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Introduction

La théorie de l’estimation est une des préoccupations majeures des statisticiens.
On trouve deux approches d’estimation dans la littérature, la première est l’approche
paramétrique qui se résume en l’estimation d’un nombre fini de paramètres réels
associés à la loi de l’échantillon. Dans ce cas, on construit les estimateurs en utilisant
soit la méthode des moments soit celle du maximum de vraisemblance ou encore celle
des moindres carrés. Cependant, l’approche non-paramétrique consiste, généralement
à estimer à partir des observations une fonction inconnue appartenant à une certaine
classe de fonctions. De ce fait, l’estimation non-paramétrique offre une très grande
flexibilité de modélisation pour les applications réelles. Dans ce travail, nous nous
intéressons à le choix du paramètre de lissage dans l’estimation de la fonction de
densité.

La sélection du paramètre de lissage a fait l’objet de nombreuses contributions.
Dans le cadre de données discrètes indépendantes et identiquement distribuées, la
fenêtre optimale théorique relative à l’estimateur à noyau de la densité minimisant
l’erreur quadratique moyenne intégrée a été obtenue par Parzen (1962)[17]. Cepen-
dant, cette fenêtre est inconnue en pratique. Plusieurs travaux se sont intéressés à
la procédure de choix d’une fenêtre pouvant approximer celle-ci. Nous citons tout
d’abord le travail de Stone (1984)[24]. Il décrit une règle de sélection de la fenêtre
en utilisant la méthode de la validation croisée. Sous l’hypothèse que la densité est
bornée, ce choix est ainsi asymptotiquement optimal. Notons que ce critère a été
introduit par Rudemo (1982)[19] et Bowman (1984)[5]. Habbema, Hermans et Van-
denbroek (1974)[11] et Duin (1976)[9] ont proposé une méthode fondée sur un critère
du maximum de vraisemblance. Une autre méthode dite, validation croisée biaisée
introduite par Scott et Terrell (1987)[21], Il s’agit d’introduire un biais dans le critére
de validation croisée afin de réduire sa variance. Les méthodes de Rule of Thumb et
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plug-in qui repose sur l’estimation d’une quantité qui dépend de la dérivée seconde
de la densité de probabilité inconnue f . Dans le cas des données α-mélangeantes,
Hart & Vieu (1990)[12] ont introduit le critère de la validation croisée en considérant
"a sequence-leave-out" dans le cas de l’estimation de la densité. Ils ont montré sous
des conditions peu restrictives que le paramètre minimisant le critère introduit est
asymptotiquement optimal.
Le présent manuscrit est composé de trois chapitres :
Dans le premier chapitre, nous citons les différentes méthodes de sélection du pa-

ramètre de lissage et de donner une présentation sur la théorie ergodique.
Dans le deuxième chapitre, nous nous intéressons à la question du choix du para-

mètre de lissage dans le cas discret, nous utilisons la méthode de validation croisée
afin d’avoir un paramètre de lissage asymptotiquement optimale.
Le troisième chapitre présente une procédure de choix du paramètre de lissage

dans l’estimation de la densité pour un processus stationnaire ergodique à temps
continu basée sur le critère de validation croisée et nous établissons des résultats
asymptotiques sur la fenêtre obtenue.



Chapitre 1

Introduction générale

L’estimation de la densité de probabilité sous-jacente à un ensemble fini d’obser-
vations est un problème fondamental en statistique. Dans la littérature, plusieurs
méthodes ont été dédiées à l’estimation de la densité de probabilité. On s’intéresse
dans ce qui suit par deux méthodes majeurs : l’estimation par histogramme et l’esti-
mation par noyau.
La méthode d’histogramme est historiquement la première méthode pour estimer

une fonction de densité, dont l’origine est attribuée à John Grant au XV II ème siècle.
Pour un échantillon de variables aléatoires réelles X1, ..., Xn, indépendantes, identi-
quement distribuées et de densité f . L’estimateur d’histogramme est défini, pour tout
x ∈ R par :

f̂nh(x) =
1

nh

n∑
i=1

1[x−h2 ,x+h
2 [(Xi),

où 1 désigne la fonction indicatrice et h = hn est la fenêtre vérifiant lim
n→∞

hn = 0.

Par ailleurs la méthode du noyau a d’abord été décrite en 1951 dans un rapport non
publié par Fix et Hodges (voir Silverman and Jones (1989)[23]). La première forme
de l’estimateur à noyau a été introduite par Rosenblatt (1956)[18] suivi par Parzen
(1962)[17]. Ils sont proposé une classe d’estimateurs à noyau d’une densité univariée,
l’estimateur à noyau est défini par :

f̂nh(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, ∀x ∈ R,
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où K : R→ R est une fonction positive d’intégrale 1, cette méthode est une généra-
lisation de la méthode d’estimation par histogramme.

Les propriétés de convergence de l’estimateur à noyau ont été établies par Parzen
[17], Silverman [22] et Nadaraya [14]. Les théorèmes relatifs à l’erreur quadratique
moyenne et l’erreur quadratique intégrée moyenne ont été obtenus sous forme élé-
mentaire par Parsen [17].

Banon (1978)[1], fut le premier à s’intéresser à l’estimation de la densité en temps
continu à partir de l’observation d’une partie (Xt)0≤t≤T d’un processus stationnaire
(Xt)t≥0, cet estimateur est donné, pour tout x ∈ R, par :

f̂Th(x) =
1

ThT

∫ T

0

K

(
x−Xt

hT

)
dt.

Des résultats ont été traiter pour l’estimation de la densité relative à des proces-
sus de diffusion par Banon (1978)[1], Banon et Nguyen ((1978)[2],(1981)[3]), Nguyen
(1979)[15] et Nguyen et Pham (1980)[16].

La convergence presque sûre et la convergence en moyenne quadratique des esti-
mateurs de la densité et de la densité conditionnelle ont été étudié par Delecroix
(1979)[7] pour des processus strictement stationnaires et fortement mélangeants, ré-
cemment Didi & Louani (2013)[8] ont obtenu des résultats de convergence presque
sûre, ponctuelle et uniforme, avec des vitesses de convergence sous des conditions
de dépendance assez générales où des méthodes de preuve basées sur des différences
de martingale et des projections successives sur une famille de σ-algèbre emboitées,
comparables à celle définies dans Wu & al (2010)[27] dans le cas discret.

1.1 Méthodes du choix de paramètre de lissage

Le paramètre de lissage est un élément très important dans les différentes méthodes
d’estimation de la fonction de densité. Il dépend de l’échantillon ainsi que de sa taille.
Dans le cas de l’estimation par la méthode du noyau, ce paramètre est indispensable
pour la convergence de l’estimateur et l’efficacité du lissage, et donc la qualité de
cette estimation. Pour cela le choix du paramètre de lissage a fait l’objet de nom-
breuses contributions dans la littérature, plusieurs procédures automatiques ont été
développées et des études comparatives ont été effectuées.
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Dans certaines situations, il suffit de choisir subjectivement le paramètre de lissage
en observant les estimations de la densité produites par plusieurs paramètres, on peut
commencer avec une petite valeur du paramètre et diminuer la qualité de lissage en
maximisant successivement cette valeur jusqu’à atteindre l’estimateur le plus proche
graphiquement à la fonction de densité (voir figure (1.1)).
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Figure 1.1 – L’estimation par noyau avec différents paramètres de lissage.
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La décision d’un choix optimal pour le paramètre de lissage consiste à minimiser
les critères d’erreurs. L’erreur quadratique moyenne intégrée (MISE) 1 relative à

l’estimateur à noyau f̂nh de la densité f est donné par :

MISE(f̂nh) =
h4
n

4
µ2

2(K)R(f ′′) +
R(K)

nhn
, (1.1)

avec

µ2(K) =

∫
R

t2K(t)dt,

et

R(g) =

∫
R

g2(t)dt,

pour toute fonction g de carré intégrable.

La fenêtre optimale qui minimise l’erreur quadratique moyenne intégrée est donnée
par :

hopt =

(
R(K)

µ2
2(K)R(f ′′)

) 1
5

n−
1
5 . (1.2)

Cette expression ne peut être utilisée en pratique car elle dépend de la densité in-
connue f à travers R(f ′′). De ce fait, nous devons construire des procédures qui nous
permettra d’éviter cette quantité et de donner un paramètre de lissage approprié.

1.1.1 Méthode Rule of Thumb

Le choix du paramètre de lissage par cette méthode consiste à remplacer la partie
inconnue R(f ′′) dans l’expression (1.2) par une distribution classique afin d’obtenir
un estimateur pour h. Si les donner suivent la loi normale centrée et de variance σ2

donc on a :

R(f ′′) =

∫
(f ′′(x))

2
dx =

3

8
√
π
σ−5.

1. L’erreur quadratique moyenne intégrée (mean integrated squared error MISE) est défini par :

MISE(f̂n(x)) =

∫
E
[
{f̂n(x)− f(x)}2

]
dx.
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De plus, si on utilise un noyau gaussien, on aura :

µ2(K) =

∫
R

u2K(u)du =

∫
u2 1√

2π
e−

u2

2 du = 1,

et

R(K) =

∫
K2(u)du =

∫ (
1√
2π
e−

u2

2

)2

du =
1

2π

∫
e−u

2

du =
1

2
√
π
.

Donc le paramètre de lissage défini par (1.2) et que l’on note dans ce cas par hrot est
donné par :

hrot =

(
1

2
√
π

) 1
5
(

3

8σ5
√
π

)− 1
5

n−
1
5

=

(
4

3

) 1
5

σn−
1
5

≈ 1.06σn−
1
5 .

Il suffit donc d’estimer σ à partir des données ainsi nous obtenons le paramètre hrot.
Une version plus robuste contre les valeurs aberrantes, si en utilisant une mesure de
l’étendue de l’échantillon. L’écart inter-quartile R 2 permet d’obtenir des meilleurs
résultats que l’écart-type. Le paramètre de lissage hrot devient :

hrot ≈ 1.06 min

(
σ,

R

1.34

)
n−

1
5 .

1.1.2 Méthode plug-in

L’idée de cette méthode est basée sur l’estimation de la partie inconnue de l’équa-
tion (1.2), Woodroof (1970)[26] a proposé un choix initiale h0 de la fenêtre lié à un
estimateur de R(f ′′) qui est défini par :

R̂nh(f
′′) = R(f̂ ′′nh0),

2. Pour une série statistique des N données est rangée par ordre croissant.
Le premier quartile Q1 est la plus petite donnée de la série telle qu’au moins 25% des données soient
inférieures ou égales à Q1. Le troisième quartile Q3 est la plus petite donnée de la série telle qu’au
moins 75% des données soient inférieures ou égales à Q3.
L’écart inter-quartile R est : R = Q3 −Q1.
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où f̂ ′′nh0 désigne la dérivée seconde de l’estimateur à noyau f̂nh0 . Avec un noyau K

deux fois dérivable, donc l’estimateur R̂nh(f
′′) est donné par :

R̂nh(f
′′) =

1

n2h6
0

∫ ( n∑
i=1

K ′′
(
x−Xi

h0

))2

dx.

Il suffit donc de mettre l’estimateur R̂nh(f
′′) dans l’équation (1.2) pour obtenir un

estimateur h1 de la fenêtre hopt défini par :

h1 =

(
R(K)

µ2
2(K)R̂nh(f ′′)

) 1
5

n−
1
5 .

Remarque : La fenêtre h1 est sensible au choix initial de h0, Voir Scott et Factor
(1981)[20] pour plus de détails.

