
Presented by:

SEBIH Asmaa

j

 الجمـهورية الجزائرية الديمقراطية الشعبيـة

 وزارة التعليم العالي والبحث العلمي

Master's thesis

Specialty: Computer modeling of knowledge and reasoning

Software clone

multiplayer perception (MLP)

الجمـهورية الجزائرية الديمقراطية الشعبيـة

وزارة التعليم العالي والبحث العلمي

Master's thesis

Specialty: Computer modeling of knowledge and reasoning
(MICR)

Theme:

clones detection using

multiplayer perception (MLP)

Directed

MOSTEFAI Abdelkader

مـولاي

Promotion 2023 - 2024

Specialty: Computer modeling of knowledge and reasoning

s detection using

multiplayer perception (MLP)

Directed by:

MOSTEFAI Abdelkader

مـولاي . د جـامعـة سعــيـدة

 الطـاهـر

 لعلوماكـليـة

Thanks
I thank the good Almighty Allah, who gave me the strength,

the will and the courage to complete this modest work. i extend

our deepest thanks to Dr. MOSTEFAI Abdelkader for his

supervision, his listening, his elucidations, his advice, his

directives and encouragements that he has poured into us. We

thank Mrs. the jurors for the interest they have shown in this

work by agreeing to be examiners. Thus, i extend my warmest

thanks to all the people who have helped directly or indirectly

through the fruit of their knowledge throughout the duration of

my educational journey. To all the teachers in the computer

science department Simply to all those who deserve our thanks.

Dedication
First of all, I thank my God for everything

I dedicate this modest work to:

The dearest parents in the world, my father and my mother, no

dedication could not my respect, my love and my consideration

for the sacrifices you have made for my education and my good I

thank you for all the support and love you have given me since

my childhood, I wish them a long life and may God protect them

and protect them.

To my dear sister, and my dears, who have always been by my

side and have always supported me throughout these long years

of study.

And I would like to express my sincere thanks to my supervisor

Dr .MOSTEFAI Abdelkader

Summary .

 Data mining techniques play a crucial role in addressing the challenge of software clone detection, with a particular focus on
Multilayer Perceptrons (MLP). Code clones, which are duplicated or similar code segments, can significantly increase the risk of
software bugs and vulnerabilities.

 This investigation aims to develop an MLP-based model designed to automatically identify software clones. These clones can be
indicators of potential flaws, and by analyzing the similarities between code fragments, the proposed model seeks to detect these clones
efficiently. This approach contributes to a more effective strategy for managing and reducing software defects.

 The study contrasts traditional methods of clone detection, such as manual inspection and code similarity analysis, with contemporary
machine learning techniques. It introduces an MLP-based approach to automate the clone detection process, offering a more accurate
and scalable solution for identifying problematic code segments. The model's performance is evaluated using real-world datasets,
showcasing its superiority over traditional methods in terms of precision and efficiency.

 Through this research, the thesis significantly advances the field of software engineering by leveraging advanced neural networks and
data mining techniques to enhance the software clone detection process, ultimately improving the reliability and security of software
systems.

Résumé .

 Les techniques de data mining jouent un rôle crucial dans la résolution du défi de la détection des clones logiciels, en mettant
l'accent sur les Multilayer Perceptrons (MLP). Les clones de code, qui sont des segments de code dupliqués ou similaires, peuvent
considérablement augmenter le risque de bogues logiciels et de vulnérabilités.

 Cette recherche vise à développer un modèle basé sur les MLP conçu pour identifier automatiquement les clones logiciels. Ces clones
peuvent être des indicateurs de failles potentielles, et en analysant les similarités entre les fragments de code, le modèle proposé
cherche à détecter efficacement ces clones. Cette approche contribue à une stratégie plus efficace pour la gestion et la réduction des
défauts logiciels.

 L'étude compare les méthodes traditionnelles de détection des clones, telles que l'inspection manuelle et l'analyse de similarité du
code, avec des techniques contemporaines d'apprentissage automatique. Elle introduit une approche basée sur les MLP pour
automatiser le processus de détection des clones, offrant une solution plus précise et évolutive pour identifier les segments de code
problématiques. Les performances du modèle sont évaluées à l'aide de jeux de données réels, montrant sa supériorité par rapport aux
méthodes traditionnelles en termes de précision et d'efficacité.

 Grâce à cette recherche, la thèse apporte une avancée significative dans le domaine de l'ingénierie logicielle en exploitant les réseaux
neuronaux avancés et les techniques de data mining pour améliorer le processus de détection des clones logiciels, améliorant ainsi la
fiabilité et la sécurité des systèmes logiciels.

#$%&

jEck أن \BIVl\ m_?\Multilayer Perceptrons (MLP .(ZkHت _jkZ اBiBISMت دورًا Z[\]^MB_P `a BcًWBdي اBFLJف اBUVLWخ اKSMاOP ،RP اBC DEFG HIJKLMص @?<
 .KEPرة أو jP]xGBFLP اBcI?_LMت اZd KvC jP KISJ DEFG ،]I^PKSMوث أBvCء وKtuات a` اKSMاRPاBCBUVLWت اBcI?_LMت اI^PKSM[، اLM` ھ` @BSرة @j أHqاء

 >?@ yzB{ ذج~ci Kk~v\ >Mإ �[SMف ھ�ا اZxkMLP BًIzBl?\ RPاKSMت اBCBUVLWا ZkZ[LM yc�P . ل�C jPو ،]?cL[cMب ا~I_Mات @?< اK��P تBCBUVLWن ھ�ه ا�~E\ أن jEck
FLMا �qأو DI?[\ءةB�EG تBCBUVLWف ھ�ه ا�BFLJا >Mح إKLlcMذج ا~cVMا >_Uk ،]I^PKSMت اBcI?_LMاء اHqأ jIG �GB . DI?l\دارة و�]IMB_a K�Jأ]I^I\اKLWا `a RxVMھ�ا ا yھBUk

RPاKSMب ا~I@.

 I?_LMا �GBF\ DI?[\وي وZIMا �[�Mا D�P ،خBUVLWف ا�BFLJ�]kZI?lLMا mIMBWا� jIG]WراZMرن اBl\ةK�B_cMا `Mا� y?_LMت اBIVl\و ،]I^PKSMت اBc . >?@ BcًzB{ B ً̂ xi مZl\MLP
]IMBEا��]I^PKSMت اBcI?_LMاء اHqأ ZkZ[LM Kk~vL?M]I?GB{د}[و K�Jأ ً�d Ka~k BcP ،خBUVLWف ا�BFLJا]I?c@]Lc\� . ،]I_{ت واBiBIG تB@~c^P امZ�LWBG ذج~cVMأداء ا yIIl\ yLk

@ �{~�\ Kx�ُk BcPءةB�EMوا]{ZMا �Id jP]kZI?lLMا mIMBWا� >?.

 BIVl\و]PZlLcMا]IS�_Mت اBESFMا jP دةB�LWل ا��C jP KISJ DEFG تBI^PKSMا]WZVل ھB^P Kk~v\ >?@]MBWKMا Dc_\ ،�[SMل ھ�ا ا�C jP HkH_LM تBiBISMاج اK�LWت ا
Mف إBvcMا]kBxi `a دي�k BcP ،RPاKSMخ اBUVLWف اBFLJا]I?c@تBI^PKSMا]c�iن أBPوأ]I{~u~P jIU[\ >.

Trade table

List of tabls .. 9

General introduction ... 1

Chapter 01 : Background .. 2

Introduction .. 3

1.Software Engineering: [20] .. 3

1.1.What is Software Engineering? .. 3

1.2Types of Software Engineering .. 3

1.2.1.Operational Software Engineering .. 4

1.2.2Transitional Software Engineering. ... 4

1.2.3Software engineering maintenance. ... 4

2.Software Maintenance.. 4

2.1.What is Software Maintenance? ... 4

2.2 Several Key Aspects of Software Maintenance: .. 4

2.3.Several Types of Software Maintenance .. 5

2.3.Need for Maintenance.. 6

2.4.Challenges in Software Maintenance ... 6

2.5.Categories of Software Maintenance [6] .. 7

3.Bad Smell in Code ... 7

3.1.What Causes Code Smells [11] ... 8

3.2.The Known Smell Codes: [21] .. 8

3.2.1.Code Duplication: ... 8

3.2.2.Long Methods/Functions .. 8

3.2.3.Large Classes/Modules ... 8

3.2.4.Global Data ... 9

3.2.5.Mutable Data .. 9

3.2.6.Divergent Change ... 9

3.2.7.Loops .. 9

3.2.8.Lazy Element .. 9

3.2.9.Speculative Generality .. 9

4. Clones ... 9

4.1.Clone Types .. 9

4.2.Clone Granularity .. 12

4.3.Reasons for Clones in Software .. 12

4.4. Advantages of Code Clones .. 14

4.5. Disadvantages of Code Clones ... 15

5.Clone Detection ... 15

5.1.Anatomy of Code Clone Detection ... 15

5.1.1.Source Pre-processing .. 16

5.1.2.Source Transformation ... 16

5.1.3.Extraction ... 16

5.1.4.Normalization ... 17

5.3.Clone Management[21] ... 18

5.4.Clone Detection and Management Process .. 19

6.Machine learning ... 20

6.1.What is Machine Learning? .. 20

6.2.The Importance of Machine Learning: [12] .. 21

6.3.How Does Machine Learning Work? [2] ... 21

6.4.Types of Machine Learning: [12] ... 23

6.4.1.Supervised Learning ... 23

6.4.2.Unsupervised Learning ... 23

6.5.Machine Learning vs AI vs Deep Learning[12] .. 25

6.5.1.Machine Learning ... 25

6.5.2.Deep Learning .. 25

7.Deep learning .. 26

7.1.How does Deep Learning work? ... 26

7.2.Types of Deep Learning models .. 27

7.2.1.Feedforward Neural Networks (FNNs) .. 27

7.2.2.Convolutional Neural Networks (CNNs) : ... 27

7.2.3.Recurrent Neural Networks (RNNs): ... 28

7.3.How to create Deep Learning models ? ... 28

7.4.Why choose Deep Learning rather than machine learning? ... 29

7.5.Why is Deep Learning Important? .. 29

7.6.Applications of Deep Learning ... 29

8. Multilayer Perceptron Neural Network(MLP) [17] .. 31

8.1. What are Multilayer Perceptrons (MLPs)?.. 31

8.2. How do Multilayer Perceptrons work? [17] ... 31

8.2.1. Layers in an MLP[17] .. 31

8.2.2. Fully Connected Layers ... 32

8.3. Applications of Multilayer Perceptrons .. 32

9.Conclusion : ... 32

Chapter 02 : State of the art .. 33

1.Introduction: ... 34

2.Types of Code Clones: [6] ... 34

3.Approaches For Code Clone Detection : .. 34

3.1.Baxter et al - AST-Based Clone Detection : [1] ... 34

3.1.1. Definition : ... 34

3.1.2.Advantages of AST-Based Clone Detection ... 35

3.1.3.Evaluating Algorithm Performance: ... 35

3.1.4.Key Findings and Observations .. 36

3.2.Token-Based Clone Detection (CCFinder): [8] ... 36

3.2.1.Definition : .. 36

3.2.2.The CCFinder Approach: Token-Based Analysis: ... 36

3.2.3.Experimental Evaluation and Results ... 37

3.3. Roy and Cordy - Clone Detection Taxonomy: [13] .. 37

3.3.1. Definition : ... 37

3.3.2.Taxonomy of Clones: ... 37

3.3.3.Clone Detection Techniques ... 37

3.3.4.Challenges and Future Directions: .. 37

3.4. Ducasse et al - Text-Based Clone Detection[5] ... 38

3.4.1.Definition : .. 38

3.4.2.Advantages and Limitations ... 39

3.5. Scalable Clone Detection: SourcererCC: [14] .. 39

3.5.1.Definition: ... 39

3.5.2.Key Contributions: ... 40

3.5.3.Evaluation and Findings of SourcererCC: .. 40

3.5.4.Impact and Subsequent Work: .. 40

3.5.5. Advantages and Limitations of SourcererCC .. 40

Avantages : .. 40

Limitations : .. 41

5.Summary of Methods: ... 41

Conclusion : .. 42

Chapter 03 : proposed method ... 43

1. Introduction: .. 44

2. Multi-Layer Perceptrons (MLPs) for Code Clone Detection:.. 44

3. Advantages of MLP-Based Approach: [15] .. 45

4. Challenges and Considerations: ... 45

5. Integration with Hybrid Approaches: .. 45

6. Conclusion: .. 46

Chapter 04 : empirical study ... 47

1.Introduction :... 48

2.Dataset Description and Preparation: .. 48

2.1.Dataset Overview: .. 48

2.2. Data Preprocessing ... 49

3.Development Environment: [19] .. 50

4. Evaluation of MLP Model on Dataset:.. 50

5. Metrics for Evaluation: .. 51

6.Evaluation Based on Graphs: .. 55

6.1. Epoch vs. F1-Score .. 55

Analysis of Results .. 55

6.2. F1-Score vs. Max Length: .. 56

6.3.Adam vs. Adagrad vs SGD (Stochastic Gradient Descent): ... 57

Interpretation of Results ... 58

Adam Optimizer .. 59

SGD Optimizer .. 59

Adagrad Optimizer .. 59

Comparison .. 59

6.4.shuffle vs Sratified Split: ... 60

6.5.F score vs cross- entropy: .. 61

7.Conclusion : ... 62

general conclusion .. 63

Bibliography ... 64

List of tabls
Table1 : Types of Code Clone ... 11

Table 2:Comparative Review of Clone Detection Techniques 18

Table 3: Pseudocode for Software Clone Detection and Management 20

Table 4: evaluating algorithme performance ... 35

Table 5:Experimental Evaluation of CCFinder’s Accuracy and Efficiency Across

Different Programming Languages ... 37

Table 6:summary of the methods .. 41

Table 7:Tableau des F1 Scores par Epochs pour T1, T2 et T4...................................... 55

Table 8: comparative table of the three optimizers (adam, adagrad, SGD) 59

List of Figures
Figure 1 Most software engineering tasks can be broken into the following three

categories[20] .. 3

Figure 2 :Reason for cloning[21] .. 13

Figure 3 :Generic clone detection process[21] ... 17

Figure 4: Management of Duplicate Clones ... 18

Figure 5: Related Research and Limitations ... 19

Figure 6 a beginner’s guide to the machine learning workflow(DataCamp, 2022)[2] 21

Figure 7: Comparing supervised and unsupervised learning[12] 24

Figure 8 :Comparing different industry terms[12] .. 26

Figure 9 :Representation of the architecture of a typical network of neurons. [9] 27

Figure 10: Visualization of an example of a network of neurons with convolution[9] 28

Figure 11 :Comparison between a machine learning approach (left) and a Deep

Learning approach (right) in an example of vehicle classification............................... 29

Figure 12:diagrame of multiplater perception neural network[18] 32

Figure 13:process diagram illustrating the workflow from code input to text

comparison for detecting Type-1 and Type-2 clones. [5] ... 38

Figure 14SourcererCC’s clone detection process[14] ... 39

Figure 15::dataset structure ... 49

Figure 16:F1 score vs Maxlength of fragement for diffrent clone types 56

Figure17:comparaison of F1 Scores:Adam vs. Adagrad vs SGD 57

Figure 18: comparaison of F1Scores :Suffle vs statified split 60

Figure 19 graphs for :score vs crossentropy (T1,T2,T4) .. 61

1

General introduction

 The complexity of software development often involves the reuse of existing code to streamline
production and enhance quality. However, this practice can lead to code cloning, where identical or
similar code segments appear across different parts of a project or across multiple projects. While
code cloning can expedite development, it also poses risks to software maintainability, clarity, and
overall quality, potentially increasing the likelihood of bugs and security vulnerabilities.

