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Introduction

Les équations différentielles ordinaires ot les équations faisant intervenir une fonc-
tion et sa dérivée exprimées aux méme temps, ont toujours joué un role important
dans la modélisation de déférents phénomeénes. L’étude de certains problémes existe
la tenue en compte de leurs situation (x) a des instants antérieurs. De telles situations
donnent naissance a des équations faisont intervenir non seulement 1’état au méme
temps ¢t mais aussi a des instant antérieurs qu’on notera t — 7. de plus si le retard 7
ne dépend pas seulement du temps ¢ mais aussi de 1’état x, ce genre d’équations est
appelée équation différentielle a retard dépend de I'état . Ces équations se formalisent

de la forme suivante
d'(t) = f(t,2(t),2(t — 7(2(1))))

De telles équations s’appellent équations différentielles a retard dépend de létat. Pour
plus de détails nous renvoyons a [10], [15].
Dans ce travail on s’intéresse a l’existence de solution périodique d’une équation

différentielle a retard dépend de I'état .

Ce mémoire est consacré a 1’étude des équations différentielles a retard et plus
particulierement des équations différentielles a retard dépendant de 1’état et il est

organisé comme suit :

Le premier chapitre, on rappelle quelques définiton et préliminares consernant

les équations différentilles a retard.

Dans le second chapitre, qui est consacré a 1’étude des équations différentielle a
retard dépendant de I’état. On lance dans un premier temps les définitions et théo-
rémes nécessaires pour la démonstration de ’existence et d’unicité des solutions. Nous

entamons par suite la linéarisation de ces équations.
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Le troisieme chapitre, on s’intéresse Existence de solutions périodiques pour une

équation différentielle a retard dépendant de 1’état

Dans ’appendice on trouve les outils classiques utilisés dans ce trvail



Chapitre 1

Préliminaires

1.1 Equations différentilles ordinaires

1.1.1 Définition générale

Soit E un espace vectoriel normé, une équation différentielle ordinaire voir [10] est

une équation dont 'inconnue est une fonction z exprimé sous la forme :
F(t,z, 2,z ,....x") = g(t) (1.1)

ol F' est une fonction continue sur un ouvert U x E*™! appelé domaine.On pratique

on préféré travailler avec des équations plus particuliéres dites explicites i.e :
" =Gtz x, ..., 2" ) (1.2)
Toute équation différentielle d’ordre K, K > 1 on peut la rendre aux équations diffé-

= X

rentielles d’ordre 1 en faisant le changement de variable suivant :

Définition 1.1.1. Soit f : U — R" une fonction définie sur un ouvert non vide U
de R™ telle qu :

r = f(t,x) (1.3)
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On dit que la fonction x : 1 — R™ définie sur 1, intervalle de R, est une solution de

Uéquation 1.3 si elle est dérivable sur 1 et vérife Vt € I,(t,z(t)) € U et 2’ = f(t,x).

Définition 1.1.2. Soit x : I — R" et & : I — R" des solutions de probleme 1.3,

on dit que T est un prolongement de x si :1 € Iet Tp=z

Définition 1.1.3. On dit que une solution x est maximale si y n’admet pas de pro-

longement &, telle que I C I.

Définition 1.1.4. Toute solution (I,x) de 1.3 définie sur Uintervalle I = 1 toute

entier est dite globale

Lemme 1.1.1. si f est de classe C™ sur 1 x R™ alors tout solution del.3 est de class

Cn+1

1.1.2 Existence et unicité de solution

Définition 1.1.5. (Fonction lipschitzienne)

1. On dit que la fonction f : 1 x U — R"™ est globalement lipschitzienne par
rapport a x s’il existe L > 0 telle que Vri,2o € R*,Vt € I, on a

1f (8 21) = (& 22) || < Lijzy — 2]

2. On dit que f est localement lipschitzienne par rapport a x s’il existe un voisinage
V' de (to, ) et une constante L > 0 telle que ¥(t,X;) € V,V(t,X3) € V ,on a

[f(t 1) — f(t, z2)[| < L(to, zo)||lz1 — 22|
3. s10< L <1 on dit que f est contractante.

Remarque 1.1.1. .

1. Si f est de classe O alors elle est localement lipschitzienne.

2. Si f est continue et linéaire alors elles localement lipschitzienne.
Lemme 1.1.2. (Lemme de Gronwall)

Soit u € C([0,T],R,). Supposons qu’il existe deux fonctions a et b dans C([0,T],Ry)
telles que pour tout t € [0,T] si :

u(t) < b(t) —|—/0 a(T)u(T)dr



1.2 Equations différentielle a retard constant

alors

u(t) < b(t) —|—/0 a(7) exp(/ a(s)ds)dr

Théoréme 1.1.1. ( Cauchy-Lipschitz )
Soit f : IxU — R™ une application continue et localement lipschitzienne par rapport
a x alors V(to, zo) € I x U il existe une unique solution v € C([tg — 7,1y + T)] avec

7 >0 du probléeme 1.3 avec la condition initiale x(ty) = xo VYt € [ty — 7,10 + 7]

Théoréme 1.1.2. (Ezistence globale)
On suppose [ € C(I x U,R") est globalement lipschitzienne par rapport a x alors
V(to, o) € I x U il existe un unique x € C1(I,R™) solution de 1.3.

Théoréme 1.1.3. (Unicité globale)
Soient x1 et xo deux solutions de 1.3 définies de 1 a valeur dans R™ avec f est loca-

lement lipschitzienne. si xq et xo coincident en un point de 1 alors x1 = w9

1.2 Equations différentielle a retard constant

Définition 1.2.1. On appelle équation différentielle a retard constant, une équation

différentielle de la forme

/

v (t) = f{t,2(t),z(t = 7)) (1.4)

ouf : R* — R, une fonction continue, et 7 un nombre réel strictement positif que

I’'on appelle le retard.

Remarque 1.2.1. : Pour déterminer la solution de l’équation différentielle sur un
intervalle [to, to + 7|, il faut connaitre x(t) sur un intervalle antérieur [ty — T,to|. Soit

. une fonction continue sur l'intervalle [to — T,to] a valeurs dans R.
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1.3 Equation différentiélle a retard dépendant de
I’état :

Définition 1.3.1. On appelle équation différentiélle a retard dépendant de [’état,une

équation de la forme :

{ 2 (t) = f(t,x(t), x(t — 7(x(1)), pour tout >0 (15)

x(t) = ¢(t), Vt € [0, 0]

ou f : R® — R, fonction continue et 7 : R — [0,+00),0 = malé{T([L”) et ¢ €
Te

C([—0,0], R).

Remarque 1.3.1. On remarque que T est fonction de x(t).

1.4 Equation différentielle a retard variable de type

neutre

Définition 1.4.1. On appelle une équation différentielle a retard variable de type
neutre,une équation différentielle de la forme

!’

() = f(t,x(t),x((t = 7(1), 2 (t = (1)) (1.6)
ou f:R" — R et 7(t) > 0 pour tout t§§§§§§§

1.5 Solution d’une équation a retard dépend de I’état

Définition 1.5.1. On dit que la fonction x est une solution de l’équation si il éxiste
d > 0,4 >0 telle que = est continument différentiable sur l'intervalle [0 — 7,0 + A]
est satisfait l’équation pourt € [0, + A

1.6 Solution périodique

Définition 1.6.1. une solution x est dit périodique de périod T > 0 si elle vérifie de
plus
z(t+ 1) = x(t)

pour tout t € R. Dans ce travail on s’intéresse aux équation différentielle a retard
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1.7 Quelques méthodes de résolution des EDR

Contrairement aux équations différentielles ordinaires,la condition initiale d’une
équation ne suffit pas pour trouver une solution; il faut y ajouter une infinité des
points qui décrivent un segment particulier de largeur du retard étudié, c’est a dire le
segment [—1,0] de longueur 1. C’est en cela que les systémes a retard font partie de
classe plus générale des systéme a dimension infinie ce qui rend complexe leur étude.
Dans cette partie nous entamons la résolution de cette équation par une méthode

analytique dite "pas & pas" et deux autres numériques, de Belman et d’Euler.

