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Introduction

La théorie de I'estimation est une des préoccupations majeures des statisticiens.
On trouve deux approches d’estimation dans la littérature, la premiére est 'approche
paramétrique qui se résume en l'estimation d’un nombre fini de paramétres réels
associés a la loi de I’échantillon. Dans ce cas, on construit les estimateurs en utilisant
soit la méthode des moments soit celle du maximum de vraisemblance ou encore celle
des moindres carrés. Cependant, 'approche non-paramétrique consiste, généralement
a estimer & partir des observations une fonction inconnue appartenant & une certaine
classe de fonctions. De ce fait, I’estimation non-paramétrique offre une trés grande
flexibilité de modélisation pour les applications réelles. Dans ce travail, nous nous
intéressons a le choix du paramétre de lissage dans 'estimation de la fonction de

densité.

La sélection du paramétre de lissage a fait 'objet de nombreuses contributions.
Dans le cadre de données discrétes indépendantes et identiquement distribuées, la
fenétre optimale théorique relative a ’estimateur a noyau de la densité minimisant
lerreur quadratique moyenne intégrée a été obtenue par Parzen (1962)[17]. Cepen-
dant, cette fenétre est inconnue en pratique. Plusieurs travaux se sont intéressés a
la procédure de choix d’une fenétre pouvant approximer celle-ci. Nous citons tout
d’abord le travail de Stone (1984)[24]. II décrit une régle de sélection de la fenétre
en utilisant la méthode de la validation croisée. Sous I'hypothése que la densité est
bornée, ce choix est ainsi asymptotiquement optimal. Notons que ce critére a été
introduit par Rudemo (1982)[19] et Bowman (1984)[5]. Habbema, Hermans et Van-
denbroek (1974)[1 1] et Duin (1976)[9] ont proposé une méthode fondée sur un critére
du maximum de vraisemblance. Une autre méthode dite, validation croisée biaisée
introduite par Scott et Terrell (1987)[21], Il s’agit d’introduire un biais dans le critére

de validation croisée afin de réduire sa variance. Les méthodes de Rule of Thumb et
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plug-in qui repose sur 'estimation d'une quantité qui dépend de la dérivée seconde
de la densité de probabilité inconnue f. Dans le cas des données a-mélangeantes,
Hart & Vieu (1990)[!12] ont introduit le critére de la validation croisée en considérant
"a sequence-leave-out" dans le cas de I'estimation de la densité. Ils ont montré sous
des conditions peu restrictives que le parameétre minimisant le critére introduit est
asymptotiquement optimal.

Le présent manuscrit est composé de trois chapitres :

Dans le premier chapitre, nous citons les différentes méthodes de sélection du pa-
rameétre de lissage et de donner une présentation sur la théorie ergodique.

Dans le deuxiéme chapitre, nous nous intéressons a la question du choix du para-
métre de lissage dans le cas discret, nous utilisons la méthode de validation croisée
afin d’avoir un parameétre de lissage asymptotiquement optimale.

Le troisiéeme chapitre présente une procédure de choix du parameétre de lissage
dans l'estimation de la densité pour un processus stationnaire ergodique a temps
continu basée sur le critére de validation croisée et nous établissons des résultats

asymptotiques sur la fenétre obtenue.



Chapitre 1
Introduction générale

L’estimation de la densité de probabilité sous-jacente a un ensemble fini d’obser-
vations est un probléme fondamental en statistique. Dans la littérature, plusieurs
méthodes ont été dédiées a 'estimation de la densité de probabilité. On s’intéresse
dans ce qui suit par deux méthodes majeurs : I'estimation par histogramme et ’esti-
mation par noyau.

La méthode d’histogramme est historiquement la premiére méthode pour estimer
une fonction de densité, dont l'origine est attribuée a John Grant au XV 11 siécle.
Pour un échantillon de variables aléatoires réelles X1, ..., X,,, indépendantes, identi-
quement distribuées et de densité f. L’estimateur d’histogramme est défini, pour tout

x € R par :

2

—~ 1 &
Jun(x) = s Z ]l[m_g’er@[(Xi),
=1

ou 1 désigne la fonction indicatrice et h = h,, est la fenétre vérifiant lim h, = 0.
n—oo

Par ailleurs la méthode du noyau a d’abord été décrite en 1951 dans un rapport non
publié¢ par Fix et Hodges (voir Silverman and Jones (1989)[23]). La premiére forme
de lestimateur & noyau a été introduite par Rosenblatt (1956)[18] suivi par Parzen
(1962)[17]. Ils sont proposé une classe d’estimateurs a noyau d’une densité univariée,

I’estimateur & noyau est défini par :

~ 1 " :L‘—XZ'
fnh(x) = n_hnZK( I >, Vr € R,

i=1
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ot K : R — R est une fonction positive d’intégrale 1, cette méthode est une généra-
lisation de la méthode d’estimation par histogramme.

Les propriétés de convergence de 'estimateur a noyau ont été établies par Parzen
[17], Silverman [22] et Nadaraya [11]. Les théorémes relatifs a l'erreur quadratique
moyenne et 'erreur quadratique intégrée moyenne ont été obtenus sous forme élé-
mentaire par Parsen [17].

Banon (1978)[1], fut le premier a s’intéresser a l'estimation de la densité en temps
continu a partir de I'observation d’une partie (X;)o<t<7 d'un processus stationnaire

(X¢t)e>0, cet estimateur est donné, pour tout x € R, par :

~ 1 T xr — Xt
= — K dt.
fTh(x) Thr 0 ( hr )

Des résultats ont été traiter pour l'estimation de la densité relative a des proces-
sus de diffusion par Banon (1978)[!], Banon et Nguyen ((1978)[2],(1981)[3]), Nguyen
(1979)[15] et Nguyen et Pham (1980)[10].

La convergence presque stre et la convergence en moyenne quadratique des esti-
mateurs de la densité et de la densité conditionnelle ont été étudié par Delecroix
(1979)|7] pour des processus strictement stationnaires et fortement mélangeants, ré-
cemment Didi & Louani (2013)[8] ont obtenu des résultats de convergence presque
stire, ponctuelle et uniforme, avec des vitesses de convergence sous des conditions
de dépendance assez générales ot des méthodes de preuve basées sur des différences
de martingale et des projections successives sur une famille de o-algébre emboitées,

comparables a celle définies dans Wu & al (2010)[|27] dans le cas discret.

1.1 Meéthodes du choix de paramétre de lissage

Le parameétre de lissage est un élément trés important dans les différentes méthodes
d’estimation de la fonction de densité. Il dépend de I’échantillon ainsi que de sa taille.
Dans le cas de I'estimation par la méthode du noyau, ce paramétre est indispensable
pour la convergence de l'estimateur et l'efficacité du lissage, et donc la qualité de
cette estimation. Pour cela le choix du paramétre de lissage a fait 'objet de nom-
breuses contributions dans la littérature, plusieurs procédures automatiques ont été

développées et des études comparatives ont été effectuées.
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Dans certaines situations, il suffit de choisir subjectivement le paramétre de lissage
en observant les estimations de la densité produites par plusieurs paramétres, on peut
commencer avec une petite valeur du parameétre et diminuer la qualité de lissage en
maximisant successivement cette valeur jusqu’a atteindre I’estimateur le plus proche

graphiquement a la fonction de densité (voir figure (1.1)).

h=0.03 h=0.09
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FI1GURE 1.1 — L’estimation par noyau avec différents paramétres de lissage.
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La décision d'un choix optimal pour le parameétre de lissage consiste a minimiser

les critéres d’erreurs. L’erreur quadratique moyenne intégrée (MISE)' relative a

I’estimateur a noyau fnh de la densité f est donné par :

MISB(Fa) = "0 r) + U, (11)
e
i) = [ ex
et

mwzéf@a

pour toute fonction g de carré intégrable.

La fenétre optimale qui minimise ’erreur quadratique moyenne intégrée est donnée

par :

(S

1
R(K 5
hopt = (2(—>”) n . (12)
1 () R(f")
Cette expression ne peut étre utilisée en pratique car elle dépend de la densité in-
connue f & travers R(f”). De ce fait, nous devons construire des procédures qui nous

permettra d’éviter cette quantité et de donner un parameétre de lissage approprié.

1.1.1 Méthode Rule of Thumb

Le choix du paramétre de lissage par cette méthode consiste a remplacer la partie
inconnue R(f”) dans l'expression (1.2) par une distribution classique afin d’obtenir
un estimateur pour h. Si les donner suivent la loi normale centrée et de variance o>
donc on a :
i0*5.
8y
1. L’erreur quadratique moyenne intégrée (mean integrated squared error MISE) est défini par :

MISE(Fu(@) = [E[{Fulz) - 5] do

R = [ (@) de =
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De plus, si on utilise un noyau gaussien, on aura :

1 u?
K)= | “*K(u du:/u2 e 2du=1,
MZ( ) /1; ( ) \/ﬁ

et

R(K):/KQ(u)du:/(\/;_ﬁef)Zdu:% e“"’du:ﬁ.

