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Abstract 

The objective of this thesis is to establish the existence, 

uniqueness, and stability of solutions, as well as to model the 

results for a system of difference equations in a Banach space. 

Our results are recent and are based on fixed point theorems. 

Key words and phrases: 

 Existence of solutions, uniqueness, stability, fixed point, 

difference equations, models. 

Résumé 
 

L'objectif de cette thèse est d'établir l'existence, l'unicité et la 
stabilité des solutions, ainsi que de modéliser les résultats pour un 
système d'équations aux différences dans un espace de Banach. Nos 

résultats sont récents et basés sur des théorèmes du point fixe. 
 
 

Mots-clés et expressions: 
 

Existence des solutions, unicité, stabilité, point fixe, équations 

aux différences, modèles. 

 مهخص

وحذانيت واستقشاس انحهىل، بالإضافت إنى نمزخت  تهذف هزه الأطشوحت إنى إثباث وخىد و

. وتستنذ نتائدنا انحذيثت عهى نظشياث اننقطت خنابمن معادلاث انفشوق في فضاء  دمماننتائح ن

.صامذةان  
 

 انكهماث وانعباساث انمفتاحيت
 

.وخىد انحهىل، انىحذانيت، الاستقشاس، اننقطت انثابتت، معادلاث انفشوق، اننمارج  
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Introduction

We know that difference equations have been a major branch of pure and applied math-
ematics since their inauguration in the mid 17th century. While their history has been
well studied, it is a vital field of on-going investigation, with the emergence of new
connections with other parts of mathematics, fertile interplay with applied subjects,
interesting reformulation of basic problems and theory in various periods, new vistas in
the 20th century, and so on in this meeting we considered some of the principal parts
of this story, from the launch with Newton and Leibniz up to around 1950[18].

Usually, difference equations began with Leibniz, the Bernoulli brothers and others
from the 1680s, not long after Newton’s fluxional equations in the 1670s.We can say
applications
were made largely to geometry and mechanics; isoperimetrical problems were exercises
in optimisation.Most 18th-century developments consolidated the Leibnizian tradition,
extending its multi-variate form, thus leading to partial difference equations. Gener-
alisation of isoperimetrical problems led to the calculus of variations. New figures
appeared, especially Euler, Daniel Bernoulli, Lagrange and Laplace[2]. Development
of the general theory of solutions included singular ones, functional solutions and those
by infinite series. For example, many applications were made to mechanics, especially
to astronomy and continuous media.

In the 19th century: general theory was enriched by development of the under-
standing of general and particular solutions, and of existence theorems. More types
of equation and their solutions appeared; for example, Fourier analysis and special
functions. Among new figures, Cauchy stands out. Applications were now made
not only to classical mechanics but also to heat theory, optics, electricity and mag-
netism, especially with the impact of Maxwell. Later Poincaré introduced recurrence
theorems[21],initially in connection with the three-body problem. In the 20th century:
general theory was influenced by the arrival of set theory in mathematical analysis;
with consequences for theorisation, including further topological aspects. New appli-
cations were made to quantum mathematics, dynamical systems and relativity theory.

In brief ,difference equations are equations that contains one or more terms involv-
ing derivatives of one variable (dependent variable) with respect to another variable
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(independent variable) or we can say that these are equations involving derivatives of a
function or functions. They have a remarkable ability to predict the world around us.
They are used to describe exponential growth and decay, population growth of species
or the change in investment return over time, bank interest, even in solving radioactive
decay problems, continuous compound interest problems, flow problems, cooling and
heating problems, orthogonal trajectories, and also in investigating problems involv-
ing fluid mechanics, circuit design, heat transfer, population or conservation biology,
seismic waves. They are used in specific field such as, in the field of medicine, where
difference equations are used for modelling cancer growth or the spread of disease.

In chemistry, they are used for modelling chemical reactions and to computer ra-
dioactive half-life. In economics, they are used to find optimum investments strategies.
In physics, they are used to describe the motion of waves, pendulums or chaotic systems.

We find that many statements concerning the theory of linear differential equations
are also valid for the corresponding difference equations. A well-known example is
the famous Poincaré theorem on the asymptotic behavior of the solutions to difference
equations which was published in 1885 (see Gelfand (1967) and van Strien (1978))[12].

Also, a feature of difference equations not shared by differential equations is that
they can be characterized as recursive functions. Examples of their use include mod-
eling
population changes from one season to another ,modeling the spread of disease,modeling
various business phenomena, discrete simulations applications , or giving rise to the
phenomena chaos .The key is that they are discrete ,recursive relations.

This work consists of four chapters and each chapter contains more sections.
They are arranged as follows:
In Chapter 1, we introduce definitions, theories, and notations preliminary facts that
will be used through this work.
In Chapter 2 , we prove the existence of solutions for difference equations in Banach
space.
In Chapter 3 , we solve the stability problem of equilibrium point using Lyapunov
and linearization of systems.
In Chapter 4 , we introduce applications and models of difference equations with
state-dependent delays.
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Chapter 1

Preliminaries

In this chapter, we introduce notations, definitions, lemmas and fixed point theorems
which are used throughout this thesis.

1.1 Definitions of Fixed Point

Definition 1.1.1. [14] Let X be a metric space equipped with a distance d. A map
f : X → X is said to be Lipschitz continuous if there is λ ≥ 0 such that:

d(f(x1), f(x2)) ≤ λd(x1, x2),∀x1, x2 ∈ X.

The smallest λ for which the above inequality holds is the Lipschitz constant of f.

(1) If λ ≤ 1 f is said to be non-expansive.

(2) If λ < 1 f is said to be a contraction.

Definition 1.1.2. [3] Let X be a metric space,x ∈ X is called a fixed point of a
mapping:

A : X → X if Ax = x.

Example 1.1.1. We have

j = [a, b] ⊂ R

and

f : j → j.

Indeed:

a− f(a) ≤ 0

and

b− f(b) ≥ 0.
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1.2 Generalized Metric and Banach Spaces

The intermediate value theorem ensures:

x− f(x) = 0

has one solution in j and therefore f has a fixed point.

Definition 1.1.3. [13] Given a matrix T, let

ρ(T ) = max |δ1|, |δ2|,

Where δ1 and δ2 are eigenvalues of the matrix T.Then

‖T̄‖ =
√
ρ(T TT )

is called the spectral norm of T and is needed a matrix norm.

Definition 1.1.4. [13] A fixed point x∗ of a map g : R2 → R2 is called :

(1) Stable if given ε > 0 ∃ ε > 0 such that |x − x∗| < ε implies |gm(x) − x∗| < ε
∀m ∈ Z∗.

(2) Attracting if ∀η > 0 such that |x − x∗| < η implies that limn→0 g
n(x) = x∗ if

η =∞ we call it globally attracting.

(3) Asymptotically stable if it is both stable and attracting.It is globally asymptotically
stable if it is both stable and globally attracting.

(4) Unstable if it is not stable.

1.2 Generalized Metric and Banach Spaces

Theorem 1.2.1. [5] Let (X, dX) and (Y, dY ) two metric spaces and X compact. Then
a follows conditions are equivalents :

1. A ⊂ C(X, Y ) is relatively compact i.e Ā compact for the topology of uniform
convergence.

2. A is equicontinue in each point x of X ; A(x) := {f(x), f ∈ A} is relatively
compact.

Theorem 1.2.2. ([20]) Let (X, d) be a complete generalized metric space with
d : X ×X → Rn and let N : X → X be such that:

d(N(x), N(y)) ≤Md(x, y)

for all x, y ∈ X and some square matrix M of nonnegative numbers. If the matrix M is
convergent to zero, that is Mk → 0 as k →∞, then N has a unique fixed point x∗ ∈ X.
For every x0 ∈ X and k ≥ 1.
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Preliminaries

Theorem 1.2.3. [11] Let (E, ‖.‖) be a generalized Banach space and N : E → E is a
continuous compact mapping. Moreover assume that the set:

A = {x ∈ E : x = λN(x), forsomeλ ∈ (0, 1)}
is bounded. Then N has a fixed point.

Theorem 1.2.4. [16] Let φ : [0, T ] → R be a nonnegative differentiable function for
which there exists a constant C such that:

φ′(t) ≤ Cφ(t),∀t ∈ [0, T ].

