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Introduction

The concept of fractional differential calculus has a long history. One may wonder
what meaning may be ascribed to the derivative of a fractional order, that is Z;—ij,
where n is a fraction. In fact L’Hopital himself considered this very possibility in a
correspondence with Leibniz, In 1695, L’Hopital wrote to Leibniz to ask, " What if n be
%” From this question, the study of fractional calculus was born. Leibniz responded
to the question, "d2x will be equal to xv/dx : x. This is an apparent paradoz from

which, one day, useful consequences will be drawn."

Many known mathematicians contributed to this theory over the years. Thus, 30
September 1695 is the exact date of birth of the "fractional calculus"! Therefore,
the fractional calculus it its origin in the works by Leibnitz, L’Hopital (1695), Bernoulli
(1697), Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier
(1822), Abel (1823), Liouville (1832), Riemann (1847), Grinwald (1867), Letnikov
(1868), Nekrasov (1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl
(1917), Riesz (1922), P. Levy(1923), Davis (1924), Kober (1940), Zygmund (1945),
Kuttner (1953), J. L. Lions (1959), and Liverman (1964)... have developed the basic

concept of fractional calculus.

In June 1974, Ross has organized the "First Conference on Fractional Calculus and
its Applications" at the University of New Haven, and edited its proceedings [133];
Thereafter, Spanier published the first monograph devoted to " Fractional Calculus"
in 1974 [123]. The integrals and derivatives of non-integer order, and the fractio-
nal integrodifferential equations have found many applications in recent studies in

theoretical physics, mechanics and applied mathematics. There exists the remarkably
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comprehensive encyclopedic-type monograph by Samko, Kilbas and Marichev which
was published in Russian in 1987 . (for more details see [I18]|) The works devoted
substantially to fractional differential equations are : the book of Miller and Ross
(1993) [120], of Podlubny (1999) [126], by Diethelm (2010) [68], by Ortigueira (2011)
[125], by Abbas et al. (2012) [8], and by Baleanu et al. (2012) [39].

In recent years, there has been a significant development in the theory of fractional dif-
ferential equations. It is caused by its applications in the modeling of many phenomena
in various fields of science and engineering such as acoustic, control theory, chaos and
fractals, signal processing, porous media, electrochemistry, viscoelasticity, rheology,
polymer physics, optics, economics, astrophysics, chaotic dynamics, statistical physics,
thermodynamics, proteins, biosciences, bioengineering, etc. Fractional derivatives pro-
vide an excellent instrument for the description of memory and hereditary properties

of various materials and processes. See for example [40), 4T, [84), 86}, 118, 126, 138, 145].

Fractional calculus is a generalization of differentiation and integration to arbitrary
order (non-integer) fundamental operator DY, where o, a, € R. Several approaches to
fractional derivatives exist : Riemann-Liouville (RL),Caputo and Hadamard etc.

Implicit differential equations involving the regularized fractional derivative were ana-

lyzed by many authors, in the last year ; see for instance [20] and the references therein.

There are two measures which are the most important ones. The Kuratowski measure
of noncompactness a(B) of a bounded set B in a metric space is defined as infimum
of numbers r > 0 such that B can be covered with a finite number of sets of diameter
smaller than r. The Hausdorf measure of noncompactness x(B) defined as infimum
of numbers r > 0 such that B can be covered with a finite number of balls of radii
smaller than r. Several authors have studied the measures of noncompactness in
Banach spaces. See, for example, the books such as |28, 42, [146] and the articles
[3T], 43, [44], 49], 55, 57, 87, 12T],and references therein.

Considerable attention has been given to the existence of solutions of boundary value

problem and boundary conditions for implicit fractional differential equations and
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integral equations with Caputo fractional derivative. See for example [19] 22 25| 26],
38, B0, (I B2 Bl 88, O8], 11T, 112, 113, 115), 144, 159], and references therein.

In the theory of ordinary differential equations in a Banach space there are several
types of data dependence . On the other hand, in the theory of functional equations
there are some special kind of data dependence : Ulam-Hyers, Ulam-Hyers-Rassias,
Ulam-Hyers- Bourgin, Aoki-Rassias [134].

The stability problem of functional equations originated from a question of Ulam
[148], [149] concerning the stability of group homomorphisms : " Under what conditions
does there exist an additive mapping near an approzimately additive mapping " Hyers
[89] gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers Theorem was generalized by Aoki [34] for additive mappings and by T.M.
Rassias [129] for linear mappings by considering an unbounded Cauchy difference. A

generalization of the T.M. Rassias theorem was obtained by Gavruta [74].

After, many interesting results of the generalized Hyers-Ulam stability to a number
of functional equations have been investigated by a number of mathematicians; see
14, 30, 47, 921, 93], 05, 06, 107, 127, 151], 153], 154] and the books [64] 130), 131] and
references therein.

We have organized this thesis as follows :

Chapter 1.

This chapter consists of three Sections.

In Section one, we present "A brief visit to the history of the Fractional Calculus",
and in Section two, we present some "Applications of Fractional calculus".

Finally, in the last Section, we recall some preliminarys : some basic concepts, and
useful famous theorems and results (notations, definitions, lemmas and fixed point

theorems) which are used throughout this thesis.

Chapter 2.
This chapter consists of two Sections.

In the first section; we discuss and establish the existence,the uniqueness of solu-
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tions for a coupled Caputo-Hadamard fractional differential system in Banach spaces.

We will give existence and uniqueness of solutions for a coupled system of

fractional differential equations of the form

(D u)(t) = filt, u(t), v(t))
(HCD?%)) (t) = f2<t7 u(t)> U<t>)

with the multipoint boundary conditions

alu(l) — b/ (1) = dyu(&y)
asu(T) + bou/(T) = dau(&s)
azv(1) — b3v'(1) = dzv(&3)
aqv(T) + by (T') = dyv(&a),

\

where T > 1, &i,bi,di S ]R, 62 € (1,T), 1=1,2,3,4, Q; € (1, 2], fj IXRTXR™ — Rm,
J = 1,2, are given continuous functions, R™ for m € N is the Banach space with a
suitable norm || - ||, "°D}7 is the Caputo-Hadamard fractional derivative of order o,
j=12.

Finally, an example will be included to illustrate our main results.

In the second section; two results for the following coupled system of implicit
fractional differential equations in Banach spaces with Caputo-Hadamard fractional
derivative are discussed. The argument are based on Banach’s fixed point theorem

and Nonlinear alternative of Leray-Schauder type.

We establish existence and uniqueness results for the following coupled system of

implicit fractional differential equations :

("D ) () = fa(t, ua(t), ua(t), (DY ua)(8))

ctel:=[1,T],
(7eD?uz)(t) = fo(t, ui(t), ua(t), (T°Di*usz)(t))
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with the multipoint boundary conditions

(
( ;w €,
(
(

where T' > 1, a;,b;,d; € R, & € (1,T); i =1,2,3,4, oj € (1,2], f; : I x R™ x R™ x
R™ — R™; j = 1,2 are given continuous functions, R™; m € N* is the Euclidian
Banach space with a suitable norm || - ||, #¢D{’ is the Caputo-Hadamard fractional
derivative of order ay; j =1,2.

At last and as application, an example is included.

Chapter 3.
This chapter consists of two Sections.
In the first section; we investigate the existence of solutions for the following

coupled conformable fractional differential system :

with the following coupled boundary conditions :
(u(0),v(0)) = (610(T), 62u(T)),

where T > 0, I := [0,T], o; € (0,1]; i = 1,2 fi: IXRxR = R; i = 1,2 are
given continuous functions, 7;" is the conformable fractional derivative of order

a;;1 = 1,2, and 91, 0y are real numbers with 9,0, # 1.

Next, we investigate the following coupled conformable fractional differential system :
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with the coupled initial conditions :

(u(a), v(a)) = (a; va),

where a > 0, a; € (0,1]; ¢ = 1,2, (E,|| - ||) is a (real or complex) Banach space,

Uq, Vg € Fand f;: R, x Ex E— FE; i =1,2 are given continuous functions.

In the second section; we investigate the existence and stability of solutions for

the following coupled Conformable fractional differential system :

(Toru)(t) = fult, ult), v(t))
(To¥v)(t) = fa(t, u(t), v(t))

with the following coupled boundary conditions :
(u(0),0(0)) = (d10(T), b2u(T)),

where T'> 0, I :=1[0,T], a; € (0,1]; i = 1,2, fi: IXRxR — R; i =1,2 are
given continuous functions, 75" is the conformable fractional derivative of order

a;; 1 =1,2, and 01, 09 are real numbers with ;05 # 1.

Next, we investigate the attractivity of solutions for the following coupled conformable

fractional differential system :

with the following coupled initial conditions :

(u(a),v(a)) = (ua, va),

where @ > 0, o; € (0,1]; ¢« = 1,2, (R,||.||) is a Banach space, u,,v, € R and

fi iRy x RxR — R; ¢=1,2 are given continuous functions.

At last and as application, an example is included.
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Chapter 4.
This chapter consists of two Sections.
In the first section; we investigate the existence of solutions for the following

coupled Katugampola fractional differential system

("Dg*u)(t) = fr(t, u(
("Dg*0)(t) = fa(t, ult), v(t))

with the multipoint boundary conditions

~
N—
3
—~
o~
N—
N—

Iy Pu(0) = ay; Zo; P u(T) = by

Iy 0(0) = ag; Iy ** o(T) = by,

where T'> 0, , t € (0,T); , oy € (1,2], f; : I x R™ x R™ — R™; i = 1,2 are given

continuous functions, R™; m € N* is the Banach space with a suitable norm || - ||,

Ig % is Katugampola fractional integral of order 2 — «;.

In the second section; we investigate the existence of solutions for the following

coupled Caputo— Katugampola fractional differential system

("D u)(t) = fu(t, u(t), v(t))
(“Dg")(t) = falt, ult), v(t))

with the multipoint boundary conditions

s tel:=|a,b)],

u(a) = Ao (b)* DI u(b) = Ae 0,0, ("D v) ()

v(a) = pau(b); D)2 u(b) = po SO0 (<D u) (&)

where a,b >0, , t € (a,b); , a; € (1,2],m,01 € (0,1],m; € R for i =1,2.....N(N €
N);, e Rfori=1,2...M(M € N)a < & < &.... < b, \j, i3, = 1,2 are real positive
constants f; : I x Rx R = R; ¢ = 1,2 are given continuous functions and “D¢#* is
caputo- Katugampola fractional derivative of order o ;¢ =1, 2.

At last and as application, an example is included.



Chapitre 1

Preliminaries

1.1 A brief visit to the history of the Fractional Cal-

culus

In 1695, in a letter to the French mathematician L ‘Hospital, Leibniz raised the
following question : " Can the meaning of derivatives with integer order be generalized
to derivatives with non-integer orders" L‘Hospital was somewhat curious about that
question and replied by another question to Leibniz : " What if the order will be %”
Leibnitz in a letter dated September 30, replied : "It will lead to a paradox, from

which one day useful consequences will be drawn."

In 1783, Leonhard FEuler made his first comments on fractional order derivative. He
worked on progressions of numbers and introduced first time the generalization of
factorials to Gamma function. A little more than fifty year after the death of Leibniz,
Lagrange, in 1772, indirectly contributed to the development of exponents law for
differential operators of integer order, which can be transferred to arbitrary order
under certain conditions. In 1812, Laplace has provided the first detailed definition
for fractional derivative. Laplace states that fractional derivative can be defined for
functions with representation by an integral, in modern notation it can be written
as [y(t)t “dt. Few years after, Lacroiz worked on generalizing the integer order

derivative of function y(t) = t™ to fractional order, where m is some natural number.
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In modern notations, integer order nt" derivative derived by Lacroiz can be given as

d"y m! ym—n I(m+1) -
= = m>n
dtr (m—n)! C(m—n+1) ’

where, ' is the Fuler’s Gamma function. Thus, replacing n with % and letting m =1,

one obtains the derivative or order % of the function t

1
2

dts

QU
<

Ly 2

5 V7

Euler’s Gamma function (or Euler’s integral of the second kind) has the same

Vi

p1

importance in the fractional-order calculus and it is basically given by integral

['(2) :/ = te~tdt.
0

The exponential provides the convergence of this integral in oo, the convergence at
zero obviously occurs for all complex z from the right half of the complex plane

(Re(z) > 0). This function is generalization of a factorial in the following form :
I'(n) = (n—1).

Other generalizations for values in the left half of the complex plane can be obtained

in following way. If we substitute e~ by the well-known limit

t n
et = lim (1 — —)
n—o00 n

and then use n-times integration by parts, we obtain the following limit definition of

the Gamma function

nln?

F<Z>:nh—>rgoz(z—|—1)...(z+n)'

Therefore, historically the first discussion of a derivative of fractional order appeared

in a calculus written by Lacroix in 1819.

It was Liouville who engaged in the first major study of fractional calculus.
Liouville’s first definition of a derivative of arbitrary order v involved an infinite

series. Here, the series must be convergent for some v. Liouville’s second definition
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succeeded in giving a fractional derivative of 7% whenever both x and are positive.
Based on the definite integral related to Euler’s gamma integral, the integral formula

can be calculated for x7%. Note that in the integral

e
/ ua—l 6—xudu’
0

if we change the variables t = zu, then

a—1
e t 1 1 [
/ u e ™ dy = / (—) et odt = — t ety
0 T T z% Jo
> a—1_—xu ]' > a—1 _—t
u e Mduy = — t e dt.
0 x* Jo

From the Gamma function, we obtain the integral formula

_ 1 /Oo q
T = —— u* e " du.
F(a) 0

Consequently, by assuming that

Thus,

v
4 eor — g¥e® for any v > 0, then
X

& o_Tlatv) oy pllaty) o,
dv’ T T(a) D"

In 1884 Laurent published what is now recognized as the definitive paper on the
foundations of fractional calculus. Using Cauchy’s integral formula for complex valued
analytical functions and a simple change of notation to employ a positive v rather

than a negative v will now yield Laurent’s definition of integration of arbitrary order

woDoh(z) = I‘(ly) /x(x — )" h(t)dts.

Zo

The Riemann-Liouville differential operator of fractional calculus of order o defined

as

F(nl—a) (%)n f(f(t — )" f(s)ds ifn—1<a<n,

(D5, (1) =4 T (1)
(4)" f(1), if @ = n,

where o, a,t € R, t > a, n = [a] + 1; [ denotes the integer part of the real number

a, and I' is the Gamma function.
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The Griinwald-Letnikov differential operator of fractional calculus of order « defi-

ned as
[*%2]
(Dg f)(t) :=Tim h™* » (=1)(§) f(t — jh).

h—0 -
J=0

Binomial coefficients with alternating signs for positive value of n are defined as
nn—1)n-2)---(n—j+1) n!

()= . -

7! jli(n — )"

For binomial coefficients calculation we can use the relation between Euler’'s Gamma

function and factorial, defined as

(@) = al B ['(«)

la—5H TGH+DN(a—j5+1)

The Griinwald-Letnikov definition of differ-integral starts from classical definitions of
derivatives and integrals based on infinitesimal division and limit. The disadvantages
of this approach are its technical difficulty of the computations and the proofs and

large restrictions on functions.[160]

The Caputo (1967) differential operator of fractional calculus of order o defined as

(°D2, f)(t) := m f;(t — s fM(s)ds ifn—1<a<n, 1)
B ()" ). fon

where a,a,t € R, t > a, n = [a] + 1. This operator is introduced in 1967 by the
Italian Caputo.

This consideration is based on the fact that for a wide class of functions, the
three best known definitions ((GL), (RL), and Caputo) are equivalent under some

conditions. [85]

Unfortunately, fractional calculus still lacks a geometric interpretation of integration

or differentiation of arbitrary order.
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We refer readers, for example, to the books such as [8], 139, [86), 114], 120, 123, 126, 140]
and the articles |14}, 18], 19], 36}, 37, 46, 48], 50} (2, (3] B4) (5, 105, 144], and references

therein.

1.1.1 Applications of Fractional calculus

The concept of fractional calculus has great potential to change the way we see, model
and analyze the systems. It provides good opportunity to scientists and engineers for
revisiting the origins. The theoretical and practical interests of using fractional order
operators are increasing. The application domain of fractional calculus is ranging from
accurate modeling of the microbiological processes to the analysis of astronomical
images.

Next, we will present a brief survey of applications of fractional calculus in science

and engineering.

Signal and Image Processing :

In the last decade, the use of fractional calculus in signal processing has tremendously
increased. In signal processing, the fractional operators are used in the design of diffe-
rentiator and integrator of fractional order, fractional order differentiator FIR. (finite
impulse response), IIR type digital fractional order differentiator (infinite impulse
response), a new IIR (infinite impulse response)-type digital fractional order diffe-
rentiator (DFOD) and for modeling the speech signal. The fractional calculus allows
the edge detection, enhances the quality of images, with interesting possibilities in va-
rious image enhancement applications such as image restoration image denoising and
the texture enhancement. He is used, in particularly, in satellite image classification,

and astronomical image processing.

