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INRODUCTION

Les groupes de Lie sont des structures importantes de la géométrie dif-

férentielle. Les notions de groupes de Lie et d'algèbres de Lie sont utilisées

en physique quantique pour analyser les interactions. Il est important de

noter que la théorie des groupes de Lie est un domaine très vaste qui re-

couvre de l'algèbre, aussi bien que du calcul di�érentiel ou de la topologie.

Une autre structure qui possède une grande importance est la notion d'es-

paces homogènes. Par exemple, les espaces riemanniens symétriques de la

géométrie di�érentielle sont des espaces homogènes pour le groupe de leurs

isométries. Cela généralise les espaces euclidiens, les sphères euclidiennes, les

espaces elliptiques et les espaces hyperboliques. Plus généralement, il y a

les espaces symétriques qui sont des espaces homogènes pour leurs groupe

des déplacements.En géométrie di�érentielle, parmi les espaces homogènes

les plus importants, on retrouve les espaces symétriques et les variétés de

drapeaux.

Ce mémoire rentre dans ce cadre dont l'intérêt s'est principalement porté

dans une première partie à une introduction à la théorie des groupes et al-

gèbres de Lie et dans une deuxième partie à l'introduction et l'étude des

espaces homogènes. Le plan de ce mémoire est le suivant :

Dans le premier chapitre, on présente une introduction générale aux groupes

et algèbre de Lie où on cite les notions générales liées à ces structures et cer-
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tains types d'algèbres de Lie et on termine ce chapitre par la décomposition

de Cartan d'un groupe semi simple.

Le deuxième chapitre de ce mémoire constitue la partie principale de ce

travail, on commence par un petit rappel sur la topologie quotient et la dé�-

nition de l'action d'un groupe de Lie. Ces deux notions nous permettent de

dé�nir les espaces homogènes en citant quelques exemples et en donnant les

démonstrations de plusieurs résultats qui concernent les espaces homogènes

et on termine par un cas particulier qui concerne les espaces homogènes ré-

ducteurs.



CHAPITRE 1

GÉNÉRALISATION SUR

GROUPES DE LIE, ALGÈBRES

DE LIE

1.1 Groupes et Algèbres de Lie

1.1.1 Groupes de Lie

De�nition 1.1.1.1. Un groupe de Lie est un groupe muni d'une structure

de variété di�érentielle compatible, c'est à dire que les applications

m : G×G −→ G

(x, y) 7−→ xy

et
i : G −→ G

x 7−→ x−1

sont di�érentiables.

Exemples.
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• Le quotient d'un groupe de Lie par un sous-groupe distingué et fermé

est un groupe de Lie.

• Le groupe des di�éomorphismes d'une variété préservant certaines

structures. Par exemple le groupe des isométries d'une variété rie-

mannienne.

De�nition 1.1.1.2. (Sous-groupe de Lie) Soit G un groupe de Lie. Un

sous-groupe de Lie H de G est un sous-groupe munie d'une topologie et d'une

structure di�érentiable qui en font un groupe de Lie et tel que l'injection

canonique ı : H ↪→ G soit une immersion de G.

Théorème 1.1.1.1. (Cartan, Von-Neumann ) Tout sous-groupe fermé H

d'un groupe de Lie G est un sous-groupe de Lie. Plus précisément, il existe

une structure de groupe de Lie sur H (nécessairement unique) qui fait de H

une sous-variété de G(voir [5]).

1.1.2 Algèbre de Lie

De�nition 1.1.2.1. Une algèbre de Lie sur K(K = R ou C) est un espace

vectoriel g muni d'une application bilinéaire, appelée crochet de Lie

[, ] : g× g −→ g

(X, Y ) 7−→ [X, Y ]

véri�ant :

1. Antisymétrique :[X, Y ] = −[X, Y ].

2. Identité de Jacobi [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Pour X, Y, Z ∈ g.

Exemples.

(1) Tout espace vectoriel V sur K, muni du crochet de Lie nul, est une

algèbre de Lie sur K, dite abélienne (ou commutative).

(2) Si A est une algèbre (associative) sur K, alors l'espace vectoriel A,

muni du crochet

[x, y] = xy − yx,
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est une algèbre de Lie sur K. C'est par exemple le cas, pour tout

espace vectoriel V sur K, de l'algèbre End(V ) des endomorphismes

de V , et nous noterons gl(V ), l'algèbre de Lie obtenue. Pour tout

n dans N, c'est aussi le cas de l'algèbre Mn(K) des matrices carrées

n× n à coe�cients dans K, et nous noterons gln(K), l'algèbre de Lie

obtenue. Si V est un espace vectoriel de dimension �nie n sur K, et

B une base de V , alors l'application, qui à un endomorphisme de

V associe sa matrice dans la base B, est un isomorphisme d'algèbres

de Lie de gl(V ) dans gln(K). Une représentation(respectivement re-

présentation de dimension �nie) d'une algèbre de Lie g sur K est un

morphisme d'algèbres de Lie g −→ gl(V ), où V est un espace vectoriel

(respectivement espace vectoriel de dimension �nie) sur K.

1.1.3 Algèbre de Lie d'un groupe de Lie

Soient G un groupe de Lie et TeG l'espace tangent à G en son élément

neutre e. Notons Ad : G −→ GL(TeG) l'application

g 7→ Ad g = Teig : TeG −→ TeG

qui à g ∈ G associe l'application tangente en e de la conjugaison ig : h 7→
ghg−1. C'est une représentation de groupes de Lie, appelé la représentation

adjointe de G. Notons

ad = TeAd : TeG −→ End(TeG)

l'application tangente en e de Ad. Pour tous les X et Y dans TeG, posons

[X, Y ] = adX(Y ).

Notons que [·, ·] : TeG × TeG −→ TeG est bilinéaire, par la linéarité des

applications tangentes en un point.

Exemple 1. Pour les groupes donnés en exemples, nous donnons leur algèbre

de Lie :

GLn(R) −→ gln(R) =Mn(R)

SLn(R) −→ sln(R) = {A ∈Mn(R), tr A = 0}

On(R) −→ on(R) = {A ∈Mn(R), At + A = 0}
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1.1.4 Représentation adjointe et forme de Killing.