1.7.1 Reésolution par méthode pas a pas

Considérons le systéme a retard suivant :

{ x = f(t,x(t), z(t — 7)), (1.7)

Ty = P

ol ¢ est un élément de C.

On se raméne & la résolution d’'une équation différentielle ordinaire, pour cela
pour ¢ appartenant au segment [to, to-+7] on remplace z(t—7) dans 1.7 par p(t—to+7).

Ce qui réduit le probléme a la détermination de la solution de I’équation

{ z = f(t’x(t)’ Qp(t —tlo— 7_))7
Ty = 90(0)7

La solution étant définie sur lintervalle [to,to + 7] ce processus peut étre réitéré
pour les intervalle [tg + 7,tg + 27|, [to + 27, 1o + 37] et ainsi de suite jusqu'a définir
complétement la solution x(¢) Par cette méthode ’équation f(tz(t),y(t — 7)) admet

les solutions suivantes sur les différents intervalles ot segments.

(

o(t) Vt € [to — T, to]
l‘l(t) Vt € [to,to—’r]
.Tg(t) vVt € [to+7’,t0+27’]

L .Tn(t) YVt € [t0+(n—1),t0+n7]
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Ol T1,T2..ccn.... , T, représentent les solutions locales constantes de probléme, avec la

solution globale est donnée comme suit :

2(t) = o(t) + 3 wilt)

De ce qui précéde on déduit que, la méthode des pas nous donne l’existence de solu-

tions et ceci nous meéne A énoncer les définitions suivantes :

Définition 1.7.1. Par la méthode des pas, tout fonction ¢ continue sur l’intervalle

[to — T, to] définit une solution de l’équation 1.4.

Définition 1.7.2. Si de plus f est localement lipschitzienne par rapport a la troisiéme

argument " xz(t — 7)”, alors la solution est unique.

Exemple 1.7.1. Considérons l’exemple biologique de taille P(t) a instant t, soumise
a des processus de reproduction ou de disparition avec que P'(t) représente la vitesse
de croissance. Cette population sera gouvernée par l’équation différentielle a retard
sutvante :

Pt =K [1 _ #} P(t) (1.8)

(t—7)

ot le facteur 1— PT, joue le role de régulateur. Passant a l’intégration de l’équation

1.8 qui s’écrira sous la forme intégrale suivante :

/Ot%ds:/otf([u@]ds (1.9)

Remarquons que pour résoudre cette équation sur ['intervalle [0, 7], il faut connaitre
P(t) sur [—T,0] .
Ainsi, on considére une fonction 0, continue sur [0,7] et on pose comme condition
initiale P(t) = 0(t) sur lintervalle [0, 7]. Posons le changement de variable u = s —T,

pour t € [0, 7] alors 1.9 devient :
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donc la solution sur [0, 7] est donnée par :

Py(t) = Pyexp (/_t K {1 _ @} du> . avect € [0,7]

- u

On refait 'opération sur [T,27] on considérons la condition initiale P(t) = Py(t)1 sur

[0, 7] et ainsi de suite.

Exemple 1.7.2. On propose un exemple plus spécifque sur lequel on applique la

méthode des pas.

>> La résolution sur [0, 1]
Soit ¢ € [0, 1]

/le'(s)ds - /01 (s — 1)ds

Posons u = s — 1, on obtient alors :

/01 z (s)ds = /tl_l z(u)du

donc

z(t) =at+x(0) =at +a

posons z1(t) = at + a sur [0, 1]

>> La résolution sur [1, 2]

On considére la condition initiale :zy 1) = 21 Pour ¢ € [1,2] on obtient :

/j z (s)ds = /jm(s —1)ds
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en posant 4 = s — 1 on trouve :

/lt:vl(s)ds = /Otlx(u)du

il s’en suit que, z(t) — (1) = £(t* — 1) or z(1) = z1(t) = 2a

alors
(1) = L 4 28
z(t) = = —
2 2
posons z»(t) = 42 + 2 pour n'importe quel ¢ € [1, 2]

>> La résolution sur [2, 3]

On considére la condition xp 9 = 2, Vt € [2,3] on a

/; 2 (s)ds = /th(s 1)

Gardons le méme changement de variable on obtient :

/2t z(s)ds = /1t1 z(u)du

6 2
3 t—1

= [gu?’——au}

6 27|,

a 3 oa
= —(®)=3"-1)+—=(t—-1)— —

~((#) )+ S -1 -3

3
= L Y ion- 2
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On a alors :

a a 5
t) —2(2) = =t3 — —t* +2at — -
z(t) — x(2) 5 5t T 2a 3%
or z(2) = £ alors z(t) = 43 — %¢* + 2at + ta

Posons x3(t) = t3 — %4 + 2at + ga, Vit € [2,3]

L’objective de la partie qui suit est de présenter quelques méthodes
d’analyse numérique pour les équations différentielles a retards. On considére

les équations a retard unique et constant.

1.7.2 Méthode de Belman

On considére 1’équation munie de la condition initiale :

{ x (t) = f(t,x(t),x(t —T) (1.10)

Z‘tO:gD,GC

Soit : x(i41)(0) = x(to + 7(0 +14)) avec 0 <0 < 1;et i =—1,0,1,2,...; La variable
f correspond donc & un changement qui normalise le retard a 7 = 1.
Pour ¢ = —1 ,on trouve la condition initiale :z¢(0) = ¢(7(0 — 1)),avec 6 € [0, 1] Selon
le principe de méthode pas-a-pas, la fonction x;,; (pour i = 0,1, ...) est solution de

I’équation

T (0) = TH (o +7(0 + i), 211 (6), 24(6)) (L11)

Ce probléme peut étre résolu en utilisant n’importe quelle méthode pour les équa-
tions différentielles ordinaires. Il y a cependant deux inconvénients majeurs a cette
approche. Premi érement les valeurs calculées de x(;) doivent étre gardées en mémoire
jusqu’a la fin du calcule de z(;41), deuxiémement on ait besoin d’une valeur de
en un point que l'on n’a pas calculé. En effet les algorithmes les plus efficaces de
résolution numériques d’une équation différentielle sont a pas variable. Dans un tel

cas, la valeur désirée est obtenue par interpolation.
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Pour remédier a ces inconvénients,Belman(1961) & proposé la technique suivante :

Comme précédemment, x; est déterminé numériquement a partir du probléeme
(1.13)

Puis les fonctions (1) et () sont déterminées simultanément en résolvant le systeme

formé par les deux premiers équations (1.11) , avec valeurs initiales
ZU(I)(O) = (0); :B(g)(()) =11(1) et .fE(g)(O) = To(1).

En procédant de cette fagon, la suite compléte z(1),z(2),..., est obtenue. Cet
algorithme est bien évidemment couteux en temps de calcule, mais il permet de ré-
soudre les problémes pré- sentant des discontinuités dans les conditions et de ce fait,

il peut étre employer pour initialiser une autre méthode plus simple et efficace.

1.7.3 Meéthode d’Euler

La méthode d’Euler est la plus simple de toutes les méthodes numérique a retards.
Pour un pas constant h de la forme 7/m, oit m est un entier, la solution approchée x

est générée par ’équation aux différences.

j(thrl) = f(tn) + hf(tn, f(t(n)), f(tn_m))
Z(ty) = p(nh) pour —m <n <0
out, = to + nh

Remarque 1.7.1. Cette méthode est d’ordre 1, sous certaines hypothéses sur f.

1.8 Théorémes de point fixe

Comme l'attestent les trés nombreux travaux paraissant aujourd’hui au niveau
international, les théorémes de point fixe sont des outils précieux et trés intéressants en
mathématiques, surtout pour la résolution des équations différentielles non linéaires.
Pour résoudre un probléme par la technique du point fixe, nous avons besoin d’une
application appropriée, d'un ensemble convenable apte pour contenir les solutions du

probléme et d’un théoréme de point fixe qui donne certaines conditions sous lesquelles
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cette application ad- met au moins un point fixe. On va voir maintenant trois théo-
rémes de point fixe, le théoréme de point fixe de Banach qui donne un critére général
dans les espaces métriques complets, celui de Schauder qui est plus topologique et af-
firme qu'une application continue sur un convexe compact admet au moins un point

fixe et finalement, le théoréme Brouwer.