Electromagnetic Theory :

The use of fractional calculus in electromagnetic theory has emerged in the last two
decades. In 1998, Engheta [72] introduced the concept of fractional curl operators and
this concept is extended by Naqvi and Abbas [122]. Engheta’s work gave birth to the

newfield of research in Electromagnetics, namely, " Fractional Paradigms in FElectro-
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magnetic Theory". Nowadays fractional calculus is widely used in Electromagnetics to
explore new results; for example, Faryad and Naqvi [73] have used fractional calculus
for the analysis of a Rectangular Waveguide.

Control Engineering :

In industrial environments, robots have to execute their tasks quickly and precisely,
minimizing production time, and the robustness of control systems is becoming im-
perative these days. This requires flexible robots working in large workspaces, which

means that they are influenced by nonlinear and fractional order dynamic effects.

Biological Population Model
The problems of the diffusion of biological populations occur nonlinearly and the
fractional order differential equations appear more and more frequently in different

research areas.

Reaction-Diffusion Equations

Fractional equations can be used to describe some physical phenomenon more accura-
tely than the classical integer order differential equation. The reaction-diffusion equa-
tions play an important role in dynamical systems of mathematics, physics, chemistry,
bioinformatics, finance, and other research areas. There has been a wide variety of
analytical and numerical methods proposed for fractional equations ([I16} 157]), for
example, finite element method, Adomian decomposition method ([136]), and spectral

technique ([117]). Interest in fractional reaction-diffusion equations has increased.
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1.2 Notations and Definitions

Consider the complete metric space C' := C(I,R™) of continuous functions from I,

where I = [0,7],7 > 0 into R™ equipped with the usual metric

d(u, v) := max [[u(t) — v(t)[,

where ||-|| is a suitable norm on R™. Note that C is a Banach space with the supremum

(uniform) norm
[ul|oo := sup [|u(t)]].
tel
By C := C x C, we denote the complete metric space with the usual metric
D((uy,v1, (ug,v2)) := d(uy, ug) + d(vy, ve).
C is a Banach space with the norm
[(u, v)lle = llulloo + (0]l

As usual, AC(]) denotes the space of absolutely continuous functions from I into R™,

and L'(I) denotes the space of Lebesgue-integrable functions v : I — R™, with the

ol = /Illv(t)Hdt.

For any n € N, we denote by AC"(I) the space defined by

norm

n

AC™(I) := {w 1 — E: %w(t) € AC(I)}.

Let 6 =t4d

4> define the space

ACY :={u:I— E: ¢ 'ut)] € AC(I)}.

Let X := C(R,, E) be the Fréchet space of all continuous functions u from R, into
E equipped with the family of semi norms
[ulln = sup {[lu(®)]| : n € N},
te[0,n]

and the distance

22” v = v cu,v e X.
L+ |lu—2|,
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Definition 1.2.1 ([33]). A nonempty subset B C X is said to be bounded if

sup ||ull, < o0; for neN.
ucB

1.3  Fractional Calculus Theory

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [I06] for a more detailed analysis.
Definition 1.3.1 (Hadamard fractional integral [106]). The Hadamard fractional
integral of order ¢ > 0 for a function v € L'(I) is defined as
1 Troox\alu(s)
Hrq
Tiu x:—/ (111—) ——=ds, forae xel=]1X]

( 1 ) ( ) F(q) . S S { ]

provided the integral exists.

Example 1.3.1. Let 0 < g < 1. Then

Int)t+e
e = B0 e e e
{1n T2t4) for a.e 1, €]

Definition 1.3.2 (Hadamard fractional derivative [106]). The Hadamard fractional
derivative of order ¢ > 0 applied to the function u € AC§(I) is defined as

("Diu) (z) = 6" ("I} u) ().
In particular, if ¢ € (0, 1] in Definition [1.3.2] then

("Diu) () = 6 (", ") (2).

Example 1.3.2. Let 0 < ¢ < 1. Then

(Int)t—a
['(2—-q)
It has been proved (see e.g., Kilbas [104, Theorem 4.8]) that in the space L'(I),with

x € I =[1,00), the Hadamard fractional derivative is the left-inverse operator to the

Hpdint = for a.e. te[l,el.

Hadamard fractional integral, i.e.,

("D} ("rfw) (z) = w(x).
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From [106, Theorem 2.3], we have
(" w) (1)
'(a)

Analogous to Hadamard fractional calculus, the Caputo-Hadamard fractional deri-

("17) ("Diw) (z) = w(z) — (Inz)? .

vative is defined in the following way.

Definition 1.3.3 (Caputo-Hadamard fractional derivative). The Caputo-Hadamard
fractional derivative of order g > 0 applied to the function uw € ACY is defined as

(HCD'IJU) (z) = ("I770"u) ().
In particular, if ¢ € (0, 1] in Definition , then
(HCD‘fu) (x) = (Hlllfqéu) (x).

Lemma 1.3.1 ( [90]). Let « > 0 and n = [a|+ 1. If u € AC§[1,T], then the Caputo—-

Hadamard fractional differential equation
("°Dgu) (t) = 0

has the general solution

n—1
ut) = ¢;(Inty,
=0
and we have )
e (DS ) (8) = u(t) + ) e;(Int),
=0

where c; € R, 7 =0,1,...,n—1.

Let us now recall some essential definitions on conformable derivatives that can be

found in |16, [10T].

Let n < a <n+1, and set § = a — n. For a function f : [a,00) — R, we denote by

ZOf(t) = / (s —a)* ' f(s)ds,n =0,

and

i) = / (t = )" f(5)d5(s,0) = - / (t— 5)"(s — a)* f(s)dsn > 1.
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Definition 1.3.4 (conformable fractional derivative). The conformable derivative of
order a €]0, 1], of a function f : [a,00) — R is defined by
t+e(t—a)l—f(t

e—0 €

If 72 f(t) exists on (a,b),b > a and lim, ,,+ T f(t) exists, then we define

Tefla) = Jim T2 (0)

Definition 1.3.5. The conformable derivative of order a €|n,n + 1| of a function
f:a,00) = R, when f exists, is defined by T2 f(t) = TP ™ (t), where f = a—n €
(0, 1).

Lemma 1.3.2. For the properties of the conformable derivative, we mention the
following :
Letn <a <n—+1and f be an (n + 1)-differentiable at t > a, then we have

Eaf(t) _ (t . a)n-i—l—af(n—i-l)(t)’

and

In particular, if 0 < a < 1, then we have
LT f(t) = u(t) — u(a).

Remark 1.3.1. We provide the following remarks :
~ For 0 < a < 1, using Lemma[1.3.3 it follows that, if a function f is differentiable

att > a, then one has

lim 72 £ (1) = /(1)

a—1

and
lim T (1) = (£ — ) f'(1).

1.e. the zero order derwative of a differentiable function does not return to the

function itself.
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~ Letn <a<n+1,if fis (n+ 1)-differentiable on (a,b),b > a and lim,_,+ )
exists, then from Lemma(1.5.9, we get T f(a) = lim_,,+ T2 f(t) = 0.

— Letn < a <n+1,if fis (n+ 1)-differentiable at t > a, then we can show that
Tef(t) = T2 . f®(t) for all positive integer k < a.

Similarly to the classical case, we give a property on the extremum of a function that

has a conformable derivative.

Proposition 1.3.1. Let 1 < a < 2, if a function f € C'[a,b] attains a global maxi-
mum (respectively minimum) at some point & € (a,b), then T2 f(€) < 0 (respectively
T f(€) = 0.

Proof. The result follows from the fact that

To () = To () = tig T EF AT,

e—0 €

Definition 1.3.6. ([99]) (The Katugampola fractional integral)
The Katugampola fractional integrals of order o > 0 of a function h € XP(0,T), is
defined by

qy%@)ziaz;A @5i£g?ﬂd&te[ulﬂ (1.3)

or p > 0. These integrals are called left-sided integrals. Similarly we can define right-

sided integrals ( [99]-[106])

Definition 1.3.7. ([100]) (The Katugampola fractional derivatives )

The generalized fractional derivatives of order o > 0 , corresponding to the Katugam-

pola fractional integrals ((3.23) defined for any t € [0,T], by

d 3 pa—n+1 d t Sp—lh(s)
PDER(t) = (= P—)"T P t:—tl_p—"/ ————ds, t €(0,T
0+ ( ) ( dt) 0+ )( ) F(’I’L— CY)( dt) 0 (tp_sp)a,nJrl S,1 € [ ) ]
(1.4)
where n = [a] 4+ 1, and p > 0, provided the integrals exist.

Remark 1.3.2. ([100])

a—1 14
pDa+t“ = —,0 F(l il P)t,ufap.
0 P(1—a+5)
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Giving in particular

ng‘thp(a_m) =0, for each m=1,2,...n.

- —T'(v) -
TP (1P — qP)Y 1:p P — gP et —1
a+( a ) F(Oé—‘r’}/)( a )

Theorem 1.3.1. ([99/,[100]). Let o, p,c € R, be such that a,p > 0. Then for any
f,g € XP[0,T], where 0 < p < oo, we have
- Inverse property :

PDG (ISP f)(t) = f(t), for all a € (0,1). (1.5)
- Linearity property : for all « € (0,1), we have

*Dy, (f +9)(t) =" Dg: f(t) +” Dgg(t)
I (f + 9)(t) = I3 f (1) + L9 ()
Lemma 1.3.3. ([100]) Let a,p > 0. If u € C([0,T],R), then

(i)the fractional deferential equation ?Dg,u(t) = 0, has a solutions

u(t) = eV 4 D 1 Cpolan),

where C,, e R,n=0,1,2,3,..n—1 andn =[a] + 1
(ii)if D u(t) € C([0,T],R) and 1 < a < 2, then

PIE ("D u)(t) = u(t) + Cyt?@ D 4 Cytee=2)
for some constant C7,Cy € R.

Lemma 1.3.4. Let a,p > 0. If u € C([a,b],R), then

(i)The fractional deferential equation *D{fu(t) = 0, has a solutions

tP — a” tP — af

) %—.“(7n71( )

where C,, e R,n=0,1,2,3,..n— 1. and n = [a] + 1

(ii)If Dy u(t) € C(la,b],R) then

I Difu(t) = u(t) + Co + Ci(*5%) + .Cpt(F52) !, where €, € Ryn =
0,1,2,3,..n — 1.

lt(t) = (:b + (71(

)nfl

)
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Theorem 1.3.2. [81)/(theorem of Ascoli-Arzela) Let A C C(I,R), A is relatively

compact (i.e A is compact) if :

1. A is uniformly bounded i.e, there exists M > 0 such that

|f(z)] < M for every f € A and x € J.

2. A is equicontinuous i.e, for every e > 0, there exists 6 > 0 such that for each

x,T € J, |x —T| <& implies | f(x) — f(T)| <€, for every f € A.

1.4 Some definitions and properties of the measure

of non-compactness

In this section we define the Kuratowski (1896-1980) measures of non-compactness

(MNC for short) and give their basic properties.

Definition 1.4.1. [150] Let (X,d) be a complete metric space and B the family of
bounded subsets of X. For every B € B we define the Kuratowski measure of non-
compactness a(B) of the set B as the infimum of the numbers d such that B admits

a finite covering by sets of diameter smaller than d.

Remark 1.4.1. The diameter of a set B is the number sup{d(z,y) : * € B,y € B}
denoted by diam(B), with diam(() = 0.

It is clear that 0 < a(B) < diam(B) < +oo for each nonempty bounded subset B of
X and that diam(B) = 0 if and only if B is an empty set or consists of exactly one

point.

Definition 1.4.2. [/2] Let E be a Banach space and Qg the bounded subsets of E.

The Kuratowski measure of noncompactness is the map o : Qp — [0, 00| defined by
a(B) =inf{e > 0: B C U, B; and diam(B;) < €}; here B € Qg,

where

diam(B;) = sup{||x — y|| : z,y € B;}.
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The Kuratowski measure of noncompactness satisfies the following properties :

Lemma 1.4.1. ([28, [}Z, [/3, [150]) Let A and B bounded sets.

(a) a(B) =0 < B is compact (B is relatively compact), where B denotes the closure
of B.

(b) nonsingularity : « is equal to zero on every one element-set.

(c) If B is a finite set, then a(B) = 0.

(d) a(B) = a(B) = a(convB), where convB is the convex hull of B.

(e) monotonicity : A C B = a(A) < a(B).

(f) algebraic semi-additivity : a(A + B) < a(A) + a(B), where

A+B={rx+y:z €A, ye B}

(9) semi-homogencity : a«(AB) = |\ a(B); A € R, where A\(B) = {\z : x € B}.
(h) semi-additivity : a(A|J B) = max{a(A),a(B)}.
(i) a(ANB) = min{a(A),a(B)}.

(j) invariance under translations : o(B + xo) = «(B) for any xy € E.

Remark 1.4.2. The a-measure of noncompactness was introduced by Kuratowski in

order to generalize the Cantor intersection theorem

Theorem 1.4.1. [150] Let (X, d) be a complete metric space and { B, } be a decreasing
sequence of nonempty, closed and bounded subsets of X and lim,,_,o, «(B,,) = 0. Then

the intersection By of all B, is nonempty and compact.
In [87], Horvath has proved the following generalization of the Kuratowski theorem :

Theorem 1.4.2. [750] Let (X, d) be a complete metric space and {B;}icr be a family
of nonempty of closed and bounded subsets of X having the finite intersection property.
If inf;c; a(B;) = 0 then the intersection By, of all B; is nonempty and compact.

Lemma 1.4.2. [80/ If V C C(J, E) is a bounded and equicontinuous set, then
(1) the function t — «(V (t)) is continuous on J, and

a.(V) = sup a(V().

0<t<T
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(i) o (fOTx(s)ds Lz e v) < [T a(V(s))ds,
where

V(s)={z(s):x €V}, se

In the definition of the Kuratowski measure we can consider balls instead of arbitrary

sets.

Theorem 1.4.3. ([150]) Let B(0,1) be the unit ball in a Banach space X. Then
a(B(0,1)) = x(B(0,1)) =0
if X is finite dimensional, and a(B(0,1)) = 2, x(B(0,1)) = 1 otherwise.

Theorem 1.4.4. ([150]) Let S(0,1) be the unit sphere in a Banach space X.
Then «(S(0,1)) = x(S(0,1)) = 0 if X is finite dimensional, and «(S(0,1)) = 2,
X(S5(0,1)) =1 otherwise.

Theorem 1.4.5. ([150]) The Kuratowski MINCs is related by the inequalities

X(B) < a(B) < 2x(B).

In the class of all infinite dimensional Banach spaces these inequalities are the best

possible.

Example 1.4.1. Let [*® be the space of all real bounded sequences with the supremum
norm, and let A be a bounded set in [*°. Then a(A) = 2x(A).

For further facts concerning measures of non-compactness and their properties we
refer to 28] 42] 43, 146, 150] and the references therein.

We recall the following definition of the notion of a sequence of measures of non-

compactness [69, [70].

Definition 1.4.3. Let Mg be the family of all nonempty and bounded subsets of a
Fréchet space F. A family of functions {fin }nen where pu, : Mp — [0,00) is said to
be a family of measures of non-compactness in the real Fréchet space F if it satisfies
the following conditions for all B, By, By € Mg :
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(a) {in}nen is full, that is : pn(B) =0 for n € N if and only if B is precompact,

(b) pn(B1) < pn(B2) for Bi C By and n € N,

(¢) pn(ConvB) = u,(B) forn €N,

(d) If {B;}iz1.... is a sequence of closed sets from Mg such that By C B;; i =1,---
and if lim; o0 o, (B;) = 0, for each n € N, then the intersection set B = N2 B;

18 nonempty.

Some Properties :

(1) We call the family of measures of non-compactness { i, }nen to be homogeneous
if 1 (AB) = [A|pn(B); for A € R and n € N.

(2) If the family { i, }nen satisfied the condition p,(By U Bs) < pi,(By) + pin(Bs), for
n € N, it is called subadditive.

(3) It is sublinear if both conditions (e) and (f) hold.

(4) We say that the family of measures { i, }neny has the maximum property if

tin(B1 U By) = max{p,(B1), pin(Ba2)},

(5) The family of measures of non-compactness { i, }nen is said to be regular if if the

conditions (a), (g) and (h) hold; (full sublinear and has maximum property).

Example 1.4.2. [69, [1Z]] For B € Mx, x € B, n € N and € > 0, let us denote by

w™(x,€) the modulus of continuity of the function x on the interval [0,n]; that is,
w'(z,€) = sup{||z(t) — x(s)|| : t,s € [0,n], |t — s| < €}.

