en service. De même, le taux de transition d’un
état n vers l’état n+ 1 est égal à λ et correspond au taux d’arrivée d’un client.

De façon intuitive, la capacité de traitement de la file est infinie puisque tout
nouveau client se présentant à l’entrée de la file est instantanément traité. La condi-
tion de stabilité exprimant que "le nombre moyen de client arrivant à la file par
unité de temps doit être inférieure à la capacité de traitement de la file" est donc
toujours satisfaite.

Soitπn la probabilité stationnaire d’être dans l’état n. Les équations d’équilibre
nous donnent

πn−1λ = πnnµ pour n = 1, 2, . . .

soit πn =
ρ

n
πn−1 pour n = 1, 2, . . . , où ρ = λ

µ
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On peut alors exprimer toutes les probabifités en fonction de πn.

πn =
ρn

n!
π0 pour n = 1, 2, . . .

La condition de normalisation nous donne alors immédiatement πn

πn =
1

+∞∑
n=0

ρn

n!

= e−ρ

Notons que la série
+∞∑
n=0

ρn

n!
converge pour toutes valeurs de ρ (donc de λ et de µ),

ce qui est cohérent avec la stabilité inconditionnelle de la file. On obtient finalement

πn =
ρn

n!
e−ρ pourn = 1, 2, . . .

Caractéristiques du système :
– Nombre moyen de clients N

N =
+∞∑
n=1

nπn = e−ρ
+∞∑
n=1

ρn

(n− 1)!
= e−ρρeρ = ρ

– Temps moyen de séjour T
Intuitivement, le temps moyen passédanslesystème est réduit au temps moyen
de service, soit 1

µ
. On peut redémontrer ce résultat en utilisant la loi de Little :

T =
N

λ
=

1

µ



Chapitre 3

Files d’attente avec serveurs
hétérogènes

3.1 Introduction

Dans la vie réelle, il existe de nombreuses situations de file d’attente se produisent
dans lesquelles il peut y avoir une tendance pour que les clients soient découragés
par une longue file d’attente. En conséquence, les clients décider de ne pas rejoindre
la file d’attente (c.-à-d. dérober) ou partir après avoir rejoint la file d’attente sans
obtenir un service en raison d’une impatience (c.-à-d. abandoner). Le dérobade et
l’abandon ne sont pas seulement des phénomènes courants dans les files d’attente
survenant dans les activités quotidiennes, mais aussi dans la réparation des machines
par exemple.
De nombreux systèmes pratiques de files d’attente, en particulier ceux qui ont des
dérobades et des abandons, ont été largement appliquée à plusieurs problèmes de
la vie réelle, comme les situations impliquant des clients impatients du standard
téléphonique, les urgences des hôpitaux et les systèmes d’inventaire et de gestion
des stocks et des biens périssables [11]. Dans ce chapitre, on parle d’un système de
file d’attente M/M/2/N avec dérobade, abandon, feedback et deux serveurs hété-
rogènes. Des systèmes de file d’attente avec dérobade, abandon ou les deux ont été
étudiés par de nombreux chercheurs. Haight [6] a d’abord envisagé une file d’attente
M/M/1 avec des abandon. Haight [7] a également proposé une file d’attenteM/M/1

avec abandon des clients. Ancker et Gafarian [2],[3] ont étudié les effets combinés du
dérobade et de l’abandon dans une file d’attente M/M/1/N . Abou-EI-Ata et Hariri
[1] ont considéré un système de file d’attente à serveurs multiples M/M/c/N avec
dérobade et abandon. Wang et Chang [16] a étendu ce travail à l’étude d’une file
d’attente M/M/c/N avec des dérobades, abandons et les pannes de serveurs
Le mécontentement des clients en raison d’une qualité de service inadéquate dans les
systèmes de files d’attente provoque le feedback de ces clients. En cas de feedback,

