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0.1 Introduction

La géométrie di¤érentielle est un domaine très vaste des mathématiques et dont le point

de départ est l�étude des variétés di¤érentiables, qui forment une classe d�espaces géométrique

réguliers. La notion de variété di¤érentiable essaie de généraliser le calcul di¤érentiel qu�on sait

dé�nir sur Rn :

Werner Karl Heisenberg (né le 5 décembre 1901 à Wurtzbourg Allemagne, mort le 1er février

1976 à Munich Allemagne) est un physicien allemand qui est l�un des fondateurs de la mécanique

quantique. Il est lauréat du prix Nobel de physique de 1932 ��pour la création de la mécanique

quantique, dont l�application a mené, entre autres, a la découverte des variétés allotropiques de

l�hydrogène��. Un de ces travaux est l�ensemble qui porte son nom "le groupe d�Heisenberg"

dé�ni par

H3 (R) =

8>>><>>>:
0BBB@
1 x z

0 1 y

0 0 1

1CCCA 2 GL (3:R) j (x; y; z) 2 R3

9>>>=>>>;
et qui est un groupe de lie de dimension impaire et noté par H3 (ici il est donnée en dimension

trois).

La métrique du groupe Heisenberg est donné dans une variété riemannienne et qui est une

variété de contact, par

g = dx2 + dy2 + (dz +
y

2
dx� x

2
dy)2

(voir [1], [3] et [2]) .

D�autre part, L�étude des champs magnétiques et de leurs courbes magnétiques correspon-

dantes sur di¤érentes variétés est l�un des sujets de recherche importants entre la géométrie

di¤érentielle et la physique. Les courbes magnétiques sur les variétés riemanniennes sont des

trajectoires de particules chargées se déplaçant dans M sous un champ magnétique. Pendant

ce temps, les di¤érents champs magnétiques ont été étendus à di¤érents espaces ambiants cor-

respondants à des forces de Lorentz.

Notre travail est d�étudier les courbes magnétique dans le groupe Heisenberg tridimensionnel

H3 et de donner leurs formes explicites. (voir [5])

Il se compose comme suit :

Au premier chapitre, on rappelle des notions de base sur les variétés (variétés di¤érentiables,
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variétés Riemannienne et variété de contact) les connexions et le repére de Serret-Frenet.

Dans le deuxième chapitre, on étudiait, plus en détails, l�espace Heisenberg muni d�une

structure riemannienne (i.e. trouver les formules générales de connexion associé à la métrique

riemannienne et structure de contact sur le groupe Heisenberg).

Finalement, au dernier chapitre, on s�intéresse à étudier les courbes magnétiques et on déter-

mine les formules explicites des courbes magnétique dans le groupe Heisenberg tridimentionnel,

et on termine par donner des exemples.

Werner Karl

Heisenberg 1901-1976
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Chapitre 1

Généralités sur les variétés

1.1 Variétés di¤érentiables

Dé�nition 1.1 On dit que M est une variété topologique de dimension m 2 N si tout point p

de M possède un voisinage ouvert U homéomorphe à Rm i.e: il existe une application bijective

' : Rm �! U

tel que ' et son inverse '�1 sont continues.

Un point p de U est repéré par les coordonnées (p1; : : : ; pm) dans Rm de son image réciproque

'�1(p): Alors; on dit que U est un ouvert de coordonnées locales de M au voisinage de p: La

paire (U;') est appelée carte locale et (p1; : : : ; pm) = '�1(p) seront les coordonnées locales de

p:

Si (U;') et (V;  ) sont deux cartes locales telle que l�intersection U et V soit non vide alors

un point p 2 U \ V est repéré par ses coordonnées (p1; : : : ; pm) dans U et ses coordonnées

(p01; : : : ; p
0
m) dans V: Comme le diagramme

'�1(U \ V ) '�! U \ V

#
 

%

 �1(U \ V )

est commutatif alors on a

(p01; : : : ; p
0
m) =  �1 � '(p1; : : : ; pm)
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où l�application  �1 � ' est appelée changement de coordonnées de la carte (U;') vers la carte

(V;  ):

On appelle atlas dé�nissant M la donnée d�un recouvrement ouvert fUigi2I et pour chaque

i 2 I; d�un homéomorphisme 'i : Rm �! Ui; un tel objet sera toujours noté fUi; 'igi2I :

Dé�nition 1.2 On dira que M est une variété di¤érentiable si elle est une variété topologique

et l�homéomorphisme  �1 � ' est de classe C1:

1.2 Espace et �bré tangent

On considère par la suite M une variété di¤érentiable de dimension �nie m:

1.2.1 Espace tangent

Dé�nition 1.3 Soient M une variété di¤érentiable et p un point de M .

1. Un germe de fonction en p est une classe d�équivalence des fonctions dé�nies dans des voisi-

nages ouvertes de p; où on considère f et g comme d�équivalentes si elles sont égales dans une

voisinage de p comprise dans le domaine de dé�nition de f et de g:

2. Un germe de courbe en p est une classe d�équivalence des courbes passant par p; où on consi-

dère deux courbes 
1 : ] � a; a[�! M; 
1(0) = p et 
2 : ] � a0; a0[�! M; 
2(0) = p comme

équivalentes si 
1 = 
2 sur une voisinage de 0:

On désigne le germe d�une fonction f par [f ] et la germe d�une courbe 
 par [
]:

On dit que deux courbes 
1 et 
2 passant par p dé�nissent la même tangente en p si pour

tout fonction dé�nie dans un voisinage de p et dérivable en p on a:

d

dt
(f � 
1)j0 =

d

dt
(f � 
2)j0:

En fait; cette notion ne dépend que des germes [f ]; [
1] et [
2] et sur les germes de courbes

passant par p cela dé�nit une relation d�équivalence.

Remarque 1.4 Soient (p1; : : : ; pm) des coordonnées locales autour de p: Une courbe x(t) est

déterminée par son vecteur X(t) de coordonnés (x1(t); : : : ; xm(t)) et le vecteur tangent associé
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x0(0) est uniquement déterminé par le vecteur

X(0) = x0(0) = (x01(0); : : : ; x
0
m(0)):

L�ensemble des vecteurs tangents en p est un espace vectoriel de dimension m: On désigne

par @
@xk

le vecteur tangent qui correspond au k�ième vecteur unité: Chaque vecteur tangent

s�écrit comme suit

X(0) =
X
k

x0k(0)
@

@xk

où @
@xk

désigne la base de l�espace vectoriel de dimension m:

Dé�nition 1.5 On note par TpM; l�ensemble des vecteurs tangents en p qui est un espace

vectoriel de dimension m:

Si � est le vecteur tangent dé�ni par la courbe 
, alors pour chaque fonction f dérivable

autour de p; l�expression

X�(f) =
d

dt
(f � 
)j0

dépend que du vecteur tangent dé�ni par 
 et s�appelle la dérivation de f dans la direction de

�: On peut donc identi�er un vecteur tangent avec sa dérivation directionnelle associée:

X� est une application linéaire

fgermes en p de fonctions dérivablesg X��! R;

qui obéit la règle de Leibnitz

X�(f:g) = X�(f)g(p) + f(p)X�(g):

Une telle application s�appelle dérivation en p:

La remarque précédente montre qu�on peut identi�er les vecteurs tangents en p avec (certaines)

dérivations en p: En e¤et, toutes ces dérivations peuvent être obtenues comme une dérivation

directionnelle:
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1.2.2 Fibré tangent

Les espaces tangents TpM où p parcourt la variété M forment une variété di¤érentiable

dé�nie par la dé�nition suivante:

Dé�nition 1.6 On dé�nit le �bré tangent par

TM = [
p2M

TpM

TM est une variété di¤érentiable de dimension 2m: Un élément de TM est un couple (p;u)

où p est un point de M et u est un vecteur tangent à M en p:

L�application � : (p;u) 2 TM �! p 2 M est di¤érentiable appelée la projection canonique du

�bré tangent TM:

1.2.3 Champ de vecteurs

Soit M une variété di¤érentiable de dimension �nie m:

Dé�nition 1.7 On appelle un champ de vecteurs sur M toute section C1 de TM i.e.

M
X�! TM

Id & # �

M

telle que � �X = Id:

Le champ de vecteurs X en tout point p 2 M est un vecteur X(p) tangent à M en p de

façon à ce que la variation de X(p) (en fonction de p) soit di¤érentiable:

L�ensemble �(TM) est l�ensemble des champs de vecteurs sur M:

Soit 
 : I !M une courbe sur la variété M .

Dé�nition 1.8 Remarque 1.9 Un champ de vecteurs le long de 
 est une application di¤é-

rentiable V : I ! TM telle que V (t) 2 T
(t)M pour tout t 2 I:

L�exemple le plus simple de champ de vecteurs le long de 
 est le champ de vecteur vitesse


 : I !M:
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Localement; pour que X1; : : : ; Xm soit une base de �(M) il faut que X1(p); : : : ; Xm(p) soit

une base de TpM donc @1; : : : ; @m est une base de �(TM) tel que

@i :M �! TM

p 7�! (@i)p =
�

@
@xi

�
p

Un champ de vecteur dé�nit aussi une dérivation sur C1(M) il s�écrit localement par

X(p) =
mX
i=1

Xi(p)(@i)p

Un champ de vecteurs v (de classe C1)sur un ouvert U de Rnest une correspondence qui à tout

a 2 U associé un vecteur v(a) 2 TaRn dont les composantes v1(a); :::; vn(a) sont fonctions de

C1 de a:

Tous les champs de vecteurs seront désormis supposés C1:

Dé�nition 1.10 L�expression locale du crochet de lie est :

[X; Y ] = (Xi
@Yj
@xi

� Yi
@Xj

@xi
)
@

@xi

On remarque que [ @
@xi
; @
@xj
] = 0: Ceci est une caractéristique des dérivations le long de

coordonnées.

1.3 Espace et Fibré cotangent

1.3.1 Espace cotangent

Dé�nition 1.11 Soient M une variété di¤érentiable et f 2 C1p (M) une fonction di¤érentiable

en p 2M , alors

dfp : TpM ! R

v 7! dfp(v) = v(f)

et dfp 2 T �pM(dual de TpM).

On appelle T �pM l�espace cotangent de M en p: Si (U; �); x = (x1; :::; xn) est une carte en p

9



et ((@1)p; :::; (@n)p) est la base de TpM , la di¤érentielle dxip; i = 1; :::; n, des fonctions x
i en p

forme une base duale de T �pM , i.e dfp = (@i)p(f)dx
i
p:

1.3.2 Fibré cotangent

Dé�nition 1.12 Soit M une variété di¤érentiable. On dé�nit le �bré cotangent de M par

T �M =
[
p2M

T �pM

tel que

� : T �M !M

! 2 T �pM : �(!; p) = p 2M

est la projection canonique, et une section (champs covecteurs sur M ou 1-forme di¤érentielle),

une application

! :M ! T �M

avec � � ! = id:

On note par �1(M)(ou �10(M);�
�(M);�0;1(M))l�ensemble des champs covecteurs sur M:

Si(U; �) est une carte et ! un champ covecteur sur U , alors il existe des fonctions

!i : U ! R; i = 1; :::; n

tel que

! = !idx
i:

1.3.3 1-formes di¤érentielles

Dé�nition 1.13 Soient M une variété di¤érentielle et T �M le �bré cotangent de M , une

section de classe C1 de ce �bré

� :M ! T �M

10



est appelée une 1-forme di¤érentielle surM . c�est donc une application qui à tout p 2M associe

un élément �jp de T
�
pM:

On note 
1(M) l�espace vectoriel des 1-formes di¤érentielles sur M . Ainsi, si f 2 F(M); on

a df 2 
1(M) telle que

df : p! dfjp 2 T �pM

Localement, au dessus d�un ouvert U d�une carte locale (U; �) de M , on écrit

� = �idx
i

avec �i : U ! R fonction C1. Le couplage avec un champ de vecteurs X s�écrit

h�;Xi = �iX
i

Par recollement sur tous les ouverts des cartes locales, ce couplage donne une fonction C1 sur

M :

h�;Xi (p) =


�jp; Xjp

�
2 R

1.3.4 Connexion

On introduire maintenant une nouvelle structure sur une variété M . Cette structure dé�-

nit une nouvelle dérivation, la dérivation covariante. Cette dérivation agira sur les champs de

vecteurs en général.

Dé�nition 1.14 Soit M une variété di¤érentiable. Une connexion linéaire sur M est une ap-

plication

r : �(M)� �(M)! �(M)

telle que

r : (X; Y ) 7! rXY

véri�ants les propriétés :

(a) rXY est C1(M)-linéaire par rapport à X :

rfX+gYZ = frXZ + grYZ; f; g 2 C1(M)
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(b) rXY est R-linéaire par rapport à Y :

rX(aY + bZ) = arXY + brXZ; a; b 2 R

(c) véri�e la régle de Leibniz :

rXfY = frXY +X(f)Y; f 2 C1(M)

rXY est appelée la dérivée covariante de Y dans la direction de X .

pour tous X; Y; Z 2 �(M):

Dé�nition 1.15 Soient r une connexion sur M et (U; �) une carte sur M de coordonnées

locales (x1; x2; :::; xn): On dé�nit les fonctions di¤érentiables �kij : U ! R par

r @
@xi

@

@xj
=

nX
k=1

�kij
@

@xk

appelée les symboles de Christo¤el.

En générale,

rXY = X i

�
@Y k

@xi
+ �kijY

j

�
@

@xk

rX : �(M)! �(M) est la dérivée covariante associé à la connexion linéaire r:

Exemple 1.16 1/ Une connexion a¢ ne est une dérivée directionnelle de champs de vecteurs

sur une variété. Imaginez un champ de vecteurs V sur Rn (qui est une application Rn ! Rn ).