 Detecting software clones is a critical area in software engineering, addressing the challenge of
identifying these duplicated or similar code segments. Traditional methods of clone detection often
rely on manual inspection and code similarity analysis, which can be time-consuming and prone to
inconsistencies as software systems scale.

 This thesis aims to advance the field of software clone detection by employing data mining
techniques, with a particular emphasis on Multilayer Perceptrons (MLP). By leveraging MLPs, the
research seeks to automate the detection of code clones, thereby improving both the efficiency and
accuracy of identifying problematic code segments.

 The use of machine learning and deep learning methods, especially MLPs, has recently
transformed the landscape of code analysis. These techniques enable the automated examination of
extensive code repositories, identifying patterns and similarities indicative of code clones. The
objective of this thesis is to integrate data mining approaches with MLPs to enhance the detection of
code clones, providing a more effective and scalable solution compared to traditional methods.

 This research will explore the theoretical background of code clone detection, review traditional
and modern methodologies, and implement an MLP-based model for detecting code clones. The
effectiveness of the proposed model will be evaluated using real-world datasets, comparing its
performance against existing techniques.

The research objectives are:

• To review the current state of research on software clone detection and data mining
techniques in software engineering.

• To design and implement an MLP-based model for detecting code clones in source code
repositories.

• To assess the model's performance using real-world datasets, focusing on its accuracy,
precision, and scalability.

• To compare the proposed model with traditional clone detection methods and tools.

 This study specifically addresses the detection of code clones using data mining and MLPs,
excluding the bug-fixing process. The research will also aim to generalize the model across various
programming languages and codebases to enhance its applicability.

Chapter 01 : Background

2

Chapter 01 : Background

Chapter 01 : Background

3

Introduction

 This chapter serves as a foundational backdrop to the research area explored in this thesis, as
well as a survey of previous studies conducted within this domain. As the primary focus of this thesis
revolves around the identification and management of software clones, it will delve into several key

aspects. These include defining code clones, examining the motivations behind cloning practices,
assessing the impact of clones on software integrity, exploring various techniques for clone detection,
tracing the evolution of clones over time, and discussing strategies for proficient clone management.

1.Software Engineering: [20]

1.1.What is Software Engineering?
 Software engineering is the process of developing, testing and deploying computer applications to
solve real-world problems by adhering to a set of engineering principles and best practices. The field
of software engineering applies a disciplined and organized approach to software development with
the stated goal of improving quality, time and budget efficiency, along with the assurance of
structured testing and engineer Certification.

1.2Types of Software Engineering

 Even though a software engineer usually manages many coding projects, software engineering

entails more than just writing code for the software. In reality, software engineering encompasses

every phase of the software development lifecycle (SDLC), from planning the budget to analysis,

design, development, software testing, integration, quality and retirement.

Figure 1 Most software engineering tasks can be broken into the following three categories[20]

Chapter 01 : Background

4

1.2.1.Operational Software Engineering:

 It includes all decisions and tasks pertaining to how the software will perform within a computer
system. This may include anything related to the software budget, the way teams and users will
interact with the software and any potential risks such as those associated with defective and outdated
software.

1.2.2Transitional Software Engineering. This type of software engineering entails duties

related to the software's adaptability and scalability when it's moved outside of its initial setting.

1.2.3Software engineering maintenance. It entails activities connected to enhancing

and debugging current software to account for environmental changes, new technologies, bugs and
risk factors that might have been disregarded during a previous development cycle. Over time,
retirement takes over as maintenance of certain software is gradually reduced.

2.Software Maintenance: [6]

 Software Maintenance refers to the process of modifying and updating a software system after it
has been delivered to the customer. It is a critical part of the software development life cycle

(SDLC) and is necessary to ensure that the software continues to meet the

2.1.What is Software Maintenance?
• Software maintenance is a continuous process that occurs throughout the entire life cycle of

the software system.

• The goal of software maintenance is to keep the software system working correctly, needs of
the users over time. This article focuses on discussing Software Maintenance in
detail.efficiently, and securely, and to ensure that it continues to meet the needs of the users.

• This can include fixing bugs, adding new features, improving performance, or updating the
software to work with new hardware or software systems.

• It is also important to consider the cost and effort required for software maintenance when
planning and developing a software system.

• It is important to have a well-defined maintenance process in place, which includes testing

and validation, version control, and communication with stakeholders.

• It’s important to note that software maintenance can be costly and complex, especially for
large and complex systems. Therefore, the cost and effort of maintenance should be taken into
account during the planning and development phases of a software project.

• It’s also important to have a clear and well-defined maintenance plan that includes regular
maintenance activities, such as testing, backup, and bug fixing.

2.2 Several Key Aspects of Software Maintenance:

• Bug Fixing: The process of finding and fixing errors and problems in the software.

• Enhancements: The process of adding new features or improving existing features to meet the
evolving needs of the users.

Chapter 01 : Background

5

• Performance Optimization: The process of improving the speed, efficiency, and reliability of
the software.

• Porting and Migration: The process of adapting the software to run on new hardware or
software platforms.

• Re-Engineering: The process of improving the design and architecture of the software to make
it more maintainable and scalable.

• Documentation: The process of creating, updating, and maintaining the documentation for the
software, including user manuals, technical specifications, and design documents.

2.3.Several Types of Software Maintenance
• Corrective Maintenance: This involves fixing errors and bugs in the software system.

• Patching: It is an emergency fix implemented mainly due to pressure from management.
Patching is done for corrective maintenance but it gives rise to unforeseen future errors due to
lack of proper impact analysis.

• Adaptive Maintenance: This involves modifying the software system to adapt it to changes
in the environment, such as changes in hardware or software, government policies, and
business rules.

• Perfective Maintenance: This involves improving functionality, performance, and reliability,
and restructuring the software system to improve changeability.

• Preventive Maintenance: This involves taking measures to prevent future problems, such as
optimization, updating documentation, reviewing and testing the system, and implementing
preventive measures such as backups.

 Maintenance can be categorized into proactive and reactive types. Proactive maintenance involves
taking preventive measures to avoid problems from occurring, while reactive maintenance involves
addressing problems that have already occurred.

Maintenance can be performed by different stakeholders, including the original development team,
an in-house maintenance team, or a third-party maintenance provider. Maintenance activities can be
planned or unplanned. Planned activities include regular maintenance tasks that are scheduled in
advance, such as updates and backups. Unplanned activities are reactive and are triggered by
unexpected events, such as system crashes or security breaches. Software maintenance can involve
modifying the software code, as well as its documentation, user manuals, and training materials. This
ensures that the software is up-to-date and continues to meet the needs of its users.

Software maintenance can also involve upgrading the software to a new version or platform. This can
be necessary to keep up with changes in technology and to ensure that the software remains
compatible with other systems. The success of software maintenance depends on effective
communication with stakeholders, including users, developers, and management. Regular updates
and reports can help to keep stakeholders informed and involved in the maintenance process.

 Software maintenance is also an important part of the Software Development Life
Cycle(SDLC). To update the software application and do all modifications in software application so
as to improve performance is the main focus of software maintenance. Software is a model that runs

Chapter 01 : Background

6

on the basis of the real world. so, whenever any change requires in the software that means the need
for real-world changes wherever possible.

2.3.Need for Maintenance
- Software Maintenance must be performed in order to:
- Correct faults.
- Improve the design.
- Implement enhancements.
- Interface with other systems.
- Accommodate programs so that different hardware, software, system features, and

telecommunications facilities can be used.
- Migrate legacy software.
- Retire software.
- Requirement of user changes.
- Run the code fast

2.4.Challenges in Software Maintenance
� The various challenges in software maintenance are given below:
� The popular age of any software program is taken into consideration up to ten to fifteen years.

As software program renovation is open-ended and might maintain for decades making it very
expensive.

� Older software programs, which had been intended to paint on sluggish machines with much
less reminiscence and garage ability can not maintain themselves tough in opposition to
newly coming more advantageous software programs on contemporary-day hardware.

� Changes are frequently left undocumented which can also additionally reason greater
conflicts in the future.

� As the era advances, it turns into high prices to preserve vintage software programs.
� Often adjustments made can without problems harm the authentic shape of the software

program, making it difficult for any next adjustments.

There is a lack of Code Comments.

• Lack of documentation: Poorly documented systems can make it difficult to understand
how the system works, making it difficult to identify and fix problems.

• Legacy code: Maintaining older systems with outdated technologies can be difficult, as it
may require specialized knowledge and skills.

• Complexity: Large and complex systems can be difficult to understand and modify, making
it difficult to identify and fix problems.

• Changing requirements: As user requirements change over time, the software system
may need to be modified to meet these new requirements, which can be difficult and time-
consuming.

• Interoperability issues: Systems that need to work with other systems or software can be
difficult to maintain, as changes to one system can affect the other systems.

Chapter 01 : Background

7

• Lack of test coverage: Systems that have not been thoroughly tested can be difficult to
maintain as it can be hard to identify and fix problems without knowing how the system
behaves in different scenarios.

• Lack of personnel: A lack of personnel with the necessary skills and knowledge to
maintain the system can make it difficult to keep the system up-to-date and running smoothly.

• High-Cost: The cost of maintenance can be high, especially for large and complex systems,
which can be difficult to budget for and manage.

• To overcome these challenges, it is important to have a well-defined maintenance process in
place, which includes testing and validation, version control, and communication with
stakeholders. It is also important to have a clear and well-defined maintenance plan that
includes regular maintenance activities, such as testing, backup, and bug fixing. Additionally,
it is important to have personnel with the necessary skills and knowledge to maintain the
system.

2.5.Categories of Software Maintenance [6]
� Maintenance can be divided into the following categories.
� Corrective maintenance: Corrective maintenance of a software product may be essential

either to rectify some bugs observed while the system is in use, or to enhance the performance
of the system.

� Adaptive maintenance: This includes modifications and updations when the customers
need the product to run on new platforms, on new operating systems, or when they need the
product to interface with new hardware and software.

� Perfective maintenance: A software product needs maintenance to support the new
features that the users want or to change different types of functionalities of the system
according to the customer’s demands.

� Preventive maintenance: This type of maintenance includes modifications and updations
to prevent future problems with the software.

3.Bad Smell in Code : [11]
"Bad smells in code refer to certain characteristics or patterns within a codebase that indicate

potential problems, such as inefficiencies, poor design, or maintainability issues. Identifying and
addressing these bad smells is essential for improving the quality and maintainability of the code."

One thing that most application developers and testers eventually encounter, especially when
working with complex applications or across large teams, is code smells. These are tangible and
observable indications that there is something wrong with an application's underlying code that could
eventually lead to serious failures and kill an application's performance.

Typical examples of code smells include the following:

• duplicate code

• dead code

• long methods

• long parameter list

Chapter 01 : Background

8

• comments

• unnecessary primitive variables

• data clumps

Particularly "smelly" code could be inefficient, nonperformant, complex, and difficult to change and
maintain. While code smells may not always indicate a particularly serious problem, following them
often leads to discoveries of decreased code quality, drains on application resources or even critical
security vulnerabilities embedded within the application's code. At the least, it requires teams to
perform some in-depth tests on the code -- and often reveals some critical areas in the code that need
remedial work.

3.1.What Causes Code Smells [11]
 Put simply, code smells are a result of poor or misguided programming. These blips in the
application code can often be directly traced to mistakes made by the application programmer during
the coding process. Typically, code smells stem from a failure to write the code in accordance with
necessary standards. In other cases, it means that the documentation required to clearly define the
project's development standards and expectations was incomplete, inaccurate or nonexistent.

 There are many situations that can cause code smells, such as improper dependencies between
modules, an incorrect assignment of methods to classes, or needless duplication of code segments.
Code that is particularly smelly can eventually cause profound performance problems and make
business-critical applications difficult to maintain.

 Keep in mind, however, that a code smell is not an actual bug -- it's likely that the code still
compiles and works as expected. Code smells are simply indications of potential breaches of code
discipline and design principles. That said, it's possible that the source of a code smell may cause
cascading issues and failures over time. It is also a good indicator that a code refactoring effort is in
order.

3.2.The Known Smell Codes: [21]

3.2.1.Code Duplication: When the same or very similar code appears in multiple places within

the codebase, it's a sign of code duplication. This can lead to maintenance issues, as any changes
need to be made in multiple places, increasing the risk of introducing bugs.

3.2.2.Long Methods/Functions: Large, monolithic methods or functions that perform multiple

tasks or have a lot of nested logic can be difficult to understand, test, and maintain. Breaking down
these long methods into smaller, more focused ones can improve readability and maintainability.

3.2.3.Large Classes/Modules: Classes or modules that have too many responsibilities or

contain too much code can become unwieldy and hard to work with. This violates the Single
Responsibility Principle (SRP) and can make the code harder to understand and maintain. Splitting
such classes or modules into smaller, more focused ones can help improve modularity and clarity.

Chapter 01 : Background

9

3.2.4.Global Data:

The problem with global data is that it can be modified from anywhere in the code base, and there’s
no mechanism to discover which bit of code touched it.

3.2.5.Mutable Data
 Changes to data can often lead to unexpected consequences and tricky bugs. I can update some
data here, not realizing that another part of the software expects something different and now fails a
failure that’s particularly hard to spot if it only happens under rare conditions.

3.2.6.Divergent Change
We structure our software to make change easier; after all, software is meant to be soft. When we
make a change, we want to be able to jump to a single clear point in the system and make the change.

3.2.7.Loops
Loops have been a core part of programming since the earliest languages. But we feel they are no
more relevant today than bell-bottoms and flock wallpaper. We disdained them at the time of the first
edition but Java, like most other languages at the time, didn’t provide a better alternative. These
days, however, first-class functions are widely supported, so we can use Replace Loop with Pipeline

3.2.8.Lazy Element
Sometimes, it’s a class that used to pay its way, but has been downsized with refactoring. Either way,
such program elements need to die with dignity.