Soit g une algèbre de Lie sur K. Pour tout X dans g, l'application adX :

g −→ g dé�nie par

adX(Y ) = [X, Y ]

est une dérivation d'algèbres de Lie (parfois appelée dérivation intérieure),

car pour tous les Y et Z dans g, nous avons

adX([Y, Z]) = [adX(Y ), Z] + [Y, adX(Z)],

ce qui est une simple réécriture de l'identité de Jacobi. L'application ad :

g −→ Der(g) dé�nie par X 7→ adX est un morphisme d'algèbres de Lie, car

pour tous les X et Y dans g, nous avons

ad[X, Y ](Z) = adX ◦ ad Y (Z) ◦ ad Y ◦ adX(Z) = [adX, ad Y ](Z),

ce qui est aussi une simple réécriture de l'identité de Jacobi (le crochet de

Lie à droite est celui de gl(g)). La représentation d'algèbres de Lie

ad : g −→ gl(g)

s'appelle la représentation adjointe de g. Elle est à valeur dans Der(g). Le

noyau de la représentation adjointe de g est appelé le centre de g, et noté

z(g) = {X ∈ g : ∀Y ∈ g, [X, Y ] = 0}.

En particulier, toute algèbre de Lie g sans centre se plonge dans gl(g). Par

exemple, puisque toute matrice n × n qui commute avec toute matrice dia-

gonale est un multiple de la matrice identité In, nous avons

z(gln(K)) = KIn.

Si g est de dimension �nie, la forme de Killing de g est l'application B = Bg :

g× g −→ K dé�nie par

B(x, y) = tr(ad x ◦ ad y).

Par les propriétés de la trace des endomorphismes d'espaces vectoriels de

dimension �nie, et par linéarité de la représentation adjointe, la forme de
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Killing est bilinéaire et symétrique.

Elle est invariante par tout automorphisme d'algèbres de Lie : si f : g −→ g′

est un isomorphisme d'algèbres de Lie, alors, pour tous les x et y dans g,

nous avons

Bg′(f(x), f(y)) = Bg(x, y),

car l'égalité [f(x), f(y)] = f([x, y]) implique que ad(f(x)) = f ◦ (adx) ◦ f−1,

et le résultat découle des propriétés de la trace.

Elle est de plus ad-alternée (une terminologie fréquente mais peu mnémo-

technique est � invariante �) c'est-à-dire alternée pour les endomorphismes

ad x : pour tous les x,y,z ∈ g,

B(ad x(y), z) = −B(y, ad x(z)).

En e�et, en appliquant deux fois l'identité de Jacobi,

B([x, y], z) = tr((ad x ◦ ad y − ad y ◦ ad x) ◦ ad z)
= tr(ad y ◦ ad z ◦ ad x)?tr(ad y ◦ ad x ◦ ad z) = B(y, [z, x]) =?B(y, [x, z]).

Par exemple, la forme de Killing de l'algèbre de Lie gln(K) est

∀X, Y ∈ gln(K), B(X, Y ) = 2ntr(XY )− 2tr X tr Y. (1.1)

En e�et, soit (Ei,j)1≤i,j≤n la base canonique de Mn(K) (où les coe�cients de

Ei,j sont nuls sauf le coe�cient i−j qui vaut 1). Pour tout X = (xi,j)1≤i,j≤n ∈
gln(K), nous avons

adX(Ei,j) =
∑

1≤k≤n

xk,iEk,j −
∑

1≤k≤n

xj,kEi,k.

Un petit calcul montre alors le résultat.

1.1.5 Translation à gauche et à droite

Soit (G, ·) un groupe de Lie, on dé�nit les deux applications de classe C∞.

Lg : G −→ G

x 7−→ Lg = g · x,
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est la translation à gauche sur le groupe.

Rg : G −→ G

x 7−→ Rg = x · g,

est la translation à droite sur le groupe.

Ainsi que leurs applications réciproques Lg−1 et Rg−1 , par suite Rg et Lg
sont des di�éomorphismes de G dans G, et ils commutent entre eux :

Lg ◦Rg−1 = Rg−1 ◦ Lg.

Les propriétés des applications tangentes aux di�éomorphismes impliquent

que, pour chaque x ∈ G :

TLg (resp. TRg) induit un isomorphisme linéaire de TxG sur Tg·xG (resp.

Tg·xG).

1.1.6 Champs de vecteurs invariants.

Si X est un champ de vecteurs sur G, nous dirons que

X est invariant à gauche si ∀g ∈ G, ∀x ∈ G, dxLg(Xx) = Xg.a où pour

mémoire nous rappelons que nous avons dxLg : dxG −→ dg.aG. Nous pouvons

encore écrit cette condition sous la forme

(Lg)∗X = X

pour tout g ∈ G.

L(G) = {X ∈ X/(Lg)∗X = X, ∀g ∈ G}

L'ensemble des champs de vecteurs invariant à gauche est un K-espace vec-

toriel.

1.1.7 Flot local d'un champ de vecteurs.

Soit X un champ de vecteurs Ck sur M , avec k > 1.

Théorème 1.1.7.1. Pour tout x0 dans M , il existe un triplet (U, I, φ) formé

d'un voisinage ouvert U de x0, d'un intervalle ouvert I contenant 0, et d'une

application φ : I × U −→ M de classe Ck, notée (t, x) −→ φt(x), véri�ant,

pour tous s dans I et x dans U ,
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• dφt(x)

dt
|t=s = X(φs(x)),

• φ0(x) = x,

Si (U′, I
′, φ′) est un autre tel triplet, alors φ et φ′ coïncident sur (I × U) ∩

(I ′ × U ′). De plus, pour tous t, s dans I et x dans U ,

• Si φs(x) ∈ U et t+ s ∈ I, alors φt ◦ φs(x) = φt+s(x),

• φt est un Ck-di�éomorphisme local,

• ce Ck-di�éomorphisme local préserve le champ de vecteurs X, au sens

que pour tout t dans I et x dans U ,

Txφt(X(x)) = X(φt(x)).

1.1.8 Application exponentielle

Nous allons maintenant construire une application entre g et G. Cette ap-

plication est un pont entre les deux structures, et permet de trouver certaines

propriétés de G connaissant g. Pour cela, soit X ∈ g considéré comme champ

de vecteurs invariant à gauche. Il dé�nit donc une équation di�érentielle, dont

le �ot est noté φX(t, y). C'est à dire que :

dφX(t, y)

dt
= XφX(t,y)

et

φX(0, y) = y

De�nition 1.1.8.1. L'application entre l'algèbre de Lie g du groupe de Lie

G et le groupe de Lie lui même est appelée application exponentielle dé�nie

par :

exp : g −→ G

X 7−→ φX(1, e)

Par construction, cette application véri�e, pour tout t ∈ R,
1) exp(tX) = φX(t, e).

2) φX(t, y) = y exp(tX).
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3) d exp(tX)
dt

= Xexp(tX).

4) exp(0) = e.

De�nition 1.1.8.2. Soit X un élément de Mn(K). L'exponentielle de X

désigne la somme de la série (normalement convergente dans l'espace de

BanachMn(K))
+∞∑
n=0

Xn

n!

Donnons quelques propriétés de l'exponentielle.