Donc le paramétre de lissage défini par (1.2) et que 1'on note dans ce cas par h,.; est

donné par :

(S
=

hrot = <ﬁ>é(80§ﬁ) "

4\ 5 o
= — an
3

~ 1.060n 5.

S

I1 suffit donc d’estimer o a partir des données ainsi nous obtenons le parameétre h,..;.
Une version plus robuste contre les valeurs aberrantes, si en utilisant une mesure de
I’étendue de 1’échantillon. L’écart inter-quartile R? permet d’obtenir des meilleurs

résultats que I'écart-type. Le parameétre de lissage h,..; devient :

S

: R _
hrot = 1.06 min (0, 1—34) n_s.

1.1.2 Meéthode plug-in

L’idée de cette méthode est basée sur I'estimation de la partie inconnue de 1’équa-
tion (1.2), Woodroof (1970)[26] a proposé un choix initiale hy de la fenétre lié & un

estimateur de R(f") qui est défini par :

-~

Roun(f") = R(F o),

2. Pour une série statistique des N données est rangée par ordre croissant.
Le premier quartile 1 est la plus petite donnée de la série telle qu’au moins 25% des données soient

inférieures ou égales & Q1. Le troisiéme quartile QX3 est la plus petite donnée de la série telle qu’au
moins 75% des données soient inférieures ou égales a Q3.

L’écart inter-quartile R est : R = Q3 — Q1.
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ot fr,, désigne la dérivée seconde de I'estimateur & noyau fnho Avec un noyau K

deux fois dérivable, donc Iestimateur R, (f”) est donné par :

2
. 1 & - X;
Ran(f") = nz—hg/ <ZK” (x I )) dx.

=1

11 suffit donc de mettre Pestimateur R,,(f”) dans I'équation (1.2) pour obtenir un

estimateur h; de la fenétre h,, défini par :

hy = ( R(AK) )})n )
115(K) Ry (")

Remarque : La fenétre hy est sensible au choix initial de hgy, Voir Scott et Factor
(1981)[20] pour plus de détails.

=

1.1.3 Meéthode de validation croisée
La méthode de validation croisée a été proposée par Rudemo (1982)[19] et Bowman
(1984)[5], le principe de cette méthode est de minimiser l'erreur quadratique intégrée

ISE pour un estimateur & noyau J/”;Lh de la densité f défini par :

]SE(ﬁh(:E)) = /fnh() fff

= [ Py / Fa@f(@)do + [ Fa)ds

Minimiser ISFE (fnh) par rapport a h est équivalent & minimiser :

/ Pu()dz — 2 / Fon(@) @) d. (1.3)

1~ -~
Un estimateur de la partie inconnu de (1.3) est donné par — Z fr—i(x) ou f, _; est
n
i=1
I'estimateur & noyau basé sur (n — 1) observations différentes du point d’ordre i. Donc

le critére de validation croisée est donné par :

cvn) = [ P =2 3" FocilX)
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Le parameétre de lissage sélectionné par la méthode de validation croisée est le mini-

mum de cette expression par rapport a h.

1.1.4 Meéthode de vraisemblance de la validation croisée

Les paramétres d’un modéle statistique peuvent étre estimés par la méthode du
maximum de vraisemblance. Une méthode appelée la vraisemblance de la validation
croisée a été présentée par Habbema, Hermans et Vandenbroek (1974)[11] et Duin

(1976)[9], elle consiste & maximiser la fonction de vraisemblance ou, plus souvent

le logarithme de cette fonction par rapport a h. L’estimateur log ﬁh,i de log f est
construit & partir des données {Y, X;, j =1,...,n. j # i} tel que Y est indépendant

a Xj. Le critére de vraisemblance de validation croisée est alors donné par
1 & -~
LCV (h) = — log fr.—i(X;).
(1) = D108 (X9

L’estimation du paramétre de lissage par cette méthode est obtenue en maximisant

cette expression.

1.1.5 Meéthode de validation croisée biaisée

Cette méthode a été introduite par Scott et Terrell en 1987|21]. Rappelant qu’a

partir du critére de M 1SFE relative a 'estimateur a noyau ﬁlh donné par I'expression
(1.1), on peut donné le parameétre de lissage si 'on connait R(f”), Scott et Terrell

[21] montraient :

~ R K//
EIR(F)] = R + 2 1 o(a).
nh?
Ils proposent alors d’estimer R(f”) par :
R Y R(K!/)
R(") = () — PO

Lestimateur R(f”) est donné par :

1 ~ " " Xi_Xj
7 YY) K"K ) (1.4)

n =1 j=1
J#i

R(f") =
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ou * représente le produit de convolution défini par :
K// /K// K// )d

La formule (1.4) est obtenue de la fagon suivante :

R(1) = njhﬁ / (ZK (x;nXi)>2dx

S e (52

nzljl

() B o () ()

n =1 j=1
JF#

* on obtient :

en effectuant le changement de variable u =
n

Xi—X;
w) du + 2h5ZZ/K" K"( W +u)du,

=1 j=1
J#i

T o
R( nh) - h

comme le noyau K est symétrique alors on a :

S [ (S5

n =1 j=1

R(Af{h) - nh5/K”2 ) du +

J#Z
X;—X;
- nh5 u) du + 2h5ZZKH K”( h,, )
=1 1
7
1 Xi — X
= o (u) du + QhSZZK” K”(—h )
=1 j=1 n
)
RIK") | o (Xi- X,
T n2h5ZZK * K h :
n i=1 j=1 n
J#i

On conclut donc :

2 ZZK”*K”( zh_X>

n =1 j=1
J#
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Donc on remplacer R(f”) dans 'expression (1.1) par son estimateur et nous obtenons

le critére de validation croisée baisée suivant :

n

R(K) M%(K) - " 7 Xi_Xj

i=1 j=1
J#i

Le parameétre de lissage h choisi par cette méthode est la valeur de h qui minimise le
BCV (h).

L’estimation par la méthode du noyau relative & des processus ergodiques a temps
continu a recu un intérét particulier ces derniéres années. De nombreux résultats
traitant la vitesse de convergence et la normalité asymptotique.

Dans ce qui suit nous énoncons la théorie ergodique pour les processus stationnaires.

1.2 Ergodicité des processus stationnaires

La théorie ergodique s’intéresse a 1’étude des systémes dynamiques. Elle fait état de
I’équivalence entre le comportement moyen de I’ensemble des systémes dynamiques et
la moyenne temporelle des comportements d’'un systéme dynamique. Les origines de
I'ergodicité remontent a la mécanique statistique, Birkoff (1931)[1] et Von Neumann
(1932)[25] sont les pionniers dans ce domaine. Dans le cas des processus a temps

continu le cadre ergodique est plus générale que la dépendance faible des données.

Définition 1.2.1. (Ensemble invariant). Soit {Y;},cr+ un processus d temps
continu défini sur un espace mesurable (Q, X, p). Pour § > 0, soit T° une transfor-
mation d-shift (i.e. (T°(Y))s = Ysis5). Un ensemble mesurable A est dit §-invariant,

s’il ne change pas sous une transformation §-shift (i.e. (T°(A) = A)).

Définition 1.2.2. (0-ergodicité). Y = {Y,},cr+ est dit 6-ergodique, si tout ensemble

mesurable d-invariant lié au pracessus Y, a une probabilité de 0 ou 1.

Définition 1.2.3. (Ergodicité). Y = {Y;}icr+ est dit ergodique s’il est d-ergodique
pour tout § > 0.

Définition 1.2.4. (Processus stationnaire en temps discret). SoitY = (Yy, Y1, ...)

un processus défini sur un espace de probabilité (E, F,P). La distribution du processus
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est déterminée par la probabilité des événements de type {Y;, € Fi,....Y;, € F,}.
Y est stationnaire si, pour tout n € N, Fy,.... F,, € F,t1,...,tn,s € Z, on a :

P(}/tl € Fl:'-w}/tn € Fn) - P(}/tl—i—s € Flv-'wY;in—&—s € Fn)

Définition 1.2.5. (Processus stationnaire en temps continu). Un processus
(Y})ier+ est dit strictement stationnaire si les lois jointes de (Yy,, ..., Ys,) et de (Y, 4n, - Yio+h)

sont identiques pour tout k € N et pour tout tq,...,t,,h € RT.

Donnons maintenant le théoréme ponctuel ergodique de Birkhoff lié aux processus

stationnaires a temps discret et continu, (voir Krengel (1985)[13], théoréme 4.4 p.26).