1.1.3 Méthode de validation croisée

La méthode de validation croisée a été proposée par Rudemo (1982)[19] et Bowman
(1984)[5], le principe de cette méthode est de minimiser l’erreur quadratique intégrée

ISE pour un estimateur à noyau f̂nh de la densité f défini par :

ISE(f̂nh(x)) =

∫ [
f̂nh(x)− f(x)

]2

dx

=

∫
f̂ 2
nh(x)dx− 2

∫
f̂nh(x)f(x)dx+

∫
f 2(x)dx.

Minimiser ISE(f̂nh) par rapport à h est équivalent à minimiser :∫
f̂ 2
nh(x)dx− 2

∫
f̂nh(x)f(x)dx. (1.3)

Un estimateur de la partie inconnu de (1.3) est donné par
1

n

n∑
i=1

f̂n,−i(x) où f̂n,−i est

l’estimateur à noyau basé sur (n−1) observations différentes du point d’ordre i. Donc
le critère de validation croisée est donné par :

CV (h) =

∫
f̂ 2
nh(x)dx− 2

n

n∑
i=1

f̂n,−i(Xi).
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Le paramètre de lissage sélectionné par la méthode de validation croisée est le mini-
mum de cette expression par rapport à h.

1.1.4 Méthode de vraisemblance de la validation croisée

Les paramètres d’un modèle statistique peuvent être estimés par la méthode du
maximum de vraisemblance. Une méthode appelée la vraisemblance de la validation
croisée a été présentée par Habbema, Hermans et Vandenbroek (1974)[11] et Duin
(1976)[9], elle consiste à maximiser la fonction de vraisemblance ou, plus souvent

le logarithme de cette fonction par rapport à h. L’estimateur log f̂n,−i de log f est
construit à partir des données {Y,Xj, j = 1, ..., n. j 6= i} tel que Y est indépendant
à Xj. Le critère de vraisemblance de validation croisée est alors donné par

LCV (h) =
1

n

n∑
i=1

log f̂n,−i(Xi).

L’estimation du paramètre de lissage par cette méthode est obtenue en maximisant
cette expression.

1.1.5 Méthode de validation croisée biaisée

Cette méthode a été introduite par Scott et Terrell en 1987[21]. Rappelant qu’à

partir du critère de MISE relative à l’estimateur à noyau f̂nh donné par l’expression
(1.1), on peut donné le paramètre de lissage si l’on connaît R(f ′′), Scott et Terrell
[21] montraient :

E[R(f̂ ′′nh)] = R(f ′′) +
R(K ′′)

nh5
n

+ o(h2).

Ils proposent alors d’estimer R(f ′′) par :

R̂(f ′′) = R(f̂ ′′nh)−
R(K ′′)

nh5
n

.

L’estimateur R̂(f ′′) est donné par :

R̂(f ′′) =
1

n2h5
n

n∑
i=1

n∑
j=1
j 6=i

K ′′ ∗K ′′
(
Xi −Xj

hn

)
, (1.4)
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où ∗ représente le produit de convolution défini par :

K ′′ ∗K ′′(x) =

∫
K ′′(x− y)K ′′(y)dy.

La formule (1.4) est obtenue de la façon suivante :

R(f̂ ′′nh) =
1

n2h6
n

∫ ( n∑
i=1

K ′′
(
x−Xi

hn

))2

dx

=
1

n2h6
n

n∑
i=1

n∑
j=1

∫
K ′′
(
x−Xi

hn

)
K ′′
(
x−Xj

hn

)
dx

=
1

n2h6
n

n∑
i=1

∫
K ′′

2

(
x−Xi

hn

)
dx+

1

n2h6
n

n∑
i=1

n∑
j=1
j 6=i

∫
K ′′
(
x−Xi

hn

)
K ′′
(
x−Xj

hn

)
dx,

en effectuant le changement de variable u =
x−Xi

hn
on obtient :

R(f̂ ′′nh) =
1

nh5
n

∫
K ′′

2
(u) du+

1

n2h5
n

n∑
i=1

n∑
j=1
j 6=i

∫
K ′′(u)K ′′

(
Xi −Xj

hn
+ u

)
du,

comme le noyau K est symétrique alors on a :

R(f̂ ′′nh) =
1

nh5
n

∫
K ′′

2
(u) du+

1

n2h5
n

n∑
i=1

n∑
j=1
j 6=i

∫
K ′′(u)K ′′

(
Xj −Xi

hn
− u
)
du

=
1

nh5
n

∫
K ′′

2
(u) du+

1

n2h5
n

n∑
i=1

n∑
j=1
j 6=i

K ′′ ∗K ′′
(
Xj −Xi

hn

)

=
1

nh5
n

∫
K ′′

2
(u) du+

1

n2h5
n

n∑
i=1

n∑
j=1
j 6=i

K ′′ ∗K ′′
(
Xi −Xj

hn

)

=
R(K ′′)

nh5
n

+
1

n2h5
n

n∑
i=1

n∑
j=1
j 6=i

K ′′ ∗K ′′
(
Xi −Xj

hn

)
.

On conclut donc :

R̂(f ′′) =
1

n2h5
n

n∑
i=1

n∑
j=1
j 6=i

K ′′ ∗K ′′
(
Xi −Xj

hn

)
.
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Donc on remplacer R(f ′′) dans l’expression (1.1) par son estimateur et nous obtenons
le critère de validation croisée baisée suivant :

BCV (h) =
R(K)

nhn
+
µ2

2(K)

4n2hn

n∑
i=1

n∑
j=1
j 6=i

K ′′ ∗K ′′
(
Xi −Xj

hn

)
.

Le paramètre de lissage h choisi par cette méthode est la valeur de h qui minimise le
BCV (h).

L’estimation par la méthode du noyau relative à des processus ergodiques à temps
continu a reçu un intérêt particulier ces dernières années. De nombreux résultats
traitant la vitesse de convergence et la normalité asymptotique.
Dans ce qui suit nous énonçons la théorie ergodique pour les processus stationnaires.

1.2 Ergodicité des processus stationnaires

La théorie ergodique s’intéresse à l’étude des systèmes dynamiques. Elle fait état de
l’équivalence entre le comportement moyen de l’ensemble des systèmes dynamiques et
la moyenne temporelle des comportements d’un système dynamique. Les origines de
l’ergodicité remontent à la mécanique statistique, Birkoff (1931)[4] et Von Neumann
(1932)[25] sont les pionniers dans ce domaine. Dans le cas des processus à temps
continu le cadre ergodique est plus générale que la dépendance faible des données.

Définition 1.2.1. (Ensemble invariant). Soit {Yt}t∈R+ un processus á temps

continu défini sur un espace mesurable (Ω,X , µ). Pour δ > 0, soit T δ une transfor-

mation δ-shift (i.e. (T δ(Y ))s = Ys+δ). Un ensemble mesurable A est dit δ-invariant,

s’il ne change pas sous une transformation δ-shift (i.e. (T δ(A) = A)).

Définition 1.2.2. (δ-ergodicité). Y = {Yt}t∈R+ est dit δ-ergodique, si tout ensemble
mesurable δ-invariant lié au pracessus Y, a une probabilité de 0 ou 1.

Définition 1.2.3. (Ergodicité). Y = {Yt}t∈R+ est dit ergodique s’il est δ-ergodique
pour tout δ > 0.

Définition 1.2.4. (Processus stationnaire en temps discret). Soit Y = (Y0, Y1, ...)

un processus défini sur un espace de probabilité (E,F ,P). La distribution du processus
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est déterminée par la probabilité des événements de type {Yt1 ∈ F1, ..., Ytn ∈ Fn}.
Y est stationnaire si, pour tout n ∈ N, F1, ..., Fn ∈ F , t1, ..., tn, s ∈ Z, on a :

P (Yt1 ∈ F1, ..., Ytn ∈ Fn) = P (Yt1+s ∈ F1, ..., Ytn+s ∈ Fn).

Définition 1.2.5. (Processus stationnaire en temps continu). Un processus
(Yt)t∈R+ est dit strictement stationnaire si les lois jointes de (Yt1 , ..., Ytk) et de (Yt1+h, ..., Ytk+h)

sont identiques pour tout k ∈ N et pour tout t1, ..., tn, h ∈ R+.

Donnons maintenant le théorème ponctuel ergodique de Birkhoff lié aux processus
stationnaires à temps discret et continu, (voir Krengel (1985)[13], théorème 4.4 p.26).

Théorème 1.2.1. [13](Birkoff en temps discrète). Soit Y0, Y1, ... est un processus
réel stationnaire, Y0 est intégrable et F une σ-algébre des ensembles invariants alors :

lim
n→∞

1

n

n∑
i=0

Yi = E [Y0/F ] , p.s.

Si en plus le processus est ergodique, alors :

lim
n→∞

1

n

n∑
i=0

Yi = E [Y0] , p.s.

Théorème 1.2.2. [13](Birkoff en temps continu). Si (Yt)t∈[0,T ] avec T ∈ R+ est
un processus réel stationnaire ergodique, alors :

lim
T→∞

1

T

∫ T

0

Ytdt = E [Y0] , p.s.



Chapitre 2

Choix optimal du paramètre de

lissage dans l’estimation de la densité

à temps discret

On suppose que les Xi sont à valeurs réelles et que f est une densité deux fois
continûment différentiable par rapport à la mesure de Lebesgue sur R.

2.1 Estimation de la fonction de densité par les his-

togrammes

La méthode d’estimation par histogramme est la plus naturelle, elle est répondu
à l’objectif d’une représentation de la distribution de données. Supposons que l’on
ait n observations x1, x2, ..., xn issues d’une même loi de probabilité inconnue de den-
sité f , où f est à support borné [a0, am[. Estimer cette densité f par la méthode
d’histogramme revient à approcher f par une fonction en escaliers. Pour cela, on par-
titionne l’intervalle de référence [a0, am[ en m ∈ N classes Cj de la forme [aj−1, aj[,
j ∈ {1, ...,m}. La largeur de la classe Cj est alors hj = aj − aj−1.
L’estimateur par histogramme s’écrit alors : ∃j ∈ {1, ...,m}, tel que ∀x ∈ [aj−1, aj[

f̂h(x) =
m∑
j=1

fj
hj
1[aj−1,aj [(x),
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où fj est la fréquence empirique du nombre d’observations appartenant à la classe
correspondante, tel que

fj =
1

n

n∑
i=1

1[aj−1,aj [(Xi).

2.1.1 Estimation par histogramme mobile

L’estimateur par histogramme précédent f̂h n’est pas un bon estimateur. Considé-
rons la classe Cj = [aj−1, aj[ et imaginons que le point x ∈ Cj où l’on veut estimer

f(x) par f̂h(x) se situe près de l’extrémité. Alors, toutes les observations de la classe

Cj interviennent dans le calcul de f̂h, mais on se rend compte qu’une observation
située près de aj sera prise en compte, alors qu’elle est assez éloignée de x, et qu’une
observation située tout près de x dans la classe Cj−1 n’entre pas dans le calcul de

f̂h. Pour remédier cet estimateur, on peut alors utiliser l’histogramme mobile, qui est
un translaté de l’histogramme de manière à ce que l’observation x où l’on estime, se

retrouve au centre d’une classe, plus précisément au centre de la classe [x− h
2
, x+ h

2
[

où h désigne la largeur d’une classe (ou la fenêtre de l’histogramme). L’estimateur
par histogramme mobile s’écrit alors :

f̂nh(x) =
1

nh

n∑
i=1

1[x−h2 ,x+h
2 [(Xi).