Then:

φ(t) ≤ φ(0) exp(

∫ t

0

C(τ)dτ)).

Theorem 1.2.5. [10] Every generalized metric space is para compact.

Theorem 1.2.6. [11] Let X be a generalized Banach space, C be a nonempty compact
convex subset of X,

G : C → Pcp,cv(C)

be an u.s.c. multivalued map, then the operator inclusion G has at leat one fixed point,
that is there exists x ∈ C such that x ∈ G(x).

Theorem 1.2.7. [15] Let E be a Banach space, D a nonempty closed bounded and
convex subset of E, and N : D → D a completely continuous operator. Then N has at
least one fixed point.

Proof. Let x0 ∈ D .For n = 2, 3, . . . , define:

Nn := (1− 1

n
)N +

1

n
x0.

Since D is convex ,we see that Nn : D → D is a contraction. Therefore each Nn has a
unique fixed point xn ∈ D,

xn = Nn(xn) = (1− 1

n
)N(xn) +

1

n
x0.

Since N(D) lies in a compact subset of D,there exist a subsequence S of integers and
a u ∈ D with

N(xn)→ u, as n→∞ in S.

Thus

xn = (1− 1

n
)N(xn) +

1

n
x0 → u as n→∞ in S.

By continuity
N(xn)→ N(u) asn→∞in S,

Therefore u = N(u).

Theorem 1.2.8. ([17]) Let B(0, 1) be the unit ball in a Banach space X. Then
α(B(0, 1)) = χ(B(0, 1)) = 0 if X is finite dimensional,
and α(B(0, 1)) = 2, χ(B(0, 1)) = 1 otherwise.
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1.3 Multivalued Analysis

1.3 Multivalued Analysis

Lemma 1.3.1. [8] Let (X, d) be a generalized metric space. Then there exists a home-
omorphism map h : X → X̄.

Proof. Consider h : X → X̄ defined by: h(x) = (x, . . . , x) for all x ∈ X
Obviously that h is bijective . To prove that h is continuous map. let x, y ∈ X .Thus

d∗(h(x), h(y)) ≤
n∑
i=1

di(x, y).

For ε > 0 we need δ = ( ε
n
, . . . , ε

n
), let fixed x0 ∈ X and B(x0, δ) = {x ∈ Xd(x0, x) <

δ},we have:
d∗(h(x0), h(x)) ≤ ε

. Let h−1 : X̄ → X is a continuous map: h−1(x, . . . , x) = x, (x, . . . , x) ∈ X̄ Let
(x, . . . , x), (y, . . . , y) ∈ X̄,then

d(h−1(x, . . . , x), h−1(y, . . . , y)) = d(x, y)

. And ε = (ε1, . . . , εn) > 0 we take δ = min0<i<n εi
n

And we fix (x0, . . . , x0) ∈ X̄.

B((x0, . . . , x0), δ) = {(x, . . . , x) ∈ X̄ : d∗((x0, . . . , x0), (x, . . . , x)) < δ}
. We have

d∗((x0, . . . , x0), (x, . . . , x)) < δ ⇒
n∑
i=1

di(x0, x) <
min0<i<n εi

n

Then

di(x0, x) <
min0<i<n εi

n
, i = 1, . . . , n⇒ d(x0, x) < ε.

Hence h−1 is continuous.

Lemma 1.3.2. [17] A subset E of a metric space (X, d) is complete if for any cauchy
sequence of points {xn} in E there exists x ∈ E such that:

lim
n→∞

d(xn, x) = 0

.

Lemma 1.3.3. [11] Let (X, ‖.‖) be a generalized Banach space with C ⊂ X a closed
and convex subset of X. Assume U is an open subset of C, with 0 ∈ U , and let G :
U → C is a compact map. Then either,

(a) G has a fixed point in U, or

(b) There is a point u ∈ ∂U and λ ∈ (0, 1), with u ∈ λG(u).

Proof. Let r : C → U be the standard retraction .by the Schauder theorem the compact
composite roG : U → U has a fixed point x = rG(x). if G(x) ∈ U then x = rG(x) =

G(x) so G has a fixed point; if G(x) does not belong to U , x = rG(x) = G(x)
‖G(x)‖ , so

x ∈ ∂U and λ = 1
‖G(x)‖ < 1.
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Preliminaries

1.4 Completness of Metric Space

Proposition 1.4.1. [17] Let (X, d) be a metric space.the following statements are
equivalent:

(a) Every sequence of elements of X has a convergent subsequence in X .

(b) The space X is complete and for each ε > 0 it admits a finite covering by open
balls of radius ε.
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Chapter 2

System of Difference Equations

2.1 Main Result

In this chapter, we study the existence of solutions for differential equations of the
form: 

4x(k) = f(k, x(k), y(k)), k ∈ N(a, b),
4y(k) = g(k, x(k), y(k)), k ∈ N(a, b),
x(a) = x0,
y(a) = y0,

(2.1.1)

Where N(a, b) = {a, a+ 1, . . . , b}, f, g : N(a, b)× Rn −→ Rn are given functions .
Let us introduce the following hypothesis:

(H1) There exist nonnegative numbers ai and bi for each i ∈ {1, 2}.

{
|f(k, x, y)− f(k, x̄, ȳ)| ≤ a1|x− x̄|+ b1|y − ȳ|
|g(k, x, y)− g(k, x̄, ȳ)| ≤ a2|x− x̄|+ b2|y − ȳ|

for all x, y, x̄, ȳ ∈ Rn.

For our main consideration of problem (2.1.1) , a Preov fixed point is used to investigate
the existence and uniqueness of solutions for system of differential equations.

Theorem 2.1.1. Assume that (H1) is satisfied and the matrix:

A = b

(
a1 b1
a2 b2

)
Such that A ∈ A2∗2(R+). If A converges to zero. Then the problem (2.1.1) has a unique
solution.

Proof. Consider the operator:

13



System of Difference Equations

M : C(N(a, b),Rn)× C(N(a, b),Rn) −→ C(N(a, b),Rn) defined for:

(x, y) ∈ C(N(a, b),Rn)× C(N(a, b),Rn)

We have :
M(x, y) = (M1(x, y),M2)(x, y)) (2.1.2)

Where

M1(x(k), y(k)) = x0 +
k∑
l=a

f(l, x(l), y(l)), k ∈ N(a, b)

And

M2(x(k), y(k)) = y0 +
k∑
l=a

g(l, x(l), y(l)), k ∈ N(a, b).

We shall use theorem 11 to prove that M has a fixed point.Indeed,let (x, y), (x̄, ȳ) ∈
C(N(a, b),Rn)× C(N(a, b),Rn). Then we have for each k ∈ N(a, b)

|M1(x(k), y(k))−M1(x̄(l), ȳ(l))| = |
l=k∑
l=a

[f(l, x(l), y(l))− f(l, x̄(l), ȳ(l))]|.

Then

‖M1(x, y)−M1(x̄, ȳ)‖∞ ≤ ba1‖x− x̄‖∞ + bb1‖y − ȳ‖∞.
Similarly we have

‖M2(x, y)−M2(x̄, ȳ)‖∞ ≤ ba2‖x− x̄‖∞ + bb2‖y − ȳ‖∞.
Hence

‖M(x, y)−M(x̄, ȳ)‖∞ =

(
‖M1(x, y)−M1(x̄, ȳ)‖∞
‖M2(x, y)−M2(x̄, ȳ)‖∞

)
≤ b

(
a1 b1
a2 b2

)(
‖x− x̄‖∞
‖y − ȳ‖∞

)
.

Therefore

‖M(x, y)−M(x̄, ȳ)‖∞ ≤ A

(
‖x− x̄‖∞
‖y − ȳ‖∞

)
.

For all (x, y), (x̄, ȳ) ∈ C(N(a, b),Rn)×C(N(a, b),Rn) From Preov fixed point theorem,
the mapping M has a unique fixed (x, y) ∈ C(N(a, b),Rn) × C(N(a, b),Rn) which is
unique solution of problem (2.1.1).