Further, let us put
w" (B, €) = sup{w"(z,€) : © € B},
wy(B) = lim w"(B,e€),

e—0t

a"(B) = sup «a(B(t)) := sup a({z(t): z € B}),

te[0,n] te[0,n]
and
Bn(B) = wy(B) + a"(B).

The family of mappings {Bntnen where B, : Mx — [0,00), satisfies the conditions

(a)-(d) fom Definition [1.4.5
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Lemma 1.4.3. [152] If Y is a bounded subset of a Fréchet space F, then for each
€ > 0, there is a sequence {yx}32, C Y such that

pn(Y) < 2pn({yr}iZs) + 6 for neN.

Lemma 1.4.4. [139] If {u;}32, C L*([0,n]) is uniformly integrable, then p,({ux}32,)

is measurable for n € N*, and

w({[f u<>d}°°) <2 [l s

for each t € [0,n].

Definition 1.4.4. Let Q) be a nonempty subset of a Fréchet space F, and let A : Q) — F
be a continuous operator which transforms bounded subsets of onto bounded ones.
One says that A satisfies the Darbo condition with constants (ky)nen with respect to

a family of measures of non-compactness { i }nen, if

Mn(A(B)) < knﬂn(B)

for each bounded set B C €2 and n € N.
If k, < 1; n € N then A is called a contraction with respect to {jin }nen-

1.5 Some fixed point theorems

Theorem 1.5.1. (Banach’s fized point theorem [78]

Let C' be a non-empty closed subset of a Banach space X, then any contraction

mapping T of C' into itself has a unique fized point.

Definition 1.5.1. ([I37]) A nondecreasing function ¢ : R, — R, is called a compa-

rison function if it satisfies one of the following conditions :

(1) For anyt > 0 we have
lim ¢™(t) =0,

n—oo

where ™ denotes the n-th iteration of ¢.
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(2) The function ¢ is right-continuous and satisfies
Vi >0:o¢(t) <t.

Remark 1.5.1. The choice ¢(t) = kt with 0 < k < 1 gives the classical Banach

contraction mapping principle.
For our purpose we will need the following fixed point theorem :

Theorem 1.5.2. [61], [119] Let (X, d) be a complete metric space and T : X — X be
a mapping such that

d(T(x),T(y)) < ¢(d(z,y)),

where ¢ is a comparison function. Then T has a unique fized point in X.
Theorem 1.5.3. (Schauder fized point theorem [1]6]

Let X be a Banach space, D be a bounded closed convex subset of X and T : D — D

be a compact and continuous map. Then T has at least one fized point in D.

Theorem 1.5.4. Monch’s Fized Point Theorem|Z], 152/
Let D be a bounded, closed and convex subset of a Banach space such that 0 € D, and
let N be a continuous mapping of D into itself. If the implication

V =conmoN(V) or V=NV)U{0}= a(V)=0 (1.7)

holds for every subset V of D, then N has a fized point.

Here « is the Kuratowski measure of noncompactness.

Theorem 1.5.5. (Darbo’s Fixed Point Theorem) [/2, [78]
Let X be a Banach space and C be a bounded, closed, convex and nonempty subset of
X. Suppose a continuous mapping N : C — C' is such that for all closed subsets D
of C,

a(T(D)) < ka(D), (1.8)

where 0 < k < 1, and « is the Kuratowski measure of noncompactness. Then T has

a fized point in C.
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Remark 1.5.2. Mappings satisfying the Darbo-condition (@ have subsequently been

called k-set contractions.

The following generalization of the classical Darbo fixed point theorem for Fréchet

spaces.

Theorem 1.5.6. [69, [70)] Let Q be a nonempty, bounded, closed, and convexr subset
of a Fréchet space F and let V : Q0 — € be a continuous mapping. Suppose that V is
a contraction with respect to a family of measures of noncompactness { i, fnen. Then

V' has at least one fixed point in the set €.
For more details see |21, [33] [75], (78], 150, [156]

Theorem 1.5.7. (Nonlinear alternative of Leray-Schauder type)[78]]

Let X be a Banach space and C a nonempty convex subset of X. Let U a nonempty
open subset of C with 0 € U and T : U — C' continuous and compact operator.
Then,

(a) either T has fixed points,
(b) or there exist u € OU and X € [0, 1] with u = AT (u).

Theorem 1.5.8. (Schaefer’s fixed point theorem [78] Let U be a Banach space
andT : U — U be continuous and compact mapping (completely continuous mapping).

Moreover, suppose
S={ueU:u=ATu, forsome Xe(0,1)}

be a bounded set. Then T has at least one fixed point in U.



Chapitre 2

Coupled Caputo-Hadamard fractional

differential systems

2.1 A coupled Caputo-Hadamard fractional diffe-

rential system

2.1.1 Introduction and Motivations

The purpose of this section, is to establish existence and uniqueness of solutions for

the following of Caputo-Hadamard fractional differential system

s tel:=[1,T], (2.1)
(TD20)(t) = folt, ult), v(t))

with the multipoint boundary conditions

{(HCD@lu)(t) = fi(tult), v(1))

7

aru(l) — biu'(1) = dyu(é)

asu(T) + bott/ (T) = dyu(&s)

azv(1l) — b3v'(1) = dzv(&3)
KCLLL?J(T) + by (T) = dyv (&),
where T' > 1, a;,b;,d; € R, § € (1,T),1=1,2,3,4, a5 € (1,2], fj : IXR"xR™ — R™,

J = 1,2, are given continuous functions, R™ for m € N is the Banach space with a

(2.2)
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suitable norm || - ||, #¢D% is the Caputo-Hadamard fractional derivative of order o,
j=1,2.

In [I0], the authors studied some existence results based on the Monch’s fixed point
theorem associated with the technique of measure of noncompactness, for the follo-

wing problem of Caputo-Hadamard fractional differential equation

("°Diu)(t) = f(t,u(t)), t € I = [L,T],
u(t)|t=1 = &,

and the problem of Caputo-Hadamard partial fractional differential equation

(2.3)

(HeDru)(t,x) = f(t,z,u(t,x)), (t,z) € J:=[1,T] x [1,b],

u(t,1) = o(t); t € [1,T], (2.4)

u(l,x) = (x); © € [1,0],
where r = (ry,72) € (0,1] x (0,1}, T,b > 1, 0 = (1,1), f : J X E — E is a
given continuous function, ¢ : [1,7] — E and ¢ : [1,b] — E are given absolutely
continuous functions with ¢(1) = (1), and #¢D7 is the Caputo-Hadamard partial
fractional derivative of order 7.

In [76], the authors examined the multipoint boundary value problem for fractional

integro-differential equations :

[(©Dg)(t) = £ (2(0). bt )g(s. 2(s)ds,
i kot h(s. 2())ds) £ € [0.1], € (1,2,
a12(0) — by2'(0) = dyz(&),

Kagac(l) — b’ (1) = dox(&2).

They use the technique of measure of weak non compactness and the fixed point

(2.5)

theory to discuss the existence of weak solutions.
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2.1.2 Existence of solutions

Consider the complete metric space C(I) := C(I,R™) of continuous functions from

I into R™ equipped with the usual metric

d(u, v) := max [[u(t) — v(t)],

where || - || is a suitable norm on R™.

Notice that C'(I) is a Banach space with the supremum (uniform) norm
[ufloo == sup [[u(®)]-
tel
Let us defining what we mean by a solution of problem ([2.1))-(2.2)).

Definition 2.1.1. By a solution of the problem — we mean a continuous
function u that satisfies the equation on I and the conditions .

For the existence of solutions for the problem ({2.1))-(2.2) ; we need the following auxi-

liary lemma :
Lemma 2.1.1. Let h € C and « € (1,2]. Then the unique solution of the problem
(HeDSu)(t) = h(t); t eI

aju(l) — by’ (1) = dyu(&y)
axu(T) + b/ (T') = dau(&>)

15 given by

u(t):/1 G(t,s)h(s)ds, (2.6)
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where G

(

is the Green function with G(t,s) given by

sr(a) (ln yet

+d1(ln£1)“s:(lnt)“‘l [FCZ;) (ln%)a 1y ( (ln Ja=2 F (ln&)a 1

— A (In& )2 ay (InT)°~2 + B (o — 2)(InT)*~* — dy(Ingy)*~?]

+ A0 (1) ay(InT)° " + %2 (0 — 1)(InT)°~2 — dy(Ingy)™ ]
Bl [ (n )+ i (e ) — iy (1))

;s <&, s<t

AL i () g (n )2 = g (n) )
— B (1) ay(InT)* 2 + 2 (0 — 2)(InT)* 3 — dy(Ingy)* 7]
+ 40— (I ) [a2<ZnT>a*1+%<a—1><mT>a*2—d2<msg>a*J
nt)*~

di(Ing)e—1 a a— a— a—
_da( &1)5A( [F(Z)(m%) 1 F(abil)(ln%) 2 _ F (ln&) 1]
; S S 517 t S S
sF(a)<ln ) -

dy (In€1)*2(Int)* 11 o a— a— —
AT ez (1 Dyet e (In D) — s (inf2)e

di(In&)*" 1 (Int)* 2 o Tya— b Tya— d &2 \a—

A [r(2)<ln§)a t+ TlarT) (In$)*™% = F(Z)(mf)a ]

;€1§3§€27 Sgt

di(Iné)*2(Int)>~ 1| 4 a a— o—

1( 51)8 ( t) [ 2)(ln€) 1 (bz 1) (ln'{;) 2 C(lz)(ln§2) 1]
di1(In&)* 1 (Int)*—2 a a— a—
l( 61) p ( t) (lnT) 1 (b2 )(lnz) 2 ?2)([,’162) 1]

;61 <8< &, t<s

sF(a) <ln ) -

+d1(ln§1)‘1:(lnt)“’1[ az (ln€>a—1 + oz by (ln )a—Q]

T
) R e (g Thamt g b (1pT)a2); ¢, <5 5 <

d1(ln£1)°;z(lnt)a71[ as (lnT)a_1+ bo (lnz)a—Q]

— @) It ap (g Tyot | _be (1 Tye-2] ¢, <5 ¢ < s
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where

A = di (In&)* Hao(InT)*~% + 2 (o — 2)(InT)* 3 — da(In&s)*?]

— di(In&)*[aa(InT)* " + 2 (a — 1)(InT)*2 — da(In&s)*1] # 0.

Proof. From Lemma the linear fractional differential equation

(““Diu)(t) = h(t),

gives

u(t) =7 IOh(t) + 1 (Int)* ™ + cy(Int)* (2.7)
On the other hand, by the relation Dﬁf‘”‘u(t) = I Pu(t), we get

w(t) = oD fl (Int)e 2h( )d?

From the boundary conditions, we have

[dy (In&1)* ey + [di (In€1)* ey = aff IPh(1) — b IR h(1) — dff Ih(&)

[as(InT)*~ 4+ B (o = 1)(InT)*~2 — dy(In&s)* ey
Hag(InT)* 2 + 2 (v = 2)(InT)** — da(Iné2)* ] ey
| = AT h(&) — af I I(T) = b 17 A(T).

Thus, we obtain

l h(
G = —( anl CL2 fl ln a 1SFS) ds

+ by [ (InT)- QSM 5 ds—d2 = (In&2)e- 1s§<(z)ds
— aftay(@2(InT)*? + bz( )(lnT)“ ’

— dy(Ing&)2) [5 (Infr)o—1 Mg,

and
o = AF( )(ag(lnT)o‘ ! + 2 (o —1)(InT)>2

_ dz(lnfg)o‘ 1) ( ) 1h(s)d8
S 1( [7n >a LA g
+ by fl nZL)e=? lsds — d2 ff ()~ 4k ds.
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Substituting the values ofc; and ¢y in (2.7)), we get

u(t) = [l (intye—128) gy

_1

T'(a)

L Dlne) 2 T Ty 1) g

+ by [ ln )o 28F’g;>1)ds—d2 f12 zn52 a- 18h(8> ds]
a—1

- dlﬁﬁ? ) [CLQ(lnT)O‘ 24 bQ( 2)(InT)2=3

— dy(In&)*?) [ (In2 )12 g

+ B lealinD) ™ + o = 1)(nT)
— do(In&)*7Y] [T (InsL)o- I@d‘g

s

) T g T g T 1h ds

+ b? flT ln a 2SF}(lOcS)l)dS_d f12 ln£2 o ls?(i)ds]

= [LG(t,5)h(s)ds.
This completes the proof.

Remark 2.1.1. Note that the function G(-,-) is not continuous over [1,T] x [1,T],

However, the function t — flt G(t, s)ds is continuous on [1,T].
The following result follows now directly from Lemma [4.3.1}

Lemma 2.1.2. Let f; : [ x R™ x R™ — R™; i = 1,2 be such that f;(-,u,v) € C(I)
for each u,v,w € C(I). Then the coupled system 15 equivalent to the problem

of obtaining the solution of the coupled system
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where G is the Green function with G1(t,s) given by

(

; s< &, s<t

di1(In&1)*1 2 (Int)*1 1L a a—
) ;A1( = [F(Oq (ln ) " 1+F(o¢1 1)(ln ) ' 2]

di(In&)*1~(Int)*1—2 ar—1
—ana)B - [F(al)(ln )Tt 4

(al 1)

Sr(al (ln yor—t

Al BN [ (p Tyen Tty e (In D)2 - s (i 2
— A (In )1y (InT)™ =2 + 2 (ay — 2)(InT)™ 3 — dy(In&y)

+ Al (i %)al Hao(InT)™ = 4 % (g — 1)(InT)™ 2 — dy(Inés)

)N e (g Tyer-1 g e (T2 (i)

dy(In€1)*1—2(Int)*1—1 a a— a1 —
liney) ;A1( o [F(% (ln ) - 1+ F(oq 1)(ln€) 17— F(djl)(ln%) ! 1]
—d;g’;;jjl)l( nE) ay (InT)* 2 + %2 (g — 2)(InT)™ 3 — do(Inés)*1~?]
+%( %)‘“ Hag(InT)™ =1 + B (an — 1)(InT)* 2 — dy(In&)™ ]
di(In€&)*1—1(In a1 — a1— a]—
_di(In&1) ;AI( 1)1 [F(al (ln ) -1 r(ail)(l”%) -2 r(dcfl)(ln%) 1 1]
;S S 517 t S S
SI‘(al (ln )041—1
dy(In&1)*12(Int)*1=1 1 4 a a— a—
 dalinty) ;Al( e [r(jl)(lns) B (al 1)(ln€) 17— F(dOCQI)(ln%) ]
di(In€)*1 L (Int)*1—2 _ _
— T [ (I ) T i () - (i)
; €l§8§€27 Sgt
dy (Ing1)*1 =2 (Int)*1—1 a1 — o1— o —
1(Iné1) lAl( 1)1 [F(a (ln ) -1 4 (bz 1)(ln€) -2 F(djl)(ln%) 1 1]
dy (In&1)*1~(Int)1 a a1 — a1—
_di(In&) ;Al( )1 [F(al (ln ) -1 ( )(lnT) 1-2 F(dél)(ln%z) 1 1]
; & <5< &, t<s
sr(lal)(lni)al_l
di(ln€)* 1 2(Int)*1 11 4 Tyoy—1 T\a1—2
s [r(cfl)(lns) ot (al 1)(ln;) 7
di(In&1)*1—(Int)*1—2 a o a1 —27.
— B [ (In D) T 4 e ()™ & < s, s <t

(Inf)ym=2); & <s, t<s
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and where Gy is the Green function with Go(t, s) given by

(

ds(In€3)*2—2(Int)*2—1 a ao—
3(Ings) §A2( 1)*2 [F(a2 (ln )o2- 1+F(o¢2 1)(ln )2 2]

d3(Ing&3)*2—1(Int)*2—2 as—1
— )™ = [F(az)(ln )T 4

(f-‘m 1)

SI‘(QQ (ln )01271
d3(Iné3)*2—2(Int)*2—1 a ao—
RS [ (D)™ + i (D)™ = g (n%)
ag—1
— e (In2 )2~ ay (InT)*2=2 + % (g — 2)(InT) >~ — dy(In&s)
ey () ay (InT)™ 1 + % (0 = 1) (InT)** 2 = dy(Ingy)
d3(In€1)2— 1 (Int)*2—2 o a
— el zAQ( o [F(a2)<ln )+ (az 1)(ln )% — F(déz)(ln%)
; 8 < &3, s<t
di(In€3)*2~2(Int)*2—1 a « «
el O [ (In )2 4 iy (Inf) 272 — s (Iné)
ds(Int)*2—1 o o o o
Ly or 1 g, (InT )22 4 B (ag — 2)(InT)** — da(Ingy)™>
el %)m Haa(InT)*2"t + B(an — 1) (InT)*>2 — dy(In&;)™= ]
ds3(Iné3)*2—1(In « o— o —
_ ds(inés) zAQ( )2 [r(a2 (ln )o2- 14 (a2 1)(ln = 2 r(d;z)(ln%) 2 1]
;S S 537 t S S
Int)oa—t
sF(ag (
d3(In&3)*2—2(Int)*2~1 1 4 a Qo — o —
S [ (i ) <a2 Faay (I 5) 7 = wag ()]
ds(In&3)*2—1(Int)*2—2 _ _
— dallnga) zAz( = [F(‘léz)(an)Cm 1+ (ocz 1)(lnz)a2 ? — F(déz)(ln%>a2 1]
; 3 <5< &, s<t
ds3(In€z)*2—2(Int)*2—1 a ao— o
RS g () iy e e (1))
d3(Ingz)*2~1(Int)>2 Iy Qo— o
—— zAQ( e [F(a4 (ln ) 2T 1—‘[— (az 1)(ln ) - F(a2 (ln%) 2 1]
; E3<s< &y, t<s
sr(lal)(lni)al_l
d3(In€3)*22(Int)*2~ 1 4 a Qo —
+ (inga) EAQ( = [F(éz)(lnz) o 1+ (az 1)([71%) 2 2]
dz(In€z)*2~H(Int)*2= 2 4 o ao—
— Gl 2 [ (In L)oot 4 i (InD)2e72); ¢y <, 5 <t

(Inf)»==2); & <s, t<s
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where
Ay = di(In&) ™ Mag(InT)*1 72 + 2 (o — 2)(InT)* =3 — dy(In&s)*~?]
— di(In&) 2 [ar(InT)* 1 + 2 (aq — 1)(InT)* =2 — dy(In&o)™ 1] # 0,

and
Ay = ds(In&s)*> as(InT)*2 2 + %(ag — 2)(InT)*2 7% — dy(In&y)*>~?