Théoréme 1.2.1. [17/(Birkoff en temps discréte). Soit Yy, Y, ... est un processus

réel stationnaire, Yy est intégrable et F une o-algébre des ensembles invariants alors :

1 n
lim — > "V; =E[Y;/F], ps.
=0

n—oo N 4

St en plus le processus est ergodique, alors :
im 23y, = E[v)
nl_)Igo n - [ (e b.S.

Théoréme 1.2.2. [17](Birkoff en temps continu). Si (Y,)icjo1) avec T € R est

un processus réel stationnaire ergodique, alors :

1 (T
lim —/ Yidt = E[Yy], p.s.
T Jo

T—o0



Chapitre 2

Choix optimal du paramétre de
lissage dans ’estimation de la densité

a temps discret

On suppose que les X; sont & valeurs réelles et que f est une densité deux fois

continiment différentiable par rapport a la mesure de Lebesgue sur R.

2.1 Estimation de la fonction de densité par les his-

togrammes

La méthode d’estimation par histogramme est la plus naturelle, elle est répondu
a 'objectif d’une représentation de la distribution de données. Supposons que 'on
ait n observations 1, zs, ..., x, issues d’'une méme loi de probabilité inconnue de den-
sité f, ot f est a support borné [ag, a,,[. Estimer cette densité f par la méthode
d’histogramme revient & approcher f par une fonction en escaliers. Pour cela, on par-
titionne l'intervalle de référence [ag, a,,[ en m € N classes C; de la forme [a;_1, aj],
Jj € {1,..,m}. La largeur de la classe C; est alors h; = a; — a;_1.

L’estimateur par histogramme s’écrit alors : 35 € {1,...,m}, tel que Vz € [a;_1, a;]

]l[aj 1 a] 7

>|\

%
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ou f; est la fréquence empirique du nombre d’observations appartenant a la classe

correspondante, tel que

1 n
fi = n Z o, a;((Xi)-
i=1

2.1.1 Estimation par histogramme mobile

L’estimateur par histogramme précédent J?h n’est pas un bon estimateur. Considé-

rons la classe C; = [aj_1,a;] et imaginons que le point z € C; ou l'on veut estimer
f(x) par ﬁ(x) se situe prés de 'extrémité. Alors, toutes les observations de la classe
C; interviennent dans le calcul de fh, mais on se rend compte qu’'une observation

située pres de a; sera prise en compte, alors qu’elle est assez éloignée de x, et qu'une

observation située tout prés de z dans la classe C;_; n’entre pas dans le calcul de
fn. Pour remédier cet estimateur, on peut alors utiliser ’histogramme mobile, qui est
un translaté de I’histogramme de maniére a ce que 1’observation x ou 'on estime, se

d’ 1 | éeisé de la cl —h h
retrouve au centre d’une classe, plus précisément au centre de la classe [x 5, L+ 2[

ot h désigne la largeur d’une classe (ou la fenétre de I'histogramme). L’estimateur

par histogramme mobile s’écrit alors :

Jon() = % Z Ly g (X0)-

2.1.2 Risque de l'estimateur par histogramme mobile

L’évolution de la similitude entre I'estimateur f,, et la vraie densité f & estimer,
nécessite des critéres d’erreurs. L'un des critéres universelles pour mesurer la qualité

de cette estimateur est représenté par l'erreur quadratique moyenne (mean squared
error M SE) défini par :

MSE(Fun(z)) = E[{%(m)—f(w)?]
= B[R] - B} + [BiRa@)} - )
= BiaisQ{ﬁh}+Var{ﬁh}.

2
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e Etude du biais :

Il
=

E|fun(@)] - f()

_ %E s (X0)] = (@)
=% / o p oy [(Xo)f (@)dz = f(2)

oup =P {Xi € [:c — %, T+ %[} la probabilité des X; trouvant dans l'intervalle

[m—%,x—l—%[.

e Etude de la variance :

Var [fnh(a:)] = Var

e L’erreur quadratique moyenne est donné par :

> Di 2 pi(1—pi)
VBl = (B )+ 2O
Fae)) = (B r@) + 2
Lemme 2.1.1. Si X4, ..., X,, sont indépendantes de méme loi de densité f supportée
par [0,1] et ﬁm est lestimateur par histogramme mobile avec m = 1/h classes, alors

Uerreur quadratique moyenne intégrée (mean integrated squared error MISE) de ]/c;m
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est donné par :
MISEGu@) = [ MSB ()i
-/ E[(fu(o) - 1)) ds
= / f(z dx+——n+12p].

2.1.3 Choix de la fenétre par la méthode de validation croisée

Afin d’établir une méthode de choix de h indépendant de f, nous commencons

par estimer le risque de l'estimateur f,, en utilisant uniquement les observations

X1, ..., Tp. SOit j(h,xh...,xn) un estimateur de MISE( fnh / f )dx. Pour

que la méthode de sélection de h conduise vers des résultats raisonnables, on demande

de Destimateur .J étre sans biais, c’est-a-dire :
E [j(h,ml, )| = MISE(Fon(x / x

On détermine la valeur de h en minimisant J(h, 21, ..., #,) par rapport a h, ce mini-
mum est atteint est sélectionnée comme fenétre pour ’estimateur par histogramme
mobile.

Principe de la méthode : Avant de commencer, on choisit une partition uniforme
C1, ..., Cp, de Uintervalle [0, 1] tel que :

L
C; = [‘7— i[ j=1,..m.

)
m m

Pour toute densité f et pour tout histogramme mobile fnh, d’aprés le lemme 2.1.1,

on a :

J(h,x1,...,x,) = MISE( fnh /f

I n+lgs,
nh nh Alpj'

Jj=
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Pour déterminer un estimateur sans bais de J, il suffit de déterminer un estimateur

sans bais de p?, pour tout 7 = 1,...,m. Une approche simple consisterait a estimer p?

par p5 , ou p; est la probabilité empirique :
R
Dj = E Z ]ch(Xz)
=1

Comme Z Lo, (X;) suit la loi binomiale de parameétres (n,p;), on a :

i=1

R i1 —p;
Var(p;) = ¥,

par conséquent,

E(p5) = Var(p;) + (E(p;))?

1 D;
pi(1—=)++

—)+ 5, (2.2)

Cette égalité nous montre d’une part que 'idée naive d’estimer p? par ﬁ? ne conduit
pas vers un estimateur sans biais. Mais, d’autre part, ce petit calcul que nous venons
d’effectuer prépare le terrain pour déterminer ’estimateur utilisé par la méthode de

validation croisée. En effet, comme p; est un estimateur sans biais de p;, il résulte de

~

; 1
(2.2) que ]5]2- —Pi ost un estimateur sans biais de p?(l — —). Par conséquent, pour tout
n n
7=1....m,

ﬁ?_ﬁj/n_ nooo 1
1—-1/n n— 10" 1P

est un estimateur sans biais de p?. En injectant cet estimateur dans le membre droit de

m
Iégalité (2.1) et en utilisant le fait que Z pj = 1, nous obtenons le résultat suivant.
j=1

Proposition 2.1.1. Si f est une densité de carré intégrable et si ﬁh est l'estimateur

de ’histogramme mobile & m = 1/h classes basé sur l’échantillon x1, ...,x, ayant f
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pour densité de probabilité, alors :

m

R 2 n+1
b o) — - S
‘]( y L1, 7xn) (n _ 1)h (n — 1)h p]

J=1

est un estimateur sans biais de MISE(foy) — fol 12

Nous pouvons a présent énoncer la méthode de validation croisée. Nous allons le
faire dans le cadre général, sans supposer que les observations sont incluses dans
[0,1]. Dans ce cas, on peut poser a = Ty, €t b = Tyq, et pour tout m € IN choisir
la fenétre h = (b — a)/m. On définit alors les classes C; = [a + (j — 1)h, a + jh[ pour
j=1,...,m—1et C, =[b—h,bl.

2.2 Estimation de la fonction de densité par la mé-

thode du noyau

Soit (X;);>1 une suite des variables aléatoires indépendantes et de méme loi, de
densité de probabilité f. L’estimation par la méthode du noyau est I'une des méthodes
la plus utilisée qui permet d’obtenir un estimateur continu de la densité f. Cette
méthode a ét¢ introduit par Rosenblatt (1956)[18] et développé par Parzen (1962)[17].

L’estimateur a noyau J?nh est défini pour tout = € R par :

~ 1 i l'—Xi

ou {hy,}n>1 est une suite de réels positifs appelés le paramétre de lissage ou la lar-

geur de la fenétre, qui tend vers 0 quand n tend vers 'infini et K est la fonction
noyau continue symétrique (i.e. K(t) = K(—t)), positive (i.e. K(t) > 0, ¥t € R) et

d’intégrale égale a 1.

