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Introduction

La géométrie différentielle est un domaine trés vaste des mathématiques et dont le point
de départ est I’étude des variétés différentiables, qui forment une classe d’espaces géométrique
réguliers. La notion de variété différentiable essaie de généraliser le calcul différentiel qu’on sait
définir sur R™ .

Werner Karl Heisenberg (né le 5 décembre 1901 & Wurtzbourg Allemagne, mort le 1¢” février
1976 & Munich Allemagne) est un physicien allemand qui est I'un des fondateurs de la mécanique
quantique. Il est lauréat du prix Nobel de physique de 1932 << pour la création de la mécanique
quantique, dont ’application a mené, entre autres, a la découverte des variétés allotropiques de

I’hydrogene>>. Un de ces travaux est 1’ensemble qui porte son nom "le groupe d’Heisenberg"

défini par
1 z 2
H; (R) = 01y |€EGLBR)|(z,y,2) R’
0 01

et qui est un groupe de lie de dimension impaire et noté par Hj (ici il est donnée en dimension
trois).

La métrique du groupe Heisenberg est donné dans une variété riemannienne et qui est une
variété de contact, par

g =dx® +dy* + (dz + %dm — gdy)2

(voir [1], [3] et [2]) .

D’autre part, L’étude des champs magnétiques et de leurs courbes magnétiques correspon-
dantes sur différentes variétés est 'un des sujets de recherche importants entre la géométrie
différentielle et la physique. Les courbes magnétiques sur les variétés riemanniennes sont des
trajectoires de particules chargées se déplacant dans M sous un champ magnétique. Pendant
ce temps, les différents champs magnétiques ont été étendus a différents espaces ambiants cor-
respondants a des forces de LORENTZ.

Notre travail est d’étudier les courbes magnétique dans le groupe Heisenberg tridimensionnel
Hjs et de donner leurs formes explicites. (voir [5])

Il se compose comme suit :

Au premier chapitre, on rappelle des notions de base sur les variétés (variétés différentiables,


Fouzi
Zone de texte 


variétés Riemannienne et variété de contact) les connexions et le repére de Serret-Frenet.
Dans le deuxiéme chapitre, on étudiait, plus en détails, I'espace Heisenberg muni d’une
structure riemannienne (i.e. trouver les formules générales de connexion associ¢ a la métrique
riemannienne et structure de contact sur le groupe Heisenberg).
Finalement, au dernier chapitre, on s’intéresse a étudier les courbes magnétiques et on déter-
mine les formules explicites des courbes magnétique dans le groupe Heisenberg tridimentionnel,

et on termine par donner des exemples.

WERNER KARL

HEISENBERG 1901-1976



Chapitre 1

Généralités sur les variétés

1.1 Variétés différentiables

Définition 1.1 On dit que M est une variété topologique de dimension m € N si tout point p

de M posséde un voisinage ouvert U homéomorphe a R™ i.e: il existe une application bijective
o:R™" —U

1

tel que p et son inverse ¢~ sont continues.

Un point p de U est repéré par les coordonnées (py, . .., p,,) dans R™ de son image réciproque
0 1(p). Alors, on dit que U est un ouvert de coordonnées locales de M au voisinage de p. La
paire (U, o) est appelée carte locale et (py,...,pm) = @ '(p) seront les coordonnées locales de
.

Si (U, ) et (V,1)) sont deux cartes locales telle que I'intersection U et V' soit non vide alors
un point p € U NV est repéré par ses coordonnées (pi,...,p,) dans U et ses coordonnées

(P, ...,pl,) dans V. Comme le diagramme

e (UNV) & UnV

v
l /

YHUNY)

est commutatif alors on a

(p/hvp{m) = ¢—l o@(pla---apm)
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ott Papplication ¢/~ * o ¢ est appelée changement de coordonnées de la carte (U, ) vers la carte
(V. v).
On appelle atlas définissant M la donnée d’un recouvrement ouvert {U; };c; et pour chaque

i € I, d'un homéomorphisme ¢, : R™ — Uj;; un tel objet sera toujours noté {U;, ¢, }ier-

Définition 1.2 On dira que M est une variété différentiable si elle est une variété topologique

et ’homéomorphisme 1)~ o ¢ est de classe C™.

1.2 Espace et fibré tangent

On considére par la suite M une variété différentiable de dimension finie m.

1.2.1 Espace tangent

Définition 1.3 Soient M une variété différentiable et p un point de M.

1. Un germe de fonction en p est une classe d’équivalence des fonctions définies dans des voisi-
nages ouvertes de p, ot on considére f et g comme d’équivalentes si elles sont égales dans une
voisinage de p comprise dans le domaine de définition de f et de g.

2. Un germe de courbe en p est une classe d’équivalence des courbes passant par p, ot on consi-
dére deuz courbes v, : | — a,a[— M, v,(0) = p et vy : | — d',d'[— M, 7,(0) = p comme

équivalentes si vy, = 775 Sur une voisinage de 0.

On désigne le germe d’une fonction f par [f] et la germe d’une courbe ~ par [7].
On dit que deux courbes v, et v, passant par p définissent la méme tangente en p si pour

tout fonction définie dans un voisinage de p et dérivable en p on a:

d d
E(foﬁﬂo = @(fow)\o-

En fait, cette notion ne dépend que des germes [f], [v,] et [75] et sur les germes de courbes

passant par p cela définit une relation d’équivalence.

Remarque 1.4 Soient (p1,...,pm) des coordonnées locales autour de p. Une courbe xz(t) est

déterminée par son vecteur X (t) de coordonnés (x1(t),...,zn(t)) et le vecteur tangent associé



2'(0) est uniquement déterminé par le vecteur

L’ensemble des vecteurs tangents en p est un espace vectoriel de dimension m. On désigne

par % le vecteur tangent qui correspond au k—iéme vecteur unité. Chaque vecteur tangent

s’écrit comme suit
0

X(0) = (0)—

0 = L a0z

ol B%k désigne la base de I'espace vectoriel de dimension m.

Définition 1.5 On note par T,M, l’ensemble des vecteurs tangents en p qui est un espace

vectoriel de dimension m.

Si € est le vecteur tangent défini par la courbe v, alors pour chaque fonction f dérivable

autour de p, 'expression

d

Xel(f) = 2(F oDlo

dépend que du vecteur tangent défini par v et s’appelle la dérivation de f dans la direction de
&. On peut donc identifier un vecteur tangent avec sa dérivation directionnelle associée.