— dg(lnﬁg)o‘2_2[a4(lnT)°‘2_l + b%(OCQ - 1)(lnT)a2_2 — d4(ln§4)“2_1] 7é 0

Remark 2.1.2. Notice that the function G(-,-) is not continuous over [1,T] x [1,T],

however the function t — flt G(t, s)ds is continuous on [1,T]. Set

= sup/|Gts\ds

te[1,T

The following hypotheses will be used in the sequel.
(Hy) The function f;; i = 1,2 satisfies the generalized Lipschitz condition :

£, ur,vn) = filt ug, v2) < 5 (d)zHul uzl + tillvr = val]),

for t € I and u;,v; € R™. where ¢;, ;1 = 1,2 are comparison functions.

(Hy) There exist continuous functionsh;, p;, q; : I — Ry; i = 1,2 such that
1fi(t, w, )| < ha(t) + pa() [ull + @) |v]l; pourtout t € 1, et u,v € R™.
Theorem 2.1.1. Assume (Hy) Then (2.1)-(2.9) has a unique solution. .

Proof.
Define the operator N : C' — C' by

(N (u, 0))(#) = ((N1u)(t), (N2v) (1)), (2.8)
where N1, N, : C' — C' with
(Nyu))(t) = /1 G1(t, s) fi(s,u(s),v(s))ds, (2.9)

and

(Ngv)(t)—/1 Gao(t, s) fa(s,u(s),v(s))ds. (2.10)
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Clearly, the fixed points of the operator N are solutions of (2.1)—(2.2). For each
u;,v; € C,i=1,2, and t € I, we have

[(Nyua) () — (Nyug) (#)]] IJy Gt s)[fals,ua(s), vi(s)) = fals, ua(s), va(s))]ds|

< JUNG(E 8) [ fu(s,ua(s), v1(s)) — fa(s, ua(s), va(s))]||ds
< JTIG(E )| fa(s,ur(s), vi(s) — fi(s, ua(s), va(s))|ds
< Gi([Jui(s) —ua(s)l]) + i[[vi(s) — va(s)]])
< Gi(flua(s) —ua(s)]]) + flvi(s) — va(s)l)
+ Pi(flui(s) — uz(s)l]) + [Jvi(s) — va(s)l])
< G (D((ur,v1), (uz,v2))) + Y1 (D((ur, v1), (uz, v2))).
Also
[(Nav1)(t) — (Nava) ()] = || i Galt, s)[fa(s,ur(s), va(s)) — fals, ua(s), va(s))]ds|
< [T NG(t 8) [ fals,ur(s), vi(s)) — fo(s, ua(s), va(s))]|ds
< S 1Galt, s)| [ fals,ua(s), vi(s)) — fals, ua(s), va(s))||ds
< Gallua(s) = ua(s)[]) + Ya(llvi(s) — va(s)]])
< Ga(llua(s) —ua(s)l) + [lva(s) — va(s)])
+ Pa(flui(s) — uz(s)l]) + [Jvi(s) — va(s)]])
< Ga(D((ur,v1), (u2,v2))) + o (D((ur, v1), (U2, v2))).

Thus, we get
D(N(ulavl)> N<u27 U?)) S ¢D((ulavl)7 <u27 U2>)'

where ¢ = @1 + @2 + ¢1 + o.
Consequently, from Theorem the operator N has a unique fixed point, which

is the unique solution of (2.1))—(2.2)) on I.
Now, we prove an existence result by using Schauder fixed point theorem. Set

B = suph(t), i =supp(t), ¢ ==supq(t), i=1,2.
tel tel tel
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Theorem 2.1.2. Assume (Hs). If

Gihl + Gohs < 1,

then the coupled system f has at least one solution defined on I.

Proof. Let N be the operator defined in 2.8 Set

Gi(pi +q7) + G5(p5 + a3)

R>
= 1-Giht - Gihg

and consider the closed and convex ball
Br = {(u,v) € C: |[(u,v)|c < R}.

Let (u1,us) € Bg. Then, for each ¢ € I and any i = 1,2, we have

I(Naws) O = [ 1Gi(t, 5)fils, uls), v(s))ds|
JE1Gi ()l fi (s, uls), v(s))l1ds

J NG 9)|[has) + pis)]

Gi(hi + Rpf + q}).

IA A

Thus,
IV (w1, us)le < R

s)u(s)ll + ai(s)l[v(s)|]ds

Hence N maps the ball By into itself. We shall show that the operator N : Bg — Bpg

satisfies the assumptions of Schauder’s fixed point theorem. The proof will be given

in several steps.

Step 1 : We show that N is continuous.

Let {(u,,vn)} be a sequence such that (u,,v,) — (u,v) in B,. Then, for each t € I,

we have

[N (un, ) (E) = (N (u, 0) (1)
= SL, [ G () fils un(s), va()) = fils, u(s) v(s)]ds]
< B2, 1GHE fils un(s), va(s)) = fils,uls), v(s))]|ds.

A

Since u,, — u, v, — v as n — 0o et fi,fy are continuous, by the Lebesgue dominated

convergence theorem
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N (tn, v) — N(u,v)|lc = 0 as n — oc.

Step 2 : We remark that N(Bg) is bounded. This is clear since N : By — Bpg and
Bp is bounded.

Step 3 : We show that N maps bounded sets into equicontinuous sets in Bg. Let
t1,t2 € I be such that t; < t5 and let (u;,us) € Bgr. Then, we have

IOV ) 01) = (N o, 02)) )
|1 Gilta,5) fils,wals), <>>ds— * Gi(ta,5) fils, 1 (), s (5)) s |
S G, >|fi<s (), us(s))dsl — | 1 1 )15, (), uals)) s
(77 + a7 R+ ] [f Gilta, )ds — 2 Gl 5)]ds|

IN N CIA

As t; — to, the right-hand side of the above inequality tends to zero. As a consequence
of Steps 1 to 3, together with the Arzela—Ascoli theorem, we can conclude that N :
Br — Bpg is continuous and compact. From an application of Theorem [1.5.3] we

deduce that N has a fixed point u, which is a solution of problem ([2.1)—(2.2]).

2.1.3 Exemple

Consider the coupled system of Caputo-Hadamard fractional differential equations

w

(DI = A0y o
(feD7v)(t) = falt,u(t), v(t));
with the multipoint boundary conditions
(u(1) — w'(1) = u(2)
2u(T) + /' (T) = 2u(2) 21
30(1) — v/(1) = 3u(2)

where
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-1
~t7 4 (u(t)+1)sin(t)
f(t7 u, U) - 4(1+\/i)(1+|u|+|v\)’ te [L 6]

_ (v(®)+1) cos(t)
GO (RenGETOR

The hypothesis (H1) is satisfied with

T T

e wz(x)=4—G;, () = go(x) = 0.

¢1(x)

Theorem [2.1.1] implies that the system has a unique solution defined on
1, e].



2.2 Implicit Coupled Caputo-Hadamard Fractional Differential Systems13

2.2 Implicit Coupled Caputo-Hadamard Fractional
Differential Systems

2.2.1 Introduction and motivations

In recent years, fractional differential equations have found applications in diverse
fields such as engineering, mathematics, and physics, as well as other applied sciences.
There has been a significant focus on studying the existence of solutions for initial
and boundary value problems related to fractional differential equations. To this
end, several monographs [8, 12, [106, 140, 145} 161] and papers [63, 67, 110, 128 139]

have explored this area in depth.

In this section, we discuss the existence and uniqueness of solutions for the following

coupled system of Caputo-Hadamard fractional differential equations

("D un)(t) = fult, ua(t), ua(t), ("D un) (1))

;tel =[1,T], (2.13)
(eD2ug)(t) = falt, ur(t), ua(t), (T°DT*uz)(t))
with the multipoint boundary conditions
a1u1 1) — blu’l(l) = d1U1<€1)
;w € €, (2.14)

azuz(1) — bauy(1) = dzuz(&3)
[ Qa2 T) + byuy(T) = dyua(&s)

(

[05X75] (T) + bgu’l (T) = d2U1 (52)
(
(

where T > 1, ai,bi,di € R, é@ € (1,T), 1=1,2,3,4, Qj € (1,2], fj I X R™ x R™ x
R™ — R™; j = 1,2 are given continuous functions, R™; m € N* is the Euclidian
Banach space with a suitable norm || - [|, #¢D}” is the Caputo-Hadamard fractional

derivative of order «;; j =1, 2.

In [56]; the authors established the existence, uniqueness and stability results of

solutions for the following initial value problem for imlicit fractional order differential
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equations
TDy(t) = f(t,y(t)," Dy(t)), te J, 0 <a <1,
y(1) =y,
where 7D is the Hadamard fractional derivative, f:JxXxRXxR — Ris a given

function space, y; € R and J = [1,T), T > 1.

In [47] ; the following classes of boundary value problems for the existence and sta-
bility of solutions for implicit fractional differential equations with Caputo fractional
derivative :

Dy(t) = f(t,y(t),c D*(t)), te J:=[0,T], T >0, 0< <1,

ay(0) +by(T) =c,
where ¢D® is the fractional derivative of Caputo, f : J Xx R x R — R a continuous

function, and a,b,c are real constants with a + b # 0, and
DYy(t) = f(t,y(t),cDy(t)), te J:=[0,T], T >0, 0 <a <1,

y(0) +9(y) = wo,
where ¢ : C(]0,7],R) — R a continuous function and y, a real constant ; are studied.
This type of non-local Cauchy problem was introduced by Byszewski. The author
observed that the non-local condition is more appropriate that the non-local condi-
tion(initial) to describe correctly some physics phenomenons and proved the existence
and the uniqueness of weak solutions and also classical solutions for this type of pro-

blems. We take an example of non-local conditions as follows :
P
g(y) = cy(t:)
i=1

where ¢;, 1 = 1...p are constants and 0 < t; < ... <t, <T.

2.2.2 Existence of solutions

Consider the complete metric space C'(I) := C(I,R™) of continuous functions from

I into R™ equipped with the usual metric

d(u, v) := max [[u(t) — v(t)],
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where || - || is a suitable norm on R™. Notice that C(/) is a Banach space with the

supremum (uniform) norm

[l oo := sup [|u()]]-
tel

Definition 2.2.1. By a solution of the implicit coupled system — we mean

a coupled continuous functions (u,v) € C x C satisfying the boundary conditions

2.1])), and the equations on I.

The following hypotheses will be used in the sequel.
(H3) The functions f;; i = 1,2 satisfy the generalized Lipschitz condition :

[ fi(t, ua, ug, wi) = fi(t, v1, va, wo) || < (¢z(\|“1—vl||)+%(HU2_U2||))+§z(||w1—w2||))-

G*
Set
= sup / |G(t, s)|ds.

te[1,7]
for t € I and u;, v;, w; € R™, where ¢;,;;.&;; ¢ = 1,2 are comparison functions.
(H,) There exist continuous functions h;,p;,q; : I — Ry and 0 < k; < 1; i = 1,2
such that
(1 + Jluall + Nzl + flwi DILfi (2, uas ua, wi) |

< hi(t) + pi®)lluall + @ (OlJuzll + ki (@[will; for t €1, and s, w; € R™.

Theorem 2.2.1. Assume that the hypothesis (Hy) holds. Then the coupled system

2.15)- has a unique solution.

Proof. Define the operator N : C — C by
(N (ur, u2))(t) = (Nru)(t), (Nau2)(t)), (2.15)
where N1, Ny : C' — (' with

(N1un))(t) = pua(t) +7 IFgu(t), (2.16)

and

(Naus)(t) = pa(t) +7 1T ga(2). (2.17)
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Clearly, the fixed points of the operator N are solutions of the coupled system

E-Em.

For each u;,v; € C'; i =1,2 and t € I, we have

I[(N;(ug, u2))(t) — (N;(vg, v2)) ()] < ﬁ/l (lng)ai_lwgi(s) — hz(s)]H%,
where g;, h; € C are given by
9i(t) = fit,u1,uy, gi(t)), and hi(t) = fi(t, v1,va, hi(t)).

Then, from (H;),

lgi(t) = hi(B)]] < G*(éz(llul( ) = o1(D)]) + billuz(t) = v2(D)1))) + &i(llgi(t) = Ra(B)]))-

Thus
. ¢ U - w U — v
lgi(t) — ha(@)]| < G—¢ (lur (8) = vi(®)1) + G -6 = (lu2(t) = v2(t)]]),
for : = 1, 2. Hence,
|Niu)(t) = (N (D] < gy Ji (002 lga(s) = ha(s)]]1%
<t aie lui(s) = ni()] + g2 lus(s) — va(s)]]
< W(llul( ) = va(s)[| + [Jua(s) — va2(s)]])
+ manare ([u(s) = vi(s)]| + [lus(s) = va(s)])
< W( ((u1, uz), (v1,v2)))
+ r(a1+1)( (D((u17u2)7(7]177j2)))
Also
|(Niua) () = (Vo) D] < iy Sy (108 [llga(s) = ha(s)]]|%
<t (62 lua(s) — ()]l + g22g llus(s) — va(s)]]
< B 0 0) ()] + fale) — (o))
+ #(Ilul( ) = va(s) || + [Jua(s) — va(s)]])
< r(alj_ti)( ( ((u17u2)7(7j17v2)))
+ —r(;:iﬁ ety (D((uwr, u), (v1,v2)).



2.2 Implicit Coupled Caputo-Hadamard Fractional Differential Systems17

Thus, we get

D(N (u1,uz), N(v1,v2)) < ¢(D((u1, uz), (v1,02))),

where
_ In™(T)(¢1 + ) n In®(T)(¢2 + ¢
Mo +1)(GT = &) T +1)(Gs — &)
Consequently, from Theorem ([1.5.2)), the operator N has a unique fixed point, which

is the unique solution of our problem (2.13)-(2.14)) on I.

Now, we prove an existence result by using Nonlinear alternative of Leray-Schauder

(2.18)

fixed point theorem.
Set

hi :=sup h(t), p; == supp(t), ¢ :=supq(t); i =1,2.
tel tel tel

Theorem 2.2.2. Assume that the hypothesis (Hs) holds. Then the problem (2.13)-
has at least one solution defined on I.

Proof. Let N : C — C be the operator defined in (2.15]). We need to show that N
satisfies the conditions in Theorem (|1.5.7)). The proof will be given in several steps.

Step 1 : N is continuous.
Let {((w1)n, (u2)n)} be a sequence such that ((uq)n, (ug)n) — (u1,us) in C. Then, for

each t € I, we have

2

IV () () D= (V1 1) O € 3 e [ 02100 ()~ (a1) )]

i=1 ay)

1%
S

where g¢;,,, g; € C such that

gm(t) = fz(ta Ulp, U2n, gzn(t)) and gz(t) = fz(ta Uy, Uz, gl(t))
Since (uyp, ug,) — (u1,uz) as n — oo and f;; i=1,2 are continuous, we get

gin(t) — g(t) as n — oo, then by the Lebesgue dominated convergence theorem;

| N (win, uon) — N(ur,uz)|lc = 0 as n — 0.
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Step 2 : N maps bounded sets into bounded sets in C.
Let R > 0 and set Br = {(u1,u2) € C : ||[(u1,u2)|lc < R}. Let (uy,uz) € Bg. Then,

for each t € I,, and any ¢ = 1.2, we have

(Na)(0) = t) + s [ D))

where g; € C such that ¢;(t) = f;(t,uy, ua, gi(t)).