Proposition 1.1.8.1. Quels que soient X et Y dansMn(K) :

(i) Si X et Y commutent exp X exp Y = exp(X + Y ).

(ii) L'exponentielle est à valeurs dans GL(n,K) et

(exp X)−1 = exp(−X).

(iii) Quels que soient t, s dans K,

exp(sX) exp(tX)) = exp((s+ t)X)

(iv) L'application :

R −→ GL(n,K)

t −→ exp(tX)

est l'unique solution di�érentiable de l'équation di�érentielle du pre-

mier ordre

a′(t) = X a(t)

avec la condition initiale a(0) = In.

(v) Pour tout g ∈ GL(n,K), g expX g−1 = exp(gXg−1).

Remarque 1.1.8.1. On peut reformuler (iii) en disant que t −→ exp(tX)

est un morphisme de groupes (continu) de R dans GL(n,K). On appelle un

tel morphisme un sous-groupe à un paramètre de GL(n,K).



1.1.9 Idéaux d'algèbres de Lie 16

Sous-groupes continus à un paramètre

Proposition 1.1.8.0.1. Soient G un groupe de Lie et γ : (R,+) −→ G un

homomorphisme continu. Alors γ est di�érentiable (et donc γ est un sous-

groupe à un paramètre).

Démonstration 1. Soit U ⊂ g un voisinage ouvert de 0 tel que l'expo-

nentielle induise un di�éomorphisme U
∼−→ V = exp(U). Soit I ⊂ R un

intervalle ouvert contenant O tel que γ(I) ⊂ V . Dé�nissons ϕ : I −→ U

par exp(ϕ(t)) = γ(t). On veut montrer que ϕ est linéaire dans un voisinage

de 0. Pour cela, on considère un t0 ∈ I, t0 > 0 et on calcule :

exp(2ϕ(
t0
2

)) = exp(ϕ(
t0
2

))2 = γ(
t0
2

)2 = γ(t0) = exp(ϕ(t0)).

Ainsi ϕ( t0
2

) = 1
2
ϕ(t0). On en déduit alors que ϕ( k

2n
t0) = k

2n
ϕ(t0). Comme γ

est continue, ϕ l'est également et par un argument de densité, on voit que

pour tout t ∈ [0, t0], ϕ(t) = tX avec X = ϕ(t0)
t0
∈ g. Comme [0, t0] engendre

(R,+), on trouve γ(t) = exp(tX) pour tout t ∈ R.

Proposition 1.1.8.2. L'application exponentielle

exp :Mn(K) −→ GL(n,K)

est de classe C∞, sa di�érentielle à l'origine est l'application identité de

Mn(K).

1.1.9 Idéaux d'algèbres de Lie

Soit g une algèbre de Lie sur un corps commutatif K. Un idéal de g est

un sous-espace vectoriel I de g tel que pour tous les x ∈ I et y ∈ g, nous

ayons [x, y] ∈ I. L'algèbre de Lie quotient de g par un idéal I est l'espace

vectoriel quotient g/I muni du crochet de Lie [x+ I, y + I] = [x, y] + I pour

tous les x, y ∈ g.

Un idéal est en particulier une sous-algèbre de Lie. Si I est un idéal de g, la

projection canonique de g dans g/I est un morphisme d'algèbres de Lie. Par

exemple, le noyau Ker f d'un morphisme f d'algèbres de Lie est un idéal, et

l'algèbre de Lie image de f est isomorphe à l'algèbre de Lie quotient g/Ker f .
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Le centre z(g) de g est donc un idéal de g. Toute intersection et toute somme

vectorielle d'idéaux de g est un idéal de g. En particulier, pour toute partie

A de g, l'intersection de tous les idéaux de g contenant A est le plus petit

idéal contenant A, appelé l'idéal engendré par A. Si I et J sont des idéaux

de g, alors l'inclusion de J dans I + J induit un isomorphisme d'algèbres de

Lie entre J/(I ∩ J) et (I + J)/I.

Une partie génératrice de g est une partie A de g telle que la plus petite

sous-algèbre de Lie de g contenant A soit g. Une présentation de g est un

couple (S,R), où S est une partie génératrice de l'algèbre de Lie g et R est

une partie de l'algèbre de Lie libre L(S) sur S, tel que l'unique morphisme

de L(S) dans g valant l'identité sur S induise par passage au quotient un

isomorphisme de l'algèbre de Lie quotient de L(S) par l'idéal engendré par

R à valeurs dans g.

Si (S,R) est une présentation de g, nous dirons aussi que g est dé�nie par

générateurs les éléments de S et relations les éléments de R.

1.1.10 Algèbres de Lie nilpotentes

Dé�nition 1.1.10.1. Soit g une algèbre de Lie sur K. On pose pour tout

entier j > 0, g(j+1) = [g, gj], avec g0 = g. La suite décroissante d'idéaux

g0 ⊇ }1 ⊇ · · · ⊇ gj ⊇ · · · est appelée la suite centrale descendante de g.

Dé�nition 1.1.10.2. Une algèbre de Lie g sur K est nilpotente si la suite

centrale descendante s'annule à partir d'un certain rang, i.e s'il existe un

entier k > 1 tel que gk = {0}. Si gk−1 6= {0} et gk = 0, on dit que g est

nilpotente de rang k.

1.1.11 Algèbres de Lie résolubles

Dé�nition 1.1.11.1. Soit g une algèbre de Lie sur un corps K. On pose pour

tout j > 0, g(j+1) = [g(j), g(j)], avec g0 = g. La suite décroissante d'idéaux

g0 ⊇ g1 ⊇ · · · ⊇ g(j) ⊇ · · · est appelée la suite dérivée de g.

Dé�nition 1.1.11.2. Une algèbre de Lie g sur K est résoluble si la suite des

commutateurs s'annule à partir d'un certain rang, i.e s'il existe un entier

k > 1 tel que g(k) = {0} et g(k−1) 6= 0.
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Exemple 2. - Toute algèbre de Lie nilpotente est résoluble, puisque

g(j) ⊆ g(j) pour tout j.

- L'algèbre de Lie réelle des matrices triangulaires supérieurs (ou infé-

rieurs) est résolubles (et nilpotente si tous les termes diagonaux sont

nuls).

1.1.12 Algèbres de Lie simples et semi-simples

La notion d ?algèbre de Lie semi simple est liée à la notion de radical :

Dé�nition 1.1.12.1. Le radical d'une algèbre de Lie g est le plus grand idéal

résoluble de g. On notera rad(g) ce radical.

Dé�nition 1.1.12.2. Une algèbre de Lie g est dite semi simple si son radical

est réduit à {0}.
Une algèbre de Lie g est dite simple si g n'est pas commutative et ses seuls

idéaux sont {0} et g.