2.1.2 Risque de l’estimateur par histogramme mobile

L’évolution de la similitude entre l’estimateur f̂nh et la vraie densité f à estimer,
nécessite des critères d’erreurs. L’un des critères universelles pour mesurer la qualité
de cette estimateur est représenté par l’erreur quadratique moyenne (mean squared
error MSE) défini par :

MSE(f̂nh(x)) = E
[
{f̂nh(x)− f(x)}2

]
= E

[
f̂ 2
nh(x)

]
−
[
E{f̂nh(x)}

]2

+
[
E{f̂nh(x)} − f(x)

]2

= Biais2{f̂nh}+ V ar{f̂nh}.
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• Etude du biais :

E
[
f̂nh(x)

]
− f(x) = E

[
1

nh

n∑
i=1

1[x−h2 ,x+h
2 [(Xi)

]
− f(x)

=
1

h
E
[
1[x−h2 ,x+h

2 [(Xi)
]
− f(x)

=
1

h

∫
1[x−h2 ,x+h

2 [(Xi)f(x)dx− f(x)

=
1

h

∫
[x−h2 ,x+h

2 [
f(x)dx− f(x)

=
1

h
P
{
Xi ∈

[
x− h

2
, x+

h

2

[}
− f(x)

=
pi
h
− f(x),

où pi = P
{
Xi ∈

[
x− h

2
, x+ h

2

[}
la probabilité des Xi trouvant dans l’intervalle[

x− h
2
, x+ h

2

[
.

• Etude de la variance :

V ar
[
f̂nh(x)

]
= V ar

[
1

nh

n∑
i=1

1[x−h2 ,x+h
2 [(Xi)

]
=

1

nh2
V ar

[
1[x−h2 ,x+h

2 [(Xi)
]

=
1

nh2

{
E
[(
1[x−h2 ,x+h

2 [(Xi)
)2
]
−
[
E
[
1[x−h2 ,x+h

2 [(Xi)
]]2
}

=
1

nh2

[
pi − p2

i

]
=

pi(1− pi)
nh2

.

• L’erreur quadratique moyenne est donné par :

MSE(f̂nh(x)) =
(pi
h
− f(x)

)2

+
pi(1− pi)
nh2

.

Lemme 2.1.1. Si X1, ..., Xn sont indépendantes de même loi de densité f supportée

par [0,1] et f̂nh est l’estimateur par histogramme mobile avec m = 1/h classes, alors

l’erreur quadratique moyenne intégrée (mean integrated squared error MISE) de f̂nh
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est donné par :

MISE(f̂nh(x)) =

∫ 1

0

MSE(f̂hh(x))dx

=

∫ 1

0

E
[
{f̂nh(x)− f(x)}2

]
dx

=

∫ 1

0

f 2(x)dx+
1

nh
− n+ 1

nh

m∑
j=1

p2
j .

2.1.3 Choix de la fenêtre par la méthode de validation croisée

Afin d’établir une méthode de choix de h indépendant de f , nous commençons

par estimer le risque de l’estimateur f̂nh en utilisant uniquement les observations

x1, ..., xn. Soit Ĵ(h, x1, ..., xn) un estimateur de MISE(f̂nh(x)) −
∫ 1

0

f 2(x)dx. Pour

que la méthode de sélection de h conduise vers des résultats raisonnables, on demande

de l’estimateur Ĵ être sans biais, c’est-à-dire :

E
[
Ĵ(h, x1, ..., xn)

]
= MISE(f̂nh(x))−

∫ 1

0

f 2(x)dx.

On détermine la valeur de h en minimisant Ĵ(h, x1, ..., xn) par rapport à h, ce mini-
mum est atteint est sélectionnée comme fenêtre pour l’estimateur par histogramme
mobile.
Principe de la méthode : Avant de commencer, on choisit une partition uniforme
C1, ..., Cm de l’intervalle [0, 1[ tel que :

Cj =

[
j − 1

m
,
j

m

[
j = 1, ...,m.

Pour toute densité f et pour tout histogramme mobile f̂nh, d’après le lemme 2.1.1,
on a :

J(h, x1, ..., xn) = MISE(f̂nh(x))−
∫ 1

0

f 2(x)dx

=
1

nh
− n+ 1

nh

m∑
j=1

p2
j . (2.1)
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Pour déterminer un estimateur sans bais de J , il suffit de déterminer un estimateur
sans bais de p2

j , pour tout j = 1, ...,m. Une approche simple consisterait à estimer p2
j

par p̂2
j , où p̂j est la probabilité empirique :

p̂j =
1

n

n∑
i=1

1Cj(Xi).

Comme
n∑
i=1

1Cj(Xi) suit la loi binomiale de paramètres (n, pj), on a :

V ar(p̂j) =
pj(1− pj)

n
,

par conséquent,

E(p̂2
j) = V ar(p̂j) + (E(p̂j))

2

= p2
j(1−

1

n
) +

pj
n
. (2.2)

Cette égalité nous montre d’une part que l’idée naïve d’estimer p2
j par p̂2

j ne conduit

pas vers un estimateur sans biais. Mais, d’autre part, ce petit calcul que nous venons
d’effectuer prépare le terrain pour déterminer l’estimateur utilisé par la méthode de
validation croisée. En effet, comme p̂j est un estimateur sans biais de pj, il résulte de

(2.2) que p̂2
j −

p̂j
n

est un estimateur sans biais de p2
j(1−

1

n
). Par conséquent, pour tout

j = 1, ...,m,

p̂2
j − p̂j/n
1− 1/n

=
n

n− 1
p̂2
j −

1

n− 1
p̂j

est un estimateur sans biais de p2
j . En injectant cet estimateur dans le membre droit de

l’égalité (2.1) et en utilisant le fait que
m∑
j=1

p̂j = 1, nous obtenons le résultat suivant.

Proposition 2.1.1. Si f est une densité de carré intégrable et si f̂nh est l’estimateur
de l’histogramme mobile à m = 1/h classes basé sur l’échantillon x1, ..., xn ayant f



24
CHAPITRE 2. CHOIX OPTIMAL DU PARAMÈTRE DE LISSAGE

DANS L’ESTIMATION DE LA DENSITÉ À TEMPS DISCRET

pour densité de probabilité, alors :

Ĵ(h, x1, ..., xn) =
2

(n− 1)h
− n+ 1

(n− 1)h

m∑
j=1

p̂2
j

est un estimateur sans biais de MISE(f̂nh)−
∫ 1

0
f 2.

Nous pouvons à présent énoncer la méthode de validation croisée. Nous allons le
faire dans le cadre général, sans supposer que les observations sont incluses dans
[0, 1]. Dans ce cas, on peut poser a = xmin et b = xmax et pour tout m ∈ N choisir
la fenêtre h = (b− a)/m. On définit alors les classes Cj = [a+ (j − 1)h, a+ jh[ pour
j = 1, ...,m− 1 et Cm = [b− h, b].

2.2 Estimation de la fonction de densité par la mé-

thode du noyau

Soit (Xi)i≥1 une suite des variables aléatoires indépendantes et de même loi, de
densité de probabilité f . L’estimation par la méthode du noyau est l’une des méthodes
la plus utilisée qui permet d’obtenir un estimateur continu de la densité f . Cette
méthode a été introduit par Rosenblatt (1956)[18] et développé par Parzen (1962)[17].

L’estimateur à noyau f̂nh est défini pour tout x ∈ R par :

f̂nh(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
,

où {hn}n≥1 est une suite de réels positifs appelés le paramètre de lissage ou la lar-
geur de la fenêtre, qui tend vers 0 quand n tend vers l’infini et K est la fonction
noyau continue symétrique (i.e. K(t) = K(−t)), positive (i.e. K(t) > 0, ∀t ∈ R) et
d’intégrale égale à 1.

Noyaux usuels :

- Le noyau uniforme :

K(u) =
1

2
1[−1,1](u).
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- Le noyau triangulaire :

K(u) = (1− |u|)1[−1,1](u).

- Le noyau d’Epanechnikov :

K(u) =
3

4
(1− u2)1[−1,1](u).

- Le noyau gaussien :

K(u) =
1√
2π
e−

1
2
u2 , u ∈ R.

Lemme 2.2.1. Un estimateur à noyau est une densité de probabilité.

Démonstration.

∫
R

f̂nhn(x)dx =
1

nhn

n∑
i=1

∫
R

K

(
x−Xi

hn

)
dx

=
1

nhn

n∑
i=1

∫
R

K(u)hndu (changement de variable u =

(
x−Xi

hn

)
)

=
1

n

n∑
i=1

∫
R

K(u)du =
1

n
n = 1.

2.2.1 Propriétés de l’estimateur à noyau

Nous allons maintenant donné quelques propriétés statistiques de l’estimateur f̂nh
où la densité f est bornée dont la dérivée seconde est bornée et le noyau K vérifier
les conditions suivantes :

∫
R

tK(t)dt = 0,

∫
R

t2K(t)dt = µ2(K) > 0,

∫
R

K2(t)dt = R(K),

où µ2(K) et R(K) sont deux constants.
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• Etude du biais :

Le biais de l’estimateur f̂nh est :

|Biais(f̂nh(x))| ≤ C1h
2
n, (2.3)

où C1 = max
x
|f ′′(x)|µ2(K)

2
.

Démonstration.

E[f̂nh(x)] = E

[
1

nhn

n∑
i=1

K

(
x−Xi

hn

)]
=

1

hn
E

[
K

(
x− t
hn

)]
=

1

hn

∫
R

K

(
x− t
hn

)
f(t)dt,

on pose : u =
x− t
hn
⇒ t = x− hnu

E[f̂nh(x)] =

∫
R

K(u)f(x− hnu)du,

Puisque f est deux fois continûment différentiable, le développement de Taylor de
f(x− hu) nous donne :

f(x− hnu) = f(x)− hnuf ′(x) +
1

2!
(−hnu)2f ′′(θu) (avec θu ∈]x− hnu, x]).

Donc on obtient :

E[f̂nh(x)] =

∫
R

K(u)

[
f(x)− hnuf ′(x) +

h2
nu

2

2
f ′′(θu)

]
du.

Comme f ′′ est continue alors f ′′(θu) −→ f ′′(x) quand n→∞, alors

E[f̂nh(x)] = f(x)

∫
R

K(u)du− hnf ′(x)

∫
R

uK(u)du+
h2
n

2
f ′′(x)

∫
R

u2K(u)du.

Puisque :∫
R

K(t)dt = 1,

∫
R

tK(t)dt = 0,

∫
R

t2K(t)dt = µ2(K),
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donc :

E[f̂nh(x)] = f(x) +
h2
n

2
f ′′(x)µ2(K),

il en résulte que :

|Biais(f̂nh(x))| = |E[f̂nh(x)]− f(x)|

≤ h2
n maxx |f ′′(x)|µ2(K)

2
≤ C1h

2
n.

• Etude de la variance :

La variance de l’estimateur f̂nh est :

V ar(f̂nh(x)) ≤ C2

nhn
, (2.4)

où C2 = max
x
|f(x)|R(K).

Démonstration.

V ar(f̂nh(x)) = V ar

[
1

nhn

n∑
i=1

K

(
x−Xi

hn

)]
=

1

nh2
n

V ar

[
K

(
x− t
hn

)]
≤ 1

nh2
n

E

[(
K

(
x− t
hn

))2
]

≤ 1

nh2
n

∫
R

[
K

(
x− t
hn

)]2

f(t)dt

≤ 1

nhn

∫
R

K2(u)f(x− hnu)du (par changement de variable).

Comme f est continue donc f(x− hnu) ' f(x) quand n est assez grand.