From (H,) we get
hi(s) | pis) . ails)

o)l < T2+ o
Then,
I(Na) (B < [ + 5 7 (1) | ga(s) ]| 2
< Nl + oy ST nty [289 4 26 4 alo)] oo
< Nl + Bt [ 325 + 5+ 5]
Thus,

2 ].Ilal(T) p* q* h*
N < . ‘ U L = M.
It wele <3 (e + gy | 72 * T * 7o)

Step 3 : N maps bounded sets into equicontinuous sets in Bg.

Let tq,to € I, such that t; <ty and let (uy,uz) € Bg. Then, we have

[[pi(tr) — pa(ta) |
i i (nf2)™t = () ()%
[[pi(t1) — pa(t2) |

[+ 2+ 1]

T a;— o — s
by S ()t = (),

As t; — t5 the right-hand side of the above inequality tends to zero. As a consequence

[N (ur, u2)) (t1) — (N (us, uz)) (82

IN + IA

X+

of steps 1 to 3, together with the Arzela—Ascoli theorem, we can conclude that N :
Br — Bpg is continuous and completely continuous.

Step 4 : We now show there exists an open set U C C with (ug,us) # AN (ug, us),
for A € [0,1] and (uy,u2) € OU. Let (uy,u2) € C and (uy,us) = AN (ug, uz), A € [0, 1]
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. Then uy(t) = A(Nyuy)(t), and ua(t) = M(Nauz)(t). Thus, as in step 2, for each t € I,

we have

lu® < Ol + &5 S () gi(s)| 2
< Ol + kg Jy ()t [ 4 29 oy 2] 2o
< oo + B [ S+ 5]
Hence,
(g, ) e < M
Set

U = {(u,u2) € C:|(ur,u2)llc < M*+1}.

By our choice of U, there is no (uj,us) € OU such that (uj,us) = AN (uq,uz), for
A € [0,1]. As a consequence of Theorem [L.5.7, we deduce that N has a fixed point

(u1,us) in U which is a solution of problem ([2.13))- (2.14]).

2.2.3 Example

Consider the following implicit coupled system of Caputo-Hadamard fractional dif-

ferential equations

(e Dfun)(t) = f(t,wr (1), us(t), (<D ur)(1));
("eDfug)(t) = g(t, ua (£), ua(t), ("*Dfuz)(1));

(2.20)

where »
t7 u(t)sin(t)
[t ur,up,w) = s tell el
24(1 + V) (1 + |ug| + |ug| + |w])
t t
g(t, ur, v9, w) = w(t) cos(t) ; el el

24(1 + Jua| 4 Juo| + [w])
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The hypothesis (H;) is satisfied with

T

X
¢1(x) = TG’{’%(@TGS’

&1(z) = Y1 (x) = da(x) = &o(2) = 0.

Hence, Theorem implies that the system (2.19)-(2.20) has a unique solution
defined on [1, e].



Chapitre 3

Coupled Systems of Conformable

fractioonal differential equations

3.1 Coupled conformable fractional differential sys-

tem

3.1.1 Introduction and motivations

In [I09], the authors considered the following conformable impulsive problem :

T =R (Cxe, TX(Q)) . C€Qig=0,1,....5,
AX'CZCJ :TJ(XCI)a ]: 1,27...,67
x(¢) = n(¢), (¢ € (=00,
where 0 < 30 = (o < (1 < -+ < (5 < (gy1 = 3 < 00, TYx(() is the conformable
fractional derivative of order 0 < ¥ < 1, N : Q2 x @ x R — R is a given continuous

function, Q := [s, |, Qo 1= [5¢,G1], Q, = ((, Gral;0=1,2,..., 5, p: (—o0, 2] = R

and T, : @ — R are given continuous functions, and Q is called a phase space.

In this section, we investigate the existence of solutions for the following coupled
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conformable fractional differential system :

(Toru)(t) = fult, ult), v(t))

s tel, (3.1)
(To2v)(t) = fa(t, u(t), v(t))
with the following coupled boundary conditions :
(u(0),v(0)) = (610(T), 62u(T)), (3.2)

where T > 0, I :=[0,T], oz € (0,1]; i = 1,2 fi: IXRxR = R; i = 1,2 are
given continuous functions, 7;* is the conformable fractional derivative of order

a;;1 = 1,2, and 41, dy are real numbers with 9,05 # 1.

Next, we investigate the following coupled conformable fractional differential system :

(T, u)(t) = fi(t,u(t), v(t))
(T 0)(t) = fa(t, u(t), v(t))

with the coupled initial conditions :

it € la,00), (3.3)

(u(a), (@) = (1, ), (3.0
where a > 0, «; € (0,1]; ¢ = 1,2, (E,|| - ||) is a (real or complex) Banach space,

Uq, Vg € Fand f;: Ry x Ex E— FE; 1 =1,2 are given continuous functions.

3.1.2 Existence Results in Banach spaces

In this section, we are concerned with the existence and uniqueness of solutions of
the problem 3.2)

Lemma 3.1.1. Let z,y € C, and 6102 # 1 Then the unique solution (u,v) of problem

(Teru(t) = x(t); t € 1:=[0,T], an € (0,1],
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s given by

51 T T t
u(t) = 52/ sy (s)ds —|—/ 5271y (s)ds —I—/ s g (s)ds,
1 — 04109 0 0 0

T T t
v(t) = 02 51/ 30‘21y(s)ds+/ s 1 (s)ds —i—/ 52271y (s)ds.
1 — 04109 0 0 0

Proof. By Lemma [[.3.2] solving the linear fractional differential equation
Tyt u(t) = 2(t),
we find that
T Ty ult) = Jg™ (i)
Hence,

u(t) = u(0) —i—/o s 1y (s)ds, (3.6)
v(t) = v(0) +/0 52271y (s)ds. (3.7)

By using the boundary conditions u(0) = 6;v(T"), and v(0) = dru(T"), we obtain

w(0) = 5, {U(OH /0 "y (s)ds) (3.9)

and

T
v(0) = 9y [u(O) +/ sz (s)ds]| . (3.9)
0 |
It follows from ([3.8) and (3.9)) that

Y r T
u(0) = 52/ Sal_llE(S)dS+/ 5?2y (s)ds|
1—6102 |~ Jo 0 ]
and
- . ;
o0) = 2 o [ s yegas + [ s ats)as
1—6102 | Jo 0 ]
Thus,
( 61 t

s g (s)ds,

- T -
u(t) = 62/ s 1z (s)ds —i—/ 527y (s)ds| +
1 =010 [ " Jo 0 |

S—

5 . (7 r 1 g
v(t) = - 51/ 5a21y(8)d8+/ s 1z (s)ds| +
\ 1— 51(52 L 0 0 |

The following lemma is a direct conclusion of Lemma [3.1.1

52271y (s)ds.

S—
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Lemma 3.1.2. Let f; : [ x Rx R — R, i = 1,2, be such that fi(-,u,v) € C(I)
for each u,v € C(I). Then the coupled system — 18 equivalent to the coupled

system of integral equations

u(t) = [52 /OT so‘l_lfl(s,u(s),v(s))ds—i—/OTSC“?_lfg(s,u(s),v(s))ds]

+/ s (s, u(s), v(s))ds,

Now, we shall prove the main results concerning the existence of solutions of our first
problem by applying Schaefer’s fixed point theorem.

Let us introduce the following hypothesis :

(H) there exist real constants L;, K;, M; > 0; i = 1,2, such that

|fi(t,ur,u0)| < Ly + Ki|ug| + Mi|ugl; for te€l and w; € R.

Set

|01 05| ] T [ |01 | } T

W= |21 —, W= ,
' {’1—5152| 051 ? |1—5152’ o%)
|92 ] T [ |01 02| } T

Wiy = W= |———+1 )
3 |:|1—(5152| (03] 4 |1—5152| (6]

Theorem 3.1.1. Assume that the hypothesis (H) is satisfies. If
(Wi + W3) (K + My) + (Wo + Wa)(Ks + M) < 1, (3.10)
then the problem — has at least one solution.
Proof. Define the operator N : C — C by
(N (u,0))(t) = ((Nru)(t), (N20)(1)), (3.11)

where N1, Ny : C'— (' are given by
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(Mu)(t) = 1%32F34Tf13ﬁ@ﬂd$ﬂ%ﬂﬂ8+[f8”Vﬂ&uwhwﬂﬁk]
+ /Ot s 1 (s, u(s), v(s))ds,

(Nv)(t) = =35 F{ATﬁWlﬁA&US%UBDd8+lAT§”1fdau@%vﬁﬂd%
+ /Ot 5271 f (s, u(s), v(s))ds.

Set
(Wh + Ws)Ly + (W + Wy) Loy

T L= (W4 Wa)(Ky + My) — (Wa + W) (K + M)’

and consider the closed and convex ball

R >

Br ={(u,v) € C: ||(u,v)|lc < R}.

Let (u,v) € Bg. Then, for each ¢t € I and any i = 1,2, we have

(Nyu)()] < ‘12152 / @11 £y (s, uls), v(s))|ds
+ ‘1 _53162 / az— 1|f2(8 u( ) ( ))|ds

+/0 s (s, u(s), v(s))|ds

5 5 T
{% 1}/0 s Ly + Kifu(s)| + Mifu(s)])ds
1|
Tféfigiﬂ/) 527N Ly + Kylu(s)| + Ms|v(s)|)ds

{'MﬂﬁqT%hﬂm+Mm)

11— 6,0,

aq

|04 ] T
+ Lo+ (Ko + My)R
|:|]_—(5152| 042( 2 ( 2 2) )

< Wi(Ly + (K1 + My)R) + Wa(Le + (K3 + My)R).



3.1 Coupled conformable fractional differential system 56

Also,

(Now)(1)] = ‘1 ?261 /O 271y (s, u(s), v(s))ds

e 0201 / (s uls), uls))ds

+/0 %7 fa(s,u(s), v(s))ds

<[22 [ st st e
_1_526108 5(s,u(s),v(s))ds

T
' '1 2 [ st u(e)s

+/0 7271 fa(s, u(s), v(s))ds

< Ws(Ly + (K1 + My)R) + Wy(Le + (K3 + Ma)R).

Thus, we get

[N (u,v) ()| < (Wy + W3)(Ky + My) + (W + Wy)(Ks + M) R
+ <W1 + W3>L1 + (WQ + W4)L2.

Thus,
[N (u,v)]le < R.

Hence, N maps the ball By into itself. We shall show that the operator N : B — Bpg
satisfies the assumptions of Schaefer’s fixed point theorem. The proof will be given in
several steps.

Step 1. We show that N is continuous. Let {(u,,v,)} be a sequence such that
(Un,vn) — (u,v) in Bg. Then, for each t € I, we have

| N1 (tn, v)(t) — Ni(u, v) ()]
0105 T
< [m + 1]/ s [ f1(s, un(s), va(s)) — fi(s, u(s), v(s))]|ds

|1_’63152\/ 2 [fals, tn(s), va(s)) = fals, uls), v(s))]|ds.
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Analogously, we get

| N2 (tin, vn)(8) = Na(u, v)(t)]

6. 'flf;f'(;; 1 / S o5, wn(s), va(s)) — fols, us), v(s))]lds

<

b [ )06 s s, 5

Since (U, v,) — (u,v) as n — oo and f;, i = 1,2, are continuous, by the Lebesgue

dominated convergence theorem
| N(tn,vy) — N(w,v)|[[; =0 as n — oo.

Step 2. We show that N maps bounded sets into bounded and equicontinuous sets
in Bg. N(Bg) is bounded. This is clear since N : Bg — Bgr and Bp is bounded.

Now, let ¢1,t5 € [0, 7] be such that t; < to. and let (u;;us) € Br. Then, we have

(Nyw)(t2) — (V) ()] < / "1 fy(s, u(s), (s))|ds
‘/01 2171 f1(s, uls), v(s)|ds
§/2 @111 £, (s, u(s), v(s))|ds

t1

< L+ KiR+ MR

5 — ).
S g )

Thus,
L+ KiR+ MR

aq

[(N1u)(t2) — (Nyu)(t1)] <

In a similar manner, we can easily get

(197 — ). (3.12)

L+ KsR+ MR
(8%

The right-hand sides of the inequalities (3.12) and (3.13]) tend to zero as ty — t;.

Therefore, the operator N(u,v) is equicontinuous. By collecting the above steps

|(N2v)(t2) — (N2v)(t)| < (57 — 7). (3.13)

along with the Arzela-Ascoli theorem, we deduce that N : B — Bpg is completely
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continuous mapping.

Step 3. The set Q = {(u,v) € C: (u,v) = AN (u,v); 0 < X < 1} is bounded.
Let (u,v) € € such that (u,v) = AN(u,v). Then for any t € I, we have

u(t) = A(N1u)(t), and v(t) = A(Nov)(2).
Hence,

T T
u(t) = 1_>\—661152 {52/0 8“1_1f1(s,u,v)ds+/0 5271 fo(s,u(s),v(s))ds

£ [ 5 suls) (o)) s
From the assumption (F), we obtain
a(t)] < WA(La + (Ky -+ Mo)((t)] + o)) + Wa(Ls + (K5 + M) (u(®)] + [o(t)).
By the same approach, we have
0B < WalLs + (Ks + M) (u(®)] + [0()) + Wa(La + (K + Ma)(fu(d)] + [o(0)]).

Thus, we obtain

@)+ @) < (Wi + Wa) (K1 + M) + (W + Wy) (K + M) (Ju(t)| + |o(t)])
+ (Wi + Ws)Ly + (We + Wy)Lo.

This gives

(Wl —+ Wg)Ll + (WQ + W4>L2 L
[u(t)] + Jv(t)| < 1 — (W 4 W) (K + My) + (Wa + Wy (Ko + M) .

Hence,
[(w, v)]le < v.

Therefore, the set €2 is bounded.
As a consequence of Theorem [1.5.8] we conclude that NV has at least one fixed point.
This confirms that there exists at least one solution of the coupled system (3.1))-((3.2)).
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3.1.3 Existence results in Fréchet spaces

Now, we shall prove the main results concerning the existence of solutions of our

problems.

Let us introduce the following hypotheses :

(Hy) The functions f;; i = 1,2 are measurable on R, ; for each ¢t € I and u;,v; € E,

and the the functions (u,v) — f;(t,u,v) are continuous on £ for a.e.t € Ry; i =

1,2.

(Hy) There exist continuous functions h;, p;,¢; : Ry — Ry and 0 < k; < 15 i = 1,2,

such that

| fi(t,ug, ug)|| < hi(t) + pi(O)||ur|] + ¢:;(D)||ue]|; for te€R,, and wu;v; € E.

(Hj3) For each bounded sets B; C E and for each t € R, we have

plfi(t, Br, By)) < pi(t)u(Br) + i(t)(Ba),

where p is a measure of noncompactness on the Banach space E.

For n € N, set

p; = sup pi(t), ¢ = sup g;(t), hi = sup hy(t).
te[0,n] t€[0,n] teon]

Theorem 3.1.2. Assume that (Hy)-(H3) are satisfied. If

(TL B a)al * * (n B a)ocz
o + (pz + QQ) 0

(P +a) <1,

for each n € N*, then the problem - has at least one solution.

Proof. Define the operator N : C — C by

(N (u, 0))(t) = ((N1u)(2), (N2v) (1)),

where Ny, Ny : C' — C' with

t

(N)(t) = ua + / (s — )™ fy (s, u(s), v(s))ds,

1

(3.14)

(3.15)
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and
(N2v))(t) = v, + /1 (s —a)* ! fo(s,u(s),v(s))ds. (3.16)

Clearly, the fixed points of the operator N are solutions of the coupled system

B-3-B.9.

For any n € N*, we set

lutall + oall + Ry EZD y py oo

1

1= (P 4 g (s + ) )

a2

n

Consider the ball

Bg, == B(0,R,) = {(u,v) € X : ||u|ln < Rp, ||v|ln < R.}.

n

For any n € N*, and each u,v € Bg, and t € [0,n] we have

i) Ol < ol + [ (5= @™~ s u(s) (o) ds
<ol + [ (5= @)™ )+ p1(5) |+ ) s

t
< luall+ (85 + (1 + D)) [ (5= a) s
1

* * * n—a)™
<l + 0 + 51 + ) o) =

and
[(N20) ()| < [vall +/1 (s = a)* 1 || fals, u(s), v(s))] ds
< ||va,||+/1 (s — a)** ™ (ha(s) + pa(s) lurll + ga(s) luzl))ds

t
< ol + (5 + (5 + 5) ) [ (5= a) s
1

(n— a)”.