27
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après avoir obtenu un service partiel ou incomplet, le client refait sa demande de
service. En matière de communication informatique, La transmission de l’unité de
données du protocole est parfois répétée en raison de l’apparition d’une erreur. Cela
se produit généralement en raison d’une qualité de service non satisfaisante. Retra-
vailler dans les opérations industrielles est également un exemple de file d’attente
avec feedback. Takacs [14] étude de la file d’attente avec feedback pour déterminer
le processus stationnaire pour la taille de la file et les deux premiers moments de la
fonction de répartition du temps total passé dans la file par un client. Avignon et
Disney ont étudié les files d’attente à serveur unique avec feedback dépendant de
l’état du serveur. Santhakumaran et Thangaraj [12] ont considéré serveur unique
avec des clients impatients, ils ont étudié M/M/1 modèle de file d’attente pour la
longueur de la file d’attente aux époques d’arrivée et résultat obtenu pour la dis-
tribution stationnaire, la moyenne et la variance de la longueur de la file d’attente.
Thangaraj, et Vanitha [15] ont obtenu une solution transitoire deM/M/1 avec feed-
back, la solution à l’état stable, des moments sous L’analyse de l’état et de la période
d’activité a été calculée. Ayyapan et. al [4] ont étudié M/M/1 système de file d’at-
tente de nouveaux procès avec perte et feedback dans le cadre du service prioritaire
par la méthode de matrice géométrique. Kumar et Sharma [8] ont étudié une file
d’attente à serveur unique avec rétention des clients abandonnés. Kumar et Sharma
[9] ont étudié un système de file d’attente sur un seul serveur avec rétention des
clients dérobés. Sharma et Kumar [18] ont étudié un système de files d’attente mar-
kovienne à serveur unique, et à capacité finie avec abandon, et rétention des clients
dérobés, dans lequel les temps d’attente entre les arrivées et les services suivent une
distribution exponentielle. Mahdy El-Paoumy et Hossam Nabwey [10] ont étudié la
file d’attente M/M/2/N avec un dérobade général. Dans ce mémoire, nous consi-
dérons un système de file d’attente M/M/2/N avec deux serveurs hétérogènes, la
capacité de la file étant finie, avec abandon et dérobade, la mise en réserve et la
rétention des clients abandonés dans lesquels le service et l’arrivée des cliets suivent
une distribution exponentielle. Les temps d’abandon sont supposés être distribués de
manière exponentielle. Après l’achèvement du service, chaque client peut rejoindre
le système (feedback) pour recevoir un autre service avec probabilité α ou il peut
quitter le système avec une probabilité β où α + β = 1 : Un client abandoné peut
être retenu dans de nombreux cas en employant certains mécanismes convaincants
de rester dans la file d’attente pour l’accomplissement de son service. Ainsi, un client
renié peut être retenu dans le système de file d’attente avec une certaine probabilité
γ et peut quitter la file d’attente sans recevoir de service avec probabilité δ = 1− γ.
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3.2 Description et notations du modèle

On considère une file d’attente M/M/2/N avec un feedback instantané qui suit
une distribution de Bernoulli avec abandon des clients et la rétention des clients
abandoné. La capacité du système est pris comme fini (capacité N). Les clients
arrivent à la station-service un par un selon un processus de Poisson avec le taux
d’arrivée λ. Il y a deux serveurs hétérogènes qui fournissent un service à tous les
clients qui arrivent. Les temps de service sont indépendants et variables aléatoires

Figure 3.1 – un modèle

exponentielles à distribution identique avec des taux µi, i = 1, 2. Après être servi, le
client peut soit rejoindre la file avec probabilité α ou il peut quitter le système avec
probabilité β où α + β = 1. Les clients nouvellement arrivés et ceux qui ont fait
un feedback sont servis dans l’ordre dans laquelle ils rejoignent la queue de la file
d’attente initiale. Nous ne faisons pas de distinction entre les arrivée régulière et les
feedbacks. Les clients sont servis selon la disipline "premier arrivé, premier servi".
Le client dans la file d’attente (arrivée régulière ou feedback) peut s’impatienter
lorsque le service n’est pas disponible pendant une longue période. En effet, chaque
client, à son arrivée, active une chronomètre individuelle, qui suit une distribution
exponentielle avec le paramètre η. Ce temps est le temps d’inpatience d’un client,
après le quel, le client décide soit d’abandonner la file d’attente avec probabilité
δ(= 1 − γ) ou retenue avec une probabilité complémentaire γ où δ + γ = 1. Nous
supposons qu’il y a n clients dans le système (n > 2) , le client qui arrive rejoint le
système avec une certaine probabilité de dérobade. On suppose qu’un client arrivant
dérobe avec une probabilité de 1− 1

n−1 , où n est le nombre de clients dans le système
et rejoint donc le système avec une probabilité 1

n−1 .
Les clients sont servis selon la discipline suivante :
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X Si les deux serveurs sont occupés, les clients attendent dans la file d’attente.
X Si un serveur est libre, le premier client de la file d’attente s’y rend.
X Si les deux serveurs sont libres, le client en tête de la file d’attente choisit le
serveur 1 avec une probabilité φ1 et serveur 2 avec probabilité φ1, où φ1 + φ2 = 1