V ar(f̂nh(x)) ≤ 1

nhn
f(x)

∫
R

K2(u)du

≤ maxx |f(x)|R(K)
1

nhn

≤ C2

nhn
.
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• MSE de l’estimateur :

On déduit de (2.3) et (2.4) que l’erreur quadratique moyenne de f̂nh admet la majo-
ration suivante :

MSE(f̂nh(x)) ≤ C2
1h

4
n +

C2

nhn
. (2.5)

2.2.2 Résultats asymptotiques

Théorème 2.2.1. (Parzen [17])(Convergence en moyenne quadratique). Soit

f une densité continue et f̂nh son estimateur à noyau. Si les hypothèses suivantes sont
réalisées :

(A1) :
∫
R

K(u)du = 1,

∫
R

|K(u)|du <∞, sup
u
|K(u)| <∞, lim

n→∞
|uK(u)| = 0

(A2) : lim
n→∞

hn = 0, lim
n→∞

nhn =∞,

alors f̂nh est un estimateur convergent en moyenne quadratique c’est à dire :

lim
n→∞

MSE(f̂nh(x)) = 0.

Théorème 2.2.2. (La vitesse de convergence presque complète 1). Supposons
que les hypothèses suivantes soient réalisées :
(A3) : f ∈ C2

(A4) : lim
n→∞

hn = 0, lim
n→∞

(
nhn
log n

)
=∞

(A5) : K est borné, de carré intégrable et
∫
R

tK(t)dt = 0,

∫
R

t2K(t)dt <∞,

alors on a :

f̂nh(x)− f(x) = O(h2
n) +Op.co

(√
log n

nhn

)
.

1. La convergence presque complète (p.co). Soit (Xn)n∈N une suite de variables aléatoires, X
une variable aléatoire et un est une suite numérique.

– On dit que lim
n→∞

Xn = X p.co ssi ∀ε > 0,
∑
n∈N

P (|Xn −X| ≥ ε) <∞.

– On dit que Xn −X = O(un) p.co ssi ∀ε > 0,
∑
n∈N

P (|Xn −X| ≥ εun) <∞.
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Le succès rencontré par l’estimateur à noyau s’explique par sa simplicité, sa flexibi-
lité et aussi ses propriétés de convergence. Il laisse à l’utilisateur une grande latitude
non seulement dans le choix du noyau K, mais aussi dans le choix du paramètre de
lissage h.

2.3 Choix du paramètre de lissage par la méthode

de validation croisée

L’estimateur à noyau et ses propriétés sont principalement conditionné par le pa-
ramètre de lissage h, ce paramètre représente en quelque sorte une fenêtre qui permet

de déterminer le degré de lissage de l’estimateur f̂nh. D’après l’expression (2.5), si h
est trop petit, le biais de l’estimateur devient petit devant sa variance et l’estimateur
est très volatile et on parle de sous-lissage (under-smoothing). Dans le cas contraire,
lorsque h est trop grand, la variance devient petite et c’est le biais qui devient do-
minant. L’estimateur est alors trop lisse et est de moins à moins influencé par les
données, on parle alors d’un effet de sur-lissage (over-smoothing ).
En pratique, il est nécessaire de trouver la méthode qui permet d’éviter le sous-lissage
et le sur-lissage pour la sélection de la fenêtre h.

2.3.1 Choix pour des données indépendantes

Parmi les mesures de divergence entre la densité f et son estimateur f̂nh on trouve
l’erreur quadratique intégrée (integrated squared error ISE) définie par :

ISE(f̂nh(x)) =

∫ [
f̂nh(x)− f(x)

]2

dx

=

∫
f̂ 2
nh(x)dx− 2

∫
f̂nh(x)f(x)dx+

∫
f 2(x)dx.

Le paramètre de lissage choisi par la méthode de la validation croisée (cross valida-

tion CV ) est la valeur de h qui minimise un estimateur de ISE. puisque
∫
f 2(x)dx

ne dépend pas du paramètre de lissage h. On peut choisir le paramètre de lissage de
façon à ce qu’il minimise un estimateur de :

ISE(f̂nh(x))−
∫
f 2(x)dx =

∫
f̂ 2
nh(x)dx− 2

∫
f̂nh(x)f(x)dx.
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On doit donc trouver un estimateur pour
∫
f̂nh(x)f(x)dx. Remarquons que :

∫
f̂nh(x)f(x)dx = E(f̂nh(x)),

son estimateur empirique est alors :
1

n

n∑
i=1

f̂n,−i(x), où f̂n,−i est l’estimateur "one-

leave-out" de la densité f construit à partir des données indépendantes (Xj)1≤j≤n,j 6=i

défini par :

f̂n,−i(x) =
1

(n− 1)h

n∑
j=1
j 6=i

K

(
x−Xj

hn

)
.

Le critère de validation croisée est alors donné par :

CV (h) =

∫
f̂ 2
nh(x)dx− 2

n

n∑
i=1

f̂n,−i(Xi)

=

∫
f̂ 2
nh(x)dx− 2

n(n− 1)hn

n∑
i=1

n∑
j=1
j 6=i

K

(
Xi −Xj

hn

)
.

• La règle de sélection du paramètre de lissage est donnée par :

ĥ = argmin
h

CV (h).

Proposition 2.3.1. La statistique :

CV (h) =

∫
f̂ 2
nh(x)dx− 2

n(n− 1)hn

n∑
i=1

n∑
j=1
j 6=i

K

(
Xi −Xj

hn

)

est un estimateur sans biais de MISE(f̂nh)−
∫
f 2.

Démonstration. D’une part, comme la densité jointe du couple (Xi, Xj) est f(x)f(y)
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(car les variables sont indépendantes), on a

E[CV (h)] = E

[∫
f̂ 2
nh(x)dx

]
− 2

n(n− 1)hn

n∑
i=1

n∑
j=1
j 6=i

E

[
K

(
Xi −Xj

hn

)]

= E

[∫
f̂ 2
nh(x)dx

]
− 2

n(n− 1)hn

n∑
i=1

n∑
j=1
j 6=i

∫∫
K

(
x− y
hn

)
f(x)f(y) dxdy

= E

[∫
f̂ 2
nh(x)dx

]
− 2

n(n− 1)hn
n(n− 1)

∫∫
K

(
x− y
hn

)
f(x)f(y) dxdy

= E

[∫
f̂ 2
nh(x)dx

]
− 2

hn

∫∫
K

(
x− y
hn

)
f(x)f(y) dxdy.

D’autre part,

MISE(f̂nh(x))−
∫
f 2(x)dx =

∫
E
[
f̂nh(x)− f(x)

]2

dx−
∫
f 2(x)dx

=

∫
E
[
f̂ 2
nh(x)

]
dx− 2

∫
E
[
f̂nh(x)

]
f(x)dx

=

∫
E
[
f̂ 2
nh(x)

]
dx− 2

∫
E

[
1

nhn

n∑
j=1

K

(
x−Xj

hn

)]
f(x)dx

= E

[∫
f̂ 2
nh(x)dx

]
− 2

hn

∫∫
K

(
x− y
hn

)
f(y)f(x) dydx

= E[CV (h)],

ce qui équivaut à dire que CV (h) est un estimateur sans biais de MISE(f̂nh)−
∫
f 2.

• Optimalité asymptotique

La fenêtre ĥ est dite asymptotiquement optimale si :

lim
n→∞

ISE(f̂nĥ(x))

inf
h
ISE(f̂nh(x))

= 1 p.s.

Théorème 2.3.1. (Stone [24]). Sous les conditions suivantes :
. K est le noyau à support compact et Hölder-continue, i.e. Pour tout (x, y) ∈ R2, il

existe deux constantes λ > 0 et D > 0 tel que |K(x)−K(y)| ≤ D|x− y|λ.
. hn ∈ HN := {h1, ..., hN}. HN ⊂ Hn et satisfaisant la condition suivante :

#HN ≤ Ana, n ≥ 1, A, a > 0,
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et avec l’hypothèse que f soit bornée, ĥ est asymptotiquement optimal.

2.3.2 Choix pour des données dépendantes

Soit (Xi)i≥1 une suite de variables aléatoires alpha-mélangeante 2, pour la sélection
de la fenêtre de lissage, considérons ici l’erreur quadratique intégrée pondérée relative

à l’estimateur à noyau f̂nh de la densité f défini par :

ISE(f̂nh(x)) =

∫ [
f̂nh(x)− f(x)

]2

w(x)dx

où w est une fonction positive à support compact. Le paramètre hn est pris ici dans un
ensemble Hn. Pour minimiser l’erreur quadratique intégrée, Hart & Vieu (1990)[12]

ont défini le critère de la validation croisée en introduisant, un estimateur f̂n,ln de
f , appelé l’estimateur de "sequence-leave-out", basé sur les données {Xj}, tel que
|j − i| > ln défini par :

f̂n,ln(x) =
1

nlnhn

∑
|j−i|>ln

K

(
x−Xj

hn

)
,

où ln est une suite d’entiers positifs appelée "sequence-leave-out" tel que :

nnln = #{(i, j) : |j − i| > ln}.

Le critère de la validation croisée est défini par :

CVln(h) =

∫
f̂ 2
nh(x)w(x)dx− 2

n

n∑
i=1

f̂n,ln(Xi)w(Xi),

et donc le paramètre de lissage sélectionné est donné par :

ĥln = argmin
h∈Hn

CVln(h).

2. Soit σ(X1, ..., Xn) la tribu engendrée par les variables aléatoires X1, ..., Xn. Une suite (Xi)i≥1
est dite alpha-mélangeante s’il existe, un coefficient α(m) vérifiant, pour tout entiers positifs k et
m, tout ensemble A ∈ σ(X1, ..., Xk) et tout B ∈ σ(Xm+k, ...), les propriétés suivantes :
. |P (A ∩B)− P (A)P (B)| ≤ α(m),
. lim

m→∞
α(m) = 0.
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• Optimalité asymptotique

Pour établir leur résultat, Hart & Vieu (1990)[12] ont considère les hypothèses sui-
vantes :

(H1) : Le noyauK est borné, symétrique, à support compact,
∫
xvK(x) <∞,

∫
xkK(x)dx =

0, k = 1, ..., v − 1 et Lipschitz continue, i.e. Hölder continue avec λ = 1.

(H2) : Hn :=
[
An−a, Bn−b

]
, 0 < b ≤ 1

2v + 1
≤ a <

2

1 + 4v
, où A et B sont deux

constantes positives.

(H3) : "sequence-leave-out" {ln}N∗ vérifie, ln ≤ nθ1 où θ1 < 1− a(1 + 4v)

2
.

(H4) : Le coefficient de mélange vérifie, sup
j>nθ1

α(j) = o(n−θ2), où θ2 := θ2(a, b, v, θ1)

(voir Hart & Vieu (1990)[12]).
(H5) : La densité f est bornée, admet v dérivées continues pour v ∈ N∗ et

max(f(x), f(−x))→ 0, quand x→∞.

Théorème 2.3.2. (Hart & Vieu(1990)[12]). Sous les hypothèse (H1), (H2), (H3),

(H4) et (H5), ĥln est asymptotiquement optimal.



34
CHAPITRE 2. CHOIX OPTIMAL DU PARAMÈTRE DE LISSAGE

DANS L’ESTIMATION DE LA DENSITÉ À TEMPS DISCRET



Chapitre 3

Choix optimal du paramètre de

lissage dans l’estimation de la densité

pour des processus à temps continu

3.1 Modèle

Soit (Xt, 0 ≤ t ≤ T ), T ∈ R+ un processus stationnaire ergodique à temps continu
de densité f . L’estimateur à noyau de la densité f défini, pour tout x ∈ R, par

f̂Th(x) =
1

ThT

∫ T

0

K

(
x−Xt

hT

)
dt,

où hT est le paramètre de lissage appartenant à un ensemble HT := [aT , bT ] ⊂ R+ et
K est un noyau.

