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Introduction

Les équations différentielles ordinaires où les équations faisant intervenir une fonc-
tion et sa dérivée exprimées aux même temps, ont toujours joué un rôle important
dans la modélisation de déférents phénomènes. L’étude de certains problèmes existe
la tenue en compte de leurs situation (x) à des instants antérieurs. De telles situations
donnent naissance à des équations faisont intervenir non seulement l’état au même
temps t mais aussi à des instant antérieurs qu’on notera t− τ . de plus si le retard τ
ne dépend pas seulement du temps t mais aussi de l’état x, ce genre d’équations est
appelée équation différentielle à retard dépend de l’état . Ces équations se formalisent
de la forme suivante

x′(t) = f(t, x(t), x(t− τ(x(t))))

De telles équations s’appellent équations différentielles à retard dépend de létat. Pour
plus de détails nous renvoyons à [10], [15].

Dans ce travail on s’intéresse a l’existence de solution périodique d’une équation
différentielle à retard dépend de l’état .

Ce mémoire est consacré à l’étude des équations différentielles à retard et plus
particulièrement des équations différentielles à retard dépendant de l’état et il est
organisé comme suit :

Le premier chapitre, on rappelle quelques définiton et préliminares consernant
les équations différentilles à retard.

Dans le second chapitre, qui est consacré à l’étude des équations différentielle à
retard dépendant de l’état. On lance dans un premier temps les définitions et théo-
rèmes nécessaires pour la démonstration de l’existence et d’unicité des solutions. Nous
entamons par suite la linéarisation de ces équations.
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Le troisième chapitre, on s’intéresse Éxistence de solutions périodiques pour une
équation différentielle a retard dépendant de l’état

Dans l’appendice on trouve les outils classiques utilisés dans ce trvail



Chapitre 1

Préliminaires

1.1 Équations différentilles ordinaires

1.1.1 Définition générale

Soit E un espace vectoriel normé, une équation différentielle ordinaire voir [10] est
une équation dont l’inconnue est une fonction x exprimé sous la forme :

F (t, x, x
′
, x
′′
, ..., xn) = g(t) (1.1)

où F est une fonction continue sur un ouvert U×En+1 appelé domaine.On pratique
on préféré travailler avec des équations plus particulières dites explicites i.e :

xn = G(t, x, x
′
, ..., xn−1) (1.2)

Toute équation différentielle d’ordre K,K > 1 on peut la rendre aux équations diffé-

rentielles d’ordre 1 en faisant le changement de variable suivant :



y = x
′

y
′

= x
′′

.

.

.

yn−1 = xn


Définition 1.1.1. Soit f : U −→ Rn une fonction définie sur un ouvert non vide U

de Rn telle qu :

x
′
= f(t, x) (1.3)
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On dit que la fonction x : I −→ Rn définie sur I, intervalle de R, est une solution de

l’équation 1.3 si elle est dérivable sur I et vérife ∀t ∈ I, (t, x(t)) ∈ U et x′ = f(t, x).

Définition 1.1.2. Soit x : I −→ Rn et x̃ : Ĩ −→ Rn des solutions de problème 1.3,

on dit que x̃ est un prolongement de x si :I ∈ Ĩ et x̃/I = x

Définition 1.1.3. On dit que une solution x est maximale si y n’admet pas de pro-

longement x̃, telle que I ⊂ Ĩ .

Définition 1.1.4. Toute solution (I, x) de 1.3 définie sur l’intervalle I = Ĩ toute
entier est dite globale

Lemme 1.1.1. si f est de classe Cn sur I×Rn alors tout solution de1.3 est de class
Cn+1

1.1.2 Éxistence et unicité de solution

Définition 1.1.5. (Fonction lipschitzienne)

1. On dit que la fonction f : I × U −→ Rn est globalement lipschitzienne par
rapport à x s’il existe L ≥ 0 telle que ∀x1, x2 ∈ Rn,∀t ∈ I, on a

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖

2. On dit que f est localement lipschitzienne par rapport à x s’il existe un voisinage
V de (t0, x0) et une constante L ≥ 0 telle que ∀(t,X1) ∈ V, ∀(t,X2) ∈ V ,on a

‖f(t, x1)− f(t, x2)‖ ≤ L(t0, x0)‖x1 − x2‖

3. si 0 ≤ L ≤ 1 on dit que f est contractante.

Remarque 1.1.1. .

1. Si f est de classe C1 alors elle est localement lipschitzienne.

2. Si f est continue et linéaire alors elles localement lipschitzienne.

Lemme 1.1.2. (Lemme de Gronwall)

Soit u ∈ C([0, T ],R+). Supposons qu’il existe deux fonctions a et b dans C([0, T ],R+)

telles que pour tout t ∈ [0, T ] si :

u(t) ≤ b(t) +

∫ t

0

a(τ)u(τ)dτ
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alors

u(t) ≤ b(t) +

∫ t

0

a(τ) exp(

∫ t

τ

a(s)ds)dτ

Théorème 1.1.1. ( Cauchy-Lipschitz )

Soit f : I×U −→ Rn une application continue et localement lipschitzienne par rapport
à x alors ∀(t0, x0) ∈ I ×U il existe une unique solution x ∈ C1([t0 − τ, t0 + τ)] avec
τ ≥ 0 du problème 1.3 avec la condition initiale x(t0) = x0 ∀t ∈ [t0 − τ, t0 + τ ]

Théorème 1.1.2. (Existence globale)

On suppose f ∈ C(I × U,Rn) est globalement lipschitzienne par rapport à x alors
∀(t0, x0) ∈ I×U il existe un unique x ∈ C1(I,Rn) solution de 1.3.

Théorème 1.1.3. (Unicité globale)

Soient x1 et x2 deux solutions de 1.3 définies de I à valeur dans Rn avec f est loca-
lement lipschitzienne. si x1 et x2 coïncident en un point de I alors x1 = x2

1.2 Équations différentielle à retard constant

Définition 1.2.1. On appelle équation différentielle à retard constant, une équation
différentielle de la forme

x
′
(t) = f(t, x(t), x(t− τ)) (1.4)

oùf : R3 −→ R, une fonction continue, et τ un nombre réel strictement positif que
l’on appelle le retard.

Remarque 1.2.1. : Pour déterminer la solution de l’équation différentielle sur un
intervalle [t0, t0 + τ ], il faut connaître x(t) sur un intervalle antérieur [t0− τ, t0]. Soit
. une fonction continue sur l’intervalle [t0 − τ, t0] à valeurs dans R.
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1.3 Équation différentièlle à retard dépendant de

l’état :

Définition 1.3.1. On appelle équation différentièlle à retard dépendant de l’état,une
équation de la forme :{

x
′
(t) = f(t, x(t), x(t− τ(x(t)))), pour tout t ≥ 0

x(t) = φ(t), ∀t ∈ [−σ, 0]
(1.5)

où f : R3 −→ R,fonction continue et τ : R −→ [0,+∞), σ = max
x∈R

τ(x) et φ ∈

C([−σ, 0], R).

Remarque 1.3.1. On remarque que τ est fonction de x(t).

1.4 Èquation différentielle à retard variable de type

neutre

Définition 1.4.1. On appelle une équation différentielle a retard variable de type
neutre,une équation différentielle de la forme

x
′
(t) = f(t, x(t), x((t− τ(t)), x

′
(t− τ(t))) (1.6)

ou f : Rn −→ R et τ(t) > 0 pour tout t§§§§§§§

1.5 Solution d’une équation à retard dépend de l’état

Définition 1.5.1. On dit que la fonction x est une solution de l’équation si il éxiste
δ > 0, A > 0 telle que x est continument différentiable sur l’intervalle [δ − τ, δ + A]

est satisfait l’équation pour t ∈ [δ, δ + A]

1.6 Solution périodique

Définition 1.6.1. une solution x est dit périodique de périod τ > 0 si elle vérifie de
plus

x(t+ τ) = x(t)

pour tout t ∈ R. Dans ce travail on s’intéresse aux équation différentielle à retard
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1.7 Quelques méthodes de résolution des EDR

Contrairement aux équations différentielles ordinaires,la condition initiale d’une
équation ne suffit pas pour trouver une solution ; il faut y ajouter une infinité des
points qui décrivent un segment particulier de largeur du retard étudié, c’est à dire le
segment [−1, 0] de longueur 1. C’est en cela que les systèmes à retard font partie de
classe plus générale des système à dimension infinie ce qui rend complexe leur étude.
Dans cette partie nous entamons la résolution de cette équation par une méthode
analytique dite "pas à pas" et deux autres numériques, de Belman et d’Euler.

1.7.1 Résolution par méthode pas à pas

Considérons le système à retard suivant :{
x
′
= f(t, x(t), x(t− τ)),

xt0 = ϕ,
(1.7)

où ϕ est un élément de C.

On se ramène à la résolution d’une équation différentielle ordinaire, pour cela
pour t appartenant au segment [t0, t0+τ ] on remplace x(t−τ) dans 1.7 par ϕ(t−t0+τ).
Ce qui réduit le problème à la détermination de la solution de l’équation{

x
′
= f(t, x(t), ϕ(t− t0 − τ)),

xt0 = ϕ(0),

La solution étant définie sur l’intervalle [t0, t0 + τ ] ce processus peut être réitéré
pour les intervalle [t0 + τ, t0 + 2τ ], [t0 + 2τ, t0 + 3τ ] et ainsi de suite jusqu’à définir
complètement la solution x(t) Par cette méthode l’équation f(tx(t), y(t− τ)) admet
les solutions suivantes sur les différents intervalles où segments.

x(t) =



ϕ(t) ∀t ∈ [t0 − τ, t0]
x1(t) ∀t ∈ [t0, t0 − τ ]

x2(t) ∀t ∈ [t0 + τ, t0 + 2τ ]

.

.