Lemma 2.1.2. Let M1(x(k), y(k)) an operator has a fixed point

M1(x(k), y(k)) = x0 +
k∑
l=a

f(l, x(l), y(l)), k ∈ N(a, b).

14



2.1 Main Result

Proof. We have 4x(k) = f(k, x(k), y(k)) and 4x(k) = x(k + 1)− x(k) so

x(k + 1)− x(k) = f(k, x(k), y(k)),

If k = a, . . . , b we get:

x(a+ 1)− x(a) = f(a, x(a), y(a)),

x(a+ 2) = x(a+ 1) + f(a+ 1, x(a+ 1), y(a+ 1)),

x(a+ 3) = x(a+ 2) + f(a+ 2, x(a+ 2), y(a+ 2)), . . . ,

x(b) = x(b− 1) + f(b− 1, x(b− 1), y(b− 1)),

x(b) = x(a) + f(a, x(a), y(a)) + . . .+ f(b, x(b), y(b)),

Therefore :

M1(x(k), y(k)) = x0 +
k∑
l=a

f(l, x(l), y(l)), k ∈ N(a, b).

Theorem 2.1.3. Assume the following conditions:

(H2) There exist nonnegative functions αi, βi : N(a) −→ R+ for each i ∈ {1, 2}{
|f(k, x, y)− f(k, x̄, ȳ)| ≤ α1(k)|x− x̄|+ α2(k)|y − ȳ|
|g(k, x, y)− g(k, x̄, ȳ)| ≤ β1(k)|x− x̄|+ β2(k)|y − ȳ|

for all x, y, x̄, ȳ ∈ Rn.

(H3) h1, h2 : N(a)× Rn −→ Rn be functions such that :

|hi(k, x, y)| ≤ λ1(k), i = 1, 2,

Where λi are a nonnegative functions defined on N(a).

Then, for the solutions (x(k, x0), y(k, y0)) and (e(k, e0), s(k, s0)) on N(a) of the initial
value problem (2.1.1) and
4e(k) = h1(k, e(k), s(k)) + f(k, e(k, e0), s(k, s0)), k ∈ N(a) = {a, a+ 1, . . . , b},
4s(k) = h2(k, e(k), s(k)) + g(k, e(k, e0), s(k, s0)), k ∈ N(a),
e(a) = e0,
s(a) = s0,

(2.1.3)
The following inequality holds:

|x(k, x0)− e(k, e0)| ≤ (|x0 − e0|+ |y0 − s0|+
l=k∑
l=a

λ(l))
l=k∏
l=a

(1 + α(k)). And
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System of Difference Equations

|y(k, y0)− s(k, s0)| ≤ (|y0 − s0|+ |x0 − e0|+
l=k∑
l=a

λ(l))
l=k∏
l=a

(1 + α(k)).

Where

α(k) = α1(k) + α2(k) + β1(k) + β2(k), λk = λ1(k) + λ2(k), k ∈ N(a).

Proof. The problem (2.1.1) and (2.1.3) are equivalent to:{
x(k, x0) = x0 +

∑k
l=a f(l, x(l, x0), y(l, y0)), k ∈ N(a)

y(k, y0) = y0 +
∑k

l=a g(l, x(l, x0), y(l, y0)), k ∈ N(a).

And{
e(k, e0) = e0 +

∑k
l=a(h1(l, e(l, e0), s(l, s0)) + f(l, e(l, e0), s(l, s0))), k ∈ N(a)

s(k, s0) = s0 +
∑k

l=a(h2(l, e(l, e0), s(l, s0)) + g(l, e(l, e0), s(l, s0))), k ∈ N(a),
We find that:

x(k, x0)− e(k, e0) = x0 − e0 +
k∑
l=a

(f(l, x(l, x0), y(l, y0))− f(l, e(l, e0), s(l, s0)))−∑k
l=a(h1(l, e(l, e0), s(l, s0))

y(k, y0)− s(k, s0) = y0 − s0 +
k∑
l=a

(g(l, x(l, x0), y(l, y0))− g(l, e(l, e0), s(l, s0)))−∑k
l=a(h2(l, e(l, e0), s(l, s0)).

Then:

R(k) ≤ |x0 − e0|+ |y0 − s0|+
k∑
l=a

α(l)R(l) +
k∑
l=a

λ(l)

Where

R(k) = |x(k, x0)− e(k, e0)|+ |y(k, y0)− s(k, s0)|, k ∈ N(a)

And
α(k) = α1(k) + α2(k) + β1(k) + β2(k), λk = λ1(k) + λ2(k), k ∈ N(a).
We get

R(k) ≤ (|x0 − e0|+ |y0 − s0|+
l=k∑
l=a

λ(l))
l=k∏
l=a

(1 + α(k))

Hence
|x(k, x0)− e(k, e0)| ≤ (|x0 − e0|+ |y0 − s0|+

∑l=k
l=a λ(l))

∏l=k
l=a(1 + α(k)).

and

|y(k, y0)− s(k, s0)| ≤ (|y0 − s0|+ |x0 − e0|+
l=k∑
l=a

λ(l))
l=k∏
l=a

(1 + α(k)).
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Now we consider the following cauchy problem with parameter
4x(k) = f(k, x(k), y(k), β), k ∈ N(a),
4y(k) = g(k, x(k), y(k), β), k ∈ N(a),
x(a) = x0,
y(a) = y0,

(2.1.4)

Where β ∈ Rm is a parameter such that |β − β0| ≤ ε and β0 is a fixed vector in Rm

and f, g : N(a)× Rn × Rn × Rm −→ Rn are given functions.

Theorem 2.1.4. For fixe α0 ∈ Rm and δ > 0 such that |α− α0| ≤ δ
the functions h and u satisfies the following conditions

(H4) There exist nonnegative numbers functions
λi, γi, ηi : N(a) −→ R+ for each i = 1, 2{

|h(k, x, y, α)− h(k, x̄, ȳ, α)| ≤ λ1(k)|x− x̄|+ λ2(k)|y − ȳ|
|u(k, x, y, α)− u(k, x̄, ȳ, α)| ≤ γ1(k)|x− x̄|+ γ2(k)|y − ȳ|

And {
|h(k, x, y, α1)− h(k, x, y, α2)| ≤ η1(k)|α1 − α2|
|u(k, x, y, α1)− u(k, x, y, α2)| ≤ η2(k)|α1 − α2|

Then for the solution (x(k, x1, α1), y(k, y1, α1)) and (p(k, p2, α2), q(k, q2, α2)) of (2.1.3)
the following inequality holds:

|x(k, x1, α1)− p(k, p2, α2)| ≤ (|x1 − p2|+ |y1 − q2|+ |α1 − α2|+
k∑
l=a

η(l))
l=k∏
l=a

(1 + λ(l)).

And

|y(k, y1, α1)− q(k, q2, α2)| ≤ (|x1 − p2|+ |y1 − q2|+ |α1 − α2|+
k∑
l=a

η(l))
l=k∏
l=a

(1 + λ(l)).

Where
λ(k) = λ1(k) + λ2(k) + γ1(k) + γ2(k), ηk = η1(k) + η2(k), k ∈ N(a).

In ordinary differential equations the Arzela-Ascoli theorem plays an important
role. In this section we give the discrete version of the Arzela-Ascoli theorem. The
topology on N(0, b+ 1) will be the discrete topology. Let (E, ||) be a Banach space, we
denote the space of continuous functions on N(0, b+ 1) by

C(N(a, b− 1), E) = {y : N(a, b− 1) −→ E, is continuous}.

With norm
‖y‖∞ = sup

k∈N(0,b+1)

|y(k)|

is a banach space .Now we set and prove the discrete Arzela -Ascoli theorem.

17



System of Difference Equations

Theorem 2.1.5. Let A be a closed subset of C(N(a, b+1), E).if ψ is uniformly bounded
and the set:

{y(k) : y ∈ ψ}

is relatively compact for each k ∈ N(a, b+ 1).Then ψ is compact.