Dé�nition 1.1.12.3. Soit G un groupe de Lie connexe. On dit que G est

semi-simple si son algèbre de Lie g est semi-simple. On dit que G est quasi-

simple si g est simple.

1.1.13 Décomposition de Cartan d'un groupe semi simple

Soient g algèbre semi simple, B forme de Killing et θ involution de Cartan

(i.e θ automorphisme de g avec θ2 = I et Bθ(X, Y ) = −B(X, θ(Y )) est

dé�nie positive). Comme θ2 = I donc on à deux valeurs propre (+1) et (−1)

de θ. Soient sous algèbres l et p les espaces propres associées a +1 et −1

respectivement on a la décomposition de Cartan de g est

g = l⊕ p

avec

[l, l] ⊆ l

[l, p] ⊆ p

et

[p, p] ⊆ l.
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Remarque 1.1.13.1. La forme de Killing B est dé�nie positive en p, et

dé�nie négative en l.

Exemple 3. Pour gln(R) on a θ(X) = −X t est l = son(R) et p le sous

espace des matrices symétriques.



CHAPITRE 2

ESPACES HOMOGÈNES

2.1 Rappel sur la topologie quotient

2.1.1 La topologie quotient.

Passons à présent à la seconde construction, en commençant à nouveau

par de rapides rappels de théorie des ensembles.

Une relation sur un ensemble X est un sous-ensemble R ⊂ X ×X. On note

habituellement l'assertion (x, x′) ∈ R par xRx′. Comme vous le savez, une

relation R sur un ensemble X est une relation d'équivalence si :

(i) R est ré�exive : pour tout x ∈ X, xRx.
(ii) R est symétrique : pour tous x, x′ ∈ X, si xRx′ alors x′Rx.
(iii) R est transitive : pour tous x, x′, x′′ ∈ X, si xRx′ et x′Rx′′, alors

xRx′′.
Pour alléger la notation, une relation d'équivalence R est souvent notée par

le symbole v. Étant donné x ∈ X, on note habituellement x le sous-ensemble

de X dé�ni par

x := {x′ ∈ X, x v x′},

appelé la classe d'équivalence de x. Notons que par ré�exivité, x appartient

à sa classe d'équivalence. De plus, par symétrie et transitivité, deux classes

d'équivalence x et x′ sont soit identiques (si x v x′), soit disjointes (sinon).

20
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Ainsi, les classes d'équivalence forment une partition de X, c'est-à-dire que

X est l'union disjointe de ces classes. Finalement, on note X/ v l'ensemble

de ces classes d'équivalence, appelée ensemble quotient, et

π : X −→ X/ v

la projection de x ∈ X sur sa classe x.

Rappelons encore que si une application f : X −→ Y véri�e f(x) = f(x′)

pour tout x v x′ ∈ X, alors il existe une unique application g : X/ v−→ Y

telle que f = g ◦ π : on dit que f passe au quotient. Cette application g

a même image que f , et est injective si et seulement si f(x) = f(x′) ⇒
x v x′. En particulier, toute application f : X −→ Y induit une bijection

g : X/ v−→ f(X), où la relation d'équivalence sur X est donnée par x v

x′ ⇒ f(x) = f(x′).

Exemple de relations d'équivalence.

Considérons l'ensemble X = R2 muni de la relation d'équivalence sui-

vante : (x1, x2) v (y1, y2) ⇔ x2
1 + x2

2 = y2
1 + y2

2. Les classes d'équivalence

correspondantes sont les cercles centrés en l'origine, ainsi que l'origine elle

même. La projection π envoie un élément x = (x1, x2) de R2 sur le cercle de

rayon ‖x‖. Ainsi, l'application f : R2 −→ R donnée par f(x) = ‖x‖ passe au
quotient et induit une bijection g : R2/ v−→ [0,∞).

Supposons maintenant que X est un espace topologique. Comment dé�nir

une topologie sur le quotient X/ v ? Cette fois-ci, il y a une unique réponse

naturelle, que voici : en posant

U ⊂ X/ v est ouvert⇔ π−1(U) ⊂ X est ouvert,

on dé�nit une topologie sur X/ v appelée la topologie quotient. L'espace

topologique ainsi obtenu est appelé l'espace quotient.

Remarques.

1. On véri�e facilement qu'il s'agit d'une topologie, la plus �ne sur l'en-

semble quotient telle que π soit continue.
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2. Soient Y un espace topologique et f : X −→ Y une application qui

passe au quotient, induisant g : X/ v−→ Y telle que f = g ◦π. Alors,
f est continue si et seulement si g est continue.

En e�et, si g est continue, alors f = g ◦ π l'est aussi puisque π est

continue pour la topologie quotient. Réciproquement, si U ⊂ Y est un

ouvert, alors π−1(g−1(U)) = (g ◦ π)−1(U) = f−1(U) ⊂ X est ouvert

puisque f est continue ; par dé�nition de la topologie quotient, cela

signi�e que g−1(U) ⊂ X/ v est ouvert, et donc que g est continue.

On a ainsi démontré l'énoncé suivant :

Toute application continue f : X −→ Y induit une bijection continue

g : X/ v−→ f(X), où la relation d'équivalence sur X est donnée par

x v x′ ⇔ f(x) = f(x′)

C'est une sorte d'analogue topologique du premier théorème d'isomorphisme

en théorie des groupes : tout homomorphisme de groupes f ;G −→ G′ in-

duit un isomorphisme de groupes g : G/Ker(f) −→ f(G). Mais rappelons-le

encore une fois, si en théorie des groupes, un homomorphisme bijectif est

automatiquement un isomorphisme, ce n'est pas le cas en topologie : une

application continue bijective n'est pas toujours un homéomorphisme !

Autre façon :

Soit G un groupe et H un sous-groupe. Notons R la relation d'équivalence

dé�nie sur G par :

∀x, y ∈ G, (xRy ⇔ x−1y ∈ H)

La classe x̄ d'un x ∈ G est le sous-ensemble de G suivant :

x̄ = xH = {xy/y ∈ H}

L'ensemble de ces classes d'équivalences est l'ensemble noté G/H. La surjec-

tion canonique π : G −→ G/H est l'application dé�nie par : π(x) = x̄. On

dé�nit une topologie sur G/H en décrétant qu'une partie U est un ouvert de

G/H si et seulement si π−1(U) est un ouvert de G. C'est la topologie quotient

sur G/H.
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proposition

• La surjection canonique π : G −→ G/H est continue et ouverte.

• G/H est séparé si et seulement si H est fermé dans G.

