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INRODUCTION

Les groupes de Lie sont des structures importantes de la géométrie dif-
férentielle. Les notions de groupes de Lie et d’algébres de Lie sont utilisées
en physique quantique pour analyser les interactions. Il est important de
noter que la théorie des groupes de Lie est un domaine trés vaste qui re-
couvre de ’algébre, aussi bien que du calcul différentiel ou de la topologie.
Une autre structure qui posséde une grande importance est la notion d’es-
paces homogénes. Par exemple, les espaces riemanniens symétriques de la
géométrie différentielle sont des espaces homogénes pour le groupe de leurs
isométries. Cela généralise les espaces euclidiens, les sphéres euclidiennes, les
espaces elliptiques et les espaces hyperboliques. Plus généralement, il v a
les espaces symétriques qui sont des espaces homogénes pour leurs groupe
des déplacements.En géométrie différentielle, parmi les espaces homogénes
les plus importants, on retrouve les espaces symétriques et les variétés de

drapeaux.

Ce mémoire rentre dans ce cadre dont 'intérét s’est principalement porté
dans une premiére partie & une introduction a la théorie des groupes et al-
gébres de Lie et dans une deuxiéme partie & l'introduction et I’étude des
espaces homogénes. Le plan de ce mémoire est le suivant :

Dans le premier chapitre, on présente une introduction générale aux groupes

et algébre de Lie ol on cite les notions générales liées a ces structures et cer-
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tains types d’algeébres de Lie et on termine ce chapitre par la décomposition

de Cartan d’un groupe semi simple.

Le deuxiéme chapitre de ce mémoire constitue la partie principale de ce
travail, on commence par un petit rappel sur la topologie quotient et la défi-
nition de I'action d’un groupe de Lie. Ces deux notions nous permettent de
définir les espaces homogénes en citant quelques exemples et en donnant les
démonstrations de plusieurs résultats qui concernent les espaces homogénes
et on termine par un cas particulier qui concerne les espaces homogeénes ré-

ducteurs.



CHAPITRE 1

GENERALISATION SUR
GROUPES DE LIE, ALGEBRES
DE LIE

1.1 Groupes et Algébres de Lie

1.1.1 Groupes de Lie

Definition 1.1.1.1. Un groupe de Lie est un groupe muni d’une structure

de variété différentielle compatible, c’est a dire que les applications

m : GxG—G
(2,y) — xy
et
i1 G—d

x— x !

sont différentiables.

Exemples.
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e Le quotient d’un groupe de Lie par un sous-groupe distingué et fermé
est un groupe de Lie.

e Le groupe des difféeomorphismes dune variété préservant certaines
structures. Par exemple le groupe des isométries d’une variété rie-

mannienne.

Definition 1.1.1.2. (Sous-groupe de Lie) Soit G un groupe de Lie. Un
sous-groupe de Lie H de G est un sous-groupe munie d’une topologie et d’une
structure différentiable qui en font un groupe de Lie et tel que l'injection

canonique v : H — G soit une immersion de G.

Théoréme 1.1.1.1. (Cartan, Von-Neumann ) Toul sous-groupe fermé H
d’un groupe de Lie G est un sous-groupe de Lie. Plus précisément, il existe
une structure de groupe de Lie sur H (nécessairement unique) qui fait de H

une sous-variété de G (voir [5]).

1.1.2 Algébre de Lie

Definition 1.1.2.1. Une algeébre de Lie sur K(K =R ou C) est un espace

vectoriel g muni d’une application bilinéaire, appelée crochet de Lie

L] + axg—9
(X,Y) — [X,Y]
vérifiant :
1. Antisymétrique [ X, Y] = —[X,Y].
2. Identité de Jacobi [ X,|Y, Z]| + [Y,[Z, X]] + [Z,[X,Y]] = 0.
Pour X,Y, 7 € g.

Exemples.

(1) Tout espace vectoriel V' sur K, muni du crochet de Lie nul, est une
algébre de Lie sur K, dite abélienne (ou commutative).
(2) Si A est une algebre (associative) sur K alors I'espace vectoriel A,

muni du crochet

[z,y] = vy — yz,
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est une algébre de Lie sur K. C’est par exemple le cas, pour tout
espace vectoriel V' sur K, de l'algébre End(V') des endomorphismes
de V', et nous noterons gl(V'), algébre de Lie obtenue. Pour tout
n dans N, c’est aussi le cas de I'algébre M,,(K) des matrices carrées
n x n & coefficients dans K, et nous noterons gl,,(K), I'algébre de Lie
obtenue. Si V est un espace vectoriel de dimension finie n sur K, et
B une base de V , alors I'application, qui & un endomorphisme de
V' associe sa matrice dans la base B, est un isomorphisme d’algébres
de Lie de gl(V') dans gl,(K). Une représentation(respectivement re-
présentation de dimension finie) d’une algébre de Lie g sur K est un
morphisme d’algébres de Lie g — gl(V'), ot V' est un espace vectoriel

(respectivement espace vectoriel de dimension finie) sur K.

1.1.3 Algébre de Lie d’un groupe de Lie

Soient G un groupe de Lie et T.G l'espace tangent a G en son élément
neutre e. Notons Ad : G — GL(T.G) lapplication

g—Adg =T, : T.G — T.G

qui & g € G associe I'application tangente en e de la conjugaison iy : h +—
ghg~'. C’est une représentation de groupes de Lie, appelé la représentation
adjointe de G. Notons

ad =T,Ad : T.G — End(T.G)
Iapplication tangente en e de Ad. Pour tous les X et Y dans T.G, posons
(X, Y] =ad X(Y).
Notons que [, : T.G x T,G — T.G est bilinéaire, par la linéarité des
applications tangentes en un point.

Exemple 1. Pour les groupes donnés en exemples, nous donnons leur algébre
de Lie :
GL,(R) — gl,(R) = M, (R)

SLn(R) — sl,(R) = {A € M, (R),tr A =0}
On(R) — 0,(R) = {A € M, (R), At + A =0}
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1.1.4 Représentation adjointe et forme de Killing.