Avant d’établir nous résultats, notons que fXs,Xt la densité conjointe du vecteur
aléatoire (Xs, Xt) et fXs la densité marginale de Xs, définissons la fonction gs,t par :

gs,t = fXs,Xt − fXsfXt .

Comme le processus est stationnaire, on a :

gs,t = g0,|s−t|, g0,|s−t| = g|s−t|.

Par ailleurs, pour tout t ≥ 0, Ft = σ((Xs) : 0 ≤ s ≤ t) est la σ-algèbre générée

par les données (Xs)0≤s≤t. Considérons, pour un réel positif δ tel que n = T
δ
∈ N, la
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partition (Tj)1≤j≤n de pas δ de l’intervalle [0, T ]. La projection Pk est définie pour
une variable aléatoire réelle ξ et k ∈ N, par Pkξ = E[ξ|Fk] − E[ξ|Fk−1], où E[ξ|Fk]
est l’espérance conditionnelle de ξ sachant la σ-algèbre Fk, avec Fk := FTk , Tk étant

le kième élément de la partition de l’intervalle [0, T ], i.e. Tk = δk.

3.2 Hypothèses

(H1) (a) Le noyau K est symétrique, bornée (K ≤M), de support compact et d’in-
tégrale égale à un.

(b) K est Hölder-continue, i.e. Pour tout (x, y) ∈ R2, il existe deux constantes

λ > 0 et D > 0 tel que |K(x)−K(y)| ≤ D|x− y|λ.

(c)
∫
z2(K ∗K(z)− 2K(z))dz < 0.

(H2) (a) f est deux fois dérivables avec la première dérivée et la seconde dérivée
bornées.

(b)
∫
f ′′f < 0.

(H3) Il existe un ensemble Γ ∈ BR2 contenant {D = (s, t) ∈ R2, s = t} tel que :
(a) gs,t existe pour tout (s, t) /∈ Γ.
(b) ∆p(Γ) := sup

(s,t)/∈Γ

||gs,t||Lp(R2) <∞, pour p ∈]2,∞[.

(c) u → ||gu||∞ et u →
∫

sup
y

∣∣∣∣∂gu(y, z)∂y

∣∣∣∣ dz sont intégrables sur ]0,∞[, où

||.||∞ := sup
x,y∈R2

|.|.

(d) Il existe une fonction aT et un réel α > 1 tels que,
∫∫
|y−z|<aαT

gu(y, z)dydz > 0.

(H4) (a) Pour tout δ > 0, la densité conditionnelle fFt−δt de Xt sachant la σ-algèbre
Ft−δ est différentiable de dérivée presque sûrement bornée.

(b) Pour tout t ∈ [0, T ], tout δ > 0 et tout x ∈ R, la fonction f
Ft−δ
t (x) est

presque sûrement bornée par une fonction déterministe bt,δ(x).

(c) Pour tout δ > 0,
1

T

∫ T

0

bt,δ(x)dt→ D(x) 6= 0, lorsque T →∞.
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(H5) Pour tout δ > 0, sup
x

∫
R+

||P1f
Ft−δ
t (x)||2dt <∞.

(H6) Il existe un réel r, 0 < r < 1, tel que

(a)
Ta2r+1

T

log T
→∞, lorsque T →∞.

(b)
bT
arT
→ 0, lorsque T →∞.

Pour donner l’expression de l’erreur quadratique moyenne intégrée (MISE) de

l’estimateur f̂Th, considérons la décomposition de R2 en sous-espaces {|y − z| ≤ aαT}
et {|y − z| > aαT}, où α > 1.

Lemme 3.2.1. Sous les hypothèses (H1), (H2) et (H3)(c,d), l’erreur quadratique

moyenne intégrée (MISE) de l’estimateur f̂Th est donné par :

MISE(f̂Th(x)) = 2

∫
K2

{∫
1

T 2hT

∫∫
|y−z|≤aαT

{∫ T

0

[T − u]gu(y, z)du

}
dydz

}
+h2

T

{∫
z2

(
1

2
K ∗K −K

)
(z) dz

∫
f ′′f

}
+o

(
1

T 2hT

∫∫
|y−z|≤aαT

{∫ T

0

[T − u]gu(y, z)du

}
dydz + h2

T

)
.

(3.1)

3.3 Choix du paramètre de lissage

Le paramètre de lissage optimal pour le critère MISE donné dans (3.1) est de la
forme :

hopt =

{ ∫
K2∫

z2
(

1
2
K ∗K −K

)
(z) dz

∫
f ′′f

} 1
3


∫∫
|y−z|≤aαT

{∫ T
0

[T − u]gu(y, z)du
}
dydz

T 2


1
3

.

(3.2)

Ce paramètre dépend des quantités inconnues f et gu. Il est donc impossible de
le calculer en pratique. Pour un résultat réalisable, considérant l’erreur quadratique
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intégrée (ISE), définie par :

ISE(f̂Th(x)) =

∫ [
f̂Th(x)− f(x)

]2

dx

=

∫
f̂ 2
Th(x)dx− 2

∫
f̂Th(x)f(x)dx+

∫
f 2(x)dx.

Minimisant ISE(f̂Th) par rapport à h revient à minimiser :

ISE(f̂Th(x))−
∫
f 2(x)dx =

∫
f̂ 2
Th(x)dx− 2

∫
f̂Th(x)f(x)dx.

À l’aide de l’estimateur de "one-leave-out", le critère de validation croisée approprié
au cas de l’estimation de la densité pour des processus à temps continu construit à
partir des données (Xt)

n
t∈∪nj=1

j 6=i
[Tj−1,Tj ]

est donné par :

CV (h) =

∫
f̂ 2
Th(x)dx− 2

T 2hT

n∑
i=1

n∑
j=1
j 6=i

∫ Ti

Ti−1

∫ Tj

Tj−1

K

(
Xs −Xt

hT

)
dsdt,

où, T0 = 0 et Tj = jδ avec δ =
T

n
et 1 ≤ j ≤ n.

• Le paramètre de lissage sélectionné par cette méthode est donné par :

ĥ = argmin
h∈HT

CV (h).

3.4 Résultats asymptotiques

Proposition 3.4.1. Supposons que les hypothèses (H1)(a) et (H3)(a,b) soient satis-
faites, alors la statistique :

CV (h) =

∫
f̂ 2
Th(x)dx− 2

T 2hT

n∑
i=1

n∑
j=1
j 6=i

∫ Ti

Ti−1

∫ Tj

Tj−1

K

(
Xs −Xt

hT

)
dsdt

est un estimateur asymptotiquement sans biais de MISE(f̂Th)−
∫
f 2.
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Démonstration. Dans ce qui suit posons Γ = ∪ni=1[Ti−1, Ti], Γc est le complémentaire
de Γ dans [0, T ]2. D’une part, sous l’hypothèse (H3)(a), on a :

E[CV (h)] = E

[∫
f̂ 2
Th(x)dx

]
− E

 2

T 2hT

n∑
i=1

n∑
j=1
j 6=i

∫ Ti

Ti−1

∫ Tj

Tj−1

K

(
Xs −Xt

hT

)
dsdt


= E

[∫
f̂ 2
Th(x)dx

]
− E

[
2

T 2hT

∫
Γc
K

(
Xs −Xt

hT

)
dsdt

]
= E

[∫
f̂ 2
Th(x)dx

]
− 2

T 2hT

∫
Γc

[∫∫
K

(
x− y
hT

)
fs,t(x, y)dxdy

]
dsdt

= E

[∫
f̂ 2
Th(x)dx

]
− 2

T 2hT

∫
Γc

[∫∫
K

(
x− y
hT

)
gs,t(x, y)dxdy

]
dsdt

− 2

T 2hT

∫
Γc

[∫∫
K

(
x− y
hT

)
f(x)f(y)dxdy

]
dsdt

= E

[∫
f̂ 2
Th(x)dx

]
− J1 −

2

T 2hT

∫
Γc

[∫∫
K

(
x− y
hT

)
f(x)f(y)dxdy

]
dsdt

= E

[∫
f̂ 2
Th(x)dx

]
− J1 −

(
n− 1

n

)
2

hT

∫∫
K

(
x− y
hT

)
f(x)f(y)dxdy.

En utilisant l’inégalité de Hölder avec
1

p
+

1

q
= 1 et p ∈ ]2,∞[ et en considérant

l’hypothèse (H1)(a), nous obtenons :

|J1| ≤
2

T 2hT

∫
Γc

[∫∫
K

(
x− y
hT

)
|gs,t(x, y)|dxdy

]
dsdt

≤ 2

T 2hT

∫
Γc

[[∫∫
Kq

(
x− y
hT

)
dxdy

] 1
q

||gs,t||Lp(R2)

]
dsdt

≤ 2∆p(Γ)

T 2hT

[∫∫
Kq

(
x− y
hT

)
dxdy

] 1
q
∫

Γc
dsdt.

En effectuant les changement de variable u =
x

hT
et v =

y

hT
, et sous l’hypothèse

(H3)(b) on a :

|J1| ≤
2(n− 1)

n
∆p(Γ)h

2
q
−1

[∫∫
Kq(u− v)dudv

] 1
q

−→ 0, p.s, lorsque h→ 0.

Donc

E[CV (h)] = E

[∫
f̂ 2
Th(x)dx

]
− 2

hT

∫∫
K

(
x− y
hT

)
f(x)f(y)dxdy − o(1).
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D’autre part,

MISE(f̂Th(x))−
∫
f 2(x)dx =

∫
E
[
f̂Th(x)− f(x)

]2

dx−
∫
f 2(x)dx

=

∫
E
[
f̂ 2
Th(x)

]
dx− 2

∫
E
[
f̂Th(x)

]
f(x)dx

=

∫
E
[
f̂ 2
Th(x)

]
dx− 2

∫
E

[
1

ThT

∫ T

0

K

(
x−XT

hT

)
dt

]
f(x)dx

= E

[∫
f̂ 2
Th(x)dx

]
− 2

hT

∫∫
K

(
x− y
hT

)
f(y)f(x) dydx.

Ainsi,

lim
T→∞

E[CV (h)] = MISE(f̂Th(x))−
∫
f 2(x)dx.

Théorème 3.4.1. Sous les hypothèses (H1)(a,b), (H2)(a), (H3)(a,b), (H4), (H5) et

(H6), le paramètre de lissage ĥ est asymptotiquement optimal.

3.4.1 Convergence des paramètres de lissage

Notons que h0, hopt et ĥ les paramètres de lissage minimisant dans l’ensemble

HT := [aT , bT ], ISE(f̂Th), MISE(f̂Th) et CV (h) respectivement. On se présente
dans ce qui suit l’ordre de grandeur de hopt et les vitesses de convergence presque

sûres de h0 vers hopt et ĥ vers hopt sous les hypothèses (H1)(a,c), (H2), (H3)(a,b,c),
(H4)(a,b), (H5) et les hypothèses suivantes :

(H1’) K est Lipschitzienne, i.e. Pour tout (x, y) ∈ R2, il existe une constante d > 0,
tel que |K(x)−K(y)| ≤ d|x− y|.

(H2’) Il existe une fonction aT et un réel 1 < α < 2 tels que,
∫∫
|y−z|<aαT

gu(y, z)dydz >

0.

(H3’) Pour tout δ > 0, il existe un réel m′ > 1, tel que
1

T

∫ T

0

||bt,δ||Lm′dt → D 6= 0,

lorsque T →∞.