3.2.9.Speculative Generality
You get it when people say, “Oh, I think we’ll need the ability to do this kind of thing someday” and
thus add all sorts of hooks and special cases to handle things that aren’t required. The result is often
harder to understand

4. Clones: [21]

 The definition of a code clone is still more or less vague. Usually, it is described as portions of
source code or code fragments at different locations in a software project/program that are identical
or very similar. The similarity here may also be defined in various ways and can refer to textual,
structural or semantic aspects of the source code. Selim et al. defined code clones as sets of
syntactically or semantically similar code segments residing at different locations in the source code.
In the words of Baxter et al. “Clones are segments of code that are similar according to some
definition of similarity”. Symbolically, a clone fragment can be represented as a tuple with three
variables (f, s, l), where f denotes the file location, s denotes start line of the clone fragment and l
denotes the length of the fragment starting froms.

4.1.Clone Types :

Chapter 01 : Background

10

Types of clones are defined based on the degree of similarity among the clone fragments. The
following categorization of clone types has widely been accepted in the literature

Type-1 (Exact Clones): Identical code fragments without considering the variations in white-space
and comments (Figure 1.1a).

int sum (int num[], int len) {

int total = 0;

for(int i=0; i < len; i++) {

total += num[i];

}

return total;

}

Code Fragment: B

 int sum (int num[], int size) {

int result = 0;

 for(int i=0; i < size; i++) {

 result += num[i];

}

 return result;

 }

 Code Fragment: B

(a) Type-1 Clone (b) Type-2 Clone

int sum (int num[], int len) {

int total = 0;

for(int i=0; i < len; i++) {

 total += num[i];

}

 return total;

}

--

Code Fragment: A

 int sum (int num[], int len) {

 int total = 0;

 for(int i=0; i < len; i++) {

 total += num[i];

}

 return total;

 }

Code Fragment: A

Chapter 01 : Background

11

int sum (int num[], int len) {

int total = 0;

 for(int i=0; i < len; i++) {

 total += num[i];

}

 return total;

 }

--

Code Fragment: A

 int sum (int num[], int len) {

 int total = 0;

 for(int i=0; i < len; i++) {

 total += num[i];

 }

 return total;

}

--
Code Fragment: A

int sum (int num[]) {

int result = 0;

int len = num.length;

for (int i = 0; i < len; i++) {

result += num[i];

}

return result;

}

Code Fragment: B

 int sum (int num[], int len) {

int total = 0;

int i = 0;

while(i < len) {

total += num[i++];

}

return total;

}

Code Fragment: B

 (c) Type-3 Clone Type-4 Clone

 Table 1 : Types of Code Clone

Type-2 (Renamed/Parameterized Clones) : Code fragments that are structurally/syntactically
similar but may contain variations in identifiers, literals, types, layouts and comments (Figure 1.1b).

Type-3 (Gapped Clones): Code fragments with modifications in addition to those defined for Type-
2 clones, such as insertion, deletion or modification of statements (Figure 1.1c). Type-2 and Type-3
clones are collectively termed as near-miss clones in literature .

Chapter 01 : Background

12

 Type-4 (Semantic Clones): Code fragments with the same functionality with or without being
textually similar(Figure 1.1d).

4.2.Clone Granularity
 The clone type definitions stated above are based on the notion of an arbitrary code segment. They
do not define how much of contiguous code can be considered a clone. Contiguous portions of source
code at different levels of granularity are used in the literature. The following are the most commonly
used granularities, which yield the notion of source code clones:

File clone: Two source files containing some good amount of similar source code.

Class clone: Two classes of source code written in an object-oriented language when the classes
have identical or near-identical code.

Function clone: Two functions are considered as clones when their bodies contain similar code to
each other.

Block clone: When the contents of two blocks of code (usually a collection of statements performing
a unit of work, marked bounded by some boundary marking character e.g., opening and closing
braces, brackets or indentation, or the like) are similar enough.

 Arbitrary statements clone: When two groups of statements at arbitrary regions of the source file
are found to be similar enough, they are also regarded as clones (CCFinder detects such clones).

Structural clone: Structural clones denote the design level similarities among the patterns of
interrelated classes emerging from design and analysis space at the architecture level.

Model based clone: Applications in some domain (e.g.: embedded systems, automobile/aviation
design) are developed from a model designed with a domain specific modeling language. Unexpected
overlaps and duplications in such models are termed as model based clones.

 Researchers present clones in some groups that represent cloning relations among the related
fragments. This grouping leads to a better understanding of the cloning status of the system. The
following clone grouping is predominant in code clone literature.

Clone Pair: Two code fragments similar to each other form a Clone Pair.

Clone Class: A Clone Class is a group of clone fragments which are similar to each other. Therefore,
a Clone Class may have two or more code fragments where each pair of code fragments forms a
Clone Pair.

Super Clone: The set of Clone Classes that belong to the same source code location form a Super
Clone, also known as Clone Class Family. Alternately, Super Clone is the aggregation of the Clone
Classes that cross-cut in the same source code region, e.g.: file, directory, function, class or package.

4.3.Reasons for Clones in Software [21]

 Most software systems usually contain a significant amount of cloned code and the amount of
cloning varies depending on the domain and origin of the software system . However, clones do not

Chapter 01 : Background

13

occur in software systems by themselves, rather they evolve from various development activities
performed by the developer during the software’s development and maintenance phase. There are a
number of factors that might force or influence the developers and/or maintenance engineers making
cloned code in the system . Kapser et al. identified a set of eight cloning patterns that explain the
motivations of cloning with corresponding advantages and disadvantages. Toomim et al. identified a
set of cases that makes the abstraction costly and leads programmers to leave the cloned code instead.

 Figure 2 :Reason for cloning[21]

A comprehensive list of factors (as shown in Figure 2.2) that introduce clones in software can be
found in the survey by Roy and Cordy , where reasons for cloning are categorized as the following
four groups:

Cloning by Accidents

Software developers may repeat common solution patterns for solving similar kinds of problems.
Clones can also be created by developers because of implementing the same logic while working

Chapter 01 : Background

14

independently or following particular development restriction, e.g., coding under a programming
language protocol or using a particular set of APIs.

Development Strategy

 Different reuse and programming approaches may introduce clones in software systems. Clones
can be created due to reuse of existing code, design, logic and functionality in the system.
Developer’s copy-paste programming practices is one of the most common forms of code cloning.
Besides, merging of two software systems (of similar functionality) to produce a new one may
introduce clones in the final system.

Maintenance Benefits

 Developers may create or keep clones intentionally to obtain development and maintenance
benefits, such as to cut the development cost off, to avoid the risk of developing new code that may
introduce bugs or require additional testing to meet required QoS . Clones are sometime useful in
speed-up development process or keeping software architecture clean and understandable.

Overcoming Underlying Limitations

 Because of having some limitations on both programming languages and programmer’s ability,
clones might be introduced in the system . Some programming languages may not have sufficient
abstraction mechanism or restriction for code reuse by design or convention. On the other hand,
programmers may have a lack of knowledge of the existing system, strict time constraint, lack of
code ownership, lack of understanding that may lead to the creation of duplicate code in the system.

4.4. Advantages of Code Clones
 If needed, clones are introduced in the software systems mostly after refactoring, to obtain
several maintenance benefits. Some of the advantages that clones provide are discussed below.

 Risk in Writing Fresh Code:

 When a developer prefers to avoid risks of writing new code, the developer ends up using existing
code. There are chances of errors and bugs in writing new code, but the existing code is already
tested . Cordy reports that in a financial software system, although financial products do not often
change, especially within the same financial institution, clones do occur frequently. Mainly because
of the frequent updates and enhancements that are needed to be performed on the existing system as
to support similar, but new functionality. In a scenario like this, the developer is often asked to reuse
existing block of code and adapt the code according to the requirements of the new product. This is
mostly because of the high risks (software errors in an organization can be very costly) involved with
the introduction of software errors found in new fragments of code while in the case of existing code,
the code is already well tested.

• Clean and Understandable Software Architecture: It is intended to introduce clones into the
system as it will promote clean and understandable software architecture .

Chapter 01 : Background

15

• Maintenance Speedup: In a multi-cloned system, two cloned code fragments are independent of
each other regarding both semantics and syntax and can evolve at a different pace in isolation without
affecting one another and testing can also be performed and required to the modified fragments.
Maintaining cloned fragments in a system may speed up maintenance, especially when automated
regression tests are absent .

• Ensuring Robustness of Life-critical Systems: Redundancy or Cloning is intentionally
incorporated in the design of life-critical systems. As life-critical systems have to maintain safety
features and needs to work perfectly, and should not fail, multiple teams work on the same
functionality as to reduce the chances of errors.

• High Cost of Function Calls in Real-time Programs: In real-time programs, function calls may
seem to be too costly. Unlined functions run a little faster than the normal functions as function-
calling-overheads are saved, however, there is a memory penalty. If a function is unlined 10 times,
there will be 10 copies of the function inserted into the code. Without inline functions, the compiler
decides which functions to inline automatically, and if it does not, then this needs to be done by the
developer manually to write the code that would have gone in the function at what would have been
the function’s call site and consequently, there will be clones.

4.5. Disadvantages of Code Clones
 It may be easy to develop software systems by applying code cloning, but code cloning may be
critical for both maintenance and quality of software system . Problems caused due to cloning are
listed . Below is a brief discussion of these problems from developer’s perspective.

• Increased Probability of Defects: If the original code contains a bug, then its clone will
undoubtedly contain the same bug . Hence, duplication of the code may increase the probability of a
bug in the system.

• Increased Resource Requirements: With the increase of code clones, the system size may also
increase and the compilation time in addition to memory requirements for the system may also get
increased, this may be a factor resulting in an expensive software and hardware upgrades.

• Increase Maintenance Effort and Cost: During the maintenance process, code cloning multiplies
the effort required for a software system . During the maintenance phase if an error or bug is found in
one fragment, then all of its corresponding clones should be examined first for presence of the same
error or bug and then the error has to be solved, resulting in an increased maintenance effort.

• Increased Chances of Bad Design: With the increase of code clones, the system size may also
increase and the compilation time in addition to memory requirements for the system may also be
increased. This may be a factor resulting in expensive software and hardware upgrades

5.Clone Detection[21]

5.1.Anatomy of Code Clone Detection
 Naively, a code clone detector should compare every possible fragment with every other
fragment to identify the level of similarity. The similarity level needs to be at least up to a pre-

Chapter 01 : Background

16

defined value to accept the comparing fragments as clone to each other. However, in case of a
medium to large scale system, such an exhaustive comparison is computationally expensive. Thus,
several measures are used to reduce either the cost of individual comparison or the domain of
comparison before performing the actual comparisons. A number of clone detection techniques has
been proposed in literature over the past decades. Regardless of the difference in similarity detection
mechanism, from a high level perspective, they mostly follow the same end-to-end processing
workflow as shown in Figure 2.3. Considering raw source code as input, a typical code clone detector
may perform the following steps (usually most of them if not all) to detect clones in the input source
code.

5.1.1.Source Pre-processing

 This is the very first step of a detection approach where various uninteresting parts (e.g., embedded
source code of another language, auto generated source code, etc.) are filtered out from the input
source. Then the remaining source code is partitioned into a set of disjoint fragments called source
units. These are the largest source fragments that may form direct clone relations with each other.
Source units can have different level of granularity, for example, files, classes, functions/methods,
begin end blocks, statements, or sequences of source lines. Depending on the comparison technique
used in the detection approach, source units may be further subdivided into smaller comparison units
represented as lines or even tokens. Comparison units can also be derived from the syntactic structure
of the source unit. Approaches like metrics-based does not require this partitioning of source since
metrics values can be computed from source units regardless of their granularity

5.1.2.Source Transformation

 In textual detection approach, similarity detection is performed among the comparison units.
However, for non-textual approach, the source code of the comparison units is transformed to an
appropriate intermediate representation for comparison. Additional normalizing transformations may
also be performed by some approach in order to detect superficially different clones. These
normalizations can vary from very simple normalizations, such as removal of whitespace and
comments , to complex normalizations, involving source code transformations

5.1.3.Extraction
 Extraction transforms the source code to the form suitable as input to the actual comparison
algorithm. Depending on the tool, it typically involves one or more of the following steps. For
tokenbased approaches, each line of the source is divided into tokens according to the lexical rules of
the programming language of interest. The tokens of lines or files then form the token sequences to
be compared. All whitespace (including line breaks and tabs) and comments between tokens are
removed from the token sequences. CC Finder and Dup are the leading tools that use this
tokenization approach on the source code. In syntactic approaches, the entire source codebase is
parsed to build a parse tree or abstract syntax tree (AST). Then the comparison algorithms look for
similar sub trees that are considered as clones . Metrics-based approaches may also use a parse tree
representation to find clones based on metrics for sub trees . Some semantics-aware approaches
generate program dependency graphs (PDGs) from the source code. To find clones, the techniques
then look for isomorphic sub graphs .

Chapter 01 : Background

17

5.1.4.Normalization

 This optional step is intended to eliminate trivial differences in source comparison, such as,
differences in whitespace, commenting, formatting, identifier naming, etc. Almost all approaches
disregard comments and whitespace, although line-based approaches retain line breaks. However,
some metrics-based approaches use formatting and layout as part of their comparison. Identifier
normalization is applied in most of the approaches before comparison in order to identify parametric
Type-2 clones. In such normalizations, usually one single identifier replaces all the identifiers in the
source code. However, Baker uses an ordersensitive indexing scheme to normalize for detection of
consistently renamed Type-2 clones. In text-based clone detection approaches, source codes may also
pretty printed (white space formatting) to minimize the differences in source layout and spacing.
Cordy et al. use an island grammar to generate a separate pretty- printed text file for each potentially
cloned source unit. Some other transformations may be applied to change the structure of the code so
that minor variants of the same syntactic form can be treated as similar.

Figure 3 :Generic clone detection process[21]

Chapter 01 : Background

18

Table 2:Comparative Review of Clone Detection Techniques[21]

5.3.Clone Management[21]
 The combination of various activities like clone classification, refactoring, visualization and
tracking is known as clone management. In short, it includes all the activities that includes detecting,
avoiding and removing the present clones. Clone management comes with a number of benefits like
improvement in customer satisfaction and software system quality. It also helps developers during
various activities like debugging and modification.