Soit g une algebre de Lie sur K. Pour tout X dans g, 'application ad X :
g — g définie par
ad X(Y) = [X,Y]

est une dérivation d’algebres de Lie (parfois appelée dérivation intérieure),

car pour tous les Y et Z dans g, nous avons
ad X (Y, Z)) = [ad X (Y), Z) + Y, ad X(2)]

ce qui est une simple réécriture de l'identité de Jacobi. L’application ad :
g — Der(g) définie par X — ad X est un morphisme d’algébres de Lie, car

pour tous les X et Y dans g, nous avons
adlX,Y|(Z)=ad X oadY (Z)oadY ocad X(Z) = [ad X,adY](Z),

ce qui est aussi une simple réécriture de l'identité de Jacobi (le crochet de
Lie & droite est celui de gl(g)). La représentation d’algébres de Lie

ad : g — gl(g)

s’appelle la représentation adjointe de g. Elle est & valeur dans Der(g). Le

noyau de la représentation adjointe de g est appelé le centre de g, et noté
3g)={X€g:Weg, [XV]=0}

En particulier, toute algébre de Lie g sans centre se plonge dans gl(g). Par
exemple, puisque toute matrice n X n qui commute avec toute matrice dia-

gonale est un multiple de la matrice identité I,,, nous avons
3(al,(K)) = K.

Si g est de dimension finie, la forme de Killing de g est 'application B = B; :
g X g — K définie par

B(x,y) =tr(adx o ady).

Par les propriétés de la trace des endomorphismes d’espaces vectoriels de

dimension finie, et par linéarité de la représentation adjointe, la forme de



1.1.5 Translation a gauche et & droite 12

Killing est bilinéaire et symétrique.
Elle est invariante par tout automorphisme d’algébres de Lie :si f: g — ¢
est un isomorphisme d’algébres de Lie, alors, pour tous les x et y dans g,

nous avons

By (f(x), f(y)) = By(,y),

car Végalité [f(2), f(y)] = f(z.y]) implique que ad(f(x)) = f o (adz) o f 7,
et le résultat découle des propriétés de la trace.

Elle est de plus ad-alternée (une terminologie fréquente mais peu mnémo-
technique est « invariante ») c’est-a-dire alternée pour les endomorphismes

adx : pour tous les x,y,z € g,
B(adx(y), Z) = _B<y7 adm(z))
En effet, en appliquant deux fois 'identité de Jacobi,

B([z,y],2) = tr((adzoady—adyoadx)oadz)
tr(ady o adzoadx)?tr(adyoadxoadz) = B(y,[z,z]) =?B(y, [, z]).

Par exemple, la forme de Killing de 'algébre de Lie gl (K) est
VX,Y e gl (K),B(X,Y)=2ntr(XY) - 2tr XtrY. (1.1)

En effet, soit (E;;)1<i j<n la base canonique de M, (K) (ou les coefficients de
E; j sont nuls sauf le coefficient i — j qui vaut 1). Pour tout X = (2;;)1<j<n €

gl,,(K), nous avons

adX(Eij) = Y wniBrj— Y wuFi.

1<k<n 1<k<n

Un petit calcul montre alors le résultat.

1.1.5 Translation & gauche et a droite
Soit (G, -) un groupe de Lie, on définit les deux applications de classe C°.

Ly,:G—C

x> Lyg=g-u,
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est la translation a gauche sur le groupe.
R,:G— G
r— Ry =g,

est la translation a droite sur le groupe.

Ainsi que leurs applications réciproques L,-1 et R,-1 , par suite R, et L,

g
sont des diffeomorphismes de GG dans G, et ils commutent entre eux :

Lg o Rg—l = Rga ) Lg.

Les propriétés des applications tangentes aux difféomorphismes impliquent
que, pour chaque v € G :

TL, (resp. TR,) induit un isomorphisme linéaire de 7, G sur T,.,G (resp.
T,..G).

1.1.6 Champs de vecteurs invariants.

Si X est un champ de vecteurs sur GG, nous dirons que
X est invariant a gauche si Vg € G, Vo € G, d,L,(X,) = X,, ot pour
mémoire nous rappelons que nous avons d, L, : d,G — dg.,G. Nous pouvons

encore écrit cette condition sous la forme
(Lg)« X =X
pour tout g € G.
L(G)={X e X/(L,).X =X,Vg € G}

L’ensemble des champs de vecteurs invariant a gauche est un K-espace vec-

toriel.

1.1.7 Flot local d’un champ de vecteurs.

Soit X un champ de vecteurs C* sur M, avec k > 1.

Théoréme 1.1.7.1. Pour tout xo dans M, il existe un triplet (U, I, ¢) formé
d’un voisinage ouvert U de xo, d’un intervalle ouvert I contenant 0, et d’une
application ¢ : I x U — M de classe C*, notée (t,x) — ¢:(x), vérifiant,

pour tous s dans I et x dans U,
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doi(x) B
hd di li=s = X(0s(7)),
° gbo(x) =z,

Si (U, I',¢') est un autre tel triplet, alors ¢ et ¢’ coincident sur (I x U) N
(I" x U"). De plus, pour tous t, s dans I et x dans U,

o Sigs(x) €U ett+sel, alors ¢r o ds(x) = Prys(T),

o ¢, est un C*-difféeomorphisme local,

o ce Ck-difféomorphisme local préserve le champ de vecteurs X, au sens

que pour tout t dans I et x dans U,

o (X (x)) = X(u(2)).

1.1.8 Application exponentielle

Nous allons maintenant construire une application entre g et G. Cette ap-
plication est un pont entre les deux structures, et permet de trouver certaines
propriétés de GG connaissant g. Pour cela, soit X € g considéré comme champ
de vecteurs invariant a gauche. Il définit donc une équation différentielle, dont

le flot est noté ¢x(t,y). C'est a dire que :

dng(t? y)
g~ Noxltw)
et
ox(0,y) =y

Definition 1.1.8.1. L’application entre ’algébre de Lie g du groupe de Lie
G et le groupe de Lie lut méme est appelée application exponentielle définie
par :
exp : g—G
X — ox(1,€)

Par construction, cette application vérifie, pour tout t € R,
1) exp(tX) = dx(t, ).

2) ¢x(t,y) =y exp(tX).
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d exp(tX
3) LR = Xowpex)-

4) exp(0) = e.