X¢ est une application linéaire
X
{germes en p de fonctions dérivables} —> R,

qui obéit la régle de Leibnitz

Xe(f.9) = Xe(f)gp) + f(p)Xe(g)-

Une telle application s’appelle dérivation en p.
La remarque précédente montre qu’on peut identifier les vecteurs tangents en p avec (certaines)
dérivations en p. En effet, toutes ces dérivations peuvent étre obtenues comme une dérivation

directionnelle.



1.2.2 Fibré tangent

Les espaces tangents 7,M ou p parcourt la variété A forment une variété différentiable

définie par la définition suivante.

Définition 1.6 On définit le fibré tangent par

T™ = U T,M
peEM

T M est une variété différentiable de dimension 2m. Un élément de T'M est un couple (p; u)
ol p est un point de M et u est un vecteur tangent a M en p.
L’application 7 : (p;u) € TM — p € M est différentiable appelée la projection canonique du
fibré tangent T M.

1.2.3 Champ de vecteurs

Soit M une variété différentiable de dimension finie m.

Définition 1.7 On appelle un champ de vecteurs sur M toute section C* de T M 1.e.

telle que mo X = Id.

Le champ de vecteurs X en tout point p € M est un vecteur X (p) tangent & M en p de
fagon a ce que la variation de X (p) (en fonction de p) soit différentiable.
L’ensemble I'(T'M) est I’ensemble des champs de vecteurs sur M.

Soit v : I — M une courbe sur la variété M.

Définition 1.8 Remarque 1.9 Un champ de vecteurs le long de v est une application diffé-

rentiable V : I — TM telle que V (t) € T,y M pour tout t € I.

L’exemple le plus simple de champ de vecteurs le long de 7 est le champ de vecteur vitesse

v:I— M.



Localement, pour que X7, ..., X, soit une base de I'(M) il faut que X;(p), ..., X,n(p) soit
une base de T,M donc 0y, ..., 0y, est une base de I'(T'M) tel que

0 M — TM
p— @)= ()

Un champ de vecteur définit aussi une dérivation sur C*°(M) il s’écrit localement par

Un champ de vecteurs v (de classe C*°)sur un ouvert U de R™est une correspondence qui a tout

a € U associé un vecteur v(a) € T,R" dont les composantes v;(a), ..., v,(a) sont fonctions de
C* de a.

Tous les champs de vecteurs seront désormis supposés C'™.
Définition 1.10 L’expression locale du crochet de lie est :

oy, _0X; 0

[X> Y] = (Xz

On remarque que | ai-’ %] = 0. Ceci est une caractéristique des dérivations le long de
g J

coordonnées.

1.3 Espace et Fibré cotangent

1.3.1 Espace cotangent

Définition 1.11 Soient M une variété différentiable et f € C°(M) une fonction différentiable

enp € M, alors

df, : T,M —R
v dfp(U):U(f)

et df, € Ty M (dual de T,M ).

1

On appelle T; M Uespace cotangent de M en p. Si (U,¢),x = (z*,...,2") est une carte en p
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et ((O1)p, .-, (On)p) est la base de T,M, la différentielle da:é, i=1,...,n, des fonctions x* en p
forme une base duale de Ty M, i.e df, = (0;),(f)dx},.

1.3.2 Fibré cotangent
Définition 1.12 Soit M une variété différentiable. On définit le fibré cotangent de M par
T°M = | T;M
peEM
tel que
T : T°M — M
w € TyM:7(w,p)=peM

est la projection canonique, et une section (champs covecteurs sur M ou 1-forme différentielle),

une application

w:M—T*M

avec o w = id.
On note par T (M) (ou T{(M),T*(M),T% (M) )l’ensemble des champs covecteurs sur M.

Si(U, ¢) est une carte et w un champ covecteur sur U, alors il existe des fonctions
wi:U—=Ri=1,...,n

tel que

w = w;dx".

1.3.3 1-formes différentielles

Définition 1.13 Soient M wune variété différentielle et T*M le fibré cotangent de M, une
section de classe C* de ce fibré

a:M—-T"M

10



est appelée une 1-forme différentielle sur M. c’est donc une application qui a tout p € M associe
un élément o, de T7M.

On note Q' (M) 'espace vectoriel des 1-formes différentielles sur M. Ainsi, si f € F(M), on
a df € QY(M) telle que
df :p —dfi, € T, M

Localement, au dessus d’un ouvert U d’une carte locale (U, ¢) de M, on écrit
a = o;dr’
avec «; : U — R fonction C'*°. Le couplage avec un champ de vecteurs X s’écrit
(0, X) = o, X'

Par recollement sur tous les ouverts des cartes locales, ce couplage donne une fonction C'*° sur
M
(o, X) (p) = <O‘|pﬂX|p> €eR

1.3.4 Connexion

On introduire maintenant une nouvelle structure sur une variété M. Cette structure défi-
nit une nouvelle dérivation, la dérivation covariante. Cette dérivation agira sur les champs de

vecteurs en général.

Définition 1.14 Soit M une variété différentiable. Une connexion linéaire sur M est une ap-
plication

V : D(M) x T(M) — T(M)

telle que
V:i(X,)Y)— VyxY

vérifiants les propriétés :

(a) VxY est C*°(M)-linéaire par rapport a X :

VixygvZ = fVxZ +gVyZ, frg€C™(M)

11



(b) VxY est R-linéaire par rapport ¢ Y :
Vx(@Y +bZ) =aVxY +bVxZ, a,beR
(c) vérifie la régle de Leibniz :
VxfY = fVxY + X(f)Y, fel>™(M)

VxY est appelée la dérivée covariante de Y dans la direction de X .

pour tous X,Y,Z € I'(M).

Définition 1.15 Soient V une connexion sur M et (U, ¢) une carte sur M de coordonnées
locales (1, xa, ..., x,). On définit les fonctions différentiables Pfj :U — R par

0~ = v
Ow; 03;'] —1 Y 0$k

\%

appelée les symboles de Christoffel.
En générale,
OV N\ 0
Y =X —+Thy7 | —
Vx (8xZ Ty ) oz

Vx :T'(M) = T'(M) est la dérivée covariante associé a la connexion linéaire V.

Exemple 1.16 1/ Une connexion affine est une dérivée directionnelle de champs de vecteurs
sur une variété. Imaginez un champ de vecteurs V' sur R"™ (qui est une application R" — R" ).
Prenez un point et choisissez un vecteur tangent X € T, R" ~ R".

