
الشعبیـةالدیمقراطیةالجزائریةالجمـھوریة

العلميوالبحثالعاليالتعلیموزارة

الطـاھـرمـولايد.سعــیـدةجـامعـة

العلومكـلیـة

الآليالإعلامقسم:

v

University of Saïda Dr. Moulay Tahar
Computer Science Department

Elliptic curves cryptography for lightweight
devices in IoT systems

by
LARID Toufik

directed by
Dr. Taleb Fadia

2024

Abstract

The rapid rise of the Internet of Things (IoT) has changed several industries by provid-
ing a network of connected objects that allow for automation, data collection, and work-
flow improvement. However, this extension raises serious security concerns, especially for
lightweight devices with limited processing power and energy resources. This thesis studies
the use of Elliptic Curve Cryptography (ECC) as a secure solution for resource-constrained
IoT devices. ECC provides high security with smaller key sizes and fewer computational
demands than older cryptographic algorithms such as RSA, making it ideal for IoT appli-
cations.

The thesis begins by looking at the principles of IoT, its design, and the security concerns
it faces, particularly the restrictions of device memory, computing power, and energy usage.
It then digs into the mathematical foundations of ECC, giving an in-depth understanding
of the fundamental algebraic structures that provide its cryptographic strength. Various
ECC-based cryptographic systems, including Elliptic Curve Diffie-Hellman (ECDH) and
Elliptic Curve Digital Signature Algorithm (ECDSA), are thoroughly examined, with a
focus on their security and operational efficiency. A comparison of an ECC-based scheme
and RSA is carried out to assess their performance in terms of key generation, encryption
and decryption, signature verification, and energy consumption.

The findings show that ECC is ideal for protecting lightweight IoT devices, provid-
ing a good mix of security and efficiency. This work advances the development of secure
cryptographic algorithms for IoT systems and demonstrates ECC’s ability to optimize se-
curity measures in resource-constrained contexts. The thesis concludes by calling for more
widespread use of ECC in IoT applications to provide strong security standards and pro-
mote the continuous expansion of IoT technologies.

1

Acknowledgements

As I complete this thesis, I would like to take this opportunity to express my sincere
gratitude to all those who have contributed to the completion of this work.

I want to express my profound gratitude to Dr. Fadia TALEB, my thesis advisor, for
her constant support, direction, and inspiration throughout this journey. Her insightful
feedback and expertise were invaluable in shaping this research, and her patience and un-
derstanding helped me to overcome the obstacles this project presented. I consider myself
very fortunate to have worked under her supervision, and I am very grateful for the time
and energy she dedicated to supporting me.

I am deeply grateful to my parents for their everlasting love, support, and encourage-
ment, which have been a constant source of strength for me. Their faith in me and sacrifices
have made this journey possible. I can’t thank them enough for their patience, kindness,
and the numerous ways they’ve helped me during this time. This success would not have
been possible without their vision and unwavering support.

Finally, I’d like to express deep appreciation to everyone who contributed to the com-
pletion of this thesis, whether directly or indirectly. Your support has been important in
helping me accomplish this milestone. This achievement is as much yours as it is mine, and
I am grateful to have had you all by my side.

2

To my beloved Parents.

To the loving memory of my grandmother

Contents

Introduction 9

1 Internet of Things 12
1.1 Introduction . 12
1.2 Definition . 12

1.2.1 Connected Objects . 13
1.3 Historical Evolution . 13
1.4 Fundamental Concepts and components . 14

1.4.1 Sensors . 14
1.4.2 Actuators . 14
1.4.3 Connectivity . 14

1.5 Architecture of IoT . 15
1.5.1 Perception Layer . 15
1.5.2 Network layer . 16
1.5.3 Middleware Layer . 16
1.5.4 Application Layer . 16
1.5.5 Business Layer . 16

1.6 The limitations of IoT . 17
1.6.1 Security . 17
1.6.2 Memory Constraints . 17
1.6.3 Energy Consumption . 18
1.6.4 Limited Processing Power . 18
1.6.5 Bandwidth Limitations . 18

1.7 Security in IoT . 19
1.7.1 Symmetric Encryption . 20
1.7.2 Asymmetric Encryption . 21
1.7.3 Elliptic Curve Cryptography . 21
1.7.4 Hashing . 22

1.8 Conclusion . 24

4

2 Mathematical Background 25
2.1 Introduction . 25
2.2 Elementary algebraic structures . 25

2.2.1 Groups . 25
2.2.2 Rings . 26
2.2.3 Fields . 27
2.2.4 Prime Field . 28
2.2.5 Binary Field . 29

2.3 Elliptic Curves . 29
2.3.1 Composition Law . 31
2.3.2 Cardinality of an Elliptic Curve . 32
2.3.3 Order and Cofactor of Elliptic Curve 33
2.3.4 The Generator Point . 34

2.4 Binary Edwards Curves . 34
2.4.1 Definitions and Properties . 34
2.4.2 Group Law . 35

2.5 Conclusion . 36

3 Cryptographic Schemes 37
3.1 Elliptic Curves Cryptography . 37

3.1.1 ECC Keys . 37
3.1.2 Private Key, Public Key and the Generator Point in ECC 38
3.1.3 Elliptic Curve Discrete Logarithm Problem ECDLP 39

3.2 Almajed et al. ECC Encryption Scheme . 39
3.2.1 CPA and CCA attacks . 40
3.2.2 Key Generation Phase . 41
3.2.3 Encoding and Mapping Phase . 41
3.2.4 Encryption Phase . 43
3.2.5 Decryption Phase . 43
3.2.6 Decoding Phase . 44
3.2.7 Message Integrity and Authenticity 45

3.3 Elliptic Curve Digital Signature Algorithm ECDSA 45
3.4 Rivest-Shamir-Adleman (RSA) . 47

3.4.1 RSA Algorithm . 47
3.4.2 Security Considerations . 49

3.5 Conclusion . 50

4 Comparative Study 51
4.1 Introduction . 51
4.2 Hardware and Software Setup . 51
4.3 Algorithms Implementation . 52

5

4.3.1 RSA Implementation . 52
4.3.2 ECC Implementation . 52

4.4 Performance Metrics . 53
4.5 Memory Usage . 53
4.6 Key Generation . 54
4.7 Encryption and Decryption . 55
4.8 Signature Generation and Signature Verification 58
4.9 Results Interpretation . 59

4.9.1 Key Size and Computational Efficiency 60
4.9.2 Encryption and Decryption . 60
4.9.3 Energy Consumption . 60

4.10 Conclusion . 60

Conclusion 61

6

List of Figures

1.1 Five Layer Architecture [23] . 15
1.2 Security Requirements for IoT [23] . 20
1.3 Lightweight cryptographic for IoT [11] . 23

2.1 Elliptic Curves in R [10] . 30
2.2 Elliptic curve defined over F31 with E : y2 = x3 + x+ 3 and |E| = 41 [5] . . 31
2.3 Group law of an elliptic curve over R. [10] 32

3.1 Repeated mapped points to the elliptic curve using the ASCII table [3] . . . 40
3.2 RSA algorithm structure . 48

7

List of Algorithms

1 Converting a plain text into a set of blocks [3] 42
2 Mapping the blocks to the elliptic curve. [3] 43
3 Converting binary values into plain text [3] 44
4 ECDSA Key Generation [39] . 45
5 ECDSA Signature Algorithm [14] . 46
6 ECDSA Verification Algorithm [14] . 46
7 RSA Key Generation [35] . 47
8 RSA Encryption [33] . 48
9 RSA Decryption [33] . 48
10 RSA Signature Generation [5] . 49
11 RSA Signature Verification [5] . 49

8

List of Tables

4.1 Memory Usage on Raspberry Pi Zero W . 53
4.2 Memory Usage on a PC . 54
4.3 Key generation and execution time on Raspberry Pi Zero W 54
4.4 Key generation and execution time on PC 55
4.5 Key generation and Energy consumption on Raspberry Pi Zero W 55
4.6 Encryption/Decryption and Execution Time on Raspberry Pi Zero W . . . 56
4.7 Encryption/Decryption and Execution Time on PC 56
4.8 Encryption/Decryption and Energy consumption on Raspberry Pi Zero W . 57
4.9 Signature and Execution Time on Raspberry Pi Zero W 58
4.10 Signature and Execution Time on PC . 59
4.11 Signature and Energy consumption on Raspberry Pi Zero W 59

9

Introduction

The Internet of Things (IoT) has quickly emerged as an influential technology, transforming
a variety of industries by connecting billions of objects to the internet. IoT systems provide
unprecedented levels of automation, data collection, and workflow optimization in a variety
of applications, including smart homes and cities, industrial automation, and healthcare.
However, the growth of IoT devices presents substantial security challenges, particularly
given the limited computing and energy resources of lightweight devices common in IoT
networks. Ensuring secure communication in such a context is critical for protecting data
integrity, privacy, and device authenticity.

Cryptography is critical in ensuring the integrity, confidentiality, and authenticity of
data in IoT systems, but typical cryptographic systems developed for powerful servers are
frequently too computationally demanding for IoT devices. This makes it difficult to install
strong security mechanisms like encryption and authentication. Elliptic Curve Cryptogra-
phy (ECC) presents a possible response to these issues by delivering strong security while
requiring less computing and energy than traditional cryptographic methods such as Rivest-
Shamir-Adleman (RSA). ECC’s ability to provide the same level of security with smaller key
sizes makes it ideal for lightweight IoT devices, where resource efficiency is critical. Despite
its benefits, implementing ECC in IoT systems presents challenges, including : hardware
constraints, energy consumption, and the requirement for efficient algorithms that can work
successfully within these constraints.

This thesis explores the use of elliptic curve cryptography in lightweight IoT devices,
focusing on its security properties and operational efficiency. It delves at the mathematical
foundations of ECC, assesses its performance in IoT contexts, and compares it to other
cryptographic algorithms. Furthermore, this work develops on Almajed et al.’s proposed
ECC-based scheme [3], by comparing it to RSA and analyzing the trade-offs involved in
deploying ECC in IoT scenarios. For this purpose, we take into account factors such as key
generation, encryption and decryption processes, signature verification, and energy con-
sumption, in terms of computing efficiency, memory utilization, and energy consumption.
By implementing these cryptographic algorithms on a Raspberry Pi Zero W, an exam-
ple of a lightweight device, this thesis hopes to provide useful insights into the practical
implications of deploying ECC in resource-constrained IoT settings.

10

By investigating these aspects, this study contributes to the development of secure
and efficient cryptographic protocols for IoT systems, paving the way for further ECC
optimizations for edge computing and increased adoption of IoT technologies across various
domains while maintaining robust security standards.

Organization of the thesis

This thesis is structured into four chapters and organized as follows:
The first chapter introduces the Internet of Things (IoT), including its essential con-

cepts, historical evolution, and architecture. It also examines the constraints and security
risks associated with IoT devices, particularly in terms of memory, energy usage, and pro-
cessing capacity. The chapter finishes with an overview of IoT security procedures and how
cryptography might help secure IoT devices.

The second chapter gets into the mathematical foundations, namely the algebraic struc-
tures that enable elliptic curve cryptography (ECC). This chapter covers fundamental sub-
jects such as groups, rings, and fields, with a particular emphasis on elliptic curves and
their use in cryptography applications.

In the third chapter, the thesis delves into several cryptographic algorithms, with a
special emphasis on ECC and RSA. Almajed et al.’s ECC-based encryption [3] method is
examined in detail, with emphasis on its resilience to CPA and CCA attacks. The chapter
also covers the Elliptic Curve Digital Signature Algorithm (ECDSA) and its application to
IoT security.

The fourth chapter compares ECC with RSA. It describes the hardware and software
setup, as well as the performance measurements used to test various cryptographic al-
gorithms on lightweight devices. The chapter examines key generation, encryption and
decryption, and signature verification, with a particular emphasis on energy usage and
computational efficiency.

Finally, the conclusion summarizes the research findings, emphasizing the benefits of
employing ECC in resource-constrained IoT devices and advocating for additional opti-
mizations in cryptographic protocols for IoT systems.

11

Chapter 1

Internet of Things

1.1 Introduction

The internet of things (IoT) is rapidly growing, altering our environment with an ever-
increasing network of connected objects. IoT is changing our lives in a variety of ways, from
smart thermostats that learn our routines to industrial sensors that optimize production
lines. Its significance arises from its potential to automate operations, increase efficiencies,
and collect important information, moving us into a future filled with intelligent systems.
However, this quick growth is not without problems. Security concerns loom big as massive
amounts of data are generated and sent, necessitating strong security measures to protect
privacy and prevent cyberattacks. As the internet of things becomes more integrated into
our lives, resolving these difficulties and developing strong security standards will be critical
to guaranteeing its responsible and long-term growth.

In this chapter, we’ll present the internet of things, some basic concepts of IoT, his
evolution and then the architecture of it, next we will approach the limitations and the
security mechanisms, and lastly we’ll finish with a conclusion.

1.2 Definition

The internet of things, commonly known as IoT, is an emerging technology that has the
potential of changing several industrial sectors. This innovation offers the possibility of
collecting and analyzing massive amounts of data, automating and the ability to perform
tasks without human intervention [34] [27].

Although the precise definition of IoT varies, this diversity can indicate that it is a
complex evolving notion and capable of receiving different forms of instantiation, the term
"Internet of Things" can be considered as a general notion designating a network of inter-
connected smart objects, allowing them to communicate and share information over the
internet [18].