Definition 1.1.8.2. Soit X un élément de M, (K). L’exponentielle de X
désigne la somme de la série (normalement convergente dans l'espace de

Banach M, (K))

Donnons quelques propriétés de [’exponentielle.

Proposition 1.1.8.1. Quels que soient X et Y dans M, (K) :
(i) St X etY commutent exp X exp Y =exp(X +Y).
(ii) L’exponentielle est a valeurs dans GL(n,K) et

(exp X) ™! = exp(—X).
(111) Quels que soient t, s dans K,
exp(sX) exp(tX)) = exp((s +t)X)

(iv) L’application :
R — GL(n,K)
t — exp(tX)
est l'unique solution différentiable de l'équation différentielle du pre-

mier ordre
a'(t) = X a(t)
avec la condition initiale a(0) = I,,.

(v) Pour tout g € GL(n,K), g exp X ¢g7' = exp(gXg™!).

Remarque 1.1.8.1. On peut reformuler (iii) en disant que t — exp(tX)
est un morphisme de groupes (continu) de R dans GL(n,K). On appelle un

tel morphisme un sous-groupe & un paramétre de GL(n,K).
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Sous-groupes continus a un parameétre

Proposition 1.1.8.0.1. Soient G un groupe de Lie et v : (R, +) — G un
homomorphisme continu. Alors ~ est différentiable (et donc v est un sous-

groupe 4 un parameétre).

Démonstration 1. Soit U C g un voisinage ouvert de 0 tel que [’expo-
nentielle induise un difféomorphisme U — V = exp(U). Soit I C R un
intervalle ouvert contenant O tel que v(I) C 'V . Définissons ¢ : I — U
par exp(¢(t)) = v(t). On veut montrer que ¢ est linéaire dans un voisinage
de 0. Pour cela, on considere un ty € I, tg > 0 et on calcule :

to

exp(2p(9)) = explp(2)) =

to

5)" = to) = exp(e(to)).

Ainsi o(%2) = Lo(ty). On en déduit alors que (2=

est continue, ¢ l’est également et par un argument de densité, on voit que
pour tout t € [0,10], p(t) = tX avec X = %ﬁo) € g. Comme [0,ty] engendre
(R, +), on trouve v(t) = exp(tX) pour tout t € R.

to) = %gp(to). Comme ~y

Proposition 1.1.8.2. L’application exponentielle
exp : M, (K) — GL(n,K)

est de classe C'°, sa différentielle a lorigine est Uapplication identité de

Mo (K).

1.1.9 Idéaux d’algébres de Lie

Soit g une algeébre de Lie sur un corps commutatif K. Un idéal de g est
un sous-espace vectoriel I de g tel que pour tous les x € [ et y € g, nous
ayons [x,y] € I. I’algébre de Lie quotient de g par un idéal I est 'espace
vectoriel quotient g/l muni du crochet de Lie [x + I,y + I| = [x,y] + I pour
tous les z,y € g.

Un idéal est en particulier une sous-algébre de Lie. Si I est un idéal de g, la
projection canonique de g dans g/ est un morphisme d’algébres de Lie. Par
exemple, le noyau Ker f d’un morphisme f d’algébres de Lie est un idéal, et
I’algébre de Lie image de f est isomorphe a I'algébre de Lie quotient g/ Ker f.
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Le centre 3(g) de g est donc un idéal de g. Toute intersection et toute somme
vectorielle d’idéaux de g est un idéal de g. En particulier, pour toute partie
A de g, l'intersection de tous les idéaux de g contenant A est le plus petit
idéal contenant A, appelé I'idéal engendré par A. Si I et J sont des idéaux
de g, alors I'inclusion de J dans I + J induit un isomorphisme d’algébres de
Lie entre J/(INJ) et (I +J)/1.

Une partie génératrice de g est une partie A de g telle que la plus petite
sous-algébre de Lie de g contenant A soit g. Une présentation de g est un
couple (S, R), ou S est une partie génératrice de 'algébre de Lie g et R est
une partie de 1'algébre de Lie libre £(5) sur S, tel que 'unique morphisme
de £(5) dans g valant l'identité sur S induise par passage au quotient un
isomorphisme de I'algébre de Lie quotient de £(S) par Iidéal engendré par
R a valeurs dans g.

Si (S, R) est une présentation de g, nous dirons aussi que g est définie par

générateurs les éléments de S et relations les éléments de R.

1.1.10 Algébres de Lie nilpotentes

Définition 1.1.10.1. Soit g une algébre de Lie sur K. On pose pour tout
entier j > 0, gg+1) = [9,9;], avec go = g. La suite décroissante d’idéaux

go2 2 2g; 2 est appelée la suite centrale descendante de g.

Définition 1.1.10.2. Une algébre de Lie g sur K est nilpotente si la suite
centrale descendante s’annule a partir d’un certain rang, i.e sl existe un
entier k > 1 tel que g, = {0}. Si gr_1 # {0} et gr = 0, on dit que g est

nilpotente de rang k.

1.1.11 Algébres de Lie résolubles

Définition 1.1.11.1. Soit g une algebre de Lie sur un corps K. On pose pour
tout j = 0, g+ = [g) gY)], avec g° = g. La suite décroissante d’idéauz

g DglD---Dgl) D est appelée la suite dérivée de g.

Définition 1.1.11.2. Une algébre de Lie g sur K est résoluble si la suite des
commutateurs s’annule a partir d’un certain rang, i.e sl existe un entier
k> 1 tel que g™ = {0} et gt*=1) £ 0.
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Exemple 2. - Toute algébre de Lie nilpotente est résoluble, puisque
g C g(j) pour tout j.

- L’algébre de Lie réelle des matrices triangulaires supérieurs (ou infé-

rieurs) est résolubles (et nilpotente si tous les termes diagonaux sont

nuls).

1.1.12 Algébres de Lie simples et semi-simples
La notion d 7algébre de Lie semi simple est liée a la notion de radical :

Définition 1.1.12.1. Le radical d’une algébre de Lie g est le plus grand idéal

résoluble de g. On notera rad(g) ce radical.

Définition 1.1.12.2. Une algebre de Lie g est dite semi simple si son radical
est réduit a {0}.
Une algébre de Lie g est dite simple si g n’est pas commutative et ses seuls

idéaux sont {0} et g.