On note VxV la dérivée covariante de V en p dans la direction X. On écrit X = a' dii'

Alors

VxV =a % S TPR

2/ On peut voir la connezion canonique sur R™ comme

d LAY d
Vx¥ = X(Yj)dxi =X dzt dz’
Les symboles de christoffel Ffj de la connexion par rapport a la base d‘ii sont identiqguement nuls.

12



Définition 1.17 Soit v: I C R —M wune courbe différentiable. v est dite une géodésique si et

seulement si V.y' =0

Définition 1.18 Soit V une connexion sur une variété différentiable M. Alors,

Le tenseur de torsion de V est une application

T :T(M) x T(M) — T(M)

tel que
T:(X,)Y)—T(X,Y)=VxY —-VyX — [X,Y]

Proposition 1.19 Les tenseurs T et R sont linéaires et on a

1/T(X,)Y)=-T(Y,X)

2/ R(X,Y)Z =R(Y,X)Z

3/ siT =0, alors R(X Y)Z +R(Z,X)Y + R(Y,Z)X =0 qu’est appelée l'identité de Bianchi.

=X, i=1,...n ouz', ..., 2" sont les coordonnées locales de la carte (U, )

sur M, alors

R(X',Y)X ZRijl

ou
n

m=1

pour tout X,Y,Z € I'(M) on a

R

1.4 Meétriques Riemanniennes

Soit. M une variété différentiable de dimension finie m. Une métrique Riemannienne sur M
est la donnée, pour tout point p € M, d'un produit scalaire g sur I’espace tangent 7,,M tel que,
pour tout couple (X,Y) de champs de vecteurs locaux sur M, la fonction p — g,(X,Y) est

différentiable.
Définition 1.20 Une métrique Riemannienne g définie sur une variété M est une application,
g:T(TM) xT(TM) — C*(M),

13



C®(M)-bilinéaire, symétrique, non dégénérée et définie positive i.e
1. g(X,Y) =gV, X), (symétrique)

2.9(X,X)=0 = X =0, (non dégénérée)

3. 9(X,X) >0, (définie positive)

pour tout X,Y € I'(T'M).

Sur une variété riemannienne il existe une connexion naturelle compatible avec la métrique
riemannienne. Le lemme suivant explique ce que pourra signifier la compatibilité, entre une

métrique et une connexion.

Lemme 1.21 Soit V une connexion sur une variété riemannienne (M, g). Les assertions sui-
vantes sont équivalentes :

1. g est compatible avec V i.e pour tout X,Y,Z on a
X.g(Y,2) = g(VxY,Z) + g(Y,VxZ)
2. Si V,W sont deux champs de vecteurs le long de la courbe

d
EQ(Va W) = g(Dﬂ/, W) + g(va D’YW)

3. S V,W sont deux champs de vecteurs paralléle long d’une courbe v, alors g(V,W) est
constante.

4. Le transport paralléle Py, = Ty oM — Ty M est une isométrie

Théoréme 1.22 Soit (M, g) une variété riemannienne. Alors il existe une unique connexion

sur M compatiple avec g et sans torsion i.e
VxY —VyX = [XY]

Cette connexion est appelée la connexion de Levi-Civita associé a la métrique g.

Une variété M munie d’'une métrique riemannienne g est dite variété riemannienne et est

notée (M, g). Sur une variété riemannienne (M, g), il existe une et une seule connexion affine

14



dite connexion de Levi-Civita, qui satisfait les deux conditions suivantes :

T(X,)Y) = VxY —VyX —[X,Y] =0 (i.e la torsion est nulle)

Zg(X,)Y) = g(VzX,Y)+9(X,V2zY) =0 (i.e Vx, =0 donc g est paralléle)

Si (U, ) est une carte sur M et (0;);—1.._m la base locale associée, alors g est donnée loca-

lement par

k
g= Z gi;da’ ® dx? (1.1)

ij=1
ou g;; sont des fonctions différentiables sur U appellé composantes de la métrique relativement
a la carte (U, p).

Localement, si X = X'0; et Y =Y79; on a

g(X,Y) = g,; XY/,
Pour tout p € M on a
gp : TyM xT,M — R

est une forme bilinéaire, symétrique, non dégénérée et définie positive, ot T, M désigne I'espace

tangent au point p.

Exemple 1.23 Si (U, z) une carte sur M, alors (01, ..., 0p,) forme une base pour T,M sa base

duale est dz; j—1._m, alors la métrique g est donnée par g = g;;dz' @ da? = gy;da’da?.

1.5 Connexion Riemannienne

Soit M une variété différentiable de dimension finie m.

Définition 1.24 Soit g une métrique Riemannienne sur M. On dit que la métrique g est com-

patible avec la connexion NV (ou paralléle), si
Vg =0 (1.2)

(VXQ)(Yv Z) =0

15



ol

X.9(Y,Z) = g(VxY. Z) +g(Y,VxZ) (1.3)
pour tout X,Y,Z € T'(TM).

Définition 1.25 Si (M, g) est une variété Riemannienne. On appel une connexion Rieman-

nienne ou de Levi-Civita toute connexion compatible avec g et sans torsion i.e
VxY+Vy X +[X,Y]=0

pour tout X, Y € T'(T'M).

Définition 1.26 La formule de KOSZUL est donnée par

29(VxY,2) = X(g(Y,2)) +Y(9(Z, X)) = Z(9(X,Y)) (1.4)

+g(Za [X, Y]) —|—g(Y7 [Z7 X]) - g(X7 D/v Z])>

pour tout X,Y, 7 € T(TM).

Définition 1.27 Soit v : [a,b] — M un chemin de classe C*. On appelle champ de vecteurs
le long de la courbe v un chemin X : [a,b] — T M relevant v i.e m(X(t)) = c(t), ¥V t € [a, b].

Définition 1.28 Une section Y € T'(TM) est dite paralléle par rapport a la connexion V si
VxY =0

pour tout X € I'(TM).
Exemple 1.29 ‘;—Z(t} est un champ de vecteurs le long de la courbe 7.