.

xn(t) ∀t ∈ [t0 + (n− 1), t0 + nτ ]
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où x1, x2........., xn représentent les solutions locales constantes de problème, avec la
solution globale est donnée comme suit :

x(t) = ϕ(t) +
n∑
i=1

xi(t)

De ce qui précède on déduit que, la méthode des pas nous donne l’existence de solu-
tions et ceci nous mène à énoncer les définitions suivantes :

Définition 1.7.1. Par la méthode des pas, tout fonction ϕ continue sur l’intervalle
[t0 − τ, t0] définit une solution de l’équation 1.4.

Définition 1.7.2. Si de plus f est localement lipschitzienne par rapport à la troisième
argument ”x(t− τ)”, alors la solution est unique.

Exemple 1.7.1. Considérons l’exemple biologique de taille P (t) à l’instant t, soumise

à des processus de reproduction ou de disparition avec que P ′(t) représente la vitesse
de croissance. Cette population sera gouvernée par l’équation différentielle à retard
suivante :

P
′
(t) = K

[
1− P (t− τ)

ρ

]
P (t) (1.8)

où le facteur 1− P (t−τ)
ρ

, joue le rôle de régulateur. Passant à l’intégration de l’équation

1.8 qui s’écrira sous la forme intégrale suivante :

∫ t

0

P
′
(s)

P (s)
ds =

∫ t

0

K

[
1− P (t− τ)

ρ

]
ds (1.9)

Remarquons que pour résoudre cette équation sur l’intervalle [0, τ ], il faut connaitre
P (t) sur [−τ, 0] .
Ainsi, on considère une fonction θ, continue sur [0, τ ] et on pose comme condition
initiale P (t) = θ(t) sur l’intervalle [0, τ ]. Posons le changement de variable u = s−τ ,
pour t ∈ [0, τ ] alors 1.9 devient :

∫ t

0

P
′
(s)

P (s)
=

∫ t−τ

−τ
K

[
1− P (u)

ρ

]
du

=

∫ t−τ

−τ
K

[
1− θ(u)

ρ

]
du
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donc la solution sur [0, τ ] est donnée par :

P1(t) = P0 exp

(∫ t−τ

−τ
K

[
1− θ(u)

u

]
du

)
, avect ∈ [0, τ ]

On refait l’opération sur [τ, 2τ ] on considérons la condition initiale P (t) = P1(t)1 sur
[0, τ ] et ainsi de suite.

Exemple 1.7.2. On propose un exemple plus spécifque sur lequel on applique la
méthode des pas. {

x
′
(t) = x(t− 1)

x(t) = a

B La résolution sur [0, 1]

Soit t ∈ [0, 1] ∫ 1

0

x
′
(s)ds =

∫ 1

0

x(s− 1)ds

Posons u = s− 1, on obtient alors :

∫ 1

0

x
′
(s)ds =

∫ t−1

−1
x(u)du

=

∫ t−1

−1
adu

= at

donc

x(t) = at+ x(0) = at+ a

posons x1(t) = at+ a sur [0, 1]

B La résolution sur [1, 2]

On considère la condition initiale :x[0,1] = x1 Pour t ∈ [1, 2] on obtient :

∫ t

1

x
′
(s)ds =

∫ t

1

x(s− 1)ds
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en posant u = s− 1 on trouve :∫ t

1

x
′
(s)ds =

∫ t−1

0

x(u)du

=

∫ t−1

0

x1(u)du

=

∫ t−1

0

(au+ u)du

=

[
au2

2
+ au

]t−1
0

il s’en suit que, x(t)− x(1) = a
2
(t2 − 1) or x(1) = x1(t) = 2a

alors

x(t) =
a

2
t2 +

3a

2

posons x2(t) = a
2
t2 + 3a

2
pour n’importe quel t ∈ [1, 2]

B La résolution sur [2, 3]

On considère la condition x[1,2] = x2,∀t ∈ [2, 3] on a :

∫ t

2

x
′
(s)ds =

∫ t

2

x(s− 1)ds

Gardons le même changement de variable on obtient :

∫ t

2

x
′
(s)ds =

∫ t−1

1

x(u)du

=

∫ t−1

1

x2(u)du

=

∫ t−1

1

(
a

6
u3 − 3

2
au)du

=

[
a

6
u3 − 3

2
au

]t−1
1

=
a

6
((t3)− 3t2 − 1) +

3a

2
(t− 1)− 5a

3

=
a3

6
− a

2
t2 + 2at− 5

3
a
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On a alors :

x(t)− x(2) =
a

6
t3 − a

2
t2 + 2at− 5

3
a

or x(2) = 7
2
alors x(t) = a

6
t3 − a

2
t2 + 2at+ 1

6
a

Posons x3(t) = a
6
t3 − a

2
t2 + 2at+ 1

6
a, ∀t ∈ [2, 3]

L’objective de la partie qui suit est de présenter quelques méthodes
d’analyse numérique pour les équations différentielles à retards. On considère
les équations à retard unique et constant.

1.7.2 Méthode de Belman

On considère l’équation munie de la condition initiale :

{
x
′
(t) = f(t, x(t), x(t− τ)

xt0 = ϕ,∈ C
(1.10)

Soit : x(i+1)(θ) = x(t0 + τ(θ + i)) avec 0 ≤ θ ≤ 1 ; et i = −1, 0, 1, 2, ...; La variable
θ correspond donc à un changement qui normalise le retard à τ = 1.

Pour i = −1 ,on trouve la condition initiale :x0(θ) = ϕ(τ(θ− 1)),avec θ ∈ [0, 1] Selon
le principe de méthode pas-à-pas, la fonction xi+1 (pour i = 0, 1, ...) est solution de
l’équation

x
′

(i+1)(θ) = τf(t0 + τ(θ + i), xi+1(θ), xi(θ)) (1.11)

x(i+1)(0) = xi(1) 0 ≤ θ ≤ 1 (1.12)

Ce problème peut être résolu en utilisant n’importe quelle méthode pour les équa-
tions différentielles ordinaires. Il y a cependant deux inconvénients majeurs à cette
approche. Premi èrement les valeurs calculées de x(i) doivent être gardées en mémoire
jusqu’à la fin du calcule de x(i+1), deuxièmement on ait besoin d’une valeur de x(i)
en un point que l’on n’a pas calculé. En effet les algorithmes les plus efficaces de
résolution numériques d’une équation différentielle sont à pas variable. Dans un tel
cas, la valeur désirée est obtenue par interpolation.
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Pour remédier à ces inconvénients,Belman(1961) à proposé la technique suivante :
Comme précédemment, x1 est déterminé numériquement à partir du problème

{
d
dt
x(1)(θ) = τf(t0 + τ(θ + i), x(1)(θ), ϕ(θ − 1)))

x1(0) = ϕ(0),
(1.13)

Puis les fonctions x(1) et x(2) sont déterminées simultanément en résolvant le système

formé par les deux premiers équations (1.11) , avec valeurs initiales
x(1)(0) = ϕ(0);x(2)(0) = x̃1(1) et x(3)(0) = x̃2(1).

En procédant de cette façon, la suite complète x(1), x(2), . . ., est obtenue. Cet
algorithme est bien évidemment couteux en temps de calcule, mais il permet de ré-
soudre les problèmes pré- sentant des discontinuités dans les conditions et de ce fait,
il peut être employer pour initialiser une autre méthode plus simple et efficace.

1.7.3 Méthode d’Euler

La méthode d’Euler est la plus simple de toutes les méthodes numérique à retards.
Pour un pas constant h de la forme τ/m, où m est un entier, la solution approchée x
est générée par l’équation aux différences.

x̃(tn+1) = x̃(tn) + hf(tn, x̃(t(n)), x̃(tn−m))

x̃(tn) = ϕ(nh) pour−m ≤ n ≤ 0

où tn = t0 + nh

Remarque 1.7.1. Cette méthode est d’ordre 1, sous certaines hypothèses sur f .

1.8 Théorèmes de point fixe

Comme l’attestent les très nombreux travaux paraissant aujourd’hui au niveau
international, les théorèmes de point fixe sont des outils précieux et très intéressants en
mathématiques, surtout pour la résolution des équations différentielles non linéaires.
Pour résoudre un problème par la technique du point fixe, nous avons besoin d’une
application appropriée, d’un ensemble convenable apte pour contenir les solutions du
problème et d’un théorème de point fixe qui donne certaines conditions sous lesquelles
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cette application ad- met au moins un point fixe. On va voir maintenant trois théo-
rèmes de point fixe, le théorème de point fixe de Banach qui donne un critère général
dans les espaces métriques complets, celui de Schauder qui est plus topologique et af-
firme qu’une application continue sur un convexe compact admet au moins un point
fixe et finalement, le théorème Brouwer.

Définition 1.8.1. Soit (E, ‖.‖E) un espace de Banach, T : E −→ E une application.
On appelle point fixe de T tout point x ∈ E tel que T (x)−x = x Ce qui est équivalent
à dire que l’équation T (x)− x = 0 possède une solution

Définition 1.8.2. Soit (E, ‖.‖E) et (F, ‖.‖F ) deux espaces de Banach et T : E −→ F

une application. On dit que T est lipschitzienne de rapport k ≥ 0 sur E si

‖Tx − Ty‖F ≤ k‖x− y‖E (1.14)

En particulier, si 1 > k ≥ 0, T est dite contraction ou application contractante de
rapport k.

1.8.1 Théorème de point fixe de Banach

En 1922 ; le mathématicien polonais Stefan Banach a prouvé son célèbre théo-
rème (connu aussi sous le nom de théorème de l’application contractante ou théo-
rème de Banach) qui garantit l’existence et l’unicité d’un point fixe d’une application
contractante d’un espace métrique complet dans luimême. En outre, il est basé sur
un processus itératif assurant que ce point fixe peut être obtenu comme limite d.une
suite itérée et qu’il est possible d’estimer la précision avec laquelle cette limite est
atteinte.