Définition 1.8.1. Soit (E, ||.||g) un espace de Banach, T : E — E une application.
On appelle point fize de T tout point x € E tel que T'(x) —x = x Ce qui est équivalent

a dire que équation T'(z) —x = 0 posseéde une solution

Définition 1.8.2. Soit (E,||.|g) et (F,||.|r) deux espaces de Banach etT : E — F
une application. On dit que T' est lipschitzienne de rapport k > 0 sur E st

1T = Tyllr < kllz = yllz (1.14)

En particulier, si 1 > k > 0,1 est dite contraction ou application contractante de

rapport k.

1.8.1 Théoréme de point fixe de Banach

En 1922; le mathématicien polonais Stefan Banach a prouvé son célebre théo-
réme (connu aussi sous le nom de théoréme de 'application contractante ou théo-
réme de Banach) qui garantit l’existence et I'unicité d’un point fixe d’une application
contractante d’un espace métrique complet dans luiméme. En outre, il est basé sur
un processus itératif assurant que ce point fixe peut étre obtenu comme limite d.une
suite itérée et qu’il est possible d’estimer la précision avec laquelle cette limite est

atteinte.

Théoréme 1.8.1. voir[/]
Soit (E,||.|g) un espace de Banach et T : E — E une application contractante de

constante k € [0, 1[. Alors il existe un point unique x € E tel que T'(z) = x.

1.8.2 Théoréme de point fixe de Schauder

Le théoréme de point fixe de Schauder élaboré en 1930. assure I'existence d’au moins

un point fixe pour une application continue sur un convexe compact dans un espace
de Banach.
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Théoréme 1.8.2. Soit M un sous ensemble convexe, fermé, borné et non vide d’un
espace de Banach E etT : M — E une application compacte. Alors T posséde un
point fize.

Remarque 1.8.1. Si M est compact et convexe, il suffit que T soit continue pour

avoir un point fixe pour T.

1.8.3 Théoréme de point fixe de Brouwer

Théoréme 1.8.3. (Théoréme de Brouwer(1910)[3]) Soit C' un compact.conver non

vide de R™ et f : C'—> C une application continue.Alors f admet au moins un point

fixe dans C.



Chapitre 2

Equations différentielles & retard

dépendant de 1’état

On s’intéresse maintenant aux équations a retard dépendant de ’état, ou I’évolution
de la variable x a l'instant ¢ dépend de la valeurs de = a linstant ¢ — 7(x(t)) et le

retard dépend également de la valeur de z. Une telle équation s’écrit sous la forme :

= ft,x(t), x(t — 7(x(t)) (2.1)

Ces équations posent des nombreux problémes théoriques sur quel intervalle défnir
la condition initiale,par exemple pour une équation & retard discret 7 , la condition
initiale doit étre définie sur un intervalle de longeur 7 typiquement [—7,0]. Pour un
équation a retard dépendant a I’état en £ = 0 il est nécessaire d’accéder a la valeurs
z(=7(2(0))).
On pourrait donc considérer une condition initiale ¢ définit sur lintervalle
[—7(¢(0)),0]. Si la fonction 7 est supposée croissante, alors en t = ¢ il faut accé-
der a la valeur z(e — 7(z(¢))) et il se peut que :e — 7(z(¢)) < —7(x(0)) = —7((0)).
C’est a dire :

Tox(e) — (T ox)(0)

€

> 1

Ainsi, si la fonction 7 o x est fortement croissante en ¢ = 0, on peut méme faire
face & un probléme de définition de la condition initiale. On est rapidement améne a

considérer des fonctions 7 bornées et des conditions suffisamment réguliéres.

Les premiers travaux notables sur les équations diférentielles a retard dépendant

de I'état ont été réalisés dans les années 1960, Driver étudié l'existence, I'unicité et
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la dépendance aux conditions initiales des solutions, un travail compléte par la suite
par des nombreux auteurs qui se sont intéressés a l'existence de solutions périodiques

pour ces équations.

On a eu reccours pour ce chapitre aux ouvrages suivants :[11],[7], [1],[12].

2.1 Equations différentielles a retard dépendant de
I’état

Définition 2.1.1. On appelle équation diférenticlle a retard dépendant de [’état ;une

équation de la forme :

flt,x(t), z(t —7(x(t)))), pourtout t>0
Vt € [—o,0]

—N—
8 8
o~
= =
I
<=
—~
=

o f : R® — R, fonction continue et 7 : R — [0,+00),0 = maﬂicT(x) et ¢ €
Te

C([—0o,0], R).

2.2 Exemple et commentaires :

Citons 'exemple suivant qui & été proposé récemment par Arino, Hbid et Bravo
[13], comme modéle décrivant I’évolution d’une population de poissons dont les larves

consomment une nourriture, supposée limitée. Le modeéle est sous la forme suivant

{f@y:ﬂuﬂww@—f®ﬁ
7 (1) = h(z(t — 7(1)))

ou x est le nombre total de la population et 7 représente la durée nécessaire, pour
que les larves deviennent des juvéniles, la deuxiéme équation différentielle ordinaire,
elle dépend de la variable x, ¢’est pourquoi I’équation est dite, équation différentielle
a retard dépendant de I'etat. Ces derniéres années, ces équations ont fait l'objet de
plusieurs études, voir par exemple Kuang et Smith [14], Mallet-Aret et Nussbaum

[11] qui ont étudié les équations de la forme

’

2 (t) = ft,a(t), z(t — 7(t)),t > 0
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2.3 Existences et unicité de la solution :

Soit I’équation différentielle a retard dépendant de 1’état :

{ 2 (t) = f(t,z(t), z(t — 7(2(t)))), pour tout ¢ >0 22)

2(t) = o(t), Vt € [0, 0]

ou f : R® — R, fonction continue et r : R — [0,+00),0 = maﬂ:gr(x) et ¢ €
T

C([-0,0], R).

Supposons que f et 7 vérifient les hypothéses suivantes
1. f est localement lipschitzienne, par rapport a x(t) et z(t — 7(x(t))).
2. 7 est localement lipschitzienne
3. f est bornée sur les bornes

Pour un nombre positif 7', soit X ’ensemble des fonctions continues de [—o,T] a
valeurs réelles, muni de la norme du sup, X est un espace de Banach pour w et p,

deux réels positifs, soit Cy le sous ensemble de X, définit par :

o { v € X, x(s) = §(s) Vs € [~0,0
@ Is| <p, et |o(t) —a(s)| <wlt —s| Vi€ [-0,T]

Proposition 2.3.1. Cy 1 est compact.

preuve :

a/ Montrons d’abord que Cy 1 est relativement compact, pour cela, il suffit d’aprés

le théoréme d’Ascoli soit borné et uniformément equicontinu.
i/ Il est clair que Cy 1 est bornée par construction

ii/ Pour tout t,s € [—o, 7] et pour tout x € Cyr on a
() — x(s)| < wlt — ] (2:3)

pour € > 0, pour |t —s| < £,2.3 donne |z(t) — z(s)| < € ce qui prouve que

Cy,r est relativement compact.

b/ Montrons maintenant que Cy 7 est fermé.

Prenons donc, une suite (z,),en dans Cyp 1, telle que lim x,(t) = z(t) et mon-
n—oo

trons que z(t) € Cyr
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D’une part, pour n € IN, on a z,(s) = ¢(s); Vs € [—0,0] :
En passant a la limite, on trouve :

lim z,(t) = ¢(t) Vse|—0,0]:

n—oo

j2(s) = x(t)] < |2(s) = zn(n)] + |2n(s) — 2n ()| + [2n(t) — 2(1)] (2.4)

D’aprés la définition de la limite , 2.4 devient :

lz(s) — z(t)| < %—i—uls—t!—i—%:e+R]s—t|,V620, R>0
Ainsi :
|2(s) = x(t)] < wls — ]
o/ llzll = |l mm 2, < L fla| < p.