Définition 1.1.12.3. Soit G un groupe de Lie connexe. On dit que G est
semi-simple si son algebre de Lie g est semi-simple. On dit que G est quasi-

simple si g est simple.

1.1.13 Décomposition de Cartan d’un groupe semi simple

Soient g algébre semi simple, B forme de Killing et # involution de Cartan
(i.e 0 automorphisme de g avec 6 = [ et By(X,Y) = —B(X,0(Y)) est
définie positive). Comme 6? = I donc on a deux valeurs propre (+1) et (—1)
de 6. Soient sous algébres [ et p les espaces propres associées a +1 et —1

respectivement on a la décomposition de Cartan de g est

g=Ilop
avec

Lyct

[Lp] Cp
et



1.1.13 Décomposition de Cartan d’un groupe semi simple 19

Remarque 1.1.13.1. La forme de Killing B est définie positive en p, et

définie négative en |.

Exemple 3. Pour gl,(R) on a 0(X) = —X" est | = s0,(R) et p le sous

espace des matrices symétriques.



CHAPITRE 2

ESPACES HOMOGENES

2.1 Rappel sur la topologie quotient

2.1.1 La topologie quotient.

Passons a présent a la seconde construction, en commencant & nouveau
par de rapides rappels de théorie des ensembles.
Une relation sur un ensemble X est un sous-ensemble R C X x X. On note
habituellement I’assertion (x,z’) € R par #Ra’. Comme vous le savez, une
relation R sur un ensemble X est une relation d’équivalence si :

(i) R est réflexive : pour tout x € X, xRz.

(ii) R est symétrique : pour tous x,z’ € X, si Ra’ alors 2'Ruz.

(iii) R est transitive : pour tous z, 2’ 2" € X, si xRz’ et 'Ra”, alors

xRx”.
Pour alléger la notation, une relation d’équivalence R est souvent notée par
le symbole «~. Etant donné z € X, on note habituellement Z le sous-ensemble
de X défini par
T:={2 € X,z 2},

appelé la classe d’équivalence de x. Notons que par réflexivité, x appartient
a sa classe d’équivalence. De plus, par symétrie et transitivité, deux classes

d’équivalence T et x’ sont soit identiques (si z « 2’), soit disjointes (sinon).

20
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Ainsi, les classes d’équivalence forment une partition de X, c’est-a-dire que
X est I'union disjointe de ces classes. Finalement, on note X/ « I’ensemble

de ces classes d’équivalence, appelée ensemble quotient, et
T X — X/

la projection de z € X sur sa classe 7.

Rappelons encore que si une application f : X — Y vérifie f(z) = f(2')
pour tout = «~ 2’ € X alors il existe une unique application g : X/ ~— Y
telle que f = gom : on dit que f passe au quotient. Cette application g
a méme image que f, et est injective si et seulement si f(z) = f(2) =
x « x’. En particulier, toute application f : X — Y induit une bijection

g: X/ «— f(X), ou la relation d’équivalence sur X est donnée par x «

o' = fl) = f@).

Exemple de relations d’équivalence.

Considérons I'ensemble X = R? muni de la relation d’équivalence sui-
vante : (71,72) «~ (y1,42) & 23 + 23 = y? + y3. Les classes d’équivalence
correspondantes sont les cercles centrés en l'origine, ainsi que l'origine elle
méme. La projection 7 envoie un élément x = (xy,15) de R? sur le cercle de
rayon ||z||. Ainsi, Papplication f : R* — R donnée par f(x) = ||z|| passe au
quotient et induit une bijection g : R*/ «~— [0, 00).

Supposons maintenant que X est un espace topologique. Comment définir
une topologie sur le quotient X/ «~? Cette fois-ci, il y a une unique réponse

naturelle, que voici : en posant
UC X/ estouwvert < 71 (U) C X est ouvert,

on définit une topologie sur X/ « appelée la topologie quotient. L’espace

topologique ainsi obtenu est appelé 'espace quotient.

Remarques.

1. On vérifie facilement qu’il s’agit d’une topologie, la plus fine sur I'en-

semble quotient telle que 7 soit continue.
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2. Soient Y un espace topologique et f : X — Y une application qui
passe au quotient, induisant g : X/ «~—— Y telle que f = gom. Alors,
f est continue si et seulement si g est continue.
En effet, si g est continue, alors f = g o w I'est aussi puisque 7 est
continue pour la topologie quotient. Réciproquement, si U C Y est un
ouvert, alors 7= 1(g71(U)) = (gom) Y (U) = f~1(U) C X est ouvert
puisque f est continue; par définition de la topologie quotient, cela

signifie que g1 (U) C X/ « est ouvert, et donc que g est continue.

On a ainsi démontré ’énoncé suivant :

Toute application continue f : X — Y induit une bijection continue
g: X/ ~— f(X), ou la relation d’équivalence sur X est donnée par

ro e flr) = f(a)

C’est une sorte d’analogue topologique du premier théoréme d’isomorphisme
en théorie des groupes : tout homomorphisme de groupes f;G — G’ in-
duit un isomorphisme de groupes g : G/Ker(f) — f(G). Mais rappelons-le
encore une fois, si en théorie des groupes, un homomorphisme bijectif est
automatiquement un isomorphisme, ce n’est pas le cas en topologie : une

application continue bijective n’est pas toujours un homéomorphisme !

Autre facon :
Soit G un groupe et H un sous-groupe. Notons R la relation d’équivalence

définie sur G par :
Vo,y € G, (zRy < 2 'y € H)
La classe & d’'un = € GG est le sous-ensemble de G suivant :
r=uaH ={xy/y € H}

L’ensemble de ces classes d’équivalences est I’ensemble noté G/H. La surjec-
tion canonique 7 : G — G/H est 'application définie par : 7(z) = Z. On
définit une topologie sur G/H en décrétant qu'une partie U est un ouvert de
G/ H si et seulement si 71 (U) est un ouvert de G. C’est la topologie quotient
sur G/H.
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proposition

e La surjection canonique 7 : G — G/ H est continue et ouverte.
o (G/H est séparé si et seulement si H est fermé dans G.