3.3 Les équations de l’état stationnaire et leur so-
lution

Soit Pn la probabilité qu’il y ait n clients dans la système. En appliquant la
théorie du processus de Markov, nous obtenons l’ensemble suivant d’équations d’état
stationnaire

P00 = P(il n’y a pas de client dans le système),

P10 = P(il y a un client desservi par le serveur 1),

P01 = P(il y a un client desservi par le serveur 2),

Pn = P(il y a n clients dans le système), n = 2,3,. . . ,N.

De plus, P0 = P00, P1 = P10 + P01 et P2 = P11

Un système d’équations différentielles satisfaites par la file d’attente M/M/2/N

avec les clients abandonés, les réticences et les feedbacks sont modélisées comme
une chaîne de Markov à temps continu.

λP0 = βµ1P10 + βµ2P01, n = 0 (3.1)
(λ+ βµ1)P10 = βµ2P11 + λφ1P0,

n = 1

(λ+ βµ2)P01 = βµ1P11 + λφ2P0,

(3.2)

(λ
n

+ β(µ1 + µ2) + (n− 2)ηδ)Pn = (β(µ1 + µ2) + (n− 1)ηδ)Pn+1 + λ
n−1Pn−1,

2 ≤ n ≤ N − 1.

(3.3)
λ

N − 1
PN−1 = (β(µ1 + µ2) + (N − 2)ηδ)PN , n = N. (3.4)

La résolution de la relation (3.2) et l’utilisation (3.1) peuvent être facilement dé-
duites :

P10 =
λ

βµ1

(
λ+ β(µ1 + µ2)φ1

2λ+ β(µ1 + µ2)

)
P0. (3.5)

P01 =
λ

βµ2

(
λ+ β(µ1 + µ2)φ2

2λ+ β(µ1 + µ2)

)
P0. (3.6)

C’est pour cette raison que

P1 =
λ

βµ1µ2

(
λ(µ1 + µ2) + β(µ1 + µ2)(µ1φ2 + µ2φ1))

(2λ+ β(µ1 + µ2))

)
P0. (3.7)
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En résolvant itérativement les équations (3.2)− (3.4), on obtient

Pn =
1

(n− 1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

)
P1, 2 ≤ n ≤ N. (3.8)

Par la même occasion,

Pn = λ
βµ1µ2

(
λ(µ1+µ2)+β(µ1+µ2)(µ1φ2+µ2φ1))

(2λ+β(µ1+µ2))

)
1

(n−1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

)
P0, 2 ≤ n ≤ N.

(3.9)

En utilisant la condition de normalisation,
∑N

n=0 Pn = 1,on obtient

P0 =

[
1 +

(
λ

βµ1µ2

(
λ(µ1+µ2)+β(µ1+µ2)(µ1φ2+µ2φ1)

(2λ+β(µ1+µ2))

))
(

1 +
N∑
n=2

1

(n− 1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

))]−1 (3.10)

3.4 Mesures de performance

En utilisant la probabilité en régime permanent donnée ci-dessus, nous pouvons
obtenir certaines mesures de performance, telles que le nombre moyen de clients
dans le système Ls, le nombre moyen de clients dans la file d’attente Lq, le temps
d’attente moyen des clients dans le systèmeWs, le temps d’attente moyen des clients
dans la file d’attente Wq et le nombre moyen de clients servis E( Client Servi).
• La taille moyenne du système.

Ls =
N∑
n=1

nPn

=

[
λ

βµ1µ2

(
λ(µ1 + µ2) + β(µ1 + µ2)(µ1φ2 + µ2φ1)

(2λ+ β(µ1 + µ2))

)
(

1 +
N∑
n=2

1

(n− 1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

))]
P0

•La durée moyenne de la file d’attente.