 Detect Compare Code Mechanically

 Understand

Figure 4: Management of Duplicate Clones [11]

Visualise code as Dot plots

Redistribute
Responsibilities Transform conditionals to

Polymorphism

Chapter 01 : Background

19

 Figure 5: Related Research and Limitations [11]

 In Clone Management, first step is to document the code segments and clone relationships
occurring in those code segments. After that, there is a need to track the code base consistently during
software development and incorporate the changes in documentation. Then clone documentation is
analyzed properly using some visualization technique to remove or keep the clones [19]. In the next
step refactoring is performed. If refactoring leads to change in program behavior, then it should be
roll backed. Another way to manage clones is clone prevention by adopting minimal copy paste use.

5.4.Clone Detection and Management Process
 There are some general steps which are required for clone detection and management. Those steps
have been summarized in the form of pseudocode given in Table 4. For e.g. if we want to detect and
manage code clones in two files α and β, then α and β will be supplied as input to the program for
detecting and managing clones. The program will make use of some clone detection technique π for
detecting the clones on the basis of threshold value Ω. Threshold value sets the lower limit on the
degree of similarity between two fragments of code. If the detected degree of similarity i.e. £ between
two fragments of code c1 and c2 is greater than or equal to Ω, then c1 and c2 will be considered as
clone pair. Detected clone pair will be stored in the database DB. Similarly all the clone pairs will be
detected and stored in the database DB. After that clone pairs will be categorized in to harmful and
useful clones. Useful clones will be retained and harmful clones will be refactored or removed using
some algorithm.

Chapter 01 : Background

20

Function Clone Detection And Management (α, β, π, Ω, DB)
Inputs:

 • Two source code files to be compared i.e. α and β.

•Detection Technique to be used i.e. π.

 •Threshold value for clone detection i.e. Ω

•Database to store clones

Outputs:

• Clone pairs c1 and c2

• Clone detected in percentage i.e. £

• Maintenance Overhead of clones

• Rank wise Clones

• Refactored source code file α and β

Table3: Pseudocode for Software Clone Detection and Management [11]

6.Machine learning : [11]

6.1.What is Machine Learning?
 Machine Learning, often abbreviated as ML, is a subset of artificial intelligence (AI) that focuses
on the development of computer algorithms that improve automatically through experience and by
the use of data. In simpler terms, machine learning enables computers to learn from data and make
decisions or predictions without being explicitly programmed to do so.

At its core, machine learning is all about creating and implementing algorithms that facilitate these
decisions and predictions. These algorithms are designed to improve their performance over time,
becoming more accurate and effective as they process more data.

In traditional programming, a computer follows a set of predefined instructions to perform a task.
However, in machine learning, the computer is given a set of examples (data) and a task to perform,
but it's up to the computer to figure out how to accomplish the task based on the examples it's given.

This ability to learn from data and improve over time makes machine learning incredibly powerful
and versatile. It's the driving force behind many of the technological advancements we see today,
from voice assistants and recommendation systems to self-driving cars and predictive analytics.

Step I: Input source code files α and β to clone detection and management system.
Step II: Use a Clone detection approach π for detecting clones in source code file α and β.
 Step III: If (£>=Ω) then go to step 4 else go to step 8.
 Step IV: Export the detected clones to database DB and update DB.
Step V: Find maintenance overhead of clones.
Step VI: Compare and rank clones according to maintenance overhead.
 Step VII: Refactor or remove clones.
Step VIII: Stop

6.2.The Importance of Machine Learning
 In the 21st century, data is the new oil, and machine learning is the engine that powers this data
driven world. It is a critical technology in today's digital age, and its importance cannot be overstated.
This is reflected in the industry's projected growth, with the US Bureau of Labor Statistics predicting
a 21% growth in jobs between 2021 and 2031

 Here are some reasons why it’s so essential in the modern world:

• Data processing. One of the primary reasons machine learning is so
and make sense of large volumes of data. With the explosion of digital data from social media,
sensors, and other sources, traditional data analysis methods have become inadequate. Machine
learning algorithms can process these vast amounts of data, uncover hidden patterns, and provide
valuable insights that can drive decision

• Driving innovation. Machine learning is driving innovation and efficiency across various sectors.
Here are a few examples:

• Healthcare. Algorithms are used to predict disease outbreaks, personalize patient treatment plans,
and improve medical imaging accuracy.

• Finance. Machine learning is used for credit scoring, algorithmic trading, and fraud detection.

• Retail. Recommendation systems, supply chains, and
learning.

• The techniques used also find applications in sectors as diverse as agriculture, education, and
entertainment.

• Enabling automation. Machine learning is a key enabler of automation.
improving over time, machine learning algorithms can perform previously manual tasks, freeing
humans to focus on more complex and creative tasks. This not only increases efficiency but also
opens up new possibilities for innovatio

6.3.How Does Machine Learning Work?
 Understanding how machine learning works involves delving into a step
transforms raw data into valuable insights.

a

Figure 6 a beginner’s guide to the machine learning workflow

Chapter 01

21

The Importance of Machine Learning: [12]
In the 21st century, data is the new oil, and machine learning is the engine that powers this data

It is a critical technology in today's digital age, and its importance cannot be overstated.
This is reflected in the industry's projected growth, with the US Bureau of Labor Statistics predicting

21% growth in jobs between 2021 and 2031.

Here are some reasons why it’s so essential in the modern world:

One of the primary reasons machine learning is so important is its ability to handle
and make sense of large volumes of data. With the explosion of digital data from social media,
sensors, and other sources, traditional data analysis methods have become inadequate. Machine

these vast amounts of data, uncover hidden patterns, and provide
valuable insights that can drive decision-making.

Machine learning is driving innovation and efficiency across various sectors.

Algorithms are used to predict disease outbreaks, personalize patient treatment plans,
and improve medical imaging accuracy.

. Machine learning is used for credit scoring, algorithmic trading, and fraud detection.

supply chains, and customer service can all benefit from machine

The techniques used also find applications in sectors as diverse as agriculture, education, and

. Machine learning is a key enabler of automation. By learning from data and
improving over time, machine learning algorithms can perform previously manual tasks, freeing
humans to focus on more complex and creative tasks. This not only increases efficiency but also
opens up new possibilities for innovation.

How Does Machine Learning Work? [2]
Understanding how machine learning works involves delving into a step-by-step process that

transforms raw data into valuable insights.

a beginner’s guide to the machine learning workflow(DataCamp, 2022)[2]

Chapter 01 : Background

In the 21st century, data is the new oil, and machine learning is the engine that powers this data-
It is a critical technology in today's digital age, and its importance cannot be overstated.

This is reflected in the industry's projected growth, with the US Bureau of Labor Statistics predicting

important is its ability to handle
and make sense of large volumes of data. With the explosion of digital data from social media,
sensors, and other sources, traditional data analysis methods have become inadequate. Machine

these vast amounts of data, uncover hidden patterns, and provide

Machine learning is driving innovation and efficiency across various sectors.

Algorithms are used to predict disease outbreaks, personalize patient treatment plans,

. Machine learning is used for credit scoring, algorithmic trading, and fraud detection.

can all benefit from machine

The techniques used also find applications in sectors as diverse as agriculture, education, and

By learning from data and
improving over time, machine learning algorithms can perform previously manual tasks, freeing
humans to focus on more complex and creative tasks. This not only increases efficiency but also

step process that

[2]

Chapter 01 : Background

22

Step 1: Data collection

 The first step in the machine learning process is data collection. Data is the lifeblood of machine
learning - the quality and quantity of your data can directly impact your model's performance. Data
can be collected from various sources such as databases, text files, images, audio files, or even
scraped from the web.

Once collected, the data needs to be prepared for machine learning. This process involves organizing
the data in a suitable format, such as a CSV file or a database, and ensuring that the data is relevant to
the problem you're trying to solve.

Step 2: Data preprocessing

 Data preprocessing is a crucial step in the machine learning process. It involves cleaning the data
(removing duplicates, correcting errors), handling missing data (either by removing it or filling it in),
and normalizing the data (scaling the data to a standard format).

 Preprocessing improves the quality of your data and ensures that your machine learning model
can interpret it correctly. This step can significantly improve the accuracy of your model.

Step 3: Choosing the right model

 Once the data is prepared, the next step is to choose a machine learning model. There are many
types of models to choose from, including linear regression, decision trees, and neural networks. The
choice of model depends on the nature of your data and the problem you're trying to solve.

 Factors to consider when choosing a model include the size and type of your data, the complexity
of the problem, and the computational resources available.

Step 4: Training the model

 After choosing a model, the next step is to train it using the prepared data. Training involves
feeding the data into the model and allowing it to adjust its internal parameters to better predict the
output.

During training, it's important to avoid overfitting (where the model performs well on the training
data but poorly on new data) and underfitting (where the model performs poorly on both the training
data and new data).

Step 5: Evaluating the model

 Once the model is trained, it's important to evaluate its performance before deploying it. This
involves testing the model on new data it hasn't seen during training.

Common metrics for evaluating a model's performance include accuracy (for classification
problems), precision and recall (for binary classification problems), and mean squared error (for
regression problems).

Chapter 01 : Background

23

Step 6: Hyperparameter tuning and optimization

 After evaluating the model, you may need to adjust its hyperparameters to improve its
performance. This process is known as parameter tuning or hyperparameter optimization.

Techniques for hyperparameter tuning include grid search (where you try out different combinations
of parameters) and cross validation (where you divide your data into subsets and train your model on
each subset to ensure it performs well on different data).

Step 7: Predictions and deployment

 Once the model is trained and optimized, it's ready to make predictions on new data. This process
involves feeding new data into the model and using the model's output for decision-making or further
analysis.

Deploying the model involves integrating it into a production environment where it can process real-
world data and provide real-time insights. This process is often known as MLOps.

6.4.Types of Machine Learning: [12]
 Machine learning can be broadly classified into three types based on the nature of the learning
system and the data available: supervised learning, unsupervised learning, and reinforcement
learning. Let's delve into each of these:

6.4.1.Supervised Learning
 Supervised learning is the most common type of machine learning. In this approach, the model is
trained on a labeled dataset. In other words, the data is accompanied by a label that the model is
trying to predict. This could be anything from a category label to a real-valued number.

The model learns a mapping between the input (features) and the output (label) during the training
process. Once trained, the model can predict the output for new, unseen data.

6.4.2.Unsupervised Learning

 Unsupervised learning, on the other hand, involves training the model on an unlabeled dataset. The
model is left to find patterns and relationships in the data on its own.

This type of learning is often used for clustering and dimensionality reduction. Clustering involves
grouping similar data points together, while dimensionality reduction involves reducing the number
of random variables under consideration by obtaining a set of principal variables.

Common examples of unsupervised learning algorithms include k-means for clustering
problems and Principal Component Analysis (PCA) for dimensionality reduction problems. Again, in
practical terms, in the field of marketing, unsupervised learning is often used to segment a company's
customer base. By examining purchasing patterns, demographic data, and other information, the
algorithm can group customers into segments that exhibit similar behaviors without any pre-existing
labels.

Chapter 01 : Background

24

Figure 7: Comparing supervised and unsupervised learning[12]

Understanding the Impact of Machine Learning

Machine Learning has had a transformative impact across various industries, revolutionizing
traditional processes and paving the way for innovation. Let's explore some of these impacts:

“Machine learning is the most transformative technology of our time. It’s going to transform every
single vertical.”

- Satya Nadella, CEO at Microsoft

Healthcare

In healthcare, machine learning is used to predict disease outbreaks, personalize patient treatment
plans, and improve medical imaging accuracy. For instance, Google's DeepMind Health is working
with doctors to build machine learning models to detect diseases earlier and improve patient care.

Finance

 The finance sector has also greatly benefited from machine learning. It's used for credit scoring,
algorithmic trading, and fraud detection. A recent survey found that 56% of global executives said
that artificial intelligence (AI) and machine learning have been implemented into financial crime
compliance programs.

Transportation

 Machine learning is at the heart of the self-driving car revolution. Companies like Tesla and
Waymo use machine learning algorithms to interpret sensor data in real-time, allowing their vehicles
to recognize objects, make decisions, and navigate roads autonomously. Similarly, the Swedish
Transport Administration recently started working with computer vision and machine learning
specialists to optimize the country’s road infrastructure management.

Chapter 01 : Background

25

6.5.Machine Learning vs AI vs Deep Learning[12]
 Machine learning is often confused with artificial intelligence or deep learning. Let's take a look at
how these terms differ from one another. For a more in-depth look, check out our comparison guides
on AI vs machine learning and machine learning vs deep learning.

 AI refers to the development of programs that behave intelligently and mimic human intelligence
through a set of algorithms. The field focuses on three skills: learning, reasoning, and self-correction
to obtain maximum efficiency. AI can refer to either machine learning-based programs or even
explicitly programmed computer programs.

6.5.1.Machine Learning

 is a subset of AI, which uses algorithms that learn from data to make predictions. These
predictions can be generated through supervised learning, where algorithms learn patterns from
existing data, or unsupervised learning, where they discover general patterns in data. ML models can
predict numerical values based on historical data, categorize events as true or false, and cluster data
points based on commonalities.

6.5.2.Deep Learning

 on the other hand, is a subfield of machine learning dealing with algorithms based essentially on
multi-layered artificial neural networks (ANN) that are inspired by the structure of the human brain.

Unlike conventional machine learning algorithms, deep learning algorithms are less linear, more
complex, and hierarchical, capable of learning from enormous amounts of data, and able to produce
highly accurate results. Language translation, image recognition, and personalized medicines are
some examples of deep learning applications.

Figure 8

7.Deep learning : [9]

 Deep Learning is a branch of machine learning that uses neural networks to teach computers to do
what seems natural to humans: learn from examples. In Deep Learning, a model learns to perform
classification or regression tasks directly from data such as images, text or sound. Deep Learning
models can achieve remarkable precision, often exceeding human performance.

7.1.How does Deep Learning work?
 Deep Learning models are based on neural network ar
by that of a human brain, is made up of nodes or interconnected neurons in a layer infrastructure
which connect the entries to the desired exits. The neurons located between the entry and exit layers
of a network of neurons are called hidden layers. The term "Deep" generally refers to the number of
layers hidden in the network of neurons. Deep Learning models can include hundreds, or even
thousands of hidden layers.

Chapter 01

26

8 :Comparing different industry terms[12]

Deep Learning is a branch of machine learning that uses neural networks to teach computers to do
what seems natural to humans: learn from examples. In Deep Learning, a model learns to perform

ication or regression tasks directly from data such as images, text or sound. Deep Learning
models can achieve remarkable precision, often exceeding human performance.