Démonstration

» La continuité de ¢ découle immédiatement de la définition de la topo-

logie quotient. Soit maintenant O un ouvert de GG, on a

7 (r(0)) = O0H = | Ob
beH

Ce qui montre que 7 est ouverte.

» Si G/H est séparé alors le singleton {€} est un fermé de G/H, ce qui
conduit & H = 7~ 1{e} est un fermeé de G.
Réciproquement, Soit 2,y € G tels que vH # yH. On a donc 271y €
G/H qui est un ouvert de G. Par continuité de l'application f :
(a;b) — ax~tyb de G x G dans G au point (e, ), on peut choisir V un
voisinage ouvert, symétrique (V=! = V) de e tel que f(V;V)NH = (.
Il en résulte alors que les deux ensembles xV H et yV H sont disjoints,
et puisqu’en plus ce sont des ouverts saturés et que la projection 7 est
une application ouverte, on obtient que w(xV H) et m(yV H) sont des
voisinages ouverts disjoints respectivement de m(x) et de 7(y).

Exemple.
e Montrer que R/Z est homéomorphe & un cercle.

R/Z est séparé (puisque Z est fermé dans R). La projection cano-
nique 7 : R — R/Z est définie par m(x) = x + Z. En utilisant la
partie entiére d’'un nombre réel, on obtient que 7(R) = ¢([0, 1]) ce qui
implique que R/Z est compact. Considérons maintenant 1’application
h:R/Z — S' définie par h(Z) = €™ . 1l est clair que h est bijective

et continue, donc c’est un homéomorphisme puisque R/Z est compact.
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2.2 Actions de groupes de Lie.

Soit M une variété différentiable, notons la difféomorphisme de M par
Diff(M) et (Dif f(M)),o) est un groupe des C*°-difféomorphismes.

Définition 2.2.1. Une action de G sur M est un homomorphisme de groupes
p: G — Dif f(M). Autrement dit, pour tout g € G, p(g9) : M — M est

un difféomorphisme tel que

p(9192) = p(91) © p(g2)

L’action p de G sur M est C* si ['application évaluation :

o:GXM— M
(g,m) — p(g)(m)

est C*. On note p(g)(m) par g-m. On dira que g agit ou opére sur M.

Remarque 2.2.1. Ce que nous venons de définir est une action & gauche.
On peut définir une action a droite comme étant un anti-homomorphisme
p:G— Dif f(M), ce qui se traduit par :

p(g192) = p(g1) © p(ga)

1

Par composition avec linversion du groupe g — g, on peut passer d’une

action a droite a une action @ gauche et réciproquement.

Exemples :

1 Tout groupe sous-groupe de GL(R"™) opére sur R™ par des transfor-
mations linéaires.

2 Le groupe des rotations SO(n + 1) opére sur la sphére S”

3 La donnée d'un champ de vecteurs sur une variété compacte équivaut
a la donnée d’une

4 La donnée d’un champ de vecteurs sur une variété compacte équivaut
a la donnée d’une action (différentiable) de R sur M.

5 Tout groupe de Lie G opére sur lui méme a gauche, a droite et par

conjugaison (g, x) — grg '
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6 Si H est un sous-groupe fermé de G, alors 'action homogéne de G sur
G/H est laction différentiable : (g,aH) — gaH.

Définition 2.2.2. (Orbites et groupes d’isotropies) Soit p : G x M —
M une action différentiable d’un groupe de Lie G sur une variété différen-
tiable M.
1. Pour tout m € M, l'orbite de ’action en m est le sous-ensemble de
M :
G-m:={g-m/g e G}

2. Le groupe d’isotropie en m est :
Gn ={9€G/gx=ux}
C’est un sous-groupe de G.

Exemple 4. Les rotations autour de l'axe des z engendrent une action du

cercle St sur la sphere S?. Les orbites sont des points ou des cercles.

Exemple 5. Considérons laction adjointe du groupe unitaire G = U(n)
sur lalgébre de Lie g = u(n) des matrices anti-hermitiennes. Toute orbite
rencontre ¥ 'ensemble des matrices diagonales Diag(oy, -, ay,) avec oy €
tR. Si par exemple m désigne une matrice diagonale ou toutes les valeurs
propres sont distinctes, alors on peut montrer que le groupe d’isotropie G,
s’identifie a (SY)™ et donc 'orbite de m s’identifie au quotient U(n)/(SH)™.
Pour tout m € M , Uapplication évaluation g — g-m induit une bijection de
G/G,, sur lorbite G - m.

Définition 2.2.3. (L’espace des orbites) Soit p : G — Dif f(M) une
action. Pour m,m’ € M, la relation d’appartenance a la méme orbite est une
relation d’équivalence dont les classes d’équivalences sont les orbites G - m.

L’espace des orbites M /G est I'ensemble
M/G :={G -m/m e M}

La surjection canonique

7T M— M/G, m—G-m
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permet de munir M /G de la topologie quotient. L’action sera dite transitive

s’il n’y a qu’une seule orbite, le quotient M/G est un point.

Théoréme 2.2.1. Soit G un groupe topologique localement compact et p :
G — Dif f(M) une action effective. Alors G est un groupe de Lie et l’ac-

tion sur M est différentiable.

Exemple 6. Soit a un nombre irrationnel et considérons ['action de R sur
le tore S* x S donnée part - (€1, e%2) = (e!t+01) it02)) " Les orbites sont

denses et l’espace des orbites n’est pas séparé.

2.2.1 Orbites comme sous-variétés.

Soit p : G — Dif f(M) une action différentiable et m € M. L’applica-
tion évaluation

pm G =M, pn(g)=g-m

est différentiable (comme composé des application g — (g,m) et (g,m) —

g-m).

Théoréme 2.2.2. 1. Le groupe d’isotropie G,, est un sous-groupe de Lie
de G d’algebre de Lie g,, = kerT,.py,..
2. L’orbite G - m est une sous-variété immergé.
3. Si Uaction est transitive, l'application gG,, — g.m est un difféomor-

phisme G-équivariant de ’espace homogéne G /G, sur M.