Proof. We need only show that every sequence in ψ has a cauchy sebsequence.Let
ψ1 = {l1,1, l1,2, . . .} be any sequence in ψ.Notice the sequence {l1,i(0)},i = 1, 2, . . .
has a convergent subsequence and let ψ2 = {l2,1, l2,2, . . .} denote this subsequence
.for {l2,i(1)},i = 1, 2, . . . let ψ3 = {l3,1, l3,2, . . .} be the subsequence of ψ2 such that
{l3,i(1)},i = 1, 2, . . . converges.since ψ3 is a subsequence of ψ2 then {l3,i(0)},i = 1, 2, . . .
also converges.Continue this process to get a list of sequence

ψ1, ψ2, . . . ψb+2, ψb+3

. in which each sequence is a subsequence of the one directly on the left of it and for each
k, the sequence ψk = {lk,1, lk,2, . . .} has the property that {lk,i(k − 2)},i = 1, 2, . . . is a
convergent sequence.Thus for each k ∈ N(0, b+1), the sequence {lb+3,i(k)} is convergent
.Then since {lT+3,i(k)} is Cauchy for each k ∈ N(0, b+ 1),and since N(0, b+ 1) is finite
,we have that there exists n0 ∈ N independent of k such that

m,n ≥ n0 ⇒ |lb+3,m(k)− lb+3,n(k)| < ε, k ∈ N(0, b+ 1)

. thus ψb+3 is cauchy.

We also need the following characterization for relatively compact sets in B ⊂
(N, E), which is the discrete version of Przeradzki theorem [19].

Theorem 2.1.6. A set ψ ⊂ B ⊂ (N, E) is relatively compact if the following conditions
hold:

(i) For every k ∈ N the set {y(k) : x ∈ ψ} is relatively compact in E.

(ii) For every ε > 0 there exists N ′ ∈ N \ {0} and δ > 0 such that if x, y ∈ ψ with
|x(N ′)− y(N ′)| ≤ δ then |x(k)− y(k)| ≤ ε for all k ∈ {N ′, N ′ + 1, . . .}.

We shall also need the following existence principles

Theorem 2.1.7. Let h, g : N(a, b− 1)× Rn × Rn −→ Rn are continuous functions.
Assume that condition

(H5) There exist λ1, λ2 ∈ C(N(a, b− 1),R+) such that

|h(k, x, y)| ≤ λ1(k)(|x|+ |y|), k ∈ N(a, b− 1), (x, y) ∈ Rn × Rn,

and
|g(k, x, y)| ≤ λ2(k)(|x|+ |y|), k ∈ N(a, b− 1), (x, y) ∈ Rn × Rn.

18
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holds.Then the problem (2.1.1) has at least one solution.Moreover,the solution set
S(x0, y0) is compact and the multivalued map S : (x0, y0) ( S(x0, y0) is u.s.c.

Proof. let M = (M1,M2) is defined in the proof of theorem (2.1.1).

Step 1:N is cotinuous.
Let (xn, yn)→ (x, y) in C(N(a, b− 1),Rn)× C(N(a, b− 1),Rn) as n→∞.
Then

|M1(xn(k), yn(k))−M1(x(k), y(k))|

.

= |
k−1∑
l=a

h(l, xn(l), yn(l))−
k−1∑
l=a

h(l, x(l), y(l))|.

≤ |
b∑
l=a

h(l, xn(l), yn(l))−
b∑
l=a

h(l, x(l), y(l))|.

Similarly
|M2(xn(k), yn(k))−M2(x(k), y(k))|

≤ |
b∑
l=a

g(l, xn(l), yn(l))−
b∑
l=a

g(l, x(l), y(l))|

Thus
‖M1(xn(k), yn(k))−M1(x(k), y(k))‖∞ −→ 0.

‖M2(xn(k), yn(k))−M2(x(k), y(k))‖∞ −→ 0.

Step 2: We will show that M maps bounded sets into bounded
sets in C(N(a, b− 1),Rn)× C(N(a, b− 1),Rn)
let Br := {(x, y) ∈ C(N(a, b− 1),Rn)× C(N(a, b− 1),Rn) : ‖(x, y)‖∞ ≤ r},
where r = (r1, r2) and if (x, y) ∈ Br ,we obtain

|M1(x(k), y(k))| = |x0 +
k−1∑
l=a

h(l, xn(l), yn(l))|

≤ |x0|+ |
b∑
l=a

h(l, x(l), y(l))|.

‖M1(x, y)‖∞ ≤ |x0|+ 2r1

b∑
k=a

λ1(k) := l1

Similarly

‖M2(x, y)‖∞ ≤ |y0|+ 2r2

b∑
k=a

λ2(k) := l2
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Thus M : C(N(a, b− 1),Rn)→ C(N(a, b− 1),Rn) is completely continuous.

Step 3: it remains to show that B = {(x, y) ∈ C(N(a, b−1),Rn)×C(N(a, b−1),Rn) :
(x, y) = λM(x, y)} is bounded
Let (x, y) ∈ B.Then x = λM1(x, y) and y = λM2(x, y) for some 0 < λ < 1 we have

|x(k)| ≤ |x0|+
k−1∑
l=1

|f(l, x(l), y(l)|

≤ |x0|+
k−1∑
l=a

λ1(l)(|x(l)|+ |y(l)|)ds.

And

|y(k)| ≤ |y0|+
k−1∑
l=a

λ2(l)(|x(l)|+ |y(l)|)ds

Therefore

|x(k)|+ |y(k)| ≤ |x0|+ |y0|+
k−1∑
l=a

λ(l)(|x(l)|+ |y(l)|),

Where

λ(k) = λ1(k) + λ2(k), k ∈ N(a, b− 1).

We have:

|x(k)|+ |y(k)| ≤ (|x0|+ |y0|)(1 +
k−1∑
l=a

λ(l)
k−1∏
τ+1

(1 + λ(τ))).

Hence

‖x(k)‖∞ + ‖y(k)‖∞ ≤ (|x0|+ |y0|)(1 +
b∑
l=a

λ(l)
b∏

τ+1

(1 + λ(τ))).

this shows that B is bounded .As a consequence we deduce that M has a fixed point
(x, y) which is a solution to the problem (2.1.1).

Step 4: Compatness of the solution set.For each (x0, y0) ∈ Rn × Rn, let S(x0, y0) =
{(x, y) ∈ C(N(a, b − 1),Rn) × C(N(a, b − 1),Rn) : (x, y) is a solution} From step 3,
there exists Ã such that for every (x, y) ∈ S(x0, y0), ‖x(k)‖∞ ≤ Ã;‖y(k)‖∞ ≤Ã.Since
M is completely cotinuous ,M(S(x0, y0)) is relatively compact in

(x, y) ∈ C(N(a, b− 1),Rn)× C(N(a, b− 1),Rn).

let(x, y) ∈ S(x0, y0); then (x, y) = M(x, y) hence S(x0, y0) ⊂ M(S(x0, y0)). it remains
to prove that S(x0, y0) is a closed subset in (x, y) ∈ C(N(a, b − 1),Rn) × C(N(a, b −
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1),Rn). let {(xm, ym) : m ∈ N} ⊂ S(x0, y0) be such that (xm, ym)m∈N converges to
(x, y).for every m ∈ N, and k ∈ N(a, b− 1)

xm(k) = x0 +
k−1∑
l=a

h(l, xm(l), ym(l)). (2.1.5)

And

ym(k) = y0 +
k−1∑
l=a

g(l, xm(l), ym(l)). (2.1.6)

Set

z1(k) = x0 +
k−1∑
l=a

h(l, x(l), y(l)). (2.1.7)

and

z2(k) = y0 +
k−1∑
l=a

g(l, x(l), y(l)). (2.1.8)

Since h and g are continuous functions , we can prove that

x(k) = x0 +
k−1∑
l=a

h(l, x(l), y(l)), k ∈ N(a, b− 1)

and

y(k) = y0 +
k−1∑
l=a

g(l, x(l), y(l)), k ∈ N(a, b− 1)

Therefore (x, y) ∈ S(x0, y0) which yields that S(x0, y0) is closed ,hence compact subset
in C(N(a, b− 1),Rn)×C(N(a, b− 1),Rn).finally,we prove that S(.) is u.s.c. by proving
that the graph of S