12

It includes the connecting of people, processes, data, and things, which adds value to
the IoT and enhances people’s lives [15]. IoT devices are typically digital and may include
built-in pre-processing mechanisms to mitigate negative effects [2]. The Internet of Things
provides prospects for developing smart services and solutions in fields such as climate
change, precision agriculture, smart health, advanced manufacturing, and smart cities.

IoT devices may include a wide range of objects, like appliances, cars, wearable gadgets,
and industrial equipment; however, the growing use of IoT raises concerns about privacy,
security, and data management [27].

1.2.1 Connected Objects

An object is an independent entity that may communicate with other objects using a
predefined message exchange sequence [13]. It is distinguished by the services it provides as
well as the coordination protocol [22]. These objects can coordinate their resources to meet
the system’s overall goals [38]. In terms of data transfer, IoT objects can send various kinds
of data, including sensory information gathered from their surroundings [25]. The exchange
of data between IoT devices is critical for the creation of new services and applications in
the IoT environment. The term “object” refers to a wide range of products, from simple
household appliances such as thermostats and light bulbs to sophisticated industrial gear
and wearable devices.

1.3 Historical Evolution

The term “Internet of Things” was originally the title of a presentation that Kevin Ashton,
co-founder of the Auto-ID Center at the Massachusetts Institute of Technology (MIT) in
1999 [4]. However, the concept of Internet of Things predates the term itself, as it emerged
as a result of the convergence of various technological trends and the vision of a highly
interconnected world. In the beginning, radio frequency identification (RFID) devices were
the first deployed technology for simple IoT applications, allowing objects to connect with
other objects or a server without human intervention [20]. In the early 2000s, the concept of
IoT gained momentum as wireless communication technologies such as Bluetooth and RFID
became more widely available. The first IoT device, a toaster that could be controlled over
the internet, was developed in 1990. Since then, IoT has grown rapidly, and today, there are
billions of connected devices worldwide, ranging from smart home appliances to industrial
machinery. The development of IoT has been driven by advances in technology, including
the miniaturization of sensors and the increasing availability of wireless communication
networks. The Internet of Things is expected to grow rapidly and have a large economic
impact. It is projected that more IoT devices and sensors will be connected to the Internet,
as well as the emergence of new IoT applications. Gartner estimates that over 8.4 billion
connected devices were in operation globally in 2018, up more than 31% from 2016. By

13

2020, it is estimated that the number would approach 20.8 billion, and the exponential
increase will continue in the future [20].

1.4 Fundamental Concepts and components

The key elements of an IoT system they collect and process data from the real world include
sensors, actuators, connectivity

1.4.1 Sensors

Sensors is a component that detects some type of input from the real world by transforming
an observed physical quantity in a digital quantity. They are a fundamental component
of an IoT system as they can capture any quantifiable quantity, including temperature,
humidity, light, motion, pressure, sound, and so on, the generated data can then processed
by the IoT system. A few examples of the application of sensors in IoT system include :
traffic sensors that provide data to operate traffic lights, leak detectors that can operate
water valves, and image sensors with facial recognition capabilities that can then perform
access control (e.g., via remote door locks) [30].

1.4.2 Actuators

Actuators are the part of the IoT system that take action based on a signal or a command
sent from the control system to produce a mechanical or electrical action. Actuators can
take many forms, based on the use and purpose for which they are intended for. Some
common examples of actuators in IoT systems include : motors, solenoids, servo motors,
valves, relays, Actuated switches [30].

1.4.3 Connectivity

The capacity of objects to communicate with one another over one or more networks, is
referred to as connectivity. The objects are being able on one hand to send data such as
their state or the captured data, and on the other hand receive information such as com-
mands and data. In the context of IoT, Connectivity refers to the capacity to remotely
monitor, operate, and manage numerous objects. Several communication protocols and
technologies, including : Wi-Fi, Bluetooth, Zigbee, cellular networks, LoRa and more, are
used to establish connectivity in IoT systems [1].
Understanding and combining these important principles and components is critical for cre-
ating, implementing, and managing secure IoT systems. The combination of these features
allows the Internet of Things’ full potential to be realized across multiple domains. These
components work together to form a functioning and efficient IoT system that enables the
seamless integration of physical objects with the digital world.

14

1.5 Architecture of IoT

The Internet of Things (IoT), which is now a mix of technologies such as RFID, NFC,
wireless sensors and actuators, ultra-band or 3/4G, IPv6, 6lowPAN, and this requires the
design of an architecture and standards to enable future development.

There are several suggested architectures for IoT such as RAMI 4.0, IIRA, and IoT-A.
Other structures were presented, Despite the effort and researches attempting to create a
standard architecture for IoT, there is yet no universally approved architecture [28]. One
of the most adopted architecture by numerous authors is the five layers architecture.

According to [23], this architecture splits an IoT system as the name suggests into
five layers; perception, network, middleware, application, and business Layers, as shown in
Figure 1.1.

Figure 1.1: Five Layer Architecture [23]

1.5.1 Perception Layer

The perception layer is also known as the recognition layer. The primary function of this
layer is to recognize objects and collect information. This layer consists of a collection
of physical objects or things. It collects data and provides information to the objects.
The layer’s job is to ensure the security of data collection, storage, and transmission to the
network layer. RFID (Radio-Frequency Identification), sensors, cameras, GPS (Global Posi-
tioning System), and other elements are all part of the perception layer, which is determined

15

by the features of each component, such as the protocols or communication technologies
utilized [2].The perception layer is also known as the recognition layer. The primary func-
tion of this layer is to recognize objects and collect information. This layer consists of a
collection of physical objects or things. It collects data and provides information to the
objects. The layer’s job is to ensure the security of data collection, storage, and transmis-
sion to the network layer. RFID (Radio-Frequency Identification), sensors, cameras, GPS
(Global Positioning System), and other elements are all part of the perception layer, which
is determined by the features of each component, such as the protocols or communication
technologies utilized [23].

1.5.2 Network layer

The network layer is the most advanced component of typical IoT architecture. It is consid-
ered to be the brain of the Internet of Things architecture. The network layer is in charge
of transferring and processing information provided by the perception layer. It plays an
important role in processing data linked to IoT management. The network and communica-
tion technologies utilized in this layer, such as wired, wireless, and satellite, are determined
by the perception layer’s strategies. The perception layer is strongly tied to the network
layer because of the communication techniques employed, such as Wi-Fi and Bluetooth [23].

1.5.3 Middleware Layer

The Middleware Layer is often referred to as a processing layer. It is built upon the network
layer. IoT systems run on this layer. It offers an API (Application Programming Interface)
for implementing applications. Furthermore, it offers a variety of services, including data
analysis, data processing, device detection and management, data gathering. The Middle-
ware Layer makes use of conventional protocols such as CoAP, MQTT, XMPP, and HTTP
[23].

1.5.4 Application Layer

The application layer provides an application user interface. The collected and analyzed
data can be presented to an end user using the Application layer [28]. It is in charge of de-
livering and offering numerous applications in a wide range of sectors where IoT technology
can be deployed and applied, including smart homes, smart cities, smart health, and more.
The main purpose of the Application layer is to connect IoT consumers and apps [23].

1.5.5 Business Layer

The business layer manages all aspects of the IoT system, including apps, business models,
and data received from the app layer. The business layer creates IoT applications and helps
to build viable business models for the promotion of IoT-related technologies. Furthermore,

16

this layer should monitor and maintain users’ privacy, which is critical to the internet of
things [23].

1.6 The limitations of IoT

The Internet of Things (IoT) has the potential to bring about significant advancements in
several fields, but its successful implementation faces several limitations that can impact
the efficiency and effectiveness of IoT systems.

1.6.1 Security

Implementing robust security measures in IoT devices is essential yet challenging due to the
computational overhead they need. Encryption, decryption, and other security protocols
can significantly affect the performance of IoT systems. This means that achieving a balance
between security and performance is critical when developing and implementing security
solutions for IoT systems [9].

The vulnerability of IoT stems from its wireless sensor network foundation, making it
more susceptible to unauthorized access and malicious attacks compared to wired networks.
This vulnerability is exacerbated by the direct control IoT has over physical entities, in-
cluding critical systems like health monitoring, traffic control, and inventory management
[21].

Security is the most critical issue that may face IoT development. Providing security
for IoT technology is a huge and real challenge, and failing to address security concerns in
IoT can lead to catastrophic consequences, such as factory shutdowns, vehicle accidents,
incorrect medical treatments, and traffic congestion caused by malicious intrusions [21] [23].

1.6.2 Memory Constraints

IoT devices tend to have low and limited RAM and flash memory compared to traditional
devices, this might affect their capacity to store and retrieve data, and some are unable
to transmit or store data at all. This constraint may limit the ability to run programs or
save historical data locally, which is a major challenge for IoT hardware manufacturers and
software developers to design comprehensive security measures within a low memory. As
they need to leave enough space for security software to defend against security threats [32].

Traditional security algorithms are not memory efficient since traditional systems utilize
large RAM. As a result, because IoT devices are small, security systems could not have
enough memory capacity. Therefore, conventional security approaches cannot be used to
secure IoT systems [23].

17

1.6.3 Energy Consumption

Batteries and other limited sources of energy power a large number of Internet of Things
devices. Improving energy efficiency is essential for increasing battery life and lowering
the frequency of replacements and recharges. Also, developing energy-efficient IoT devices
presents a big problem. Some IoT gadgets use a lot of electricity and aren’t rechargeable.
Therefore, they use low-bandwidth connections to conserve battery life in devices with
limited capacity [32]. Energy supplies are therefore crucial, especially for IoT devices that
are battery-powered.

In addition, due to the intermittent and unpredictable nature of renewable energy
sources such as solar panels, it poses challenges when relying on renewable energy as the
primary source of electricity in IoT networks. Furthermore, factors such as sleep power
consumption, harvesting sensitivity power, and desired sensor measurement rate all have
an impact on IoT device energy usage [19].

1.6.4 Limited Processing Power

Due to compact size and power constraints of IoT devices, they typically rely on low-
power CPUs or microcontrollers with limited computational power. This constraint may
have a significant impact on how they handle activities that need extensive processing or
analysis on their own [21]. For these devices to function effectively, lightweight protocols
are therefore necessary [32].

This constraint can have a wide-ranging impact on IoT applications. For example, in
industrial environments where sensors collect massive volumes of data from machinery and
equipment, local processing is critical for effective monitoring and predictive maintenance.
Such devices are unable to do computing tasks on their own with their limited resources,
and must collaborate with other devices [21].

1.6.5 Bandwidth Limitations

The volume of data flowing between devices and central servers on the Internet of Things
(IoT) might cause a bottleneck. This is especially true for real-time applications, where
delays caused by large data transmissions can be critical. In wireless networks, where
bandwidth is already limited, transmitting only necessary data becomes critical.

Compared to wired networks, wireless connections offer significantly less bandwidth. For
example, mobile devices like smartphones are relatively powerful and generate data quickly,
while small personal area networks like Zigbee (based on the IEEE 802.15.4 standard) use
low-power radios and have a low data rate. On the other hand, applications generate
massive amounts of data, often transmitted through satellites with limited bandwidth.
Furthermore, the growing number of IoT devices connecting to the internet further strains
this limited resource, as each device continuously collects and transmits data. This creates
a significant challenge [23].

18

1.7 Security in IoT

Security requirements in IoT systems encompass safeguarding two critical facets: the con-
fidentiality of data and the authentication of identity. These requisites are underpinned
by five principal tenets in information security, namely data availability, confidentiality,
integrity, authenticity, and authorization. Any compromise within these domains could
precipitate security breaches or vulnerabilities within the IoT ecosystem. Consequently,
each layer of the IoT architecture must adhere to these stringent security standards. As de-
lineated in Figure 1.2, the primary security imperatives for IoT environments are elucidated.
Data availability assumes paramount importance, ensuring unfettered access to secure and
reliable data. To mitigate risks such as denial-of-service (DoS) and distributed-denial of
services (DDoS) attacks, robust data backup mechanisms are imperative. Upholding data
confidentiality mandates employing robust encryption methodologies to forestall unautho-
rized access and disclosure. Similarly, safeguarding data integrity necessitates measures
such as cyclic redundancy checks (CRC) to detect and rectify network errors, thereby for-
tifying against potential cyber threats. Authentication and authorization mechanisms are
pivotal in verifying user and device identities, thereby facilitating access solely to bona fide
IoT entities or services [23].

The growth of IoT technology has connected lots of devices to the internet, raising
security and integration concerns. Security is a significant concern due to the potential
exposure of personal data and the risk of compromising entire IoT systems. Ensuring
confidentiality, integrity, and availability of transmitted data remains a major concern.
Many IoT devices lack sufficient security measures, leaving them vulnerable to attacks [16].

Cryptography is a primary solution to address security concerns. However, selecting
the right encryption algorithm is critical due to resource constraints in IoT systems. While
stronger encryption enhances security, it also increases computational demands and energy
consumption, which is problematic for resource-constrained IoT devices with limited power
and computational capacity, to mitigate these challenges, Lightweight cryptographic tech-
niques have been suggested to overcome the issues of conventional encryption and assesses
device longevity while taking secure data transfer into account in IoT devices [16] [36].

19

Figure 1.2: Security Requirements for IoT [23]

1.7.1 Symmetric Encryption

in symmetric block ciphers. Such ciphers are based on two types of structure: Substitution
Permutation network (SPN) and Feistel [16].