Proposition 1.30 Soient M une variété différentiable munie d’une connexion affine V, ~ :
[a,b] — M wune courbe de classe C* dans M et X un champ de vecteurs le long de vy. Alors
on peut définir un champ de vecteurs de classe C*~! le long de vy, noté D, X appelé dérivée
covariante de X satisfaisant o

1. Dy est R—linéaire, i.e Va,b € R, X|Y € I'(v), Di(aX +bY) = aD, X + bD,Y.

2. Dy(fX)=%X + fDX,Vf € C®(I)(I CR)

8. Pour tout Y € I'(M) et X(t) =Y (y(t)), on a: D;X = VY.

16



Définition 1.31 Un champ de vecteurs X le long de 7y est dit paralléle pour la connexion V
si DX = 0. Un chemin 7y : [a,b] — M est appelé une géodésique Riemannienne si son champ

tangent est paralléle.

1.6 Repére de Serret-Frenet dans M?

Soit M une variété riemannenne et v : I C R — M3 une courbe paramétrée par la
longueur d’arc s. On supposera ici les courbes paramétrées bi-réguliéres, i.e. 7' et 7" linéairement
indépendants en tout point. Puisque 7 est paramétrée par sa longueur d’arc, le vecteur tangent

est unitaire i.e.

T(s)=~"(s), IT(s)| =1

qui donne

<T(s),T(s) >=
et
Vr<T(s),T(s) >=2< V7T (s),T(s) >=0
d’ou les vecteurs V7' (s) et T'(s) sont orthogonaux et on a la définition

Définition 1.32 Le vecteur normal unitaire (appelé aussi vecteur normal principal) et la cour-

bure sont définis par

S :M €l K\S) = S

Remarque 1.33 On a donc, comme pour les courbes planes
V1T (s) = k(s)N (s), (1.5)

mais ici la courbure est par définition, positive et le vecteur unitaire normal est orienté dans la

méme direction que V1T (s).

Définition 1.34 On définit ensuite le vecteur binomiale unitaire B (s) = T (s) A N (s) qui

compléte la paire de vecteur en une base orthonormée directe {T, N, B} appelé repére de Frenet.

On considére V1B (s), c’est un vecteur orthogonal a B (s) mais aussi a T (s) car

VrB(s)=V7T (s) AN (s)+T (s) ANVyN (s) =T (s) ANVyN (s)
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donc V7B (s) est colinéaire avec N (s) et on peut définir un fonction en s appelée la tortion

notée par 7, définie par I’équation suivante

VrB(s)=—7(s)N (s). (1.6)

Certain auteurs définissent la torion par

VrB(s)=71(s)N(s).

Remarque 1.35 La définition suppose deux choses : premiérement que la courbe soit trois fois
dérivable, ensuite que la courbe soit bi-réguliére au point ot 'on veut définir la torsion ( en
un point non réqulier, on ne peut pas définir le vecteur tangent unitaire, en un point non bi-
régulier, on ne peut pas définir le vecteur normal unitaire car T' (s) = 0). On observera aussi

que la condition de bi-régularité impose que la courbure ne s’annule pas.

On calcule maintenant les coordonnées de Vo N dans la base {T', N, B}. On a

VN =aT +bN + cB.

ol a,b et ¢ sont des fonctions en s. Utilisant Eq.(1.33), on obtient

a=(T,VrN)=—(VyT,N) = —k,

et
b= (N,VrN)=0
de plus
Cc = <B,VTN> :—<VTB,N> =T,
d’ou

VrN = —k(s)T + 7 (s) B. (1.7)
On a les définitionss pour des cas de la courbes 7 :

Définition 1.36 1. Une courbe v : I C R — M? est dite osculatrice d’ordre 1 si Vv =0,
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ce qui signifie que v est une géodésique.

2. v est dite une courbe osculatrice d’ordre 2 si et seulement si

VTT 0 K T
VTN —k 0 N

dans ce cas c’est une courbe plan.

3. 7y est dite une courbe osculatrice d’ordre 3, si et seulement si

VT 0 O T
VrN | = -k 0 7 N
VTB 0 -7 0 B

Exemple 1.37 Un cercle est une courbe de Frenet d’ordre osculateur 2 telle que k est une

constante positive non nulle.

Définition 1.38 Une courbe v : I C R — M?3 paramétrée par la longueur d’arc est dite
oblique ou slant si son vecteur vitesse T' fait un angle constante avec tout vecteur X paralléle le

long de la courbe vy (i.e VX =0), par
(T, X) = ¢ constant

st ¢=0y est dite courbe de Legendre.

Proposition 1.39 (Théoréme de Lancret) Une courbe v : I C R — M?3est dite oblique si
et seulement si

-
— est constant
K

Exemple 1.40 Une hélice dans (R3, geyu.) est une courbe oblique et de Frenet d’ordre osculateur

3 telle que k et T sont des constantes non nulles.
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1.7 Variétés de contacts

1.7.1 Variétés de contacts

Définition 1.41 Une variété différentiable M de dimension 2n + 1 est dite variété de contact

si elle admet une 1-forme n telle que

n A (dn)" #0
pour tout point dans M.

Proposition 1.42 Pour une forme de contact n il existe un champ de vecteurs unique & tel

que

et

pour tout X € I'(TM).

1.7.2 Structure presque contact

Définition 1.43 Une variété différentiable M est dite a une (p, &, n)-structure si et seulement

si elle admet d’endomorphismes @, un champ de vecteurs & et une 1-forme n tels que

n(¢) =1 (1.8)

et

pour tout X € I'(T'M)

Proposition 1.44 Soit M une variété différentiable avec (p, &, n)-structure . Alors

0 =0 (1.10)
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et
noyp=20 (1.11)

De plus, l’endomorphisme ¢ a un rang égale 2n.

Preuve. Supposons que Eq.(1.8) et Eq.(1.9) sont données. Dans Eq.(1.9) on remplace X

par £ donc on a

P¢ = —E+m()E
= —€+¢

Dot € = 0 ou bien & est un vecteur propre non nul associé a la valeur propre 0.

Aussi par Eq.(1.9) on trouve

©*(p€) = —p€ + n(Pé)E,
mais p*(p€) = @(¢*¢) et p& = 0, donc
0 = *(p€) = —p€ +n(PE)E,

d’ou
& = n(ps)§.

Si @€ est un vecteur propre non nul associé a la valeur propre 0 alors n(p) # 0.

On a

p€ = n(pE)¢,
alors,
p(p8) = n(ps)es,
donc,
0= ¢*¢ = (&) gk,
d’ou

0= ¢*¢ = (n(€))*¢ # 0,
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contradiction avec & = 0, donc & = 0.