Prenez un point et choisissez un vecteur tangent X 2 Tp Rn ' Rn:

On note rXV la dérivée covariante de V en p dans la direction X. On écrit X = ai d
dxi
:

Alors

rXV = ai
dV

dxi
2 TpRn

2/ On peut voir la connexion canonique sur Rn comme

rXY = X(Y j)
d

dxi
= X idY

j

dxi
d

dxi

Les symboles de christo¤el �kij de la connexion par rapport à la base
d
dxi
sont identiquement nuls.
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Dé�nition 1.17 Soit 
 : I � R!M une courbe di¤érentiable. 
 est dite une géodésique si et

seulement si r
0

0 = 0

Dé�nition 1.18 Soit r une connexion sur une variété di¤érentiable M . Alors,

Le tenseur de torsion de r est une application

T : �(M)� �(M)! �(M)

tel que

T : (X; Y ) 7! T (X; Y ) = rXY �rYX � [X; Y ]

Proposition 1.19 Les tenseurs T et R sont linéaires et on a

1/ T (X;Y ) = �T (Y;X)

2/ R(X; Y )Z = R(Y;X)Z

3/ si T = 0; alors R(X; Y )Z +R(Z;X)Y +R(Y; Z)X = 0 qu�est appelée l�identité de Bianchi.

4/ Si on pose @
@xi
= X i; i = 1; :::; n où x1; :::; xn sont les coordonnées locales de la carte (U; �)

sur M; alors

R(X i; Y j)Xk =
nX
i=1

Rl
ijkX

l

où

Rl
ijk =

nX
m=1

(�mjk�
l
im � �mik�ljm) +X i(�ljk)�Xj(�lik):

pour tout X;Y; Z 2 �(M) on a

1.4 Métriques Riemanniennes

Soit M une variété di¤érentiable de dimension �nie m: Une métrique Riemannienne sur M

est la donnée, pour tout point p 2M , d�un produit scalaire g sur l�espace tangent TpM tel que,

pour tout couple (X;Y ) de champs de vecteurs locaux sur M , la fonction p 7! gp(X; Y ) est

di¤érentiable.

Dé�nition 1.20 Une métrique Riemannienne g dé�nie sur une variété M est une application;

g : �(TM)� �(TM) �! C1(M);

13



C1(M)-bilinéaire; symétrique; non dégénérée et dé�nie positive i.e

1. g(X;Y ) = g(Y;X); (symétrique)

2. g(X;X) = 0 =) X = 0; (non dégénérée)

3. g(X;X) � 0; (dé�nie positive)

pour tout X; Y 2 �(TM):

Sur une variété riemannienne il existe une connexion naturelle compatible avec la métrique

riemannienne. Le lemme suivant explique ce que pourra signi�er la compatibilité, entre une

métrique et une connexion.

Lemme 1.21 Soit r une connexion sur une variété riemannienne (M; g). Les assertions sui-

vantes sont équivalentes :

1. g est compatible avec r i.e pour tout X;Y; Z on a

X:g(Y; Z) = g(rXY; Z) + g(Y;rXZ)

2. Si V;W sont deux champs de vecteurs le long de la courbe 


d

dt
g(V;W ) = g(D
V;W ) + g(V;D
W )

3. Si V;W sont deux champs de vecteurs paralléle long d�une courbe 
; alors g(V;W ) est

constante.

4. Le transport paralléle Pt0t1 : T
(t0)M ! T
(t1)M est une isométrie

Théorème 1.22 Soit (M; g) une variété riemannienne. Alors il existe une unique connexion

sur M compatiple avec g et sans torsion i.e

rXY �rYX = [X;Y ]

Cette connexion est appelée la connexion de Levi-Civita associé à la métrique g.

Une variété M munie d�une métrique riemannienne g est dite variété riemannienne et est

notée (M; g). Sur une variété riemannienne (M; g); il existe une et une seule connexion a¢ ne

14



dite connexion de Levi-Civita, qui satisfait les deux conditions suivantes :

T (X; Y ) = rXY �rYX � [X; Y ] = 0 (i.e la torsion est nulle)

Zg(X; Y ) = g(rZX;Y ) + g(X;rZY ) = 0 (i.e rXg = 0 donc g est paralléle)

Si (U;') est une carte sur M et (@i)i=1;:::;m la base locale associée; alors g est donnée loca-

lement par

g =

kX
i;j=1

gijdx
i 
 dxj (1.1)

où gij sont des fonctions di¤érentiables sur U appellé composantes de la métrique relativement

á la carte (U;'):

Localement; si X = X i@i et Y = Y j@j on a

g(X; Y ) = gijX
iY j:

Pour tout p 2M on a

gp : TpM � TpM �! R

est une forme bilinéaire, symétrique, non dégénérée et dé�nie positive, où TpM désigne l�espace

tangent au point p:

Exemple 1.23 Si (U; x) une carte sur M; alors (@1; : : : ; @m) forme une base pour TpM sa base

duale est dxi;j=1;:::;m; alors la métrique g est donnée par g = gijdx
i 
 dxj = gijdx

idxj:

1.5 Connexion Riemannienne

Soit M une variété di¤érentiable de dimension �nie m:

Dé�nition 1.24 Soit g une métrique Riemannienne sur M: On dit que la métrique g est com-

patible avec la connexion r (ou parallèle); si

rg = 0 (1.2)

i.e

(rXg)(Y; Z) = 0
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où

X:g(Y; Z) = g(rXY; Z) + g(Y;rXZ) (1.3)

pour tout X; Y; Z 2 �(TM):

Dé�nition 1.25 Si (M; g) est une variété Riemannienne. On appel une connexion Rieman-

nienne ou de Levi-Civita toute connexion compatible avec g et sans torsion i.e

rXY +rYX + [X; Y ] = 0

pour tout X; Y 2 �(TM):

Dé�nition 1.26 La formule de Koszul est donnée par

2g(rXY; Z) = X(g(Y; Z)) + Y (g(Z;X))� Z(g(X;Y )) (1.4)

+g(Z; [X; Y ]) + g(Y; [Z;X])� g(X; [Y; Z]);

pour tout X; Y; Z 2 �(TM):

Dé�nition 1.27 Soit 
 : [a; b] �! M un chemin de classe Ck: On appelle champ de vecteurs

le long de la courbe 
 un chemin X : [a; b] �! TM relevant 
 i.e �(X(t)) = c(t); 8 t 2 [a; b]:

Dé�nition 1.28 Une section Y 2 �(TM) est dite parallèle par rapport à la connexion r si

rXY = 0

pour tout X 2 �(TM):

Exemple 1.29 d

dt
(t) est un champ de vecteurs le long de la courbe 
:

Proposition 1.30 Soient M une variété di¤érentiable munie d�une connexion a¢ ne r; 
 :

[a; b] �! M une courbe de classe Ck dans M et X un champ de vecteurs le long de 
: Alors

on peut dé�nir un champ de vecteurs de classe Ck�1 le long de 
; noté DtX appelé dérivée

covariante de X satisfaisant à

1. Dt est R�linéaire; i.e 8a; b 2 R; X; Y 2 �(
); Dt(aX + bY ) = aDtX + bDtY:

2. Dt(fX) =
df
dt
X + fDtX; 8f 2 C1(I)(I � R)

3. Pour tout Y 2 �(M) et X(t) = Y (
(t)); on a: DtX = r
0(t)Y:
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Dé�nition 1.31 Un champ de vecteurs X le long de 
 est dit parallèle pour la connexion r

si DtX � 0: Un chemin 
 : [a; b] �!M est appelé une géodésique Riemannienne si son champ

tangent est parallèle:

1.6 Repère de Serret-Frenet dans M 3

Soit M une variété riemannenne et 
 : I � R �! M3 une courbe paramétrée par la

longueur d�arc s. On supposera ici les courbes paramétrées bi-régulières, i.e. 
0 et 
00 linéairement

indépendants en tout point. Puisque 
 est paramétrée par sa longueur d�arc, le vecteur tangent

est unitaire i.e.