Noyaux usuels :

- Le noyau uniforme :

K(U) = _]l[—l,l] (U)
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- Le noyau triangulaire :

K(u) = (1 = [u) 11y (u).

- Le noyau d’Epanechnikov :

- Le noyau gaussien :

Lemme 2.2.1. Un estimateur a noyau est une densité de probabilité.

Démonstration.

~ 1 <& x— X
" de = K ‘\d
[ o) nhn;/R ( - )x

1 — .
= nh ;/}RK(U)hndu (changement de variable u = (m z>)

n

1 & 1
= —Z/K(u)du:—nzl.
nizl R n

2.2.1 Propriétés de '’estimateur & noyau

Nous allons maintenant donné quelques propriétés statistiques de 'estimateur fnh
ou la densité f est bornée dont la dérivée seconde est bornée et le noyau K vérifier

les conditions suivantes :

/}RtK(t)dt = O,/Rt2K(t)dt = jp(K) > 0,/RK2(t)dt = R(K),

ot u2(K) et R(K) sont deux constants.
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e Etude du biais :

Le biais de 'estimateur fAnh est :

|Biais(fon(2))] < C1h2, (2.3)

K
ot Oy = max|f"(x)|“2<2 ).

Démonstration.

Blfute)] = B| Sk (S

= hn/l;

= t=x— hyu

r—1
I,

on pose : u =

E[ fun(z / K(u nt)du,

Puisque f est deux fois contintiment différentiable, le développement de Taylor de

f(x — hu) nous donne :

f(x — hpu) = f(x) — houf'(z) + %(—hnu)zf”wu) (avec 0, €]z — hyu, x]).

Donc on obtient :

h2 2
E[fon(x /K { — houf'(z) + "T“f”(eu)] du.
Comme f” est continue alors f”(6,) — f”(z) quand n — oo, alors
N = K(u)du —h d ’ *K (u)du.
Blfu(e)) = ) [ Ko=) [ uk@aus 5270 [ K
Puisque :

/RK(t)dt: 1,/]RtK(t)dt:0,/t2K(t)dt:u2(K),

R
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donc :
. 2
Elfun()] = (@) + [ (@)pa(K),
il en résulte que :
|Biais(fan(2))] = |E[fun(2)] — f(2)]
K
< Kmas, | f"(x) 22
< C1h2.
O
e Etude de la variance :
La variance de I'estimateur fnh est :
~ C
Var(fun(z)) < nhi (2.4)
ou Cy = max |f(z)|R(K).
Démonstration.
-~ " xr — X,
Var(fon(z)) = Var 2 K ( W )]
x —
- e [ ()]
1 x
<
< [( (5 ))]
1 T — 2
<
< g < (57)) o
1
< — | K*(u)f(x — hyu)du (par changement de variable).

Comme f est continue donc f(x — h,u) ~ f(z) quand n est assez grand.

Var(fn(x))

A

IN

IN

i
malef() R(K )nh
C, "
n—hn.
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e MSE de l’estimateur :

On déduit de (2.3) et (2.4) que 'erreur quadratique moyenne de f,, admet la majo-
ration suivante :

~ C
MSE(fun()) < CPhy + —% (2.5)

2.2.2 Reésultats asymptotiques

Théoréme 2.2.1. (Parzen [17])(Convergence en moyenne quadratique). Soit

f une densité continue et f,, son estimateur a noyau. Si les hypothéses suivantes sont

réalisées :
(A1) - / K (u)du — 1,/ K ()| du < o0, sup | K ()] < 00, lim [uk (u)] = 0
(A2) : lim h, =0, lim nh, = oo,

alors fnn est un estimateur convergent en moyenne quadratique c’est a dire :

lim MSE(fu(z)) = 0.

n—oo

Théoréme 2.2.2. (La vitesse de convergence presque compléte'). Supposons

que les hypotheses suivantes soient réalisées :

(A3) : f e C?
_ _ nhy, \
A9 i b =0, Jim () =

(A5) : K est borné, de carré intégrable et/

tK(t)dt = 0,/ 2K (t)dt < oo,
R

R
alors on a :

Fan() = f() = O(h}) + Opeg ( 1;%:) .

1. La convergence presque compléte (p.co). Soit (X, )necw une suite de variables aléatoires, X
une variable aléatoire et u,, est une suite numérique.

- On dit que lim X, =X p.co ssi Ve >0, > P (X, - X[ >€) < 0.
nelN
— On dit que X,, — X = O(uy) p.co ssi Ye >0, Z P (X, — X| > eup) < oo.
n€N
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Le succés rencontré par 'estimateur a noyau s’explique par sa simplicité, sa flexibi-
lité et aussi ses propriétés de convergence. Il laisse a 1'utilisateur une grande latitude
non seulement dans le choix du noyau K, mais aussi dans le choix du parameétre de

lissage h.

2.3 Choix du paramétre de lissage par la méthode

de validation croisée

L’estimateur & noyau et ses propriétés sont principalement conditionné par le pa-

rameétre de lissage h, ce paramétre représente en quelque sorte une fenétre qui permet

de déterminer le degré de lissage de Uestimateur f,,. D’aprés I'expression (2.5), si h
est trop petit, le biais de I’estimateur devient petit devant sa variance et ’estimateur
est trés volatile et on parle de sous-lissage (under-smoothing). Dans le cas contraire,
lorsque h est trop grand, la variance devient petite et c’est le biais qui devient do-
minant. L’estimateur est alors trop lisse et est de moins a moins influencé par les
données, on parle alors d'un effet de sur-lissage (over-smoothing ).

En pratique, il est nécessaire de trouver la méthode qui permet d’éviter le sous-lissage

et le sur-lissage pour la sélection de la fenétre h.

2.3.1 Choix pour des données indépendantes

Parmi les mesures de divergence entre la densité f et son estimateur f,; on trouve

Perreur quadratique intégrée (integrated squared error I.SE) définie par :

2

ISE(Fn(x)) — / Funl) — ()]

- /fnh da:—2/fnh )d:c+/f2(fﬂ)dﬂf

Le parameétre de lissage choisi par la méthode de la validation croisée (cross valida-
tion CV ) est la valeur de h qui minimise un estimateur de ISE. puisque [ f?(z)dx
ne dépend pas du parameétre de lissage h. On peut choisir le paramétre de lissage de

facon a ce qu’il minimise un estimateur de :

ISE(unta)) - [ £@ie = [ Bu@ds =2 [ Fato) s
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On doit donc trouver un estimateur pour / Fan(2) f(z)dz. Remarquons que
[ Fa@) @)z = B (o).

n
. .. 1 N NI P n
son estimateur empirique est alors : — E fr—i(x), ot f,_; est 'estimateur "one-
n
i=1

leave-out" de la densité f construit & partir des données indépendantes (X;)1<j<n,jzi

défini par :

o) = o ok (5.

vy = [ Fafe)dn- 23 Fi(X)

e La régle de sélection du parameétre de lissage est donnée par :

~

h = argmin C'V'(h).
h

Proposition 2.3.1. La statistique :

CV(h) = /ﬁfh(w)dw— ﬁiil{ (Xh;nX])

" oi=1 j=1
J#i

est un estimateur sans biais de MISE(fnh) — [ f2

Démonstration. D’une part, comme la densité jointe du couple (X;, X;) est f(x)f(y)
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(car les variables sont indépendantes), on a

B[OV (h)] = E:/fih@dx: T ZZE[ ( X)}

i=1 j=1
J#z

- E_/f?lh(iv)dx: n—lh ZZ// (

zljl

| — o= [ (7,
—3//K )f( )£(y) dady.

I, I,

") ) o) dady

) x) f(y) dzdy

?’;9

RN
D‘

/
ST

D’autre part,

[~

_fnh(x)— x) de—/f2(:c
B (720 do— 2 [ B [ful)] sa)a

P (z )} dx—2/ n}znZK(x hnX])] 2)di

j=1

e[ £ (o

ce qui équivaut a dire que C'V (h) est un estimateur sans biais de M ISE( fnh — [ r~
]

MISE(Fun( / lx)dr =

8

I
= \\\

e Optimalité asymptotique
La fenétre h est dite asymptotiquement optimale si :

- ISE(J?HE(%))
n—00 i%f ISE(fun(x))

=1 p.s.

Théoréme 2.3.1. (Stone [2/]). Sous les conditions suivantes :

> K est le noyau a support compact et Holder-continue, i.e. Pour tout (z,y) € R?, il

existe deux constantes A > 0 et D > 0 tel que |K(x) — K(y)| < D|z — y|*.
> hy, € Hy :={hy,....,hy}. Hy C H,, et satisfaisant la condition suivante :

H#Hy < An®, n>1, Aa>0,
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et avec ’hypothese que f soit bornée, h est asymptotiquement optimal.