Feistel Structures

The Feistel structure divides a data block into two equal parts and performs rounds for
encryption, with each round containing two distinct operations, one for encrypting the plain
text and one for substitution. The decryption procedure is similar to encryption, except
that the keys are used in reverse order. As one might expect, security is directly related to
the number of rounds, but this increase comes at the cost of higher latency associated with
the implementation. This structure’s downside is slow encryption and decryption, which
makes it unsuitable for low-latency networks. The fundamental advantage of the Feistel

20

structure is that the encryption and decryption procedures use the same software code,
which saves memory. This can be used in battery-powered IoT devices with low average
power. There are numerous Feistel ciphers available, including DES, TEA, Camellia, SEA,
CLEFIACLEFIA, TWINE, LBlock, Piccolo, Blowfish, and HIGHT [16].

Substitution Permutation Network (SPN) Structures

The SPN structure uses a single round function that is applied throughout the whole dat-
ablock. It is based on Shannon’s principle of confusion, which is realized through substi-
tution, and the principle of diffusion, which is implemented by linear transformation. The
security depends on the linear function’s complexity. The decryption method is as simple
as reversing the encryption, and it delivers faster processing than Feistel ciphers. Its key
advantage is low resource implementation, since SPN uses less energy than other structures
to provide the same level of security due to a shorter round of execution. The downside is
the high level of attacks on SP-based algorithms connected to differential and linear crypt-
analysis due to the lack of a key schedule. SPN ciphers include AES, PRESENT, Klein
and Serpent [16].

1.7.2 Asymmetric Encryption

Asymmetric ciphers are less common in IoT but very popular for resourceful devices since
they are more computationally intensive than symmetric algorithms. Such ciphers can also
be used to exchange keys and authenticate IoT devices before encrypting and sending data.
Such algorithms include RSA and ECC. ECC, by design, requires a smaller key size than
RSA to achieve an identical level of security. As security requirements necessitate larger
key sizes, the tendency is to migrate from RSA to ECC, which is a popular choice among
IoT security developers and suggested by Symantec. Furthermore, they are included in
the majority of cryptographic key management systems used by small and medium-sized
organizations, making them appealing to companies. The downside of symmetric ciphers
is that they have a big key size, consume more memory, and execute at a slow speed. It is
a challenge for developers and researchers to improve ECC by lowering memory needs and
computational complexity [16].

1.7.3 Elliptic Curve Cryptography

ECC is an asymmetric cipher that relies on the algebraic structure of elliptic curves over
finite fields. The size of an elliptic curve’s key is equal to the size of the field over which the
curve is defined, thus making it requires less key size and storage than RSA, allowing it to
work faster and be deployed on resource-constrained devices which make it an alternative
for lightweight cryptography [40]. To optimize the use of low-power devices, ECC utilizes
bit-shifting rather than complex multiplication [17].

21

Here are some of the cryptographic schemes based on elliptic curves frequently used in
IoT for lightweight cryptography.

Elliptic Curve Diffie-Hellman

ECDH is a key exchange protocol that enables two parties to establish a shared secret
across an unsecured channel. The shared secret can then be used to encrypt future com-
munications. ECDH is efficient and secure, making it ideal for lightweight IoT devices.

Elliptic Curve Integrated Encryption Scheme

ECIES is an encryption method that combines ECC and symmetric encryption. It ensures
the secrecy, integrity, and validity of encrypted data. ECIES is ideal for IoT applications
where secure data transmission is critical.

Elliptic Curve Digital Signature Algorithm

ECDSA is used for digital signatures, which provide authentication and data integrity. It
is commonly used in IoT devices to secure firmware updates and authenticate messages.
ECDSA provides the same level of security as RSA but with significantly smaller key sizes,
which is beneficial for resource-constrained systems.

In the following chapters, we will dive into a more comprehensive exploration of Elliptic
Curve Cryptography (ECC), explaining its concepts in greater detail, as it is the focus of
this study.

1.7.4 Hashing

Hashing algorithms play an important role in IoT systems because they provide data in-
tegrity and security. In the context of IoT, hashing algorithms are utilized to generate
unique fixed-size hash values from raw data. These hash values can be used for a variety
of applications, including data verification, authentication, and encryption. One important
application of hashing algorithms in IoT systems is to ensure the integrity of data sent be-
tween devices. IoT devices can verify that data packets or messages have not been altered
during transmission by creating hash values for them. This procedure aids in detecting any
illegal changes or tampering with the data. Furthermore, hashing algorithms are utilized
for authentication in Internet of Things systems. Devices can securely authenticate one
another without communicating sensitive data over the network by generating hash values
of sensitive information such as passwords or access tokens. This approach helps to prevent
eavesdropping and unauthorized access to sensitive information [31].

Various hashing algorithms are used in IoT systems to improve security and perfor-
mance. While SHA-256 and MD5 are among the most commonly used, there are other

22

algorithms that can be used in certain contexts or to meet unique issues in IoT environ-
ments. Examples include:

1. SHA-2 family: Includes SHA-256, SHA-384, and SHA-512, which provide higher
security than prior versions such as SHA-1.

2. MD5: Although less secure than modern options, it is nevertheless used in some
legacy systems and for compatibility purposes.

3. Lightweight Cryptography: Designed for resource-constrained IoT devices, in-
cluding hashing methods MurmurHash, CityBlock, and PHOTON [37].

4. Chaotic Sequence-Based Hashing: Uses chaotic sequences to improve resistance
against brute-force and plain-text assaults [6].

5. Similarity hashing: Used to detect malware on IoT devices, such as Lempel-Ziv
Jaccard Distance (LZJD) [29].

6. TLSH (Truncated Locality Sensitive Hashing): A locality-sensitive hashing
algorithm designed for detecting almost identical files [29].

Within the increasingly complex ecosystem of the Internet of Things (IoT), hashing
algorithms play a pivotal role in ensuring the integrity and security of massive volumes
of data traveling between several devices. These algorithms are chosen based on factors
such as security strength, computational complexity, memory requirements, and suitability
for IoT devices’ constraints. They serve as digital sentinels, ensuring the truthfulness
and dependability of communication while protecting sensitive information from malicious
actors [31].

Lightweight
Cryptography

Lightweight
Block Ciphers

Lightweight
Stream Ciphers

Lightweight
Hash Algorithms ECC

Figure 1.3: Lightweight cryptographic for IoT [11]

23

1.8 Conclusion

The internet of things (IoT) is on a trajectory of exponential growth, offering a future filled
with interconnected devices that effortlessly enhance our lives. However, its expansion
is contingent on a fundamental factor: security. Robust encryption and cryptography
algorithms, suited to the resource constraints of many IoT devices, form the foundation of
a secure and resilient ecosystem.

Implementing these algorithms is more than just a question of technical competence; it
is a call to action. Researchers work continuously on lightweight algorithms that provide
strong protection without losing performance. Developers must incorporate these algo-
rithms into the core of their designs while prioritizing secure coding approaches.

The rewards are immense. By emphasizing security and adapting cryptography so-
lutions to the IoT’s specific needs, we can realize the full potential of this revolutionary
technology. We establish a secure environment in which innovation grows, data flows freely
without fear of exploitation, and trust underpins all interactions. The future of IoT is
promising, but it demands a commitment to security. And with ongoing effort, the inter-
connected future of the IoT could grow, strong, and safe against the ever-changing world
of cyber threats.

24

Chapter 2

Mathematical Background

2.1 Introduction

Our reminders will center on the concept of Fields. This fundamental algebra structure
serves as the foundation for the development of elliptic curves used in cryptography. The
group and the ring are two fundamental algebraic objects that serve as the foundation for
Fields. This chapter on mathematical background is mostly derived from [10].

2.2 Elementary algebraic structures

2.2.1 Groups

A group (G,+) is an ordered pair consisting of a set G and a binary operation + on G
satisfying the following properties:

• Closure : ∀a, b ∈ G | a+ b ∈ G.

• Associativity : ∀a, b, c ∈ G | (a+ b) + c = a+ (b+ c).

• Identity : ∃!0 ∈ G : ∀a ∈ G | a+ 0 = 0 + a = a.

• Inverse : ∀a ∈ G, ∃!b ∈ G | a+ b = b+ a = 0.

A final important property can be verified by certain groups also called abelian groups.

• commutativity : ∀a, b ∈ G | a+ b = b+ a

Definition 2.1. Let G be a group. A subgroup H of G is a subset of G containing the
identity and such that :

• ∀x, y ∈ H one has x+ y ∈ H.

• if x ∈ H then also x−1 ∈ H.

25

Definition 2.2. Let G and G′ be two groups with respective laws × and ⊗ and units 0
and 0′.

• A group homomorphism ψ between G and G′ is a map from G to G′ such that
∀x, y ∈ G | ψ(x× y) = ψ(x)⊗ ψ(y).

• The kernel of ψ is ker ψ = x ∈ G | ψ(x) = 0′.

2.2.2 Rings

The ring structure is constructed from an abelian group. To this group we add a second
binary operation, which will be denoted ×. The triplet (G,+,×) must verify all the previous
properties as well as:

• Associativity : ∀a, b, c ∈ G | (a× b)× c = a× (b× c)
• Neutral element : ∃! 1 ∈ G, 1 ̸= 0 | ∀a ∈ G, a× 1 = 1× a = a

• Distributivity : ∀a, b, c ∈ G | a× (b+ c) = a× b+ a× c, (b+ c)× a = b× a+ c× a
As before, certain rings are said to be commutative if they verify:

• Commutative : ∀a, b ∈ G | a× b = b× a

Definition 2.3. Let R and R′ be two rings with the respective operations +,× and ⊕,⊗.
A ring homomorphism ψ is an application from R to R′ such that for all x, y ∈ R

• ψ(x+ y) = ψ(x)⊕ ψ(y)

• ψ(x× y) = ψ(x)⊗ ψ(y)

• ψ(1) = 1

Definition 2.4. Let R be a ring, I is an ideal of R if it is a nonempty subset of R such
that

• I is a subgroup of R with respect to the law +

• ∀x ∈ R ∧ y ∈ I | xy ∈ I ∧ yx ∈ I

The ideal I ⊊ R is prime if for all x, y ∈ R with xy ∈ I one obtains x ∈ I ∨ y ∈ I. The
ideal I ⊊ R is maximal if for any ideal J of R the inclusion I ⊂ J ⇒ J = I ∨ J = R. Two
ideals I and J of R are coprime if I + J = {i+ j | i ∈ I ∧ j ∈ J} is equal to R.

Definition 2.5 (Characteristic). Let R be a ring and ψ the homomorphism defined above.
The kernel of ψ is an ideal of Z generated by a positive integer m. m is then called
characteristic of R.

26

2.2.3 Fields

A field is an algebraic structure built upon a commutative ring. It satisfies one additional
property:

• Inverse : ∀a ∈ G, ∃! b ∈ G | a× b = b× a = 1

characteristic of a field

Definition 2.6. Let K and L be fields. A homomorphism of fields is a ring homomorphism
between K and L.

We remark that a homomorphism of fields is always injective, for it is immediate that
its kernel is reduced to {0}.

Definition 2.7 (Characteristic). Let R be a ring and ψ the homomorphism defined above.
The kernel of ψ is an ideal of Z generated by a positive integer m. m is then called the
characteristic of R.

Proposition 2.1. The characteristic of a field is either zero or equal to a prime number p.

Definition 2.8 (Finite Field). A field F is said to be finite if its cardinality is finite.

Theorem 2.1. For every prime number p and positive integer d, there exists a unique finite
field Fpd defined up to isomorphism.

Theorem 2.2. For every element a ∈ F :

a|F |−1 = 1.

Definition 2.9 (Multiplicative order). The multiplicative order of an element a ̸= 0, 1 in
the finite field F is the smallest integer n such that an = 1.

Theorem 2.3. Let F be a finite field. The group F ∗ is cyclic.

Definition 2.10 (The Frobenius morphism). Let Fpd be a finite field, then we define the
map Ψ as follows:

Ψ =

{
Fpd → Fpd
a 7→ ap

27

Field extension

Cryptography on elliptic curves requires the usage of finite fields with a large cardinality.
Indeed, this cardinality will play a role in the cryptography’s security. There are two instant
methods for increasing the size of finite fields. The first is to enhance the characteristic of
the field and work, modulo a large prime number (p). The second step involves increasing
the dimension d of F as a Z/pZ-vector space. To describe how to construct a finite field
extension, we can begin with the general definition of a field extension:

Definition 2.11. Let K and L be two fields. We say that L is a field extension of K
denoted by L/K if there exists a homomorphism from K to L.

Theorem 2.4. Every finite extension Fpd/Fp is a Galois extension, and the group of auto-
morphisms Gal(Fpd/Fp) is a cyclic group of order d generated by the Frobenius morphism
Ψp.

Definition 2.12 (Trace). The trace of an element a in the finite field Fpd is defined by:

Tr(a) =
∑d

i=1 a
pi

2.2.4 Prime Field

A prime field in algebra is a type of finite (Galois) field not containing proper subfields,
denoted by Fp or GF (p), where p is a given prime number. The field size is determined by
the prime number p. The field has exactly p elements[8].

It consists of a set of integers {0, 1, 2, . . . , p− 1} with two operations:

• Addition: If a, b ∈ Fp , then a + b = r in Fp , where r ∈ [0, p − 1] is the remainder
when the integer a + b is divided by p. This is known as addition modulo p and
written a+ b ≡ r (mod p)[8].

• Multiplication: If a, b ∈ Fp , then ab = s in Fp , where s ∈ [0, p−1] is the remainder
when the integer ab is divided by p. This is known as multiplication modulo p and
written ab ≡ s (mod p)[8].