Alors x € Cyr et par consequent Cyp est fermé; on conclut que Cyr est
compact.
Théoréme 2.3.1. Supposons que les hypothéses 1,2 et 3 sont vérifiées, alors pour
toute fonction ¢ dérivable avec |¢ (t)| < R, (R > 0), alors le probleme 2.3 admet une
solution unique x(t).
Preuve :Pour la démonstration, on applique le théoréme du point fixe.
1. Soit N la borne de ¢, M la borne de f, supposons que R > M Pour w = R et
p =N+ TM, on définit,Cy 7.
D’aprés la proposition, précédente, Cy r est compact.
2. Montrons qu’il est convexe :
a/ soit a €[0,1] et z,y € Cpr:
ar(s) + (1 —a)y(s) = ad(s)+ (1 —a)d(s), Vs € [-0,0]
= ¢(s),Vs € [—0o,0]

b/ Pour tout t,s € [—0,T] on a :

|z (s) + (1= a)y(s) —ax(t) + (1 —a)y(t)] < fo(z(s) —2(t) + (1 = a)(y(s) —y(1)]
< al(z(s) —2(@)] + (1 = a)[(y(s) — y(®))]
< aR|s—t|+ (1 —a)R|s —t
< R|s—t

Alors ax + (1 — )y est lipschitzienne sur [—o,T], avec la constante de

lipschitz.
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c/ x et y sont bornées par p, alors :
laz+ (1 —a)y|| < aflz]| + (1 —a)llyl| < p

Donc ax + (1 — a)y € Cyr et par suite Cy 1 est convexe.

3. Posons J = [—0,T] et considérons I'application :
F:Cypr — X, définie par :

(t) —0<t<0

(Fz)(t) = { i
o(0) + [, f(s,x(s),x(s — 7(x(s)))ds, YO<t<T

si F' est complétement continue et F(Cyr) C Cyr; Alors F' admet un point
fixe . Ce point fixe est une solution de I’équation 2.3

> Montrons que F(Cyr) C Cy 1.

On sait que(Fx)(t) = ¢(t) pour V—o < t < 0 comme ¢ est une fonction bornée
par N et R lipschitzienne alors F/(Cyr) C Cyr

a/ Six € Cyr,onapour 0 <t <T

(Fz)(t)] < |‘I>(0)+/O f(s,x(s), 2(s — 7(x(s))))ds|

t
< ]CID(O)H—/ Mds
0

IN

|(0)| +TM
< N+TM

p

Donc F' est bornée

b/ Pour prouver que F(z) est R-lipschitzienne, il suffit de montrer que
|(F(z)(t))'| est bornée par R
En effet :
(F(2) (1)) = f(t,x(t), z(t = 7(2(t))))

|(F(z)(t))'|| < M d’aprés 'hypothése(3).
I(F(z)(t) | < M <R

4. Montrons maintenant que F' est complétement continue
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a/ Supposons que z; € Cy 1 et||x; — || — 0.
Notons par p;(s) = 7(z;(s)),p(s) = 7(x(s)),l la constante de lipschitz de
T et k la constante de lipschitz de f.
Donc pour tout t € [0,77], on a :

|[(Fz;)(t) = (Fx)(8)] < I/0 f(s,2i(s), 25(s — pj(s))) = f(s,2(s), (s — p(s)))|ds

IN

/0 (s, 5(8), 2505 — py(s))) — F(s,2(s), (s — p(s))lds

IN

/0 | (s,2(5), 2(s = pi(s))) = f(s,2(s), (s = p;(s)))|ds

+ /0 £ (s,2(s),2(s — pj(s))) — f(s,2(s), (s — p(s)))|ds

< k:/ ksup{ sup |z;(s)—z(s)]
0 s€[—o,T]
, o osup|zi(s = pi(s) — (s — p;i(s))[}ds
s€[—0o,T]

+ k:/o ksup{ sup |z(s)— z(s)]

s€[—o,T]

e |2(s — p;j(s)) — x(s — p(s)) pds

t
< [ kouplle; =l by — b
0

+ /0 ksup{0, sup |z(s — p;(s)) —z(s — p(s))|}ds

s€[o,T]

< /Okaj—x||ood8+/0 k sup |x(s—pj(s)) —x(s— p(s))|ds

s€[—a,T]

t t
< / k||x; —x||oods+/ k sup R|s—pj(s) —s— p(s)|ds
0 0

s€[—a,T]

¢ t
< /k:||xj—x||oods+/ kR sup |pj(s) — p(s)|ds
0 0

s€[—o,T]

¢ t
< /kaj—xHOOds—i—/ kRl sup |z;(s)—z(s)|ds
0 0

s€[—o,T]
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|[F5(x)(8) = F(2)(1)]

IN

Tlkllz; = wlloe + kRIl|lz; — l]
< Tk[1+ Rl)||z; — x|/

Donc F' est lipschitzienne Cy pr et par conséquent elle est continue.

b/ F est compact, en effet :

Soit B un ensemble borné de Cy .

F(B); un fermé inclu dans Cyr qui est compact par conséquent, F'(B) est
compact. Ainsi I’ est complétement continue.

Le théoréme du point fixe, nous donne.

Pour tout nombre 7" > 0, il existe une fonction z € Cy p,tel que

(Fx)(t) = x(t), pour tout t € [0,T]

Dans ce qui suit, on montre, I'unicité de la solution.

On procéde par 'absurde.

Supposons qu’il existe deux solutions x(t), y(t); pour ¢t € [0,7], on a :

z(t) —y(t)| < LA(ﬂ&x@%ﬂs—T@»%—ﬂ&y@kms—ﬂ@DMﬂ

IN

A\U@w@%ﬂs—M$D—f@w@%ms—M®DMﬂ

IN

t t
/ k||lz; — x| sds +/ kRl sup |z(s) —y(s)|ds
0 0

s€[—a,T]
< (I —pk[l+ Rz —yllo
< Tk[1+ Rl||z — ¥/l

pour T < m on obtient :

(t) = y(O)] < [l =yl

contradiction, et par conséquent,on a :

x(s) = y(s) pour s € [0,T].

Exemple 2.3.1. Considérons I’équation suivante :

{ 2 (t) = —2sin(z(t — E2)), >0
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Il est clair que T est une fonction lipschitzienne, f est de classe C*, par rapport a x,
donc elle est localement lipschitzienne et comme la fonction sin(x) est bornée par 1
pout tout x, alors f est bornée par 2.

de méme ¢ est une fonction de classe C* et sa dérivée est bornée par 1. Alors toutes
les hypotheses du théoréme précédent sont vérifices, donc cette équation, admet une

solution unique.

2.4 Solution constante d’une équation différentielle

a retard dépendant de I’état non linéaire :

2.4.1 Principaux résultats :

Considérons I’équation a retard dépendant de I’état non linéaire suivante :

z(0) = »(0), pe[-70]

Si z(t) = z(t) = x est solution constante de (2.5) tel que
)

x:[—T,00) — R, alors on obtient :

{ f(t;f,f)ét) - t>0 26)

Soient les données suivantes :

Ti(s) = T(t + s) = Ty, pour s € [—T,0], I'espace de Banach des fonctions continues
Z; : [—7,0] = R muni de la norme :||¢|| = max{|¢(s)|; pour s € [—7,0]} = || 7|
dénoté par C = C([—7,0],R).

Un voisinage fermé de rayon (), d’'un ensemble A dans un espace de Banach X est
dénoté par By (A;0) = {z.X;|r —alx < Q, pour a € A}, notons par |.| la norme
de R, £(C,R) désigne 'espace des applications de C' dans R.