Théorème 1.8.1. voir[4]
Soit (E, ‖.‖E) un espace de Banach et T : E −→ E une application contractante de
constante k ∈ [0, 1[. Alors il existe un point unique x ∈ E tel que T (x) = x.

1.8.2 Théorème de point fixe de Schauder

Le théorème de point fixe de Schauder élaboré en 1930. assure l’existence d’au moins
un point fixe pour une application continue sur un convexe compact dans un espace
de Banach.
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Théorème 1.8.2. Soit M un sous ensemble convexe, fermé, borné et non vide d’un
espace de Banach E et T : M −→ E une application compacte. Alors T possède un
point fixe.

Remarque 1.8.1. Si M est compact et convexe, il suffit que T soit continue pour
avoir un point fixe pour T.

1.8.3 Théorème de point fixe de Brouwer

Théorème 1.8.3. (Théoréme de Brouwer(1910)[3]) Soit C un compact.convex non
vide de Rn et f : C −→ C une application continue.Alors f admet au moins un point
fixe dans C.



Chapitre 2

Équations différentielles à retard

dépendant de l’état

On s’intéresse maintenant aux équations à retard dépendant de l’état, où l’évolution
de la variable x à l’instant t dépend de la valeurs de x à l’instant t − τ(x(t)) et le
retard dépend également de la valeur de x. Une telle équation s’écrit sous la forme :

x
′
= f(t, x(t), x(t− τ(x(t)) (2.1)

Ces équations posent des nombreux problèmes théoriques sur quel intervalle défnir
la condition initiale,par exemple pour une équation à retard discret τ , la condition
initiale doit être définie sur un intervalle de longeur τ typiquement [−τ, 0]. Pour un
équation à retard dépendant à l’état en t = 0 il est nécessaire d’accéder à la valeurs
x(−τ(x(0))).

On pourrait donc considérer une condition initiale ϕ définit sur l’intervalle
[−τ(ϕ(0)), 0]. Si la fonction τ est supposée croissante, alors en t = ε il faut accé-
der à la valeur x(ε− τ(x(ε))) et il se peut que :ε− τ(x(ε)) < −τ(x(0)) = −τ(ϕ(0)).
C’est à dire :

τ ◦ x(ε)− (τ ◦ x)(0)

ε
> 1

Ainsi, si la fonction τ ◦ x est fortement croissante en t = 0, on peut même faire
face à un problème de définition de la condition initiale. On est rapidement amène à
considérer des fonctions τ bornées et des conditions suffisamment régulières.

Les premiers travaux notables sur les équations diférentielles à retard dépendant
de l’état ont été réalisés dans les années 1960, Driver étudié l’existence, l’unicité et
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la dépendance aux conditions initiales des solutions, un travail complète par la suite
par des nombreux auteurs qui se sont intéressés à l’existence de solutions périodiques
pour ces équations.

On a eu reccours pour ce chapitre aux ouvrages suivants :[11],[7], [1],[12].

2.1 Équations différentielles à retard dépendant de

l’état

Définition 2.1.1. On appelle équation diférentièlle à retard dépendant de l’état ;une
équation de la forme :{

x
′
(t) = f(t, x(t), x(t− τ(x(t)))), pour tout t ≥ 0

x(t) = φ(t), ∀t ∈ [−σ, 0]

où f : R3 −→ R,fonction continue et τ : R −→ [0,+∞), σ = max
x∈R

τ(x) et φ ∈

C([−σ, 0], R).

2.2 Éxemple et commentaires :

Citons l’exemple suivant qui à été proposé récemment par Arino, Hbid et Bravo
[13], comme modèle décrivant l’évolution d’une population de poissons dont les larves
consomment une nourriture, supposée limitée. Le modèle est sous la forme suivant{

x
′
(t) = f(t, x(t), x(t− τ(t)))

τ
′
(t) = h(x(t− τ(t)))

où x est le nombre total de la population et τ représente la durée nécessaire, pour
que les larves deviennent des juvéniles, la deuxième équation différentielle ordinaire,
elle dépend de la variable x, c’est pourquoi l’équation est dite, équation différentielle
à retard dépendant de l’etat. Ces dernières années, ces équations ont fait l’objet de
plusieurs études, voir par exemple Kuang et Smith [14], Mallet-Aret et Nussbaum
[11] qui ont étudié les équations de la forme

x
′
(t) = f(t, x(t), x(t− τ(t))), t ≥ 0
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2.3 Éxistences et unicité de la solution :

Soit l’équation différentielle à retard dépendant de l’état :{
x
′
(t) = f(t, x(t), x(t− τ(x(t)))), pour tout t ≥ 0

x(t) = φ(t), ∀t ∈ [−σ, 0]
(2.2)

où f : R3 −→ R,fonction continue et r : R −→ [0,+∞), σ = max
x∈R

τ(x) et φ ∈

C([−σ, 0], R).
Supposons que f et τ vérifient les hypothèses suivantes

1. f est localement lipschitzienne, par rapport à x(t) et x(t− τ(x(t))).

2. τ est localement lipschitzienne

3. f est bornée sur les bornes

Pour un nombre positif T , soit X l’ensemble des fonctions continues de [−σ, T ] à
valeurs réelles, muni de la norme du sup, X est un espace de Banach pour ω et p,
deux réels positifs, soit Cφ le sous ensemble de X, définit par :

Cφ,T =

{
x ∈ X, x(s) = φ(s) ∀s ∈ [−σ, 0]

‖s‖ ≤ p, et |x(t)− x(s)| ≤ ω|t− s| ∀t ∈ [−σ, T ]

Proposition 2.3.1. Cφ,T est compact.

preuve :

a/ Montrons d’abord que Cφ,T est relativement compact, pour cela, il suffit d’aprés
le théorème d’Ascoli soit borné et uniformément equicontinu.

i/ Il est clair que Cφ,T est bornée par construction

ii/ Pour tout t, s ∈ [−σ, τ ] et pour tout x ∈ Cφ,T on a

|x(t)− x(s)| ≤ ω|t− s| (2.3)

pour ε ≥ 0, pour |t− s| ≤ ε
ω
,2.3 donne |x(t)− x(s)| ≤ ε ce qui prouve que

Cφ,T est relativement compact.

b/ Montrons maintenant que Cφ,T est fermé.
Prenons donc, une suite (xn)n∈N dans Cφ,T , telle que lim

n→∞
xn(t) = x(t) et mon-

trons que x(t) ∈ Cφ,T
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D’une part, pour n ∈ N, on a xn(s) = φ(s);∀s ∈ [−σ, 0] :
En passant à la limite, on trouve :
lim
n→∞

xn(t) = φ(t) ∀s ∈ [−σ, 0] :

|x(s)− x(t)| ≤ |x(s)− xn(n)|+ |xn(s)− xn(t)|+ |xn(t)− x(t)| (2.4)

D’après la définition de la limite , 2.4 devient :

|x(s)− x(t)| ≤ ε

2
+ u|s− t|+ ω

2
= ε+R|s− t|,∀ε ≥ 0, R ≥ 0

Ainsi :
|x(s)− x(t)| ≤ ω|s− t|

c/ ‖x‖ = ‖ lim
n→∞

xn‖ ≤ lim
n→∞

‖xn‖ ≤ ρ.

Alors x ∈ Cφ,T et par consequent Cφ,T est fermé ; on conclut que Cφ,T est
compact.

Théorème 2.3.1. Supposons que les hypothèses 1,2 et 3 sont vérifiées, alors pour

toute fonction φ dérivable avec |φ′(t)| ≤ R, (R > 0), alors le problème 2.3 admet une
solution unique x(t).

Preuve :Pour la démonstration, on applique le théorème du point fixe.

1. Soit N la borne de φ,M la borne de f , supposons que R ≥ M Pour ω = R et
p = N + TM , on définit,Cφ,T .
D’aprés la proposition, précédente, Cφ,T est compact.

2. Montrons qu’il est convexe :

a/ soit α ∈ [0, 1] et x, y ∈ Cφ,T :

αx(s) + (1− α)y(s) = αφ(s) + (1− α)φ(s),∀s ∈ [−σ, 0]

= φ(s),∀s ∈ [−σ, 0]

b/ Pour tout t, s ∈ [−σ, T ] on a :

|αx(s) + (1− α)y(s)− αx(t) + (1− α)y(t)| ≤ |α(x(s)− x(t)) + (1− α)(y(s)− y(t)|

≤ α|(x(s)− x(t))|+ (1− α)|(y(s)− y(t))|

≤ αR|s− t|+ (1− α)R|s− t|

≤ R|s− t|

Alors αx + (1 − α)y est lipschitzienne sur [−σ, T ], avec la constante de
lipschitz.
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c/ x et y sont bornées par p, alors :

‖αx+ (1− α)y‖ ≤ α‖x‖+ (1− α)‖y‖ ≤ p

Donc αx+ (1− α)y ∈ Cφ,T et par suite Cφ,T est convexe.

3. Posons J = [−σ, T ] et considérons l’application :
F : Cφ,T → X, définie par :

(Fx)(t) =

{
φ(t) −σ ≤ t ≤ 0

φ(0) +
∫ t
0
f(s, x(s), x(s− τ(x(s)))ds, ∀0 ≤ t ≤ T

si F est complétement continue et F (Cφ,T ) ⊂ Cφ,T ; Alors F admet un point
fixe . Ce point fixe est une solution de l’équation 2.3
B Montrons que F (Cφ,T ) ⊂ Cφ,T .

On sait que(Fx)(t) = φ(t) pour ∀−σ ≤ t ≤ 0 comme φ est une fonction bornée
par N et R lipschitzienne alors F (Cφ,T ) ⊂ Cφ,T

a/ Si x ∈ Cφ,T , on a pour 0 ≤ t ≤ T

|(Fx)(t)| ≤ |Φ(0) +

∫ t

0

f(s, x(s), x(s− τ(x(s))))ds|

≤ |Φ(0)|+
∫ t

0

Mds

≤ |Φ(0)|+ TM

≤ N + TM

= ρ

Donc F est bornée

b/ Pour prouver que F (x) est R-lipschitzienne, il suffit de montrer que

|(F (x)(t))
′| est bornée par R

En effet :
(F (x)(t))

′
= f(t, x(t), x(t− τ(x(t))))

‖(F (x)(t))
′‖ ≤M d’aprés l’hypothése(3).