2.3.2 Choix pour des données dépendantes

Soit (X;);>1 une suite de variables aléatoires alpha-mélangeante ?, pour la sélection

de la fenétre de lissage, considérons ici ’erreur quadratique intégrée pondérée relative

a l'estimateur a noyau fnh de la densité f défini par :

ISE(Fun(a)) = [ [Fle) = 7(2)] wio)do

ol w est une fonction positive a support compact. Le paramétre h,, est pris ici dans un
ensemble H,. Pour minimiser 'erreur quadratique intégrée, Hart & Vieu (1990)[12]
ont défini le critere de la validation croisée en introduisant, un estimateur ﬁz,ln de
f, appelé l'estimateur de "sequence-leave-out", basé sur les données {X;}, tel que

|7 —i| > l,, défini par :

bl i i >t
ou [,, est une suite d’entiers positifs appelée "sequence-leave-out" tel que :
nny, = #{(0,7) 17 — il > ln}

Le critére de la validation croisée est défini par :

CVi, (h) = /

et donc le parametre de lissage sélectionné est donné par :

Puul@yds = = 37 Fu, (Xu(Xo),

/ﬁln = argmin C'V}, (h).

heHn,

2. Soit o(X7, ..., X,,) la tribu engendrée par les variables aléatoires X7, ..., X,,. Une suite (X;);>1
est dite alpha-mélangeante s’il existe, un coeflicient «(m) vérifiant, pour tout entiers positifs k et
m, tout ensemble A € o(X1,..., Xi) et tout B € o(Xp4k, -..), les propriétés suivantes :
> [P(ANB) — P(A)P(B)| < a(m),

> mlgnooa(m) =0.
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e Optimalité asymptotique

Pour établir leur résultat, Hart & Vieu (1990)[12]| ont considére les hypothéses sui-
vantes :
(H1) : Le noyau K est borné, symétrique, a support compact,/ ' K(x) < o0, /ka(x)d:c =
0,k=1,...,v—1 et Lipschitz continue, i.e. Holder continue avec A\ = 1.

< <
2v+1_a 1+4v

(H2) : H, = [An’“,Bn’b] , 0<b< , ou A et B sont deux

constantes positives.
a(l + 4v)
5 .

(H4) : Le coefficient de mélange vérifie, sup a(j) = o(n™%), ott 6y := 6y(a,b,v,0;)
j>nf1

(H3) : "sequence-leave-out" {l, }i- vérifie, [, <n% ou 60, <1 —

(voir Hart & Vieu (1990)[12]).
(H5) : La densité f est bornée, admet v dérivées continues pour v € IN* et

max(f(z), f(—z)) — 0, quand = — 0.

Théoréme 2.3.2. (Hart € Vieu(1990)[12]). Sous les hypothése (H1), (H2), (H3),
(H}) et (H5), hy, est asymptotiquement optimal.
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Chapitre 3

Choix optimal du parameétre de
lissage dans ’estimation de la densité

pour des processus a temps continu

3.1 Modéle

Soit (X3, 0 <t <T), T € R' un processus stationnaire ergodique a temps continu

de densité f. L’estimateur a noyau de la densité f défini, pour tout = € R, par

~ 1 T T — Xt
= K dt

ou hr est le paramétre de lissage appartenant a un ensemble Hyp := [ar, by] C RT et

K est un noyau.

Avant d’établir nous résultats, notons que fx, x, la densité conjointe du vecteur

aléatoire (X, X;) et fx, la densité marginale de Xy, définissons la fonction g, par :
Gst = Ixoxi — fx.fxi
Comme le processus est stationnaire, on a :
st = 9o,|s—t|s  90,]s—t] = G|s—t|

Par ailleurs, pour tout t > 0, F; = o((Xs) : 0 < s < t) est la o-algébre générée

par les données (X;)o<s<¢- Considérons, pour un réel positif § tel que n = % e N, la
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partition (7})i1<j<, de pas 0 de l'intervalle [0, 7. La projection Py est définie pour
une variable aléatoire réelle € et k € N, par Pr& = E[¢|Fi] — E[§|Fr_1], o E[¢|F]
est I'espérance conditionnelle de £ sachant la o-algebre Fy, avec Fj, := Frp , T), étant

le kme glément de la partition de U'intervalle [0, 7], i.e. T, = dk.

3.2 Hypothéses

(H1) (a) Le noyau K est symétrique, bornée (K < M), de support compact et d’in-
tégrale égale a un.
(b) K est Holder-continue, i.e. Pour tout (z,y) € R?, il existe deux constantes

A>0et D> 0 tel que |[K(z) — K(y)| < D]z —y|*
(c) /22(K x K(z) —2K(z))dz < 0.

(H2) (a) f est deux fois dérivables avec la premiére dérivée et la seconde dérivée

bornées.

) [ 1<

(H3) 1l existe un ensemble I' € Bg: contenant {D = (s,t) € R? s =t} tel que :
(a) gs+ existe pour tout (s,t) ¢ I
(b) Ap(T) = sup [lgalzemey < 00, pour p ]2, oo

(s,t)¢T
9gu(y, :
(c) u = ||gul|l et u — /sup % dz sont intégrables sur |0, o00[, ou
y Y
|-]|oc := sup [.].
z,ycR2
(d) Il existe une fonction ar et un réel v > 1 tels que,// 9u(y, z)dydz > 0.
ly—z|<a$:

(H4) (a) Pour tout d > 0, la densité conditionnelle £/~ de X, sachant la o-algébre

Fi_s est différentiable de dérivée presque stirement bornée.

(b) Pour tout t € [0,7], tout 6 > 0 et tout z € R, la fonction fft";(a:) est

presque strement bornée par une fonction déterministe by 5(x).

1 (T
(c) Pour tout § > 0, T/ b s(z)dt — D(x) # 0, lorsque T' — o0.
0
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(H5) Pour tout ¢ > 0, sup/ [P ()| Pdt < oo.

(H6) Il existe un réel r, 0 < r < 1, tel que

T2+
(a) ] TT — 00, lorsque T' — 0.
0g
br
(b) — — 0, lorsque 7" — o0.
ar

Pour donner l'expression de lerreur quadratique moyenne intégrée (MISE) de

'estimateur fry,, considérons la décomposition de R? en sous-espaces {|y — z| < a%}

et {ly — z| > a%}, o a > 1.

Lemme 3.2.1. Sous les hypotheéses (H1), (H2) et (H3)(c,d), lerreur quadratique

moyenne intégrée (MISE) de ’estimateur J?Th est donné par :

MISE(fru(x /m{/T T //|y . {/ —u]gu(y,z)du} dydz}
—|—hT{/ ( K+« K — K) dZ/f”f}
(T 2hy //y <ot {/ - U]gu(y,z)du} dydz + h%) _

(3.1)

3.3 Choix du paramétre de lissage

Le paramétre de lissage optimal pour le critére MISE donné dans (3.1) est de la

forme :

h. . = fKQ ffly—z\ga“T {fo gu Y,z )dU} dydz
opt — fzz(%K*K—K)(z)dsz”f T2

(3.2)
Ce paramétre dépend des quantités inconnues f et g,. Il est donc impossible de

le calculer en pratique. Pour un résultat réalisable, considérant ’erreur quadratique

=
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intégrée (ISFE), définie par :

ISE(n@) = [ [fto) - f@)] do
_ /ﬁ,%h(g; /fTh )dx+/f2(x)dx

Minimisant [SE (fTh) par rapport a h revient a minimiser :

ISE(r(@) - [ Plads = [ Frwde—2 [ Fruto) flato

A T’aide de I'estimateur de "one-leave-out", le critére de validation croisée approprié
au cas de 'estimation de la densité pour des processus & temps continu construit a

partir des données (X;)} 1y est donné par :

n
teur_,
JFi

_/jf;h(x)x T2hTZZ// ( >ddt

=1 j=1
J#i

T
o, Tp=0etT; =jodavecd = —et 1 < j<n.
n

e Le paramétre de lissage sélectionné par cette méthode est donné par :

h = argmin CV (h).

heHr

3.4 Résultats asymptotiques

Proposition 3.4.1. Supposons que les hypothéses (H1)(a) et (H3)(a,b) soient satis-

faites, alors la statistique :

h)=/f?~h(x) TQhTZZ/ / ( )d dt

i=1 j=1
J#

est un estimateur asymptotiquement sans biais de MISE( fTh [ r*
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Démonstration. Dans ce qui suit posons I' = U |[T;_1, T;], T'° est le complémentaire

de T dans [0, T]?