Maintenant, on prouve que o ¢ = 0, d’aprés la formule Eq.(1.9) on a

remplacant X par X alors,
P (pX) = —pX +1(pX)E,

donc

n(pX)E = *(0X) + ¢X, (1.12)

I'équation Eq.(1.12) donne,
n(eX)€ = " (X) + ¢ X,

mais,

(X)) = o(*X) = p(—X +n(X)E)

= —o(X) +pn(X)),

I’équation Eq.(1.12) devient,

n(eX)§ = p(n(X))§ = n(X)es,
puisque 9§ =0 doncnop =0. =

Définition 1.45 Soient M wune variété différentiable avec (p,&,n) structure, g une métrique

riemannienne sur M telle que

9(pX,pY) = g(X,Y) = n(X)n(Y),

pour tous X,Y € T'(TM). On dit que M a (¢,&,n,g) structure ou une structure presque contact

métrique, g est appellée une métrique compatible. St on pose Y = & alors

n(X) = g(§, X).
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Proposition 1.46 Si M est une variété avec une (¢,&,n) structure, alors M admet une mé-

trique Riemannienne g telle que

g(pX,9Y) = g(X,Y) = n(X)n(Y). (1.13)

Preuve. Soit A’ une métrique Riemannienne sur M. On définit h par
h(X,Y) = K (@*X,0%Y) +n(X)n(Y).
on a

h(EX) = (€ ¢*X) +n()n(X).

Aussi h est une métrique Riemannienne. Maintenant on définit g par
1
g(X.Y) = S (MX,Y) + h(pX, oY) + n(X)n(Y)),
g est métrique Riemanninne il reste de prouver qu’elle vérifie la condition 1.13

9(pX,9Y) = %(h(soK PY) + h(*€, 0*X) + n(pX)n(¢Y))
= (X, @Y) + h(=X +n(X)E, ~Y +n(¥)9))
= (X, g¥) 4 B(X.Y) = h(X.0(Y)€) — A(Y,n(X)E) +n(X)n(¥ )h(€.€)
= L(heX, oY)+ B(X,Y) = (Y () — n(X)n(V) + n(X)n(¥)

_ %(h(wx, PY) + h(X,Y) = 20(X)n(Y) +n(X)n(Y))

= g(X,Y) —n(X)n(Y).

g(pX,9Y) = g(X,Y) —n(X)n(Y)
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1.7.3 Structure contact métrique

Définition 1.47 On dit qu’une variété différentiable M a une structure presque contact si elle

admet une 1-forme n et 2-forme ® tels que

nA®"#0,

pour tout point dans M.

Définition 1.48 Soient M wune wvariété différentiable muni d’une structure presque contact

(p,&,m) et d’une métrique g compatible. Alors on définit la 2-forme ® sur M par

O(X,Y) = g(X,pY).

On dit que ® la 2-forme fondamentale de structure presque contact métrique (v,&,1,9).

Définition 1.49 Une variété M muni d’une structure de contact (p,&,n) est dite une variété

de contact.

Proposition 1.50 Soient M une variété différentiable avec 1-forme n et 2-forme ® tel que
nA® #£0. Alors M admet une structure presque contact. Si M est une variété de contact avec
la forme de contact n alors il existe une structure presque contact métrique(p,&,n,g) telle que

la 2-forme fondamentale ® égale dn.

Définition 1.51 Une structure presque de contact métrique avec ® = dn est appellée une

structure presque de contact métrique associée.
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Chapitre 2

Structure de contact métrique du

groupe d’Heisenberg Hj

2.1 Espace d’Heisenberg Hs;

L’espace d’Heisenberg Hj de R est sous-groupe du groupe linéaire GL (3.R)

1 = =
H; (R) = 01 y e GL (S.R) \ (x,y,z) eR?
0 0 1

H; peut étre vu comme 'espace Euclidien R3 doté de la multiplication

1 1

2.2 Métrique de H;
On définit la métrique riemannienne g de Hs par
2 2 Y Lo \2
g =dz* +dy* + (dz + §dx — Edy) . (2.1)
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matriciellement, elle est donnée par

g —ixy 1+ }LxQ %x
—%y %x 1
quelle est induite de
g=CTIC
ou
1 0 0
C=10o0 1 0 |
—%y %:c 1

et la matrice définissent la translation est

1 00
I'=1010
0 01

Quand on calcule avec la métrique riemannienne g, on emploi parfois (., .), alors
g(,)=(,.).
Le produit intérieur des vecteurs @ = 2?21 a; X; et b= Z?Zl b; X; dans TH est

<C_1:, b> = a1b1 + a2b2 + a3b3.

La norme d’un vecteur a est donnée par

Y
Il
—
B
Sy
~

[NIES

La métrique g est invariante par rapport aux translations a gauche correspondant & la multi-

plication.
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2.3 Connexion

On détermine la connexion de Levi-Civita V associé & la métrique g par rapport a la base

orthonormée invariante a gauche par

Lo 1o 0 10 0 )
=9 279 62_8y 29 C T oz ’
de dual
0 = dr, 02 = dy, 03:dz+%dx—gdy.
avec

0'(c;) = 0%;i,j =1,3
Proposition 2.1 Le crochet de Lie des vecteurs (e;),_13 est
[617 62] = €3, [637 61] = [637 62] =0.

Preuve. Pour les vecteurs e3 et e, d’apres 2.2, on a

[61, 62] = €162 — €26
0 1 9.0 1 0 0 1 0. 0 1 0
= (% - 59@)(@ + 5-’13%) - (8_y + 51'&)(% - §y£)
0
9z &
[637 61] = €361 — €1€3

ag.,0 1 0 0 1 9.0
= (@)(% - 53/@) - (8_:c - 59@)(@)
=0

la preuve est la méme pour le crochet [es3, eo]. B

Proposition 2.2 La connerion de Levi-Civita V associé a la métrique g est donnée par

1 1
Veer = 0, Veer = 563, Ve = —jgeo,
_ 1 _ 1
V(3261 — _5637 v6262 — 07 v€2€3 5617 (23)
1 1
V6361 = _5627 vegeQ = 5627 v63363 = 0.
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Preuve. On utilisons la formule de KOSUL suivante
1

Pour la base (e;);_13 la formule de KOSUL se réduit a

(Veej,ex) = —%{(% lej, i) 4 (e, [ej, exl) + (s [eq, exl) 134, 5,k = 1, 3.