Theorem 2.5 (prime fields). For every prime p, the set Rp = {0, 1, . . . , p − 1} forms a
field (denoted by Fp) under mod-p addition and multiplication.

Theorem 2.6 (Prime field uniqueness). Every field F with a prime number p of elements
is isomorphic to Fp via the correspondence 1⊕ · · · ⊕ 1 ∈ F↔ i ∈ Fp.

Theorem 2.7 ((Existence of finite fields). For every prime p and positive integer m, there
exists a finite field with pm elements.

Theorem 2.8 (Existence of finite subfields). Every finite field with pm elements has a
subfield with pn elements for each positive integer n that divides m.

28

2.2.5 Binary Field

The finite field F2m is the characteristic 2 finite field containing 2m elements. Although
there is only one characteristic 2 finite field F2m for each power 2m of 2 with m ≥ 1, there
are many ways to represent the elements of F2m .

Here the elements of F2m should be represented by the set of binary polynomials of
degree m− 1 or less:

{am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0 : ai ∈ {0, 1}}

with addition and multiplication defined in terms of an irreducible binary polynomial f(x)
of degree m, known as the reduction polynomial, as follows:

• Addition: If a = am−1x
m−1+ · · ·+a0, b = bm−1x

m−1+ · · ·+b0 ∈ F2m , then a+b = r
in F2m , where r = rm−1x

m−1 + · · ·+ r0 with ri ≡ ai + bi (mod 2).

• Multiplication: If a = am−1x
m−1 + · · ·+ a0, b = bm−1x

m−1 + · · ·+ b0 ∈ F2m , then
ab = s in F2m , where s = sm−1x

m−1 + · · ·+ s0 is the remainder when the polynomial
ab is divided by f(x) with all coefficient arithmetic performed modulo 2.

2.3 Elliptic Curves

The world of elliptic curve theory is vast and multifaceted, encompassing both algebraic
varieties and the intricacies of Weierstrass equations. For our exploration, we’ll adopt an
approach that resonates with the realm of cryptography. In essence, an elliptic curve can
be defined as follows:

Definition 2.13 (Elliptic curves). Let K be a field. An elliptic curve E over K is defined
as a smooth, projective curve over K given by the Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where ai ∈ K and a4 ̸= 0.

If the characteristic of K is different from 2, then we can reduce the equation by making
the substitution y → 1

2(y − a1x− a3), which gives the following equation.

E : y2 = 4x3 + b2x
2 + 2b4x+ b6 (2.2)

where b2 = a21 + 4a4, b4 = 2a4 + a1a3, and b6 = a32 + 4a6.
If the characteristic of K is equal to 2, we can still reduce the equation by making the
following transformation :

x→ a21x+
a3
a1
, y → a31y +

a23 + a21a4
a31

29

Figure 2.1: Elliptic Curves in R [10]

Definition 2.14 (Elliptic curves (Weierstrass short form)). The Weierstrass short form
equation of an elliptic curve E over K is given by :{

E : y2 = x3 + ax+ b if char(K) ̸= 2, 3

E : y + xy = x3 + ax+ b if char(K) = 2

Where a, b are elements of K.

Definition 2.15 (Discriminant). The discriminant of an elliptic curve E over a field K is
defined by:

∆ =

{
−16(4a3 + 27a2) if char(K) ̸= 2, 3

a6 if char(K) = 2

Definition 2.16. An elliptic curve E over a finite field Fq is defined as a smooth, projective
algebraic curve of genus one equipped with a specified point O ∈ E(Fq). It can be described
by a Weierstrass equation of the form:

y2 = x3 + ax2 + bx+ c (2.3)

where a, b, c ∈ Fq and the discriminant ∆ = 4a3 + 27b2 ̸= 0.

30

Figure 2.2: Elliptic curve defined over F31 with E : y2 = x3 + x+ 3 and |E| = 41 [5]

2.3.1 Composition Law

In order to use elliptic curves in cryptographic applications, we define an internal compo-
sition law between points of the elliptic curve in such a way as to construct a group. The
internal composition law on an elliptic curve will be denoted additively because, as we will
see, it is Abelian. Thus, to obtain a group (E,+), the composition law + must satisfy the
conditions recalled in section 2.1, namely in this case:

1. Associativity: ∀P,Q,R ∈ E : (P +Q) +R = P + (Q+R)

2. Identity Element: ∃!O ∈ E : ∀P ∈ E,P +O = O + P

3. Inverse: ∀P ∈ E,∃!Q ∈ E : P +Q = Q+ P = O

4. Commutativity: ∀P,Q ∈ E : P +Q = Q+ P

The construction of such a composition law allowing the definition of an Abelian group
on the elliptic curve E can be approached in various ways. The first approach is geometric.

Figure 2.3 presents the composition law considered constructing a group on the set
of points of curve E, defining the point at infinity O as the neutral element. The second
approach, algebraic in nature, will allow us to verify that the group law defined geometrically
by Figure 2.3 indeed possesses the properties pertaining to the composition laws of Abelian

31

Figure 2.3: Group law of an elliptic curve over R. [10]

groups. To do this, we need to describe algebraically this composition law. For P = (x1, y1)
and Q(x2, y2), two points on curve E, we define P +Q = (x3, y3) as follows:

x3 = λ2 − a− x1 − x2,
y3 = λ(x1 − x3)− y1 − x3

where λ is defined differently if P = Q or P ̸= Q.

λ =

{
y1−y2
x1−x2

if P ̸= ±Q
3x2

1+2ax1−y1
2y1+x1

if P = Q

In the particular case where P = −Q, the line passing through P and Q is parallel to
the y-axis, thus y1 = −y2, and consequently P +Q = O. We have previously seen that to
add two points, there are several cases depending on whether P = Q, P = −Q, or P = O.
Thus, this group law admits different formulas for adding and doubling points on E. The
point at infinity O is a special case to be treated separately. Two essential concepts then
qualify a composition law on E.

2.3.2 Cardinality of an Elliptic Curve

In the case where an elliptic curve E is defined over a finite field, the cardinality of E is
finite. One way to obtain this cardinality is to search exhaustively for all the points of E.

32

For curves defined over a finite field of large order, this method is not feasible, as it would
require considerable computation time.
The Frobenius endomorphism plays an important role in counting the number of points on
an elliptic curve over a finite field. It is defined for any point P = (x, y) of E over the field
Fpd by:

Ψ(P) =

{
(xp

d
, yp

d
) if P ̸= O

O if P = O

From this definition of Frobenius follows the following theorem:

Theorem 2.9 (Hasse-Weil). Let E be an elliptic curve defined over Fpd , then:

|E| = pd + 1− t and |t| ≤ 2
√
pd

where t is the trace of the Frobenius endomorphism.

Proposition 2.2. Let E be an elliptic curve over Fpd and Etw be a twist of E. Then:

|E|+ |Etw| = 2pd + 2

2.3.3 Order and Cofactor of Elliptic Curve

An elliptic curve over a finite field can form a finite cyclic algebraic group that includes all
the curve’s points. In such a group, adding two elliptic curve (EC) points or multiplying
an EC point by an integer produces another EC point in the same group. The order of the
curve is the total number of EC points on it, which includes the "point at infinity" that
results from multiplying a point by zero.

Some curves have a single cyclic group that includes all of their EC points, but others
have multiple non-overlapping cyclic subgroups. In the latter instance, the curve’s points
are separated into h cyclic subgroups, each with order r, so the overall order of the group
is n = h× r. The cofactor is the number of subgroups, represented by h.

The cofactor of an elliptic curve is defined by the formula:

h =
n

r
Where n is the total number of points on the curve, h is the number of non-overlapping

point subgroups, and r is the number of points in each subgroup, including the infinity
point.

Elliptic curve points are arranged into one or more non-overlapping subsets known as
cyclic subgroups. The cofactor, h, denotes the number of these subgroups, whereas the total
number of points across all subgroups equals the curve’s order, n. If the curve contains
only one cyclic subgroup, the cofactor is h = 1. If there are several subgroups, the cofactor
is higher than one. For example, the elliptic curve secp256k1 have a cofactor of 1 and the
elliptic curve Curve25519 have a cofactor of 8[39].

33

2.3.4 The Generator Point

In elliptic curve cryptography (ECC), a particular predefined point on the curve, known as
the generator point G, is used to produce any other point in its subgroup by multiplying
G by an integer within the range [0 . . . r]. The cyclic subgroup’s order, indicated by the
number r, represents the total number of points in that subgroup.

Curves with a cofactor of 1 have just one subgroup, and the order of the curve n (total
points on the curve, including the point at infinity) equals r. Which means that all points
on the curve can be generated by multiplying G by integers in the range [1 . . . n]. This
integer n is known as “order of the curve”.

The order r of a subgroup, determined by the generator point G, determines the total
number of potential private keys for the curve, given by r = n/h, where h is the cofactor.
Cryptographers carefully select elliptic curve parameters (curve equation, generator point,
and cofactor) to ensure a large enough key space for security.

In ECC, the points on the curve form cyclic groups or cyclic subgroups. This means
that that there is a r such that r×G = 0×G = O , and all points in the subgroup can be
formed by multiplying G by integers in the range [1 . . . r].

While elliptic curve subgroups may contain multiple generating points, cryptographers
choose one to produce the full group or a suitable subgroup for optimal performance. Cryp-
tographers prefer subgroups of a prime order r to avoid small-subgroup attacks, because
it decreases security. For curves with a cofactor bigger than one, different base points can
produce distinct subgroups of points on the curve. Careful generator point selection ensures
secure and efficient ECC operations[39].

2.4 Binary Edwards Curves

Binary Edwards Curves (BEC) were introduced by Bernstein[7]. following the work of
Edwards[12] in odd characteristic. The arithmetic of these curves has been improved by
Kim[24] and Koziel[26]. The remainder of the section presents in detail the mathematical
and arithmetic properties specific to this model of elliptic curve.

2.4.1 Definitions and Properties

Definition 2.17. Let K be a field of characteristic 2, and let d1, d2 be two elements of K
such that d1 ̸= 0 and d2 ̸= d21 + d1. We then define the binary Edwards curve Ed1,d2 as the
affine curve defined by:

Ed1,d2 : d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2 (2.4)

From this definition, we observe that the curve is symmetric in x and y. The theorem below
gives an interesting result in the cryptographic application of Binary Edwards Curves.

34

Theorem 2.10 (Non-singular). All binary Edwards curves are non-singular.

An important property of this curve model is its birational equivalence with the Weier-
strass model. This property thus allows transitioning from one model to another, ensuring
compatibility of cryptographic protocols based on Binary Edwards Curves with those based
on the Weierstrass model.

2.4.2 Group Law

The binary Edwards elliptic curve model also admits an internal composition law that
allows for a group structure to be given to the set of points on the elliptic curve Ed1,d2 .
We can then define addition between two points P = (x1, y1) and Q = (x2, y2), giving the
point R = (x3, y3), by:

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x21)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x21)(x2 + y2)
,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y21)(x2 + y2)
.

Setting (x1, y1) = (0, 0) or (x2, y2) = (0, 0), it follows that the point (0, 0) is the neutral
element of this group law. Similarly, we have (x1, y1)+ (1, 1) = (x1+1, y1+1), which gives
us (1, 1) + (1, 1) = (0, 0). Thus, the point (1, 1) is a point of order two.

In the particular case where d1 = d2, we have only one parameter d to define the binary
Edwards curve, and then the condition for t in K is d ̸= t2 + t. The group law formulas
give 2(1, 0) = (1, 1) and 2(0, 1) = (1, 1), so the points (1, 0) and (0, 1) are points of order
4. Thus, regardless of the parameter d of Ed, this subgroup of order 4 will be present, and
therefore, the cardinality of a binary Edwards curve with d1 = d2 will always be divisible
by four. This group law has some interesting properties.

Proposition 2.3. The group law defined by equations 2.16 and 2.17, on the binary Edwards
curve Ed1, d2, satisfies the following properties:

• If (x1, y1) + (x2, y2) = (0, 0), then (x1, y1) = (x2, y2).

• If φ(x1, y1) = φ(x2, y2), then (x1, y1) = (x2, y2).

• φ(y1, x1) = −φ(x1, y1).

• If (x1, y1) + (x2, y2) = (x3, y3), then φ(x1, y1) + φ(x2, y2) = φ(x3, y3)

where (x1, y1), (x2, y2), and (x3, y3) are points on Ed1,d2, and φ is the birational equivalence
mapping between the binary Edwards curve model and the Weierstrass model.

35

Definition 2.18 (Complete Edwards binary curve). Let K be a field of characteristic 2
and let d1 and d2 be two elements of this field such that d1 ̸= 0 and there does not exist
an element t in K satisfying the equation t2 + t = d2, i.e., the trace of d2 is equal to 1. We
can then define the complete Edwards binary curve, given by the affine equation:

Edd1,d2 : d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2. (2.5)

2.5 Conclusion

This chapter established the mathematical foundation required for understanding ellip-
tic curve cryptography (ECC). We started with fundamental algebraic structures, groups,
rings, and fields before delving into the unique qualities of finite fields that make them
suited for cryptography applications. Our discussion focused on elliptic curves, their defi-
nitions, and the group law that allows them to be used in cryptography. We investigated
fundamental ideas such as curve cardinality, the Hasse-Weil theorem, and the roles of curve
order, cofactor, and generator points in ECC implementations, we also investigated Binary
Edwards Curves, which show an approach to elliptic curves in binary fields.