T (s) = 
0 (s) ; kT (s)k = 1

qui donne

< T (s) ; T (s) >= 1

et

rT < T (s) ; T (s) >= 2 < rTT (s) ; T (s) >= 0

d�où les vecteurs rTT (s) et T (s) sont orthogonaux et on a la dé�nition

Dé�nition 1.32 Le vecteur normal unitaire (appelé aussi vecteur normal principal) et la cour-

bure sont dé�nis par

N (s) =
rTT (s)

krTT (s)k
et �(s) = krTT (s)k :

Remarque 1.33 On a donc, comme pour les courbes planes

rTT (s) = �(s)N (s) ; (1.5)

mais ici la courbure est par dé�nition, positive et le vecteur unitaire normal est orienté dans la

même direction que rTT (s).

Dé�nition 1.34 On dé�nit ensuite le vecteur binomiale unitaire B (s) = T (s) ^ N (s) qui

complète la paire de vecteur en une base orthonormée directe fT;N;Bg appelé repère de Frenet.

On considére rTB (s), c�est un vecteur orthogonal à B (s) mais aussi à T (s) car

rTB (s) = rTT (s) ^N (s) + T (s) ^rTN (s) = T (s) ^rTN (s)
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donc rTB (s) est colinéaire avec N (s) et on peut dé�nir un fonction en s appelée la tortion

notée par � ; dé�nie par l�équation suivante

rTB (s) = �� (s)N (s) : (1.6)

Certain auteurs dé�nissent la torion par

rTB (s) = � (s)N (s) :

Remarque 1.35 La dé�nition suppose deux choses : premièrement que la courbe soit trois fois

dérivable, ensuite que la courbe soit bi-régulière au point où l�on veut dé�nir la torsion ( en

un point non régulier, on ne peut pas dé�nir le vecteur tangent unitaire, en un point non bi-

régulier, on ne peut pas dé�nir le vecteur normal unitaire car T 0 (s) = 0). On observera aussi

que la condition de bi-régularité impose que la courbure ne s�annule pas.

On calcule maintenant les coordonnées de rTN dans la base fT;N;Bg. On a

rTN = aT + bN + cB:

où a; b et c sont des fonctions en s: Utilisant Eq.(1.33), on obtient

a = hT;rTNi = �hrTT;Ni = ��;

et

b = hN;rTNi = 0

de plus

c = hB;rTNi = �hrTB;Ni = � ;

d�où

rTN = ��(s)T + � (s)B: (1.7)

On a les dé�nitionss pour des cas de la courbes 
 :

Dé�nition 1.36 1. Une courbe 
 : I � R �! M3 est dite osculatrice d�ordre 1 si r
0

0 = 0;

18



ce qui signi�e que 
 est une géodésique.

2. 
 est dite une courbe osculatrice d�ordre 2 si et seulement si0@ rTT

rTN

1A =

0@ 0 �

�� 0

1A0@ T

N

1A
dans ce cas c�est une courbe plan.

3. 
 est dite une courbe osculatrice d�ordre 3, si et seulement si0BBB@
rTT

rTN

rTB

1CCCA =

0BBB@
0 � 0

�� 0 �

0 �� 0

1CCCA
0BBB@

T

N

B

1CCCA
Exemple 1.37 Un cercle est une courbe de Frenet d�ordre osculateur 2 telle que � est une

constante positive non nulle.

Dé�nition 1.38 Une courbe 
 : I � R �! M3 paramétrée par la longueur d�arc est dite

oblique ou slant si son vecteur vitesse T fait un angle constante avec tout vecteur X parallèle le

long de la courbe 
( i.e rTX = 0), par

hT;Xi = c constant

si c=0 
 est dite courbe de Legendre.

Proposition 1.39 (Théorème de Lancret) Une courbe 
 : I � R �!M3est dite oblique si

et seulement si
�

�
est constant

Exemple 1.40 Une hélice dans (R3; geuc) est une courbe oblique et de Frenet d�ordre osculateur

3 telle que � et � sont des constantes non nulles.
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1.7 Variétés de contacts

1.7.1 Variétés de contacts

Dé�nition 1.41 Une variété di¤érentiable M de dimension 2n+ 1 est dite variété de contact

si elle admet une 1-forme � telle que

� ^ (d�)n 6= 0

pour tout point dans M .

Proposition 1.42 Pour une forme de contact � il existe un champ de vecteurs unique � tel

que

�(�) = 1

et

d�(�;X) = 0

pour tout X 2 �(TM):

1.7.2 Structure presque contact

Dé�nition 1.43 Une variété di¤érentiable M est dite a une ('; �; �)-structure si et seulement

si elle admet d�endomorphismes '; un champ de vecteurs � et une 1-forme � tels que

�(�) = 1 (1.8)

et

'2(X) = �X + �(X)� (1.9)

pour tout X 2 �(TM)

Proposition 1.44 Soit M une variété di¤érentiable avec ('; �; �)-structure . Alors

'� = 0 (1.10)
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et

� � ' = 0 (1.11)

De plus, l�endomorphisme ' a un rang égale 2n.

Preuve. Supposons que Eq.(1.8) et Eq.(1.9) sont données. Dans Eq.(1.9) on remplace X

par � donc on a

'2� = �� + �(�)�

= �� + �

= 0:

D�où '� = 0 ou bien '� est un vecteur propre non nul associé à la valeur propre 0.