On fait le calcul pour Ve,

(Veger,er) = —%‘U@h [e1, e3]) + (e, [e1, e1]) + (e1, [es, e1]) } = 0,
(Veenen) = —gllealenes)) + (es fen,eal) + en esseal)} = =,
(Veser,e3) = —%{<63a [e1, €3]) + (€3, [e1, e3]) + (€1, [e3, e3]) } = 0,
alors
1
Ve,e1 = —562

de la méme méthode on obtient les autres formules de connexions. m

2.4 Structure de contact sur Hj

La métrique riemannienne g de Hj3 peut étre écrite comme
g=dz’ +dy* +n@mn, (2.4)

ou

1
n=dz+ E(ydx — xdy),

La 1-forme 7 satisfait

dnANn = —Xdx ANdy N dz.

Soit I’endormorphisme ¢ définit par

ple1) = e, @(e2) = —er et p(es) =0.
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suivant la base (¢;),_13-

Lemme 2.3 La 1-forme n et l’endormorphisme ¢ vérifient

PI(X) = =X +n(X)es,

g(eX, oY) = g(X,Y) —n(X)n(Y).

et on a

A
dn(X,Y) = 59(X, ¢Y)
pour tout X,Y € I'(TM).
De la Section 1.7, du Lemme 2.3 et en posons £ = e3, on aura la proposition suivante.

Proposition 2.4 Le groupe (Hs, ¢,&,n,9) est une variété de contact pour A = 2.
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Chapitre 3

Courbes magnétiques dans Hj

3.1 Champ magnétique

Soit (M, g) une variété Riemannienne et V la connexion de Levi-Civita associée. Les courbes
magnétiques représentent en physique, les trajectoires de particules chargées se déplacant sur

une variété Riemannienne sous l’action de champs magnétiques

Définition 3.1 Un champ magnétique sur (M, g) est une 2-forme fermée notée F et la force

de LORENTZ ¢ correspondante a F' est endormorphisme antisymétrique tel que
F(X)Y) = g(¢X,Y)

pour tout X, Y € T'(T'M).

3.2 Courbes magnétiques

Définition 3.2 Une courbe différentiable v : I C R — M est appelée une courbe magnétique,
ou un trajectoire du champ magnétique F' si elle est une solution de l’équation de LORENTZ ou

de NEWTON, suivante
Vo' =o(7)

Alors en absence du magnétisme, les particules se déplacent le long des géodésiques.
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Fic. 3-1 — les lignes de champ magnétique

Définition 3.3 Un champ magnetique F' est dit uniforme si
VF =0

Proposition 3.4 Une courbe magnétique v : I CR — M a un vecteur vitesse constant.

Preuve. De la Défnition 3.1, on a l'antisymétrie de la force de LORENTZ ¢(¢X,Y) =
_g(X7 ¢Y)7

d
907 = V9(77) = g(Var' 1) (v, Vi) = 29(0(7), ) = 0
alors la courbe 7 a une vitesse constante ||| =c. m

Définition 3.5 Si la courbe magnétique est paramétrée par la longueur d’arc (i.e. ||| = 1),

elle est dite normale.

Remarque 3.6 La courbe magnétique paramétrée par la longueur d’arc, généralise une géodé-

sique pour la force de LORENTZ nulle.

Le champ pententiel sur la variété M est un 1-forme A € Q(M), tel que le champ magné-

tique est F' = dA € Q*(M).
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La trajéctoire magnétique de F' (ou la courbe magnétique associé a F') est une courbe lisse
sur M, satisfaisant I’équation de LORENTZ (appelée aussi NEWTON,ou équation de LANDAU-

HarLL) :

V' = 6(7) (3.1)

ou V est la connexion de LEVI-CIVITA de g, et ¢ est la charge de la particule.

Remarque 3.7 Ces définisions nous aménent aux conséquences suivantes :
1. Pour le champ magnétique trivial FF = 0 <= ¢ = 0, l’équation de Landou Hall pour les
courbes magnétiques est V., = 0, ce qui signifie que les courbes magnétiques deviennent des
géodésiques de (M, g). Par conséquent, sur toute variété Riemannienne (M, g) par I’ absence
électriques et magnétiques, les particules se déplacent le long des géodésiques.
2. Les courbes magnétiques satisfont a la loi de conservation suivante : les particules évaluent

a vitesse constante, et donc a énergie constante le long des trajectoires magnétiques. En fait, a

partir de (3.1) nous avons g(®X,Y) = —g(X, ®Y), puis
d / !/ / !/ / / / !/ !/ /
59077 = Vag(r,7') = 9(Vory', ) + 97, Vary) = 29(2(7),7) = 0

En raison de l’antisymétrie de la force de LORENTZ, les trajectoires magnétiques ont une vitesse
constante v(t) = ||| . Lorsque la courbe magnétique ~(t) est paramétrée par la longueur d’arc

(vo = 1), v est appelée courbe magnétique normale.

3.2.1 Champs magnétiques sur (M, g)

Lemme 3.8 Soit (M, g) une variété Riemannienne. Si X € T'(M), alors X est défini comme

étant la forme unique donnée par

X'(Y) = g(X.Y)

pour tous Y € T'(M). L’application de X vers X° est un isomorphisme entre T'(M) et T*(M) .
De plus, cet isomorphisme est linéaire sur les fonctions. En particulier, pour un 1-forme n, il y

a donc un unique X € T'(M) telle que X° = 1. Le champ de vecteur X est noté n*

Lemme 3.9 Si dv est une forme volume sur M alors Lx (dv) = (div X)dv,
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a/ Les champs magnétiques désignent des champs vectoriels sans divergence. On sait que

la dérivée de Lie et la forme volume vérifie que

ngg = d(’vag) = le(V)Qg

Ainsi, la forme *V? = iy, Q3 est fermée si et seulement si divV = 0, c’est-a-dire que I’élément
de volume est invariant par les flux locaux de V. Cela nous permettra de considérer les champs
magnétiques de la dimension 3 comme des champs vectoriels sans divergence.

En conséquence de la bijectivité entre les champs de vecteurs U sans divergence et les champs
magnétiques Fyy = iydv, sur les variétés Riemannienne, nous considérons le champ magnétique
comme étant soit U, soit Fy;.

b/ On peut définir le produit vectoriel X AY de deux champs de vecteurs X,Y € I'(M)

quelconques dans une variété Riemannienne orientée de dimension 3, comme suit :

g(X/\Y7Z) = 93(X7Y>Z)

Théoréme 3.10 L’équation de LANDAU-HALL sur (M, g) peut etre écrite sous la forme

V' =UANA.