&%)

< ol + (A5 + (p3 + ¢5) Ry)
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Then,
«\T a)al *(n_aa2 * (n_aal
I DO <l + el + 1 B g D gy 22
* s \—a @2
+(p2+q2)( ) )Ry,
&%)
< R,.

Thus,

(N (u, v)],, < Ry (3.17)

This proves that N transforms the ball Bp, into itself. We shall show that the
operator N : B, — Bp, satisfies all the assumptions of Theorem The proof

will be given in two steps.

Step 1: N(Bg,) is bounded and N : N(Bg,) — N(Bg,) is continuous.
Since N(Bg,) C Bg, and Bpg, is bounded, N(Bg,) is bounded. Let {(ux, vx) }ren be

a sequence such that (ug,vg) — (u,v) in By, . Then, for each t € [0, n], we have
[N (n, v) ) (t) = (N (u, 0)) ()]
<Z/H s, ta(5),0(s) — Fils, (u(s). ()] ds

<Z/ @) [fi(s, n(5), va(s) = fils. (u(s), v(s))]]| ds.

Since (ug,vx) — (u,v) as k — oo and f;, i = 1,2, are continuous, by the Lebesgue

dominated convergence theorem
|N(un,vn) — N(u,v)|,, =0 as k— oo.

Step 2 : For each bounded equicontinuous subset D of Bp, , ft,(N (D)) < lppi,(D).
From Lemmas[T.4.3land [T.4.4] for any D C Bpg, and any e > 0, there exists a sequence
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{ug, vi}52y C D, such that for all t € [a,n], we have

a

HND)E) = 3 ilfa + / (5 — @)L fi(s, (u(s), v(s))ds; (u,v) € D})
<>l / (5 — @)L £i(s, (un(s), vel))ds}22,) + €

< Zl/ (s — @)™ p({ fi(s, (ur(s), vr(s))}iZ)ds +

< Z/ (s — @) 'pi(s)n({ (ur(9)) }o21) + @i (s)u({vr(s) 171 )ds + €
< ((p1 + 1) (n ;1&)&1 + (95 + ¢3) (n ;:)az )tin (D).

Since € > 0 is arbitrary, then

(n—a)™

pUND)(0) < (65 + 6) =+ (0 63) (D)
Thus,
pn(ND) < ((p1 + QT)% + (s + qz)%)un@)-

As a consequence of steps 1 and 2 together with Theorem [1.5.6] we can conclude that
N has at least one fixed point in By, which is a solution of problem ({3.3)-(i3.4)).

3.1.4 Examples

Example 3.1.1. Consider the coupled system of Conformable fractional differential

equations

~—

. telo,1], (3.18)

+w\>—t +m\»~

c

S~—
~~
~
SN—
=
—~
~+
e

~~
~
SN—
<

—~
~
SN—
SN—

2N

with the following coupled boundary conditions :

(u(0),v(0)) = (1,2), (3.19)
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where
sin(u + v)
t 2\
At uv) 40(et + 1)
tan u
tu,v) = —+—  t€|0,1]; u,veR.
fa( ) 10 + |ul + | 0, 1]

The hypothesis (H) and the condition are satisfied with

1 1
M=K =—, Ky=— — 5y = =
1 1 80’ 2 107 51 52 2a
8 4
‘/'/ e ‘/‘/ = — |/|/ e |/‘/ = —,
1 4 37 2 3 3

Hence, Theorem implies that the system (3.18)—(3.19)) has at least one solution
defined on [0, 1].

Example 3.1.2. Let

o
It = {u: (ul,u2,...,un,...),2|uk| < oo}
k=1

be the Banach space with the norm

o0
lull =) .
k=1

and C(R, ') be the Fréchet space of all continuous functions v from R, into [},

equipped with the family of seminorms

[vlln = sup [lv(@)[l; n €N.
tel0,n]

Consider the coupled system of Conformable fractional differential equations

o~
SN—
&3
—~
o~
N—
N—

T o=

(Torun) () = frlt, u(

| L te[l,o), k=1,2,..., (3.20)
(To3ve)(t) = gr(t, u(t), v(t))

with the following initial coupled conditions :

(ur (1), (1)) = (0,0), (3.21)
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where
fltu0) = — (T )@ u(t), el o),
L+ [lufl + [Jv] etts
c
gr(t,u,v) = (2_1‘3 +ug(t)), tell,o0), k=1,2,---, ¢>0,
e (1 + [lull + [lv])

for each t € [1,n]; n € N, with

f:(f17f2""7fk7"‘)7 92(917927"‘7gk7"‘)7 andu:(/U/l’uQ,...,uk’...).

We can show that all hypotheses of Theorem[3.1.9 are satisfied with

So,

hi =p; = c(e’7 +e 9, hy=q =ce "

Therefore, Theorem[3.1.9 implies that the system (3.20)~(3.21) has at least one solu-
tion defined on [1,00).

3.2 Stability and Attractivity Results For Coupled

Fractional Conformable System

3.2.1 Introduction and motivations

In this section, we investigate the existence and stability of solutions for the following

coupled Conformable fractional differential system :

O = a0 o0) -, 529,
(To2v)(t) = fa(t, u(t), v(t))
with the following coupled boundary conditions :
(u(0),v(0)) = (3:10(T), dou(T)), (3.23)

where 7' > 0, I :=[0,T], a; € (0,1]; i = 1,2, fi: I xR xR — R; i = 1,2 are

given continuous functions, 7,%” is the conformable fractional derivative of order
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a;; 1 =1,2, and 0, 05 are real numbers with 9,0, # 1.

Next, we investigate the attractivity of solutions for the following coupled conformable

fractional differential system :

(T, u)(t) = fi(t,u(t),v(t))
(T,20)(t) = fa(t, u(t), v(t))

with the following coupled initial conditions :

; b€ [a,00), (3.24)

(u(a), v(a)) = (ta, va), (3.25)

where @ > 0, o; € (0,1]; ¢ = 1,2, (R,||.||) is a Banach space, u,,v, € R and
fi: Ry x RxR —R; i=1,2 are given continuous functions.

The rest of this paper is organized in the following manner : In Section [3.2.2] we
briefly review some of the relevant definitions from fractional calculus and prove an

auxiliary lemma that will be used later. We discusses the Hyers-Ulam stability of

solutions to the considered problem (3.22)-(]3.23|) and presents sufficient conditions
for the stability, and Section deals with proving the existence and attractivity of
solutions for the given problem ([3.24))-(3.25)) using the Schauder’s fixed point theorem.

3.2.2 Existence and Ulam stability of solutions

First, let us introduce some basic lemmas and definitions that are needed throughout
all the manuscript.
Let C := C(I,R) be the Banach space equipped with the norm defined by

[l oo == sup [u(t)].
tel
By C := C x C, we denote the complete metric space with the usual metric
D((Ul, Ul)a (u27 UQ)) = d(uh UZ) + d(vh UQ)-
C is a Banach space with the norm

1w, v)lle = llulloo + [[0]lco-
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Let BC := BC(R,) be the Banach space of all bounded and continuous functions
from R into R, equipped with the norm

lul[ s := sup |u(t)].
teR4

It is clair that the product BC := BC'x BC turns out to be a Banach space if equipped

with the norm

[ (w, v)||se = llullBc + [|[v]|BC-

Definition 3.2.1. By a solution of problem -, we mean a coupled function
(u,v) € C that satisfies the system

( ()Tu)(w - fl(t7u(t)7v(t>>7
(Tor2v)(t) = fa(t, u(t), v(t)),

on I and the following coupled boundary conditions :

(u(0),v(0)) = (610(T), 62u(T")).

Now, we consider the Ulam stability for system (3.22)-(3.23)). Let ¢ > 0 and & : I —

R, be a continuous function. We consider the following inequalities :

(TR0 = Altu® o <5 20
(T220)(8) = falt,u(®). ()] < 5.
(T2 = Aa®oO) <320 o0 o)
(T220)8) = falt,u(t). o))| < (1),
T2 = RO 0O < 520 oo 28,
(T220)8) = falt,u). o()| < 59(0).

Set
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Definition 3.2.2. [§, [135] System — is Ulam-Hyers stable if there exists

a real number cy, y, > 0 such that, for each e > 0 and for each solution (u*,v*) € C

of inequalities (m there exists a solution (u,v) € C(I) of (3.22 —' with

(" (t) — u(t), v*(t) = v(D)| < ecpppt € 1.

Definition 3.2.3. [8, (135 System — is generalized Ulam-Hyers stable if
there exists cy, f, : C(R4,Ry) with ¢f,(0) = 0,7 = 1,2, such that, for each ¢ >0 and
for each solution (u*,v*) € C of inequalities (3.20)) there exists a solution (u,v) € C

of - with
|(u*(t) = u(t),v*(t) = v(t)] < ¢ p(e), t € 1.

Definition 3.2.4. [8, [135] System (3.29)-(5.29) is Ulam.Hyers.Rassias stable with
respect to ® if there exists a real number cy, f, & > 0 such that, for each e > 0 and for
each solution (u*,v*) € C of inequalities (3.28)) there ezists a solution (u,v) € C of

G- 2 with
[(w"(t) —u(t), v*(t) —v(t))| < ecpy 0P(1),t € 1.

Definition 3.2.5. [, [135] System - 1s generalized Ulam.Hyers. Rassias
stable with respect to ® if there exists a real number cy, 1, & > 0 such that, for each
solution (u*,v*) € C of inequalities (3.28)) there exists a solution (u,v) € C of (3.29)-

with

(™ (1) = u(t), 0" (1) = o(O)] < cppw®(t), 1 € 1.

Remark 3.2.1. It is clear that

1. Definition = Definition ,

2. Definition = Definition (3.2.5),

3. Definition for ®(.) =1 = Definition (3.2.9).
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Let us introduce the following hypotheses :
(H,) There exist real constants M;, K; > 0; i = 1,2, such that
| fi(t,ur,v1) = filt uz, va)| < Kifur — ua| + Milor — vaf,
for each t €I andeach wv;,u; €R.
(Hs) There exists A > 0 such that, for each ¢t € I, we have
(I B)(1) < Ao (t).i = 1,2
Set
0102 ] T 0] | T
Wi=|———+1 Wy =
' [’1_5152| " o’ ’ |1 —06102]] o
0] 1T 0201 T
W3 = Wy=|———+1| —
3 |:|1—5152’ (0%} ’ 4 ‘1—51(52| + (0%) ’
fi=sup|fi(t,0,0)] < oo forall i=1,2.
tel
Theorem 3.2.1. Assume that hypothesis (Hy) holds with
(Wl + Wg)(Kl + Ml) + (WQ + W4)(K2 + Mg) < 1, (329)

then system — has at least one solution defined on I. Moreover, if hypo-
theses (Hy)-(Hz) hold, then system (3.29)-(5.29) is generalized Ulam-Hyers—Rassias

stable.

Proof. Define the operator N : C — C by

(N (u, 0))(t) = ((N1u)(2), (N2v) (1)),

where N1, Ny : C'— (' are given by

(3.30)

(Ni)(t) = =2 [ 500 fuls,uls), wls)ds + J; 5% fals, u(s), o(s)ds|

+ fot s (s, u(s), v(s))ds,
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and
(Ne0)(t) = %5 [51 fo s fo(s, u(s), (8))ds+fOT sal—lfl(s,u(s),v(s))ds]
+ fy 5% (s, u(s), v(s))ds.
Set

P (W1 + Ws) ff + (Wao + Wa) f3
T — (W + Wa) (K + M) — (W + Wy) (Ky + M)’

and consider the closed and convex ball
Br =A{(u,v) €C: [[(u,v)llc < R}.
Remark 3.2.2. From H1  for each w,v € R and t € I, we have that

|filt,u, v)]
<|fi(t,u,v) = fi(£,0,0)| + [ fi(£,0,0)|
<Kilul + Mo + f7
<(K; + M)R+ f}.

Let (u,v) € Bg. Then, for each ¢t € I and any i = 1,2, we have

(Vo) (1) s'lflf;% / (o) (o)
+ ‘1 _525152 / ag— 1’f2(8 u( ) ( ))‘ds
+/o s fus,uls), v(s))lds

<[00 ] [ st otsnias

N [%} /T 27 fals, u(s), v(s))lds

< {_’5152\ T
‘1 — 5152’ aq

¥ 1} (Ky + MOR+ £)

|61 T4 .
" Ll — 010a|| a (Kot Mo)R+ f3)

<Wi((K1+ M) R+ f7) + Wa((K2 + Ma) R+ f3).
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Also

(Naw) (1) = ' 1 fzf;;él /0 271 fy (s, u(s), v(s))ds

52 g a;—1
+ 1—52(51/0 s fi(s,u(s), u(s))ds

5201 o
S'1—5261/0 s fo(s,u(s), v(s))ds

52 g ag—1
+ ‘1 v /0 s fi(s,u(s),u(s))ds

_'_/0 Sa2—1f2(37u(3),v(8))d8

<W3((K1 + Mi)R+ f) + Wa((Kz2 + Ma) R + f3).

Thus, we get

[N (u,v) ()| <(Wh + W) (K1 + M) + (Wa + W) (Ky + M) R
+ (W + Wg)fl* + (Wa+ Wy f5.

Thus
[N (u,v)[|le < R.

Hence N maps the ball By into itself. We shall show that the operator N : B — Bpg
satisfies the assumptions of Schauder’s fixed point theorem. The proof will be given
in several steps.

Step 1 N is continuous.

Let {(un,v,)} be a sequence such that (u,,v,) — (u,v) in Bg. Then, for each t € I,

we have
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[ N1 (tn, 0n)(£) = Na(u, 0)(1)]

= {\1|f1§j‘52| - 1] / s, (), vals)) = fils, uls), v(s))]lds

|1_|53152|/ 2 un(s), vals)) = fals, uls), v(s))]lds.

Analogously, we get

| Na(tn, vn) (1) = No(u, v)(1)]

[% - 1] | a9 009) = s, ) ()

|1_'53152\/ S [fu(s, un(5), 0als)) = fils, u(s), v(s))]lds.

Since (un,v,) — (u,v) as n — oo and f;, i = 1,2, are continuous, by the Lebesgue

dominated convergence theorem
| N(un,vn) — N(u,v)|| -0 as n— oo.

Step 2 N(Bg) is bounded. This is clear since N(Br) C Bg and By is bounded.

Step 3 We show that N maps bounded sets into equicontinuous sets in Bpg.
Let tq,ts € [0,T] such that t; < to and let (u,v) € Bg. Then, we have

[(N1u)(ta) — (Nyu)(t1))|

3/02 S fi(s, u(s), v <>>|ds—/01 5171 £, (s, u(s), v(s)|ds
g/2 @1 £, (5, u(s), v(s))ds

t1

< KiR+ MR+ ff

5 —19).
Sy — )

Thus, we get
KiR+ MR+ f{

aq

|(N1u)(ta) — (Nru)(th)] < (ta" —t5). (3.31)
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In a similar manner, we can easily get
KR+ M>R+ f5
(o) (12) — (Now)(1)] < 2 AR A
2

The right-hand sides of the inequalities (3.31) and (3.32) tend to zero as t2 — t1.

There- fore, the operator N(u,v) is equicontinuous. As a consequence of the above

(192 — 122), (3.32)

three steps with the Arzela-Ascoli theorem, we can conclude that N : B — Bp is
continuous and compact. From an application of Theorem we deduce that N
has at least a fixed point (u,v) which is a solution of our system (3.22))-(3.23)).

Step 4 Generalized Ulam-Hyers—Rassias stability.
Let us assume that (u,v) is a solution of system , let (u*,v*) be a

solution of inequality (3.27) if and only if there is (gl,gg) € C’(I ,R) (Where g1

depends on solution u* and go depends on solution v*) such that
(i) |g1(t)] < 2®(t) and |go(t)| < 1@() forall ¢e€[0,7].

(ii) For all ¢t € [0,T]

So
w(t) = Ze+ 3 [ [0S s i) + ) s ga(s)ds]
+ f(f s (s, u*(s), v*(s)) dS—I—%f(f 517 1g (s)ds,
and
(1) = Ze 2] 8000 s gal)ds + f) s g (s)ds]
+ f(f 5271 fo (s, u*(s), v*(s)) ds+%fg 5271 gy(s)ds,
where
01 [ g ar—1 px ’ az—1 px ]
Ly = (52/ s f] (s,u(s),v(s))ds—l—/ s*7 £y (s, u(s),v(s))ds| ,
1—6102 |~ Jp 0 |
and

(52 T as—1 g ar1—1 px ]
Zo = g [ [ )06 ds + [ () o)
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It follows that

() = Zo = [ 5 (9,070

1 ’(5152 / 1 |1’ / 1
-1 (s)ds + — [ s9271gp(s
{|1—51521 1= 5103]

+/0 57 1<I>()d}

L [ i z 1(]@ o 2

=9 {|1—5152| 1] (Z5"2)(1) + 5 [|1—5152| (Z5*2)(t)
1 []6102] + |61]

—2[ o5, 1 e?W

Similarly

0201 | + |02

[0 () — Zor — / S s, (), 0*(9)ds| < {W * 1] Ao (1).