Aussi par Eq.(1.9) on trouve

'2('�) = �'� + �('�)�;

mais '2('�) = '('2�) et '� = 0; donc

0 = '2('�) = �'� + �('�)�;

d�où

'� = �('�)�:

Si '� est un vecteur propre non nul associé à la valeur propre 0 alors �('�) 6= 0:

On a

'� = �('�)�;

alors,

'('�) = �('�)'�;

donc,

0 = '2� = �('�)'�;

d�où

0 = '2� = (�('�))2� 6= 0;
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contradiction avec '� = 0, donc '� = 0:

Maintenant, on prouve que � � ' = 0; d�aprés la formule Eq.(1.9) on a

'2X = �X + �(X)�;

remplaçant X par 'X alors,

'2('X) = �'X + �('X)�;

donc

�('X)� = '2('X) + 'X; (1.12)

l�équation Eq.(1.12) donne,

�('X)� = '3(X) + 'X;

mais,

'3(X) = '('2X) = '(�X + �(X)�)

= �'(X) + '(�(X))�;

l�équation Eq.(1.12) devient,

�('X)� = '(�(X))� = �(X)'�;

puisque '� = 0 donc � � ' = 0:

Dé�nition 1.45 Soient M une variété di¤érentiable avec ('; �; �) structure, g une métrique

riemannienne sur M telle que

g('X;'Y ) = g(X; Y )� �(X)�(Y );

pour tous X; Y 2 �(TM): On dit que M a ('; �; �; g) structure ou une structure presque contact

métrique, g est appellée une métrique compatible. Si on pose Y = � alors

�(X) = g(�;X):
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Proposition 1.46 Si M est une variété avec une ('; �; �) structure, alors M admet une mé-

trique Riemannienne g telle que

g('X;'Y ) = g(X; Y )� �(X)�(Y ): (1.13)

Preuve. Soit h0 une métrique Riemannienne sur M . On dé�nit h par

h(X; Y ) = h0('2X;'2Y ) + �(X)�(Y ):

on a

h(�;X) = h0('2�; '2X) + �(�)�(X):

= �(X)

Aussi h est une métrique Riemannienne. Maintenant on dé�nit g par

g(X; Y ) =
1

2
(h(X; Y ) + h('X;'Y ) + �(X)�(Y ));

g est métrique Riemanninne il reste de prouver qu�elle véri�e la condition 1.13

g('X;'Y ) =
1

2
(h('X;'Y ) + h('2�; '2X) + �('X)�('Y ))

=
1

2
(h('X;'Y ) + h(�X + �(X)�;�Y + �(Y )�))

=
1

2
(h('X;'Y ) + h(X;Y )� h(X; �(Y )�)� h(Y; �(X)�) + �(X)�(Y )h(�; �))

=
1

2
(h('X;'Y ) + h(X;Y )� �(Y )�(X)� �(X)�(Y ) + �(X)�(Y ))

=
1

2
(h('X;'Y ) + h(X;Y )� 2�(X)�(Y ) + �(X)�(Y ))

= g(X; Y )� �(X)�(Y ):

g('X;'Y ) = g(X; Y )� �(X)�(Y )
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1.7.3 Structure contact métrique

Dé�nition 1.47 On dit qu�une variété di¤érentiable M a une structure presque contact si elle

admet une 1-forme � et 2-forme � tels que

� ^ �n 6= 0;

pour tout point dans M .

Dé�nition 1.48 Soient M une variété di¤érentiable muni d�une structure presque contact

('; �; �) et d�une métrique g compatible. Alors on dé�nit la 2-forme � sur M par

�(X; Y ) = g(X;'Y ):

On dit que � la 2-forme fondamentale de structure presque contact métrique ('; �; �; g):

Dé�nition 1.49 Une variété M muni d�une structure de contact ('; �; �) est dite une variété

de contact.

Proposition 1.50 Soient M une variété di¤érentiable avec 1-forme � et 2-forme � tel que

� ^� 6= 0: Alors M admet une structure presque contact. Si M est une variété de contact avec

la forme de contact � alors il existe une structure presque contact métrique('; �; �; g) telle que

la 2-forme fondamentale � égale d�:

Dé�nition 1.51 Une structure presque de contact métrique avec � = d� est appellée une

structure presque de contact métrique associée.
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Chapitre 2

Structure de contact métrique du

groupe d�Heisenberg H3

2.1 Espace d�Heisenberg H3

L�espace d�Heisenberg H3 de R est sous-groupe du groupe linéaire GL (3:R)

H3 (R) =

8>>><>>>:
0BBB@
1 x z

0 1 y

0 0 1

1CCCA 2 GL (3:R) j (x; y; z) 2 R3

9>>>=>>>;
H3 peut être vu comme l�espace Euclidien R3 doté de la multiplication

(x; y; z)(~x; ~y; ~z) = (x+ ~x; y + ~y; z + ~z +
1

2
~xy � 1

2
~yx)

2.2 Métrique de H3

On dé�nit la métrique riemannienne g de H3 par

g = dx2 + dy2 + (dz +
y

2
dx� x

2
dy)2: (2.1)
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matriciellement, elle est donnée par

g :

0BBB@
1 + 1

4
y2 �1

4
xy �1

2
y

�1
4
xy 1 + 1

4
x2 1

2
x

�1
2
y 1

2
x 1

1CCCA
quelle est induite de

g = CT IC

où

C =

0BBB@
1 0 0

0 1 0

�1
2
y 1

2
x 1

1CCCA ;
et la matrice dé�nissent la translation est

I =

0BBB@
1 0 0

0 1 0

0 0 1

1CCCA
Quand on calcule avec la métrique riemannienne g, on emploi parfois h:; :i, alors

g(:; :) = h:; :i:

Le produit intérieur des vecteurs ~a =
P3

i=1 aiXi et ~b =
P3

i=1 biXi dans TH3 est

h~a;~bi = a1b1 + a2b2 + a3b3:

La norme d�un vecteur a est donnée par

k~ak = h~a;~ai 12 :

La métrique g est invariante par rapport aux translations à gauche correspondant à la multi-

plication.

26



2.3 Connexion

On détermine la connexion de Levi-Civita r associé à la métrique g par rapport à la base

orthonormée invariante à gauche par

e1 =
@

@x
� 1
2
y
@

@z
; e2 =

@

@y
+
1

2
x
@

@z
; e3 =

@

@z
: (2.2)

de dual

�1 = dx; �2 = dy; �3 = dz +
y

2
dx� x

2
dy:

avec

�i(ej) = �ij; i; j = 1; 3

Proposition 2.1 Le crochet de Lie des vecteurs (ei)i=1;3 est

[e1; e2] = e3; [e3; e1] = [e3; e2] = 0:

Preuve. Pour les vecteurs e3 et e1, d�après 2.2, on a

[e1; e2] = e1e2 � e2e1

= (
@

@x
� 1
2
y
@

@z
)(
@

@y
+
1

2
x
@

@z
)� ( @

@y
+
1

2
x
@

@z
)(
@

@x
� 1
2
y
@

@z
)

=
@

@z
= e3;

[e3; e1] = e3e1 � e1e3

= (
@

@z
)(
@

@x
� 1
2
y
@

@z
)� ( @

@x
� 1
2
y
@

@z
)(
@

@z
)

= 0

la preuve est la même pour le crochet [e3; e2].