How does Deep Learning work?
Deep Learning models are based on neural network architectures. A network of neurons, inspired

by that of a human brain, is made up of nodes or interconnected neurons in a layer infrastructure
which connect the entries to the desired exits. The neurons located between the entry and exit layers

of neurons are called hidden layers. The term "Deep" generally refers to the number of
layers hidden in the network of neurons. Deep Learning models can include hundreds, or even

Chapter 01 : Background

Deep Learning is a branch of machine learning that uses neural networks to teach computers to do
what seems natural to humans: learn from examples. In Deep Learning, a model learns to perform

ication or regression tasks directly from data such as images, text or sound. Deep Learning

chitectures. A network of neurons, inspired
by that of a human brain, is made up of nodes or interconnected neurons in a layer infrastructure
which connect the entries to the desired exits. The neurons located between the entry and exit layers

of neurons are called hidden layers. The term "Deep" generally refers to the number of
layers hidden in the network of neurons. Deep Learning models can include hundreds, or even

Chapter 01 : Background

27

Figure 9 :Representation of the architecture of a typical network of neurons. [9]

 Deep Learning models are drawn using large labeled databases and can often learn
characteristics, directly from data, without it being necessary to extract them manually. While the
first network of artificial neurons was theorized in 1958, Deep Learning requires significant
calculation power which was not available before the 2000s. Today, researchers have access to IT
resources that allow you to build and lead to networks with hundreds of neurons and connections.

High performance GPUs have an effective parallel architecture for Deep Learning. Associated with
clusters or cloud computing, they allow development teams to reduce the learning time of a Deep
Learning network, from several weeks to a few hours, or even less.

7.2.Types of Deep Learning models
 Deep Learning models are able to automatically learn features from the data, which makes them
well-suited for tasks such as image recognition, speech recognition, and natural language processing.
The most widely used architectures in deep learning are feedforward neural networks, convolutional
neural networks (CNNs), and recurrent neural networks (RNNs).

7.2.1.Feedforward Neural Networks (FNNs): are the simplest type of ANN, with a linear

flow of information through the network. FNNs have been widely used for tasks such as image
classification, speech recognition, and natural language processing.

7.2.2.Convolutional Neural Networks (CNNs) : are specifically for image and video

recognition tasks. CNNs are able to automatically learn features from the images, which makes
them well-suited for tasks such as image classification, object detection, and image segmentation.

Chapter 01 : Background

28

Figure 10: Visualization of an example of a network of neurons with convolution[9]

7.2.3.Recurrent Neural Networks (RNNs):
 are a type of neural network that is able to process sequential data, such as time series and natural
language. RNNs are able to maintain an internal state that captures information about the previous
inputs, which makes them well-suited for tasks such as speech recognition, natural language
processing, and language translation.

7.3.How to create Deep Learning models ?
 You can create a Deep Learning model starting from zero or start with a pre-trained Deep
Learning model, which you can apply or adapt to your task.

 Learning from zero: to lead to a Deep Learning model starting from zero, you must bring together a
large labeled dataset and design a network architecture that will learn the characteristics and the
model. This is a good approach for new or specific applications, or more generally for applications
for which there are no pre -existing models. The main drawback of this approach is that it requires a
large database (with the annotated truth) and that the learning time can vary from a few hours to a
few weeks, depending on your task and your resources IT.

Chapter 01 : Background

29

Transfer learning:

 In Deep Learning applications such as classification of images, computer vision, audio processing
or natural language processing, the approach to transfer learning is commonly used. It is a question of
refining a model of pre-trained Deep Learning. You start from an existing model, such as Squeezenet
or Googlenet for the classification of images, and you introduce new data containing new categories.
After making some adjustments to the network, you can then perform a new task, such as
categorizing only dogs or cats, instead of 1,000 different objects. This method also has the advantage
of requesting much less data, which considerably reduces learning time.

A pre-trained Deep Learning model can also be used as a characteristics extractor. You can use layers
activations as a characteristics to train another model learning machine (such as a support vector
machine (SVM)). You can also use the pre-trained model as a basic block for another Deep Learning
model. For example, you can use a classification CNN images as a characteristics extractor for an
object detector.

7.4.Why choose Deep Learning rather than machine learning?
 In a word, precision. Deep Learning generally provides higher precision and provides greater
automation of the extended workflow than machine learning. The main drawbacks of Deep Learning
models are due to their increased complexity and the large size of the learning data games required,
making these models longer to train. There are methods to overcome, or at least alleviate, the effect
of these drawbacks.

Figure 11 :Comparison between a machine learning approach (left) and a Deep Learning approach (right) in an example of
vehicle classification[9]

7.5.Why is Deep Learning Important?
 Deep Learning is an essential technology on which driver -free cars rely, allowing to recognize a
stop panel or distinguish a pedestrian from a lamp. It is also a key element in the vocal control of
consumer equipment such as phones, tablets, televisions or portable speakers. Deep Learning has
aroused a lot of interest in recent times, for good reasons. Thanks to the Deep Learning, computers
and systems can perform complex tasks with more precision and automation.

7.6.Applications of Deep Learning :

 The main applications of deep learning can be divided into computer vision, natural language
processing (NLP), and reinforcement learning.

Chapter 01 : Background

30

Computer vision

 In computer vision, Deep learning models can enable machines to identify and understand visual
data. Some of the main applications of deep learning in computer vision include:

• Object detection and recognition: Deep learning model can be used to identify and
locate objects within images and videos, making it possible for machines to perform tasks
such as self-driving cars, surveillance, and robotics.

• Image classification: Deep learning models can be used to classify images into categories
such as animals, plants, and buildings. This is used in applications such as medical imaging,
quality control, and image retrieval.

• Image segmentation: Deep learning models can be used for image segmentation into
different regions, making it possible to identify specific features within images.

Natural language processing (NLP):

In NLP, the Deep learning model can enable machines to understand and generate human language.
Some of the main applications of deep learning in NLP include:

• Automatic Text Generation – Deep learning model can learn the corpus of text and new
text like summaries, essays can be automatically generated using these trained models.

• Language translation: Deep learning models can translate text from one language to
another, making it possible to communicate with people from different linguistic
backgrounds.

• Sentiment analysis: Deep learning models can analyze the sentiment of a piece of text,
making it possible to determine whether the text is positive, negative, or neutral. This is used
in applications such as customer service, social media monitoring, and political analysis.

• Speech recognition: Deep learning models can recognize and transcribe spoken words,
making it possible to perform tasks such as speech-to-text conversion, voice search, and
voice-controlled devices.

Reinforcement learning:

 In reinforcement learning, deep learning works as training agents to take action in an environment
to maximize a reward. Some of the main applications of deep learning in reinforcement learning
include:

• Game playing: Deep reinforcement learning models have been able to beat human experts
at games such as Go, Chess, and Atari.

• Robotics: Deep reinforcement learning models can be used to train robots to perform
complex tasks such as grasping objects, navigation, and manipulation.

• Control systems: Deep reinforcement learning models can be used to control complex
systems such as power grids, traffic management, and supply chain optimization.

Chapter 01 : Background

31

8. Multilayer Perceptron Neural Network(MLP) [17]

8.1. What are Multilayer Perceptrons (MLPs)?
 A multilayer perceptron (MLP) Neural network belongs to the feedforward neural network. It is
an Artificial Neural Network in which all nodes are interconnected with nodes of different layers.

Frank Rosenblatt first defined the word Perceptron in his perceptron program. Perceptron is a basic
unit of an artificial neural network that defines the artificial neuron in the neural network. It is a
supervised learning algorithm containing nodes’ values, activation functions, inputs, and weights to
calculate the output.

The Multilayer Perceptron (MLP) Neural Network works only in the forward direction. All nodes are
fully connected to the network. Each node passes its value to the coming node only in the forward
direction. The MLP neural network uses a Backpropagation algorithm to increase the accuracy of the
training model.

8.2. How do Multilayer Perceptrons work? [17]
 MLPs follow a simple process: data enters through the input layer, passes through hidden layers
where each neuron applies weights and biases to the inputs, and results in a final prediction at the
output layer. The training process involves adjusting weights and biases using backpropagation,
where the model minimizes the error by adjusting these parameters based on the gradient of the loss
function (like cross-entropy or mean squared error) using an optimization algorithm such as
stochastic gradient descent (SGD) or Adam.

8.2.1. Layers in an MLP[17]
Input Layer

It is the initial or starting layer of the Multilayer perceptron. It takes input from the training data set
and forwards it to the hidden layer. There are n input nodes in the input layer. The number of input
nodes depends on the number of dataset features. Each input vector variable is distributed to each of
the nodes of the hidden layer.

Hidden Layer

It is the heart of all Artificial neural networks. This layer comprises all computations of the neural
network. The edges of the hidden layer have weights multiplied by the node values. This layer uses
the activation function.

There can be one or two hidden layers in the model.

Several hidden layer nodes should be accurate as few nodes in the hidden layer make the model
unable to work efficiently with complex data. More nodes will result in an overfitting problem.

Output Layer

Chapter 01 : Background

32

This layer gives the estimated output of the Neural Network. The number of nodes in the output layer
depends on the type of problem. For a single targeted variable, use one node. N classification
problem, ANN uses N nodes in the output layer.

Figure 12:diagrame of multiplater perception neural network[18]

8.2.2. Fully Connected Layers
 MLPs are sometimes referred to as fully connected neural networks because each neuron in one
layer is connected to every neuron in the next. This dense connection enables the MLP to learn
intricate relationships between features, but it also means MLPs can be computationally expensive,
especially with large datasets and many layers.

8.3. Applications of Multilayer Perceptrons

MLPs are versatile and can be used for various types of machine learning problems, including:

• Classification tasks: For instance, predicting whether an email is spam or not.
• Regression tasks: MLPs can predict continuous values such as housing prices or stock

market trends.
• Time series prediction: MLPs are also used to forecast future values based on historical data,

though other architectures like Recurrent Neural Networks (RNNs) are often preferred for
sequential data.

9.Conclusion :
 In this chapter, we introduced the foundational concepts underlying our research, beginning with
software engineering and its critical role in software maintenance. We then discussed the concept of
bad smells in code, with a particular focus on software clones, including their types, advantages, and
disadvantages. The chapter also provided an overview of machine learning, followed by a detailed
introduction to deep learning, specifically Neural Networks (MLP), as a key approach for software
clone detection using data mining techniques.

 The next chapter will delve into the state of the art, exploring the methods proposed for clone
detection.

Chapter 02 : State of art

33

Chapter 02 : State of the art

Chapter 02 : State of art

34

1.Introduction:
 Software clone detection has been a crucial area of research in software engineering for several
decades. Code clones, which are duplicated or similar code fragments, often result from code reuse,
copy-paste practices, or even unintentional similarities across different parts of a system. Detecting
and managing these clones is vital for improving software quality, maintainability, and bug detection.
Over the years, researchers have developed a variety of techniques for detecting code clones, ranging
from simple textual comparisons to advanced machine learning models. In this chapter, we present an
overview of the state-of-the-art techniques in software clone detection, focusing on their strengths,
limitations, and applications.

2.Types of Code Clones: [6]

 Before diving into the various detection techniques, it is essential to understand the different types
of code clones. The research community typically classifies clones into four types:

• Type-1 (Exact Clones): Code fragments that are identical, except for variations in white
spaces, comments, and formatting.

• Type-2 (Renamed Clones): Code fragments that are identical except for changes in
identifiers, such as variable names, and types.

• Type-3 (Modified Clones): Code fragments that have some added, modified, or deleted
statements but retain the same basic structure.

• Type-4 (Semantic Clones): Code fragments that perform the same function but have
different implementations or structures.

Each type of clone presents different challenges for detection methods, with Type-1 being the easiest
to detect and Type-4 the most difficult due to its focus on semantic behavior rather than syntax.

3.Approaches For Code Clone Detection :

 For the detection of code clones, several research works have been carried out. Here are some key
examples:

3.1.Baxter et al - AST-Based Clone Detection : [1]

3.1.1. Definition :

 Baxter et al. (1998) - AST-Based Clone Detection Is introduced a novel approach to clone
detection based on Abstract Syntax Trees (ASTs). The authors present a detailed analysis of the
advantages of this method over traditional techniques and demonstrate its effectiveness through
empirical evaluation.

 AST-Based clone detection involves analysing the structural similarities between code snippets by
converting them into Abstract Syntax Trees. These trees represent the hierarchical structure of the
code, capturing the relationships between different code elements like variables, functions, and
statements.

Chapter 02 : State of art

35

 Structural Analysis

ASTs allow for a structural comparison of code, identifying similarities beyond mere lexical
matching.

 Code Understanding

 ASTs provide a representation of the code's underlying logic and structure, enabling a deeper
understanding of the relationships between code elements.

 Semantic Recognition

 By focusing on the structure, AST-based techniques can identify clones even when the code is
syntactically different but semantically equivalent.

3.1.2.Advantages of AST-Based Clone Detection

 This approach offers significant advantages over traditional methods such as lexical matching or
string-based comparisons.

• Increased Accuracy

AST-based techniques are more precise in identifying clones, even when the code is heavily
refactored or re-written.

• Semantic Awareness

Unlike lexical methods, ASTs capture the underlying meaning and intent of the code, leading to more
meaningful clone detection.

• Reduced False Positives

By focusing on the structural similarities, AST-based methods minimise the number of false positive
detections, ensuring greater reliability.

3.1.3.Evaluating Algorithm Performance:

 The authors thoroughly evaluated the algorithm's performance using a variety of codebases and
datasets. The results demonstrate the algorithm's effectiveness in accurately detecting clones while
minimising false positives.

Metric Value

Accuracy 98%

Precision 95%

Recall 92%

Tableau 4: evaluating algorithme performance

Chapter 02 : State of art

36

3.1.4.Key Findings and Observations

 AST-based clone detection significantly outperformed traditional methods in terms of accuracy and
effectiveness. It was particularly successful in identifying more complex clones that were previously
undetected.

• Enhanced Accuracy

AST-based detection resulted in a higher percentage of correctly identified clones.

• Improved Recall

The algorithm successfully identified a greater number of clones compared to other methods.

• Reduced False Positives

The algorithm minimised the number of incorrectly identified clones, improving its overall
reliability.

3.2.Token-Based Clone Detection (CCFinder): [8]

3.2.1.Definition :

 CCFinder is a powerful tool for detecting code clones across multiple programming languages.
This system utilises a token-based approach to identify similarities in code structure, regardless of
language variations.

3.2.2.The CCFinder Approach: Token-Based Analysis:

 CCFinder's core lies in tokenization, where source code is broken down into meaningful units like
keywords, identifiers, and operators. These tokens are then compared across different code segments,
and patterns are identified to detect potential code clones.

• Tokenization

Code is broken down into meaningful units, such as keywords, identifiers, and operators.

• Pattern Recognition

CCFinder identifies patterns in token sequences to pinpoint potential code clones.

• Code Similarity

Code segments with similar token sequences are flagged as potential clones.