These mathematical foundations are critical to understanding the security and effective-
ness of elliptic curve cryptosystems. The distinct qualities of elliptic curves over finite fields,
particularly their ability to provide robust security with small keys, make them appealing
for modern cryptographic applications, particularly in resource-constrained situations such
as IoT devices. As we progress, these ideas will serve as the foundation for developing
secure and efficient elliptic curve encryption systems, particularly in resource-constrained
situations such as IoT devices.

36

Chapter 3

Cryptographic Schemes

3.1 Elliptic Curves Cryptography

The introduction of elliptic curve cryptography (ECC) in 1985 changed the way we perform
public-key cryptography. Elliptic Curve Cryptography (ECC) is a modern family of public-
key cryptosystems that depends on the algebraic structures of elliptic curves over finite
fields, as well as the difficulty of the Elliptic Curve Discrete Logarithm Problem [5].

ECC implements all the major asymmetric cryptosystem functions, including encryp-
tion, signatures, and key exchange. In this chapter, we will present some cryptosystems
based on elliptic curves. But first, we must understand the fundamental principles of elliptic
curve cryptography.

3.1.1 ECC Keys

The private keys in the ECC are integers (in the range of the curve’s field size). An example
of 256-bit ECC private key (hex encoded, 32 bytes, 64 hex digits) is:

0×51897B64E85C3F714BBA707E867914295A1377A7463A9DAE8EA6A8B914246319

The key generation in ECC cryptography is as easy and as securely producing a random
integer inside a specific range, hence it is extremely quick. Any integer inside the range
represents a valid ECC private key.

The ECC’s public keys are EC points, which are pairs of integer coordinates {x, y} on
a curve. Because of their unique characteristics, EC points can be compressed to a single
coordinate plus one bit (odd or even). Thus, the compressed public key, which corresponds
to a 256-bit ECC private key, is a 257-bit number.

An example of ECC public key (corresponding to the above private key, as hex with
prefix 02 or 03) is:

0×02F54BA86DC1CCB5BED0224D23F01ED87E4A443C47FC690D7797A13D41D2340E1A

37

In this format, the public key actually takes 33 bytes (66 hex digits), which can be
optimized to exactly 257 bits[39].

The choice of elliptic curve impacts the key length, which is typically related to the size
of the underlying field. depending on the curve many different ECC key sizes are possible,
Here are some curves with their corresponding key sizes:

• 192-bit: secp192r1

• 224-bit: secp224k1

• 256-bit: secp256k1, Curve25519

• 384-bit: p384, secp384r1

• 414-bit: Curve41417

• 521-bit: P-521

• 571-bit: sect571k1

3.1.2 Private Key, Public Key and the Generator Point in ECC

In the ECC, when we multiply a fixed EC point G (the generator point) by certain integer
k (k can be considered as private key), we obtain an EC point P (its corresponding public
key). Consequently, in ECC we have :

• Elliptic curve (EC) over finite field Fp

• G : generator point (fixed constant, a base point on the EC)

• k : private key (integer)

• P : public key (point)

Elliptic curve cryptography (ECC) relies heavily on the calculation of P = k×G, where
k is a scalar and G is an elliptic curve base point. This operation, known as elliptic curve
point multiplication, can be completed quickly using well-known algorithms. The ’double-
and-add’ and ’Montgomery ladder’ algorithms are two of the most used for this purpose
[39].

The ’double-and-add’ algorithm is simple and works by scanning the bits of the scalar k.
Each bit doubles the current point and, if the bit is one, adds the point G. This algorithm’s
time complexity is proportional to log2(k), implying that the number of steps required
increases logarithmically with k[10].

The ’Montgomery ladder’ algorithm, on the other hand, is frequently used because of
its resistance to side-channel attacks such as timing and power analysis. This algorithm has

38

a temporal complexity of O(log2(k)), but it executes independently of k, offering consistent
execution time and better security[10].

For 256-bit elliptic curves, which are widely used in ECC, multiplication will take only
a few hundred basic elliptic curve operations. These fundamental operations often include
point addition and point doubling on the curve, making the multiplication process fast and
computationally possible even for large key sizes[39].

3.1.3 Elliptic Curve Discrete Logarithm Problem ECDLP

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is vital for public key cryptog-
raphy, especially elliptic curve cryptography (ECC), which provides strong security with
smaller key sizes. The difficulty of solving ECDLP ensures the security and confidentiality
of digital communications.

The ECDLP can be formally stated as follows: given a point P and a point Q = kP on
an elliptic curve E over a finite field Fq, where k is an integer, the goal is to determine k. The
problem is considered hard due to the lack of efficient algorithms for solving it in polynomial
time. This intractability forms the basis of the security of many cryptographic protocols,
including the Elliptic Curve Diffie-Hellman (ECDH) key exchange and the Elliptic Curve
Digital Signature Algorithm (ECDSA).

In general, when the field size p is n bits, the security level is around n/2. Thus, 256-bit
elliptic curves (where the field size p is 256-bit number) typically provide nearly 128-bit
security strength. To obtain a comparable level of protection with DLP or RSA, you would
need to use several thousands of bits. Due to the usage of smaller numbers, ECC arithmetic
is generally faster than RSA or classic Diffie-Hellman[39].

Indeed, ECDLP is a problem of utmost importance to the whole cryptography scheme.
In this manner, shorter key lengths may be employed without reducing much from the
security sought, due to the complexity derived from the ECDLP equation. For example, in
ECC, a 256-bit key will give the same degree of security as a 3072-bit key with RSA. This
efficiency leads to faster computations and, in turn, less power consumption and storage
requirements, traits especially helpful in constrained environments like mobile devices and
smart cards[5][33].

3.2 Almajed et al. ECC Encryption Scheme

This comparison study focuses on Almajed et al. proposed ECC-based scheme [3], where
they presented a novel secure encryption strategy using ECC to protect data in IoT and
edge computing. The suggested technique is intended to resist a number of encryption
attacks, such as the Chosen Plaintext Attack (CPA) and the Chosen Ciphertext Attack
(CCA), while also ensuring authenticated encryption (AE).

The study concludes that this new approach not only secures data but also provides
effective performance, making it ideal for industrial IoT and urbanization applications where

39

demand for secure services is increasing [3].
The proposed scheme is divided into nine phases, each of which is crucial to assuring the

security and efficiency of data transmission in limited environments such as IoT and edge
computing. The primary phases include key generation, encoding, mapping, encryption,
decryption, and decoding.

3.2.1 CPA and CCA attacks

The encoding phase is critical because it determines how plaintext is converted into numer-
ical values appropriate for encryption. If this phase is not performed securely, plaintexts
may be encoded predictably, leaving the system vulnerable to CPA and CCA.

The CPA occurs when an attacker selects random plain texts and requests the corre-
sponding cipher texts for each text. Thus, the attacker aims to reduce the security of the
scheme by analyzing both the plain text and cipher text. The CCA attack is more powerful
since the adversary can not only select plaintexts to encrypt, but also retrieve the associated
ciphertexts. They can also choose ciphertexts to decrypt and then examine the generated
plaintexts. This gives the attacker further flexibility in the attack and may reveal sensitive
information.

The security issue exists in the encoding procedure, as figure 3.1 illustrates this problem
by displaying how the same letter is encoded using the same value each time. Thus, the
matching ciphertext of the encoded value turns into the same encrypted text value each
time, allowing the adversary to discriminate between the encrypted texts. And as a result,
by evaluating the encrypted texts, the adversary can learn sensitive information about the
plaintext [3].

H E L L O W O R L D

72 69 76 76 79 32 87 79 82 76 68

(1,3) (1,4) (1,7) (1,7) (1,6) (1,8) (1,9) (1,6) (1,2) (1,7) (1,5)

Repeated
ciphertext

ASCII

Mapping
to ECC

Figure 3.1: Repeated mapped points to the elliptic curve using the ASCII table [3]

40

3.2.2 Key Generation Phase

During this step, we’ll set up a secure communication by creating public and private key
pairs for each participant. This operation will also generate a shared group key (gksh),
which will be used to encrypt messages sent within the group.

Shared Group Key Ksh

The authors explain how the proposed approach generates the initial cryptographic param-
eters required to secure communication. This phase is critical since these parameters serve
as the foundation for the encryption and decryption operations, which ensure the scheme’s
security.

For group communication in IoT networks with multiple devices, the approach produces
a shared group key ksh to encrypt communications between group members. The group
key enables secure communication between everyone in the group. The group key is derived
from an initial hash of the device’s ID XORed with a private random key PRK used to
further secure the group key [3].

ksh = H1(id)⊕ PRK

Where, H1 is a hash function applied to the device’s ID to produce a secure, unique
value.

Shared Group Point gksh

The group key ksh is updated whenever a new node joins or leaves the group, ensuring that
new nodes cannot decrypt previous messages sent before they joined the group. As well as
ensuring that nodes leaving the group cannot decrypt future messages. Once the shared
group key ksh is generated, it is used to compute a shared group point gksh on the elliptic
curve:

gksh = ksh ×G
The point gksh is utilized during the encryption and decryption operations. It is a

common point shared by all members of the group and plays an important function in
ensuring communication between the devices. The multiplication of the group key by the
base point G ensures that the resultant shared group point is securely linked to the elliptic
curve parameters. The shared group point is also computed using the updated group key
[3].

3.2.3 Encoding and Mapping Phase

the proposed scheme provides an improved encoding process to overcome the security flaws
by dividing the plaintext into manageable blocks that can be securely processed. The size of

41

each block N is determined by the field size p of the elliptic curve, which is typically a 192-
bit prime number for security. To accommodate the padding bits necessary for mapping,
the block size is calculated using the formula:

N ≤
⌊
p− 8

8

⌋
For a 192-bit prime field, this calculation results in a block size of N ≤ 23, meaning

each block can hold up to 23 characters. The total number of blocks B needed to encode
the entire plaintext message is calculated by dividing the message length M by the block
size N :

B =

⌈
M

N

⌉
This ensures that the plaintext is divided into appropriately sized blocks, with the last

block potentially smaller if the message length is not a perfect multiple of the block size.
Then, after dividing the plaintext into blocks, each block is encoded to prepare it for the
mapping phase, where Each character in a block is converted into its corresponding ASCII
value, which is an 8-bit numerical representation [3]. The algorithm 3.2.3 summarizes the
procedures required in transforming plain text into a group of blocks.

Algorithm 1 Converting a plain text into a set of blocks [3]
Input: The plaintext M and p
Output: Set of blocks

obtain the plaintext M ;
calculate the size of each block;
N ←

⌈
192−8

p

⌉
;

calculate the number of blocks;
B ←

⌈
|M |
N

⌉
;

divide the plaintext into B blocks of size N ;
for i← 1 to B do

for j ← 1 to N do
Sender: obtain the Bi = Bi +ASCII(Cj+((i−1)∗N));

end for
end for
Set of blocks ← the results

To secure the blocks against encryption attacks like Chosen Plaintext Attack (CPA)
and Chosen Ciphertext Attack (CCA), the scheme uses Cipher Block Chaining (CBC). In
CBC, the first block B1 is XORed with an initial vector (InV) [3]:

42

B′
1 = B1 ⊕ InV

The subsequent blocks are XORed with the previous block’s ciphertext:

B′
i = Bi ⊕B′

i−1, for i > 1

This chaining process ensures that identical plaintext blocks will produce different en-
coded outputs, which enhances the security and make them ready to be mapped onto the
elliptic curve to prepare them for encryption, where each encoded block B′

i is treated as a
numerical value xi, which needs to be mapped to a point (xi, yi) on the elliptic curve. The
goal is to find a corresponding yi such that (xi, yi) satisfies the elliptic curve equation. If
no such yi exists for the initial xi, the value of xi is incremented by 1 until a valid yi is
found [3]. The algorithm 2 shows the steps involved in mapping.

Algorithm 2 Mapping the blocks to the elliptic curve. [3]
Input: Block B
Output: Mapped points MP

obtain the decimal value xi of the secured block
xi ← xi × 16
while yi2 ̸≡ xi3 + axi + b (mod p) do

find corresponding yi such that yi2 ≡ xi3 + axi + b (mod p)
xi ← xi + 1

end while
return MP ← (xi, yi)

3.2.4 Encryption Phase

The encrypted point is generated by adding the mapped point (xi, yi) to a shared group
point gksh, which is derived from the shared group key ksh:

Ci = (x′i, y
′
i) = (xi, yi) + gksh

Here, gksh = ksh ·G is a common point shared among the group members. The addition
of the mapped point and the group point is performed using elliptic curve point addition,
which ensures that the ciphertext is securely masked by the shared group key [3].

3.2.5 Decryption Phase

Upon receiving the encrypted message, the recipient first verifies the signature to ensure
the integrity of the message. If the signature is valid, the recipient decrypts the ciphertext
by subtracting the shared group point gksh from the encrypted point:

43

(xi, yi) = (x′i, y
′
i)− gksh

This operation uses the inverse of the point addition performed during encryption. The
result is the original mapped point on the elliptic curve [3].

3.2.6 Decoding Phase

The decrypted points are then converted back into their numerical values, and the CBC
operation is reversed to reconstruct the original plaintext blocks. The inverse XOR oper-
ation is applied using the same initial vector (InV) and the previously decoded ciphertext
blocks:

B1 = B′
1 ⊕ InV

For subsequent blocks:
Bi = B′

i ⊕ Ci−1, for i > 1

Here, Ci−1 is the ciphertext of the previous block, These steps undo the chaining effect
of CBC, restoring the original numerical values of the plaintext blocks. Then each of
these decoded numerical values are converted from its numerical (binary) form into its
corresponding ASCII character, this process is repeated for each block until all values are
converted back into their corresponding characters.