Démonstration

I La continuité de q découle immédiatement de la dé�nition de la topo-

logie quotient. Soit maintenant O un ouvert de G, on a

π−1(π(O)) = OH =
⋃
b∈H

Ob

Ce qui montre que π est ouverte.

I Si G/H est séparé alors le singleton {ē} est un fermé de G/H, ce qui

conduit à H = π−1{ē} est un fermé de G.

Réciproquement, Soit x, y ∈ G tels que xH 6= yH. On a donc x−1y ∈
G/H qui est un ouvert de G. Par continuité de l'application f :

(a; b) −→ ax−1yb de G×G dans G au point (e, e), on peut choisir V un

voisinage ouvert symétrique (V −1 = V ) de e tel que f(V ;V )∩H = ∅.
Il en résulte alors que les deux ensembles xV H et yV H sont disjoints,

et puisqu'en plus ce sont des ouverts saturés et que la projection π est

une application ouverte, on obtient que π(xV H) et π(yV H) sont des

voisinages ouverts disjoints respectivement de π(x) et de π(y).

Exemple.

• Montrer que R/Z est homéomorphe à un cercle.

R/Z est séparé (puisque Z est fermé dans R). La projection cano-

nique π : R −→ R/Z est dé�nie par π(x) = x + Z. En utilisant la

partie entière d'un nombre réel, on obtient que π(R) = q([0, 1]) ce qui

implique que R/Z est compact. Considérons maintenant l'application

h : R/Z −→ S1 dé�nie par h(x̄) = ei2πx . Il est clair que h est bijective

et continue, donc c'est un homéomorphisme puisque R/Z est compact.
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2.2 Actions de groupes de Lie.

Soit M une variété di�érentiable, notons la di�éomorphisme de M par

Diff(M) et (Diff(M)), ◦) est un groupe des C∞-di�éomorphismes.

Dé�nition 2.2.1. Une action de G surM est un homomorphisme de groupes

ρ : G −→ Diff(M). Autrement dit, pour tout g ∈ G, ρ(g) : M −→ M est

un di�éomorphisme tel que

ρ(g1g2) = ρ(g1) ◦ ρ(g2)

L'action ρ de G sur M est C∞ si l'application évaluation :

φ : G×M −→M

(g,m) 7−→ ρ(g)(m)

est C∞. On note ρ(g)(m) par g ·m. On dira que g agit ou opère sur M .

Remarque 2.2.1. Ce que nous venons de dé�nir est une action à gauche.

On peut dé�nir une action à droite comme étant un anti-homomorphisme

ρ̂ : G −→ Diff(M), ce qui se traduit par :

ρ̂(g1g2) = ρ̂(g1) ◦ ρ̂(g2)

Par composition avec l'inversion du groupe g 7−→ g−1, on peut passer d'une

action à droite à une action à gauche et réciproquement.

Exemples :

1 Tout groupe sous-groupe de GL(Rn) opère sur Rn par des transfor-

mations linéaires.

2 Le groupe des rotations SO(n+ 1) opère sur la sphère Sn

3 La donnée d'un champ de vecteurs sur une variété compacte équivaut

à la donnée d'une

4 La donnée d'un champ de vecteurs sur une variété compacte équivaut

à la donnée d'une action (di�érentiable) de R sur M .

5 Tout groupe de Lie G opère sur lui même à gauche, à droite et par

conjugaison (g, x) 7→ gxg−1.
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6 Si H est un sous-groupe fermé de G, alors l'action homogène de G sur

G/H est l'action di�érentiable : (g, aH) 7→ gaH.

Dé�nition 2.2.2. (Orbites et groupes d'isotropies) Soit ϕ : G×M −→
M une action di�érentiable d'un groupe de Lie G sur une variété di�éren-

tiable M .

1. Pour tout m ∈ M , l'orbite de l'action en m est le sous-ensemble de

M :

G ·m := {g ·m/g ∈ G}

2. Le groupe d'isotropie en m est :

Gm := {g ∈ G/g.x = x}

C'est un sous-groupe de G.

Exemple 4. Les rotations autour de l'axe des z engendrent une action du

cercle S1 sur la sphère S2. Les orbites sont des points ou des cercles.

Exemple 5. Considérons l'action adjointe du groupe unitaire G = U(n)

sur l'algèbre de Lie g = u(n) des matrices anti-hermitiennes. Toute orbite

rencontre Σ l'ensemble des matrices diagonales Diag(α1, · · · , αn) avec αk ∈
iR. Si par exemple m désigne une matrice diagonale où toutes les valeurs

propres sont distinctes, alors on peut montrer que le groupe d'isotropie Gm

s'identi�e à (S1)n et donc l'orbite de m s'identi�e au quotient U(n)/(S1)n.

Pour tout m ∈M , l'application évaluation g 7→ g ·m induit une bijection de

G/Gm sur l'orbite G ·m.

Dé�nition 2.2.3. (L'espace des orbites) Soit ρ : G −→ Diff(M) une

action. Pour m,m′ ∈M , la relation d'appartenance à la même orbite est une

relation d'équivalence dont les classes d'équivalences sont les orbites G ·m.

L'espace des orbites M/G est l'ensemble

M/G := {G ·m/m ∈M}

La surjection canonique

π : M −→M/G, m 7→ G ·m
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permet de munir M/G de la topologie quotient. L'action sera dite transitive

s'il n'y a qu'une seule orbite, le quotient M/G est un point.

Théorème 2.2.1. Soit G un groupe topologique localement compact et ρ :

G −→ Diff(M) une action e�ective. Alors G est un groupe de Lie et l'ac-

tion sur M est di�érentiable.

Exemple 6. Soit α un nombre irrationnel et considérons l'action de R sur

le tore S1 × S1 donnée par t · (eiθ1 , eiθ2) = (ei(t+θ1), ei(αt+θ2)). Les orbites sont

denses et l'espace des orbites n'est pas séparé.

2.2.1 Orbites comme sous-variétés.

Soit ρ : G −→ Diff(M) une action di�érentiable et m ∈ M . L'applica-

tion évaluation

ρm : G→M, ρm(g) = g ·m

est di�érentiable (comme composé des application g 7→ (g,m) et (g,m) 7→
g ·m).

Théorème 2.2.2. 1. Le groupe d'isotropie Gm est un sous-groupe de Lie

de G d'algèbre de Lie gm = kerTeρm..

2. L'orbite G ·m est une sous-variété immergé.

3. Si l'action est transitive, l'application gGm 7→ g.m est un di�éomor-

phisme G-équivariant de l'espace homogène G/Gm sur M .