E[CV(h)] =

-

K

—J -

I’hypothése (H1)(a), nous obtenons :

. D’une part, sous ’hypothése (H3)(a), on a :

h

n—1

D

T22hT/ K<X5_Xt)
o (5
“r J LS C
1) s@sto >dxdy dsdi
_Jl_TQLhT/CU/K r
)l E

1 1
En utilisant 'inégalité de Holder avec — + —

()

fS,t(l‘y y)dﬁd?/ dsdt

gst(x,y)dxdy | dsdt

) ) )ty dsa
) ) oy

= 1 et p €]2,00[ et en considérant

|J1] TQhT / {// ( ) |gs.+(, y)ldxdy} dsdt
Tth / H/ K < I )dfﬁdy] ' Hgs,tHL?’(]RQ)] dsdt
T2hT {/ Kq( )dxdy}é/rcdsdt.
En effectuant les changement de variable u = - et v = —, et sous ’hypothése

(H3)(b) on a :

2(n
|Ji] < (

Donc

E[CV(h)]

E [ / ﬁh(x)dx}

hr

~ hr

A, ! {/ K(u — v)dudv} T 0, p.s, lorsqueh — 0.
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D’autre part,

o) = f(0)] do— [ Fa)ds
Foute)] do =2 [ B[Fr@)] fa)a
:ﬁ“h(ﬂf)] dr — 2/]E {TL}LT /OTK (x ;LTXT> dt} f(x)dx

{ %(w)dx} [ ® (”“",;T y) 1) (&) dyda.

MISE(fon(a / Plo)de =

&=

I
B —

Alinsi,

lim E[CV (h)] = MISE(fr(x / fx

T—o00

]

Théoréme 3.4.1. Sous les hypotheéses (H1)(a,b), (H2)(a), (H3)(a,b), (H4), (H5) et

(H6), le paramétre de lissage h est asymptotiquement optimal.

3.4.1 Convergence des paramétres de lissage

Notons que hg, hep et h les parameétres de lissage minimisant dans I’ensemble

Hp = lar,br], ]SE(fTh), MISE(fry) et CV(h) respectivement. On se présente

dans ce qui suit l'ordre de grandeur de h,, et les vitesses de convergence presque

stres de hg vers hgy et T vers hopt sous les hypotheses (H1)(a,c), (H2), (H3)(a,b,c),

(H4)(a,b), (H5) et les hypothéses suivantes :

(H1’) K est Lipschitzienne, i.e. Pour tout (z,y) € R?, il existe une constante d > 0,
tel que [K(z) — K(y)| < dlz —yl.

(H2?) 1l existe une fonction az et un réel 1 < a < 2 tels que,// 9u(y, 2)dydz >
ly—z|<af

0.
1 /7
(H3’) Pour tout § > 0, il existe un réel m’ > 1, tel que ?/ |be5|| At — D 0,
0

lorsque T" — oo.

l

L 5 50, lorsque T — oo.
log T

(H4") (a) Pour tout réel 0 <1 < 1,
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W | T2
4—m

(b) Il existe un réel 0 < m < 1, tel que ——=; -
hy? (logT)?

< 00, ol h7. est la dérivée

de ]’LT.

Aprés avoir donné la forme de h,,: dans expression (3.2), la proposition suivante

donne son ordre de grandeur.

Proposition 3.4.2. Supposons que les hypothéses (H1)(a), (H1’), (H2), (H3)(a,c)

et (H2’), soient satisfaites, alors :
« % «
9T 9T
{r) ()

ol
ol

h :{ 2 [K? [° [ gu(z, 2)dzdu }
opt fz2(%K*K_ K)(Z)dsz”f

Démonstration. D’aprés l'expression (3.2), on a :

fﬁy—z|§a‘7’i {fOT[T — ulgu(y, z)du} dydz
T2 ’

hopt = C(f, K)

s 3
[22GK«K—-K)(z)dz[f"f|

Par un développement de Taylor de g,(., z), nous obtenons :

on C(f,K):= {

T T — ag+z 0 (Y,
b — cwo{ = { /- gu<z,z>+<y—z>%|y:y;<z>dy}dzdu}

ou y4-(z) est compris entre y et z.

T —u ag+z Wy, 2
hopt = C(f,K){ /0 [TT2 ] / {Qa%gu(z,z)+ / (y—z)%‘zﬂy:yﬁz)d@,} dzdu}

e
ap+z

_ cg,m{%‘? /OT [T;u]/gu(z,z)dzdu

T a%+z
[T — U} T agu(yv Z)
D AT e S

=

=

Y

Wl
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Observons que :

T - “ite 994y, 2)
/0 72 / /_aa+z(y B Z)a—y’y:y;(z)dy dadu
T

[\
N
~
~
=il
[\S}
=
\ —_——
——
I
Q S]
SR S
Fd
<
|
A
w
< =
o]

Ay
T a%—+z
[T—U]/ 99u(y, 2) /T
< ao‘/ sup |——-+= dy » dz » du
’ 0 T y dy —a%+z
T T —
< 2a2T°‘/0 | T2u] /sup agua(?;, ?) dzdu
y
2a3% /T [T—u]/ " 99.(y, 2) dod
T T Y dy
Comme u — / sup M dz est intégrable sur |0, oo, donc
Yy Y

H T -] AN 09u(y. 2) i
— )P e ydy o dzdu = O [ £ ). 3.3
Y S P
Par ailleurs, nous avons :
[ee] T T —
/ /gu(z,z)dzdu—/ M/gu(z, z)dzdu
0 0 T
00 T U
/ /gu(z,z)dzdu—l—/ —/gu(z,z)dzdu
T o T
< / '/gu(z,z)dz
T
/gu(z,z)dz

gence dominée de Lebesgue, la borne (3.4) tends vers zéro. Il s’en suit directement

Tu
du+/ = ’/gu(z,z)dz du. (3.4)
o I

Par I'intégrabilité de u — sur |0, 0o et 1'usage du théoréme de conver-

des assertions (3.3) et (3.4), que :

hopt—C(f,K){/Ooo/gu(z,z)dzdu}s{%%%}3+0(?)3.
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Nous avons besoin des deux lemmes suivants qui présentent des résultats des vi-

tesses de convergence ponctuelle et uniforme de fr, pour démontrer nos résultats.

Lemme 3.4.1. Supposons que les hypothéses (H1)(a), (H2)(a), (H4)(a,b), (HS’),
(H5) et (H}’)(a) soient satisfaites, il existe m < 1, tel que, pour tout x € R, on a :

~ log T
fri(z) — f(x) = O(h3) + O, ( %) ) lorsque T — 0.
The
Lemme 3.4.2. Supposons que les hypothéses (H1)(a), (H2)(a), (H4)(a,b), (HS’),
(H5) et (H}’)(b) soient satisfaites, il existe m < 1, alors :

n logT
sup | fru(z) — f(x)] = O(h7) + Oy ( %) : lorsque T — oo.
zeR ThT m

Démonstration du lemme 3.4.1

Pour tout z € R,

Fnle) — &) = oo TK(w_Xt>—E{K(x_xt>lﬁ_5}df

Thy 0 hr hr
. 51
1 xr — Xt
b | [K ( ) m_a} dt — f().
pe

Pour le terme S; en appliquant le lemme suivant sur les inégalités exponentielles :

Lemme 3.4.3. (De la Pena, V.H. and Giné, E. [6]). Soit (W,,),>1 une dif-
férence de martingales par rapport a la o-algébre (F,),>1 générée par les variables
aléatoires Wy, ...,W,,. Pour tout | > 2 et tout n > 1, tel qu’il existe deux constantes

positives C' et d,, vérifiant :
E (W) Fooa] <C2E pus,

alors, pour tout € > 0, nous avons :

P(iWi >e) < 2exp (_2(#105)»

i=1
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n
ot D, = 5 dz.
i=1

Soit Y; la différence de martingales donnée par :

T; _ _
Y, ::/ K (”J Xt) ~E {K <x Xt) |ft_5} dt
Ti—1 hr hr

notons que pour tout > 0, Y; est une différence de martingales par rapport aux o-

algebres (G;—1)1<i<n tel que, pour tout t € [T;_1,T;], Gi—o C Fr—s C G;—1. En utilisant
les inégalités de Jensen et Minkovski, on a :
L r— X r— X :
E[Y/|Gio] | < E / K ( - ) -E {K ( - ) |fta] dt \Gm]
Ti s T T
< f e () -l (55 e o
hr
1\ !
T; !
§/ E {Kl< - )|Ql } +E >|-7:t 5} |gi—2] dt
Ti-1 T
1

EK(

<2l/Ti ]E{Kl (—) Gi- ]
B Ti—1 hr
1

1
En utilisant l'inégalité de Holder avec — + — = 1 et un changement de variable
m

€ —

, nous obtenons,

r— X; T — ,
E {Kl( oy )‘@21 = /Kl( hTy) f92 (y)dy
([ (52 )" 1ol
i ([ s as) 17

hi |1 I K

z =
T

IN

IN

IN

Lm bi,276 | ’Lm/ .