Finally, the individual characters obtained from the decoding process are combined to
reconstruct the original plaintext message. The blocks are concatenated in the order they
were processed, ensuring that the original sequence of characters is maintained. This step,
results in the complete recovery of the plaintext message [3]. Algorithm 3.2.6 shows the
steps required.

Algorithm 3 Converting binary values into plain text [3]
Input: Binary values, B
Output: The plaintext message M

Get the binary values;
for i← 0 to |B| − 1 do

convert each 8 bits into its corresponding ASCII code;
for each N char aggregate to single block;

end for
repeat until finish;
return The message M

44

3.2.7 Message Integrity and Authenticity

To ensure message integrity and authenticity, the encrypted text is signed with the Elliptic
Curve Digital Signature Algorithm (ECDSA), which is commonly used in cryptographic
systems to sign and verify messages. This technique ensures that the recipient may verify
that the communication has not been tampered with and is actually from the legitimate
sender. The process consists of two parts: signing the encrypted message and validating the
signature upon reception. This technique provides good security against usual threats while
remaining efficient enough for employment in constrained situations such as the Internet of
Things [3].

3.3 Elliptic Curve Digital Signature Algorithm ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a public-key cryptographic
algorithm that is widely used for digital signatures. It leverages the mathematical properties
of elliptic curves over finite fields to provide a high level of security with relatively small key
sizes compared to other algorithms such as RSA. ECDSA is employed in various applications
including secure communications, authentication, and integrity verification[39][5].

The following are the procedures that make up the ECDSA process :

Algorithm 4 ECDSA Key Generation [39]
Input: Domain parameters (p, a, b,G, n, h)
Output: Private key d, Public key Q

Choose a random integer d such that 1 ≤ d ≤ n− 1, where n is the order of E(Fp)
Compute Q = dG on the elliptic curve E(Fp)
return d as the private key and Q as the public key

45

Signature Generation

Algorithm 5 ECDSA Signature Algorithm [14]
Input: a private key a, a message m
Output: (r, s) the signature associated with m
H(m)← hash(m)
repeat

repeat
k ← random integer between 1 and n− 1
(x, y)← kP

until x ̸= 0
r ← x mod n
s← k−1(H(m) + ar) mod n

until s ̸= 0

return (r, s)

Signature Verification

Algorithm 6 ECDSA Verification Algorithm [14]
Input: a message m, the signature (r, s), the public key Q
Output: Returns true if the signature is correct, false otherwise
H(m)← hash(m)
u← H(m)s−1 mod n
v ← rs−1 mod n
(x, y)← uP + vQ
if x ̸= r then

return false
end if
return true

ECDSA’s security relies on the difficulty of the Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP). The key sizes in ECDSA are significantly smaller compared to RSA for a
comparable level of security. For instance, a 256-bit key in ECDSA is considered to provide
a security level comparable to a 3072-bit key in RSA.

The Elliptic Curve Digital Signature Algorithm provides a robust, efficient method for
generating and verifying digital signatures. Its use of elliptic curve cryptography offers a
high degree of security with lower computational overhead, making it a preferred choice in
many modern cryptographic applications[39].

46

3.4 Rivest-Shamir-Adleman (RSA)

In this study, we will compare the performance and security features of Elliptic Curve Cryp-
tography (ECC) to RSA. To make this comparison easier, the essential working principles
of the RSA algorithm will be covered in the following sections.

The RSA algorithm was developed by Ron Rivest, Adi Shamir, and Len Adleman in 1977
[35]. is a public-key cryptosystem, one of the oldest widely used for secure data transmission.
It provides a technique through which encryption keys can be securely conveyed over a non-
secure channel between communicating parties without the need to distribute a secret key,
hence overcoming one of the major problems in cryptographic communication[35].

The RSA algorithm is used both for public key encryption and for digital signatures.
Its security is based on the computational difficulty of factoring large integers, which most
would say is infeasible for strong encryption.

To be said in more practical terms, RSA makes it possible for party A to send an
encrypted message to party B without having a prior exchange of secret keys. The message
will be encrypted with the public key of party B, but it can only be decrypted with his
private key; the latter is unknown to anyone else but party B. The other feature also includes
digital signatures: Party A, for instance, signs a message with his or her private key, and
therefore Party B will be able to check the message by use of the public key from Party
A. This kind of double ability is what made RSA so flexible and important in electronic
transmissions[5][33].

3.4.1 RSA Algorithm

Key Generation

The first step in RSA is the generation of a key pair, which involves the following steps[33][35]:

Algorithm 7 RSA Key Generation [35]
Input: Key Size k
Output: Public key (n, e), Private key (n, e, d)

Generate two large random prime numbers p and q of size k/2 bits each
Compute n = p · q
Compute ϕ(n) = (p− 1)(q − 1)
Choose a random integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1
Compute d such that d ≡ e−1 (mod ϕ(n)) using the Extended Euclidean Algorithm.
return (n, e) as the public key and (n, e, d) as the private key

Common choices for e include 3, 17, and 65537, as they balance security and computa-
tional efficiency. The public key consists of the pair (n, e), and the private key consists of
the pair (n, d). The public key can be openly shared, while the private key must remain
confidential[39][35].

47

Encryption

To encrypt a message M using the recipient’s public key (n, e) [33][35]:

Algorithm 8 RSA Encryption [33]
Input: Plaintext message M , Public key (n, e)
Output: Ciphertext c

Convert M to an integer m such that 0 ≤ m < n
Compute c = me mod n
return c

Decryption

To decrypt the ciphertext c using the private key (n, d) [33][35]:

Algorithm 9 RSA Decryption [33]
Input: Ciphertext c, Private key (n, d)
Output: Plaintext message M

Compute m = cd mod n
Convert m to the plaintext message M
return M

Sender Encrypt Decrypt Recipient

(n, e) (n, d)

M C M

Figure 3.2: RSA algorithm structure

Signature Generation

Creating a digital signature involves using the sender’s private key to sign a message. The
process is as follows[5][35] :

48

Algorithm 10 RSA Signature Generation [5]
Input: Message M , Private key (n, d)
Output: Signature S

Compute H(M) using a cryptographic hash function
Compute S = H(M)d mod n
return S

The digital signature S is sent along with the original message M to the recipient.

Signature Verification

The recipient can verify the digital signature using the sender’s public key. The verification
process is as follows[5][35] :

Algorithm 11 RSA Signature Verification [5]
Input: Message M , Signature S, Public key (n, e)
Output: Boolean (true if valid, false otherwise)

Compute H ′(M) using the same hash function used for signature generation
Compute H(M) = Se mod n
if H(M) = H ′(M) then

return true
else

return false
end if

3.4.2 Security Considerations

The RSA algorithm’s security heavily depends on the key length and the secure generation
of prime numbers. Longer keys provide greater security but require more computational
resources for encryption and decryption. Current standards recommend using key lengths
of at least 2048 bits, with 3072 bits or more advised for long-term security, especially in
sensitive applications. The primes p and q must be chosen randomly and independently to
avoid predictable patterns, as insecure prime generation can lead to the modulus n being
susceptible to factorization attacks.

RSA’s security also relies on resistance to various cryptographic attacks. Factorization
attacks exploit the difficulty of factorizing the modulus n. Continuous advancements in
factorization techniques necessitate periodic re-evaluation of key lengths. Timing attacks
can occur when attackers gain information from the time taken to perform cryptographic
operations, countered by implementing constant-time algorithms and blinding techniques.
Chosen ciphertext attacks involve attackers providing selected ciphertexts and analyzing
the decrypted outputs; these can be mitigated by using proper padding schemes[33][35].

49

3.5 Conclusion

In this chapter, we explored the fundamental principles and cryptographic schemes of both
Elliptic Curve Cryptography (ECC) and RSA. We began by discussing the theoretical un-
derpinnings of ECC, its efficient key generation, and its application in various cryptographic
schemes. Particular attention was given to the Almajed et al. ECC encryption scheme,
which addresses security vulnerabilities like Chosen Plaintext Attacks (CPA) and Chosen
Ciphertext Attacks (CCA) through innovative encoding and mapping techniques. ECC’s
strength lies in its ability to provide robust security with smaller key sizes, which translates
into faster computations and reduced resource consumption, which makes it suitable for
modern, resource-constrained environments.

Following that, we looked at the RSA algorithm, explaining the stages involved in key
generation, encryption, decryption, and digital signatures. The RSA algorithm’s security
is based on the difficulty of factorizing large integers computationally, which supports the
security of digital signature and encryption procedures. Even while RSA is still widely used
and trusted, maintaining its security requires adhering to best practices in key management
and implementation.

This chapter established the foundation for understanding the operational mechanics of
ECC and RSA. In the following chapter, we will provide a full comparison of the Almajed
et al.’s proposed ECC-based scheme [3] and the RSA system, analyzing their performance,
security features, and appropriateness for different uses.

50

Chapter 4

Comparative Study

4.1 Introduction

ECC and RSA are two popular public-key cryptosystems. ECC provides comparable secu-
rity to RSA but with smaller key sizes, making it more efficient in contexts with limited
resources, such as mobile IoT systems. Evaluating and comparing various algorithms, es-
pecially on resource-constrained devices such as the Raspberry Pi Zero W, is critical in
determining which gives superior performance and energy efficiency, leading to thesselec-
tion of secure, efficient implementations.

The Raspberry Pi Zero W, with its low processing power, memory, and energy resources,
belongs to a family of devices commonly employed in IoT and embedded systems where
performance is essential. By evaluating how these algorithms function on such a platform,
the study emphasizes their applicability for safe communication in low-power, resource-
constrained conditions, which can help guide decisions in industries such as IoT security
and edge computing.

4.2 Hardware and Software Setup

The Raspberry Pi Zero W was chosen as the test device for analyzing the ECC and RSA
algorithms because of its simple hardware specifications, which are similar to those present
in many low-power, resource-constrained systems. The Raspberry Pi Zero W has a 1 GHz
single-core ARM11 processor, 512 MB of RAM, and integrated wireless networking (Wi-Fi
and Bluetooth).

Raspbian Lite, a lightweight version of the Raspberry Pi OS (based on Debian), was used
in the evaluation. It is specifically built for headless and minimalistic systems. Raspbian
Lite provides a simplified environment with minimum overhead, letting the focus be on the
execution of cryptographic algorithms rather than superfluous system activities consuming
resources.

51

However, to provide a comparison, we also evaluated the algorithms on a more powerful
system: a PC equipped with an Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz, 3 MiB of
L3 cache, and 8 GB of DDR3L SDRAM. The PC ran a modern Linux distribution with
optimized performance characteristics with a kernel version of 6.1.99-1.

The UM25C USB power meter was used to measure energy usage while the ECC and
RSA algorithms were being executed. This device was connected between the Raspberry Pi
Zero W and its power supply, allowing for precise monitoring of energy usage throughout
the testing procedure.

4.3 Algorithms Implementation

The Almajed et al. ECC Encryption Proposed Scheme and RSA algorithms were imple-
mented in Python 3, using its standard libraries as well as the gmpy2 package for efficient
computation of modular exponentiation, an essential function in both cryptosystems.

4.3.1 RSA Implementation

The RSA algorithm generates keys by selecting two large prime numbers and multiplying
them to get the modulus. The public and private keys were generated with Python 3.
The encryption and decryption procedures were carried out using modular exponentiation,
which is critical to RSA’s security and efficiency. To optimize these calculations, the gmpy2
library was used, notably its powmod function. This function efficiently computes the power
of an integer modulo another integer, which enabled for quicker execution.

4.3.2 ECC Implementation

The ECC algorithm used is Almajed et al. Proposed Scheme also implemented using the
Python 3. Key generation required choosing a random private key and producing the
associated public key via elliptic curve point multiplication. The cryptographic procedures
used elliptic curve point arithmetic. ECC’s modular arithmetic requires efficient handling
of large integer operations, hence the gmpy2 library was once again used.

Both algorithms were developed in packages, allowing for easy testing and comparison.
The usage of Python’s standard libraries, together with gmpy2, meant that the implemen-
tations were simple and optimized for the Raspberry Pi Zero W’s low processing resources.
The Python code remained straightforward and manageable, while the gmpy2 library im-
proved cryptographic operations’ efficiency, particularly when dealing with large integers
and modular arithmetic.

52

4.4 Performance Metrics

The ECC and RSA algorithms on the Raspberry Pi Zero W were evaluated on a well-defined
set of parameters to ensure an accurate assessment of their performance. The key sizes used
for RSA were 1024, 2048, 3072, and 7680 bits, representing a range of security levels from
the bare minimum required in modern applications to highly secure settings. The key sizes
assessed for ECC were 192, 224, 256, and 384 bits, which corresponded to identical security
levels as RSA key sizes but with much shorter key lengths, demonstrating ECC’s efficiency
in key management.

Data sizes ranging from one to eight bytes were utilized to evaluate the encryption and
decryption performance of each algorithm. This range of data lengths represents common
small-scale encryption jobs found in IoT devices and other limited situations. By examining
such small data blocks, we can better understand how cryptographic operations affect the
performance of limited-resource devices.