Preuve. La force de LORENTZ ® associé au champ magnétique, Iy = ipdv, satisfait

g(®(X),Y) = Fy(X,Y) = (ipdv,)(X,Y) = dvy (U, X,Y) = g(U A X,Y)

danc nous avons

() =UNnYy

pour tous X € I'(M), et par conséquent, I’équation de la force de LORENTZ, qui fournit le

champ magnétique, peut étre écrit comme
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3.3 Courbes magnétiques dans Hj

Soit (Hs, ¢, &, 7, g) une variété métrique de contact et 2 2-forme fondamontale définie par
QX,Y) =g(eX,Y) (3.2)
Puisque 2 = dn on définie un champ magnétique sur Hs par
F,(X,Y)=—¢QX,Y) (3.3)

ou X,Y € I'(Hs) et ¢ est une constante réelle. Nous appelons F; le champ magnétique de
contact avec la force ¢. Si ¢ = 0, alors le champ magnétique de contact est 'identique et les
courbes magnétiques sont les géodésiques de Hi.

Dans la suite, on suppose ¢ # 0.
La force de LORENTZ ¢, associée au champ magnétique de contact Fy, peut étre facilement

déterminée en combinant Eq.(3.21) et Eq.(3.1) c¢’est-a-dire

b, = qp (3.4)

ol ¢ est le champ d’endomorphismes de la structure métrique de contact.

Dans ce cadre, I’équation de LORENTZ Eq.(3.21) peut s’écrire

Vo' = qpy (3.5)

ou v : I C R — Hj est une courbe lisse paramétrée par sa longueur d’arc. Les solutions de 3.25

sont appelées courbes ou trajectoires magnétiques normales pour Fy,.

Théoréme 3.11 Soit (Hs, ¢, &, n, g) le groupe d’Heisenberg et considérons le champ magnétique
de contact F,, pour ¢ # 0 sur Hs. Alors v est une courbe magnétique normale associée a F
dans Hs si et seulement si v satisfait ['une des assertions suivantes :

1. v est une géodésique obtenue sous la forme d’une courbe intégrale de es.

2. «y est un cercle non-Legendre de courbure k = |q|sina et d’angle de contact constant o =

arccos(—%), ou —2—’\q € [-1,1].
2

3. v est une hélice de Legendre avec k = |q| et T = 3.
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4. 7 est un hélice oblique avec k = |q|sina et T = % + gcosa, ot v est une constante telle que

a € (0,m).

Preuve. Si la courbe magnétique v est une géodésique, alors T = 0, ce qui signifie que

T est colinéaire a es, puis étant unitaire, on doit avoir 7" = +e3. Donc ~ est une géodésique

obtenue sous la forme de courbe intégrale de & = e3.

Puisque v est paramétrée par la longueur d’arc, nous pouvons écrire
T = sin av cos Be; + sin asin fey + cos aes,

ol a=a(s) et B = p(s).

En utilisant Eq.(??) on a

VT = (o' cosacos —sinasin (8 — Acosa))e;
+(a’ cosacos B+ sinavcos (" — Acos a))eq

—a/ sin aes.
d’autre part, si on utilisent Eq.(3.6) il s’ensuit que
¢TI = —sin asin Be; + sin a cos fes.
Puisque v est une courbe magnétique
VT = qo(T),
ce qui nous donne
o’ cosacos B — sinasin B(8" — A cosa) = —¢gsin asin 3,

o' cosasin 3 — sinacos B(8" — A cosa) = gsin acos 3,
o sina = 0.

A partir de Eq.(3.11) nous trouvons o = 0 ou sin o = 0.

(3.6)

(3.7)

(3.10)

(3.11)

Si sina = 0, alors ¢T" = 0. Donc par la discussion du début de la preuve, il s’ensuit que 7 est
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une géodésique obtenue sous forme de courbe intégrale de e3.
Si o/ = 0, alors « est une constante, cela signifie que v est une courbe oblique. on suppose que
sina > 0, ce qui signifie que o € (0, 7).

Puisque « est une constante, de Eq.(3.9) ou Eq.(3.10), on obtient 3" — X cos a = ¢q.donc
B(s) = (Acosa+ q)s + c, (3.12)

ou ¢ est nombre réel arbitraire.

En remplace o/ =0 et 3" — Acosa = ¢, dans Eq.(3.7), on trouve
V7T = —qsin asin fe; + ¢sin « cos Ses. (3.13)
Soit maintenant 7', N, B le cadre de Frenet de «y. Puisque V7T = kN, Eq.(3.13) on obtient
Kk = |q| sin @ = constant. (3.14)
Par Eq.(3.13) et Eq.(3.14) il s’ensuit que
N = sgn(q)(—sin fe; + cos Sey). (3.15)
Ensuite, en utilisant Eq.(3.15), Eq.(?7?) et ' — Acosa = ¢, on trouve
VN = sgn(q) (— cos 3 (% cosa + q) e; —sin 3 (% cos v + q) es + %sin ozeg) )

Maintenant on définit le produit croisé x par e; X e; = e3 et nous calculons B =T x N. Alors
on obtient

B = sgn(q)(— cos acos fe; — cos asin fes + sin ves). (3.16)

Puisque VN = —kT + 7B, on trouve

A

Esgn(q) = —|q| cosa + sgn(q)T. (3.17)
Si v est de Legendre alors de Eq.(3.17), c’est une hélice de Legendre avec x = || et 7 = 3.
Si v est non- de Legendre alors de Eq.(3.17), c’est une hélice inclinée avec k = |¢|sina et
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A
T = 5 + g cosa.