Démonstration 2. 1 . Le groupe d’isotropie G, = p,,}{m} est un sous
fermé de G, c’est donc un sous-groupe de Lie . Son algébre de Lie

Lie(G,,) s’identifie alors a la sous-algébre de Lie

Om = {u € g/exps(tu) - m = m, pour toutt € R}

Il en résulte que pour tout u € g, pm(expa(tu)) = m; en dérivant en
t =0, on obtient Top,(u) = 0. On a ainsi montré Uinclusion g, C
kerTy,pm,. Réciproquement, soit u € ker'l,p,,. La courbe f: R — M
donnée par B(t) = expg(tu) - m, satisfait :
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/8/ (t) = Tmle:vp(tu) o Teﬂm(“) = Tmle:vp(tu)(o) = 07 vt e R

Il en résulte que expg(tu) - m = m pour tout t € R. D’oti u € g,,.
2. L’application p,, : G — M se factorise en une application différen-
tiable :
Pm: G/Gy — M, telleque py,om = pp

qui est clairement injective avec image lorbite G - m. Nous allons

montrer que les applications linéaires tangentes :

sont injectives. Puisque l'action homogéne de G sur G /G, est transi-
tive et que application p,, est G-équivariante, il suffit de le montrer
pour le cas @ = €. Soit alors v € T,(G/G,,) tel que T.p,(v) = 0,
par surjectivité de T,m on peut choisir u € g tel que Ter(u) = v. Il
en résulte que Tspy, o Tew(u) = 0, donc Tepy(u) = 0. Et par suite
u € kerTopm = gm et v ="T,m(u) = 0.

3. L’action étant transitive, Uapplication différentiable p,, : G/Gp — M
alors une immersion bijective. C’est alors un difféomorphisme. En

effet, d’apres le théoreme de Sard, il existe un point a € G/G,, tel que
Tﬁm . TE(G/Gm) — Ta-mM

est surjective, donc dimM = dim(G/G,,) et par suite tous les appli-
cations Tzpm sont des isomorphismes; le théoréme dinversion locale

permet alors de conclure que p,, est un difféomorphisme.

Remarque 2.2.2. Soit p : G — Diff(M) une action différentiable et
m € M. Soit f : N — G - m une application. On peut alors montrer
Uéquivalence que f est C™ si et seulement siio f: N — M est C* (avec
i:G-m — M linjection canonique).

2.3 Espaces homogénes.

Si H est un sous-groupe discret d’un groupe de Lie GG, alors H agit libre-

ment et proprement par translations a gauche sur G, et donc G/H admet
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une unique structure de variété C™ telle que 7 : G — G/H soit un C*°-
diffeomorphisme local.

Le but de ce paragraphe est d’étendre ceci au cas ot H est seulement supposé
un sous-groupe fermé de G.

Dans tout ce paragraphe, notons G un groupe de Lie, H un sous-groupe de

Lie de G, et m : G — G/H la projection canonique.

Théoréme 2.3.1. [l existe une et une seule structure de variété différentielle
de classe C sur lespace topologique quotient G/H, telle que 7 soit une
submersion.
De plus,

- dim(G/H) = dim(G) —dim(H) ;

- Vaction de G par translations a gauche sur G/H est de classe C™ ;

- Uapplication m est une fibration C*° de fibre H ;

- pour tout g dans G, Uapplication Tym : T,G — Ty (G/H) induit un

isomorphisme linéaire (T,G)/(T,(gH)) ~T,u(G/H) ;
- pour toute variété M de classe C*, une application f : G/H — M
est de classe C* si et seulement si f om lest.

Cette structure s’appelle la structure de variété quotient sur G/H. En par-
ticulier, Uapplication T,m induit un isomorphisme linéaire de T,G/T.H sur
Ten(G/H).
Preuve. Tout d’abord, comme H est fermé, l’espace G/H est séparé. Il est
a base dénombrable, comme toul espace quotient d’un espace & base dénom-
brable par une action dont la projection canonique est ouverte.
Soient p la dimension de H, n celle de G et A le champ de p-plans sur G,
invariant a gauche, tel que A, = T,H. Ce champ de p-plans est intégrable.
1l est donc tangent a un feuilletage F, dont les feuilles sont, par unicité, les
translatés a gauche par G de la composante neutre de H. Soit (U,p) une
carte locale feuilletée C° pour ce feuilletage, ot U est un voisinage de e et
@ : U — RPXR"7P est un C™-difféomorphisme qui envoie le feuilletage Fy
sur le feuilletage dont les feuilles sont les sous-espaces horizontaur RP x {x}.
Quitte a réduire U, comme H est une sous-variété, pour tout g dans G,
lintersection gH N U est vide ou ne contient qu’une seule feuille locale de
F dans U. Notons pry : RP x R"™P — R" P [a seconde projection. Alors

proo U — R™P induit par passage au quotient une bijection pro o @ de
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7(U) sur R"P . Comme 7 est continue et ouverte , cette bijection est un
homéomorphisme. Alors la famille (W(LgU),m)geg est un atlas de
cartes C™ sur G/H, car les applications de transitions sont localement de la
forme x — proopo L;l(O, x) donc sont de classe C.

L application 7 est alors une submersion C*, car, lue dans les cartes locales

C™ précédentes, c’est juste la seconde projection pry :

o1
LU 7% RexRvP
Tl pra d
7200 -1
T(L,U) IS Reew

L’avant derniére assertion en découle aussi. De plus, pour tout x dans G/H,
il existe un voisinage V' de x dans G/H et une section locale de m sur' V', i.e.
une application o : V. — G de classe C™ telle que m oo = I. La derniere
assertion du théoréme en découle, par le théoreme de dérivation des fonctions
cOmposées.

Pour montrer Uunicité, il suffit de montrer que s’il existe deux structures C*
sur G/H telles que m soit une submersion, alors identité de G/H est un
C>®-difféeomorphisme entre ces deux structures. Ou en disant que localement,
I'tdentité coincide avec wo o, et que m est C'°° pour une structure, et o est
C* pour lautre.