(H4’) (a) Pour tout réel 0 < l < 1,
TalT
log T

→∞, lorsque T →∞.
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(b) Il existe un réel 0 < m < 1, tel que
|h′T |T

1
2

h
4−m

2
T (log T )

1
2

<∞, où h′T est la dérivée

de hT .

Après avoir donné la forme de hopt dans l’expression (3.2), la proposition suivante
donne son ordre de grandeur.

Proposition 3.4.2. Supposons que les hypothèses (H1)(a), (H1’), (H2), (H3)(a,c)
et (H2’), soient satisfaites, alors :

hopt =

{
2
∫
K2
∫∞

0

∫
gu(z, z)dzdu∫

z2(1
2
K ∗K −K)(z)dz

∫
f ′′f

} 1
3
{
aαT
T

} 1
3

+ o

(
aαT
T

) 1
3

.

Démonstration. D’après l’expression (3.2), on a :

hopt = C(f,K)


∫∫
|y−z|≤aαT

{∫ T
0

[T − u]gu(y, z)du
}
dydz

T 2


1
3

,

où C(f,K) :=

{ ∫
K2∫

z2
(

1
2
K ∗K −K

)
(z) dz

∫
f ′′f

} 1
3

.

Par un développement de Taylor de gu(., z), nous obtenons :

hopt = C(f,K)

{∫ T

0

[T − u]

T 2

∫ {∫ aαT+z

−aαT+z

gu(z, z) + (y − z)
∂gu(y, z)

∂y
|y=y∗T (z)dy

}
dzdu

} 1
3

,

où y∗T (z) est compris entre y et z.

hopt = C(f,K)

{∫ T

0

[T − u]

T 2

∫ {
2aαTgu(z, z) +

∫ aαT+z

−aαT+z

(y − z)
∂gu(y, z)

∂y
|y=y∗T (z)dy

}
dzdu

} 1
3

= C(f,K)

{
2aαT
T

∫ T

0

[T − u]

T

∫
gu(z, z)dzdu

+

∫ T

0

[T − u]

T 2

∫ {∫ aαT+z

−aαT+z

(y − z)
∂gu(y, z)

∂y
|y=y∗T (z)dy

}
dzdu

} 1
3

.
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Observons que :

∫ T

0

[T − u]

T 2

∫ {∫ aαT+z

−aαT+z

(y − z)
∂gu(y, z)

∂y
|y=y∗T (z)dy

}
dzdu

≤
∫ T

0

[T − u]

T 2

∫ {∫ aαT+z

−aαT+z

|y − z| sup
y

∣∣∣∣∂gu(y, z)∂y

∣∣∣∣ dy
}
dzdu

≤ aαT

∫ T

0

[T − u]

T 2

∫ {
sup
y

∣∣∣∣∂gu(y, z)∂y

∣∣∣∣
{∫ aαT+z

−aαT+z

dy

}
dz

}
du

≤ 2a2α
T

∫ T

0

[T − u]

T 2

∫
sup
y

∣∣∣∣∂gu(y, z)∂y

∣∣∣∣ dzdu
≤ 2a2α

T

T

∫ T

0

[T − u]

T

∫
sup
y

∣∣∣∣∂gu(y, z)∂y

∣∣∣∣ dzdu.
Comme u→

∫
sup
y

∣∣∣∣∂gu(y, z)∂y

∣∣∣∣ dz est intégrable sur ]0,∞[, donc

∫ T

0

[T − u]

T 2

∫ {∫ aαT+z

−aαT+z

(y − z)
∂gu(y, z)

∂y
|y=y∗T (z)dy

}
dzdu = O

(
a2α
T

T

)
. (3.3)

Par ailleurs, nous avons :

∣∣∣∣∫ ∞
0

∫
gu(z, z)dzdu−

∫ T

0

[T − u]

T

∫
gu(z, z)dzdu

∣∣∣∣
=

∣∣∣∣∫ ∞
T

∫
gu(z, z)dzdu+

∫ T

0

u

T

∫
gu(z, z)dzdu

∣∣∣∣
≤

∫ ∞
T

∣∣∣∣∫ gu(z, z)dz

∣∣∣∣ du+

∫ T

0

u

T

∣∣∣∣∫ gu(z, z)dz

∣∣∣∣ du. (3.4)

Par l’intégrabilité de u→
∣∣∣∣∫ gu(z, z)dz

∣∣∣∣ sur ]0,∞[ et l’usage du théorème de conver-

gence dominée de Lebesgue, la borne (3.4) tends vers zéro. Il s’en suit directement
des assertions (3.3) et (3.4), que :

hopt = C(f,K)

{∫ ∞
0

∫
gu(z, z)dzdu

} 1
3
{

2aαT
T

} 1
3

+ o

(
aαT
T

) 1
3

.
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Nous avons besoin des deux lemmes suivants qui présentent des résultats des vi-

tesses de convergence ponctuelle et uniforme de f̂Th pour démontrer nos résultats.

Lemme 3.4.1. Supposons que les hypothèses (H1)(a), (H2)(a), (H4)(a,b), (H3’),
(H5) et (H4’)(a) soient satisfaites, il existe m < 1, tel que, pour tout x ∈ R , on a :

f̂Th(x)− f(x) = O(h2
T ) +Op.s

(√
log T

Th
2− 1

m
T

)
, lorsque T →∞.

Lemme 3.4.2. Supposons que les hypothèses (H1)(a), (H2)(a), (H4)(a,b), (H3’),
(H5) et (H4’)(b) soient satisfaites, il existe m < 1, alors :

sup
x∈R
|f̂Th(x)− f(x)| = O(h2

T ) +Op.s

(√
log T

Th
2− 1

m
T

)
, lorsque T →∞.

Démonstration du lemme 3.4.1

Pour tout x ∈ R,

f̂Th(x)− f(x) =
1

ThT

∫ T

0

K

(
x−Xt

hT

)
− E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt︸ ︷︷ ︸

S1

+
1

ThT

∫ T

0

E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt− f(x)︸ ︷︷ ︸

S2

.

Pour le terme S1 en appliquant le lemme suivant sur les inégalités exponentielles :

Lemme 3.4.3. (De la Peña, V.H. and Giné, E. [6]). Soit (Wn)n≥1 une dif-
férence de martingales par rapport à la σ-algèbre (Fn)n≥1 générée par les variables
aléatoires W1, ...,Wn. Pour tout l ≥ 2 et tout n ≥ 1, tel qu’il existe deux constantes
positives C et dn vérifiant :

E
[
W l
n|Fn−1

]
≤ C l−2l! d2

n p.s,

alors, pour tout ε > 0, nous avons :

P

(∣∣∣∣∣
n∑
i=1

Wi

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ε2

2(Dn + Cε)

)
,
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où Dn =
n∑
i=1

d2
i .

Soit Yi la différence de martingales donnée par :

Yi :=

∫ Ti

Ti−1

K

(
x−Xt

hT

)
− E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt,

notons que pour tout δ > 0, Yi est une différence de martingales par rapport aux σ-
algèbres (Gi−1)1≤i≤n tel que, pour tout t ∈ [Ti−1, Ti], Gi−2 ⊂ Ft−δ ⊂ Gi−1. En utilisant
les inégalités de Jensen et Minkovski, on a :

|E
[
Y l
i |Gi−2

]
| ≤ E

[∣∣∣∣∫ Ti

Ti−1

K

(
x−Xt

hT

)
− E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt

∣∣∣∣l |Gi−2

]

≤
∫ Ti

Ti−1

E

[∣∣∣∣K (x−Xt

hT

)
− E

[
K

(
x−Xt

hT

)
|Ft−δ

]∣∣∣∣l |Gi−2

]
dt

≤
∫ Ti

Ti−1

E [K l

(
x−Xt

hT

)
|Gi−2

] 1
l

+ E

[
E

[
K

(
x−Xt

hT

)
|Ft−δ

]l
|Gi−2

] 1
l

l

dt

≤
∫ Ti

Ti−1

(
E

[
K l

(
x−Xt

hT

)
|Gi−2

] 1
l

+ E

[
E

[
K l

(
x−Xt

hT

)
|Ft−δ

]
|Gi−2

] 1
l

)l

dt

≤
∫ Ti

Ti−1

(
2E

[
K l

(
x−Xt

hT

)
|Gi−2

] 1
l

)l

dt

≤ 2l
∫ Ti

Ti−1

E

[
K l

(
x−XT

hT

)
|Gi−2

]
dt.

En utilisant l’inégalité de Hölder avec
1

m
+

1

m′
= 1 et un changement de variable

z =
x− y
hT

, nous obtenons,

E

[
K l

(
x−Xt

hT

)
|Gi−2

]
=

∫
K l

(
x− y
hT

)
fGi−2(y)dy

≤
(∫

K lm

(
x− y
hT

)
dy

) 1
m

||fGi−2||Lm′

≤ h
1
m
T

(∫
K lm(z)dz

) 1
m

||fGi−2||Lm′

≤ h
1
m
T ||K||

l−1
∞ ||K||Lm||bi−2,δ||Lm′ .
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Donc, ∣∣E [Y l
i |Gi−2

]∣∣ ≤ 2lδh
1
m
T ||K||

l−1
∞ ||K||Lm||bi−2,δ||Lm′ .

Posons C = 2||K||∞, d2
i = 23δh

1
m
T ||K||∞||K||Lm||bi−2,δ||Lm′ , alors∣∣E [Y l

i |Gi−2

]∣∣ ≤ l!C l−2d2
i ,

et

Dn =
n∑
i=2

d2
i

= 23h
1
m
T ||K||∞||K||Lm δ

n∑
i=2

||bi−2,δ||Lm′ .

En approchant
∫ T

0

||bt||Lm′dt par la somme de Riemann δ
n∑
i=2

||bi−2,δ||Lm′ ,

Dn = 23||K||∞||K||LmTh
1
m
T

1

T

∫ T

0

||bt||Lm′dt.

Sous l’hypothèse (H3’), on a

Dn = O(Th
1
m
T ).

En utilisant le lemme 3.4.3, pour tout ε > 0, on a :

P

|S1| > ε

(
log T

Th
2− 1

m
T

) 1
2

 = P

∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣ > εThT

(
log T

Th
2− 1

m
T

) 1
2



= P

∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣ > εTh
1
m
T

(
log T

Th
1
m
T

) 1
2



≤ 2 exp

−
ε2T 2h

2
m
T

(
log T

Th
1
m
T

)
O(Th

1
m
T ) + 2εCTh

1
m
T

(
log T

Th
1
m
T

) 1
2


≤ 2 exp{−ε2O(log T )}

≤ 2T−C
′ε2 . (3.5)



46

CHAPITRE 3. CHOIX OPTIMAL DU PARAMÈTRE DE LISSAGE
DANS L’ESTIMATION DE LA DENSITÉ POUR DES PROCESSUS À

TEMPS CONTINU

Pour un choix approprié de ε et l’usage du lemme de Borel-Cantelli, on a :

S1 = Op.s

(√
log T

Th
2− 1

m
T

)
. (3.6)

Sous l’hypothèse (H5) et la symétrie de K, voir Didi & Louani (2013)[8], on a :

S2 = Op.s

(
T−

1
2

)
+O

(
h2
T

)
. (3.7)

Le lemme s’achève en combinant les résultats (3.6) et (3.7). �

Démonstration du lemme 3.4.2

Considérons l’ensemble BT défini par :

BT := {x : |x| ≤ T r, 0 ≤ r ≤ 1}.

Soit γT une fonction entière non décroissante tendant vers l’infini lorsque T → ∞,
considérons {BT,i}1≤i≤γT une partition de l’ensemble BT définie par :

BT,i = {x : |x− xi| ≤ T rγ−1
T }.