From hypotheses H1 and H2, for each t € I, we have

|u*(t) — u(t)| = |u"(t) — Zy — /0 s 1 (s, u(s), v(s))ds

<

W) — Zue — /O 1L f (5, 0% (), v (5))ds

; / S fy (s, 0t (5),0°(5)) — fi(s.u(s), v(s))ds

<

W) = Ze — /O 11 f (5, 0% (), v () )ds

[ A (907 (9) = Al ) () s
1 |(5152| + |51|

§§ [—|1 5.5 + 1} Ap®(t)
[ 0 = o) + Ml (0) = w(o)llas

1 []0162] + |61
< | 227el TP
5 { = 0:0,] + 1| Ao ®(?)

(83}

(K A+ My)(Ju*(t) = w(@)] + [07(t) = v(0)]).

o
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Also, we get

lv(t) — o™ ()| = |v*(t) — Zys — /0 5271 fo(s,u(s),v(s))ds

<|o*(t) = Zue — /0 2L fy (5, 0% (), v (5))ds

s [ (9,0°(5) o uls) o)
1 [16:65] + 65|
<5 {—H .5 + 1] Aa®(1)
# [ sl () = w0+ Mol () = o(0)ls
<3 [+ 1] e
T2 K+ M) (1) — u(®)] + o () — ().

(%)

Thus
[(w(2), v* (1)) = (u(t), v(t)] =|u"(t) — u(t)] + [v"(t) — v(t)]
- (Ko + MQ):|

Qg 2%
X | (u*(t), v (£)) — (u(t), v(t))]
1 [[610a] + 01| = [6102] + |d2] ]
Z + 2| Aao (2
2[ 11— 6102]  |L— 610 2 ()
1 | 10182 +[01] | [0162]+]02]
2 [ [1—68102] + [1—0102| +2:| \ (D(t)
)
- ( (K + M)

T T
< [ (K1 + M) +

<

T To2
a (Kt M)+

Scf17f27q>®(t)

Hence, problem (3.22))-(3.23) is generalized Ulam—Hyers—Rassias stable.

3.2.3 Attractivity results
Let ) # Q € BC and let N : Q — Q, and consider the solution of the equation

(Nu)(t) = u(t). (3.33)
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We introduce the following concept of attractivity of solutions for equation ({3.33)).

Definition 3.2.6. Solutions of equation are locally attractive if there exists a
ball B(ug,n) in the space BC such that, for any solutions v = v(t) and w = w(t) of
equations belonging to B(ug,n) N ; we can write

lim (u(t) — v(t)) = 0. (3.34)

t—o00

If limit is uniform with respect to B(ug,n) N2 ; then the solutions of equation
are said to be uniformly locally attractive (or, equivalently, that the solutions

of are locally asymptotically stable.

Lemma 3.2.1. [106]. Let D C BC. Then D is relatively compact in BC' if the
following conditions are satisfied :
(a) D is uniformly bounded in BC;
(b) the functions belonging to D are almost equicontinuous in Ry ; i.e., equicontinuous
on every compact set in Ry;
(c) the functions from D are equiconvergent, i.e., given € > 0; there exists T'(g) > 0
such that

lu(t) — lim u(t)| < e

t—o00

for any t > T(e) and u € D.

Let us introduce the following hypotheses.
(Hg) The functions f; : [a,00) X R x R — R are continuous for a.e. i=1,2.

(H;) There exist continuous functions h;, p;, g; : [a,00) — R, ;i = 1,2, such that

| fi(t, ur, ug)| < hi(t) + pi(t)|us] + qi(t)|uzl,

for t€a,00), and w;,v; € BC.

Moreover, assume that

lim (Z5°ha)(£) = lim (Z3°py)(£) = lim (Zgg;)(£) = 0.

t—o0

Set

pi = sup (Zg'pi)(t),¢" = sup (Zg°qi)(t),h" = sup (Zg°hi)(t), 7 = hi+(p;+¢)R.

t€la,00) t€la,00) t€[a,00)
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Now, we shall prove the following theorem concerning the existence and the attracti-

vity of solutions of our problem (3.24])-(3.25)).

Theorem 3.2.2. Assume that (H3)-(Hy4) hold. Then the problem -[5-25) has at
least one solution defined on |a,00). Moreover, the solutions of problem -[5-25)

are uniformly locally attractive.

Proof. Define the operator N : BC — BC by

(N(u,v))(t) = ((Nru)(t), (Nav)(2)), (3.35)
where N1, Ny : BC — BC with

t

(Nyu)(t) = ug + / (s —a)®fi(s,u(s),v(s))ds, (3.36)

1
and

t
(Nyw)(£) = v, + / (5 — @)™ fo(s, u(s), v(s))ds. (3.37)
1
Clearly, the fixed points of the operator N are solutions of the coupled system

B:29-(-23).

Set
R> |Ua|+|va|+h>{+h;

Tl a) (s as)

and consider the ball
Br := B(0,R) = {(u,v) € BC : ||(u,v)||gc < R}.

The operator N maps BC into BC . Indeed the map N(u,v) is continuous on R, for
any (u,v) € BC and for each t € [a, 00) ; we have

(Niw)(8)] < Jual + [1(s — @)Y fi(s, uls), v(s))|ds
< ual + [} (s = @) 7 (ha(s) + pu(s)|u(s)] + qi(s)[v(s)])ds
< ua| + 07+ (p7 + @) R,
and
(N20) (0] < Jval + [ (s — @) 7| fals, u(s), v(s))|ds
< val + f1(s — @) (ha(s) + pa(s)|u(s)| + ga(s)|v(s)|)ds
< el +h5+ (P + ¢3) R
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Thus, we get
[N (u, v)()] < [ua| + [va] +h1 +h3 + (p1 + 6§ + 13 + @) R.

Thus
H(N<U>U)HBC <R (3.38)

This proves that N transforms the ball By into itself. We shall show that the
operator N : B — Bp satisfies all the assumptions of Theorem [1.5.3. The proof will

be given in several steps.
Step 1. N is continuous.

Let {(un, vn) fnen be a sequence such that (u,,v,) — (u,v) in Bg.

Then, for each ¢ € [a, 00), we have

OV a 0)0) — (N DO € 52 Js = @) Al wnl), )
—fi(s, (u(s),v(s))|ds.

Case 1. If t € [a,T]; T > a, since (un,v,) = (u,v) as n — oo and f;, i = 1,2, are

(3.39)

continuous, by the Lebesgue dominated convergence theorem, equation ((3.39)) implies

| N (tn, v) = N(u,v)||ge =0 as n— oo.

Case 2. If t € (T, 00); T > a, then, from the accepted hypotheses and (3.39), we get

[(N (s v)) (1) = (N (u,0)) (0] < 2322, [ (s = a)* 7 h(s) +p(s)u(s)]
+q(s)|v(s)l]ds.

Since (un,v,) — (u,v) as n — oo and (Zh)(t) = (Zopi)(t) = (Z8q:)(t) — 0 as

t — oo, then (3.40) gives

(3.40)

| N (tn, v) = N(u,v)||ge =0 as n— oo.
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Step 2.N(Bg) is uniformly bounded.
This is clear because N(Bg) C Bg and Bpg is bounded.

Step 3. N(Bg) is equicontinuous on every compact subset [a,T] of R, ;T > 0.
Let t1,t3 € [a,T),t; < to and let (u,v) € Bgr. Thus we have

(N (u,0))(t2) = (N (u,0))(0)] < 20, ff( —a)* 7 fi(s, u(s), v(s)|ds
= J (s = @) 1|fz(8 u(s), v(s)|ds
< Y (8-@)0" Hfi(s,u(s), v(s)|ds.
As t; — t9 and the continuity of the function f;; the right hand side of the above
inequality tends to zero.
Step 4. N(Bg) is equiconvergent.
Let t € [a,00) and (u,v) € Bg, then we have

= fi(s uls), v(s))lds
=1y () 4 py(s)|u(s)] + q(s)|v(s)|)ds

—a)
—a)
Since (Z3hy)(t) = (Z0p1)(t) = (Iglql)(t) — 0 as t — oo, we get

[(Nu)(t)| = |uq| as t— oc.

Hence,
|((Nu)(t) — (Nu)(oco)| = 0 as t— oo,

and

< Jval + [y (s = @)Y fo(s, u(s), v(s))|ds
< ool + [ (s = @)™ (ha(s) + pa(s) u(s)] + ga(s)[v(s)])ds
< Jval + (152h2) (8) + [(137p2) (1) + (152 q2) (1)] 1.

Since (Z2%hs)(t) = (Z22p2)(t) = (Z2%q9)(t) — 0 as t — oo, we get

|((Nv)(t)] = |va] as t — oo.
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Hence,
|(Nv)(t) — (Nv)(c0)| = 0 as t— oo.

Thus
|(N(u,v))(t) — (N(u,v))(+00)] = 0 as t— +oo.

As a consequence of steps 1 to 4 together with the Lemma [3.2.1] we can conclude
that N : Bg — Bpg is continuous and compact. From an application of Theorem
we deduce that N has a fixed point (u,v) which is a solution of the problem

(B:29-(-29) on R..

Step 5. The uniform local attractivity of solutions.

let us assume that (ug,vy) is a solution of problem (3.24))-(3.25) with the conditions
of this theorem.

Taking (u,v) € B((ug,v0), R) with R = 2(¢)F + 1%); we have

| (Nyw)(t) = uo(t)] |(Nyw)(t) = (Nruo)(t)]

< [o(s = @)@ fuls,uls), o(s) = fi(s, uo(s), vo(s))|ds
< i a)"” (s, uls), v(s))] + | fi(s,uo(s), vo(s)) ds
< 2 [1(s = a) 7 (ha(s) + pa(s)[uls)] + aa(s)[v(s)])ds
< 2(hi+ (p1+q1)R)
< 297,

and similarly

[(Naw)(t) —wo(t)] = [(Naw)(t) — (Nawo)(t)]

< [i(s =)t fols, uls), v(s)) = fals, uo(s), vo(s))|ds
< fis a)o” Hfa(s uls), v(s))| + | fa(s, uo(s), vo(s))|ds
< 2[5 (s = a) 7 (ha(s) + pals)uls)| + aa(s)[v(s)])ds
< 2(h; + (p2+q2)R)
< 2¢5.

Thus, we get
[N (u, 0)(t) = (o, v0)(t)| < 2(¢7 + 93).
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Thus

N (u,v) — (g, vo)||ge < R-

Hence, we conclude that N is a continuous function such that

N(B((umvo)aE)) - B((U’O?UO)vﬁ)

Moreover, if (u,v) is a solution of problem (?7)-(??), then

[u(t) — uo(t)]

and

[0(t) — vo(1)]

Thus

(VAN VAR VAN

VAN VANVAN

| (Nyw)(t) = (Nyuo)(t)]

Ju(s = a) 7| fuls, u(s), 0(s)) = fuls, uo(s), vols))|ds
Ju s a)‘“ HIfi (s uls), v(s)) + [fi(s, uo(s), vo(s)) |1 ds
2 [1(s = @)~ (ha(s) + pr(s)lu(s)| + i (s)]o(s)])ds,

|(N2v) () = (Navo) (¢)]

Ju(s = a)*2 ! fo(s, u(s), v(s)) = fuls, uo(s), vo(s))lds
Ja(s a)‘” HIfals,uls), v(s))] + [ fa(s, uo(s), vo(s))[]ds
2 [} (s — @)™ (ha(s) + pa(s)lu(s)| + ga(s)]o(s)])ds.

| (u, 0) () = (w0, uo) (1)] < 22/ s—a)®" (hi(s)+pi(s)|u(s)[+ai(s)[v(s)])ds. (3.41)

By using (3.41) and the fact that tlim (Zoihi)(t) = tlim (Zoipi)(t) tlim (Z2igi)(t) = 0,
—00 —00 —00

we deduce that

Jim (1, )(8) = (g, 0) (1) = 0.

Consequently, all solutions of problem ([3.24))-([3.25)) are uniformly locally attractive.
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3.2.4 Examples

Example 3.2.1. Consider the coupled system of Conformable fractional differential

equations
1
T2u)(t) = fi(t,u(t), vt
T = o) o )
( 03_’0)(15) = f2<t,u(t),?)<t))
with the following coupled boundary conditions :
1 1
u(0) = 51}(1),1}(0) = §u(1), (3.43)
where
1 u(t) 1
t = tel0,1
fl(auav> 4(t+2)21+u(t)+\/m’ 6[ ) ]7
1 1
falt,u,v) = o sin(27v(t)) + 2 tel0,1; wu,veR.
The hypothesis (Hy) is satisfied with
L f1(t,0,0) 1< L f2(t,0,0) 1<
= su ,0,0) = — < 00, Ly = su ,0,0) = = < o0,
' te[oﬁ] ' V2 ’ te[OI,)l] ’ 2
1
K1:M2:E,K2=M1:0>
8 4
Wi=Wy=- Wy =W3=—-.
1 4 37 2 3 3

The hypothesis (Hs) is satisfied with ¢(t) = 2. With the obvious elementary

computation, we have

L2o(t) = [ s '¢(s)ds

= f(f s*1s2ds
S ozt+2
— o)
a+2°
Thus
t?
Iyo(t) < 1= Ag(t).

o+ 2
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Hence, Theorem implies that the system (3.42))—(3.43) is generalized Ulam—

Hyers—Rassias stable.

Example 3.2.2. Consider the coupled system of Conformable fractional differential

equations
T%u t) = gi1(t,u(t),v(t
( or )(t) = g1(t,u(t), v(t)) el oo, (3.44)
(Toiv) () = g2(t, u(t), v(t))
with the following coupled boundary conditions :
(u(1),v(1)) = (0,0), (3.45)
where
t2(1 — 3¢t t
g1(t,u,v) (1— 5t )cos te[l,00),

6414+ V(1 [u] + o))’
Vit —2)etsint
L+ + |ul +|v])

92(t,u,v) = ( (14+w(t), te[l,o0); u,veR.

Clearly, the function g1, go are continuous.
The hypothesis (Hg) is satisfied with

(1 - 26| cos |
) = =0 v
pi(t) = q1(t) = pa(t) = 0;t € [1, 00).

Also, fort > 2, we have

Jha(t) = ga(t) = VE|(t — 2|)e”"|sint],

V|t —2)|e”sint| < Vit —2)e !,
t2](1 = 2¢71)|| cos | - t72(1 — gtfl).
64(1 + V1) - 64

In addition, we have

t 1 [t 5 1
[ s imos < o [5s0-Zs ds £ -t ) 50 e torox,
1

t t
/ S—l/th(s)dS < / 3—1/251/2(5 — 2)@_5ds < (—t —+ 1)e_t =0 as t— oo.
1 1
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t t
/ 5*1/2q2(s)ds < / 3*1/251/2(5 —2)e%ds < (—t+ 1)6*’e —0 as t— oo.
1 1

Therefore, Theorem implies that the system (3.44)—(3.45)) has at least one so-
lution defined on [1,00) and moreover, the solutions of this problem are uniformly

locally attractive.



Chapitre 4

Coupled Katugambola fractional

differential systems

4.1 A Coupled Katugampola fractional differential

system with Boundary Conditions
4.1.1 Introduction and motivations

In this chapter we investigate the existence of solutions for the following coupled

Katugampola fractional differential system
(D5 u)(t) = fu(t, u(t), v(t))
("Dg*v)(t) = fa(t, u(t),v(t))

with the boundary conditions

L tel:=0,T) (4.1)

o u(0) = al;Igial’pu(T) =b
(4.2)

Iy 0(0) = as; I3, ** v(T) = by,
where T >0, , t € (0,7); , oy € (1,2], fi : [ x R™ x R™ — R™; i = 1,2 are given
continuous functions, R™; m € N* is the Euclidian Banach space with a suitable

norm || - ||, Zg~*"* is Katugampola fractional integral of order 2 — a.
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4.1.2 Existence Results in Banach spaces

In this section, we are concerned with the existence and uniqueness results of the

coupled system ({4.1])-(4.2)).