Proposition 2.2 La connexion de Levi-Civita r associé à la métrique g est donnée par8>>><>>>:
re1e1 = 0; re1e2 = 1

2
e3; re1e3 = �1

2
e2;

re2e1 = �1
2
e3; re2e2 = 0; re2e3 = 1

2
e1;

re3e1 = �1
2
e2; re3e2 = 1

2
e2; re3e3 = 0:

(2.3)
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Preuve. On utilisons la formule de Kosul suivante

hrXY; Zi =
1

2
fXhY; Zi+ Y hZ;Xi � ZhX; Y i � hZ; [Y;X]i � hX; [Y; Z]i � hY; [X;Z]ig;

Pour la base (ei)i=1;3 la formule de Kosul se réduit à

hreiej; eki = �
1

2
fhek; [ej; ei]i+ hei; [ej; ek]i+ hej; [ei; ek]ig; i; j; k = 1; 3:

On fait le calcul pour re3e1,

hre3e1; e1i = �1
2
fhe1; [e1; e3]i+ he3; [e1; e1]i+ he1; [e3; e1]ig = 0;

hre3e1; e2i = �1
2
fhe2; [e1; e3]i+ he3; [e1; e2]i+ he1; [e3; e2]ig = �

1

2
;

hre3e1; e3i = �1
2
fhe3; [e1; e3]i+ he3; [e1; e3]i+ he1; [e3; e3]ig = 0;

alors

re3e1 = �
1

2
e2

de la même méthode on obtient les autres formules de connexions.

2.4 Structure de contact sur H3

La métrique riemannienne g de H3 peut être écrite comme

g = dx2 + dy2 + � 
 �; (2.4)

où

� = dz +
1

2
(ydx� xdy);

La 1-forme � satisfait

d� ^ � = ��dx ^ dy ^ dz:

Soit l�endormorphisme ' dé�nit par

'(e1) = e2; '(e2) = �e1 et '(e3) = 0:
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suivant la base (ei)i=1;3.

Lemme 2.3 La 1-forme � et l�endormorphisme ' véri�ent

�(e3) = 1;

'2(X) = �X + �(X)e3;

g('X;'Y ) = g(X; Y )� �(X)�(Y ):

et on a

d�(X; Y ) =
�

2
g(X;'Y )

pour tout X,Y 2 �(TM).

De la Section 1.7, du Lemme 2.3 et en posons � = e3; on aura la proposition suivante.

Proposition 2.4 Le groupe (H3; '; �; �; g) est une variété de contact pour � = 2:
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Chapitre 3

Courbes magnétiques dans H3

3.1 Champ magnétique

Soit (M; g) une variété Riemannienne et r la connexion de Levi-Civita associée. Les courbes

magnétiques représentent en physique, les trajectoires de particules chargées se déplaçant sur

une variété Riemannienne sous l�action de champs magnétiques

Dé�nition 3.1 Un champ magnétique sur (M; g) est une 2-forme fermée notée F et la force

de Lorentz � correspondante à F est endormorphisme antisymétrique tel que

F (X; Y ) = g(�X; Y )

pour tout X; Y 2 �(TM):

3.2 Courbes magnétiques

Dé�nition 3.2 Une courbe di¤érentiable 
 : I � R ! M est appelée une courbe magnétique,

ou un trajectoire du champ magnétique F si elle est une solution de l�équation de Lorentz ou

de Newton, suivante

r
0

0 = �(
0)

Alors en absence du magnétisme, les particules se déplacent le long des géodésiques.

30



Fig. 3-1 �les lignes de champ magnétique

Dé�nition 3.3 Un champ magnetique F est dit uniforme si

rF = 0

Proposition 3.4 Une courbe magnétique 
 : I � R!M a un vecteur vitesse constant.

Preuve. De la Défnition 3.1, on a l�antisymétrie de la force de Lorentz g(�X; Y ) =

�g(X;�Y );

d

dt
g(
0; 
0) = r
0g(


0; 
0) = g(r
0

0; 
0) + g(
0;r
0


0) = 2g(�(
0); 
0) = 0

alors la courbe 
 a une vitesse constante k
0k = c:

Dé�nition 3.5 Si la courbe magnétique est paramétrée par la longueur d�arc (i.e. k
0k = 1);

elle est dite normale.

Remarque 3.6 La courbe magnétique paramétrée par la longueur d�arc, généralise une géodé-

sique pour la force de Lorentz nulle.

Le champ pententiel sur la variété M est un 1-forme A 2 
1(M); tel que le champ magné-

tique est F = dA 2 
2(M):

31



La trajéctoire magnétique de F (ou la courbe magnétique associé à F ) est une courbe lisse 


sur M , satisfaisant l�équation de Lorentz (appelée aussi Newton,ou équation de Landau-

Hall) :

r
0

0 = �(
0) (3.1)

où r est la connexion de Levi-Civita de g; et q est la charge de la particule.

Remarque 3.7 Ces dé�nisions nous aménent aux conséquences suivantes :

1. Pour le champ magnétique trivial F = 0 () � = 0; l�équation de Landou Hall pour les

courbes magnétiques est r
0

0 = 0, ce qui signi�e que les courbes magnétiques deviennent des

géodésiques de (M; g): Par conséquent, sur toute variété Riemannienne (M; g) par l� absence

électriques et magnétiques, les particules se déplacent le long des géodésiques.

2. Les courbes magnétiques satisfont à la loi de conservation suivante : les particules évaluent

à vitesse constante, et donc à énergie constante le long des trajectoires magnétiques. En fait, à

partir de (3.1) nous avons g(�X; Y ) = �g(X;�Y ); puis

d

dt
g(
0; 
0) = r
0g(


0; 
0) = g(r
0

0; 
0) + g(
0;r
0


0) = 2g(�(
0); 
0) = 0

En raison de l�antisymétrie de la force de Lorentz, les trajectoires magnétiques ont une vitesse

constante v(t) = k
0k : Lorsque la courbe magnétique 
(t) est paramétrée par la longueur d�arc

(v0 = 1); 
 est appelée courbe magnétique normale.

3.2.1 Champs magnétiques sur (M; g)

Lemme 3.8 Soit (M; g) une variété Riemannienne. Si X 2 �(M); alors Xb est dé�ni comme

étant la forme unique donnée par

Xb(Y ) = g(X; Y )

pour tous Y 2 �(M): L�application de X vers Xb est un isomorphisme entre �(M) et ��(M) .

De plus, cet isomorphisme est linéaire sur les fonctions. En particulier, pour un 1-forme �, il y

a donc un unique X 2 �(M) telle que Xb = �: Le champ de vecteur X est noté �]

Lemme 3.9 Si dv est une forme volume sur M alors LX(dv) = (divX)dvg
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a/ Les champs magnétiques désignent des champs vectoriels sans divergence. On sait que

la dérivée de Lie et la forme volume véri�e que

LV
3 = d(iV
3) = div(V )
3

Ainsi, la forme �V b = iV
3 est fermée si et seulement si div V = 0; c�est-à-dire que l�élément

de volume est invariant par les �ux locaux de V . Cela nous permettra de considérer les champs

magnétiques de la dimension 3 comme des champs vectoriels sans divergence.