‖(F (x)(t))
′‖ ≤M ≤ R

4. Montrons maintenant que F est complètement continue
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a/ Supposons que xj ∈ Cφ,T et‖xj − x‖∞ → 0.

Notons par ρj(s) = τ(xj(s)), p(s) = τ(x(s)),l la constante de lipschitz de
τ et k la constante de lipschitz de f .
Donc pour tout t ∈ [0, T ], on a :

|(Fxj)(t)− (Fx)(t)| ≤ |
∫ t

0

f(s, xj(s), xj(s− ρj(s)))− f(s, x(s), x(s− ρ(s)))|ds

≤
∫ t

0

|f(s, xj(s), xj(s− ρj(s)))− f(s, x(s), x(s− ρ(s)))|ds

≤
∫ t

0

|f(s, xj(s), xj(s− ρj(s)))− f(s, x(s), x(s− ρj(s)))|ds

+

∫ t

0

|f(s, x(s), x(s− ρj(s)))− f(s, x(s), x(s− ρ(s)))|ds

≤ k

∫ t

0

k sup{ sup
s∈[−σ,T ]

|xj(s)− x(s)|

, sup
s∈[−σ,T ]

|xj(s− ρj(s))− x(s− ρj(s))|}ds

+ k

∫ t

0

k sup{ sup
s∈[−σ,T ]

|x(s)− x(s)|

, sup
s∈[−σ,T ]

|xj(s− ρj(s))− x(s− ρ(s))}ds

≤
∫ t

0

k sup{‖xj − x‖∞, ‖xj − x‖∞}ds

+

∫ t

0

k sup{0, sup
s∈[σ,T ]

|x(s− ρj(s))− x(s− ρ(s))|}ds

≤
∫ t

0

k‖xj − x‖∞ds+

∫ t

0

k sup
s∈[−σ,T ]

|x(s− ρj(s))− x(s− ρ(s))|ds

≤
∫ t

0

k‖xj − x‖∞ds+

∫ t

0

k sup
s∈[−σ,T ]

R|s− ρj(s)− s− ρ(s)|ds

≤
∫ t

0

k‖xj − x‖∞ds+

∫ t

0

kR sup
s∈[−σ,T ]

|ρj(s)− ρ(s)|ds

≤
∫ t

0

k‖xj − x‖∞ds+

∫ t

0

kRl sup
s∈[−σ,T ]

|xj(s)− x(s)|ds
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|Fj(x)(t)− F (x)(t)| ≤ T [k‖xj − x‖∞ + kRl‖xj − x‖∞]

≤ Tk[1 +Rl]‖xj − x‖∞

Donc F est lipschitzienne Cφ,T et par conséquent elle est continue.

b/ F est compact, en effet :
Soit B un ensemble borné de Cφ,T .

F (B) ; un fermé inclu dans Cφ,T qui est compact par conséquent, F (B) est
compact. Ainsi F est complètement continue.
Le théorème du point fixe, nous donne.
Pour tout nombre T ≥ 0, il existe une fonction x ∈ Cφ,T ,tel que
(Fx)(t) = x(t), pour tout t ∈ [0, T ]

Dans ce qui suit, on montre, l’unicité de la solution.
On procède par l’absurde.
Supposons qu’il existe deux solutions x(t), y(t) ; pour t ∈ [0, T ], on a :

|x(t)− y(t)| ≤ |
∫ t

0

(f(s, x(s), x(s− τ(s)))− f(s, y(s), y(s− τ(s))))ds|

≤
∫ t

0

|(f(s, x(s), x(s− ρ(s)))− f(s, y(s), y(s− ρ(s))))ds|

≤
∫ t

0

k‖xj − x‖∞ds+

∫ t

0

kRl sup
s∈[−σ,T ]

|x(s)− y(s)|ds

≤ (1− p)k[1 +Rl]‖x− y‖∞
≤ Tk[1 +Rl]‖x− y‖∞

pour T ≤ 1
k[1+Rl]

on obtient :

|x(t)− y(t)| < ‖x− y‖∞

contradiction, et par conséquent,on a :
x(s) = y(s) pour s ∈ [0, T ].

Exemple 2.3.1. Considérons l’équation suivante :{
x
′
(t) = −2 sin(x(t− (−x+1)

2
)), t ≥ 0

x(t) = e−t, t ≤ 0

τ(x(t)) = (−x+1)
2

,f(t, x(t), x(t− τ(x(t)))) = −2 sin(x(t− (−x+1)
2

))

et φ(t) = e−t
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Il est clair que τ est une fonction lipschitzienne, f est de classe C1, par rapport à x,
donc elle est localement lipschitzienne et comme la fonction sin(x) est bornée par 1

pout tout x, alors f est bornée par 2.
de même φ est une fonction de classe C1 et sa dérivée est bornée par 1. Alors toutes
les hypothèses du théorème précédent sont vérifiées, donc cette équation, admet une
solution unique.

2.4 Solution constante d’une équation différentielle

à retard dépendant de l’état non linéaire :

2.4.1 Principaux résultats :

Considérons l’équation à retard dépendant de l’état non linéaire suivante :{
x
′
= f(t, x(t), τ(x(t))), t ≥ 0

x(θ) = ϕ(θ), ϕ ∈ [−τ, 0]
(2.5)

Si x(t) = x(t) = x est solution constante de (2.5) tel que
x : [−τ,∞)→ R, alors on obtient :

{
f(t, x, x), t ≥ 0

x(t) = ϕ(t) = x, t ∈ [−τ, 0]
(2.6)

Soient les données suivantes :
xt(s) = x(t+ s) = xt, pour s ∈ [−τ, 0], l’espace de Banach des fonctions continues
xt : [−τ, 0]→ R muni de la norme :‖ϕ‖ = max{|ϕ(s)| ; pour s ∈ [−τ, 0]} = ‖x‖
dénoté par C = C([−τ, 0],R).
Un voisinage fermé de rayon Q, d’un ensemble A dans un espace de Banach X est
dénoté par BX(A; θ) = {x.X; |x− a|X ≤ Q, pour a ∈ A}, notons par |.| la norme
de R,L(C,R) désigne l’espace des applications de C dans R.
Soient les hypothèses suivantes :

H1 f : [0,∞)×Ω1×Ω2 → R, continûment différentielle ; où Ω1,Ω2 sont des intervalles
de R

H2 i/ τ : [0,∞)×Ω3 → [0, τ ] continûment différentielle ; où Ω3 est un sous-ensemble
ouvert de C
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ii/ τ est localement, continue, lipschitzienne dans le sens suivant
Pour chaque sous-ensemble, fermé et bornéM de C, il existe une constante
L1 = L1(M) ≥ 0 telle que

|τ(t, ψ1)− τ(t, ψ2)| ≤ ‖x1 − x2‖, t ∈ [0, T ] et x1, x2 ∈M .
x : [−τ,∞) → R, solution constante de (2.5), la réstriction de x sur l’in-
tervalle [−τ, 0] est notée par x0, i.e. que x est la solution de (2.5) corres-
pondante à la condition initiale x0.
On remarque que la continuité de la condition initiale n’est pas suffisante
pour l’unicité de la solution.
Pour avoir l’unicité de la solution, il faut que la condition initiale soit au
moins localement lipschitzienne, ce qui est le cas pour les conditions ini-
tiales de classes C1 (voir[6]).
On notera ; par x(t, ϕ) n’importe qu’elle solution de (2.5) correspondante à
la fonction initiale ϕ ∈ C et par ε(t) = x(t−τ(t, xt)), ε = x(t−τ(t, xt)) = x

on déffinit, donc les ensembles suivants associés à la solution constante x
A1 = x(t); t ∈ [0, T ] = x,A2 = ε(t); t ∈ [0, T ] = x et A1 = x(t); t ∈ [0, T ],
on remarque que A1 = A2

A1, A2 et A3 sont des sous ensembles compactes d’espaces respectifs R et
C. Puisque x est continue, les ensembles Ω1,Ω2 et Ω3 sont des sous en-
sembles ouverts des espaces R et C respectivement.
Donc il existe des constantes positives Q1, Q2 et Q3 tel que
BR(A1, Q1) ⊂ Ω1, BR(A2, Q2) ⊂ Ω2 et BR(A3, Q3) ⊂ Ω3.
Puisque f est continûment différentiable par rapport à son second et troi-
sième argument, il existe une constante N1 > 0 tel que :
|D2f(t, x, x| ≤ N1 et |D3f(t, x, x| ≤ N1 pour t ≥ 0.

Lemme 2.4.1. Considérons (H1) et soit x[−τ,∞)→ R, solution constante de (2.5),
pour n’importe qu’elle s > 0 ; |ε(t)−ε(t)| ≤ ‖xt−xt‖, pour t ∈ [0, s] et pour n’importe
qu’elle fonction continue x : [−τ,∞)→ R satisfaisant xt ∈ BC(A3, θ3) pour t ∈ [0, s].