De méme, le fait que laction & gauche N\ : G x G/H — G/H soit C™ vient

du fait que localement, on peut écrire

Mg, g H) = n(go(g'H)),

avec o une section locale comme ci-dessus.
Enfin, si V' est un voisinage ouvert de xo € G/H tel qu’il existe une section
locale o de w définie sur V', alors Uapplication 6 de 7= '(V) dans V x H
définie par

g+ (m(9), g(oom(g))™)
est un C*-difféomorphisme, d’inverse (x, h) — o(x)h, qui rend le diagramme

sutvant commutatif

V) L VxH

TN\ v pr
\%
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Donc 7 est une fibration C* de fibre H. [ |

Remarque.

Si de plus H est distingué, alors G/H, muni de ses structures de variété quo-
tient et de groupe quotient, est un groupe de Lie, et la projection canonique
7w : G — G/H est un morphisme de groupes de Lie.

En effet, si o et o' sont des sections locales de w, alors application G/H X
G/H — G/H, définie par (xH,yH) — xy 'H, coincide, sur le produit des
domaines de définition de o et o', avec (u,v) — w(o(u)o(v)™t), qui est de
classe C*°.

La remarque tautologique suivante permet de construire une structure de va-
riété sur un ensemble, en exhibant celui-ci comme ensemble quotient d’un

groupe de Lie par un sous-groupe de Lie.

Remarque 2.3.1. Soit G un groupe de Lie, agissant transitivement sur un
ensemble F, tel que le stabilisateur G, d’un point x de E soit un sous-groupe
de Lie de G. Alors il existe sur E une et une seule structure de variété C'*°
telle que

e 'action de G sur F soit de classe C'™°,

e la bijection canonique G /G, — E soit un C*®-difféomorphisme.

Dans la section suivante, nous verrons que si £ admettait une structure
de variété C'™° pour laquelle 'action de G fut C'*°, alors cette structure et

celle construite dans la remarque précédente coincideraient.

2.4 Actions transitives de groupes de Lie.

Le paragraphe précédent montre qu’une variété quotient G/H d’un groupe
de Lie G par un sous-groupe de Lie H est une variété homogéne C'*°. Le but
de cette partie est de montrer que, a C*°-difféomorphisme preés, toute variété

homogeéne C'* est de cette forme.

Théoréme 2.4.1. Soit M une variété C'*°, munie d’une action C*° transi-

tive d’un groupe de Lie G. Alors pour tout x dans M, la bijection canonique
0, : G/Gy, — M est un C*-difféomorphisme.
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Preuve. Comme © = O, est obtenue par passage au quotient de 'appli-
cation orbitale ¢, : g — gx de classe C™, la bijection © est C™ (voir le
théoréme 2.3.1 ). Le théoréme d’inversion locale nous dit que © est un C°°-
difféomorphisme dés que T,© est injective en tout point u de G/G,. Il suffit
de le vérifier pour u = eGy,, car pour tout g dans G, les actions de g sur
G/G, et sur M sont des C®-difféomorphismes, rendant le diagramme sui-

vant commutatif

GG, = M
gl lg
GG, = M

Le théoreme de forme normale des applications de rang constant, appliqué a
Vg 1 g > gr, montre que
KerT,p, =T.G,.

Notons que m est une submersion et que ¢, = O om. Si X € KerlTg O C
T, (G/G,), alors en choisissant Y tel que Tn(Y) = X, onaY € KerT,p, =
T.Gy. Or par le théoréeme 2.3.1, Uapplication T.m : T.G — T, (G/G,) in-
duit un isomorphisme linéaire (T.G)/(T.G.) ~ T, (G/G,). Donc X =0 et

Te,© est injective, ce qui montre le résultat. [ ]

Remarque. Le théoreme 2.4.1 implique immédiatement le corollaire suivant.

Corollaire 2.4.1. Soit M wune variété C°, munie d’une action C*> d’un
groupe de Lie G. Alors pour tout x dans M tel que G - x soit une sous-
variété C de M, Uapplication canonique ©, : G/G, — G -z est un C*-

difféomorphisme.

Voici une condition nécessaire et suffisante pour qu’une orbite soit une

sous-variété, donnant une généralisation du théoréme 2.4.1.

Théoréme 2.4.2. Soient M une variété C*°, munie d’une action C*° d’un
groupe de Lie G, et x € M. L’orbite G - x est une sous-variété C'° si et
seulement si elle est localement fermée.

Si G - x est localement fermée, alors application canonique ©, : G/G, —

G -z est un C*-difféomorphisme.
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En particulier, si une orbite est fermée, alors c¢’est une sous-variété.

Preuve. Supposons que G - x soit localement fermée, donc localement com-
pacte. Montrons que lapplication canonique ©, : G/G, — M est un ho-
méomorphisme sur son image. Comme c’est une application C*°, et comme
la preuve du théoreme 2.4.1 implique que c’est une immersion, ['application
canonique O, sera donc un plongement C*. Donc son image est une sous-
variété C°, et ©, est un C*®-difféeomorphisme.
St nous montrons que 'application ¢, : G — G -z, défimie par g — gx, est
ouverte, alors application O, : G/G, — G - x sera une bijection continue
et ouverte (car ©,(U) = o (71 (U)) pour tout ouvert U de G/G,), donc un
homéomorphisme.
Soit U un voisinage ouvert de e dans G, montrons que U, est un voisinage
ouvert de x dans G - x. Ceci concluera, car pour tout g dans G, la partie U,
est un voisinage ouvert de g, ©,(U,) = Oy (U) et G- gz = G - w.
Soit V' un voisinage compact de e dans G tel que V=V C U. Alors Va est
compact (car @, est continue et G-z séparé), donc fermé dans G -x. Comme
G est séparable, il existe une suite (g;)ien dans G telle que G = UgiV .
ieN
Done G -x = U gi(Vx). SiV, est d’intérieur vide, alors ’espace localement
compact non 5?(?6 G est une union dénombrable d’ensembles fermés d’inté-

rieur vide, ce qui contredit le théoréme de Baire. Soit donc g dans V' tel que
gx s0it un point intérieur de V. Alors g~V est un voisinage de x, contenu

dans Uz, ce qui montre le résultat.

Corollaire 2.4.2. Soient M une variété C'*°, munie d’une action C> d’un
groupe de Lie compact G, et © € M. Alors l'orbite G - x est une sous-variété
C* compacte de M, et Uapplication canonique ©, : G/G, — G - x est un
C>-difféeomorphisme.