En conséquence de la bijectivité entre les champs de vecteurs U sans divergence et les champs

magnétiques FU = iUdvg sur les variétés Riemannienne, nous considérons le champ magnétique

comme étant soit U; soit FU :

b/ On peut dé�nir le produit vectoriel X ^ Y de deux champs de vecteurs X; Y 2 �(M)

quelconques dans une variété Riemannienne orientée de dimension 3, comme suit :

g(X ^ Y; Z) = 
3(X; Y; Z)

Théorème 3.10 L�équation de Landau-Hall sur (M; g) peut etre écrite sous la forme

r
0

0 = U ^ 
0:

Preuve. La force de Lorentz � associé au champ magnétique; FU = iUdvg satisfait

g(�(X); Y ) = FU(X; Y ) = (iUdvg)(X; Y ) = dvg(U;X; Y ) = g(U ^X;Y )

danc nous avons

�(
0) = U ^ 
0

pour tous X 2 �(M); et par conséquent, l�équation de la force de Lorentz, qui fournit le

champ magnétique, peut étre écrit comme

r
0

0 = �(
0) = U ^ 
0
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3.3 Courbes magnétiques dans H3

Soit (H3; '; �; �; g) une variété métrique de contact et 
 2-forme fondamontale dé�nie par


(X;Y ) = g('X; Y ) (3.2)

Puisque 
 = d� on dé�nie un champ magnétique sur H3 par

Fq(X; Y ) = �q
(X; Y ) (3.3)

où X; Y 2 �(H3) et q est une constante réelle. Nous appelons Fq le champ magnétique de

contact avec la force q. Si q = 0, alors le champ magnétique de contact est l�identique et les

courbes magnétiques sont les géodésiques de H3:

Dans la suite, on suppose q 6= 0:

La force de Lorentz �q associée au champ magnétique de contact Fq, peut être facilement

déterminée en combinant Eq.(3.21) et Eq.(3.1) c�est-à-dire

�q = q' (3.4)

où ' est le champ d�endomorphismes de la structure métrique de contact.

Dans ce cadre, l�équation de Lorentz Eq.(3.21) peut s�écrire

r
0

0 = q'
0 (3.5)

où 
 : I � R! H3 est une courbe lisse paramétrée par sa longueur d�arc. Les solutions de 3.25

sont appelées courbes ou trajectoires magnétiques normales pour Fq:

Théorème 3.11 Soit (H3; '; �; �; g) le groupe d�Heisenberg et considérons le champ magnétique

de contact Fq, pour q 6= 0 sur H3. Alors 
 est une courbe magnétique normale associée à Fq
dans H3 si et seulement si 
 satisfait l�une des assertions suivantes :

1. 
 est une géodésique obtenue sous la forme d�une courbe intégrale de e3.

2. 
 est un cercle non-Legendre de courbure � = jqj sin� et d�angle de contact constant � =

arccos(� �
2q
); où � �

2q
2 [�1; 1].

3. 
 est une hélice de Legendre avec � = jqj et � = �
2
.
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4. 
 est un hélice oblique avec � = jqj sin� et � = �
2
+ q cos�; où � est une constante telle que

� 2 (0; �):

Preuve. Si la courbe magnétique 
 est une géodésique, alors 'T = 0; ce qui signi�e que

T est colinéaire à e3; puis étant unitaire, on doit avoir T = �e3: Donc 
 est une géodésique

obtenue sous la forme de courbe intégrale de � = e3:

Puisque 
 est paramétrée par la longueur d�arc, nous pouvons écrire

T = sin� cos �e1 + sin� sin �e2 + cos�e3; (3.6)

où � = �(s) et � = �(s).

En utilisant Eq.(??) on a

rTT = (�0 cos� cos � � sin� sin �(�0 � � cos�))e1 (3.7)

+(�0 cos� cos � + sin� cos �(�0 � � cos�))e2

��0 sin�e3:

d�autre part, si on utilisent Eq.(3.6) il s�ensuit que

'T = � sin� sin �e1 + sin� cos �e2: (3.8)

Puisque 
 est une courbe magnétique

rTT = q'(T );

ce qui nous donne

�0 cos� cos � � sin� sin �(�0 � � cos�) = �q sin� sin �; (3.9)

�0 cos� sin � � sin� cos �(�0 � � cos�) = q sin� cos �; (3.10)

�0 sin� = 0: (3.11)

A partir de Eq.(3.11) nous trouvons �0 = 0 ou sin� = 0.

Si sin� = 0, alors 'T = 0. Donc par la discussion du début de la preuve, il s�ensuit que 
 est
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une géodésique obtenue sous forme de courbe intégrale de e3.

Si �0 = 0, alors � est une constante, cela signi�e que 
 est une courbe oblique. on suppose que

sin� > 0, ce qui signi�e que � 2 (0; �).

Puisque � est une constante, de Eq.(3.9) ou Eq.(3.10), on obtient �0 � � cos� = q.donc

�(s) = (� cos�+ q)s+ c; (3.12)

où c est nombre réel arbitraire.

En remplace �0 = 0 et �0 � � cos� = q, dans Eq.(3.7), on trouve

rTT = �q sin� sin �e1 + q sin� cos �e2: (3.13)

Soit maintenant T;N;B le cadre de Frenet de 
. Puisque rTT = �N , Eq.(3.13) on obtient

� = jqj sin� = constant: (3.14)

Par Eq.(3.13) et Eq.(3.14) il s�ensuit que

N = sgn(q)(� sin �e1 + cos �e2): (3.15)

Ensuite, en utilisant Eq.(3.15), Eq.(??) et �0 � � cos� = q, on trouve

rTN = sgn(q)

�
� cos �

�
�

2
cos�+ q

�
e1 � sin �

�
�

2
cos�+ q

�
e2 +

�

2
sin�e3

�
:

Maintenant on dé�nit le produit croisé � par e1 � e2 = e3 et nous calculons B = T �N . Alors

on obtient

B = sgn(q)(� cos� cos �e1 � cos� sin �e2 + sin�e3): (3.16)

Puisque rTN = ��T + �B, on trouve

�

2
sgn(q) = �jqj cos�+ sgn(q)� : (3.17)

Si 
 est de Legendre alors de Eq.(3.17), c�est une hélice de Legendre avec � = jqj et � = �
2
.

Si 
 est non- de Legendre alors de Eq.(3.17), c�est une hélice inclinée avec � = jqj sin� et
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� =
�

2
+ q cos�.