Preuve 2.4.1. Soit L1 ; la constante de (H2) (ii), associé à l’ensemble Bc(A3, θ3) ;
en utilisant la définition de ε et ε, l’inégalité triangulaire et le théorème de la valeur
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moyenne ; on obtient :

|ε(t)− ε(t)| = |x(t− τ(t, xt))− x(t− τ(t, xt))|

= |x(t− τ(t, xt))− x(t− τ(t, xt)) + x(t− τ(t, xt))− x(t− τ(t, xt))|

≤ |x(t− τ(t, xt))− x(t− τ(t, xt))|+ |x(t− τ(t, xt))− x(t− τ(t, xt))|

on a τ ∈ [0, r]⇒ −τ ∈ [−r, 0], prenons comme −τ(t, xt) = θ ; on obtient

|ε(t)− ε(t)| = sup
θ∈[−r,0]

|x(t+ θ)− x(t+ θ)|+ ‖x‖|τ(t, xt)− τ(t, xt)|

= sup
θ∈[−r,0]

|xt(θ)− xt(θ)|

= ‖xt − xt‖

Pour x ; solution constante de (2.5) et pour n’importe quel t fixé ≥ 0 ; on définit
l’opérateur linéaire F (t) tel que F (t) : C → R, défini comme suit :

F (t)ψ = D2f(t, x, x)ψ(0) +D3f(t, x, x)ψ(−τ(t, xt))

et la fonction g : tel que :
g : [0,∞)× Ω3 → R et g(t, ψ) = f(t, ψ(0), ψ(−τ(t, ψ)))− F (t)ψ

Il est evident que l’opérateur linéaire F (t) soit borné, puisque par (H2), il satisfait

|F (t)ψ| ≤
(

max
t∈[0,T ]

|D2f(t, x, x)|+ max
t∈[0,T ]

|D3f(t, x, x)|)‖ψ‖
)

pour ces notations ; on peut réecrire

x
′
= F (t)xt + g(t, xt), t ≥ 0 (2.7)

qui se traduit aussi par l’équation :

y
′
(t) = F (t)yt, t ≥ 0 (2.8)

qui se traduit aussi par l’équation :

∂

∂t
u(t, s) = F (t)u(t, s), t ≥ s (2.9)

{
1, si ;t = s

0, t < s
(2.10)
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Il est comme (voir eq [8]) que la stabilité asymptotique de la solution zéro (trivial) de
(2.4 x(s)) est équivalente à sa stabilité exponentielle, i.e. qu’il existe des constantes
K0 ≥ 1 etα0 > 0 tel que

|u(t, s)| ≤ K0e
−α(t−s), t ≥ s (2.11)

La preuve de notre principal théorème sera basée sur la serie de lemmes suivant :

Lemme 2.4.2. En tenant compte des hypothèse (H1) et (H2) et soit
x : [−r,∞)→ R, solution constante correspondante à la fonction initiale x0, alors il
existe une constante N4 > 0, tel que pour n’importe qu’elle s > 0

|x′(t)| ≤ N4‖xt − xt‖, t ∈ [0, s] (2.12)

et
‖xt − xt‖ ≤ eN4t‖ϕ− x0‖, t ∈ [0, s] (2.13)

pour n’importe qu’elle solution x de (2.5) satisfaisant

t ∈ BC(A3, θ3) (2.14)
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Chapitre 3

L’éxistence d’une s.p pour une E.D.R

dépendant de l’état

Dans ce chapitre on résume les résultats du travail d’Arino et Al [15] sur les solutions
périodiques non triviales du problème suivant :{

ẋ(t) = −f(x(t− τ(t))) (3.1− 1),

τ̇(t) = h(x(t), τ(t)) (3.1− 2).
(3.1)

où f : R → R, tel que f(0) = 0, f ∈ C1(R) et h : R × [τ1, τ2] → R telle que
h ∈ C1(R× [τ1, τ2],R) avec 0 < τ1 < τ2.
Ces hypothèses sont supposées satisfaites dans tout le reste de ce chapitre.
Si τ ∗ est la valeur unique de τ dans [τ1, τ2] tel que : h(0, τ ∗) = 0, le point (0, τ ∗) est
un point d’équilibre de 3.1.
Une condition initiale pour le problème 3.1 en t = 0 est le couple
(ϕ, τ0) ∈ C([−τ2, 0],R)× [τ1, τ2].

Définition 3.0.1. On dit que les couples (x(t), τ(t)) sont solutions du problème 3.1
si et seulement si :
1)x(t) = ϕ(t) pour t ∈ [−τ2, 0] et τ(0) = τ0,
2)les fonctions x est τ sont continument diférentiables pour t ≥ 0,
3) les couples (x(t), τ(t)) satisfaisant 3.1.

Définition 3.0.2. La solution x(t) de l’équation (3.1 − 1) est dit oscillante si elle
admet arbitrairement un grand nombre de zéros.
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Définition 3.0.3. La solution x(t) de l’équation (3.1−1) est dite lentement oscillante
si la distance qui sépare tous deux zéros successifs de la solution x est plus grand que
max
t∈R

τ .

L’idée est basée sur la construction d’un opérateur de type Poincaré dont un point
fixe nous donne une solution périodique lentement oscillante du problème 3.1.
Dans la suite on considère les ensembles suivants :

E = {(ϕ, τ0) ∈ Lip([−τ2, 0],R)×[τ1, τ2] tel que : ϕ(−τ0) = 0 et ϕ est non dcroissante sur [−τ0, 0]},

où :

Lip([−τ2, 0],R) = {ϕ ∈ C([−τ2, 0],R) : |ϕ(t)−ϕ(s)| ≤ k|t−s| ∀t, s ∈ [−τ2, 0] et k > 0}.

3.1 L’éxistence d’une solution lentement oscillante

En plus des hypothèses initiales sur f et h, nous supposons les hypothèses suivantes :
H1) ∃L > 0, ∀(x, τ) ∈ R× [τ1, τ2] ; h(x, τ) < L

L+1
,

H2) h(x, τ1) > 0 et h(x, τ2) < 0; ∀(x, τ) ∈ R× [τ1, τ2].

D’aprés la proposition 2 dans [15] le problème 3.1 sous les hyphothèses (H1) et (H2)

admet une solution unique (x(t), τ(t)) pour chaque (ϕ, τ0) ∈ E,
i.e x(t) = ϕ(t) sur [−τ2, 0] et τ(0) = τ0, les équations 3.1 sont satisfaites pour
t ≥ 0.
Cette solution on la note par (x(ϕ, τ0)(t), τ(ϕ, τ0)(t)). De plus τ(t) ∈ [τ1, τ2] pour
chaque t ≥ 0 et t− τ(t) est croissante sur R+.

Remarque 3.1.1. La propriéte t− τ(t) est croissante sur R+ est fondamentale
dans la suite de notre travail.

Lemme 3.1.1. [15] Si en plus des hypotèses sur f et h, les hypothéses (H1) et (H2)

sont satisfaites, on a pour (ϕ, τ0) ∈ E :

(x(ϕ, τ0)(t), τ(ϕ, τ0)(t)) = (x(ϕ+, τ0)(t), τ(ϕ+, τ0)(t)) ∀t ≥ 0

où :

ϕ+(s) =

{
ϕ(s), ∀s ∈ [−τ0, 0],

0 ∀s ∈ [−τ2,−τ0].
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Preuve :

La fonction t− τ(t) est croissante d’aprés la remarque 3.1.1, on a :
Pour t ∈ [0, τ1] on a :

0− τ(0) ≤ −τ0 ≤ t− τ(t) ≤ 0,

d’où :
ϕ(t− τ(t)) = ϕ+(t− τ(t)) pour t ∈ [0, τ1].

D’aprés l’écriture intégrale de3.1 on a :

x(ϕ, τ0)(t) = ϕ(0)−
∫ t
0
f(ϕ(s− τ(ϕ, τ0)(s))ds,

= ϕ+(0)−
∫ t
0
f(ϕ+(s− τ(ϕ, τ0)(s))ds,

= x(ϕ+, τ0)(t),

(3.2)

et

τ(ϕ, τ0)(t) = τ0 +
∫ t
0
h(x(ϕ, τ0)(s), τ(ϕ, τ0)(s))ds,

= τ0 +
∫ t
0
h(x(ϕ+, τ0)(s), τ(ϕ+, τ0)(s))ds,

= τ(ϕ+, τ0)(t)

(3.3)

De l’unicité de la solution on a :

(x(ϕ, τ0)(t), τ(ϕ, τ0)(t)) = (x(ϕ+, τ0)(t), τ(ϕ+, τ0)(t)) ∀t ∈ [0, τ1].

Supposons que l’égalité est vraie pour t ∈ [0, kτ1], et montrons la pour t ∈ [0, (k+1)τ1].

Soit t ∈ [0, (k + 1)τ1], on a :

0− τ(0) ≤ −τ0 ≤ t− τ(t) ≤ (k + 1)τ1 − τ((k + 1)τ1),

il suit que
−τ0 ≤ t− τ(t) ≤ (kτ1 + τ1 − τ((k + 1)τ1),

or τ1 − τ((k + 1)τ1) ≤ 0, d’où

−τ0 ≤ t− τ(t) ≤ kτ1,

donc l’inégalité est vraie pour t ∈ [0, (k + 1)τ1].

De l’unicité de la solution on a :

(x(ϕ, τ0)(t), τ(ϕ, τ0)(t)) = (x(ϕ+, τ0)(t), τ(ϕ+, τ0)(t)) ∀t ∈ [0, kτ1] k ≥ 1.

Remarque 3.1.2. D’aprés ce lemme on voit que la solution ne dépend que des valeurs
de ϕ sur [−τ0, 0] ⊂ [−τ2, 0], si (ϕ, τ0) ∈ E.
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Si de plus on suppose :
H3) : xf(x) > 0, pour tout x 6= 0,

H4) : ∃r > 0, ∃δ > 1
τ1
, telle que |f(x)| ≥ δ(x) pour |x| < r.

Pour t0 = −τ0, t∗0 = 0 et t1(ϕ, τ0) = inf{t > 0 : x(ϕ, τ0)(t) = 0}, on a :

Lemme 3.1.2. [15] : Sous les hypothèses (H1) − (H4), pour chaque (ϕ, τ0) ∈ E, si
ϕ(0) ≤ R (avec R ≥ r) on a : t1(ϕ, τ0) ≤ T (R), o T (R) = 3τ2 + R−r

Cr,R
,

et Cr,R = inf{f(s); s ∈ [r, R]} > 0.