Preuve. Puisque G est compact et ['action continue, toute orbite est com-

pacte, donc fermée, et on applique le théoreme précédent. [ |
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2.4.1 Exemples de variétés homogénes.

(1) Un groupe de Lie est un espace homogéne de plusieurs maniéres. Voici
deux : G = G x G/G = G/e. Pour la premiére représentation de G
comme espace homogéne, G x G agit sur G par des translations a
gauche et droite, et le sous-groupe d’isotropie est G intégré en diago-
nale dans G x G.

(2) Les sphéres. Le groupe orthogonal O(n + 1) (respectivement spécial
orthogonal SO(n+1) ) agit transitivement par rotations sur la sphére
unité S,, de I'espace euclidien usuel R"*!1. En effet, étant donné deux
vecteurs unitaires, 'application qui vaut I'identité sur le supplémen-
taire orthogonal d’un plan vectoriel réel contenant ces deux vecteurs,
et la rotation d’angle égal a ’angle entre ces deux vecteurs sur ce
plan, envoie le premier vecteur sur le second. L’application de O(n)
(respectivement SO(n) ) dans O(n + 1) (respectivement SO(n + 1) )

définie par
FER 10
0 A

est un isomorphisme de groupes de Lie de O(n) (respectivement SO(n)
) sur le stabilisateur de (1,0, ...,0), par lequel nous identifions O(n)
(respectivement SO(n) ) avec son image. Donc les applications orbi-
tales en (1,0, ...,0) induisent des C*°-difféomorphismes

S, ~0(n+1)/0O(n) ~ SO(n+1)/SO(n).

Le groupe unitaire U(n+1) (respectivement spécial unitaire SU(n+1)
), agit transitivement sur la sphére unité S,,,; de lespace hermi-
tien usuel C*™!. En effet, considérons un plan vectoriel complexe P
contenant deux vecteurs unitaires, muni d’une base orthonormée telle
que ces deux vecteurs aient respectivement pour coordonnées (1,0)
et (o, ), avec |al? 4+ |B]* = 1. La matrice de Papplication linéaire
qui vaut l'identité sur le supplémentaire orthogonal de P, et admet

comme matrice sur P, dans la base choisie, la matrice

()
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est un élément de SU(n + 1) qui envoie le premier vecteur sur le
second. L’application de U(n) (respectivement SU(n) ) dans U(n+1)
(respectivement SU(n + 1) ) définie par

AHlO
0 A

est un isomorphisme de groupes de Lie de U(n) (respectivement SU(n)
) sur le stabilisateur du point (1,0, ...,0), par lequel nous identifions
U(n) (respectivement SU(n) ) avec son image. Donc les applications

orbitales en (1,0, ...,0) induisent des C*°-difféomorphismes
Sont1 = U(n+1)/U(n) ~ SU(n+1)/SU(n).

2.4.2 Variétés quotients.

Dans ce paragraphe, notons G un groupe de Lie, X une variété C'*° munie
d’une action C* de G, 7 : X — G/X la projection canonique et R C X x X
la relation d’équivalence « étre dans la méme orbite ». Le résultat suivant,

qui implique le théoréme 2.3.1, est démontré dans [1] .

Théoréme 2.4.2.1. SiR est une sous-variété fermée de classe C* de X x X,
alors il existe une et une seule structure de variété différentielle de classe C*
sur l’espace topologique quotient G /X, telle que w soit une submersion C°.

Lorsqu’elle existe, cette structure est appelée la structure de variété quotient
de X par laction de G.

Remarque. L’hypothése que R soit une sous-variété fermée est nécessaire
pour Uezistence de cette variété quotient. En effet, m x m : (X x X) —
(G/X xG/X) est une submersion car 7 lest. La diagonale A de G/X xG/X
est une sous-variété C, fermée, de G/X x G/X. Donc R = (m x m) 1 (A)

est une sous-variété C*°, fermée, de X x X.

2.5 Espaces homogénes réducteurs.

Soit G/ H un espace homogeéne et rappelons la projection 7 : G — G/H,
7(g) = gH. On va calculer le différentiel dr. : g — T,(G/H), ot 0 = 7(e) =
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H. Soit X € g et exptX le sous-groupe correspondant a un paramétre. alors

d d
dre(X) = E(T( oexptX)|i=o = %((exp tX)H)|=o

A partir nous obtenons que dm.([) = 0, c’est-a-dire kerdm, = I, nous

obtenons l'isomorphisme canonique
g/1=T,(G/H)

En général, pour tout X € g on peut définir un champ vectoriel X* sur G/H
par la formule

. d

gH — %(exth)gH’tZO

Noter la formule [X*, Y*] = —[X,Y]*

Maintenant, nous allons considérer le cas spécial important suivant. Soit g

et [ désignent les algébres de Lie de G et H respectivement.

Définition 2.5.1. Un espace homogéne est appelé réducteur s’il existe un
sous-espace m de g tel que g = md [ et Ad(h)m C m pour tout h € H,
c’est-a-dire que m est Ad(H)-invariant .

La condition Ad(h)m C m implique que [l,m] C m. L’inverse est vrai si H
est connecté. Notez que m n’a pas besoin d’étre fermé sous crochet, comme
[. Donc, en conséquence immédiate de l'isomorphisme ci-dessus, si G/H est

réducteur, nous avons l’isomorphisme canonique
m=T,(G/H)

Par exemple, si G est un groupe de Lie compact, alors G/H est réducteur,
car on peut prendre m = [+ par rapport & un produit interne ad-invariant
sur g . En fait, il peut étre montré que la définition ci-dessus n’est pas tres
restrictive : tout espace homogéne qui admet une métrique G-invariant est

réducteur. Nous nous référons a [9) pour une preuve détaillée de cela.

Exemple 7. o soit G/H = SU(3)/S(U(1) x U(1) x U(1)). La forme de
Killing de su(3) est B(X,Y) = 6trXY, et | l’ensemble {diag(ia,ib,ic) :

a+b+c=0}. Alors, par rapport ¢ B, le sous-espace m = [+ est I’ensemble
0 a; + Zb1 as + sz
—ap + lbl 0 as + Zbg a;, bl eR

—as + ibg —as + ibg 0
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