3.4 Résultats asymptotiques 45

Donc,
1
B (Y161 ]| < 20 KIS 1K o [l
Posons C' = 2||K||oo, d? = 23007 || K||oo| [K || L ||bi—2,5] | m’, alors

’]E [Yil‘gi,ZH < Z!Ol—Qd?’

et

1 n
2R || Kool [ K| 6 [[bisl [ -
=2

n

T
En approchant / ||6¢]| m’ dt par la somme de Riemann 0 Z [|bi—2.s||
0 =2

T
1
Dy = PRI lIK N ThF 1. [ il

Sous I’hypothése (H3’), on a
1
D,, = O(Thy).
En utilisant le lemme 3.4.3, pour tout € > 0, on a :

1

logT \ 2 n logT \ 2
P |51|>e< O%_l) - P} v >eThT< Of_l)
=1

Thi ™ Tha ™

=

1

1

n 1 1 T 2

= P Vi >eThy (&)
=1

Thr
2
€2T2hr}? (ﬁ)
< 2expq — L T
1 1 2
O(Thir) + 2¢CThy: <1°g?)
ThIT
< 2exp{—e*O(logT)}
< 2179¢, (3.5)
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Pour un choix approprié de € et I'usage du lemme de Borel-Cantelli, on a :

logT
Si = 0,, ( %) . (3.6)
Tho ™

Sous I'hypothése (H5) et la symétrie de K, voir Didi & Louani (2013)[%], on a :
S = 0ps (T74) 40 (13). (3.7)
Le lemme s’achéve en combinant les résultats (3.6) et (3.7). O

Démonstration du lemme 3.4.2
Considérons I’ensemble Br défini par :
Br:={z: |z|<T",0<r <1}

Soit yr une fonction entiére non décroissante tendant vers l'infini lorsque T" — oo,

considérons {Br;}i<i<y, une partition de ’ensemble By définie par :
Bri={z: |z —z| <T'y;'}

Ot (z;)1<i<~, est une suite d’éléments de Br. En faisant appel & un calcul de Didi &

Louani [3], nous obtenons

s i)~ 5@ < s | [ (S5 e [ (B2 1]
+ xseuji TLhT /OTIE [K (x ;TXt) |]-"t_5} dt — f(z)
< A+ A,
Ou
A = zseug |AT (z)| = xs;g; TLhT OTK (x ;TXt> -E {K (x ;TXt> ].7-}5] dt),
et

I - X
Ay = sup |AL(2)] = sup |—=—— IE [K (x A t) |-7:t—5] dt — f(x)].
0

xEBp rEBr ThT T
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Nous avons :

A; < max sup ‘AT x) — AT:cl‘jL max ‘A xl|_[1—|—12

1<i<yr z€Byr; 1<i<~r

En utilisant I'hypothése (H1’), il existe une constante positive d telle que :

() ()] =
T th

ZE—Xt l‘i—Xt

hr hr
< i| T — x|
arr
< .
hT’YT

Donc, nous avons :

I
L < —E / max  sup
Thr o1 /T PSS eeBrBr;

.Z'—Xt l'i—Xt
K( hr )_K( hr )"gj_ll}dt

+ IE

max sup
1<i<yr CCEBTﬂBT i

20 dT" 2T
Thr  hryr Rz

IN

Prenant v = 772, il en découle que :

logT
I =o0,, < %) . (3.8)
Th

Pour I,, nous observons que :

ZY x;)

max |AT(z;)| = max
1<i<~p 1<i<~p

Donc par ailleurs, comme dans (3.5) avec yp = T""2 nous avons :

log T

91

ZY ;)

> €

< r+2—e2C
F (122§T Thy > <2
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ou C' est une constante positive. En choisissant un e approprié et en utilisant le lemme

de Borel-Cantelli, on obtient :

logT
I = O, ( %) . (3.9)
ThE ™

Il résulte alors les assertions (3.8) et (3.9), que :

logT'
Alzop.s< L) (3.10)
Thy ™

D’autre part, par un calcul similaire & Didi & Louani [%] et la symétrie de K, nous

avons .

Ay = 0,, (T—%> +0 (). (3.11)

Par conséquent, d’aprés (3.10) et (3.11) nous obtenons :

sup |Fra(x) = £(2)] = O(h2) + Oy ( ﬁ) .

rEBT Th;_ﬁ

Il reste maintenant & évaluer le terme sup |]/C\Th(x)— f(z)], ot B est le complémentaire
z€BY

de By dans R. Comme pour I'équation (3.11), il est clair que :

o [ ol (52

Il reste a prouver que :

sup
z€BY

=0, (T74) + 0 (13).

91

Thy ™ ~ I r— X,
T E|K

logT ) et oale) Thr Jo [ ( hr

) |]-}_5} dt‘ =0 p.s.

€T “
PR

=1

. log T . ) : o o
ouer =, |/— —, est uniformément continue, i.e., il existe une constante positive 6,

En effet, nous devons démonter d’une part que 'application T — sup
|| >T2r

I
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tel que :

sup
|x|>T2"

1[5 ¢ ¢
1S =n Y’ K —E|K _ )
ou S =n'0, S; = jo, S /j_l ( I ) { ( » ) | Fy 5} dt

Observons que :

<O|T - S5]|,

€T - ’
T_hT;Y ShTZY

!

€T & €3 - , ~ ~
Yi———) Y, _
Hsllﬁzr Thy 4 Z Shy ; i lziljl?% e frn(x) — €sfsn()]
+ sup erfru(z) — esfon(e)]
|x|>T2r
d(er frn) d(er frn)
< sup |——— [T =S|+ sup |——2—||T =5
|z|>T2r ar | | |z|>T2r dT | |
d(erfa dler T
< 2max<{ sup M, (erfrn) T - 8|,
wi>>r | AT | g | dT

_ 1 [T - X
ou frp := Tho E {K <x I t) \.7-}51 dt. Par un calcul similaire & Didi & Louani
0

et sous les conditions (H1)(a), (H1") et (H4’)(b), il en résulte que :

sup
|| >T2"

€r
T_hTZ L ShTZY/

< max{ ||K||OO F—I— ! ]
- (ThmlogT) 2 2logT

[P (Th? )3

2| K| + 2V |K'|o] ¢ IT — S|
h2.(logT)2

Voir Didi & Louani [3] pour plus de détails.

D’autre part, en utilisant le lemme 3.4.3, nous avons que :

|

Ce qui achéve la démonstration du lemme. O

>,

=1

€0

2
> ThTGTEO) < T -

Théoréme 3.4.2. Sous les hypothéses (H1)(a,c), (H1’), (H2), (H3)(a,b,c), (H2’),
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(H4)(a,b), (H3’), (H5) et (H4’), il existe ¢ < 1 et m < 1, tels que :

log T
+0,., 08 i

(rhtag )’

a% min{%fg,%}
]’LO - hopt - O <?)

Preuve

Soit L(Z) = —ZK'(Z). Notons que L est un noyau qui satisfait les mémes hypothéses

que K. Soit fTh, grn et gry les estimateurs a noyaux de f définis par :

- 1 T Tz — X4 R 1 T r— Xy
frn(z) = T_hT/o K*K( ™ >dt, grn(x) = Thr ), L( > )dt et

. 1 r x— X
grn(x) = Thy L*L( I t) dt.
0

En posant :

ISE(fra(x)) = MISE(fri(x)) + Di(),

et en dérivant par rapport a hr,

ISE'(fra(x) = MISE(Jrn(2) + Dix)
2) = {MISE (Finy(w) = MISE (Fru,, (@) } + D, (@)
7)) = (ho — hop) MISE"(fry-(x)) + D} (2),

ol h* est compris entre hg et hop. Comme hy est le parameétre de lissage qui minimise
le critére ISE(]?Th), donc :
[SEl(fTho (m)) =0,

par conséquent,

Di@)
MISE”(fTh* (m))

hopt — g =
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D’une part, nous avons, sous les hypothéses (H1)(a,b), (H1’), (H2), (H3)(a,c) et (H2),

que :

MISE"(fru(z)) = { /KQ{// ul z,z)dzdu}}Th3 / (K*K K)(z)dz
[roco(isfed] ] w2

+2/ (K*K K)(2)dz /f)

(3.12)
D’autre part,

Dh(flf) = ISE fTh MISE fTh le

— /fTh dm—?/fTh xdx—]EUf%h dx]+2]EUfTh )dx}
— [ Bty +2 / E | Fn(@)] = Frnl@)| f(a)de — B U P x)dw]
') s

“ LR () e (e [ [ (5,
e (UGN

fi.s(y, z)dydz] dtdsdzx.