Où (xi)1≤i≤γT est une suite d’éléments de BT . En faisant appel à un calcul de Didi &
Louani [8], nous obtenons

sup
x∈BT

|f̂Th(x)− f(x)| ≤ sup
x∈BT

∣∣∣∣ 1

ThT

∫ T

0

K

(
x−Xt

hT

)
− E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt

∣∣∣∣
+ sup

x∈BT

∣∣∣∣ 1

ThT

∫ T

0

E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt− f(x)

∣∣∣∣
≤ A1 + A2.

Où

A1 = sup
x∈BT

|AT1 (x)| = sup
x∈BT

∣∣∣∣ 1

ThT

∫ T

0

K

(
x−Xt

hT

)
− E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt

∣∣∣∣ ,
et

A2 = sup
x∈BT

|AT2 (x)| = sup
x∈BT

∣∣∣∣ 1

ThT

∫ T

0

E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt− f(x)

∣∣∣∣ .
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Nous avons :

A1 ≤ max
1≤i≤γT

sup
x∈BT,i

∣∣AT1 (x)− AT1 (xi)
∣∣+ max

1≤i≤γT

∣∣AT1 (xi)
∣∣ = I1 + I2.

En utilisant l’hypothèse (H1’), il existe une constante positive d telle que :

∣∣∣∣K (x−Xt

hT

)
−K

(
xi −Xt

hT

)∣∣∣∣ ≤ d

∣∣∣∣x−Xt

hT
− xi −Xt

hT

∣∣∣∣
≤ d

hT
|x− xi|

≤ dT r

hTγT
.

Donc, nous avons :

I1 ≤
1

ThT

n∑
j=1

∫ Tj

Tj−1

{
max

1≤i≤γT
sup

x∈BT∩BT,i

∣∣∣∣K (x−Xt

hT

)
−K

(
xi −Xt

hT

)∣∣∣∣
+ E

[
max

1≤i≤γT
sup

x∈BT∩BT,i

∣∣∣∣K (x−Xt

hT

)
−K

(
xi −Xt

hT

)∣∣∣∣ |Gj−1

]}
dt

≤ 2δn

ThT
× dT r

hTγT
=

2dT r

h2
TγT

.

Prenant γT = T r+2, il en découle que :

I1 = op.s

(√
log T

Th
2− 1

m
T

)
. (3.8)

Pour I2, nous observons que :

max
1≤i≤γT

|AT1 (xi)| = max
1≤i≤γT

∣∣∣∣∣
n∑
j=1

Yj(xi)

∣∣∣∣∣ .
Donc par ailleurs, comme dans (3.5) avec γT = T r+2, nous avons :

P

(
max

1≤i≤γT

1

ThT

∣∣∣∣∣
n∑
j=1

Yj(xi)

∣∣∣∣∣ > ε

√
log T

Th
2− 1

m
T

)
≤ 2T r+2−ε2C ,
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où C est une constante positive. En choisissant un ε approprié et en utilisant le lemme
de Borel-Cantelli, on obtient :

I2 = Op.s

(√
log T

Th
2− 1

m
T

)
. (3.9)

Il résulte alors les assertions (3.8) et (3.9), que :

A1 = Op.s

(√
log T

Th
2− 1

m
T

)
. (3.10)

D’autre part, par un calcul similaire à Didi & Louani [8] et la symétrie de K, nous
avons :

A2 = Op.s

(
T−

1
2

)
+O

(
h2
T

)
. (3.11)

Par conséquent, d’après (3.10) et (3.11) nous obtenons :

sup
x∈BT

|f̂Th(x)− f(x)| = O(h2
T ) +Op.s

(√
log T

Th
2− 1

m
T

)
.

Il reste maintenant à évaluer le terme sup
x∈BcT

|f̂Th(x)−f(x)|, où Bc
T est le complémentaire

de BT dans R. Comme pour l’équation (3.11), il est clair que :

sup
x∈BcT

∣∣∣∣ 1

ThT

∫ T

0

E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt− f(x)

∣∣∣∣ = Op.s

(
T−

1
2

)
+O

(
h2
T

)
.

Il reste à prouver que :√Th
2− 1

m
T

log T

 sup
x∈BcT

∣∣∣∣f̂Th(x)− 1

ThT

∫ T

0

E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt

∣∣∣∣ = 0 p.s.

En effet, nous devons démonter d’une part que l’application T → sup
|x|>T 2r

∣∣∣∣∣ εTThT
n∑
i=1

Yi

∣∣∣∣∣,
où εT =

√
log T

Th
2− 1

m
T

, est uniformément continue, i.e., il existe une constante positive θ,
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tel que :

sup
|x|>T 2r

∣∣∣∣∣ εTThT
n∑
i=1

Yi −
εS
ShT

n′∑
i=1

Y ′i

∣∣∣∣∣ ≤ θ|T − S|,

où S = n′δ, Sj = jδ, Y ′j :=
1

ShT

∫ Sj

Sj−1

K

(
x−Xt

hT

)
− E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt.

Observons que :

sup
|x|>T 2r

∣∣∣∣∣ εTThT
n∑
i=1

Yi −
εS
ShT

n′∑
i=1

Y ′i

∣∣∣∣∣ ≤ sup
|x|>T 2r

|εT f̂Th(x)− εS f̂Sh(x)|

+ sup
|x|>T 2r

|εT f̄Th(x)− εS f̄Sh(x)|

≤ sup
|x|>T 2r

∣∣∣∣∣d(εT f̂Th)

dT

∣∣∣∣∣ |T − S|+ sup
|x|>T 2r

∣∣∣∣d(εT f̄Th)

dT

∣∣∣∣ |T − S|
≤ 2 max

{
sup
|x|>T 2r

∣∣∣∣∣d(εT f̂Th)

dT

∣∣∣∣∣ , sup
|x|>T 2r

∣∣∣∣d(εT f̄Th)

dT

∣∣∣∣
}
|T − S|,

où f̄Th :=
1

ThT

∫ T

0

E

[
K

(
x−Xt

hT

)
|Ft−δ

]
dt. Par un calcul similaire à Didi & Louani

et sous les conditions (H1)(a), (H1’) et (H4’)(b), il en résulte que :

sup
|x|>T 2r

∣∣∣∣∣ εTThT
n∑
i=1

Yi −
εS
ShT

n′∑
i=1

Y ′i

∣∣∣∣∣ ≤ max

{
||K||∞

(Th
1
m
T log T )

1
2

[
3

2
+

1

2 log T

]
,

|h′T |(Th2− 1
m )

1
2

h2
T (log T )

1
2

[2|K|∞ + 2V |K ′|∞]

}
|T − S|.

Voir Didi & Louani [8] pour plus de détails.
D’autre part, en utilisant le lemme 3.4.3, nous avons que :

P

(∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣ > ThT εT ε0

)
≤ 2

T ε
2
0

.

Ce qui achève la démonstration du lemme. �

Théorème 3.4.2. Sous les hypothèses (H1)(a,c), (H1’), (H2), (H3)(a,b,c), (H2’),
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(H4)(a,b), (H3’), (H5) et (H4’), il existe q < 1 et m < 1, tels que :

h0 − hopt = O

(
aαT
T

)min{ 2
3q
− 2

3
, 1
3
}

+Op.s


√√√√√ log T(

T
1
m
−1a

α(4− 1
m

)

T

) 1
3

 .

Preuve

Soit L(Z) = −ZK ′(Z). Notons que L est un noyau qui satisfait les mêmes hypothèses

que K. Soit f̃Th, ĝTh et g̃Th les estimateurs à noyaux de f définis par :

f̃Th(x) =
1

ThT

∫ T

0

K ∗ K
(
x−Xt

hT

)
dt, ĝTh(x) =

1

ThT

∫ T

0

L

(
x−Xt

hT

)
dt et

g̃Th(x) =
1

ThT

∫ T

0

L ∗ L
(
x−Xt

hT

)
dt.

En posant :

ISE(f̂Th(x)) = MISE(f̂Th(x)) +Dh(x),

et en dérivant par rapport à hT ,

ISE ′(f̂Th(x)) = MISE ′(f̂Th(x)) +D′h(x)

ISE ′(f̂Th0(x)) =
{
MISE ′(f̂Th0(x))−MISE ′(f̂Thopt(x))

}
+D′h0(x)

ISE ′(f̂Th0(x)) = (h0 − hopt)MISE ′′(f̂Th∗(x)) +D′h0(x),

où h∗ est compris entre h0 et hopt. Comme h0 est le paramètre de lissage qui minimise

le critère ISE(f̂Th), donc :

ISE ′(f̂Th0(x)) = 0,

par conséquent,

hopt − h0 =
D′h0(x)

MISE ′′(f̂Th∗(x))
.
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D’une part, nous avons, sous les hypothèses (H1)(a,b), (H1’), (H2), (H3)(a,c) et (H2’),
que :

MISE ′′(f̂Th(x)) =

{
8

∫
K2

{∫ ∫ ∞
0

gu(z, z)dzdu

}}
aαT
Th3

T

+ 2

∫
z2(

1

2
K ∗K −K)(z)dz∫

f ′′f + o

({
8

∫
K2

{∫ ∫ ∞
0

gu(z, z)dzdu

}}
aαT
Th3

T

+2

∫
z2(

1

2
K ∗K −K)(z)dz

∫
f ′′f

)
.

(3.12)
D’autre part,

Dh(x) = ISE(f̂Th(x))−MISE(f̂Th(x))

=

∫
f̂ 2
Th(x)dx− 2

∫
f̂Th(x)f(x)dx− E

[∫
f̂ 2
Th(x)dx

]
+ 2E

[∫
f̂Th(x)f(x)dx

]
=

∫
f̂ 2
Th(x)dx+ 2

∫ [
E
[
f̂Th(x)

]
− f̂Th(x)

]
f(x)dx− E

[∫
f̂ 2
Th(x)dx

]
=

1

T 2h2
T

∫ ∫ T

0

∫ T

0

K

(
x−Xt

hT

)
K

(
x−Xs

hT

)
dtdsdx+

2

hT

∫ [∫
K

(
x− y
hT

)
f(y)dy

− 1

T

∫
K

(
x−Xt

hT

)
dt

]
f(x)dx− 1

T 2h2
T

∫ ∫ T

0

∫ T

0

[∫∫
K

(
x− y
hT

)
K

(
x− z
hT

)
ft,s(y, z)dydz] dtdsdx.

En utilisant le théorème de Fubini et un changement de variables, nous obtenons

Dh(x) =
1

T 2hT

∫ T

0

∫ T

0

K ∗K
(
Xt −Xs

hT

)
dtds− 2

hT

∫ [
1

T

∫ T

0

K

(
x−Xt

hT

)
dt

−
∫
K

(
x− y
hT

)
f(y)dy

]
f(x)dx− 1

T 2hT

∫ T

0

∫ T

0

∫∫
K ∗K

(
y − z
hT

)
ft,s(y, z)dydzdtds.
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En dérivant Dh par rapport à hT , il en découle,

D′h(x) = − 1

T 2h2
T

∫ T

0

∫ T

0

K ∗K
(
Xt −Xs

hT

)
dtds+

1

T 2h2
T

∫ T

0

∫ T

0

L ∗ L
(
Xt −Xs

hT

)
dtds

+
2

h2
T

∫ [
1

T

∫ T

0

K

(
x−Xt

hT

)
dt−

∫
K

(
x− y
hT

)
f(y)dy

]
f(x)dx

− 2

h2
T

∫ [
1

T

∫ T

0

L

(
x−Xt

hT

)
dt−

∫
L

(
x− y
hT

)
f(y)dy

]
f(x)dx

+
1

T 2h2
T

∫ T

0

∫ T

0

∫∫
K ∗K

(
y − z
hT

)
ft,s(y, z)dydzdtds

− 1

T 2h2
T

∫ T

0

∫ T

0

∫∫
L ∗ L

(
y − z
hT

)
ft,s(y, z)dydzdtds,

où L ∗ L(Z) = −ZK ′ ∗K ′(Z).