Si l�ordre osculateur est 2 (plane dans l�espace), alors à partir de Eq.(3.17) , cos� = � �
2q
.

donc 
 est une cercle avec � = jqj sin� et d�angle de contact constant � = arccos(� �
2q
),

où � �
2q
2 [�1; 1]. Inversement, supposons que 
 est une hélice oblique avec � = jqj sin� et

� =
�

2
+ q cos�, où � est l�angle de contact entre 
 et e3. Alors cos� = g(T; e3): Donc T est

de la forme Eq.(3.6). En prenant la covariante de Eq.(3.6) par rapport à T , puisque � est une

constante, on a

rTT = (�
0 � � cos�)[� sin� sin �e1 + sin� cos �e2] = �N

Donc on trouve g(e3; N) = 0. Par conséquent, e3 peut être écrit comme

e3 = cos�T + �B; (3.18)

où � = � sin� est une constante réelle puisque e3 = 1. par 3.18, par di¤érenciation covariante,

on a
�

2
'T = (��� � cos�)N; (3.19)

qui donnée
�2

4
g('T; 'T ) =

�2

4
sin2 � = (��� � cos�)2: (3.20)

Puisque � = jqj sin� et � = �

2
+ q cos�, alors l�égalité 3.20,se transforme en � = sgn(q) sin�.à

partir de l�équation 3.19, on trouve

'T = sgn(q) sin�N:

On utilise la formule de Frenet

rTT = �N = jqj sin�N = q'T

L�équation de Lorentz 3.5 est alors satisfaite. Donc 
 est une courbe magnétique. Si 
 est une
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hélice de Legendre avec � = jqj et � = �
2
, cas ci-dessus, on a

'T = sgn(q)N

et

rTT = �N = jqjN = q'T;

ce qui signi�e que 
 est une courbe magnétique.

Si 
 est un cercle non-Legendre de courbure � = jqj sin� et d�angle de contact constant � =

arccos(� �
2q
), puis en prenant � = 0 et cos� = � �

2q
encore rTT = q'T . Cela implique que 


est une courbe magnétique.

3.4 Formule explicite des courbes magnétiques dans H3

Théorème 3.12 Les courbes magnétiques oblique normales sur H3; décrites par la Dé�nition

3.2 ont les formes paramétriques données par :

a) 8>>><>>>:
x(s) = 1

v
sin� sin(vs+ c) + d1;

y(s) = � 1
v
sin� cos(vs+ c) + d2;

z(s) = (cos�+ �
2v
sin2 �)s� �

2v
d1 sin� cos(vs+ c)� �

2v
d2 sin� sin(vs+ c) + d3;

où v = � cos� + q 6= 0 et c; d1; d2; d3 sont des nombres réels et � désigne l�angle de contact qui

est une constante telle que � 2 (0; �).

b) 8>>><>>>:
x(s) = (sin� cos c)s+ d4;

y(s) = (sin� sin c)s+ d5;

z(s) = (� q
�
+ �

2
sin�(d4 sin c� d5 cos c))s+ d6;

où c; d4; d5; d6 sont des nombres réels et � désigne l�angle de contact qui est une constante telle

que � = arccos(� q
�
); où � q

�
2 [�1; 1]:

Preuve. Soit 
(s) = (x(s); y(s); z(s)) une courbe paramétrée par la longueur d�arc dans H3:
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En suite, en utilisant les équations Eq.(2.3), l�équation Eq.(3.6)peut être écrite comme

T = sin� cos �(s)(
@

@x
� �y

2

@

@z
) + sin� sin �(s)(

@

@y
+
�x

2

@

@z
) + cos�

@

@z

= (sin� cos �(s))
@

@x
+ (sin� sin �(s))

@

@y
+ (

�

2
x(s) sin� sin �(s) (3.21)

��
2
y(s) sin� cos �(s) + cos�)

@

@z
;

tel que �(s) = (� cos� + q)s + c:pour trouver les équations explicites, on intégre dy
ds
= T: Puis

en utilisant Eq.(3.21), on obtient

dx

ds
= sin� cos(vs+ c); (3.22)

dy

ds
= sin� sin(vs+ c); (3.23)

dz

ds
= (cos�+

�

2
x(s) sin� sin(vs+ c)� �

2
y(s) sin� cos(vs+ c)); (3.24)

où v = � cos�+ q:

Supposons que v 6= 0. Ainsi, l�intégration des équations Eq.(3.22) et Eq.(3.23) se donne

x(s) =
1

v
sin� sin(vs+ c) + d1 (3.25)

y(s) = �1
v
sin� cos(vs+ c) + d2; (3.26)

où d1et d2sont des constants réels. Puis en substituant les équations Eq.(3.25) et Eq.(3.26) dans

Eq.(3.24) on obtient

dz

ds
= cos�+

�

2v
sin2 �+

�

2
d1 sin� sin(vs+ c)� �

2
d2 sin� sin(vs+ c):

D�où la solution de derniére équation di¤érentielle

z(s) = (cos�+
�

2v
sin2 �)s� �

2v
d1 sin� cos(vs+ c)� �

2v
d2 sin� sin(vs+ c) + d3;

tel que d3 est un constante réelle.

Supposons maintenant que v = � cos� + q = 0: Alors � = arccos(� q
�
); où � q

�
2 [�1; 1]: Donc
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à partir des Eq.(3.22), Eq.(3.23) et Eq.(3.24), on a

dx

ds
= sin� cos c;

dy

ds
= sin� sin c

dz

ds
= (� q

�
+
�

2
x(s) sin� sin c� �

2
y(s) sin� cos c):

Similaire à la solution du cas précédent, on trouve

x(s) = (sin� cos c)s+ d4;

y(s) = (sin� sin c)s+ d5;

z(s) = (� q
�
+
�

2
sin�(d4 sin c� d5 cos c))s+ d6;

où d4; d5 et d6 sont des constantes réelles.

Exemple 3.13 Avec les conditions du Théorème 3.12 et q = 1
4
; � = �

4
; � =

p
2
4
où � =

arccos(� �
2q
) et � �

2q
2 [�1; 1] on a la formule explicite d�une courbe magnétique dans H3

donnée par

a) 8>>><>>>:
x(s) =

p
2 sin( s

2
);

y(s) = �
p
2 cos( s

2
);

z(s) = 1
2
(
p
2 + 1

2
)s;

où v =
p
2
4

p
2
2
+ 1

4
= 1

2
6= 0 et c = d1 = d2 = d3 = 0

b) 8>>><>>>:
x(s) = (

p
2
2

p
3
2
)s+ 1;

y(s) = 1
2
p
2
s+ 1;

z(s) = �s
�
1
2

p
2 + 1

16

p
3� 1

16

�
;� p

3
2
p
2
s+ 1; 1

2
p
2
s+ 1;�s

�
1
2

p
2 + 1

16

p
3� 1

16

��
où c = �

6
; d4 = d5 = 1; d6 = 0 sont des nombres

réels et � désigne l�angle de contact qui est une constante telle que � = arccos(� q
�
); où � q

�
2

[�1; 1]: (voir les �gures 3.2 et 3.3)
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Fig. 3-2 �Courbe magnetique type (a) de H3 dans (R3; geuc)

Fig. 3-3 �Courbe magnetique type (b) de H3 dans (R3; geuc)
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Chapitre 4

Conclusion

Les courbes magnétique dans H3 sont une généralisation des hélices, d�aprés l�étude qu�on a

fait ci dessus à chaque fois qu�on donne deux nombres réels q et � une valeur �xée nous obtenons

les équations paramétriques de ces courbes, et nous conclu que les courbes magnétique dans le

groupe d�Heisenberg H3 sont soit une géodésique obtenue sous la forme d�une courbe intégral

de e3 ou d�une cercle oblique non-Legendre ou d�une hélice de Legendre ou d�un hélice oblique.
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