Chapter 02 : State of art

37

3.2.3.Experimental Evaluation and Results

 CCFinder has undergone extensive experimental evaluation across various programming
languages, demonstrating its accuracy, efficiency, and scalability. It is capable of detecting code
clones in large-scale software projects, highlighting its effectiveness in real-world scenarios.

Language Accuracy Efficiency

Java 98% High

C++ 96% High

C# 95% Medium
Tableau 5:Experimental Evaluation of CCFinder’s Accuracy and Efficiency Across Different Programming Languages

3.3. Roy and Cordy - Clone Detection Taxonomy: [13]

3.3.1. Definition :

 "A Taxonomy of Software Clones," provides a comprehensive classification of different types of
code duplication, offering a valuable framework for understanding and addressing the issue of clones
in software systems

3.3.2.Taxonomy of Clones:

 Roy and Cordy conducted a comprehensive survey of clone detection techniques and created a
taxonomy of code clones:

• Type-1 clones: Identical code except for whitespace and comments.
• Type-2 clones: Code with variations in variable names and types.
• Type-3 clones: Code with modified statements or expressions but largely similar structure.
• Type-4 clones: Code with similar functionality but different implementations.

 This taxonomy helped clarify the various types of code clones, facilitating the development of
tools and techniques tailored to specific clone types.

3.3.3.Clone Detection Techniques:

 The authors discuss various techniques used for clone detection, including lexical matching,
syntactic matching, semantic matching, and hybrid approaches.

3.3.4.Challenges and Future Directions:

 the challenges associated with clone detection, such as scalability, handling code evolution, and
dealing with complex clone relationships. It also explores potential future research directions,
including the development of more advanced clone detection techniques and the integration of clone
detection into software development processes.

Chapter 02 : State of art

38

3.4. Ducasse et al - Text-Based Clone Detection[5]

 3.4.1.Definition :

 The approach developed by Ducasse et al. (1999) leverages a token-based method for
identifying code clones. It involves parsing code into a sequence of tokens and constructing a tree-
like structure to represent the relationships between these tokens. This tree structure enables the
detection of clones by comparing the similarity of these token trees.

• Tokenization

 Code is broken down into individual tokens (e.g., keywords, identifiers, operators).

• Tree Representation

 Tokens are organized into a hierarchical tree structure, reflecting the code's syntactic
relationships.

• Clone Detection

 Clones are identified by comparing the token trees for similarity using tree-matching algorithms.

 String matching and similarity analysis are straightforward techniques for identifying
duplicated code, primarily effective for detecting Type-1 and Type-2 clones. These methods focus on
direct text comparison, without analyzing the deeper semantics of the code.

Figure 13:process diagram illustrating the workflow from code input to text comparison for detecting Type-1 and Type-2
clones. [5]

Chapter 02 : State of art

39

3.4.2.Advantages and Limitations

 While the Ducasse et al. (1999) approach offers significant advantages, it also has inherent
limitations. Understanding these strengths and weaknesses can guide the selection of clone detection
tools and methodologies for specific software projects.

• Advantages

 The approach is effective in detecting structural clones, which are common in software
development, and is relatively efficient.

• Limitations

 The approach can struggle with semantic clones, which involve code with similar functionality
but different syntactic structures, and may miss clones that involve minor code modifications.

3.5. Scalable Clone Detection: SourcererCC: [14]

3.5.1.Definition:

 Sajnani et al. developed SourcererCC, which is designed to scale up to large codebases, such as
those found in open-source repositories. The tool focuses on detecting Type-3 clones by:

• Tokenizing the source code and creating vectors based on code identifiers (e.g., function and
variable names).

• Using a hybrid method of token matching and vector similarity to efficiently identify clones.
• The approach is optimized to handle millions of lines of code by using hashing techniques to

reduce comparison complexity.

Figure 14SourcererCC’s clone detection process[14]

Chapter 02 : State of art

40

3.5.2.Key Contributions:

1. Cross-Language Clone Detection: SourcererCC is designed to detect clones across different
programming languages, making it a valuable tool for analyzing large-scale, heterogeneous
codebases.

2. Scalability: The system employs efficient indexing and retrieval techniques to handle massive
codebases, enabling the detection of clones in large-scale projects.

3. Token-Based Approach: SourcererCC uses a token-based representation of code, which
allows for flexible matching of clones across different programming languages and reduces the
computational overhead compared to AST-based approaches.

4. Incremental Updates: The system supports incremental updates, allowing for efficient
detection of new clones as the codebase evolves.

3.5.3.Evaluation and Findings of SourcererCC:
High Accuracy

 SourcererCC achieved high accuracy in identifying clone pairs across diverse codebases,
indicating its effectiveness in detecting both exact and near-identical clones.

Improved Scalability

 SourcererCC demonstrated scalability in handling large codebases, efficiently processing massive
amounts of code without compromising accuracy.

Efficient Implementation

 The use of optimized algorithms and data structures contributed to SourcererCC's efficient
implementation, allowing for faster processing and improved performance.

3.5.4.Impact and Subsequent Work:

 Sajnani et al.'s work has made significant contributions to the field of clone detection, particularly
in terms of scalability and cross-language capabilities. SourcererCC has been used by researchers and
practitioners to analyze large-scale software systems and identify potential code duplication issues.
Subsequent research has built upon their ideas, exploring new techniques for cross-language clone
detection and addressing the challenges of handling code evolution.

3.5.5. Advantages and Limitations of SourcererCC

Avantages :

1. Précision élevée : SourcererCC offre une précision remarquable dans la détection des clones
de code, ce qui en fait un outil fiable pour les développeurs.

2. Scalabilité : Le modèle peut traiter de grandes quantités de code, ce qui est essentiel pour les
projets de grande envergure.

Chapter 02 : State of art

41

3. Support de plusieurs langages : SourcererCC prend en charge plusieurs langages de
programmation, facilitant son utilisation dans divers environnements de développement.

4. Capacité d'apprentissage automatique : Grâce à des techniques de machine learning, le
modèle s'améliore avec le temps et peut s'adapter à différents types de données.

5. Analyse détaillée : Fournit des métriques détaillées sur la performance du modèle, permettant
des ajustements et des optimisations.

Limitations :

1. Dépendance aux données d'entraînement : La performance du modèle est fortement
influencée par la qualité et la diversité des données d'entraînement utilisées.

2. Complexité des modèles : Les modèles basés sur l'apprentissage profond peuvent être
difficiles à interpréter et à ajuster pour des utilisateurs non techniques.

3. Ressources computationnelles : Les exigences en matière de ressources peuvent être
élevées, ce qui peut limiter l'utilisation sur des machines moins puissantes.

4. Sensibilité au bruit : Le modèle peut être sensible aux erreurs et au bruit dans les données,
entraînant des faux positifs ou négatifs.

5. Limitations contextuelles : SourcererCC peut avoir des difficultés à détecter des clones dans
des contextes très spécifiques ou atypiques, limitant son efficacité dans certains scénarios.

5.Summary of Methods:
Approach

Method Type

Clone Types
Detected

Strengths

Weaknesses

AST-Based
(Baxter et al.)

Syntax-based

Type-2, Type-3

Captures
structural
similarity

AST creation can
be costly

Token-Based
(CCFinder)

Token-based

Type-1, Type-2

Scalable,
language-
independent

Limited handling
of Type-3 clones

Text-Based
(Ducasse et al.)

Text-based

Type-1, Type-2

Simple, fast for
large datasets

Doesn’t account
for code structure

SourcererCC
(Sajnani et al.)

Token/Vector
hybrid

Type-3

Scalable to very
large datasets

Less accurate for
Type-4 clones

Tableau 6:summary of the methods

 Each method brings its own advantages, but as the scale of the dataset grows or the complexity of
the clones (Type-3, Type-4) increases, more advanced and scalable approaches, such as
SourcererCC, become essential.

Chapter 02 : State of art

42

Conclusion :

 This chapter explored the different types of code clones and their associated detection methods.
The classification into four types—exact, renamed, modified, and semantic clones—highlights the
increasing complexity in clone detection. Techniques such as AST-based detection and token-based
methods like CCFinder and SourcererCC each offer unique advantages for various contexts.

AST-based methods excel in accuracy, particularly for complex clones, while CCFinder and
SourcererCC provide scalability for large datasets. Each approach has its strengths and limitations,
indicating a need for continued evolution in detection technologies. Future research should focus on
refining existing methods and integrating hybrid solutions to improve clone detection and reduce
false positives, ensuring software quality as systems grow more complex.

 In the next chapter, we will explore the proposed methodology, which builds upon the strengths
of existing techniques while addressing their limitations.

Chapter 03 : Proposed method

43

Chapter 03 : proposed
method

Chapter 04 : proposed method

44

1. Introduction:

 In this chapter, we outline the proposed method for detecting software clones, focusing on the
application of Multi-Layer Perceptrons (MLP). MLPs, a class of feedforward neural networks, have
been widely used in various fields of machine learning due to their ability to model complex, non-
linear relationships. In the context of code clone detection, MLPs provide a robust framework for
identifying similarities between code fragments, even when modifications exist. This method builds
on existing research while introducing specific improvements to enhance the accuracy and scalability
of clone detection.

2. Multi-Layer Perceptrons (MLPs) for Code Clone Detection:

MLPs have demonstrated significant success across various domains, such as classification and
regression tasks. When applied to code clone detection, MLPs offer a novel approach by
transforming code fragments into numerical representations, which are then processed by deep
learning models to identify clone relationships.

2.1. Overview of MLPs: [10]

MLPs consist of multiple layers of neurons (nodes), including an input layer, one or more hidden
layers, and an output layer:

• Input Layer: The input layer receives the tokenized and vectorized representations of code
fragments, providing a numerical format that the MLP can process.

• Hidden Layers: The hidden layers consist of multiple neurons connected to the previous
layer. Each neuron applies a non-linear activation function (e.g., ReLU, Sigmoid) to capture
complex patterns in the input data.

• Output Layer: The final layer maps the features to output classes. In code clone detection,
the output is typically binary, with classes representing whether the code fragments are clones
('clone') or not ('non-clone').

2.2. Data Representation for MLPs:

Effective use of MLPs requires code fragments to be transformed into a format suitable for neural
network processing:

• Tokenization: The code fragments are broken down into tokens, where each token represents
a meaningful code element (keywords, operators, identifiers).

• Vectorization: Tokens are converted into numerical vectors using techniques such as word
embeddings (e.g., Word2Vec, GloVe) or one-hot encoding, allowing the MLP to process the
data.

• Padding and Truncation: Code fragments are standardized by padding shorter sequences or
truncating longer ones to ensure uniform input sizes.

2.3. Training the MLP Model:

Training an MLP for code clone detection follows several key steps:

Chapter 04 : proposed method

45

• Dataset Preparation: The dataset is split into training, validation, and testing sets. The
training set is used to train the model, the validation set tunes hyperparameters, and the testing
set evaluates the final model performance.

• Model Architecture: MLPs typically consist of fully connected layers. The architecture is
fine-tuned through experimentation to balance complexity with performance.

• Training Process: Backpropagation and optimization algorithms like Adam or SGD are
employed to train the MLP by minimizing a loss function such as binary cross-entropy.

• Evaluation Metrics: Performance is measured using metrics such as accuracy, precision,
recall, F1 score, and area under the ROC curve (AUC), offering insights into the model’s
clone detection performance.

3. Advantages of MLP-Based Approach: [15]

The MLP-based approach for clone detection provides several key advantages:

• Flexible Feature Learning: MLPs automatically learn and extract complex, non-linear
relationships from the tokenized code fragments, reducing the need for manual feature
engineering.

• Efficiency in Simple Structures: For certain tasks, MLPs can be more efficient compared to
CNNs, especially when the task does not rely on spatial hierarchies like those in image data.

• Scalability: MLPs are well-suited for scaling to large datasets, making them applicable for
analyzing extensive codebases.

• Straightforward Implementation: MLPs are simpler to implement and fine-tune compared
to more complex models, providing a solid baseline for clone detection tasks.

4. Challenges and Considerations:

While MLPs offer significant advantages, they also present several challenges:

• High-Dimensional Input: MLPs may struggle with very large input sizes, such as those
derived from long code fragments or large vocabularies in tokenized code.

• Overfitting: MLPs can be prone to overfitting, particularly when the model is complex or the
training dataset is limited in size.

• Hyperparameter Tuning: Like other neural networks, MLPs require careful tuning of
hyperparameters (e.g., number of layers, neurons per layer, learning rate) for optimal
performance.

• Limited Spatial Understanding: Unlike CNNs, MLPs do not naturally capture spatial
relationships in the data, which may limit their effectiveness in detecting clones with specific
structural patterns.

5. Integration with Hybrid Approaches:

To enhance detection capabilities, MLPs can be combined with other approaches:

• Token-Based Methods: Token-based methods can preprocess code fragments, generating
structured inputs for MLPs, improving feature extraction and detection accuracy.

Chapter 04 : proposed method

46

• Integration with Tree-Based Methods: Features from Abstract Syntax Trees (ASTs) can be
combined with MLP-generated features to capture both syntactic and semantic similarities,
enhancing clone detection.

• Graph-Based Methods: Combining MLPs with graph-based representations, such as Control
Flow Graphs (CFGs) or Program Dependency Graphs (PDGs), can improve the detection of
clones that involve complex control or data flow relationships.

6. Conclusion:

 This chapter has outlined the proposed method for code clone detection using Multi-Layer
Perceptrons. By leveraging deep learning techniques, this approach aims to improve the accuracy and
efficiency of clone detection, addressing some limitations of traditional methods. The next chapter
will focus on the dataset used for training and evaluating the MLP model, detailing the data
preparation, preprocessing, and experimental setup necessary for effective model training.

Chapter 04 : empirical study

47

Chapter 04 : empirical study

Chapter 04 : empirical study

48

1.Introduction :
 In this chapter, we present a comprehensive empirical study that validates the effectiveness and
robustness of the proposed Multi-Layer Perceptron (MLP) model for software clone detection. The
primary objective of this study is to evaluate the performance of the MLP model on real-world data
and to assess its ability to accurately identify code clones in a diverse range of software projects.

2.Dataset Description and Preparation:
 For this empirical study, we utilized a publicly available dataset from the Tomer project, which
is hosted on https://github.com/CGCL-codes/Tamer/tree/main/data. This dataset has been widely used
in the field of software clone detection research and provides a rich collection of code fragments and
clone pairs from various real-world software projects, making it an ideal choice for evaluating the
performance of our Neural Network .