Soient les hypothéses suivantes :

Hy f:]0,00) x84 xQy — R, contintiment différentielle ; on1 21, Q5 sont des intervalles
de R
Hy i/ 7:]0,00) x Q3 — [0, 7| continiment différentielle ; ou Q23 est un sous-ensemble

ouvert de C
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ii/ 7 est localement, continue, lipschitzienne dans le sens suivant
Pour chaque sous-ensemble, fermé et borné M de C), il existe une constante
Ly = Ly(M) > 0 telle que
I7(t, 1) — T(t, )| < |71 — Tall, t€10,T] et 77,75 € M.
T : [—T1,00) — R, solution constante de (2.5), la réstriction de T sur l'in-
tervalle [—7, 0] est notée par Tg, i.e. que T est la solution de (2.5) corres-
pondante a la condition initiale Zg.
On remarque que la continuité de la condition initiale n’est pas suffisante
pour 'unicité de la solution.
Pour avoir I'unicité de la solution, il faut que la condition initiale soit au
moins localement lipschitzienne, ce qui est le cas pour les conditions ini-
tiales de classes C'! (voir[0]).
On notera; par z(t, p) n’importe qu’elle solution de (2.5) correspondante &
la fonction initiale p € C' et par e(t) = x(t—7(t,24)),e =T(t—7(t,21)) =7
on déffinit, donc les ensembles suivants associés a la solution constante T
Ay =x(t);te 0,7 =7,A, =(t);t € [0,T] =T et Ay = Z(t);t € (0,77,
on remarque que A; = A,
Ay, Ay et Az sont des sous ensembles compactes d’espaces respectifs R et
C. Puisque T est continue, les ensembles €2, {25 et 23 sont des sous en-
sembles ouverts des espaces R et C' respectivement.
Donc il existe des constantes positives (1, Q)2 et (3 tel que
Br(A1, Q1) C Qy, Br(As, Q2) C Qs et Br(As, Q3) C Q3.
Puisque f est continiiment différentiable par rapport a son second et troi-
sieme argument, il existe une constante Ny > 0 tel que :
|Dof(t, T, | < Ny et |Dsf(t,z, | < Ny pour t > 0.

Lemme 2.4.1. Considérons (Hy) et soit z[—7,00) — R, solution constante de (2.5),
pour n'importe qu’elle s > 0 ; |e(t) —€(t)| < ||zt —T||, pourt € [0, s] et pour n’importe

qu’elle fonction continue x : [—7,00) — R satisfaisant z, € Bo(As, 03) pourt € [0, s].

Preuve 2.4.1. Soit Ly ; la constante de (Hs) (ii), associé a l'ensemble B.(As,03) ;

en utilisant la définition de € et €, linégalité triangulaire et le théoreme de la valeur
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moyenne; on obtient :

@) —e®)] = |zt —7(t,2) —Z(t —7(t, T))]
= |a(t =7t ) -2t —7(t, 7)) +2(t — 7(, 7)) — Tt — 7(t, 70))|
< ‘l‘(t - T<t7 xt)) - E(t - T(tuft)ﬂ + |f(t - T(t7ft)) - E(t - T<t7ft))|

onaTte€l0,r] = —71 € [—r,0], prenons comme —7(t,x;) = 6 ; on obtient

le(t) —e@)| = as[up ] lz(t+0) =Tt +0)| + [[Z|l|7(t, 2) — 7(¢, 24)]
e[—r,0
= sup |[z(0) —7(0)]
0e[—r,0]
= |lz: — T

Pour T ; solution constante de (2.5) et pour n’importe quel t fixté > 0; on définit

Uopérateur linéaire F(t) tel que F(t) : C' — R, défini comme suit :

E(t)d = Do f (t, 7, 7)¢(0) + Daf(t, 7, )¢ (=7(t, 7))

et la fonction g : tel que :

g: [07 OO) X Q3 — R et g( 7w> = f(ta¢(0)7¢(—7(ta¢)>> - F(ﬂw

Il est evident que 'opérateur linéaire F(t) soit borné, puisque par (Hs), il satisfait

F()y] < (max Dof (+.7.7)] + max |Daf (1,7 x>|>||w||)

te[0,T7] t€[0,T]

pour ces notations; on peut réecrire

z = F(t)zy + g(t,z),t >0 (2.7)
qui se traduit aussi par [’équation :
y (t)=F(t)y;,t >0 (2.8)

qui se traduit aussi par [’équation :

0
au(t7 s) = F(t)u(t,s),t > s (2.9)

L, sit=
{ st (2.10)

0, t<s
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Il est comme (voir eq [5]) que la stabilité asymptotique de la solution zéro (trivial) de
(2.4 z(s)) est équivalente a sa stabilité exponentielle, i.e. qu’il existe des constantes
Ky > 1 etag > 0 tel que

lu(t, s)| < Koe @) ¢ > s (2.11)

La preuve de notre principal théoréeme sera basée sur la serie de lemmes suivant :

Lemme 2.4.2. En tenant compte des hypothese (Hy) et (Hs) et soit
T : [—r,00) = R, solution constante correspondante a la fonction initiale Tg, alors il

existe une constante Ny > 0, tel que pour n’importe qu’elle s > 0

[ (1) < Nllze =z )l,  te0,s] (2.12)

et
e — T < Mo —Toll,  te]0,s] (2.13)

pour n’importe qu’elle solution x de (2.5) satisfaisant

t € Bo(As, 05) (2.14)
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Chapitre 3

L’éxistence d’une s.p pour une E.D.R

dépendant de 1’état

Dans ce chapitre on résume les résultats du travail d’Arino et Al [15] sur les solutions

périodiques non triviales du probléme suivant :

{ @(t) = —flz(t—7(t))  (B1-1), (3.1)

7(t) = h(z(t),7(t)) (3.1 —2).

ot f: R — R, tel que f(0) =0, f € C'(R)et h: R x [r,n] - R telle que
he CHR x [r, 7], R) avec 0 < 7 < To.

Ces hypotheéses sont supposées satisfaites dans tout le reste de ce chapitre.

Si 7* est la valeur unique de 7 dans [y, 7] tel que : h(0,7*) = 0, le point (0, 7*) est
un point d’équilibre de 3.1.

Une condition initiale pour le probleme 3.1 en £t = 0 est le couple
(p,70) € C([—72,0],R) X [11, T2].

Définition 3.0.1. On dit que les couples (x(t), 7(t)) sont solutions du probléeme 3.1
si et seulement si :

1)x(t) = @(t) pourt € [—72,0] et 7(0) = 70,

2)les fonctions x est T sont continument diférentiables pour t > 0,

3) les couples (x(t), 7(t)) satisfaisant 3.1.

Définition 3.0.2. La solution x(t) de l’équation (3.1 — 1) est dit oscillante si elle

admet arbitrairement un grand nombre de zéros.
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Définition 3.0.3. La solution x(t) de l’équation (3.1—1) est dite lentement oscillante
st la distance qui sépare tous deux zéros successifs de la solution x est plus grand que

maxrT.
teR

L’idée est basée sur la construction d’un opérateur de type Poincaré dont un point
fixe nous donne une solution périodique lentement oscillante du probléme 3.1.

Dans la suite on considére les ensembles suivants :

E ={(p,70) € Lip([—72,0], R) X[, 2] tel que: o(—719) =0 et ¢ est non deroissante sur [—79,0]},
ou :

Lip([-72,0, R) = {¢ € C([-72,0],R) : |p(t)—¢(s)| < k|t—s| Vt,s € [-7,0] et k > 0}.

3.1 L’éxistence d’une solution lentement oscillante

En plus des hypothéses initiales sur f et h, nous supposons les hypothéses suivantes :
Hy) 3L > 0,V(z,7) € R X [, 12]; h(x,7) < LLH,
Hy) h(z,m) >0 et h(x,m) <0; Y(r,7) € R X [r, 7).

D’aprés la proposition 2 dans [15] le probléme 3.1 sous les hyphothéses (H;) et (Hj)
admet une solution unique (z(t), 7(t)) pour chaque (¢, 1) € E,

ie z(t) = p(t) sur [—72,0] et 7(0) = 79, les équations 3.1 sont satisfaites pour
t>0.

Cette solution on la note par (x(v,7)(t), (v, 70)(t)). De plus 7(t) € [r,72] pour

chaque ¢ >0 et t—7(t) est croissante sur R,.

Remarque 3.1.1. La propriéte t — 7(t) est croissante sur R, est fondamentale

dans la suite de notre travail.

Lemme 3.1.1. [15] Si en plus des hypotéses sur [ et h, les hypothéses (Hy) et (Hs)

sont satisfaites, on a pour (v, 1) € F :

(2(0,70)(1), 7(0, 70) (1)) = (2(", 70) (1), 7(¢", 70) (1)) VE=0

o :
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Preuve :
La fonction t — 7(t) est croissante d’aprés la remarque 3.1.1, on a :
Pour ¢t € [0, 7] on a :
0—7(0) < —7o<t—r7(t) <0,
d’ou :
ot —7@) =9 (t—7() pour te€[0,7].