Φs := {(x̄, ȳ, x, y) : (x, y) ∈ S(x̄, ȳ)}

is closed .let (x̄m, ȳm, xm, ym) ∈ Φs be such that (x̄m, ȳm, xm, ym) → (x̄, ȳ, x, y)asm →
∞.Since (xm, ym) ∈ S(x̄m, ȳm), Then

xm(k) = x̄m +
k−1∑
l=a

h(l, xm(l), ym(l)), k ∈ N(a, b− 1)

And

ym(k) = ȳm +
k−1∑
l=a

g(l, xm(l), ym(l)), k ∈ N(a, b− 1)

Since {(x̄m, ȳm)} is a bounded sequence ,there exists a subsequence of {(x̄m, ȳm)} con-
verging to (x̄, ȳ). as in Step 2,we can show that {(xm, ym) : m ∈ N} is uniformly
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bounded . as a sequence ,we conclude that there exists a subsequence of {(x̄m, ȳm)}
converging to (x̄, ȳ) in C(N(a, b− 1),Rn)× C(N(a, b− 1),Rn). By the continuity of h
and g ,we can prove that

x(k) = x̄+
k−1∑
l=a

h(l, x(l), y(l)), k ∈ N(a, b− 1)

and

y(k) = ȳ +
k−1∑
l=a

g(l, x(l), y(l)), k ∈ N(a, b− 1)

Thus, (x, y) ∈ ¯S(B).This implies that S(.) is u.s.c.

Theorem 2.1.8. A set ψ ⊂ B ⊂ (N, E) is relatively compact if the following conditions
hold :

(i) For every l ∈ N the set {y(l) : x ∈ ψ} is relatively compact in E,

(ii) The functions from ψ are equiconvergent at infinity, i.e. for every ε > 0 there
exists l(ε) ∈ N i.e if |y(l)− y(∞)| ≤ ε for all l > lε and y ∈ ψ.

Theorem 2.1.9. Let v, u : N(a, b − 1) × Rn × Rn → Rn are continuous functions
satisfies

(H6) There exist θ1, θ2 ∈ C(N(a, b− 1),R+) such that

|u(k, x, y)| ≤ θ1(k)(|x|+ |y|), k ∈ N(a, b− 1), (x, y) ∈ Rn × Rn,

And
|v(k, x, y)| ≤ θ2(k)(|x|+ |y|), k ∈ N(a, b− 1), (x, y) ∈ Rn × Rn,

With
∞∑
l=a

(θ1(k) + θ2(k)) <∞.

Then problem 2.1.3 has at least one solution. Moreover, the solution set S(x0, y0) is
compact and the multivalued map S : (x0, y0) ( S(x0, y0) is u.s.c.

Proof. Consider the operator M : BC(N(a), Rn)×C(N(a), Rn)→ BC(N(a), Rn)defined
for (x, y) ∈ C(N(a), Rn)× C(N(a), Rn) by

M(x, y) = (M1(x, y),M2(x, y)), (x, y) ∈ BC(N(a), Rn)×BC(N(a), Rn) (2.1.9)

Where

M1(x(k), y(k)) = x0 +
k−1∑
l=a

u(l, x(l), y(l)), k ∈ N(a)
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And

M2(x(k), y(k)) = y0 +
k−1∑
l=a

v(l, x(l), y(l)), k ∈ N(a).

Step 1:M = (M1,M2) is continuous. Let (xm, ym) be a sequence such that (xm, ym) −→
(x, y)as m→∞. Then

|M1(xm(k), ym(k))−M1(x(k), y(k))| ≤
k−1∑
l=a

|(u(l, xm(l), ym(l))− u(l, x(l), y(l)))|.

Similarly

|M2(xm(k), ym(k))−M2(x(k), y(k))| ≤
k−1∑
l=a

|(v(l, xm(l), ym(l))− v(l, x(l), y(l)))|.

using the condition (H6),for every ε > 0, there exists h(ε) ∈ N such that

∞∑
l=h(ε)

2µ(θ1(k) + θ2(k)) <
ε

2
.

Where
‖xm‖ ≤ µ, ‖ym‖ ≤ µ

for each m ∈ N Hhence

‖M1(xm, ym)−M1(x, y)‖∞ ≤
h(ε)−1∑
l=a

|(u(l, xm(l), ym(l))− u(l, x(l), y(l)))|

+
∞∑

l=h(ε)

|(u(l, xm(l), ym(l))− u(l, x(l), y(l)))|

≤
h(ε)−1∑
l=a

|(u(l, xm(l), ym(l))− u(l, x(l), y(l)))|

+2µ
∞∑

l=h(ε)

(θ1(k) + θ2(k))

≤
h(ε)−1∑
l=a

|(u(l, xm(l), ym(l))− u(l, x(l), y(l)))|+ ε

2
.

And

‖M2(xm, ym)−M2(x, y)‖∞ ≤
h(ε)−1∑
l=a

|(v(l, xm(l), ym(l))− v(l, x(l), y(l)))|
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+
∞∑

l=h(ε)

|(v(l, xm(l), ym(l))− v(l, x(l), y(l)))|

≤
h(ε)−1∑
l=a

|(v(l, xm(l), ym(l))− v(l, x(l), y(l)))|

+2µ
∞∑

l=h(ε)

(θ1(k) + θ2(k))

≤
h(ε)−1∑
l=a

|(v(l, xm(l), ym(l))− v(l, x(l), y(l)))|+ ε

2
.

Since u, v are continuous functions ,we get

‖M1(xm, ym)−M1(x, y)‖∞ → 0 as m→∞

And

‖M2(xm, ym)−M2(x, y)‖∞ → 0 as m→∞

Step 2: We now show that M(Bµ) is equiconvergent at ∞ i.e for every ε > 0 there
exists k(ε) ∈ N such that

|Mi(x(k), y(k))−Mi(x(∞), y(∞))| ≤ ε

For all k > kε And (x, y) ∈ Bµ, i = 1, 2 Where

Bµ = {(x, y) ∈ BC(N(a), Rn)×BC(N(a), Rn) : ‖x‖∞ ≤ µ, ‖y‖∞ ≤ µ}.

Letting (x, y) ∈ Bµ,then

|M1(x(k), y(k))−M1(x(∞), y(∞))| ≤
∞∑
l=k

|u(l, x(l), y(l))|

≤ 2µ
∞∑
l=k

(θ1(k) + θ2(k)).

And

|M2(x(k), y(k))−M2(x(∞), y(∞))| ≤
∞∑
l=k

|v(l, x(l), y(l))|

≤ 2µ
∞∑
l=k

(θ1(k) + θ2(k))
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. Since 2µ
∑∞

l=k(θ1(k) + θ2(k)) < ∞, such that µ
∑∞

l=k(θ1(k) + θ2(k)) ≤ ε Then
M(Bµ) is equiconvergent We conclude that M is completely continuous. Let (x, y) ∈
BC(N(a), Rn) be such that (x, y) = M(x, y) We have

|x(k)| ≤ |x0|+
k−1∑
l=a

|u(l, x(l), y(l))|

≤ |x0|+
k−1∑
l=a

θ1(l)(|x(l)|+ |y(l)|)ds

And

|y(k)| ≤ |y0|+
k−1∑
l=a

θ2(l)(|x(l)|+ |y(l)|)ds

Therefore

|x(k)|+ |y(k)| ≤ |x0|+ |y0|+
k−1∑
l=a

θ(l)(|x(l)|+ |y(l)|)

, We have

|x(k)|+ |y(k)| ≤ (|x0|+ |y0|)(1+)
k−1∑
l=a

θ(k)
k−1∏
τ+1

(1 + θ(τ))).

Hence

‖x(k)‖∞ + ‖y(k)‖∞ ≤ (|x0|+ |y0|)(1 +
∞∑
l=a

θ(k)
b∏

τ+1

(1 + θ(τ))) = D.

Finally let

J : {y ∈ BC(N(a), Rn) : (‖x(k)‖∞, ‖y(k)‖∞) < (D + 1, D + 1)}

M has e fixed point (x, y) ∈ J which is a solution of the problem (2.1.3) We can prove
that the solutions S(x0, y0) of problem (2.1.3) is compact and the multivalued operator
S : RmRm → P(BC(N(a), Rm)) .defined by S(x0, y0) = {(x, y) ∈ BC(N(a), Rm))} is
solution of the problem (2.1.3).