Lemme 3.1.3. ( théorème 4 dans [15]) Supposons que les hypothéses (H1) − (H4)

sont satisfaites, et soit (x(t), τ(t)), la solution de l’équation 3.1) avec (εϕ, τ0) ∈ E

comme condition initiale, et ε ∈ {−1, 1} Alors :
(1) il éxiste deux suites réelles (t∗i )i≥0 et (ti)i≥0 tel que :

∀i ≥ 0; t0 = −τ0, t∗0 = 0, t∗i ≤ ti+1, et ti = t∗i − τ(t∗i ),

(2) ε(−1)i+1x(t) est non croissante sur [t∗i , t
∗
i+1] avec x(ti) = 0 et x(t∗i ) 6=

0 si ϕ(0) 6= 0.
(3)

∀i ≥ 0; (ε(−1)i+1xt∗i , τ(t∗i )) ∈ E

.
Si de plus on a :(τ1 − τ2)|f(x)| ≤ |x|, ∀x ∈ R, et ϕ(0) 6= 0 alors x est lentement
oscillante

Proposition 3.1.1. Soit la suite (t∗i )i∈N définit dans le lemme 3.1.3,
si t∗i+1 − t∗i ≤ t∗1, alors t∗i ≤ i(τ2 + T (R)), avec i ∈ N.

Preuve :

On a d’aprés le résultat présédent, t1 ≤ T (r), comme t1 = t∗1 − τ(t∗1), il suit que

t∗1 ≤ τ2 + T (R).

Supposons la suite (ui)i∈N définit par

ui = t∗i − t∗i−1,

d’aprés la condition suivante t∗i+1 − t∗i ≤ t∗1, on a :

ui ≤ t∗1 ∀i ∈ N,
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d’où
i∑

k=0

ui = t∗i ≤ i(τ2 + T (R)).

3.2 la construction de l’opérateur de Poincaré

Dans cette partie on utilise les résultats des lemmes 3.1.1 et 3.1.2 pour la construc-
tion d’un opérateur de type Poincaré.
- On définit l’application Gα par

Gα E → Lip([−τ2, 0],R)× [τ1, τ2]

et
Gα(ϕ, τ0) = (xα(ϕ, τ0), τ(ϕ, τ0)(α)),

où α > 0.
d’aprés le résultat (3) du lemme 3.1.2 on conclut que si α = t∗2p0 ou p0 ∈ N, alors Gα

est à valeur dans E.

Proposition 3.2.1. La solution (x(t), τ(t)) est une solution périodique de 3.1 ayant
pour condition initiale (ϕ, τ0) ∈ E, si et seulement si :
∃α > 0 ;

Gα(ϕ, τ0) = (ϕ, τ0).

De cette proposition, on déduit que trouver une solution périodique non trivial de
l’équation 3.1 de période α revient à trouver (ϕ, τ0) ∈ E, avec ϕ(0) > 0, satisfaisant :

{
ϕ(s) = xα(ϕ, τ0)(s), ∀s ∈ [−τ0, 0]

τ0 = τ(ϕ, τ0)(α),
(3.4)

Remarque 3.2.1. Une solution du problème 3.1 est de classe C1 pour t ≥ 0.
Le couple (ϕ, τ0) défini une solution périodique si Gα(ϕ, τ0) = (ϕ, τ0), comme
Gα(ϕ, τ0) est de classe C1 donc (ϕ, τ0) doit être de classe C1.

Soit X0 = C1([−τ2, 0],R) × [τ1, τ2], est un éspace de Banach muni de la norme sui-
vante :

‖(ϕ, τ0)‖0 = ‖ϕ‖∞,[−τ2,0] + ‖ϕ̇‖∞,[−τ2,0] + |τ0|, ∀(ϕ, τ0) ∈ X0.
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Donc la recherche d’une telle solution doit se faire dans un sous ensemble E0 de X0

défini par :

E0 = {(ϕ, τ0) ∈ X0 : ϕ′(s) ≥ 0, ∀s ∈ [−τ0, 0], ϕ(−τ0) = 0 et ϕ′(0) = 0},

et on note par
E−0 = {(ϕ, τ0) ∈ X0 : (−ϕ, τ0) ∈ E0}.

On a E0 ⊂ E et a l’aide des résultats du lemme 3.1.3, on peut définit l’opérateur Pj
qui représente la réstriction de Gα sur E0 par :

Pj : E0 → X0,

Pj(ϕ, τ0) = (xt∗j (ϕ, τ0), τ(ϕ, τ0)(t
∗
j)).

et
P+
j : E0 → X0,

P+
j (ϕ, τ0) = ((−1)jxt∗j (ϕ, τ0), τ(ϕ, τ0)(t

∗
j)),

On remarque que, si j = 2k alors P+
j (ϕ, τ0) = Pj(ϕ, τ0).

Proposition 3.2.2. Si (ϕ, τ0) ∈ E0, alors x(ϕ, τ0)(t) est continûment dérivable sur
[−τ2,+∞[.

Preuve :

Par construction la composante x(ϕ, τ0) est continûment dérivable sur [−τ2,+∞[, en
effet le seul point où on peut avoir des problèmes est t = 0, or en t = 0 on a :

ϕ′−(0) = 0, et x′+(ϕ, τ0)(0) = −f(ϕ(−τ0)) = 0

.
De cette remarque et du résultat (∀i ≥ 0; (ε(−1)i+1xt∗i , τ(t∗i )) ∈ E) du lemme 3.1.3,

on déduit que :
P+
p0

: E0 → E0, pour p0 ≥ 1.

D’où en particulier : P2p0 : E0 → E0, pour p0 ≥ 1.

Chercher une solution périodique revient a appliqué le théorème de point fixe à l’ap-
plication P2p0 .
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Proposition 3.2.3. E0 fermé.

Preuve :

E0 est fermé :

Soit (ϕn, τn,0) une suite de E0 qui converge vers (ϕ, τ0), montrons que (ϕ, τ0) ∈ E0,
i) on a ϕ′(s) = lim

n→+∞
ϕ′n(s) et ϕ′n(s) ≥ 0 ∀n ∈ N donc ϕ′(s) ≥ 0 ∀s ∈ [−τ2, 0].

ii) On a :

ϕ(−τ0) = lim
n→+∞

ϕn(−τn,0) = 0,

iii) on a :

ϕ′(0) = lim
n→+∞

ϕ′n(0) = 0,

de i), ii) et iii) on déduit que E0 est fermé.

Remarque 3.2.2. E0 n’est pas convexe à cause de la condition ϕ(−τ0).

En effet pour deux données initiales (ϕ, τ̃0) et (ψ, τ̄0) on aura :

(φ, τ0) = [(1− λ)(ϕ, τ̃0) + λ(ψ, τ̄0)], tel que : λ ∈ [0, 1],

d’où :

(φ, τ0) = ((1− λ)ϕ+ λψ, (1− λ)τ̃0 + λτ̄0),

puisque

ϕ(−τ0) = ϕ((1− λ)τ̃0 + λτ̄0) 6= 0,

et

ψ(−τ0) = ψ((1− λ)τ̃0 + λτ̄0) 6= 0,

on a

φ(−τ0) = [(1− λ)ϕ(−τ0) + λψ(−τ0)] 6= 0,

donc E0 est non convexe.
Pour surmonter cette défficulté on identifie X0 avec X1 et E0 avec E1 où :
X1 = C1([−1, 0],R)× [τ1, τ2], est un éspace de Banach muni de la norme :

‖(ψ, τ0)‖1 = ‖ψ‖∞,[−1,0] + ‖ψ̇‖∞,[−1,0] + |τ0|, ∀(ψ, τ0) ∈ X1,
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où E1 est un sous ensemble de X1 définit par

E1 = {(ψ, τ0) ∈ X1 : ψ′(s) ≥ 0, ∀s ∈ [−1, 0], ψ(−1) = 0, et ψ′(0) = 0},

et on note par

E−1 = {(ψ, τ0) ∈ X1 : (−ψ, τ0) ∈ E1},

on défini deux applications Q et L de la façon suivante :

Q : X1 → X0,

tel que :

(ψ, τ0)→ Q(ψ, τ0) = (ϕ, τ0),

où

ϕ(s) =

 ψ(
s

τ0
), ∀s ∈ [−τ0, 0],

ϕ′+(−τ0)(s− τ0) =
ψ′+(−1)
τ0

(s− τ0), ∀s ∈ [−τ2,−τ0].

et

L : X0 → X1,

(ϕ, τ0)→ (ψ, τ0),

tel que :

L(ϕ, τ0) = (ψ, τ0) avec ψ(s) = ϕ(sτ0), ∀s ∈ [−1, 0],

il suit que :

Q(E1) ⊂ E0, Q(E−1 ) ⊂ E−0 , et L(E0) ⊂ E1, L(E−0 ) ⊂ E−1 .

Proposition 3.2.4. Q ◦ L = IE0 .

Preuve :

Soit (ϕ, τ0) ∈ E0, pour s ∈ [−τ0, 0] on a :

Q ◦ L(ϕ, τ0)(s) = Q[L(ϕ, τ0)(s)],

= Q(ψ, τ0)(s),

= (ϕ, τ0)(s).
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d’où Q ◦ L = IE0 .

Posons maintenant
Fk = L ◦ Pk ◦Q; k ∈ N∗,

donc la recherche d’une solution périodique revient à trouver (ψ, τ0) ∈ E1, avec ψ(0) >

0 et qui satisfait :

(ψ, τ0) = F2p0(ψ, τ0), pour certain p0 ≥ 1, (3.5)

Lemme 3.2.1. [15] : On a

Fk = F k
1 ,

tel que F k+1
1 = F1 ◦ F1 ◦ ... ◦ F1, k fois pour k ∈ N∗ et F 1

1 = F1 = L ◦ P1 ◦Q.