D’aprés 'écriture intégrale de3.1 on a :

2(p,m0)(t) = ©(0) = [y f(o(s = (0, 70)(s))ds,
et (0) = [y fo* (s — (0, 70)(s))ds, (3.2)
= a(¢™, 7)),

et

(o, 10)(t) = 70+ f3 h(z(p,70)(s), (0. 70)(5))ds,
= 7o+ fy Ma(et, m0)(s), (", 0)(5))ds, (3.3)
= 7(p*,70)(t)

De I'unicité de la solution on a :
(@(0, 10) (), T(0, 10) () = (2(™, 10) (), T(¢T, 70) (1)) V€ [0, 7).

Supposons que Iégalité est vraie pour t € [0, k7], et montrons la pour ¢ € [0, (k+1)7].
Soit t € [0,(k+ 1)1y, on a :

0—7(0) < 70 <t —7(t) < (k+ m = 7((k + 1)m),

il suit que
—1o<t—7(t) < (kn+7n —7((k+1)m),

ormp —7((k+1)m) <0, dou
—10 <t —1(t) < km,

donc l'inégalité est vraie pour ¢ € [0, (k + 1)7].

De l'unicité de la solution on a :

([E(cp, TO)(t>’ 7_(907 TU)(t)) = (x(¢+7 TO)(t)v T(<,0+, 7_0)<t>> vt € [07 le] k>1.

Remarque 3.1.2. D’aprés ce lemme on voit que la solution ne dépend que des valeurs

de ¢ sur [—79,0] C [=72,0], st (p,70) € E.
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Si de plus on suppose :

Hj) : xf(x) > 0, pour tout z # 0,

Hy): Ir>0, 36> T—ll, telle que |f(x)| > d(x) pour |x| <r.

Pour tg = —79, t5=0¢t t1(p,70) =inf{t >0: xz(p,7)(t) =0}, on a:

Lemme 3.1.2. [15] : Sous les hypothéses (Hy) — (Hy), pour chaque (p,19) € E, si
©(0) <R (avec R>71) ona:ti(p,1) <T(R), o T(R)=3m+ g:;,

et C.p=1inf{f(s);s € [r,R]} > 0.

Lemme 3.1.3. ( théoréme 4 dans [15]) Supposons que les hypothéses (Hy) — (Hy)
sont satisfaites, et soit (x(t),7(t)), la solution de l’équation 3.1) avec (ep, ) € E
comme condition initiale, et ¢ € {—1,1} Alors :

(1) il éxiste deux suites réelles (tf);>0 et (t;)i>o tel que :

VZZO, t():—To, tSZO, t;k Sti+1, et tZ:t:—T(t:),
(2) e(=1)"x(t) est non croissante sur [tf,t5,] avec x(t;) = 0 et x(t]) #
0 si (0)#0.

(3)
Vi >0; (e(=1)" o, 7(t) €E

i (2

Si de plus on a (11 — )| f(x)] < |z|, Vo € R, et p(0) # 0 alors x est lentement

oscillante

Proposition 3.1.1. Soit la suite (t})ien définit dans le lemme 3.1.3,
siti, —tr <7, alorstf <i(r +T(R)), avec i€ N.

Preuve :

On a d’aprés le résultat présédent, t; < T'(r), comme t; = t] — 7(t7), il suit que
t; <1+ T(R).

Supposons la suite (u;);en définit par
up =t —t;_y,

d’aprés la condition suivante 7, ; —¢; < t], on a:
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d’ou
i

> wi=t; <i(r+ T(R)).

k=0

3.2 la construction de 'opérateur de Poincaré

Dans cette partie on utilise les résultats des lemmes 3.1.1 et 3.1.2 pour la construc-
tion d’un opérateur de type Poincaré.

- On définit I'application G, par
Go E — Lip(|—7,0],R) x [, 2]

et
GQ(QO, TO) - (xa(iﬂ, 7—0)7 T(‘P? TO)(a))v
ou a > 0.
d’aprés le résultat (3) du lemme 3.1.2 on conclut que si a = t5, ou py € N, alors G,

est & valeur dans F.

Proposition 3.2.1. La solution (x(t),7(t)) est une solution périodique de 3.1 ayant
pour condition initiale (p,19) € E, si el seulement si :

dJa>0;
Ga((p7 7—0) = (907 7_0)‘

De cette proposition, on déduit que trouver une solution périodique non trivial de

I'équation 3.1 de période « revient a trouver (¢, ) € F, avec ¢(0) > 0, satisfaisant :

(ﬂ(S) = $a(907 7_0)(8)7 \V/S S [_7-07 0] (34)
70 = T(QO,TO)(Oé),

Remarque 3.2.1. Une solution du probleme 3.1 est de classe C* pour t > 0.

Le couple (¢, 70) défini une solution périodique si Go(p,70) = (p,70), comme

Go(p,m0) est de classe C donc (@, 79) doit étre de classe C.

Soit Xy = CY([—7»,0],R) x [1, 72|, est un éspace de Banach muni de la norme sui-

vante :

1@, 70)llo = Nl lloc. (=720 + [P lloc, (=m0 + |70l V(i 70) € Xo.
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Donc la recherche d’une telle solution doit se faire dans un sous ensemble Ey de X

défini par :

Eo={(p,70) € Xo: ¢'(s) >0, Vse[-7,0], p(—70) =0 et ©'(0) =0},

et on note par
EO_ = {(QO,T()) € XO : (_SO,TO) € Eo}
On a Ey C E et al'aide des résultats du lemme 3.1.3, on peut définit 'opérateur P;

qui représente la réstriction de G, sur Ej par :

Pji E0—>X0,

Pi(e,70) = (24 (0, 70), 7(0, 70) (7))
et
Pt Ey — Xo,

PjJr(QO, 7'0) = ((_1)jxt; (QO, 7—0)7 7-(307 TO)(t;))>

On remarque que, si j = 2k alors P} (p,70) = P;(0,70).

Proposition 3.2.2. Si (p,79) € Ey, alors x(p,19)(t) est contindment dérivable sur

[—72, +00].

Preuve :
Par construction la composante z(p, 79) est continiiment dérivable sur [—73, +-00[, en

effet le seul point ot on peut avoir des problémes est ¢t =0, oren¢=0o0n a :

PL(0)=0, et ' (p.m)(0) = —f(p(~m)) =0

De cette remarque et du résultat (Vi > 0; (e(—1)"zp,7(t7)) € E) du lemme 3.1.3,
on déduit que :
P;O : By — Ey, pour pg > 1.
D’ou en particulier : Py, : By — Ey, pour py > 1.
Chercher une solution périodique revient a appliqué le théoréme de point fixe a 1’ap-

plication Py, .
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Proposition 3.2.3. E, fermé.

Preuve :
Ey est fermé :
Soit (¢n, Tho) une suite de Ey qui converge vers (p, 79), montrons que (¢, 79) € Ey,
i) on a ¢'(s) = lirf i (s) et @ (s) >0Vn e N donc ¢'(s) >0Vs € [—m,0].
n—-+0oo
ii) On a :
p(=m0) = lHm on(=7n0) =0,
iii) on a :
¢'(0) = lim ¢ (0) =0,

n—-+o0o

de 1), ii) et iii) on déduit que Ey est fermé.
Remarque 3.2.2. Ey n’est pas conveze a cause de la condition o(—Tp).