Démonstration 2. 1 . Le groupe d'isotropie Gm = ρ−1
m {m} est un sous

fermé de G, c'est donc un sous-groupe de Lie . Son algèbre de Lie

Lie(Gm) s'identi�e alors à la sous-algèbre de Lie

gm := {u ∈ g/expG(tu) ·m = m, pour tout t ∈ R}

Il en résulte que pour tout u ∈ gm, ρm(expG(tu)) = m; en dérivant en

t = 0, on obtient Teρm(u) = 0. On a ainsi montré l'inclusion gm ⊂
kerTeϕm. Réciproquement, soit u ∈ kerTeρm. La courbe β : R −→ M

donnée par β(t) = expG(tu) ·m, satisfait :
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β
′
(t) = Tmlexp(tu) ◦ Teρm(u) = Tmlexp(tu)(0) = 0, ∀t ∈ R

Il en résulte que expG(tu) ·m = m pour tout t ∈ R. D'où u ∈ gm.

2. L'application ρm : G −→ M se factorise en une application di�éren-

tiable :

ρm : G/Gm −→M, telle que ρm ◦ π = ρm

qui est clairement injective avec image l'orbite G · m. Nous allons

montrer que les applications linéaires tangentes :

Tāρm : Tā(G/Gm)→ Ta·mM, a ∈ G/Gm

sont injectives. Puisque l'action homogène de G sur G/Gm est transi-

tive et que l'application ρm est G-équivariante, il su�t de le montrer

pour le cas a = e. Soit alors v ∈ Te(G/Gm) tel que Teρ̄m(v) = 0,

par surjectivité de Teπ on peut choisir u ∈ g tel que Teπ(u) = v. Il

en résulte que Teρm ◦ Teπ(u) = 0, donc Teρm(u) = 0. Et par suite

u ∈ kerTeρm = gm et v = Teπ(u) = 0.

3. L'action étant transitive, l'application di�érentiable ρm : G/Gm →M

alors une immersion bijective. C'est alors un di�éomorphisme. En

e�et, d'après le théorème de Sard, il existe un point a ∈ G/Gm tel que

Taρm : Ta(G/Gm) −→ Ta·mM

est surjective, donc dimM = dim(G/Gm) et par suite tous les appli-

cations Taρm sont des isomorphismes ; le théorème d'inversion locale

permet alors de conclure que ρm est un di�éomorphisme.

Remarque 2.2.2. Soit ρ : G −→ Diff(M) une action di�érentiable et

m ∈ M . Soit f : N −→ G · m une application. On peut alors montrer

l'équivalence que f est C∞ si et seulement si i ◦ f : N −→ M est C∞ (avec

i : G ·m −→M l'injection canonique).

2.3 Espaces homogènes.

Si H est un sous-groupe discret d'un groupe de Lie G, alors H agit libre-

ment et proprement par translations à gauche sur G, et donc G/H admet
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une unique structure de variété C∞ telle que π : G −→ G/H soit un C∞-

di�éomorphisme local.

Le but de ce paragraphe est d'étendre ceci au cas où H est seulement supposé

un sous-groupe fermé de G.

Dans tout ce paragraphe, notons G un groupe de Lie, H un sous-groupe de

Lie de G, et π : G −→ G/H la projection canonique.

Théorème 2.3.1. Il existe une et une seule structure de variété di�érentielle

de classe C∞ sur l'espace topologique quotient G/H, telle que π soit une

submersion.

De plus,

- dim(G/H) = dim(G)− dim(H) ;

- l'action de G par translations à gauche sur G/H est de classe C∞ ;

- l'application π est une �bration C∞ de �bre H ;

- pour tout g dans G, l'application Tgπ : TgG −→ TgH(G/H) induit un

isomorphisme linéaire (TgG)/(Tg(gH)) ' TgH(G/H) ;

- pour toute variété M de classe Ck, une application f : G/H −→ M

est de classe Ck si et seulement si f ◦ π l'est.

Cette structure s'appelle la structure de variété quotient sur G/H. En par-

ticulier, l'application Teπ induit un isomorphisme linéaire de TeG/TeH sur

TeH(G/H).

Preuve. Tout d'abord, comme H est fermé, l'espace G/H est séparé. Il est

à base dénombrable, comme tout espace quotient d'un espace à base dénom-

brable par une action dont la projection canonique est ouverte.

Soient p la dimension de H, n celle de G et ∆ le champ de p-plans sur G,

invariant à gauche, tel que ∆e = TeH. Ce champ de p-plans est intégrable.

Il est donc tangent à un feuilletage F , dont les feuilles sont, par unicité, les
translatés à gauche par G de la composante neutre de H. Soit (U,ϕ) une

carte locale feuilletée C∞ pour ce feuilletage, où U est un voisinage de e et

ϕ : U −→ Rp×Rn−p est un C∞-di�éomorphisme qui envoie le feuilletage F|U
sur le feuilletage dont les feuilles sont les sous-espaces horizontaux Rp×{x}.
Quitte à réduire U , comme H est une sous-variété, pour tout g dans G,

l'intersection gH ∩ U est vide ou ne contient qu'une seule feuille locale de

F dans U . Notons pr2 : Rp × Rn−p −→ Rn−p la seconde projection. Alors

pr2 ◦ ϕ : U −→ Rn−p induit par passage au quotient une bijection pr2 ◦ ϕ de
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π(U) sur Rn−p . Comme π est continue et ouverte , cette bijection est un

homéomorphisme. Alors la famille (π(LgU), pr2 ◦ ϕ ◦ L−1
g )g∈G est un atlas de

cartes C∞ sur G/H, car les applications de transitions sont localement de la

forme x 7→ pr2 ◦ ϕ ◦ L−1
g (0, x) donc sont de classe C∞.

L'application π est alors une submersion C∞, car, lue dans les cartes locales

C∞ précédentes, c'est juste la seconde projection pr2 :

LgU
ϕ◦L−1

g−→ Rp × Rn−p

π ↓ pr2 ↓

π(LgU)
pr2◦ϕ◦L−1

g−→ Rn−p

L'avant dernière assertion en découle aussi. De plus, pour tout x dans G/H,

il existe un voisinage V de x dans G/H et une section locale de π sur V , i.e.

une application σ : V −→ G de classe C∞ telle que π ◦ σ = I. La dernière

assertion du théorème en découle, par le théorème de dérivation des fonctions

composées.

Pour montrer l'unicité, il su�t de montrer que s'il existe deux structures C∞

sur G/H telles que π soit une submersion, alors l'identité de G/H est un

C∞-di�éomorphisme entre ces deux structures. Ou en disant que localement,

l'identité coïncide avec π ◦ σ, et que π est C∞ pour une structure, et σ est

C∞ pour l'autre.

De même, le fait que l'action à gauche λ : G×G/H −→ G/H soit C∞ vient

du fait que localement, on peut écrire

λ(g, g′H) = π(gσ(g′H)),

avec σ une section locale comme ci-dessus.