2.2 Boundary Value Problems

42x(k)− u(k, x(k), y(k)) = 0, k ∈ N(0, b),
42y(k)− v(k, x(k), y(k)) = 0, k ∈ N(0, b),
α0x(0)− β04x(0) = 0,
ξ0x(b+ 1) + η04x(b+ 1) = 0,
ᾱ0y(0)− β̄04y(0) = 0,
ξ̄0x(b+ 1) + η̄04x(b+ 1) = 0,

(2.2.1)

Where β0, η0, β̄0, η̄0 ∈ R∗, α0, ξ0, ᾱ0, ξ̄0 ∈ R
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Lemma 2.2.1. A function x ∈ C(N(0, b),Rm) is a solution of problem
42x(k) = −z(k), k ∈ N(0, b),
α0x(0)− β04x(0) = 0,
ξ0x(b+ 1) + η04x(b+ 1) = 0,

(2.2.2)

where u ∈ C(N(0, b),Rm),and α0ξ0(b+ 1) + α0η0 + β0ξ0 6= 0 if and only if

x(k) =
b∑
i=0

ρ(k, i)z(i),

where

ρ(k, i) =


β0 + α0(i+ 1))(η0 + ξ0(b+ 1− k))

α0ξ0(b+ 1) + α0η0 + β0ξ0
, i ∈ {0, . . . , k − 1},

β0 + α0k)(η0 + ξ0(b− i))
α0ξ0(b+ 1) + α0η0 + β0ξ0

, i ∈ {k, . . . , b},

Proof.

42x(k) = z(k)⇒4x(k + 1)−4x(k) = −z(k).

by summing the above equations, we get

4x(k) = 4x(0)−
k−1∑
i=0

z(i). (2.2.3)

Hence

x(k) = x(0) + k4x(0)−
k−1∑
i=0

(k − i− 1)z(i). (2.2.4)

We have

x(b+ 1) = x(0) + (b+ 1)4x(0)−
b∑
i=0

(k − i− 1)z(i).

And

4x(b+ 1) = 4x(0)−
b∑
i=0

z(i).

Since α0x(0)− β04x(0) = 0, ξ0x(b+ 1) + η04x(b+ 1) = 0, Then

4x(0) =
α0

β0
,4x(b+ 1) =

ξ0
η0
.

And x(k) = x(0)(β0+kα0

β0
)−

∑k−1
i=0 (k − i− 1)z(i).
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2.2 Boundary Value Problems

Theorem 2.2.2. Assume that (H1) is satisfied and the matrix

M̄ = ρ∗

(
a1 b1
a2 b2

)
∈ M2∗2(R+),

Where

sup{|ρ(i, j)| : (i, j) ∈ N(0, b)× N(0, b)}.

If M̄ → 0.Then the problem (2.2.2)has unique solution.

Proof. Consider the operator N̄ : C(N(0, b),Rm) × C(N(0, b),Rm) → C(N(0, b),Rm)
defined for (x, y) ∈ C(N(0, b),Rm)× C(N(0, b),Rm) by

N̄(x, y) = (N̄1(x, y), N̄2(x, y)) (2.2.5)

Where

N̄1(x(k), y(k)) =
b∑
i=0

ρ(k, i)u(i, x(i), y(i)), k ∈ N(0, b),

And

N̄2(x(k), y(k)) =
b∑
i=0

ρ(k, i)v(i, x(i), y(i)), k ∈ N(0, b),

Thus N̄ has a unique fixed point which is a solution of problem 2.2.1.

Theorem 2.2.3. Assume that

(H7) there exist σ1, σ2 ∈ C(N(0, b), R+) and α, β ∈ (0, 1) such that

|u(k, x, y)| ≤ σ1(k)(|x|+ |y|)α, k ∈ N(0, b), (x,y) ∈ Rm × Rm,

|v(k, x, y)| ≤ σ2(k)(|x|+ |y|)β, k ∈ N(0, b), (x,y) ∈ Rm × Rm,

if

α0ξ0(b+ 1) + α0η0 + β0ξ0 6= 0

and

ᾱ0ξ̄0(b+ 1) + ᾱ0η̄0 + β̄0ξ̄0 6= 0.

Then the problem 2.1.3 has at least one solution. Moreover, the solution set
S̄ = {(x, y) ∈ C(N(0, b),Rm)× C(N(0, b),Rm)} (x, y) is solution of 2.2.1 is compact
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System of Difference Equations

2.3 Convex Case

Theorem 2.3.1. Suppose F,GN(0, b)×Rm → Pcp,cv such that (x, y)→ F (k, x, y) and
(x, y)→ G(k, x, y) are u.s.c.

(M1) there exist a continuous functions θ1, θ2 : N(0, b)→ R+

‖F (k, x, y)‖p ≤ θ1(k)(‖x‖+ ‖y‖), foreach k ∈ (0, b)

and each x ∈ Rm, And

‖G(k, x, y)‖p ≤ θ2(k)(‖x‖+ ‖y‖), foreach k ∈ (0, b)

and each x ∈ Rm,

Then problem 2.2.5 has at least one solution. Moreover, the solution set SF,G(x0, y0)
is compact and the multivalued map SF,G : (a, b̄) ( SF,G(a, b) is u.s.c.

Proof. Set E = C(N(0, b),Rm) . Existence of solutions. Consider the operator N :
E → P(E) defined for y ∈ E by

N(y) =
{

(l1, l2) ∈ E × E : (l1(k), l2(k)) =


x0 +

k∑
i=0

µ1(i), k ∈ (0, b)

y0 +
k∑
i=0

µ2(i), k ∈ (0, b)

Where

µ1 ∈ SF,x,y = {µ ∈ C(N(0, b),Rm) : µ(k) ∈ F (k, x(k), y(k)), k ∈ (0, b)},

And

µ2 ∈ SG,x,y = {µ ∈ C(N(0, b),Rm) : µ(k) ∈ G(k, x(k), y(k)), k ∈ (0, b)}.
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Chapter 3

Stability of an Equilibrium

3.1 Describing Stability

The goal of this section is to introduce basic qualitative methods to describe and
classify the stability of a fixed point , or an equilibrium point, of a two-dimentional
system of difference equations. Phase space diagrams are a good qualitative method
for demonstrating the stability of the one or more equilibria of two-dimensional system
of difference equations and the behavior of their orbits (trajectories).The only infor-
mation needed ,after the equilibria are determined, is the information from chapter
1:The eigenvalues of the matrix A and the corresponding eigenvectors.Phase space di-
agrams will be sketched for worked examples, but a complete list of sketches can be
found in [1].Note that the equilibrium point that we will focus on is the trivial, or
zero,equilibrium,which every linear system possesses.

(H1) T is of the form T =

(
α1 0
0 α2

)
.For the equilibrium point (0, 0) in question is

either a stable node or unstable node depending on the value of the eigenvalues.

(a) If |α1| < 1 and |α2| < 1,then the equilibrium point (0, 0) is a stable node
with all trajectories approaching the origin as n→∞,with their directions
determined by the eigenvectors associated with α1 and α2.

(b) If |α1| > 1 and |α2| > 1,then the equilibrium point (0, 0) is an unstable
node with all trajectories tending away from the origin as n→∞,with their
directions determined by the eigenvectors associated with α1 and α2.

(c) If |α1| < 1 and |α2| > 1,or if |α1| > 1 and |α2| < 1, the equilibrium point
(0, 0) is a saddle node with at most two solutions approaching the origin
and all others tending away from the origin as n→∞.

(d) If α1 = α2 , then either:

(1) All trajectories approach the origin along lines passing through the ori-
gin if α1 < 1 or ,
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Stability of an Equilibrium

(2) All trajectories tend away from the origin along lines passing through
the origin if α1 > 1 .

(e) If either |α1| and or |α2| = 1, then the equilibrium point is a degenerate
node with all points tending toward the axis of the dominate eigenvalue.

(H2) T is of form T =

(
α 1
0 α

)
For the equilibrium point (0, 0) is either a stable or

unstable with only one straight line solution .

a If |α| < 1 ,then the equilibrium point is stable with all trajectories approach-
ing the origin as n→∞.

b If |α| > 1 ,then the equilibrium point (0, 0) is unstable with all trajectories
tending away from the origin as n→∞.