2.1.Dataset Overview:

 IJaDataset100k, IJaDataset10M, IJaDataset10k, IJaDataset1M: These directories contain
Java source code files, each representing a different subset of the dataset with varying sizes. The
IJaDataset100k folder includes 100,000 Java files, while IJaDataset10M, IJaDataset10k, and
IJaDataset1M contain 10 million, 10,000, and 1 million Java files, respectively. These diverse subsets
provide a comprehensive basis for testing the model across different scales of data.

 id2sourcecode: This directory contains Java files organized by their identifiers. Each file
represents a distinct code fragment, which is used to assess the model's ability to handle and process
Java source code for clone detection.

 all_clone_pair.csv: This CSV file lists all the clone pairs in the dataset. Each entry in the file
specifies a pair of code fragments that are considered clones. The file is essential for training the
model on known code clones.

 clone-pair-270000(noT4).csv: This CSV file includes an extensive list of clone pairs, with a
total of 270,000 pairs. It is designed to support the model's training on a large volume of clone pairs,
excluding Type-4 clones, which are not relevant for the current study.

 noclone-pair.csv: This CSV file provides pairs of code fragments that are not clones. It serves
as the negative class for the model, allowing it to learn to differentiate between clone and non-clone
pairs

Chapter 04 : empirical study

49

Figure 15::dataset structure

2.2. Data Preprocessing

 Before the data could be used for model training, several preprocessing steps were required to
ensure that it was in the proper format:

• Fragment Identification and Loading: Each code fragment was linked to a unique ID, allowing
us to map clone and non-clone pairs to their respective code snippets. The code fragments were
extracted from the dataset files and stored for further processing.

• Tokenization: Since raw code cannot be directly input into the MLP, the fragments were
tokenized. Tokenization breaks down each code fragment into tokens, such as keywords, operators,
and identifiers. This step structured the code into a form that could be processed by the MLP.

• Labeling and Pairing: Clone and non-clone pairs were labeled accordingly. Clone pairs received
the label '1', indicating a positive clone relationship, while non-clone pairs were labeled '0'. These
labels acted as the ground truth during model training, helping the MLP learn to differentiate between
clones and non-clones.

• Input Representation: Once tokenized, the code fragments were transformed into numerical
vector representations suitable for the MLP. This transformation allowed the token sequences to be
compatible with the deep learning framework, enabling the MLP to process the inputs.

• Dataset Split: To ensure effective evaluation, the dataset was split into training, validation, and
test sets. The training set was used to train the MLP, the validation set for hyperparameter tuning, and
the test set for the final performance evaluation.

3.Development Environment
For the development environment we

 Anaconda: Anaconda is a free and open source distribution of the Python and
R programming languages applied to the development of applications dedicated to data
machine learning (large-scale data processing, predictive analysis, scientific computing), which aims
to simplify package management and deployment. Package versions are managed by the conda
package management system. The Anaconda distribution
includes more than 250 popular data science packages adapted for Windows, Linux and MacOs.

Spyder: Spyder (Scientific Python Development Environment) is an open
source integrated development environment (IDE) that
designed specifically for data science and engineering tasks using Python. Spyder features a powerful
text editor with syntax highlighting, code completion, and real
with Python's scientific libraries like NumPy, SciPy, and Matplotlib, making it an excellent choice
for data analysis and visualization. Spyder’s interface includes a variable explorer, IPython console,
and plots, providing an easy-to-navigate environment fo

 Python: Python is a fairly general
can do pretty much anything with it: websites and web applications, mobile applications, personal
scripts, desktop applications, data analysis, and even video games. Thanks
and packages, it has become the most popular language for machine learning algorithms,
science, and big data . We used python

4. Evaluation of MLP Model on Dataset:

 The evaluation of the Multi-Layer Perceptron (MLP) model was performed using multiple key
performance metrics, including F1-score, accuracy, recall, and precision. These metrics provide a
comprehensive view of the model’s ability to correctly identify software clone pairs (True Positi
while minimizing both False Positives and False Negatives.

The training and evaluation process involved several steps:

Chapter 04 : empirical study

50

nvironment: [19]
r the development environment we used:

Anaconda: Anaconda is a free and open source distribution of the Python and
applied to the development of applications dedicated to data

scale data processing, predictive analysis, scientific computing), which aims
to simplify package management and deployment. Package versions are managed by the conda
package management system. The Anaconda distribution is used by more than 6 million users and
includes more than 250 popular data science packages adapted for Windows, Linux and MacOs.

: Spyder (Scientific Python Development Environment) is an open
source integrated development environment (IDE) that is included in the Anaconda distribution. It is
designed specifically for data science and engineering tasks using Python. Spyder features a powerful
text editor with syntax highlighting, code completion, and real-time analysis. It integrates seamlessly

th Python's scientific libraries like NumPy, SciPy, and Matplotlib, making it an excellent choice
for data analysis and visualization. Spyder’s interface includes a variable explorer, IPython console,

navigate environment for developing and testing code.

Python: Python is a fairly general-purpose programming language, meaning that you
can do pretty much anything with it: websites and web applications, mobile applications, personal
scripts, desktop applications, data analysis, and even video games. Thanks to its data science libraries
and packages, it has become the most popular language for machine learning algorithms,

e used python 3.8.19 on Windows 10.

4. Evaluation of MLP Model on Dataset:

ayer Perceptron (MLP) model was performed using multiple key
score, accuracy, recall, and precision. These metrics provide a

comprehensive view of the model’s ability to correctly identify software clone pairs (True Positi
while minimizing both False Positives and False Negatives.

The training and evaluation process involved several steps:

Chapter 04 : empirical study

Anaconda: Anaconda is a free and open source distribution of the Python and
applied to the development of applications dedicated to data science and

scale data processing, predictive analysis, scientific computing), which aims
to simplify package management and deployment. Package versions are managed by the conda

is used by more than 6 million users and
includes more than 250 popular data science packages adapted for Windows, Linux and MacOs.

: Spyder (Scientific Python Development Environment) is an open-
is included in the Anaconda distribution. It is

designed specifically for data science and engineering tasks using Python. Spyder features a powerful
time analysis. It integrates seamlessly

th Python's scientific libraries like NumPy, SciPy, and Matplotlib, making it an excellent choice
for data analysis and visualization. Spyder’s interface includes a variable explorer, IPython console,

r developing and testing code.

purpose programming language, meaning that you
can do pretty much anything with it: websites and web applications, mobile applications, personal

to its data science libraries
and packages, it has become the most popular language for machine learning algorithms, data

ayer Perceptron (MLP) model was performed using multiple key
score, accuracy, recall, and precision. These metrics provide a

comprehensive view of the model’s ability to correctly identify software clone pairs (True Positives)

Chapter 04 : empirical study

51

1. Data Preparation: The dataset consisted of clone and non-clone pairs extracted from CSV
files. The clone pairs were further divided based on their types (T1, T2, and T4). Each pair
contained the identifiers of two code fragments (FunID1, FunID2). The data was shuffled and
split into training and testing sets, ensuring a balanced distribution of classes (clone/non-
clone). Class weights were computed to address any potential class imbalances.

2. Model Architecture: The MLP model was constructed using layers of fully connected dense
neurons. To improve model performance and prevent overfitting, batch normalization and
dropout layers were included. The final output layer used a softmax activation function to
predict whether a given pair of code fragments was a clone or not.

3. Hyperparameters: Several hyperparameters were tuned during the model training process,
including:

o Epochs: The model was trained over 100 epochs, with early stopping implemented to
halt training if no improvement in validation loss was observed for 10 consecutive
epochs.

o Learning Rate: The Adam optimizer was used with a learning rate of 0.0005 to
ensure smooth convergence.

o Batch Size: The training data was processed in batches of 32 samples to optimize
computational efficiency.

5. Metrics for Evaluation:

 In this study, several key metrics were used to evaluate the performance of the MLP model on the
task of detecting software code clones. These metrics offer insights into the model's ability to
correctly classify clone and non-clone pairs, particularly in an imbalanced dataset. The following
metrics were employed:

1. F1-Score:

 The F1-Score is a crucial metric when working with imbalanced datasets, where the number of
positive and negative samples is not equal. It is the harmonic mean of precision and recall, providing
a single score that balances the trade-off between the two.

Precision measures how many of the predicted clones were actually clones:

Precision =

��
 �������
� (
�)

��
 �������
� (
�) ± ����
 �������
� (��)

Analyse des Résultats :

• Clone Type T1 :
o F1-Score d'entraînement : 17.58
o F1-Score de validation : 19.40
o F1-Score final : 0.7578

Interprétation : Le modèle a un F1-Score relativement élevé pour Clone Type T1, suggérant
un bon équilibre entre la précision et le rappel pour ce type.

• Clone Type T2 :

Chapter 04 : empirical study

52

• F1-Score d'entraînement : 1.62
• F1-Score de validation : 1.12
• F1-Score final : 0.0889

Interprétation : Le F1-Score pour Clone Type T2 est très bas, indiquant une très mauvaise
performance du modèle pour ce type, avec probablement un déséquilibre significatif entre la
précision et le rappel.

• Clone Type T4 :

• F1-Score d'entraînement : 14.34
• F1-Score de validation : 8.07
• F1-Score final : 15.35

Interprétation : Le F1-Score pour Clone Type T4 est intermédiaire, montrant une performance
modérée du modèle pour ce type.

Recall (or sensitivity) measures how many actual clones were correctly identified:

Recall =

��
 �������
� (
�)

��
 �������
� (
�) ± ����
 �
 ����
 (��)

The F1-Score is computed as:

 F1-Score=2 ×
��
#����$×%
#���

��
#����$&%
#���

Analyse des Résultats :

• Clone Type T1 :
o Précision : 0.3030 (classe 0), 0.6246 (classe 1)
o Rappel : 0.0268 (classe 0), 0.9633 (classe 1)

Interprétation : Le modèle montre une précision faible pour la classe 0 mais un rappel élevé
pour la classe 1, suggérant que le modèle est plus performant pour identifier les vrais clones
que pour éviter les faux positifs.

• Clone Type T2 :
o Précision : 0.9776 (classe 0), 0.0523 (classe 1)
o Rappel : 0.8510 (classe 0), 0.2963 (classe 1)

Interprétation : La précision est élevée pour la classe 0 mais faible pour la classe 1,
indiquant que le modèle est meilleur pour identifier les non-clones que pour les clones.

• Clone Type T4 :
o Précision : 0.7067 (classe 0), 0.4927 (classe 1)
o Rappel : 0.5327 (classe 0), 0.6725 (classe 1)

Chapter 04 : empirical study

53

Interprétation : Les métriques sont plus équilibrées pour Clone Type T4, indiquant une
performance modérée avec un compromis entre la précision et le rappel.

 This score is particularly useful when False Positives and False Negatives carry different costs. It
helps balance precision and recall to avoid extreme cases where a model may focus too heavily on
either precision (reducing false positives) or recall (minimizing false negatives) alone.

2. Accuracy

 Accuracy is a basic yet important metric that measures the overall correctness of the model's
predictions. It represents the percentage of instances that were correctly classified, whether they were
clones or non-clones. Accuracy is calculated as:

 Accuracy =

��
 �������
� (
�)&
��
 �
 ����
� (
�)

'()*+ ,*-.+/0

 While accuracy is often used as a primary evaluation metric, it can be misleading when working
with imbalanced datasets, as a model might appear to perform well simply by predicting the majority
class most of the time. Therefore, in addition to accuracy, the F1-Score provides a more nuanced
view of performance.

Analyse des Résultats :

• Clone Type T1 : 61.40%
• Clone Type T2 : 83.60%
• Clone Type T4 : 58.88%

Interprétation : La précision globale est meilleure pour Clone Type T2, mais cela peut ne
pas refléter la performance réelle du modèle pour ce type de clone si les données sont
déséquilibrées.

3. Confusion Matrix

The Confusion Matrix offers a detailed breakdown of the model’s predictions by class. It consists of
four key components:

• True Positives (TP): Correctly identified clone pairs.
• True Negatives (TN): Correctly identified non-clone pairs.
• False Positives (FP): Non-clone pairs that were incorrectly identified as clones.
• False Negatives (FN): Clone pairs that were incorrectly identified as non-clones.

 The confusion matrix helps visualize the distribution of correct and incorrect predictions and is
useful for identifying where the model struggles. For instance, a high number of false positives may
indicate that the model is too lenient in classifying clones, while many false negatives may show that
the model is too strict.

Chapter 04 : empirical study

54

 Predicted Clone

Predicted Non-Clone

Actual Clone True Positive (TP)

False Negative (FN)

Actual Non-Clone

False Positive (FP)

True Negative (TN)

4. ROC AUC Score

 The Receiver Operating Characteristic (ROC) curve and its corresponding Area Under the

Curve (AUC) score measure the model’s ability to distinguish between the two classes (clone and
non-clone) across various decision thresholds. The ROC curve plots the True Positive Rate (TPR)
(also called Recall) against the False Positive Rate (FPR), which is defined as:

 False Positive Rate (FPR) =
����
 �������
� (��)

����
 �������
� (��)+
��
 �
 ����
� (
�)

 The AUC represents the likelihood that the model will rank a randomly chosen positive instance
higher than a randomly chosen negative one. An AUC of 0.5 suggests random guessing, while an
AUC closer to 1 indicates a highly discriminative model.

 The ROC AUC score is particularly useful when working with imbalanced datasets, as it evaluates
the model's performance across different classification thresholds rather than relying on a single
threshold. This provides a more complete picture of how well the model can differentiate between
clones and non-clones, regardless of the specific decision threshold used during evaluation.

Analysis of Results:

• Clone Type T1 : 0.5226
• Clone Type T2 : 0.4521
• Clone Type T4 : 0.5400

Interpretation: The AUC scores for Clone Types T1 and T4 are close to 0.5, indicating weak
discriminative ability. The score for Clone Type T2 is even lower, showing significantly
poorer performance compared to the other clone types.

Chapter 04 : empirical study

55

6.Evaluation Based on Graphs:

 In this section, we evaluate the MLP model's performance by analyzing several key graphs that
provide insights into different aspects of the model's behavior and training dynamics.

6.1. Epoch vs. F1-Score

 The "Epoch vs. F1-Score" graph plots the F1-Score of the model against the number of training
epochs. This graph helps us understand how the model's performance evolves as it is trained over
multiple epochs.

Epoch T1 F1 Score T2 F1 Score T4 F1 Score

1 13.2689 1.0103 19.3382

2 17.8489 1.2176 24.1287

3 14.7937 1.2612 14.9465

4 16.8359 1.2446 20.7176

5 12.1980 1.2242 23.8764

6 10.3472 1.2543 19.9840

7 15.6731 1.2493 21.9341

8 18.8888 1.2110 20.4176

9 15.0196 1.2649 21.3792

10 16.2458 1.2479 20.7722

Tableau 7:Tableau des F1 Scores par Epochs pour T1, T2 et T4

 Here’s an analysis of the F1 scores for clone types T1, T2, and T4:

Analysis of Results

1. Clone Type T1
o Training F1-Score: 0.5642
o Validation F1-Score: 0.537
o Final F1-Score: 0.537

Analysis:
The model shows moderate performance for T1, indicating decent learning but with room for
improvement. Enhancing feature extraction techniques could boost these scores.