D′h(x) = − 1

ThT

∫ T

0

f̃Th(Xt)dt+
1

ThT

∫ T

0

g̃Th(Xt)dt+
2

hT

∫ [
f̂Th(x)− E

[
f̂Th(x)

]]
f(x)dx

− 2

hT

∫
[g̃Th(x)− E [g̃Th(x)]] f(x)dx+

1

T 2h2
T

∫
Γ

∫∫
K ∗K

(
y − z
hT

)
ft,s(y, z)dydzdtds+

1

T 2h2
T

∫
Γc

∫∫
K ∗K

(
y − z
hT

)
gt,s(y, z)dydzdtds

+
1

T 2h2
T

∫
Γc

∫∫
K ∗K

(
y − z
hT

)
f(y)f(z)dydzdtds− 1

T 2h2
T

∫
Γc

∫∫
L ∗ L

(
y − z
hT

)
ft,s(y, z)dydzdtds−

1

T 2h2
T

∫
Γc

∫∫
L ∗ L

(
y − z
hT

)
gt,s(y, z)dydzdtds

− 1

T 2h2
T

∫
Γc

∫∫
L ∗ L

(
y − z
hT

)
f(y)f(z)dydzdtds.

Par le lemme 3.4.1, un changement de variables Z =
y − z
hT

et un développement de

Taylor, donnent

2

hT

∫ [
f̂Th(x)− E

[
f̂Th(x)

]]
f(x)dx =

2

hT

∫ [
f̂Th(x)− f(x) + f(x)− E

[
f̂Th(x)

]]
f(x)dx

= O(hT ) +Op.s

(√
log T

Th
4− 1

m
T

)
.

De la même manière, nous avons

2

hT

∫
[ĝTh(x)− E [ĝTh(x)]] f(x)dx = O(hT ) +Op.s

(√
log T

Th
4− 1

m
T

)
. (3.13)
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Par ailleurs, en utilisant le théorème de Fubini, un changement de variable Z =
y − z
hT

et les conditions (H1)(a) et (H2)(a), il en ressort que :

1

T 2h2
T

∫
Γc

∫∫
K ∗K

(
y − z
hT

)
f(y)f(z)dydzdtds =

T 2 − nδ2

T 2h2
T

∫∫
K ∗K

(
y − z
hT

)
f(y)f(z)

dydz

=
T 2 − nδ2

T 2hT

∫
f 2(y)dy +O(hT ).

De la même manière,

1

T 2h2
T

∫
Γc

∫∫
L ∗ L

(
y − z
hT

)
f(y)f(z)dydzdtds =

T 2 − nδ2

T 2hT

∫
f 2(y)dy +O(hT ).

(3.14)
Sous les hypothèses (H3)(a,b) et par un calcul de EL HEDA & Louani [10], il s’en
suit que :

1

T 2h2
T

∫
Γc

∫∫
K ∗K

(
y − z
hT

)
gt,s(y, z)dydzdtds = O(h

2
q
−2). (3.15)

De la même manière, nous avons :

1

T 2h2
T

∫
Γc

∫∫
L ∗ L

(
y − z
hT

)
gt,s(y, z)dydzdtds = O(h

2
q
−2). (3.16)

En utilisant les équations (3.13), (3.14), (3.15) et (3.16), nous obtenons :

D′h(x) =
1

ThT

∫ T

0

[
f(Xt)− f̃Th(Xt)

]
dt+

1

ThT

∫ T

0

[
g̃(Xt)− f(Xt)

]
dt

+O (hT )min{ 2
q
−2,1} +Op.s

(√
log T

Th
4− 1

m
T

)
.

En utilisant le lemme 3.4.2, on a :

1

ThT

∫ T

0

[
f(Xt)− f̃Th(Xt)

]
dt ≤ 1

ThT

∫ T

0

sup
t∈[0,T ]

∣∣∣f(Xt)− f̃Th(Xt)
∣∣∣ dt

≤ 1

hT
sup
t

∣∣∣f(Xt)− f̃Th(Xt)
∣∣∣

= O(hT ) +Op.s

(√
log T

Th
4− 1

m
T

)
.
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Par conséquent,

D′h(x) = O (hT )min{ 2
q
−2,1} +Op.s

(√
log T

Th
4− 1

m
T

)
.

Ainsi, la dérivée de Dh par rapport à hT prise en h0 est de la forme :

D′h0(x) = O

(
aαT
T

)min{ 2
3q
− 2

3
, 1
3
}

+Op.s


√√√√√ log T(

T
1
m
−1a

α(4− 1
m

)

T

) 1
3

 , (3.17)

et la dérivée seconde de MISE(f̂Th) par rapport à hT prise en h∗ est donnée par :

MISE ′′(f̂Th∗(x)) =

{
8

∫
K2

{∫ ∫ ∞
0

gu(z, z)dzdu

}}
+ 2

∫
z2(

1

2
K ∗K −K)(z)dz

∫
f ′′f

+o

({
8

∫
K2

{∫ ∫ ∞
0

gu(z, z)dzdu

}}
+ 2

∫
z2(

1

2
K ∗K −K)(z)dz∫

f ′′f

)
.

(3.18)
En combinant les assertions (3.12), (3.17) et (3.18) il s’en suit que :

hopt − h0 = O

(
aαT
T

)min{ 2
3q
− 2

3
, 1
3
}

+Op.s


√√√√√ log T(

T
1
m
−1a

α(4− 1
m

)

T

) 1
3

 . (3.19)

�

Théorème 3.4.3. Sous les hypothèses (H1)(a,c), (H1’), (H2), (H3)(a,b), (H4)(a,b),
(H3’), (H5) et (H4’)(a), il existe q < 1 et m < 1, tels que :

ĥ− hopt = O

(
aαT
T

)min{ 2
3q
− 2

3
, 1
3
}

+Op.s


√√√√√ log T(

T
1
m
−1a

α(4− 1
m

)

T

) 1
3

 .
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Preuve

Soit λh défini par :

λh(x) = CV (h)− ISE(f̂Th(x)) +

∫
f 2(x)dx.

En dérivant λh par rapport à hT , nous obtenons :

CV ′(h) = λ′h(x) + ISE ′(f̂Th(x))

= λ′h(x) +MISE ′(f̂Th(x)) +D′h(x)

CV ′(ĥ) = λ′
ĥ
(x) +

{
MISE ′(f̂T ĥ(x))−MISE ′(f̂Thopt(x))

}
+D′

ĥ
(x)

= λ′
ĥ
(x) +

(
ĥ− hopt

)
MISE ′′(f̂Th∗(x)) +D′

ĥ
(x),

où h∗ est compris entre ĥ et hopt. Comme ĥ est le paramètre de lissage qui minimise
le critère de validation croisée, donc :

CV ′(ĥ) = 0,

il s’en suit que :

hopt − ĥ =
λ′
ĥ
(x) +D′

ĥ
(x)

MISE ′′(f̂Th∗(x))
.

Par ailleurs, le terme λh est donné par :

λh(x) = CV (h)− ISE(f̂Th(x)) +

∫
f(x)2dx

= − 2

T 2hT

∫
Γc
K

(
Xt −Xs

hT

)
dsdt+

2

ThT

∫ ∫ T

0

K

(
x−Xt

hT

)
f(x)dtdx.

En dérivant λh par rapport à hT .

λ′h(x) =
2

T 2h2
T

∫
Γc
K

(
Xt −Xs

hT

)
dsdt− 2

T 2h2
T

∫
Γc
L

(
Xt −Xs

hT

)
dsdt

− 2

Th2
T

∫ ∫ T

0

K

(
x−Xt

hT

)
f(x)dtdx+

2

Th2
T

∫ ∫ T

0

L

(
x−Xt

hT

)
f(x)dtdx.

Observons que pour hT très petit, nous avons :

1

h2
T

K

(
Xt −Xs

hT

)
=

1

h2
T

L

(
Xt −Xs

hT

)
= 0,
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pour t ∈ [Ti−1, Ti], s ∈ [Tj−1, Tj] où 1 ≤ i < j ≤ n à l’exception d’un événement de
probabilité négligeable. Par conséquent,

λ′h(x) = − 2

Th2
T

∫ ∫ T

0

K

(
x−Xt

hT

)
f(x)dtdx+

2

Th2
T

∫ ∫ T

0

L

(
x−Xt

hT

)
f(x)dtdx

=
2

hT

∫ [
f(x)− f̂Th(x)

]
f(x)dx+

2

hT

∫ [
ĝTh(x)− f(x)

]
f(x)dx.

En utilisant le lemme 3.4.1,

λ′h(x) = O(hT ) +Op.s

(√
log T

Th
4− 1

m
T

)
.

Ainsi,

λ′
ĥ
(x) = O

(
aαT
T

) 1
3

+Op.s


√√√√√ log T(

T
1
m
−1a

α(4− 1
m

)

T

) 1
3

 . (3.20)

Le résultat s’obtient en combinant les résultats (3.20), (3.17) et (3.19). �



Conclusion

L’objectif de ce mémoire porte sur le problème de choix du paramètre de lissage
dans l’estimation de la densité.

Dans la première partie nous avons présenté les différentes méthodes de sélection
du paramètre de lissage, les méthodes basée sur l’estimation de la quantité incon-
nue R(f ′′) donnée dans l’expression du paramètre de lissage théorique optimal et les
méthodes reposant sur la validation croisée qui sont des méthodes direct, consistent
à optimiser le critère d’erreur. Ensuite, nous avons présenté le cadre stationnaire
ergodique en temps discret et continu.

Le choix de la fenêtre de lissage dans l’estimation de la densité dans le cas discret
est présenté dans la deuxième partie, nous avons commencé par la méthode d’his-
togramme, nous avons donné sa forme améliorée, son risque quadratique moyen et
nous avons fondé le choix approprié du la fenêtre h. Par la suite, nous nous sommes
intéressés à la méthode du noyau, en examinant les propriétés de l’estimateur plus
précisément le biais, la variance et l’erreur quadratique moyenne. Nous avons établi
des résultats de convergences en moyenne quadratique et presque complète. Tous ces
résultats mettent en évidence le rôle du paramètre de lissage h, en regardant par
exemple l’expression de l’erreur quadratique moyenne, le terme de biais est propor-
tionnelle à h tandis que le terme de variance est inversement proportionnelle à h, ce
qui nous indique que le but est de minimiser le critère d’erreur. Nous avons cherché à
sélectionner ce paramètre dans deux cas (indépendant et alpha-mélange) utilisons la
technique de la validation croisée. Ce choix issu de la méthode de la validation croisée
est asymptotiquement optimal.

La dernière partie est consacrée sur le choix du paramètre de lissage dans l’estima-
tion de la densité pour un processus stationnaire ergodique à temps continu. Le para-
mètre de lissage optimal pour le critèreMISE présente l’inconvénient de dépendance
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des quantités inconnues et son utilisation en pratique qui pose alors problème. De ce
fait, nous avons donné un critère de validation croisée adaptée inspirée de l’estimateur
de "one-leave-out". Enfin nous avons établis quelques propriétés asymptotiques et des
vitesses de convergence presque sur pour le paramètre de lissage.
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