Si l'ordre osculateur est 2 (plane dans ’espace), alors a partir de Eq.(3.17) , cosa = —2—Aq.

donc 7y est une cercle avec kK = |q|sina et d’angle de contact constant a = arccos(—z—/\q),

ou —% € [—1,1]. Inversement, supposons que vy est une hélice oblique avec k = |¢|sina et

T=3 + gcosa, ou «a est 'angle de contact entre «y et ez. Alors cosa = ¢(T, e3). Donc T est

de la forme Eq.(3.6). En prenant la covariante de Eq.(3.6) par rapport a T', puisque « est une

constante, on a
VT = (8" — Acosa)|[— sinasin Be; + sin a cos feg] = kN
Donc on trouve g(es, N) = 0. Par conséquent, e3 peut étre écrit comme
es = cosaTl + uB, (3.18)

ol i = Fsin « est une constante réelle puisque ez = 1. par 3.18, par différenciation covariante,

on a
A
§<pT = (Tp — Kkcosa)N, (3.19)
qui donnée
AZ 2
Zg(goT, oT) = T sin® o = (T — K cos a)?. (3.20)

A
Puisque k = |g|sina et 7 = 3 + g cos a, alors I'égalité 3.20,se transforme en p = sgn(q) sin a.a

partir de I’équation 3.19, on trouve
©T = sgn(q) sin aN.
On utilise la formule de Frenet
V1T = kN = |q|sinaN = qoT

L’équation de LORENTZ 3.5 est alors satisfaite. Donc v est une courbe magnétique. Si v est une
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hélice de Legendre avec k = |q| et 7 = %, cas ci-dessus, on a
¢T = sgn(q)N

et
VT = kN = |q|N = q¢T,

ce qui signifie que v est une courbe magnétique.
Si 7 est un cercle non-Legendre de courbure xk = |g|sina et d’angle de contact constant o =
A

arccos(—%), puis en prenant 7 = 0 et cosa = —3, encore VT = qpT. Cela implique que ~

est une courbe magnétique. m

3.4 Formule explicite des courbes magnétiques dans Hij

Théoréme 3.12 Les courbes magnétiques oblique normales sur Hs, décrites par la Définition

3.2 ont les formes paramétriques données par :

a)

z(s) = L sinasin(vs + ¢) + dy,

y(s) = —Lsinacos(vs + ¢) + do,

z(s) = (cos o + 2 sin® a)s — 2-dy sinacos(vs + ¢) — dpsinasin(vs + ¢) + ds,

ot v =Acosa+q#0 et c,dy,ds,ds sont des nombres réels et o désigne l’angle de contact qui
est une constante telle que o € (0, ).
b)
x(s) = (sinacosc)s + dy,
y(s) = (sinasinc)s + ds,
2(s) = (=% + sina(dysinc — ds cos ¢))s + d,
ol ¢, dy, ds,dg sont des nombres réels et o désigne l’angle de contact qui est une constante telle
q

que a = arccos(—1), ot —{ € [~1,1].

Preuve. Soit y(s) = (x(s),y(s), 2(s)) une courbe paramétrée par la longueur d’arc dans Hs.
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En suite, en utilisant les équations Eq.(2.3), l'équation Eq.(3.6)peut étre écrite comme

. 0 Ay o L 0 Xx o 9,
T = smacosﬁ(s)(% 7%)+smasm6(s)(a—y—1—7&)—#@8&&
. 0 . . 0 A . :
= (sinacos B(S))f)_x + (sin arsin 6(8))a—y + (§m(s) sin asin 3(s) (3.21)

——y(s)sinacos (s) + cos a)

9 0z’

. , . .. ., dy .
tel que B(s) = (Acosa + q)s + c.pour trouver les équations explicites, on intégre 3¢ = T. Puis

en utilisant Eq.(3.21), on obtient

d

'~ sna cos(vs + ¢), (3.22)

ds

% = sinasin(vs + ¢), (3.23)
s

dz A o A .

o = (cos o + §x(s) sinasin(vs + ¢) — §y(s) sin a cos(vs + ¢)), (3.24)
s

ot v = Acosa+ q.

Supposons que v # 0. Ainsi, l'intégration des équations Eq.(3.22) et Eq.(3.23) se donne

1
x(s) = . sin asin(vs + ¢) + d; (3.25)
1
y(s) = ——sinacos(vs+ c¢) + da, (3.26)
v

ot dyet dasont des constants réels. Puis en substituant les équations Eq.(3.25) et Eq.(3.26) dans
Eq.(3.24) on obtient

d A A A
d—z = cosa + % sin? o 4 §d1 sin asin(vs + ¢) — §d2 sin asin(vs + ¢).

D’ot la solution de derniére équation différentielle

A
z(s) = (cosa + %0 sin a)s — %dl sin v cos(vs + ¢) — ﬂdg sin asin(vs + ¢) + ds,

tel que dsz est un constante réelle.

Supposons maintenant que v = Acosa + q = 0. Alors a = arccos(—1), ot —% € [~1,1]. Donc

39



a partir des Eq.(3.22), Eq.(3.23) et Eq.(3.24), on a

dz .

— = sinacosc

ds ’

dy L

-~ = sginasinc

ds

d A

d_z = (—% + §x(s) sin o sin ¢ — §y(s) sin v cos ¢).

Similaire o la solution du cas précédent, on trouve

z(s) = (sinacosc)s+ dy,
y(s) = (sinasinc)s+ ds,
A
z(s) = (—% + §sina(d4 sinc — ds cosc))s + dg,

ou dy, ds et dg sont des constantes réelles. m

=

S

Exemple 3.13 Avec les conditions du Théoréme 3.12 et q = i, a =7, A=
arccos(—ﬁ) et —% € [-1,1] on a la formule explicite d’une courbe magnétique dans Hs

donnée par

a)

ouv:\/TQ\/TQ—I—i:%%O etc=d;=dy=d3 =0

<%s+ 1,%55—1— 1,—s (%\/5—1— % — %))ou c=%,dy = ds = 1,d¢ = 0 sont des nombres
réels et o désigne l'angle de contact qui est une constante telle que aw = arccos(—21), ou —4 €

) )
[—1,1]. (voir les figures 3.2 et 3.3)
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F1G. 3-2 — Courbe magnetique type (a) de Hs dans (R3, ge,.)

F1G. 3-3 — Courbe magnetique type (b) de Hs dans (R?, gey.)
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Conclusion

Les courbes magnétique dans Hjs sont une généralisation des hélices, d’aprés ’étude qu’on a
fait ci dessus a chaque fois qu’on donne deux nombres réels ¢ et o une valeur fixée nous obtenons
les équations paramétriques de ces courbes, et nous conclu que les courbes magnétique dans le
groupe d’Heisenberg Hj3 sont soit une géodésique obtenue sous la forme d’une courbe intégral

de e3 ou d’une cercle oblique non-Legendre ou d’une hélice de Legendre ou d’un hélice oblique.
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