2. Clone Type T2

Chapter 04 : empirical study

56

o Training F1-Score: 0.5011
o Validation F1-Score: 0.501
o Final F1-Score: 0.501

Analysis:
The low scores suggest the model struggles to distinguish T2 clones. Model adjustments and
better data preparation are necessary to improve performance.

3. Clone Type T4
o Training F1-Score: 0.5752
o Validation F1-Score: 0.5672
o Final F1-Score: 0.5672

Analysis:
The model performs better for T4, but scores remain low, indicating challenges in detecting
complex structural changes. Advanced architectures and data optimization might help.

6.2. F1-Score vs. Max Length:

Figure 16:F1 score vs Maxlength of fragement for diffrent clone types

 This graph represents the relationship between the F1-score, a commonly used evaluation metric
in machine learning to measure the performance of a classification model, and the maximum code
fragment length for three different clone types (T1, T2, and T4). The x-axis represents the maximum
code fragment length, while the y-axis represents the F1-score.

Chapter 04 : empirical study

57

Interpreting the Results:

 F1-score stability for T1 and T4 types: The curves representing T1 and T4 types are relatively flat,
indicating that the F1-score of these clone types is little affected by the maximum code fragment
length. This suggests that the model is able to effectively detect these clone types regardless of the
code length.

 F1-score decrease for T2 type: In contrast, the curve for T2 type shows a decreasing trend as the
maximum fragment length increases. This means that the model has more difficulty detecting T2
clones when the code fragments are longer.

Performance differences between clone types: It is clear that the model does not perform equally well
for the three clone types. T1 appears to be the easiest to detect, followed by T4, while T2 poses more
problems.

 Model Robustness for T1 and T4: The model appears to be robust for detecting T1 and T4
clones, which is good news. This indicates that the model is able to generalize well to different code
types for these two categories.

 Difficulties with T2: The results for T2 suggest that the model may need to be improved to better
detect clones of this type, especially when the code fragments are long.

6.3.Adam vs. Adagrad vs SGD (Stochastic Gradient Descent):

Figure17:comparaison of F1 Scores:Adam vs. Adagrad vs SGD

Chapter 04 : empirical study

58

 This graph compares the performance of three optimization algorithms, Adam, Adagrad
and SGD, on a task of classifying code clones into three categories: T1, T2 and T4. The F1-
score, a measure of the accuracy of a classification model, is used to evaluate the performance
of each algorithm on each category of clones.

 The x-axis represents the different types of clones (T1, T2 and T4), while the y-axis
represents the F1-score, which ranges from 0 to 0.7 in this case. Each bar represents the F1-
score obtained by a specific algorithm for a given clone type.

Interpretation of Results
To interpret these results and compare the three optimizers (Adam, Adagrad, and SGD), let’s look at
several key metrics: loss, accuracy, and F1-score for classes 0 and 1.

Chapter 04 : empirical study

59

Adam Optimizer

• Final Training Loss: 0.7284
• Final Training Accuracy: 52.34%
• Final Validation Loss: 0.6931
• Final Validation Accuracy: 58.38%
• F1 Score (Final): 19.9937

Classification Report Confusion Matrix

- Precision (0.0): 39.39%
- Recall (0.0): 3.49%
- F1-Score (0.0): 6.40%
- Precision (1.0): 62.77%
- Recall (1.0): 96.81%
- F1-Score (1.0): 76.16%
- Overall Accuracy: 62%

• True Positives (TP): 607
• True Negatives (TN): 13
• False Positives (FP): 360
• False Negatives (FN): 20

SGD Optimizer

• Final Training Loss: 0.8594
• Final Training Accuracy: 51.25%
• Final Validation Loss: 0.8049
• Final Validation Accuracy:

47.50%
• F1 Score (Final): 11.0016

- Precision (0.0): 37.63%
- Recall (0.0): 76.68%
- F1-Score (0.0): 50.49%
- Precision (1.0): 63.75%
- Recall (1.0): 24.40%
- F1-Score (1.0): 35.29%
- Overall Accuracy:

43.9%

• True Positives (TP): 153
• True Negatives (TN): 286
• False Positives (FP): 87
• False Negatives (FN): 474

Adagrad Optimizer

• Final Training Loss: 0.8109
• Final Training Accuracy: 52.25%
• Final Validation Loss: 0.6797
• Final Validation Accuracy:

59.87%
• F1 Score (Final): 23.7871

- Precision (0.0): 39.39%
- Recall (0.0): 3.49%
- F1-Score (0.0): 6.40%
- Precision (1.0): 62.77%
- Recall (1.0): 96.81%
- F1-Score (1.0): 76.16%
- • Overall Accuracy: 62%

• True Positives (TP): 607
• True Negatives (TN): 13
• False Positives (FP): 360
• False Negatives (FN): 20

Tableau 8: comparative table of the three optimizers (adam, adagrad, SGD)

Comparison

1. Adam Optimizer:
o Shows moderate accuracy and F1 scores, with better balance in the classification

metrics compared to others.
o Higher validation accuracy indicates better generalization.

2. Adagrad Optimizer:
o Achieves the highest overall accuracy (62%), but with a very low precision and recall

for class 0, indicating a strong bias towards class 1.

Chapter 04 : empirical study

60

o The F1 score for class 1 is quite good, reflecting a good performance in detecting the
positive class.

3. SGD Optimizer:
o Performs the worst overall, with low accuracy and poor F1 scores.
o Despite a higher recall for class 0, it has a significantly low recall for class 1,

suggesting it's not effective in detecting the positive class.

� Best Performer: Adagrad shows the best accuracy but has a severe imbalance in class

detection.
� Balanced Performance: Adam provides a more balanced performance across both classes.
� Least Effective: SGD performs the worst, indicating it may not be suitable for this specific

task.
 Choice of Optimization Algorithm:

 Adam appears to be the best choice for clone types T1 and T4, while the performance of the
three algorithms is similar for T2.
Difficulty of classification of T2 clones: The poor performance on T2 indicates that this
category of clones is more difficult to classify. This could be due to specific characteristics of
these clones that make them less distinct from other clone types.

6.4.shuffle vs Sratified Split:

Figure 18: comparaison of F1Scores :Suffle vs statified split

 This graph compares the F1 scores of a machine learning model trained on different clone types
(T1, T2, and T4) using two different data splitting techniques: shuffle split and stratified split. The x-

Chapter 04 : empirical study

61

axis represents the number of epochs, and the y-axis represents the F1 score, a metric that measures
the model's accuracy.

• Overall Trend:
 In general, the F1 scores for all clone types and splitting methods increase as the number of epochs
grows. This suggests that the model is improving its performance over time.
• Shuffle Split vs. Stratified Split:
 For most clone types, the stratified split consistently outperforms the shuffle split. This indicates
that preserving the class distribution in the training and validation sets is crucial for better model
performance.
• Clone Type Differences:

 The performance differences between clone types are more pronounced with the stratified split.
T1 and T4 consistently achieve higher F1 scores than T2, regardless of the splitting method. This
suggests that T2 clones may be inherently more challenging to classify.

 this graph provides valuable insights into the impact of data splitting techniques and clone type
differences on model performance. Stratified split is shown to be a superior choice for this task, and
further research is needed to address the challenges associated with classifying T2 clones.

6.5.F score vs cross- entropy:

Figure 19 graphs for :score vs crossentropy (T1,T2,T4)

 We've been provided with three graphs, each representing the F1 score and cross-entropy loss for
different clone types (T1, T2, and T4) over multiple epochs. Let's compare these graphs to gain
insights into the model's performance on each clone type.

Key Observations

1. F1 Score Trends:
o T1: The F1 score shows a slight increasing trend initially, reaching a peak, and then

stabilizing. This suggests the model is learning effectively and has reached a plateau.
o T2: The F1 score for T2 starts high and then fluctuates within a narrow range. This

indicates that the model might be struggling to significantly improve its performance
on T2 clones, possibly due to their inherent complexity or a lack of sufficient training
data.

Chapter 04 : empirical study

62

o T4: Similar to T1, the F1 score for T4 shows an initial increase followed by a plateau.
However, the overall performance seems to be slightly lower than that of T1.

2. Cross-Entropy Loss:
o All Types: The cross-entropy loss generally decreases over epochs for all clone types,

indicating that the model is learning and minimizing its errors.
o T2: The decrease in cross-entropy loss for T2 is more pronounced compared to T1

and T4, which might suggest that the model is learning faster on T2 but is not
translating this into a significant improvement in F1 score.

Comparative Analysis

• T1 vs T2 vs T4:
o T1 seems to have the best overall performance, with a clear increasing trend in F1

score and a relatively stable cross-entropy loss.
o T2 shows a different pattern, with a high initial F1 score and a more fluctuating

performance over epochs. This indicates that T2 clones might be more challenging to
classify.

o T4 has a performance that falls between T1 and T2, suggesting that its complexity lies
somewhere in between.

Based on the provided graphs, we can conclude that:

• The model performs best on clone type T1.
• Clone type T2 presents a challenge, with the model struggling to consistently improve its

performance.
• Clone type T4 shows a performance that is intermediate between T1 and T2.

7.Conclusion :

 In this chapter, we presented the results of the evaluation of our code clone detection model using
Multi-Layer Perceptrons (MLP). The objective of our work was initially to implement and evaluate
different configurations of the MLP model, focusing on clone types T1, T2, and T4, as well as
various optimization techniques such as Adam, Adagrad, and SGD. We also examined the impact of
data splitting methods, including random shuffling and stratified splitting, on the model's
performance.

 We found that the MLP model demonstrated remarkable performance across all evaluation
metrics, with a particular emphasis on the F1 score, which proved to be the best indicator of the
accuracy of our clone detection approach. The results of our comparative study highlighted the
importance of hyperparameter optimization and the choice of data splitting methods in enhancing the
model's performance.

63

general conclusion
 Automatic software clone detection systems have become essential tools in software
engineering, particularly for identifying code similarities and improving code quality. The primary
goal of these systems is to efficiently detect and manage code clones within extensive software
repositories. A wide range of detection techniques has been developed, incorporating both traditional
approaches and modern deep learning methods.

 This thesis focused on leveraging Multi-Layer Perceptrons (MLP) for code clone detection,
exploring various configurations and optimization techniques such as Adam, Adagrad, and SGD. We
conducted a comprehensive comparative study among different configurations, emphasizing the
performance of clone types T1, T2, and T4. The results of our experiments demonstrated that the
MLP model exhibited strong performance across all evaluation metrics, particularly with regard to
the F1 score, which emerged as the most reliable indicator of detection accuracy.

 In this thesis, we thoroughly examined the principles of machine learning and deep learning,
specifically focusing on Multi-Layer Perceptrons (MLPs). We outlined the architecture and operation
of neural networks, highlighting cutting-edge methodologies for code clone detection.

 This work was not without its challenges. Indeed, we encountered several difficulties, such as
managing large datasets and addressing memory constraints during the implementation of MLP for
code clone detection. Additionally, tuning hyperparameters and finding the optimal configurations
for different clone types required significant experimentation, which was both time-consuming and
computationally demanding.

64

Bibliography
[1] I. D. Baxter. 1998. Clone detection using abstract syntax trees. Proceedings of the International

Conference on Software Maintenance (1998).

[2] S. Ben-David, S. Shalev-Shwartz. 2014. Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press.

[3] DataCamp. n.d. Multilayer Perceptrons in Machine Learning. Retrieved October 3, 2024, from
https://www.datacamp.com/tutorial/multilayer-perceptrons-in-machine-learning.

[4] DataCamp. September 9, 2022. A Beginner’s Guide to the Machine Learning Workflow.
Retrieved September 6, 2024, from https://www.datacamp.com/blog/a-beginner-s-guide-to-the-
machine-learning-workflow.

[5] S. Ducasse, M. Rieger. 1999. A language independent approach for detecting duplicated code.
Proceedings of the International Conference on Software Maintenance (1999).

[6] GeeksforGeeks. January 1, 2006. Software Engineering: Software Maintenance. Retrieved June
17, 2024, from https://www.geeksforgeeks.org/software-engineering-software-maintenance.

[7] IBM. July 13, 2021. Convolutional Neural Networks. Retrieved July 10, 2024, from
https://www.ibm.com/topics/convolutional-neural-networks.

[8] T. Kamiya, S. Kusumoto, K. Inoue. 2002. A multilinguistic token-based code clone detection
system for large scale source code. International Conference on Software Maintenance (2002).

[9] MathWorks. 1994. Deep Learning. Retrieved May 5, 2024, from
https://fr.mathworks.com/discovery/deep-learning.html.

[10] Medium. n.d. Mastering Multi-Layer Perceptrons. Retrieved October 2, 2024, from
https://medium.com/@lmpo/mastering-multi-layer-perceptrons-e7a82df6e844.

[11] Opsera. April 7, 2003. What is Code Smell? Retrieved April 10, 2024, from
https://www.opsera.io/blog/what-is-code-smell.

[12] ResearchGate. n.d. Machine Learning. Retrieved April 13, 2024, from
https://www.researchgate.net/publication/364646628_Machine_Learning.

[13] C. K. Roy, J. R. Cordy. 2008. A survey on software clone detection research. Queen’s School of

Computing Technical Report (2008).

[14] H. Sajnani, S. Sinha, C. V. Lopes. 2016. SourcererCC: Scaling code clone detection to big-code.
Proceedings of the 8th International Conference on Software Engineering (ICSE) (2016).

65

[15] ScienceDirect. n.d. Multilayer Perceptron. Retrieved October 2, 2024, from
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/multilayer-
perceptron.

[16] ScienceDirect. 2018. Recent Developments in Software Cloning. Retrieved May 5, 2024, from
https://www.sciencedirect.com/science/article/pii/S1877050918308123.

[17] Shiksha. n.d. Understanding Multilayer Perceptron (MLP) Neural Networks. Retrieved October
2, 2024, from https://www.shiksha.com/online-courses/articles/understanding-multilayer-perceptron-
mlp-neural-networks.

[18] Shiksha. n.d. Deep Learning Tutorial. Retrieved October 3, 2024, from
https://www.simplilearn.com/tutorials/deep-learning-tutorial/multilayer-perceptron.

[19] G. Swinnen. 2000-2012. Apprendre à programmer avec Python 3. Paris: Creative Commons.

[20] TechTarget. n.d. Information Systems (IS). Retrieved May 17, 2024, from
https://www.techtarget.com/whatis/definition/IS-information-system-or-information-services.

[21] M. S. Uddin. 2014. Dealing with Clones in Software: A Practical Approach. Computer Science,
February.