Lq =
N∑
n=3

(n− 2)Pn

=

[
λ

βµ1µ2

(
λ(µ1 + µ2) + β(µ1 + µ2)(µ1φ2 + µ2φ1)

(2λ+ β(µ1 + µ2))

)
( N∑

n=3

n− 2

(n− 1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

))]
P0
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•Le temps d’attente moyen dans le système.

Ws = Ls/λ

=

[
1

βµ1µ2

(
λ(µ1 + µ2) + β(µ1 + µ2)(µ1φ2 + µ2φ1)

(2λ+ β(µ1 + µ2))

)
(

1 +
N∑
n=2

n

(n− 1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

))]
P0

• Le temps d’attente moyen dans la file d’attente.

Wq = Lq/λ

=

[
1

βµ1µ2

(
λ(µ1 + µ2) + β(µ1 + µ2)(µ1φ2 + µ2φ1)

(2λ+ β(µ1 + µ2))

)
( N∑

n=3

n− 2

(n− 1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

))]
P0

•Le nombre moyen de clients servis.

E(Client servi) =
N∑
n=1

n(µ1 + µ2)βPn

=
λ(µ1 + µ2)

µ1µ2

[(
λ(µ1 + µ2) + β(µ1 + µ2)(µ1φ2 + µ2φ1)

(2λ+ β(µ1 + µ2))

)
(

1 +
N∑
n=2

n

(n− 1)!

n∏
k=2

(
λ

β(µ1 + µ2) + (k − 2)ηδ

))]
P0

3.5 Les résultats numériques

Dans cette partie, nous présentons quelques exemples numériques pour montrer
l’impact des différents paramètres et sa relation avec la taille moyenne du système,
la longueur moyenne de la file d’attente, le temps d’attente moyen dans le système,
le le temps d’attente dans la file d’attente et le nombre moyen de clients servis.
Tout d’abord, présentons l’évolution du système lorsque λ varie de 0.1 à 1, N = 6 ,
d = 0.2 , µ1 = 7, µ2 = 4 , β = 0.01, η = 0.1 , φ1 = 0.3 ,φ2 = 0, 7
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λ Ls Lq Ws Wq E(client servi)
0.1 0.933977962 0.431967748 9.33977962 4.319677481 0.146387405
0.2 1.213010966 0.34877451 6.065054832 1.743872551 0.181817771
0.3 1.240585123 0.309719988 4.135283745 1.032399959 0.210161695
0.4 1.180298512 0.285826868 2.950746281 0.714567169 0.243151735
0.5 1.086840648 0.265819453 2.173681296 0.531638905 0.278733228
0.6 0.983377705 0.24701997 1.638962842 0.411699951 0.314391502
0.7 0.881352598 0.229088382 1.25907514 0.327269118 0.34835838
0.8 0.786437572 0.212222905 0.983046965 0.265278631 0.379619449
0.9 0.701064439 0.196642663 0.778960487 0.218491847 0.407736074
1 0.625821636 0.18246406 0.625821636 0.18246406 0.432651425

Figure 3.2 – variation de Ls et Lq par raport à λ

Figure 3.3 – variation de Ws et Wq par raport à λ

La figure (3.2) montre que, parallèlement à l’augmentation de λ, le nombre moyen
de clients dans le système augmente, puis à partir de la valeur de
λ = 0.4 ; il commence à diminuer, tandis que la longueur de la file d’attente, le temps
d’attente moyen dans la file et dans le système diminue contre l’augmentation de
λ ; figure (3.3), en raison de l’abandon et du dérobade et enfin, le nombre moyen
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Figure 3.4 – E(client servi) par raport à λ

de clients servis augmente avec l’augmentation de λ ; figure (3.4). Tous ces résultats
concordent parfaitement avec notre intuition.
Maintenant, présentons la relation entre δ (la probabilité de quitter la file d’attente
sans recevoir de service) et différentes mesures de performance du système. Dans un
premier temps, nous fixons le nombre maximum de clients dans le système N = 5 ;
le taux d’arrivée λ = 0.5 ; le taux de service au serveur 1, µ1 = 7 ; le taux de service
au serveur 2, µ2 = 4 ; la probabilité que le client quitte le système sans avoir retour
β = 0.7 ; le temps d’abandon du taux η = 0.1 ; la probabilité que le client choisisse
serveur 1, φ1 = 0.3 ; la probabilité que le client choisisse le serveur 2, φ2 = 0.7 : Puis
nous faisons varier δ de 0 à 1 par pas de 0.1.
Les résultats numériques sont résumés dans le tableau suivant