En�n, si V est un voisinage ouvert de x0 ∈ G/H tel qu'il existe une section

locale σ de π dé�nie sur V , alors l'application θ de π−1(V ) dans V × H

dé�nie par

g 7→ (π(g), g(σ ◦ π(g))−1)

est un C∞-di�éomorphisme, d'inverse (x, h) 7→ σ(x)h, qui rend le diagramme

suivant commutatif

π−1(V )
θ−→ V ×H

π ↘ ↙ pr1

V
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Donc π est une �bration C∞ de �bre H.

Remarque.

Si de plus H est distingué, alors G/H, muni de ses structures de variété quo-

tient et de groupe quotient, est un groupe de Lie, et la projection canonique

π : G −→ G/H est un morphisme de groupes de Lie.

En e�et, si σ et σ′ sont des sections locales de π, alors l'application G/H ×
G/H −→ G/H, dé�nie par (xH, yH) 7→ xy−1H, coïncide, sur le produit des

domaines de dé�nition de σ et σ′, avec (u, v) 7→ π(σ(u)σ(v)−1), qui est de

classe C∞.

La remarque tautologique suivante permet de construire une structure de va-

riété sur un ensemble, en exhibant celui-ci comme ensemble quotient d'un

groupe de Lie par un sous-groupe de Lie.

Remarque 2.3.1. Soit G un groupe de Lie, agissant transitivement sur un

ensemble E, tel que le stabilisateur Gx d'un point x de E soit un sous-groupe

de Lie de G. Alors il existe sur E une et une seule structure de variété C∞

telle que

• l'action de G sur E soit de classe C∞,

• la bijection canonique G/Gx −→ E soit un C∞-di�éomorphisme.

Dans la section suivante, nous verrons que si E admettait une structure

de variété C∞ pour laquelle l'action de G fut C∞, alors cette structure et

celle construite dans la remarque précédente coïncideraient.

2.4 Actions transitives de groupes de Lie.

Le paragraphe précédent montre qu'une variété quotientG/H d'un groupe

de Lie G par un sous-groupe de Lie H est une variété homogène C∞. Le but

de cette partie est de montrer que, à C∞-di�éomorphisme près, toute variété

homogène C∞ est de cette forme.

Théorème 2.4.1. Soit M une variété C∞, munie d'une action C∞ transi-

tive d'un groupe de Lie G. Alors pour tout x dans M , la bijection canonique

Θx : G/Gx −→M est un C∞-di�éomorphisme.
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Preuve. Comme Θ = Θx est obtenue par passage au quotient de l'appli-

cation orbitale ϕx : g 7→ gx de classe C∞, la bijection Θ est C∞ (voir le

théorème 2.3.1 ). Le théorème d'inversion locale nous dit que Θ est un C∞-

di�éomorphisme dès que TuΘ est injective en tout point u de G/Gx. Il su�t

de le véri�er pour u = eGx, car pour tout g dans G, les actions de g sur

G/Gx et sur M sont des C∞-di�éomorphismes, rendant le diagramme sui-

vant commutatif

G/Gx
Θ−→ M

g ↓ ↓ g
G/Gx

Θ−→ M

Le théorème de forme normale des applications de rang constant, appliqué à

ϕx : g 7→ gx, montre que

KerTeϕx = TeGx.

Notons que π est une submersion et que ϕx = Θ ◦ π. Si X ∈ KerTGxΘ ⊂
TGx(G/Gx), alors en choisissant Y tel que Teπ(Y ) = X, on a Y ∈ KerTeϕx =

TeGx. Or par le théorème 2.3.1, l'application Teπ : TeG −→ TGx(G/Gx) in-

duit un isomorphisme linéaire (TeG)/(TeGx) ' TGx(G/Gx). Donc X = 0 et

TGxΘ est injective, ce qui montre le résultat.

Remarque. Le théorème 2.4.1 implique immédiatement le corollaire suivant.

Corollaire 2.4.1. Soit M une variété C∞, munie d'une action C∞ d'un

groupe de Lie G. Alors pour tout x dans M tel que G · x soit une sous-

variété C∞ de M , l'application canonique Θx : G/Gx −→ G · x est un C∞-

di�éomorphisme.

Voici une condition nécessaire et su�sante pour qu'une orbite soit une

sous-variété, donnant une généralisation du théorème 2.4.1.

Théorème 2.4.2. Soient M une variété C∞, munie d'une action C∞ d'un

groupe de Lie G, et x ∈ M . L'orbite G · x est une sous-variété C∞ si et

seulement si elle est localement fermée.

Si G · x est localement fermée, alors l'application canonique Θx : G/Gx −→
G · x est un C∞-di�éomorphisme.



2.4 Actions transitives de groupes de Lie. 32

En particulier, si une orbite est fermée, alors c'est une sous-variété.

Preuve. Supposons que G · x soit localement fermée, donc localement com-

pacte. Montrons que l'application canonique Θx : G/Gx −→ M est un ho-

méomorphisme sur son image. Comme c'est une application C∞, et comme

la preuve du théorème 2.4.1 implique que c'est une immersion, l'application

canonique Θx sera donc un plongement C∞. Donc son image est une sous-

variété C∞, et Θx est un C∞-di�éomorphisme.

Si nous montrons que l'application ϕx : G −→ G · x, dé�nie par g 7→ gx, est

ouverte, alors l'application Θx : G/Gx −→ G · x sera une bijection continue

et ouverte (car Θx(U) = ϕx(π
−1(U)) pour tout ouvert U de G/Gx), donc un

homéomorphisme.

Soit U un voisinage ouvert de e dans G, montrons que Ux est un voisinage

ouvert de x dans G · x. Ceci concluera, car pour tout g dans G, la partie Ug

est un voisinage ouvert de g, Θx(Ug) = Θgx(U) et G · gx = G · x.
Soit V un voisinage compact de e dans G tel que V −1V ⊂ U . Alors V x est

compact (car ϕx est continue et G ·x séparé), donc fermé dans G ·x. Comme

G est séparable, il existe une suite (gi)i∈N dans G telle que G =
⋃
i∈N

giV .

Donc G · x =
⋃
i∈N

gi(V x). Si Vx est d'intérieur vide, alors l'espace localement

compact non vide Gẋ est une union dénombrable d'ensembles fermés d'inté-

rieur vide, ce qui contredit le théorème de Baire. Soit donc g dans V tel que

gx soit un point intérieur de V x. Alors g−1V x est un voisinage de x, contenu

dans Ux, ce qui montre le résultat.

Corollaire 2.4.2. Soient M une variété C∞, munie d'une action C∞ d'un

groupe de Lie compact G, et x ∈M . Alors l'orbite G · x est une sous-variété

C∞ compacte de M , et l'application canonique Θx : G/Gx −→ G · x est un

C∞-di�éomorphisme.