En utilisant le théoréme de Fubini et un changement de variables, nous obtenons

Dp(z) = Tth/ / K*K(XthX>dtds—3 [%/TK<x;TXt)dt
- [ (55t so] o= [0 [ ek (35)

fr.s(y, 2)dydzdtds.
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En dérivant Dj, par rapport a hr, il en découle,

Du@) = =gz / / K+ K(Xt X>dtd8+T2h / / I L(Xt X)dtds
hj/[l ( ) ( )f( >dy} f(w)da
i/l 5 [ Y ] s

/ / //K ( ) fis(y, 2)dydzdtds

/ / // (y )ft,s(y,z)dydzdtds,

ou LxL(Z)=—-ZK'x«K'(Z).

T2h

~

Dj(z) = ThT/ frn(Xo)dt + T_hT TgTh(Xt)dt+ — [fTh( ) — [fTh(x)H f(x)dz

- [ i) ~ Bl dﬂw// ok (V02
fts(y, dydzdtds+T2h2 /C/ Kx K hT gts(y, Ydydzdtds

T2h2 // K*K( - )f( )£ (2)dyd=dtds — TQhQ ///L*L<

1
S(y, 2)dydzdtd LxL S(y, 2)dydzdtd
fr.s(y, 2)dydzdtds — T?hT/Fc// * (hT)gt (y, 2)dydzdtds

_T%h%/ //L*L (h—T) F(y) f(2)dyd=dtds.

z
et un développement de

Par le lemme 3.4.1, un changement de variables Z = v

hr

Taylor, donnent

2
hr

Fna) = B [Frnt)]] $@e = = [ [Frnle) = £0) + 1) ~ B [ Fru(o)] ] £
De la méme maniére, nous avons

2 [ (@) — E [grn(2)]) f(@)dz = O(hz) + O, 4 ( 10%2) . (3.13)

hr
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y—z

Par ailleurs, en utilisant le théoréme de Fubini, un changement de variable Z =

et les conditions (H1)(a) et (H2)(a), il en ressort que :

— 2z — nd?
T%]’L%—v/c/ K*K(yhT )f(y)f(z)dydzdtds = T2h2 / K K(

dydz
T? — néd?

= Tth /f2 dy + O(hT)

) 1)

De la méme manieére,
T? — nd?
) s yzands = =2 [ Piyay + och)

oz e (U
(3.14)

Sous les hypotheses (H3)(a,b) et par un calcul de EL HEDA & Louani [10], il s’en

suit que :

T // K*K( hf) Ges(y, 2)dydzdtds = O(he~2). (3.15)

De la méme maniére, nous avons :

1 Yy—z 2_9
T2h2 /C //L* L( Iy )gt,s(y, 2)dydzdtds = O(ha™"). (3.16)

En utilisant les équations (3.13), (3.14), (3.15) et (3.16), nous obtenons :

T T

D) = g | (1000 = P dt e [ [at60 = o)
+O (hpy a2 4 0, ( %
Thy
En utilisant le lemme 3.4.2, on a :
I . I .
Thr [f(Xt) - fTh(Xt)] dt < Thy J, tSB,pT] )f(Xt) — fru(Xe)| dt

IN

SB[ (X0) = fn ()

logT
_ O(hT)+op,s< §_1>.
Thy ™
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Par conséquent,

mind 2 — 10 T
Dj(x) = O (hy)™™s 2’”+0p-8< L)
Thy ™

Ainsi, la dérivée de D;, par rapport a hp prise en hg est de la forme :

@ min{?qf%,%} loo T

( %_1a;(4_%))§

et la dérivée seconde de MISFE (ﬁh) par rapport a hp prise en h* est donnée par :

MISE"(frp-(z)) = {8/K2{//Ooogu(z,z)dzdu}}—|—2/ (;K*K K)(
+

0({8/[(2{//Ooogu(z,z)dzdu}}+2/ (;K*K K)(z

[r9)

(3.18)
En combinant les assertions (3.12), (3.17) et (3.18) il s’en suit que :
ag min{ =55} log T
Ropt — ho = O (—T) + O, - |- (3.19)
(TE’ aT(4_ ))
|

Théoréme 3.4.3. Sous les hypotheéses (H1)(a,c), (H1’), (H2), (H3)(a,b), (H4)(a,b),
(H3’), (H5) et (H}’)(a), il existe ¢ <1 et m < 1, tels que :

~ a0\ ™inla—503) log T
h — hopr = O (%) + Op.s

<T%_1aa(4_%)) 3
T

/ 1y
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Preuve

Soit A\, défini par :

M(x) = CV (h) — ISE(frn(x / Pz
En dérivant A\, par rapport a hy, nous obtenons :

CV'(h) = X,(x)+ ISE'(fra(z))

) 1(x) + MISE'(fri,()) + Dj(x) ~

CV'(h) = N(w)+ {MISE'(fy(a ))—MfSE/(fThopt<if))}+D%(”3>
()

2)+ (h— hopt> MISE"(fra-(x)) + Di(x),

out h* est compris entre h et h,y,. Comme h est le parameétre de lissage qui minimise

le critére de validation croisée, donc :
cV'(h) =0,

il s’en suit que :
= /\'ﬁ(:v) —|—AD;A1(x) '
MISEH(fTh* (l‘))

hopt -

Par ailleurs, le terme A\, est donné par :

M(z) = CV(h) - ISE(frn(x)) + / f ()2

2 X — X, - X
i (S [ (52

En dérivant A\, par rapport a hrp.

2 X, — X, X, — X
Xy(z) = T /K(t )dsdt T L th 8>dsdt

Th?// ( )f( dtdx+TiQ/0L(

Observons que pour hr trés petit, nous avons :

1 X, — X, 1 X — X,
—K = —L =0
hZ. ( hr ) h7. ( hr ) ’

) f(a)dtdz.
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pour t € [T;_1,T;],s € [Tj_1,T;] o 1 < i < j < n a l'exception d'un événement de

probabilité négligeable. Par conséquent,

T _ X,

N(x) = Th2 ( )f( Ydtde + —— Th2 / ( )f(x)dtdx
= —/T — fralx ]f(a:)dx—k%/ [gTh<x) —f(x)]f(x)dx.

En utilisant le lemme 3.4.1,

N, () = Olhr) + O, < 1°§T1)

Thi
Ainsi,
H@)=0 (?) 0, i (3.20)

(Tilaa(‘l_’h))é
T

Le résultat s’obtient en combinant les résultats (3.20), (3.17) et (3.19). |



Conclusion

L’objectif de ce mémoire porte sur le probléme de choix du paramétre de lissage

dans 'estimation de la densité.

Dans la premiére partie nous avons présenté les différentes méthodes de sélection
du parametre de lissage, les méthodes basée sur 'estimation de la quantité incon-
nue R(f"”) donnée dans I’expression du parameétre de lissage théorique optimal et les
méthodes reposant sur la validation croisée qui sont des méthodes direct, consistent
a optimiser le critére d’erreur. Ensuite, nous avons présenté le cadre stationnaire

ergodique en temps discret et continu.

Le choix de la fenétre de lissage dans ’estimation de la densité dans le cas discret
est présenté dans la deuxiéme partie, nous avons commencé par la méthode d’his-
togramme, nous avons donné sa forme améliorée, son risque quadratique moyen et
nous avons fondé le choix approprié du la fenétre h. Par la suite, nous nous sommes
intéressés a la méthode du noyau, en examinant les propriétés de l’estimateur plus
précisément le biais, la variance et 'erreur quadratique moyenne. Nous avons établi
des résultats de convergences en moyenne quadratique et presque compléte. Tous ces
résultats mettent en évidence le role du paramétre de lissage h, en regardant par
exemple 'expression de l'erreur quadratique moyenne, le terme de biais est propor-
tionnelle a h tandis que le terme de variance est inversement proportionnelle a h, ce
qui nous indique que le but est de minimiser le critére d’erreur. Nous avons cherché a
sélectionner ce paramétre dans deux cas (indépendant et alpha-mélange) utilisons la
technique de la validation croisée. Ce choix issu de la méthode de la validation croisée

est asymptotiquement optimal.

La derniére partie est consacrée sur le choix du paramétre de lissage dans ’estima-
tion de la densité pour un processus stationnaire ergodique a temps continu. Le para-

métre de lissage optimal pour le critére M IS E présente I'inconvénient de dépendance
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des quantités inconnues et son utilisation en pratique qui pose alors probléme. De ce
fait, nous avons donné un critére de validation croisée adaptée inspirée de I'estimateur
de "one-leave-out". Enfin nous avons établis quelques propriétés asymptotiques et des

vitesses de convergence presque sur pour le paramétre de lissage.
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