(H3) T is of form T =

(
α −β
β α

)
.Then the eigenvalues are γ1,2 = α ± iβ , and there

are no straight line trajectories since the general solutions for this matrix are
combinations of since and cosines.

(a) If |γ1| < 1 ,then the equilibrium point (0, 0) is a stable focus with all trajec-
tories spiraling inward to the origin as n→∞.

(b) If |γ1| > 1 ,then the equilibrium point (0, 0) is an unstable focus with all
trajectories spiraling outward from the origin as n→∞.

(c) If |γ1| = 1 ,then the equilibrium point (0, 0) is center with all trajectories
following concentric circular paths about the origin as n → ∞ (periodic
orbits).

3.2 Definitions

For examining the stability of linear systems of difference equations.we note the map
g : R2 → R2,we refer to a point x∗ =

(
(x1)∗

(x2)∗

)
as a fixed point of g ,or an equilibrium

point,if g(x∗) = x∗.

Definition 3.2.1. Let U be a real vector space.Then a function | ∗ | : u→ R is a vector
norm if for all x, y ∈ U and λ ∈ R if :

(i) |x| ≥ 0 and |x| = 0 if and only if x = 0.

(ii) |λx| = |λ||x|

(iii) |x+ y| ≤ |x|+ |y| (triangle inequality)

We note the following: Let Kn be a real vector space of square matrices of size n .Then
the function ‖∗̄‖ : Kn → R is a matrix norm if for all u, v ∈ R and λ ∈ R, if:
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3.3 Stability of a Linear System

(1) ‖ū‖ ≥ 0 and ‖ū‖ = 0 if and only if ‖ū‖ = 0.

(2) ‖λū‖ = |λ|‖ū‖

(3) ‖ū+ v̄‖ ≤ ‖ū‖+ ‖v̄‖ (triangle inequality)

(4) ‖ūv‖ ≤ ‖ū‖‖v̄‖(submultiplivative)

Definition 3.2.2. Given a matrix T, let ρ(T ) = max |δ1|, |δ2|,where δ1 and δ2 are
eigenvalues of the matrix T.Then ‖T̄‖ =

√
ρ(T TT ) is called the spectral norm of T

and is needed a matrix norm.

Definition 3.2.3. A fixed point x∗ of a map g : R2 → R2 is called :

(1) Stable if given ε > 0 ∃ ε > 0 such that |x − x∗| < ε implies |gm(x) − x∗| < ε
∀m ∈ Z∗.

(2) Attracting if ∀η > 0 such that |x − x∗| < η implies that limn→0 g
n(x) = x∗ if

η =∞ we call it globally attracting.

(3) Asymptotically stable if it is both stable and attracting.It is globally asymptotically
stable if it is both stable and globally attracting.

(4) Unstable if it is not stable.

3.3 Stability of a Linear System

In order to give as much information about the fixed point x∗ =
(
0
0

)
.

Theorem 3.3.1. We have x(n+ 1) = θx(n).

(i) Asymptotically stable if ρ(θ) < 1.

(ii) Unstable if ρ(θ) > 1.

(iii) if ρ(θ) = 1 the origin is unstable if the jordan form of θ is

(
α1 0
0 α2

)
And stable

otherwise.

Theorem 3.3.2. The origin is asymptotically stable if and only if |trθ| < 1+det(θ) < 2

Example 3.3.1. let T =

(
1
2

1
4

−1
4

1
2

)
We sketch the correct canonical phase space di-

gram,describe the stability , and find the general solution to the system.

det(γI− T ) = [γ − (
1

2
)]2 + (

1

16
).
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Stability of an Equilibrium

So γ = 1
2
± 1

4
i Then |γ| =

√
5
4

< 1 by using ρ(T ) < 1 that implies the origin is
asymptotically stable we have an inward stable spiral. The general solution will have
the form

x(n) = (u1 u2)|γ|
(
cosnω sinnω
−sinnω cosnω

)(
ξ1
ξ2

)
or

x(n) = |γ|n[(ξ1cosnω + ξ2sinnω)u1 + (−ξ1sinnω + ξ2cosnω)u2]

finally

x1(n) = | 5

16
|n(ξ1cosnω)u1 − (−ξ1sinnω)u2

and

x2(n) = | 5

16
|n(ξ2cosnω)u1 + (ξ2sinnω)u2

.

3.4 Lyapunov Stability

In this section ,the notion of stability will be done by the use of a carefully chosen
lyapunov function ,or by making use of laSalles’Invariance Principle.
Consider the difference equation

x(n+ 1) = g(x(n))

, Where g : A → R2, A ⊂ R2, is continuous.Let x∗ be a fixed point of g such that
g(x) = x∗. For a mapping φ : R2 → R2, we define the variation 4φ :

4φ(X) = φ(g(x))− φ(x).

Then
4φ(x(n)) = φ(x(n+ 1))− φ(x(n))

. Therefore, if 4φ ≤ 0,φ is nonincreasing along the orbit of g .

Theorem 3.4.1. Let φ : A→ R, A ⊂ R2 is a lyapunov function on A if :

(i) φ is continuous on A.

(ii) 4φ(x) ≤ 0, whenever x and g(x) ∈ A.

We note B(x, δ) = {y ∈ R2 : |x− y| < δ} the open ball around X.Then,we say :

(1) φ is positive definite at x∗ if φ(x) > 0 and φ(x∗) = 0

(2) φ is negative definite if −φ is positive definite
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3.5 Linearization of Systems

Theorem 3.4.2. Suppose that φ is a positive definite lyapunov function defined on
an open ball A = B(x∗, η) around a fixed point x∗ of a continuous map g on R2:Then
,x∗ is stable if in addition ,4φ(x) < 0, whenever x and g(x) ∈ A, x 6= x∗ ,x∗ is
asymptotically stable on A ,Moreover , if A = R2 and 4φ(x) → ∞ as |x| → ∞,x∗ is
globally asymptotically stable

Let Ω(x) the positive limit set of x ∈ R2 and Θ(x) the positive orbit of x. A set D is
said to be invariant under a map g if g(D) ⊂ D, for x ∈ D,Θ(x) ⊂ D

Lemma 3.4.3. If Θ(x) is bounded , then Ω(x) is nonempty ,compact , and invariant
we define

C = {x ∈ Ā : 4φ(x) = 0}

. And let D be the maximal invariant subset of C under A , and m ∈ R+,

φ−1(m) = {x : φ(x) = m,x = R2}

Theorem 3.4.4. We have φ is a positive definite lyapunov function defined on an
open ball A = B(x∗, η) around a fixed point x∗ of a two -dimensional map g. if for
x ∈ A.Θ(x) is bounded and contained in A ,then for some m ∈ R+, fn(x)→ D∩φ−1(m)
as n→∞.

Theorem 3.4.5. Let φ : A ⊂ R2 → R be a continuous function such that,relative to
the difference equation x(n+ 1) = g(x(n)),4φ is positive definite (conversely negative
definite ) on a neighborhood of a fixed point x∗.if there exists a sequence xi → x∗ as
i→∞ with φ(xi) > 0(conversely φ(xi) < 0 ),then x∗ is unstable.

3.5 Linearization of Systems

Linearization by use of a jacobian matrix is necessary to get information on the equi-
librium point.Given a system of difference equations and a point Q, the jacobian is
given by:

Dg(Q) = P =

(
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

)
Q

Theorem 3.5.1. Let g : A ⊂ R2 → R2 a C1 map, where A is an open subset of R2, x∗

is a fixed point of g, and P = Dg(x∗).then we have:

i If ρ(P ) < 1,then x∗ is asymptotically stable.

ii If ρ(P ) > 1,then x∗ is unstable.

iii If ρ(P ) = 1,then x∗ may or may not be unstable.
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Stability of an Equilibrium

Example 3.5.1. There is a system :

x1(n+ 1) = x2(n)− x2(n)[x21(n) + x22(n)]

x2(n+ 1) = x1(n)− x1(n)[x21(n) + x22(n)]

The equilbrium points are (x∗1, x
∗
2) =


(0, 0)

(1,−1)
(−1, 1)

By using jacobian we find:

Dg(Q) = P =

(
−2x1x2 −3x22 − x21 + 1

−3x21 − x22 + 1 −2x1x2

)
Q

From a linearization of the system we get:

(1) Dg(0, 0) = P =

(
0 1
1 0

)
,α = ±1 We have a periodic solution about the equlib-

rium (0, 0).