The evaluation metrics covered execution time, memory usage, and energy consumption,
all of which are crucial in resource-constrained contexts. Each algorithm’s key generation,
encryption, decryption, signature generation, and signature verification operations were
timed in seconds to establish their speed. Memory use was measured in bytes to better un-
derstand the memory footprint of these processes, which is especially important for devices
with low RAM. Energy consumption was measured in milliwatt-hours (mWh) using the
UM25C USB power meter, providing information about the algorithms’ power efficiency
throughout each cryptographic operation. The study’s goal was to discover the best effi-
cient method for usage in low-power, limited contexts by comparing these parameters across
various key and data sizes.

4.5 Memory Usage

This section presents the memory required for both algorithms. Tables 4.1 and 4.2 show
the obtained results.

Table 4.1: Memory Usage on Raspberry Pi Zero W
Security
Level

Key size Memory Usage (bytes)
RSA ECC RSA ECC

80 1024 192 16384 1508
112 2048 224 16406 2109
128 3072 256 17537 2889
192 7680 384 22687 6436

53

Table 4.2: Memory Usage on a PC
Security
Level

Key size Memory Usage (bytes)
RSA ECC RSA ECC

80 1024 192 25664 3280
112 2048 224 25648 3280
128 3072 256 25738 3524
192 7680 384 32328 7160

The memory usage of RSA and ECC at various security levels is compared in these
two tables. The data across both tables are consistent, for all security levels, RSA consis-
tently needs a lot significantly more RAM than ECC which is more memory-efficient. The
consistent pattern across both tables indicates that ECC is far more efficient in terms of
memory usage compared to RSA, making it a better choice for applications where memory
resources are limited. In conclusion, ECC is more memory efficient than RSA, using less
memory while preserving the same level of security.

4.6 Key Generation

Key generation is a fundamental component of an algorithm. It is used to generate keys
which require different times in each algorithm. The time and energy required to create keys
varies between RSA and ECC. Table 4.3 highlights the differences between both algorithm’s
execution time.

Table 4.3: Key generation and execution time on Raspberry Pi Zero W

Security
Level

Key size Key Generation
Time (s)

RSA ECC RSA ECC
80 1024 192 1.098510 0.150403
112 2048 224 12.771519 0.208352
128 3072 256 61.111414 0.276518
192 7680 384 2987.453059 0.675820

In terms of key generation time, RSA is noticeably slower than ECC. For example, at
the 128-bit security level, RSA generates a key in over 61 seconds, whereas ECC does so in
just 0.28 seconds. Key generation time for RSA grows drastically as the security level rises.
ECC’s time increases at a far slower rate, demonstrating its scalability and efficiency.

54

Table 4.4: Key generation and execution time on PC

Security
Level

Key size Key Generation
Time (s)

RSA ECC RSA ECC
80 1024 192 0.034294 0.017103
112 2048 224 0.574876 0.023364
128 3072 256 1.810646 0.030961
192 7680 384 63.412192 0.129966

Here’s the evaluation, but on a PC with more processing power. RSA and ECC key
creation times are significantly less than on the Raspberry Pi. However, the pattern stays
consistent: RSA times increase exponentially with security level, whereas ECC remains
efficient, with the longest key generation time of approximately 0.13 seconds at the 192-bit
level. The PC’s results underscores ECC’s efficiency, as even on a more powerful system,
ECC outperforms RSA in terms of speed.

While the table 4.5 shows the energy consumption of key generation for RSA and ECC
at various security levels, providing information on the efficiency of each algorithm.

Table 4.5: Key generation and Energy consumption on Raspberry Pi Zero W

Security
Level

Key size Energy
consumption (mWh)

RSA ECC RSA ECC
80 1024 192 0.3 0.1
112 2048 224 4.9 0.3
128 3072 256 27.9 0.3
192 7680 384 833.7 0.6

RSA’s energy consumption rise significantly as security levels increase. ECC is sig-
nificantly more energy efficient than RSA. Even at a high security level (192-bit), ECC
consumes only 0.6 mWh, just a tiny percentage of RSA’s consumption at the same level
(833.7 mWh).

The data clearly suggests ECC outperforms RSA in terms of key generation efficiency,
particularly as security demands rise. This efficiency, combined with lower key sizes, makes
ECC an ideal solution for contexts with limited processing power, time, and energy.

4.7 Encryption and Decryption

This section provides a comparison of RSA and ECC in terms of the encryption and decryp-
tion, highlighting the strengths and weaknesses of each algorithm in practical applications.

55

The encryption and decryption timings for RSA and ECC at different security levels are
highlighted in the table 4.6.

Table 4.6: Encryption/Decryption and Execution Time on Raspberry Pi Zero W

Security
Level

Key size Encryption / Decryption (s) Total Time

RSA ECC Remark RSA ECC RSA ECC

80 1024 192 Encryption 0.000300 0.305892 0.013259 0.458244Decryption 0.012959 0.152352

112 2048 224 Encryption 0.000839 0.424339 0.092607 0.632645Decryption 0.091768 0.208306

128 3072 256 Encryption 0.001650 0.660138 0.181830 0.936793Decryption 0.180180 0.276655

192 7680 384 Encryption 0.011106 3.197424 1.786930 4.808451Decryption 1.775824 1.611027

In terms of performance, RSA has remarkably fast encryption times throughout all
security levels, beginning at 0.0003 seconds at the 80-bit level and growing only slightly
to 0.0111 seconds at the 192-bit level. However, RSA’s decryption times are much longer,
ranging from 0.0130 seconds at the 80-bit level to 1.7758 seconds at the 192-bit level,
demonstrating that, while RSA is designed for quick encryption, it is relatively slow in
decryption. On the other hand, ECC has substantially longer encryption periods than
RSA, especially at higher security levels, with encryption taking up to 3.1974 seconds at the
192-bit level. ECC’s decryption time is also longer than RSA’s, but the disparity between
encryption and decryption times is less obvious, suggesting more balanced performance
between the two operations.

Table 4.7: Encryption/Decryption and Execution Time on PC

Security
Level

Key size Encryption / Decryption (s) Total Time

RSA ECC Remark RSA ECC RSA ECC

80 1024 192 Encryption 3.993419e-05 0.039176 6.1893419e-4 0.058917Decryption 0.000579 0.019741

112 2048 224 Encryption 5.257749e-05 0.053570 0.003682 0.079695Decryption 0.003629 0.026125

128 3072 256 Encryption 0.000106 0.070746 0.011026 0.105319Decryption 0.010920 0.034573

192 7680 384 Encryption 0.000269 0.176526 0.118104 0.268639Decryption 0.117835 0.092113

56

The second table 4.7 illustrates the performance of these cryptosystems on a PC, where
encryption and decryption times are greatly decreased due to increased processing power.
ECC remains slower than RSA during encryption. RSA decryption times continue to
outperform those of ECC.

The comparative analysis of energy consumption related to RSA and ECC shows a
considerable increase in energy requirements as security levels rise. as the table 4.8 indicates.

Table 4.8: Encryption/Decryption and Energy consumption on Raspberry Pi Zero W

Security
Level

Key size Encryption / Decryption (mWh) Total Energy

RSA ECC Remark RSA ECC RSA ECC

80 1024 192 Encryption 0.0 0.3 0.1 0.6Decryption 0.1 0.3

112 2048 224 Encryption 0.0 0.3 0.1 0.6Decryption 0.1 0.3

128 3072 256 Encryption 0.0 0.4 0.1 0.8Decryption 0.1 0.4

192 7680 384 Encryption 0.1 1.0 0.8 1.5Decryption 0.7 0.5

The energy consumption results show that RSA can be more energy-efficient at lower
security levels, consuming only 0.1 mWh total for the 80, 112, and 128-bit security lev-
els. However, at a high security level of 192-bit, RSA’s energy usage jumps to 0.8 mWh,
suggesting a significant increase in energy costs as security level increases.

In comparison, ECC constantly consumes more energy than RSA at all security levels.
ECC consumes 0.6 mWh more energy than RSA as shown in table 4.8. This pattern
continues at the 128-bit level, when ECC consumes 0.8 mWh, and at the 192-bit level,
where consumption of energy rises to 1.5 mWh. ECC’s energy use for encryption and
decryption is more balanced than RSA’s, although the overall higher energy usage may be
a disadvantage in energy-sensitive applications.

Overall, the data show that RSA is more effective and demonstrates better energy
efficiency for applications that need quick encryption, but at the cost of longer decryption,
its scalability is limited due to the significant rise at higher security levels, notably for
decryption operations. On the other hand, ECC, while slower overall and less energy-
efficient, provides more consistent efficiency between encryption and decryption, which may
be useful in cases where balanced execution time is important.

57

4.8 Signature Generation and Signature Verification

This section discusses the performance distinctions between ECC and RSA in terms of
digital signature generation and verification. This comparison examines how each algorithm
operates in various cryptographic operations using key parameters such as execution time
and energy efficiency. The following tables illustrate these characteristics, providing a clear
picture of ECC and RSA’s strengths and limitations in the practice of signature-related
tasks.

Table 4.9: Signature and Execution Time on Raspberry Pi Zero W

Security
Level

Key size
Signature

Generation
Time (s)

Signature
Verification
Time (s)

RSA ECC RSA ECC RSA ECC
80 1024 192 0.013063 0.151251 0.000286 0.303269
112 2048 224 0.091786 0.211913 0.000854 0.420587
128 3072 256 0.280127 0.278196 0.001693 0.553496
192 7680 384 2.787939 0.668610 0.069761 1.355559

The table 4.9 compares the signature generation and verification times of RSA and
ECC. At lower security levels (80, 112, and 128 bits), RSA generally outperforms ECC
in terms of signature creation. However, at the level (192 bits), RSA takes much longer
(2.79 seconds) than ECC (0.67 seconds). This shows that, while RSA is more efficient for
producing signatures at lower security levels, ECC scales better as security requirements
increase.

RSA consistently outperforms ECC in signature verification across all security levels,
with verification times of less than 0.07 seconds. In contrast, the verification time of ECC
grows with greater security levels. This suggests that, while ECC performs well in signature
generation, particularly at higher security levels, it is less efficient than RSA in signature
verification, which may limit its appropriateness for applications requiring speedy verifica-
tion.

58

Table 4.10: Signature and Execution Time on PC

Security
Level

Key size
Signature

Generation
Time (s)

Signature
Verification
Time (s)

RSA ECC RSA ECC RSA ECC
80 1024 192 0.000575 0.019357 1.750420e-05 0.033030
112 2048 224 0.003595 0.026945 3.790260e-05 0.043912
128 3072 256 0.011580 0.037491 7.701340e-05 0.059208
192 7680 384 0.104037 0.074392 0.000264 0.146009

The same trend continues, and the table 4.10 compares the signature generation and
verification times for RSA and ECC algorithms at different security levels on a PC. It shows
that RSA is consistently faster than ECC in both signature generation and verification
across all security levels.

Table 4.11: Signature and Energy consumption on Raspberry Pi Zero W

Security
Level

Key size
Signature

Generation
Energy (mWh)

Signature
Verification

Energy (mWh)
RSA ECC RSA ECC RSA ECC

80 1024 192 0.0 0.3 0.0 0.2
112 2048 224 0.1 0.1 0.1 0.4
128 3072 256 0.5 0.3 0.5 0.4
192 7680 384 1.0 0.5 1.7 1.0

The table 4.11 compares energy consumption for RSA and ECC during signature gener-
ation and verification. At lower security levels (80 and 112 bits), both algorithms consume
very little energy, with ECC spending slightly more than RSA in some circumstances. How-
ever, when the level of security improves, so does the energy consumption of both methods,
with RSA demonstrating the greater increase. For example, at the 192-bit security level,
RSA uses 1.0 mWh for signature generation and 1.7 mWh for verification, whereas ECC
uses 0.5 mWh and 1.0 mWh, respectively. This suggests that ECC is more energy-efficient
than RSA at higher security levels, making it a superior option for situations where energy
consumption is an important consideration.

4.9 Results Interpretation

The study conducted on ECC and RSA, shows interesting results that highlight the relative
advantages and disadvantages of these two cryptosystems across a range of performance

59

metrics, especially in resource-constrained situations. The outcomes clearly demonstrate
that ECC performs better than RSA in several of crucial areas, most notably memory use,
key generation time, and energy efficiency. These benefits result from the basic distinctions
between the two algorithms’ modes of operation.

4.9.1 Key Size and Computational Efficiency

ECC uses substantially smaller key sizes than RSA to achieve the same degree of security.
For example, the security of a 3072-bit RSA key is about equal to that of a 256-bit ECC
key. Faster computing times, less memory use, and lower energy consumption are the
outcomes of this smaller key size. When it comes to the key generation process, ECC is
much more efficient than RSA in terms of time and energy required. Which enables more
secure cryptographic operations to be performed with less processing power.

4.9.2 Encryption and Decryption

Because RSA was intended to be simple, it frequently performs faster than ECC when it
comes to encryption, especially at lower security settings. This is explained by the fact that
RSA relies on less complicated arithmetic operations rather than the complex elliptic curve
point arithmetic that ECC requires.

4.9.3 Energy Consumption

The findings show that ECC consumes less energy compared to RSA during key gener-
ation and signature generation processes, making it more suited for low-power systems.
However, during encryption and decryption, RSA uses less energy at lower security levels,
demonstrating its efficiency in specific scenarios. The more sophisticated arithmetic opera-
tions used in elliptic curve cryptography account for ECC’s increased energy usage during
encryption and decoding.