δ Ls Lq Ws Wq E(client servi)
0 0,135312293 0,132785988 0,270624587 0,265571976 1,158397488
0.1 0,1353097 0,132786683 0,2706194 0,265573366 1,158399427
0.2 0,135307114 0,132787376 0,270614228 0,265574752 1,158401363
0.3 0,135304535 0,132788068 0,270609069 0,265576136 1,158403294
0.4 0,135301962 0,132788758 0,270603924 0,265577516 1,158405222
0.5 0,135299397 0,132789446 0,270598793 0,265578892 1,158407146
0.6 0,135296838 0,132790133 0,270593676 0,265580265 1,158409066
0.7 0,135294286 0,132790818 0,270588572 0,265581635 1,158410982
0.8 0,135291741 0,132791501 0,270583481 0,265583002 1,158412894
0.9 0,135289202 0,132792182 0,270578404 0,265584365 1,158414803
1 0,13528667 0,132792862 0,270573341 0,265585725 1,158416708

Pour le deuxième résultat, pour chaque valeur de N = 5 ; λ = 0.5 ; µ1 = 7 ; µ2 = 4 ;
β = 0.25 ; η = 0.1 ; φ1 = 0.3 ; φ2 = 0.7 sélectionné, nous faisons varier δ de 0 à 1 par
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pas de 0.1. Les résultats numériques sont résumés dans le tableau suivant :

δ Ls Lq Ws Wq E(client servi)
0 0,331603365 0,288830411 0,663206731 0,577660822 1,090550257
0.1 0,331480297 0,288859098 0,662960594 0,577718195 1,090644402
0.2 0,331358181 0,28888763 0,662716363 0,57777526 1,090737894
0.3 0,331237006 0,288916009 0,662474012 0,577832018 1,090830738
0.4 0,331116759 0,288944235 0,662233518 0,57788847 1,090922942
0.5 0,330997428 0,288972308 0,661994856 0,577944616 1,091014511
0.6 0,330879002 0,289000229 0,661758003 0,578000459 1,091105453
0.7 0,330761468 0,289027999 0,661522937 0,578055999 1,091195773
0.8 0,330644817 0,289055618 0,661289634 0,578111237 1,091285477
0.9 0.330529037 0,289083087 0,661058074 0,578166175 1,091374571
1 0.330414117 0,289110407 0,660828234 0,578220813 1,091463062

Ces deux tableaux montrent que les Ls et Ws diminuent avec l’augmentation de δ ;
tandis que les Lq et W q augmenter en fonction de l’accroissement de δ ; le nombre
moyen de clients servis est en augmentation. Les résultats comparés sont présentés

Figure 3.5 – variation de Ls et Lq par raport à δ

dans les figures (3.5),(3.6),(3.7) qui montrent plus loin que lorsque La probabilité
de non-feedback est grande, β = 0.7 ; le nombre de clients dans le système, dans la
file d’attente est inférieure à celle de β lorsque celui-ci est petit, β = 0.25 ; et par
conséquent le temps d’attente moyen dans le système, le temps d’attente moyen
dans la file d’attente, dans le premier cas est inférieur au second, le nombre moyen
de clients servis dans le premier cas est plus importante que dans le second. Ces
résultats concordent parfaitement avec notre intuition.
Enfin, nous présentons l’effet de la probabilité de non-feedback β ; nous évaluons
différentes performances de mesure à ses différentes valeurs alors que N = 7 ; λ = 2 ;
δ = 0.75 µ1 = 7 ; µ2 = 4 ; η = 0.1 ; φ1 = 0.3 ; φ2 = 0.7. Voir le tableau suivant :
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Figure 3.6 – variation de Ws et Wq par raport à δ