(2) Dg(1,−1) = P =

(
2 −3
−3 2

)
,(α1, α2) = (−1, 5) The equilibrium point (1,−1) is

unstable .

(3) Dg(−1, 1) = P =

(
2 −3
−3 2

)
,(α1, α2) = (−1, 5) The equilibrium point (−1, 1) is

unstable .

We want to comment on the stability of the system: we need the matrix B =

(
0 1
1 0

)
.since b11 > 0 and detB > 0 Let compute

φ(X) = (x1 x2)

(
0 1
1 0

)(
x1
x2

)
= (x1 x2)

(
x1
x2

)
= x21 + x22

So φ(X) is clearly positive definite . We compute now

4φ(X)(x1, x2) = (2−x2[x21 + x22])
2 + (x1 − x1[x21 + x22])

2 − (x21 + x22)

By using lyapunov stabilty about the origin (0, 0):

(i) For sufficiently small values of x1 and x2 ,4φ ≤ 0 approach the origin asymptot-
ically .

(ii) For sufficiently large values of x1 and x2 , tend away from the origin .
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3.5 Linearization of Systems

Example 3.5.2. There is a system :

x(n+ 1) = x2(n) +
1

4

y(n+ 1) = 4x(n)− y2(n)

The equilibrium points are (x∗1, x
∗
2) =

{
(1
2
, 1)

(1
2
,−2)

By using jacobian we find:

Dg(Q) = P =

(
2x 0
4 −2y

)
Q

From a linearization of the system we get:

(1) Dg(1
2
, 1) = P =

(
1 0
4 −2

)
,(α1, α2) = (1,−2) We have α1 = 1 and |α2| > 1 which

makes this point a degenerate node.

(2) Dg(1
2
,−2) = P =

(
1 0
4 4

)
,(α1, α2) = (1, 4) We have α1 = 1 and |α2| > 1 which

makes this point a degenerate node.

That is inconclusive about the behavior of the system.

Example 3.5.3. There is a system :

x(n+ 1) = y2(n)− 1

2
x(n)

y(n+ 1) =
1

4
x(n) +

1

2
y(n)

The equilibrium points are (x∗1, x
∗
2) =

{
(0, 0)

(6, 3)
By using jacobian we find:

Dg(Q) = P =

(
−1

2
2y

1
4

1
2

)
Q

From a linearization of the system we get:

(1) Dg(0, 0) = P =

(
−1

2
0

1
4

1
2

)
,(α1, α2) = (−1

2
, 1
2
) We have |α1| = |α2| < 1 which

makes this point a stable node.

(2) Dg(6, 3) = P =

(
−1

2
6

1
4

1
2

)
,(α1, α2) = (

√
7
2
, −
√
7

2
) We have |α1|, |α2| > 1 which

makes this point an unstable node.
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Stability of an Equilibrium

It is a stable node.

Example 3.5.4. There is a system :

x(n+ 1) = y(n)

y(n+ 1) = asin(x(n))− y(n)

The equilibrium points are (x∗1, x
∗
2) = (0, 0) By using jacobian we find:

Dg(Q) = P =

(
0 1

acosx −1

)
Q

From a linearization of the system we get:

(1) a = −0.2,Dg(0, 0) = P =

(
0 1
−0.2 −1

)
,(α1, α2) = (−1

2
±
√
2
2

) We have |α1|, |α2| <

1 which makes this point a stable node.

(2) a = 1,Dg(0, 0) = P =

(
0 1
1 −1

)
,(α1, α2) = (−1

2
±
√
5
2

) We have |α1| < 1 ,|α2| > 1

which makes this point a saddle node.

(3) a = 3,Dg(0, 0) = P =

(
0 1
3 −1

)
Which makes this point an unstable node.
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Chapter 4

Models and Applications

4.1 The Predator-Prey Model (Host Parasitoid)

This chapter gives examples of how difference equations can be applied to real world
situations.

Consider a predator -prey model in which predators search over a constant area
and have unlimited capacity for consuming the prey :

N(t+ 1) = rN(t) exp(−aP (t))

P(t+ 1) = N(t)(1− exp(−aP (t)))

Where t ∈ Z∗, a is the predator’s searching efficiency (a > 0), r is the reproductive rate
of the prey,N(t) is the size of the prey population, and P(t) is the size of the predator
population at time period t. We must to know how to solve for the fixed points (N∗,P∗):

N(t) = rN(t) exp(−aP (t))

P(t) = N(t)(1− exp(−aP (t)))

Then

(N∗,P∗) =

{
(0, 0)

( r ln r
a(r−1) ,

ln r
a

)

Now we use the jacobian matrix:

Dg(Q) = A =

(
r exp(−aP ) −arN exp(−aP )

1− exp(−aP ) aN exp(−aP )

)
Q

For :

Dg(0, 0) = A =

(
r exp(0) 0

1− exp(0) 0

)
(0,0)

=

(
r 0
0 0

)
The eigenvalues are α1 = r, α2 = 0 The origin is unstable if r > 1 and stable if r < 1.
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Models and Applications

And we use the jacobian matrix:

Dg(Q) = A =

(
r exp(−aP ) −arN exp(−aP )

1− exp(−aP ) aN exp(−aP )

)
Q

For :

Dg(
r ln r

a(r − 1)
,
ln r

a
) = A =

(
r exp(−a ln r

a
) −ar r ln r

a(r−1) exp(−a ln r
a

)

1− exp(−a ln r
a

) a r ln r
a(r−1) exp(−a ln r

a
)

)
(0,0)

=

(
1 − r ln r

(r−1)
1− 1

r
ln r

(r−1)

)
So we use trA And detA:

|trA| = 1 +
ln r

(r − 1)

And

detA = r
ln r

(r − 1)

Then:
|trA| < detA < 2

, We conclude that this point is unstable for large values of r,in particular the inequality
does not hold when (r ≥ 5) since the middle term of the inequality exceeds the RHS
values of 2 very rapidly as r increases.Very small values of r near 1 cause the LHS of
the equality not to hold.

4.2 Geometric Brownian

Geometric Brownian motion (lognormal): dX = µXdt+σXdz. We assume that r > µ
in order to ensure convergence .
X(t) follows a geometric Brownian motion and D(X,Q) is linear. This is the specific
setting under which Baldursson (1997) derives his oligopolistic solution. The results
are identical. The equilibrium investment trigger, X∗(Q), can be expressed as:

X∗(Q) = (
β

β − 1
)(
r − µ
a

)[k + (
n+ 1

n
)
bQ

r
].

The equilibrium trigger is an increasing, affine function of Q, and is decreasing in n.

Example 4.2.1. Consider the matrix

A =

(
λ 1
0 λ

)
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4.2 Geometric Brownian

It has the eigenvalue λ with multiplicity two, and the single eigenvector v1 = (1, 0)t,
To achieve a basis we may define v2 = (0, 1)t and represent arbitrary initial data in the
form

v(0) = c1v
1 + c2v

2.

Direct verification shows that

v(t) = {(c1 + c2t)v
1 + c2v

2} expλt

If λ ≥ 0 then the origin is unstable. If λ < 0 then, while the term t expλt increases
initially, it reaches a finite maximum and ‖v(t)‖ can be made arbitrarily small by
choosing c1 and c2 sufficiently small; this implies not only stability but also asymptotic
stability.
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Conclusion and Perspectives

Here, I have reached the end of this project on the topic of systems of difference equa-
tions. It has been a wonderful and enriching learning experience for me while working
on this project. Overall, this project covers: systems of difference equations, stability
of equilibria, and applications.

Throughout the project, we have proved the existence and uniqueness of solutions
to difference equations using several theorems. We also solved the stability problem of
equilibria by using Lyapunov’s theorem. Finally, we presented applications and models
of difference equations.

As I can see, it is important to learn theorems related to fixed points and the gen-
eralized Banach space in order to study this topic effectively with examples.
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