En effet pour deux données initiales (¢, 7) et (¢, 7y) on aura :

(@,70) = [(1 = A, 7o) + A&, )], tel que: A€ [0,1],

doi :
(¢, 70) = (1 = N + A, (1 = \)7o + A7),
puisque
e(—70) = ¢((1 = N)7o + A7) # 0,
et
(=70) = ¥((1 = A)7o + Ao) # 0,
on a

¢(—70) = [(1 = Np(—70) + Mp(—70)] # 0,

donc Ej est non convexe.
Pour surmonter cette défficulté on identifie Xy avec X; et £y avec E; ou :

X1 =CY[-1,0],R) x [r1, 7], est un éspace de Banach muni de la norme :

1, 7o)l = [ lloo 100 + ¥ lc 00 + |70l ¥(w,70) € X1,
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ou FE; est un sous ensemble de X; définit par
By ={(,m) € Xi: ¢'(s) >0, Vse[-1,0], ¥(-1)=0, et ¢'(0) =0},
et on note par

Er ={(¢,n) € Xi: (=¢,7) € Er},

on défini deux applications () et L de la fagon suivante :

Q : X1 — Xo,
tel que :
(w’TO) — Q(¢>TO) - (9077_0)7
ou
s
(=), Vs € [—7,0]
pls) = 70 D)
¢ (=10)(s = T0) = —=——(s — T), Vs€E [T, —T0].
et
L:Xy— Xy,
(¢, 70) = (¢, 70),
tel que :
L(p,70) = (¢, 70) avec ¥(s)=(sm), Vs € [-1,0],
il suit que :

Proposition 3.2.4. Qo L = Ig,.
Preuve :

Soit (p, 1) € Ey, pour s € [—79,0] on a :

Qo L(p,m)(s) = QL(e,70)(s)];
Q(¢>TO)(3)a
= (¢, 70)(s)-
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d'out Qo L = Ig,.
Posons maintenant

Fp=LoP,oQ; kel

donc la recherche d’une solution périodique revient a trouver (¢, 79) € Ey, avec ¢(0) >

0 et qui satisfait :

(¢, 70) = Fop, (¥, 70), pour certain py > 1, (3.5)

Lemme 3.2.1. [/5] : On a
F, = FY,

tel queFfH:FloFlo...oFl,/{;fois pour k€ N* et F} =F,=LoP oQ.

Preuve : ce résultat découle diréctement du lemme 3.1.1 et d’aprés les définitions de
F., L et @, et en utilisant le raisonement par récurence :

-pour k=1ona:
Fi=F'=LoPoQ

. - Supposons que F}, = FF = Lo P,o(Q et montrons queF},, = FFl' = LoP, 00,
on a:
FF' = Fy o FF,

et par suite
FIM' = Flo(LoPyoQ),
d’ou
FFfl'=(LoP oQ)o(LoP,oQ),

d’aprés l'associativité de 'opération de composition et puisque () o L = I, on a :
Ff*t = (Lo (PioFy)oQ),

donc
FMY' = (Lo Py 0Q),
d’ou
Frp=Fff' =LoP,0Q.
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Remarque 3.2.3. pour k = 2py on a :
F2P0 : E1 — E17

pour k =2py+1 on a :
F2p0+1 : El — El—7

a)L’application Fy,, est complétement continue :

On suppose les hypothéses suivantes :

Hs): Im >0, 3G>0: %(0,7) < -—m; et ‘%(33,7‘)‘ < G; Y(z,7) € Rx[m, ),
Hg): AM > 0,3IM' > 0: [|f(@)]|ec < M, [[f ()| < M'; VxeR,

Proposition 3.2.5. : Sous les hypothéses (Hy) —(Hs), on a Fap,, (Ey) est relativement

compacte dans FE;.

Preuve :

1) Montrons que Fy, (F;) est borné :

Soit (¢, 79) € Fap,(E1), donc il existe (¢, 79) € Ey telle que (¢, 79) = Fap, (¢, o).
On note Q(¢, 19) = (p, 7), pour s € [—1,0] on a :

P(s) = (¢, 70) (870 + 15, )-

et
b(s) = Tod(p, o) (50 + t3y,),
d’on
0
0(0) — h(—1) = —70/1 F(a(ros + 5, — 7(108 + £5,.)))ds,
or

puisque ¥ (s) > 0 sur [—1, 0] et ¢(0) = 0, donc

[¥]]o0,1=1,0) = [1(0)]

comime

To < Ta,

il suit que
1V o0,-1,00 £ T2 M,
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ainsi

M € R+7V¢ € Ol([_LO]a]R') : ||¢||oo,[71,0] < T2M>

d’ott; Fyy,,(E7) est borné.

2) Montrons que Fy, (E;) est équicontinu :

Pour le faire on montre que Y(1,7) € Fp,(E1), ¥ et 9 sont Lipshitziénnes,

Soit (7/)’ TO) = F2p0(¢a 7:0)7
i) Montrons que 9 est Lipshitzienne.

on a :

{w(s) =y, (6,70)(s) sur [~1,0]
To0 - T<¢77:0>(t;p0)77

on note (p,79) = L(¢,7y), d’ou

{w(s) = z(p,70) (108 + 15,,) sur [~1,0]

o = T(p,70)(t5p,)
il suit que
Q/J(S) = TO:'U(Tgs—{—t;pO),
= —7of(x(108 + 15, — T(T08 +15,,))),
comme
T0 < Ty et ||f||oo < M,
on a :

19| oo, (-1.0 < T2 M,

donc 1) est Lipshitzienne.

ii) Montrons que ¢ est lipshitzienne.

D’aprés le résultat (1) du lemme 3.1.3 on a :

topo—1 = t;po—l - T(t;po—l) et top, = t;po - T(t;po)v avec x(tQ’Po—l) = ZL’(tng) =0,

et comme t5 | < ty,, on déduit d’aprés la monotonicité de ¢ — 7(t) que :

Bopo1 <t <ty = to, 1 —T(t5 1) <t —7(t) <t3, —7(t5,)
= t2p0,1 <t-— T(t) < t2p07
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d’ou
it —7(t) = —fla(t —1(t) = 7(t = 7(1)))), V€ [tap, t5p,);

donc & est une fonction dérivable car elle est la composition de deux fonctions déri-
vables f et z et par concéquent ) est dérivable car w(s) = 70@(708 + 13,,), Vt €
[t2p0 tpo
calculons zﬂ,
posons y(s) = Tos + t5,, — T(T05 + t3,,),
on a :

P(s) = Toi(Tos + 3,),

= —7of(z(y(s))),

il suit que

U(s) =~ my(s)a(y(s)f(a(y(s))),
To(T0 — 7(708 + t,,))f (2(y() f (2 (y(5))),
= 7o(10 — 107 (705 + t,,)) (2 (y(s)) f (2 (y(5))),
= 1g(L = hla(ros +15,,), (705 + t3,)))f (2(y () f (2(y(s))),

»

d’aprés (Hy) et (Hg) on a :

||@L||oo7[_170] < (TQ)QMM, sup |1 _ h(I7T)|,

ly| <o M,T€[T1,72]

D'ott ) est Lipshitzienne.
De i) et ii) On déduit que Fjy, (E;) est équicontinu.

b) L’étude de la continuité de F},, sur E :
1) Pour (¥, %) € E1 — {(0,7)},

Lemme 3.2.2. Les opérateurs L et () sont continus respéctivement sur Eq et Ey.

Lemme 3.2.3. Sous les hypothéses (Hy) — (Hg), soit t* > 0 et
(@, 70) € Eo —{(0,70)},

alors on a pour tout
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e>0, il xiste >0, tel que: |[(p,70)—(@,70)|lo <n,$ implique que :

(5 70) = (@, 70) lloc 0.0 1|2 (25 70) = (P, T0) oo 0,05 H 17 (0, T0) =7 (25 70) loo,0.05) < &

Preuve : (Voir|15])

Lemme 3.2.4. Sous les hypothéses (Hy) — (Hy), soit (1, 7) € Ey — {(0,7)},

et notons (¢, 7y) = Q@a 70)-
Si

t:(907 TO) - t;k((abu 7:0)7 lOTSque; (QD, TO) - (@7 7—0)7
alors Fy est continu en tout point (1), 7).

Preuve : Ce résultat est une conséquence directe de la dépendance continue des

solutions des conditions initiales.

Proposition 3.2.6. [/5] : Sous les hypothéses (Hy) — (Hs), lopérateur Fy,, est

continu

en (1, 79) € By — {(0,7)} ou; 9(0) > 0.

Preuve :D’aprés les lemmes 3.2.1 et 3.2.2, Fy,, est continue en (1, ) € By —{(0,7%)}
tel que; ﬁ(()) > 0.
2) Pour (¢,7) = (0,7), on a un probléme de continuité de Fy,, pour la seconde

. : : . : . .
composante de Fyy,, car on ne sait pas si ” Tol)lg}o o t5p, (0, To) existe ou 7y # 7.

Pour surmonter cette difficulté, on va écrire l'opérateur Fj,, de la facon

suivante :
Fopy (1, 70) = (Fap, (1, 70), Fappy (¥, 70)), V(¥,70) € En,
avec
Fop (0 70)(5) = 25, (0,70)(7(t3,)5), sur [—1,0]
et

F22p0(¢7 TO) - T(@? TO)(tho)v
ou (p,70) = Q¥ ).