Preuve. Puisque G est compact et l'action continue, toute orbite est com-

pacte, donc fermée, et on applique le théorème précédent.
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2.4.1 Exemples de variétés homogènes.

(1) Un groupe de Lie est un espace homogène de plusieurs manières. Voici

deux : G = G × G/G = G/e. Pour la première représentation de G

comme espace homogène, G × G agit sur G par des translations à

gauche et droite, et le sous-groupe d'isotropie est G intégré en diago-

nale dans G×G.

(2) Les sphères. Le groupe orthogonal O(n + 1) (respectivement spécial

orthogonal SO(n+1) ) agit transitivement par rotations sur la sphère

unité Sn de l'espace euclidien usuel Rn+1. En e�et, étant donné deux

vecteurs unitaires, l'application qui vaut l'identité sur le supplémen-

taire orthogonal d'un plan vectoriel réel contenant ces deux vecteurs,

et la rotation d'angle égal à l'angle entre ces deux vecteurs sur ce

plan, envoie le premier vecteur sur le second. L'application de O(n)

(respectivement SO(n) ) dans O(n+ 1) (respectivement SO(n+ 1) )

dé�nie par

A 7→

(
1 0

0 A

)
est un isomorphisme de groupes de Lie deO(n) (respectivement SO(n)

) sur le stabilisateur de (1, 0, ..., 0), par lequel nous identi�ons O(n)

(respectivement SO(n) ) avec son image. Donc les applications orbi-

tales en (1, 0, ..., 0) induisent des C∞-di�éomorphismes

Sn ' O(n+ 1)/O(n) ' SO(n+ 1)/SO(n).

Le groupe unitaire U(n+1) (respectivement spécial unitaire SU(n+1)

), agit transitivement sur la sphère unité S2n+1 de l'espace hermi-

tien usuel Cn+1. En e�et, considérons un plan vectoriel complexe P

contenant deux vecteurs unitaires, muni d'une base orthonormée telle

que ces deux vecteurs aient respectivement pour coordonnées (1, 0)

et (α, β), avec |α|2 + |β|2 = 1. La matrice de l'application linéaire

qui vaut l'identité sur le supplémentaire orthogonal de P , et admet

comme matrice sur P , dans la base choisie, la matrice(
α −β̄
β ᾱ

)
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est un élément de SU(n + 1) qui envoie le premier vecteur sur le

second. L'application de U(n) (respectivement SU(n) ) dans U(n+1)

(respectivement SU(n+ 1) ) dé�nie par

A 7→

(
1 0

0 A

)
est un isomorphisme de groupes de Lie de U(n) (respectivement SU(n)

) sur le stabilisateur du point (1, 0, ..., 0), par lequel nous identi�ons

U(n) (respectivement SU(n) ) avec son image. Donc les applications

orbitales en (1, 0, ..., 0) induisent des C∞-di�éomorphismes

S2n+1 ' U(n+ 1)/U(n) ' SU(n+ 1)/SU(n).

2.4.2 Variétés quotients.

Dans ce paragraphe, notons G un groupe de Lie, X une variété C∞ munie

d'une action C∞ de G, π : X −→ G/X la projection canonique etR ⊂ X×X
la relation d'équivalence � être dans la même orbite �. Le résultat suivant,

qui implique le théorème 2.3.1, est démontré dans [1] .

Théorème 2.4.2.1. SiR est une sous-variété fermée de classe C∞ de X×X,

alors il existe une et une seule structure de variété di�érentielle de classe C∞

sur l'espace topologique quotient G/X, telle que π soit une submersion C∞.

Lorsqu'elle existe, cette structure est appelée la structure de variété quotient

de X par l'action de G.

Remarque. L'hypothèse que R soit une sous-variété fermée est nécessaire

pour l'existence de cette variété quotient. En e�et, π × π : (X × X) −→
(G/X×G/X) est une submersion car π l'est. La diagonale ∆ de G/X×G/X
est une sous-variété C∞, fermée, de G/X ×G/X. Donc R = (π × π)−1(∆)

est une sous-variété C∞, fermée, de X ×X.

2.5 Espaces homogènes réducteurs.

Soit G/H un espace homogène et rappelons la projection π : G −→ G/H,

π(g) = gH. On va calculer le di�érentiel dπe : g −→ To(G/H), où o = π(e) =
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H. Soit X ∈ g et exp tX le sous-groupe correspondant à un paramètre. alors

dπe(X) =
d

dt
(π ◦ exp tX)|t=0 =

d

dt
((exp tX)H)|t=0

À partir nous obtenons que dπe(l) = 0, c'est-à-dire kerdπe = l, nous

obtenons l'isomorphisme canonique

g/l ∼= To(G/H)

En général, pour tout X ∈ g on peut dé�nir un champ vectoriel X∗ sur G/H

par la formule

X∗gH =
d

dt
(exp tX)gH|t=0

Noter la formule [X∗, Y ∗] = −[X, Y ]∗

Maintenant, nous allons considérer le cas spécial important suivant. Soit g

et l désignent les algèbres de Lie de G et H respectivement.

Dé�nition 2.5.1. Un espace homogène est appelé réducteur s'il existe un

sous-espace m de g tel que g = m ⊕ l et Ad(h)m ⊂ m pour tout h ∈ H,

c'est-à-dire que m est Ad(H)-invariant .

La condition Ad(h)m ⊂ m implique que [l,m] ⊂ m. L'inverse est vrai si H

est connecté. Notez que m n'a pas besoin d'être fermé sous crochet, comme

l. Donc, en conséquence immédiate de l'isomorphisme ci-dessus, si G/H est

réducteur, nous avons l'isomorphisme canonique

m ∼= To(G/H)

Par exemple, si G est un groupe de Lie compact, alors G/H est réducteur,

car on peut prendre m = l⊥ par rapport à un produit interne ad-invariant

sur g . En fait, il peut être montré que la dé�nition ci-dessus n'est pas très

restrictive : tout espace homogène qui admet une métrique G-invariant est

réducteur. Nous nous référons à [9] pour une preuve détaillée de cela.

Exemple 7. • soit G/H = SU(3)/S(U(1) × U(1) × U(1)). La forme de

Killing de su(3) est B(X, Y ) = 6trXY , et l l'ensemble {diag(ia, ib, ic) :

a+ b+ c = 0}. Alors, par rapport à B, le sous-espace m = l⊥ est l'ensemble
 0 a1 + ib1 a2 + ib2

−a1 + ib1 0 a3 + ib3

−a2 + ib2 −a3 + ib3 0

 ai, bi ∈ R


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