Preuve : ce résultat découle dirèctement du lemme 3.1.1 et d’aprés les définitions de
Fk, L et Q, et en utilisant le raisonement par récurence :
- pour k = 1 on a :

F1 = F 1
1 = L ◦ P1 ◦Q

. - Supposons que Fk = F k
1 = L ◦Pk ◦Q et montrons queFk+1 = F k+1

1 = L ◦Pk+1 ◦Q,
on a :

F k+1
1 = F1 ◦ F k

1 ,

et par suite

F k+1
1 = F1 ◦ (L ◦ Pk ◦Q),

d’où
F k+1
1 = (L ◦ P1 ◦Q) ◦ (L ◦ Pk ◦Q),

d’aprés l’associativité de l’opération de composition et puisque Q ◦ L = IE0 on a :

F k+1
1 = (L ◦ (P1 ◦ Pk) ◦Q),

donc
F k+1
1 = (L ◦ Pk+1 ◦Q),

d’où
Fk+1 = F k+1

1 = L ◦ Pk+1 ◦Q.
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Remarque 3.2.3. pour k = 2p0 on a :

F2p0 : E1 → E1,

pour k = 2p0 + 1 on a :
F2p0+1 : E1 → E−1 ,

a)L’application F2p0 est complètement continue :

On suppose les hypothèses suivantes :

H5) : ∃m > 0, ∃G ≥ 0 : ∂h
∂τ

(0, τ) ≤ −m; et |∂h
∂x

(x, τ)| ≤ G; ∀(x, τ) ∈ R× [τ1, τ2],

H6) : ∃M > 0,∃M ′ > 0 : ‖f(x)‖∞ ≤M, ‖f ′(x)‖∞ ≤M ′; ∀x ∈ R,

Proposition 3.2.5. : Sous les hypothéses (H1)−(H6), on a F2p0(E1) est relativement
compacte dans E1.

Preuve :

1) Montrons que F2p0(E1) est borné :

Soit (ψ, τ0) ∈ F2p0(E1), donc il existe (φ, τ0) ∈ E1 telle que (ψ, τ0) = F2p0(φ, τ0).

On note Q(φ, τ0) = (ϕ, τ0), pour s ∈ [−1, 0] on a :

ψ(s) = x(ϕ, τ0)(sτ0 + t∗2p0).

et
ψ̇(s) = τ0ẋ(ϕ, τ0)(sτ0 + t∗2p0),

d’où

ψ(0)− ψ(−1) = −τ0
∫ 0

−1
f(x(τ0s+ t∗2p0 − τ(τ0s+ t∗2p0)))ds,

or
ψ(−1) = 0,

puisque ψ̇(s) ≥ 0 sur [−1, 0] et ψ̇(0) = 0, donc

‖ψ‖∞,[−1,0] = |ψ(0)|

comme
τ0 ≤ τ2,

il suit que
‖ψ‖∞,[−1,0] ≤ τ2M,
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ainsi

∃τ2M ∈ R+,∀ψ ∈ C1([−1, 0],R) : ‖ψ‖∞,[−1,0] ≤ τ2M,

d’où ; F2p0(E1) est borné.
2) Montrons que F2p0(E1) est équicontinu :

Pour le faire on montre que ∀(ψ, τ0) ∈ F2p0(E1), ψ et ψ̇ sont Lipshitziènnes.
Soit (ψ, τ0) = F2p0(φ, τ̃0),

i) Montrons que ψ est Lipshitzienne.
on a : {

ψ(s) = xt∗2p0
(φ, τ̃0)(s) sur [−1, 0]

τ0 = τ(φ, τ̃0)(t
∗
2p0

), ,

on note (ϕ, τ̃0) = L(φ, τ̃0), d’où

{
ψ(s) = x(ϕ, τ̃0)(τ0s+ t∗2p0) sur [−1, 0]

τ0 = τ(ϕ, τ̃0)(t
∗
2p0

)

il suit que

ψ̇(s) = τ0ẋ(τ0s+ t∗2p0),

= −τ0f(x(τ0s+ t∗2p0 − τ(τ0s+ t∗2p0))),

comme

τ0 ≤ τ2 et ‖f‖∞ < M,

on a :

‖ψ̇‖∞,[−1,0] ≤ τ2M,

donc ψ est Lipshitzienne.

ii) Montrons que ψ̇ est lipshitzienne.
D’aprés le résultat (1) du lemme 3.1.3 on a :

t2p0−1 = t∗2p0−1 − τ(t∗2p0−1) et t2p0 = t∗2p0 − τ(t∗2p0), avec x(t2p0−1) = x(t2p0) = 0,

et comme t∗2p0−1 < t2p0 on déduit d’aprés la monotonicité de t− τ(t) que :

t∗2p0−1 < t < t∗2p0 ⇒ t∗2p0−1 − τ(t∗2p0−1) < t− τ(t) < t∗2p0 − τ(t∗2p0),

⇒ t2p0−1 < t− τ(t) < t2p0 ,
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d’où

ẋ(t− τ(t)) = −f(x(t− τ(t)− τ(t− τ(t)))), ∀t ∈ [t2p0 , t
∗
2p0

],

donc ẋ est une fonction dérivable car elle est la composition de deux fonctions déri-

vables f et x et par concéquent ψ̇ est dérivable car ψ̇(s) = τ0ẋ(τ0s + t∗2p0), ∀t ∈

[t2p0 , t
∗
2p0

],

calculons ψ̈,
posons y(s) = τ0s+ t∗2p0 − τ(τ0s+ t∗2p0),

on a :

ψ̇(s) = τ0ẋ(τ0s+ t∗2p0),

= −τ0f(x(y(s))),

il suit que

ψ̈(s) = − τ0ẏ(s)ẋ(y(s))ḟ(x(y(s))),

= τ0(τ0 − τ̇(τ0s+ t∗2p0))f(x(y(s)))ḟ(x(y(s))),

= τ0(τ0 − τ0τ̇(τ0s+ t∗2p0))f(x(y(s)))ḟ(x(y(s))),

= τ 20 (1− h(x(τ0s+ t∗2p0), τ(τ0s+ t∗2p0)))f(x(y(s)))ḟ(x(y(s))),

d’aprés (H1) et (H6) on a :

‖ψ̈‖∞,[−1,0] ≤ (τ2)
2MM ′ sup

|y|≤τ2M,τ∈[τ1,τ2]
|1− h(x, τ)|,

D’où ψ̇ est Lipshitzienne.
De i) et ii) On déduit que F2p0(E1) est équicontinu.
b) L’étude de la continuité de F2p0 sur E1 :

1) Pour (ψ, τ̃0) ∈ E1 − {(0, τ̃0)},

Lemme 3.2.2. Les opérateurs L et Q sont continus respèctivement sur E0 et E1.

Lemme 3.2.3. Sous les hypothéses (H1) − (H6), soit t∗ > 0 et
(ϕ̃, τ̃0) ∈ E0 − {(0, τ̃0)},
alors on a pour tout
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ε > 0, il xiste η > 0, tel que : ‖(ϕ, τ0)− (ϕ̃, τ̃0)‖0 ≤ η, $ implique que :

‖x(ϕ, τ0)−x(ϕ̃, τ̃0)‖∞,[0,t∗]+‖ẋ(ϕ, τ0)−ẋ(ϕ̃, τ̃0)‖∞,[0,t∗]+‖τ(ϕ, τ0)−τ(ϕ̃, τ̃0)‖∞,[0,t∗] ≤ ε.

Preuve : (Voir[15])

Lemme 3.2.4. Sous les hypothéses (H1)− (H6), soit (ψ̃, τ̃0) ∈ E1 − {(0, τ̃0)},

et notons (ϕ̃, τ̃0) = Q(ψ̃, τ̃0).

Si :
t∗i (ϕ, τ0)→ t∗i (ϕ̃, τ̃0), lorsque; (ϕ, τ0)→ (ϕ̃, τ̃0),

alors F2 est continu en tout point (ψ̃, τ̃0).

Preuve : Ce résultat est une conséquence directe de la dépendance continue des
solutions des conditions initiales.

Proposition 3.2.6. [15] : Sous les hypothéses (H1) − (H6), l’opérateur F2p0 est
continu
en (ψ̃, τ̃0) ∈ E1 − {(0, τ̃0)} ou ; ψ̃(0) > 0.

Preuve :D’aprés les lemmes 3.2.1 et 3.2.2, F2p0 est continue en (ψ̃, τ̃0) ∈ E1−{(0, τ̃0)}

tel que ; ψ̃(0) > 0.
2) Pour (ψ, τ̃0) = (0, τ̃0), on a un probléme de continuité de F2p0 pour la seconde
composante de F2p0 , car on ne sait pas si lim

(ψ,τ0)→(0,τ̃0)
t∗2p0(ϕ, τ0) existe ou τ̃0 6= τ ∗.

Pour surmonter cette difficulté, on va écrire l’opérateur F2p0 de la façon
suivante :

F2p0(ψ, τ0) = (F 1
2p0

(ψ, τ0), F
2
2p0

(ψ, τ0)), ∀(ψ, τ0) ∈ E1,

avec
F 1
2p0

(ψ, τ0)(s) = xt∗2p0
(ϕ, τ0)(τ(t∗2p0)s), sur [−1, 0]

et
F 2
2p0

(ψ, τ0) = τ(ϕ, τ0)(t
∗
2p0

),

ou (ϕ, τ0) = Q(ψ, τ0).

Lemme 3.2.5. [15] : Sous les hypothéses (H1)− (H6), on a :

1) lim
(ψ,τ0)→(0,τ̃0)

‖F 1
2p0

(ψ, τ0)‖1,[−1,0] = 0,
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et

2) lim
(ψ,τ0)→(0,τ∗)

F 2
2p0

(ψ, τ0) = τ ∗.