Lemme 3.2.5. [15] : Sous les hypothéses (Hy) — (Hg), on a :

1 lim El (4, 7 I
)(w7ro)—>(o,f0) I 2170(1/} 0)”1,[ 1,0]
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et
2 lim  F2 (¢,7) =71
) (w,TO)—)(O,T*) 2p0 (w 0)
Preuve :

1) Soit {(¢™, ") }n>0 une suite de Fy, qui converge vert (0,7) € Ey lorsque

n — +00.
On note (o™, 7)) = QY"™, 1),
ainsi
F21po (", 70) = $t§po(<ﬁ,m)(§0na 707 (", Tg)(t;po)s)“*lﬁo]’
et comme () est continue on a :  ||¢"[|1,[—r,0 — 0.

D’aprés la proposition 3.1.1, on a pour ¢; ; —t; <17, et pour un certain R > r,

t;po (907 7—0) < 2p0<7—2 + T(R)) = t*7
et
[ Fope (0" ) loo,-1.01 < Nl (orm) (€7 70 s, o271

Donc, d’aprés le lemme 3.2.2, on a :

(¥ Tol)ig%o 7o) ”xtEpO(GD,TO)(SOn? T(?) HOO’[OJf*] =0.

De plus
[es, (0", 76)T(2",70) (E3p) Moo =100 < Ta M |25 (0170) (07, 70 ) oo, (ot
PO
d’ou, d’aprés le lemme 3.2.2, on a :

n1—1>I—&1-’loo ||xt§p0 (¢,70) (Spn7 T(gl) ”007[_7'2775*] = 0.

Et on déduit que :
lim | Fy,, (", 76)|1,1-1,0) = 0,

n—-+0o00

*

2) pour la deuxieme limite, on note 7(0,7%)(t) = 7%,
Vit >0,0n a:

700, 7%) (85, (", 70)) — (", 70 ) (£, (", 707))|

170, 7) — 7(&™, 7§l 50,0,

|7 = 7(" 76) (E5 (7 7))
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et d’aprés le lemme 3.2.2 on conclut que :

*

7(0", 70 ) (L3, (", 79)) = 7° lorsque n — +o0.

d’ou :

lim  F2 (¢,7) = 7"
(,70)—(0,7%) 250 (¥, 70)

e Notons pour ¢ >0, ngw : By — F4 lopérateur qui définit par :

FQP(),E(w? TO) = <F21p0 (w7 TO)? F~22P07€(w7 7—0))7 V(% TO) S El;
tel que :

191

5|To—T*|))T*7 L TET

F~22P0,8(77Z)7 7—0) = ¢<%>F§po<wa TO) + (]_ — Qﬁ(

*

TN st To=T"
avec : ¢ : R, — R, une application continue, et satisfait :

o(s)=1, Vs>1, o(s)€[0,1], Vse[0,1], ¢(0)=0.
D’ou, on a :

Théoréme 3.2.1. [15] : Sous les hypothéses (Hy) — (Hg), pour chaque ¢ > 0 [’opé-
rateur :

ngojs : By — Ey est complétement continue, et FQPO’E(El) est relativement compact.

Puisque E; est fermé et convexe, et FQPO,E(El) C FE; et de plus, ﬁépo,e By — Ey est
complétement continue, cela confirme I'éxistence d'un point fixe du probléme
3.5 précédent, c’est-a-dire la solution de du probléme 3.1 ce probléme est

une solution périodique lentement oscillante.

3.3 Application

Soit le probléme particulier suivant :

(3.6)
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telle que f : R — R de classe C! vérifie (H3), (Hy) et (Hg), et g : R — R, une
fonction de classe C*(R),

et supposons aussi les conditions suivantes :

C1)IL >0, VreR; gx)< Lm;—jim,

Co)Vz € R; g(z) € [11, 7],

C3) AM” >0, VxeR glx)<M".

Pour montrer que le probléme 3.6 admet une solution périodique lentement oscillante,
il suffit de montrer que g satisfait (Hy), (Hz) et (Hs).

1) Soit x € R, d’aprés (C4) sur g on a :

Lirn+1)+ 7
A

d’ou

L
9(r) < —— + 7,

L+1
comme 7T € [1y,Tz] on a
L
—T< —

donc (H;) est satisfaite.
2) Soit x € R, d’aprés (Cs) on a :

g(x) € [7-177—2]7
d’ou

glx) >m et g(z) <,

il suit que

g(x) =1 >0 et g(x)—m <0,

donc (Hj) est satisfaite.
3)Soit (x,7) € R X [11, 2], d’aprés (Cs) on a :
D’une part on a

AR L ]

dou il éxiste m=1 tel que:2¢0,7) <-m (1).
D’autre part on a
IM" >0, YeeR g(z)< M,
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calculons %(I,T),
g—Z(fL‘,T) = %—’t‘.%,
= s lEg) — 70
= glz(t) — 53,
ainsi ;
52z, )] = 9z(t) — Fgl,
< gl + 1531,
< ()] + |5,
< G,
. (x(t))—7(t) L
comme g(z) < M”, et |?(x(t77(t)))’ S 2(L+1)M>
si on pose
L
G — M//
TS
alors
oh
3G >0, V(e 7) €RX[r, 7] [I-(,7)| < G, (2)
x

de (1) et (2) on déduit que (Hj) est satisfaite.
Puisque les hypothéses (H;)-(Hg) sont vérifies d’aprés le théoréme 3.2.1, le probléme
3.6 admet un point fixe dans F; c’est-a-dire que la solution de ce probléme est une

solution périodique lentement oscillante.
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Annexe

Définition 3.3.1. [2] on dit qu’un ensemble est relativement compact si sa fermeture

est compacte.

Définition 3.3.2. [7] soient E et F deux espaces normés , T : E — F est appelé
opérateur compact s’il transforme tout ensemble borné de E en un ensemble relative-

ment compact
de F .

Définition 3.3.3. /5] on dit qu'un opérateur T' : E — F est de rang fini si la
dimension de T(E) est finie

Proposition 3.3.1. [7] un opérateur continu de rang fini est compact

Définition 3.3.4. [15] Soient E et F' deux éspaces de Banach, et f est une application
de E dans F et compacte si :
1) f est continue,

2) f(E) est relativement compact.

Définition 3.3.5. [15] Soit B un ensemble borné d’un espace de Banach E, [ une
application de E dans F' est dit completement continue si :
1) f est continue,

2) f(B) est relativement compact.

Théoréme 3.3.1. [/ :(Théoréme de point fixe)
Soient X un éspace de Banach,U un fermé, borné et convexe de X et F' : U — U un

opérateur complétement continue alors F' a un point fize dans U.

Théoréme d’Ascoli
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Définition 3.3.6. [9] Soient By(E, F) l’ensemble des fonctions continues bornées
sur E et a valeur dans F, H une partie de By(E, F) et x9 € E.On dit que H est

équicontinue en xqy Si et seulement si
Ve > 0,30 > 0,Vx € E;dg(z,x) <6 = dp(f(z), f(z0)) <e,Vf € H.

Théoréme 3.3.2. [9] :(Théoréme d’Ascoli,version 1)
Soient E un espace metrique compact , F un espace metrique complet et soit H un
sous ensemble de C'(E, F') alors

1) H est equicontinue
H est relativement compact <= 2)Ve e E,H(x) ={f(x), f € H} est

relativement compact dans F

Théoréme 3.3.3. [9] :(Théoréme d’Ascoli, Version 2)
Soit K un espace métrique compact , H un sous ensemble borné de C(K) . On suppose

que H est uniformément equicontinue , c’est a dire
Ve > 0,30(e) > 0,Vxy, 20 € K, d(z1,22) <6 = |f(21) — f(x2| <e,Vf € H.
alors H est relativement compact dans C(K)

Théoréme 3.3.4. [2] :(d’inversibilité de l'opérateur I — G) :
Soient un éspace de Banach X et un opérateur G € £(X) tel que ||G|| < 1, alors

lopérateur I — G est inversible et vérifie la majoration suivante :

1

) e [ [ qp—
10 =671 < T
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