4.10 Conclusion

The comparison analysis of ECC and RSA across several performance metrics reveals ECC’s
advantages in limited situations, particularly in terms of memory utilization, key generation
efficiency, and energy consumption. ECC’s scalability in resource-constrained situations is
partly due to its smaller key sizes and lower consumption of resources, making it particularly
efficient on platforms like the Raspberry Pi Zero W.

ECC’s scalability makes it a better fit for IoT devices, edge computing, and other appli-
cations with constrained resources. While RSA may still be advantageous in certain cases,
notably those requiring quick encryption at low security levels, ECC’s overall performance,

60

particularly in high-security uses, puts it as the more versatile and feasible choice in mod-
ern cryptography. For applications that require the highest levels of security, ECC provides
a distinct benefit. As the desired security level rises, RSA key sizes become impractically
huge, resulting in significant costs in terms of memory usage, computation time, and energy
consumption. However, ECC scales more smoothly, delivering excellent security without
overburdening system resources.

61

Conclusion

The Internet of Things (IoT) is at the cutting edge of technological progress, primed for
revolutionary change. However, achieving this potential is intrinsically related to our ability
to confront the key challenges which come with rapid growth. One of the most difficult
issues is ensuring that the Internet of Things matures into a strong, secure network.

Security emerges as the most pressing worry in the IoT world. The vulnerability of IoT
devices, caused by their wireless nature and direct control over physical entities, highlights
the critical necessity for strong security measures. As previously noted, the implementation
of appropriate security procedures is challenged by the intrinsic limits of IoT devices, such
as memory, processing capacity, and energy consumption.

This thesis has explored the fundamental principles and applications of Elliptic Curve
Cryptography (ECC) in comparison to traditional public-key cryptosystems, particularly
RSA. Through our comprehensive analysis, we have demonstrated the significant advantages
that ECC offers in terms of security, efficiency, and suitability for modern cryptographic
needs in the IoT systems.

Our research has shown that ECC provides comparable levels of security to RSA while
using significantly smaller key sizes. This advantage translates into faster computations,
reduced power consumption, and lower memory requirements — crucial factors in resource-
constrained environments such as IoT applications. The efficiency of ECC makes it par-
ticularly well-suited for the growing demands of secure communications in our increasingly
interconnected world.

We paid special attention to the Almajed et al. ECC encryption scheme, which addresses
vulnerabilities in the plaintext mapping phase and incorporates authenticated encryption.
This innovative approach offers enhanced protection against chosen-plaintext (CPA) and
chosen-ciphertext (CCA) attacks, demonstrating the ongoing evolution and improvement
of ECC-based systems.

While RSA remains a trusted and widely-implemented algorithm, our analysis suggests
that ECC presents a more future-proof solution for many cryptographic applications. As
computational power continues to increase and quantum computing looms on the horizon,
the inherent strength of ECC against known attacks positions it as a robust choice for
long-term security needs.

62

In conclusion, this thesis underscores the importance of ECC in modern cryptography.
Its ability to provide strong security with smaller key sizes and lower computational over-
head makes it an ideal choice for a wide range of applications, from secure messaging to
digital signatures and key exchange protocols. As we move towards an increasingly digital
future, the role of ECC in ensuring the confidentiality, integrity, and authenticity of our
communications will only grow in importance.

Future studies in this field should focus on further optimizing ECC implementations,
exploring its applications in emerging technologies, and continuing to develop novel ECC-
based schemes that can address evolving security challenges. By building on the strong
foundation of ECC, we can work towards creating more secure, efficient, and resilient cryp-
tographic solutions for the IoT ecosystem.

63

Bibliography

[1] Kumar A, Hussain J, and Chun. Iot connectivity considerations. Connecting the
Internet of Things, 2023.

[2] Zulfiqar Ali, Azhar Mahmood, Shaheen Khatoon, Wajdi Alhakami, Syed Sajid Ullah,
Jawaid Iqbal, and Saddam Hussain. A generic internet of things (iot) middleware for
smart city applications. Sustainability, 2022.

[3] Hisham AlMajed and Ahmad AlMogren. A secure and efficient ecc-based scheme for
edge computing and internet of things. Sensors, 20(21), 2020.

[4] K Ashton and al. That ‘internet of things’ thing. RFID journal, 22(7):97–114, 2009.

[5] J.P. Aumasson. Serious Cryptography, 2nd Edition: A Practical Introduction to Mod-
ern Encryption. No Starch Press, 2018.

[6] Ko´sciug B and Bilski P. Energy saving chaotic sequence based encryption, authen-
tication and hashing for m2m communication of iot devices. International Journal of
Electronics and Telecommunications, 2023.

[7] Daniel J. Bernstein, Tanja Lange, and Reza Rezaeian Farashahi. Binary edwards
curves in cryptographic hardware and embedded systems. 10th International Work-
shop, Washington, D.C., USA, page 244–265, 2008.

[8] Daniel RL. Brown. Sec 1: Elliptic curve cryptography. Certicom Research 2, 2009.

[9] Chetan Chauhan, Manoj Kumar Ramaiya, Anand Singh Rajawat, S B Goyal, Chaman
Verma, and Maria Simona Raboaca. Improving iot security using elliptic curve inte-
grated encryption scheme with primary structure-based block chain technology. Pro-
cedia Computer Science, 215:488–498, 2022.

[10] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and
Its Applications. CRC Press, 2005.

64

[11] Sumit Singh Dhanda, Brahmjit Singh, and Poonam Jindal. Lightweight cryptography:
A solution to secure iot. Wireless Personal Communications, 112:1947–1980, 2020.

[12] Harold Edwards. A normal form for elliptic curves. Bulletin of the American Mathe-
matical Society, 44:393–422, 2007.

[13] Mohammad Hammoudeh, Gregory Epiphaniou, Sana Belguith, Devrim Unal, Bamidele
Adebisi, Thar Baker, A. S. M. Kayes, Paul A, and Watters. A service-oriented approach
for sensing in the internet of things: Intelligent transportation systems and privacy use
cases. IEEE Sensors Journal, 2021.

[14] D. Hankerson, A.J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer Professional Computing. Springer New York, 2004.

[15] Cecilie Holländer-Mieritz, Christoffer Johansen, and Helle Pappot. ehealth-mind the
gap. Acta Oncologica, 2020.

[16] Kuzminykh Ievgeniia, Yevdokymenko Maryna, and Sokolov Volodymyr. Encryption
algorithms in iot: Security vs lifetime how long the device will live? 2021.

[17] Ayuso J, Marin L, Jara A, and Skarmeta A. Optimization of public key cryptography
(rsa and ecc) for 16-bits devices basedon 6lowpan. In Proceedings of 1st Int. Work.
Secure. Internet Things, 2010.

[18] B Dorsemaine J, P. Gaulier J, P. Wary, N Kheir, and P. Urien. Internet of things: A
definition & taxonomy. 2015 9th International Conference on Next Generation Mobile
Applications, Services and Technologies, Cambridge, UK, pages 72–77, 2015.

[19] Furqan Jameel, Zheng Chang, and Riku Jantti. Secrecy limits of energy harvesting
iot networks under channel imperfections. 2020 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops), pages
1–6, 2020.

[20] Ding Jie, Nemati Mahyar, Ranaweera Chathurika, and Choi Jinho. Iot connectivity
technologies and applications: A survey. IEEE Access, pages 1–1, 2020.

[21] Yadav Jyoti, Bhatia Anshul, Sangeeta, Jain Eisha, and Goyal Nidhi. Internet of things
(iot): Confronts and applications. International Journal for Research in Applied Sci-
ence & Engineering Technology (IJRASET), 5:1226–1231, 2017.

[22] Jane K, Hart, and Kirk Martinez. Toward an environmental internet of things. Earth
and Space Science, 2015.

[23] Tabassum K, Ibrahim A, and El Rahman S.A. Security issues and challenges in iot.
2019 International Conference on Computer and Information Sciences (ICCIS), 19(2),
2019.

65

[24] Kwang Ho Kim, Chol Ok Lee, and Christophe Negre. Binary edwards curves revisited.
in progress in cryptology. 15th International Conference on Cryptology in India, New
Delhi, India, page 393–408, 2014.

[25] Andreas Korte, Victor Tiberius, and Alexander Brem. Internet of things (iot) tech-
nology research in business and management literature: Results from a co-citation
analysis. Journal of Theoretical and Applied Electronic Commerce Research, 2021.

[26] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. Low-resource and
fast binary edwards curves cryptography. in progress in cryptology - indocrypt 2015.
16th International Conference on Cryptology in India, Bangalore, India, page 347–369,
2015.

[27] Sachin Kumar, Prayag Tiwari, and Mikhail L. Zymbler. Internet of things is a revolu-
tionary approach for future technology enhancement: a review. Journal of Big Data,
2019.

[28] Antão Liliana, Pinto Rui, Reis João Pedro, and Gonçalves Gil. Requirements for testing
and validating the industrial internet of things. 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops, 2018.

[29] Hughes M.B. Similarity hashing of malware on iot devices. 2019.

[30] S Moyer. Iot sensors and actuators. IEEE Internet of Things Magazine, 2(3):10–10,
2019.

[31] Mazieri M.R, Scafuto I.C, and da Costa P.R. Tokenization, blockchain and web 3.0
technologies as research objects in innovation management. International Journal of
Innovation, 2022.

[32] Bello Oladayo, Zeadally Sherali, and Badra Mohammad. Network layer inter-operation
of device-to-device communication technologies in internet of things (iot). Ad Hoc
Networks, 57, 2016.

[33] C. Paar, J. Pelzl, and T. Güneysu. Understanding Cryptography: A Textbook for
Students and Practitioners. Information Security and Cryptography Series. Springer,
2010.

[34] Roheen Qamar and Baqar Ali Zardari. An analysis of the internet of everything.
Mesopotamian journal of Cybersecurity, 2023.

[35] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

66

[36] Kumar S and Kumar D. A survey of lightweight cryptography for power-constrained
iot devices: Security challenges and issues. 2021.

[37] Surendran S, Nassef A, and Beheshti B.D. A survey of cryptographic algorithms for
iot devices. 2018 IEEE Long Island Systems, Applications and Technology Conference
(LISAT), 2018.

[38] Mahyar Shirvanimoghaddam, Kamyar Shirvanimoghaddam, Mohammad Mahdi Abol-
hasani, Majid Farhangi, Vahid Zahiri Barsari, Hangyue Liu, Mischa Dohler, and Minoo
Naebe. Towards a green and self-powered internet of things using piezoelectric energy
harvesting. IEEE Access, 2019.

[39] Marina Shideroff Svetlin Nakov, Milen Stefanov. Practical Cryptography for Develop-
ers. 2018.

[40] Vahdati Z, Ghasempour A, Salehi M, and Yasin S.Md. Comparison of ecc and rsa
algorithms in iot devices. J Theor. andAppl.Inf. Tech, 97(16):4293–4308, 2019.

67

ملخص

الأشیاءإنترنتضمنالوزنخفیفةالأجھزةتأمینفي)ECC(الإھلیلجیةالمنحنیاتباستخدامالتشفیرتطبیقالدراسةھذهتستكشف
)IoT.(تشفیرتقدیمخلالمنحلاًالإھلیلجیةالمنحنیاتباستخدامالتشفیریوفرالأشیاء،إنترنتبیئاتفيالمتزایدةالأمنیةللمتطلباتنظرًا

لا،RSAوECCأداءمقارنةعلىالدراسةتركز.RSAمثلالتقلیدیةبالخوارزمیاتمقارنةًأقلطاقةواستھلاكحسابیةتكالیفمعقوي
Raspberryجھازباستخدامالطاقةواستھلاكالتشفیر،وفكالتشفیروعملیاتالمفاتیح،تولیدحیثمنسیما Pi Zero W.وتظھر

الأنظمة.ھذهفيوالأداءالأمانتحسینفيإمكانیاتھعلىالضوءتسلیطمعالأشیاء،إنترنتأنظمةفيECCوملاءمةكفاءةالدراسة

،ECCالمتماثل،غیرالتشفیرالأشیاء،إنترنت:المفتاحیةالكلمات RSA

Resume

Cette étude explore l'application de la cryptographie à courbes elliptiques (ECC) pour sécuriser les
dispositifs légers dans l'Internet des objets (IoT). Face aux exigences croissantes en matière de sécurité
dans les environnements IoT, l'ECC offre une solution en proposant un chiffrement robuste avec des coûts
computationnels et énergétiques inférieurs par rapport aux algorithmes traditionnels comme le RSA. La
recherche compare les performances de l'ECC et du RSA, notamment en ce qui concerne la génération de
clés, les processus de chiffrement/déchiffrement, ainsi que la consommation d'énergie, en utilisant un
Raspberry Pi Zero W. L'étude démontre l'efficacité et l'adéquation de l'ECC dans les systèmes IoT, en
soulignant son potentiel à améliorer la sécurité et les performances dans ces environnements.

Mots clés : Internet des objets, Cryptographie asymétrique, ECC, RSA

Abstract

This study explores the application of Elliptic Curve Cryptography (ECC) in securing lightweight devices
within the Internet of Things (IoT). Given the increasing security demands in IoT environments, ECC
offers a solution by providing strong encryption with lower computational and energy costs compared to
traditional algorithms like RSA. The research comparing the performance of ECC and RSA, particularly
in terms of key generation, encryption/decryption processes, and energy consumption, using a Raspberry
Pi Zero W. The study demonstrates the efficiency and suitability of ECC in IoT systems. Highlighting its
potential to improve security and performance in IoT systems.

Keywords: Internet of Things, Asymmetric Cryptography, ECC, RSA