Preuve :

1) Soit {(ψn, τn0 )}n≥0 une suite de E1, qui converge vert (0, τ̃0) ∈ E1 lorsque

n→ +∞.
On note (ϕn, τn0 ) = Q(ψn, τn0 ),
ainsi

F 1
2p0

(ψn, τn0 ) = xt∗2p0 (ϕ,τ0)
(ϕn, τn0 )τ(ϕn, τn0 )(t∗2p0)s)|[−1,0],

et comme Q est continue on a : ‖ϕn‖1,[−τ2,0] → 0.
D’aprés la proposition 3.1.1, on a pour t∗i+1 − t∗i ≤ t∗1, et pour un certain R > r ,

t∗2p0(ϕ, τ0) ≤ 2p0(τ2 + T (R)) = t∗,

et

‖F 1
2p0

(ψn, τn0 )‖∞,[−1,0] ≤ ‖xt∗2p0 (ϕ,τ0)(ϕ
n, τn0 )‖∞,[0,t∗].

Donc, d’aprés le lemme 3.2.2, on a :

lim
(ψ,τ0)→(0,τ̃0)

‖xt∗2p0 (ϕ,τ0)(ϕ
n, τn0 )‖∞,[0,t∗] = 0.

De plus

‖ẋt∗2p0 (ϕn, τn0 )τ(ϕn, τn0 )(t∗2p0).)‖∞,[−1,0] ≤ τ2M
′‖xt∗2(ϕ,τ0)(ϕ

n, τn0 )‖∞,[−τ2,t∗].

d’où, d’aprés le lemme 3.2.2, on a :

lim
n→+∞

‖xt∗2p0 (ϕ,τ0)(ϕ
n, τn0 )‖∞,[−τ2,t∗] = 0.

Et on déduit que :

lim
n→+∞

‖F 1
2p0

(ψn, τn0 )‖1,[−1,0] = 0,

2) pour la deuxieme limite, on note τ(0, τ ∗)(t) = τ ∗,

∀t ≥ 0, on a :

|τ ∗ − τ(ϕn, τn0 )(t∗2p0(ϕ
n, τn0 ))| ≤ |τ(0, τ ∗)(t∗2p0(ϕ

n, τn0 ))− τ(ϕn, τn0 )(t∗2p0(ϕ
n, τn0 ))|

≤ ‖τ(0, τ ∗)− τ(ϕn, τn0 )‖∞,[0,t∗],
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et d’aprés le lemme 3.2.2 on conclut que :

τ(ϕn, τn0 )(t∗2p0(ϕ
n, τn0 ))→ τ ∗ lorsque n→ +∞.

d’où :
lim

(ψ,τ0)→(0,τ∗)
F 2
2p0

(ψ, τ0) = τ ∗.

• Notons pour ε > 0, F̃2p0,ε : E1 → E1 l’opérateur qui définit par :

F̃2p0,ε(ψ, τ0) = (F 1
2p0

(ψ, τ0), F̃ 2
2p0,ε(ψ, τ0)), ∀(ψ, τ0) ∈ E1,

tel que :

F̃ 2
2p0,ε(ψ, τ0) =

 φ(
‖ψ‖1

ε|τ0 − τ ∗|
)F 2

2p0
(ψ, τ0) + (1− φ(

‖ψ‖1
ε|τ0 − τ ∗|

))τ ∗, si τ0 6= τ ∗,

τ ∗ si τ0 = τ ∗

avec : φ : R+ → R+ une application continue, et satisfait :

φ(s) = 1, ∀s ≥ 1, φ(s) ∈ [0, 1], ∀s ∈ [0, 1], φ(0) = 0.

D’où, on a :

Théorème 3.2.1. [15] : Sous les hypothéses (H1) − (H6), pour chaque ε > 0 l’opé-
rateur :
F̃2p0,ε : E1 → E1 est complètement continue, et F̃2p0,ε(E1) est relativement compact.

Puisque E1 est fermé et convexe, et F̃2p0,ε(E1) ⊂ E1 et de plus, F̃2p0,ε : E1 → E1 est
complètement continue, cela confirme l’éxistence d’un point fixe du problème
3.5 précédent, c’est-à-dire la solution de du problème 3.1 ce problème est
une solution périodique lentement oscillante.

3.3 Application

Soit le problème particulier suivant :{
ẋ(t) = −f(x(t− τ(t)))

τ̇(t) = g(x(t))− τ(t).
(3.6)
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telle que f : R → R de classe C1 vérifie (H3), (H4) et (H6), et g : R → R+ une
fonction de classe C1(R),
et supposons aussi les conditions suivantes :

C1) ∃L > 0, ∀x ∈ R; g(x) < L(τ2+1)+τ2
L+1

,

C2)∀x ∈ R; g(x) ∈ [τ1, τ2],

C3) ∃M ′′ > 0, ∀x ∈ R ġ(x) ≤M ′′.

Pour montrer que le problème 3.6 admet une solution périodique lentement oscillante,
il suffit de montrer que g satisfait (H1), (H2) et (H5).
1) Soit x ∈ R, d’aprés (C1) sur g on a :

g(x) <
L(τ2 + 1) + τ2

L+ 1
,

d’où

g(x) <
L

L+ 1
+ τ2,

comme τ ∈ [τ1, τ2] on a

g(x)− τ < L

L+ 1
,

donc (H1) est satisfaite.
2) Soit x ∈ R, d’aprés (C2) on a :

g(x) ∈ [τ1, τ2],

d’où
g(x) ≥ τ1 et g(x) ≤ τ2,

il suit que
g(x)− τ1 ≥ 0 et g(x)− τ2 ≤ 0,

donc (H2) est satisfaite.
3)Soit (x, τ) ∈ R× [τ1, τ2], d’aprés (C3) on a :
D’une part on a

∂h

∂τ
(0, τ) =

∂g(x)

∂τ
(0, τ)− ∂τ

∂τ
= −1,

d’où il éxiste m = 1 tel que : ∂h
∂τ

(0, τ) < −m (1).

D’autre part on a
∃M ′′ > 0, ∀x ∈ R ġ(x) ≤M ′′,
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calculons ∂h
∂x

(x, τ),

∂h
∂x

(x, τ) = ∂h
∂t
. ∂t
∂x
,

= 1
ẋ(t)

[ẋ(t)ġ(x(t))− τ̇(t)],

= ġ(x(t))− τ̇(t)
ẋ(t)

,

ainsi ;

|∂h
∂x

(x, τ)| = |ġ(x(t))− τ̇(t)
ẋ(t)
|,

≤ |ġ(x(t))|+ | τ̇(t)
ẋ(t)
|,

≤ |ġ(x(t))|+ | g(x(t))−τ(t)
f(x(t−τ(t))) |,

≤ G,

comme ġ(x) ≤M ′′, et | g(x(t))−τ(t)
f(x(t−τ(t))) | ≤

L
2(L+1)M

,

si on pose

G = M ′′ +
L

2(L+ 1)M
,

alors

∃G > 0, ∀(x, τ) ∈ R× [τ1, τ2] ‖
∂h

∂x
(x, τ)| < G, (2)

de (1) et (2) on déduit que (H5) est satisfaite.
Puisque les hypothéses (H1)-(H6) sont vérifies d’aprés le théorème 3.2.1, le problème
3.6 admet un point fixe dans E1 c’est-à-dire que la solution de ce problème est une
solution périodique lentement oscillante.
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Annexe

Définition 3.3.1. [2] on dit qu’un ensemble est relativement compact si sa fermeture
est compacte.

Définition 3.3.2. [5] soient E et F deux espaces normés , T : E −→ F est appelé
opérateur compact s’il transforme tout ensemble borné de E en un ensemble relative-
ment compact
de F .

Définition 3.3.3. [5] on dit qu’un opérateur T : E −→ F est de rang fini si la
dimension de T (E) est finie

Proposition 3.3.1. [5] un opérateur continu de rang fini est compact

Définition 3.3.4. [15] Soient E et F deux éspaces de Banach, et f est une application
de E dans F et compacte si :
1) f est continue,
2) f(E) est relativement compact.

Définition 3.3.5. [15] Soit B un ensemble borné d’un espace de Banach E, f une
application de E dans F est dit complètement continue si :
1) f est continue,
2) f(B) est relativement compact.

Théorème 3.3.1. [2] :(Théorème de point fixe)

Soient X un éspace de Banach,U un fermé, borné et convexe de X et F : U → U un
opérateur complètement continue alors F a un point fixe dans U .

Théorème d’Ascoli
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Définition 3.3.6. [9] Soient B0(E,F ) l’ensemble des fonctions continues bornées
sur E et à valeur dans F , H une partie de B0(E,F ) et x0 ∈ E.On dit que H est
équicontinue en x0 si et seulement si

∀ε > 0,∃δ > 0,∀x ∈ E; dE(x0, x) ≤ δ =⇒ dF (f(x), f(x0)) ≤ ε,∀f ∈ H.

Théorème 3.3.2. [9] :(Théorème d’Ascoli,version 1)

Soient E un espace metrique compact , F un espace metrique complet et soit H un
sous ensemble de C(E,F ) alors

H est relativement compact⇐⇒


1) H est equicontinue

2) ∀x ∈ E,H(x) = {f(x), f ∈ H} est
relativement compact dans F

Théorème 3.3.3. [9] :(Théorème d’Ascoli, Version 2)

Soit K un espace métrique compact , H un sous ensemble borné de C(K) . On suppose
que H est uniformément equicontinue , c’est à dire

∀ε > 0,∃δ(ε) > 0,∀x1, x2 ∈ K, d(x1, x2) < δ =⇒ |f(x1)− f(x2| < ε,∀f ∈ H.

alors H est relativement compact dans C(K)

Théorème 3.3.4. [2] :(d’inversibilité de l’opérateur I −G) :
Soient un éspace de Banach X et un opérateur G ∈ L(X) tel que ‖G‖ < 1, alors
l’opérateur I −G est inversible et vérifie la majoration suivante :

‖(I −G)−1‖ ≤ 1

1− ‖G‖
.
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