Figure 3.7 – E(client servi) par raport à δ

β Ls Lq Ws Wq E(client servi)
0.1 1,181243839 0,334005347 0,59062192 0,16700267 1,88176221
0.2 0,940511222 0,413229209 0,47025561 0,2066146 2,90935318
0.3 0,737499147 0,436879606 0,36874957 0,2184398 3,52937514
0.4 0,604826516 0,426653359 0,30241326 0,21332668 3,87112936
0.5 0,515591814 0,403652243 0,25779591 0,20182612 4,06933007
0.6 0,451791792 0,377567405 0,2258959 0,1887837 4,1938374
0.7 0,403652144 0,352145624 0,20182607 0,17607281 4,27813706
0.8 0,365778891 0,32866691 0,18288945 0,16433345 4,33888292
0.9 0,335022606 0,307435757 0,1675113 0,15371788 4,38488782
1 0,309431653 0,288383991 0,15471583 0,144192 4,42112069

Maintenant, nous évaluons différentes performances de mesure à différentes valeurs
de probabilité de non-feedback β ; tandis que N = 7 ; λ = 2 ; δ = 0.75 µ1 = 14 ;
µ2 = 10 ; η = 0.1 ; φ1 = 0.3 ; φ2 = 0.7. Les résultats numériques sont résumés dans
le tableau suivant :
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β Ls Lq Ws Wq E(client servi)
0.1 0,877125577 0,411818314 0,43856279 0,20590916 2,98166869
0.2 0,547837429 0,403817466 0,27391871 0,20190873 3,81108064
0.3 0,404824653 0,34705907 0,20241233 0,17352953 4,05151848
0.4 0,32522401 0,296927802 0,162612 0,1484639 4,14885349
0.5 0,273399553 0,257559104 0,13669978 0,12877955 4,19974158
0.6 0,236487835 0,22675818 0,11824392 0,11337909 4,23111321
0.7 0,208663127 0,202268759 0,10433156 0,10113438 4,25262326
0.8 0,186850741 0,182427073 0,09342537 0,09121354 4,26845414
0.9 0,169250844 0,166064974 0,08462542 0,08303249 4,2806916
1 0,154729651 0,152359846 0,07736483 0,07617992 4,29049251

Les tableaux ci-dessus montrent l’effet de la probabilité de non-feedback β pour
notre modèle avec les dérobades, les abandons et les feedbacks. Lorsque la probabi-
lité β de non-feedbacks ou de retour au système augmente, Ls ; Lq ;Ws ;Wq diminue,
tandis que E(client servi) augmente, ce qui correspond parfaitement à l’intuition.
Les résultats comparés des deux tableaux ci-dessus sont présentés dans les figures
suivantes Les figures (3.8),(3.9),(3.10) donnent un résultat significatif pour notre

Figure 3.8 – variation de Ls et Lq par raport à β

Figure 3.9 – variation de Ws et Wq par raport à β

système. Lorsque les temps moyens de service sont faibles, µ1 = 14 ; µ2 = 10 le
nombre de clients attendus dans le système, dans la file d’attente est inférieur à
celui lorsque les temps de service moyens sont grands µ1 = 7 ; µ2 = 4 ; le temps d’at-
tente moyen dans le système, dans la file d’attente dans le premier cas, est inférieur
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Figure 3.10 – E(client servi) par raport à β

à celui dans le second, et enfin le nombre moyen de clients servis est important dans
le premier cas que dans le second.
En conclusion, nous estimons que tous les chiffres indiquent que les résultats numé-
riques sont raisonnables et efficaces pour approcher Ls ; Lq ; Ws ; Wq ; et E (Client
Servi) pour toutes les valeurs de λ ; µ1 ; µ2 ; δ et β.



Conclusion

Dans ce mémoire nous nous sommes intéréssés à un système de files d’attente
avec deux serveurs hétérogènes, dérobade, abandon et feedback.
� Le premier chapitre est consacré à l’étude des processus stochastiques qui

sont des outils importants dans l’analyse des différents systèmes dynamiques (ré-
seaux de files d’attente, systèmes de communication et informatiques, biologiques,
économiques...).

� Le chapitre deux est une étude détaillée pour les systèmes de files d’attente.
Les modèles (M/M/1, M/M/1/K, M/M/c, M/M/∞) sont donnés.
� Dans le troisième chapitre l’analyse d’un modèle de files d’attente de deux

serveurs hétérogènesM/M/2/N (capacité du système N finie) avec dérobade, aban-
don et feedback est traitée. les équations des probabilités d’état stable sont déve-
loppées, diverses mesures de performance du système ont été présentées. De plus,
différents exemples numériques ont été réalisés afin de montrer comment les diffé-
rents paramètres du modèle influencent sur le comportement du système.
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