Lemma 4.1.1. Let h € C, and o € (1,2]. Then the unique solution u € Cao_o (1) of

problem
(*Du)(t) = h(t); t € I
I3Pu(04) = ay; I u(T) = by
s given by
u(t) = 2T (b — ay — IPR(D)) el
+ %alt"(al’z)

+ ’;1(—;3 fot sPL(tP — sP)2 1 h(s)ds

Proof. Solving the linear equation

("Dgu)(t) = h(t),

From Lemma we find easily :
u(t) = ISP h(t) + C1r ™Y 4 Cytrle? (4.3)
From the boundary conditions and from (|1.3.3)), we have

Ig_:ouﬂu(o) _ Igia’p[g’ph(lﬁ + legla’pt”(a_l)

+ CoIZ *Ptple=?)

a—2
) P (@) o ot
I2PR(0) + € lim —————/ 2ot
ol h(0) + 1;% T2 —a+ta)
a—2
, p* (o —1)
Csy 1

+ Zti%iF@—a—i—a—l)

_ 22D (a—1)
- Cp* (1)

t2—0¢+0¢—2

g al
22—«
_ PP
= Gy = o)
2—a
ai
Cy= L
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and
LT = I *PISPR(T) + C Iy~ P TeleD
+ Col2 PP
= Ig’ph( ) + Clr 2 QLSJ(ra))Tp(z atant
p® T (a=1) a+ta—
+ 021“2 ata— 1)Tp(22 o)
_ 2 '«
_ 13Ph(T )+C‘1F2 a+a)>Tp
+ Cop®*T(a— 1)
= by
= O =2 (b — o — IYN(T))
2—a —
pT(2)T* 2
O =———+—(by —ay — I7'N(T)).
1 T(a) (b1 —ar oL h(T))
Substituting the values of ¢; and ¢y in (4.3]), we get
2—ap—p a—
R R e
_|_ p270t a tp(&—?)
I'(a—1)
1—a ot o
+ Jo 8771 (tP — s”)* " h(s)ds

We concluded the following lemma.

Lemma 4.1.2. Let f; : I xR™ xR™ — R™; i = 1,2 such that f;(-,u,v) € Co_q, o (I)
for each u,v € Cy_,, ,(I). Then the coupled system — is equivalent to the

problem of obtaining the solution of the coupled system

u(t) = 25t (b — oy — [P R(T)) )
it
) fo sP=(tP — sP)*1 1 h(s)ds
<mw=%£§4@—@—@%@mmrn
+%a2ﬂ’(°‘2_2)
| 5 Jo 771 = 57 (s)ds,

Definition 4.1.1. By a solution of the problem — we mean a coupled conti-

nuous functions (u,v) € Co_q, ,(I) X Co_qy, (1) satisfying the boundary conditions

, and the equations on I.
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The following hypotheses will be used in the sequel.
(H{) There exist constants K; > 0 and 0 < L; < 1 such that The functions f;; i = 1,2

satisfy the generalized Lipschitz condition :

| fi(t,ur,v1) — fi(t, ug, v0)|| < Kitp@_ai) uy — ug| + Litp(z_ai)

U1 _/U2”7
for t € I and u;,v; € R™.

We are now in a position to state and prove our existence result for the problem (4. 1)-
(4.2)) based on concept of measures of noncompactness and Darbo’s fixed point theo-

rem.
Remark 4.1.1. [35] Condition (H,) is equivalent to the inequality

a(fi(t, By, By)) < K;tP®)a(By) 4+ Lit* =) By),
for any bounded sets By, By C C and for eacht € I.

Theorem 4.1.1. Assume (Hy). If

—aq

P () P~ mplan) p () P~ plaz)

P peten) g P ety 4, T2 P o)) (f, 4 T,) < 1

ST R N e R AC R A7 von S v o CA AT (2)) ’
4.4

—Qo

then the coupled system — has at least one solution defined on I.

Proof. Define the operator N : C — C by

(N (u, 0))(t) = ((Nru)(t), (N20)(1)), (4.5)

where Ny : Co_o, p = Coqyp and Ny : Co_p, , = Co_q, , with

(N1w))(t) 2p?:%(bl —ap — % fOT sPHTP — s°) f1(s,u(s); v(s))ds)tPl@r=1)

et
11—«
+ ?(m; fot sPL(tP — sP) 1L f (s, u(s); v(s))ds.
and
2—a - —1 T _ o —
(Naw))(t) = %(bg —ay — {5 [y U - sP) fa(s,u(s); v(s))ds)tP(@2=1)
+ r<a;1>“2tp(a2_2)
11—«
+ —’;(a; f(f sPH(tP — sP)2 1 o (s, u(s); v(s))ds.
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Clearly, the fixed points of the operator N are solutions of the coupled system (4.1))-
E2).

For each u;,v; € Co_q,p; ¢ =1,2and t € I,

2 2—ay —oy —oy —oy 2 £
- 2 —oy o
1 - Zi:l [(21“(%-) + F(l)ai+1))Tp( 1)(Ki + Lz)]

and consider the closed and convex ball

BR = {(u,v) € CQfai,p : H(ua?})Hc S R}

Remark 4.1.2. (H;),we have

I fit,w, )| < ([ filt,u,v) — fi(t,0,0)[] + [| fi(£, 0,0) |

< KitPCmo|ul| 4 Lit? oD o] + || fi(t,0,0)
< Killulc,.,, + Lillvlc,_.,, + [Ifi(£,0,0)]
< (K;+L;)R+ f}.

Let (u,v) € Bg. Then, for each t € I, and any i = 1,2, we have

e (Nyu) ()] = [ ZEt = by — ar — 5 [ 27T = 7) fu(s, uls); v(s))ds)t?

I'(a1) 2 0
+ F’ngl) .
+ B temon) [Bseml (e — o)L fy (s, u(s); v(s))ds|
< 2Ty gy — o [ NI — )| s, uls)i o(s)) [ ds)ee
+ %al
etz [ (e — o) £y (s, u(s); o(s)) | ds
S&fkplw—%Mww)@M%
+ l()anll) a1 + Frgy (b — a1)
+mmwmf¢%w )Y fi(s, u(s); v(s)|1ds
< )T2p[(K1 + L) R+ f7]
+ s+ By (b — a)
+ g Tl + L) R + ]
< (2F(a1)T2 (a +1)T2 JR(K:1 + L)
+ F(,ilalnal + 2p — (bl a) + <2'%_(:) + F(a1+1))T2 IT
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Similarly,

—ag ag 27(1

I(No)lles ay < G T+ waen T (R(Ks + La)) + ma2+(Tl)2(b2—a2)

—ag ag %
+ Gy + tlem) TS5

Thus

IN(u,v)le < R (4.7)

Hence N maps the ball By into it self. We shalls how that N satisfies the assumption
of Darbo’s fixed point Theorem. The proof will be given in several steps.
Step 1 : We show that N is continuous. Let{(u,,v,)} be a sequence such that

(tn, vy) = (u,v) in Bg. Then, for each t € I, we have

o Ht’;@_ai)(N(Umvn)(t) (N (u, v)(2)]]
= 221||(p( ;T‘Ptp/o s"THT? — 5°)[fi(s, un(5);0n(5)) — fi(s, u(s); v(s)]ds
+%t”2 o) ft sPTE(tP — sP) T fi(s, un(8); va(8)) — fils,u(s);v(s)]ds||

< z%(?wWﬁfw%w—wmmWM$%@ww@w$wmws
) [ (10 — )| [fils, wn(5); 0a(5)) = fils, u(s); o(s)]llds)
< 2, <L( i ptpf sP7H (TP — sP) (KPP~ ||u,, — ul| + Lis??=) v, — v]|)ds
Rt Jy 707 = ) (K = ]+ Lillon — vll)ds)
1 a; T _
< 22, (s (Killun = ullen,,, + Lillv = vlc,,,) o s (T = s°)ds

FEBT ) (K un = ule,, + Lillon = vlc,,) fi 577 (12 = 57)eds)

Since u, — u, v, — v as n — oo et fi,fo are continuous , then by the Lebesgue

dominated convergence theorem ;

N (tn, vy) — N(u,v)|lc = 0 as n — oo.

Step 2 : We remark that N(Bg) is bounded. This is clear since N : B — Bgr and
Bpg, is bounded.

Step 3 : We show that N maps bounded sets into equicontinuous sets in Bg. Let
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t1,t2 € I, such that t; <ty and let (uy,us) € Bg. Then, we have

[#57 (N (1, ) ) () = 557 (N (un, w2)) (1)
< RS — 1) fy sPTHTP = 87) fils, u(s); v(s)

)ds
1—a,; P(2—0ay)
% Ot2 P (th — 7) ! fi(s, ua(s); ua(s))ds
pl O‘ztp(g ;) t1

F(az) 0 sPTHE] — )4 fi(s, ua(s); ua(s))ds||
1—ov;p— T B
< ||P F(aiT) ”(tg —tP fo sP l(Tp—Sp)fi(S U(S);v(s) ds

lfait;@_ai)

)
+- F(a(i) ) t 2 H(th — s7) fils, ua(s); ua(s))ds
1—a;P(2—ay
— i Jo TN = )T fils wa(s); ua(s))ds

170¢7;tg(2_0‘i)

+E 2 e 0 LT — sP) L fi(s,up(s); ua(s))ds||

,,(zp(a TP(ff + K; + Li)R

2P Paz o
+ AR DR o) (fr 4 K + L) R,

IN

As t; — to, the right-hand side of the above inequality tends to zero.

Step 4 : The operator N : B — Bp is a strict set contraction.
Let V € B and t € I, then we have

ot Ny (V) (1))
a((Ny(u,v)(t), (u,v) € V
— 2 [T s TP — sP)afi(s,u(s); v(s))ds, (u,v) € V)P
s ay + st [ s (17 — sP) M afy (s, u(s); v(s))ds, (u,v) € VL

Then Remark [A.1.1] implies that, for each s € I

IA
[\
B
¥
2
2
3
A+l
—~
o
S
|
<
=

a({fi(s, u(s);v(s))ds, (u,v) € V}) < Kra({u(s), (u) € V}) + Lia({v(s), (v) € V}).

Then
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a(trE Ny (V)(1))

Therefore

aC2—a1 P (va)

Similarly

06027(12,9 (NQV)

Thus

ac(NV)

F(al

I'(on)
p2—a1

T(a,—D)
1 aq
K2

(o)

N

N+ + A

i P T p(bl — al)tp

tp(2fa1){f(f sPL(tP —

1 [e% —a t _
L2 ;t”(Q 1){]0 sP l(tp _
(K1+L1)a02—a1,t9 (V)plfotl

Ky B2t { [ 5271 (10 — o) {a(u(s)) }ds, (u) € V}
Ly e fy s (1 —

s”){a(v(s))}ds, (v) € V}

s) " Ha(u(s))ds, (u) € V'}
") Ha(v(s))}ds, (v) € V}

I'(a1)

I'(a1)

p270¢1

T(a,—D

2p2—a1T_p (bl . al)tp

(Ki+Li)ac, . (V)p'—1

tPlea=1)p—p fot sPL(tP — sP)ds

A+ + o+

) I'(a1)
o
Qﬁ(al)‘(bl ey

p2—0¢1
T(a,—n 4

(Kit+Liac, . ,(V)p~1

fot sPTL(tP

sP)~1ds

2I'(a1)

(Ki+Li)ac, . V)P~

+ o+ +

F(a1+1)

(K1+L1)a02_al’ﬂ, (V)p—e1

(K1+L1)a02_a17t‘, (V))p~e1

( . T(a1+1)
a1

(KatL2)ac, . ,»(V)p~*2

(Kat+L2)ac, . p(V)p~*2

o 2—aq
20 (1) )(TP 1) + (Fl()al—l) ai

2—ag

( F(a2+1)

Loy (b2 — a2)).

(Ki+Li)ac, . V)P~

@) +

2T (az2) (F(a271)a2

(K1+L1)a027o¢1,t/’ (V)p~1

< ( e 1) S ar] )(T7)
2—a —oq

+ (Farma + Fay (@)
(Ka+L )a (V) o2 (Kptla)ac, , ,,(V)p~e2

b Cl;fff : ) (1)
2—a o4

-+ (F(a2 21 2 (a2)2 (bQ - (12)).
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So, the operator N is a set contraction. As a consequence of Theorem (|1.5.5)),we
deduce that N has a fixed point which is solution to the problem (4.1))-(4.2). This

completes the proof.

Now, Our next existence result for the problem (4.1)-(4.2]) is based on concept of

measures of noncompactness and Monch’s fixed point theorem

Theorem 4.1.2. Assume that the hypothesis (Hy),(Hz) holds.
then the coupled system — has at least one solution defined on I.

Proof.N : C — C be the operator defined in (4.5). We shall show that N satisfies the
assumption of Monch’s fixed point theorem. We know that N : Br — Bp is bounded

and continuous, we need to prove that the implication
V=conoN(V) or V=NWV)U{0}=a(V)=0

holds for every subset V of Bgr.Now let V be a subset of Bpr such that
V. C eonoN(V) U {0}. V is bounded and equicontinuous and therefore the

function t — v(t) = a(V/(t)) is continuous on 1.

PR, (t) a(trC= VN (V)(t) U{0})
a(trC= )N (V)(L))
( P Ny(u )() V)
= sy fo (e — sp){a(ul(s))}ds, (ug) € V1t
L1 }Z‘;T LTl f o1 (10 — sP){a(ua(s)) }ds, (up) € VP

2—a;—p
%T(bz — ai)tp

2—ay

VAN VAN VANRR VAN

P—
T(a;—n) %
Ko { [ 51(10 — )2 {a(un(s)) }ds, (w) € V)

Lzlfl(aa; G [0 5271 (t2 — 57) > Ha(ua(s)) Hs, (up) € V}

Ki+Li)p ™% , p(c— t o, o
Utlip 2 plei=b) [5gp=1(1r — 5) (/2w (s)) ds.

%(bi — )t

2—ay
T(a—1) %

K;+L; I—ay t — op— «@
o SGHELIER oot (0 — o) (102D (s5)) ds.

A+ o+ + 4

+ o+

implies that w;(t) = 0 for each ¢t € I, and then V(¢) is relatively compact in E. In view

of the Ascoli-Arzel‘a theorem,Vis relatively compact in Bg. Applying now Theorem
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(1.5.4) we conclude that N has a fixed point (uj,uy) € Bg.. Hence N has a fixed
point which is solution to the problem (4.1)- (4.2)).This completes the proof.

4.2 Examples

Let
o
It = {u = (ul,u2,...,um,...),z [tum| < oo}
m=1

be the Banach space with the norm

00
lulle = [ttm-
m=1

Consider the coupled system of Caputo—Katugampola fractional differential equations

(D3 u)(8)(E) = fult, ult), v(t))

3 t € [0,1] (4.8)
(D vn)(t) = gu(t, u(t), v(t)),
with the boundary conditions
i1 11
Iy u(0) =1 =177 u(l)
(4.9)
14 19
Iy v(0) =2 =17 v(1)
where
—t—5 n t
Falt, ult)) ¢ un(®)) te0,1],

"1 ul®)]n + o)l
(27" 4+ v, (t)) sint
o)l + DA+ [ul®)]ln + [Jo@)]n)’

gn(t,u,v) = 61 te[o0,1].

with f = (f1, fos -y fns--2), 9= (91,92, -+, Gny - - .) and u = (Uy, Us, ..., Uy, .. .).
For each ¢ € [0, 1], we have

() o)l =D 1fals un(s),vals))]

< 676”’(1/”11.
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and

lg(t, u(t), 0O)ln =D lgu(s, wa(s), vals))]

< —.
64
The hypothesis [(H2)lis satisfied with
K1 S 6_6.

Li=K;=L;=0.
In addition, with good choice of the constants d;;7 = 1,2, a simple computation show

that all conditions of Theorem are satisfied. Hence, the problem (4.8)-(4.9) has

at least one solution defined on [0, 1].

4.3 A Coupled Caputo-Katugampola Fractional Dif-

ferential System with Boundary Conditions
4.3.1 Introduction and motivations

In this chapter we investigate the existence of solutions for the following coupled

Katugampola fractional differential system

(“Dgi"u)(t) = fi(t, u(t), v(t))
(“Dei"v)(t) = falt, u(t), v(t))

with the boundary conditions

s tel:=|a,b)], (4.10)

u(a) = Mo(b);e DI u(b) = Ao 305, (4D3v) (1)
: (4.11)

v(a) = mu(b); D) u(b) = pp 350, ((D2 u) (&)
where a,b >0, , t € (a,b); , o; € (1,2],m,01 € (0,1],m; € R for i =1,2.....N(N €
N);, e Rfori=1,2...M(M € N)a < & < &.... < b, \j, 13,7 = 1,2 are real positive
constants f; : I x Rx R = R; ¢ = 1,2 are given continuous functions and “D¢#* is

caputo- Katugampola fractional derivative of order ;¢ =1, 2.
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4.3.2 Existence Results in Banach spaces

In this section, we are concerned with the existence and uniqueness results of the

coupled system (4.10))-(4.11)).

Lemma 4.3.1. Let

4 b —aP Y172 16 N s
A — < p ) Ao fio Z(fp— p) 22(775—@”)1%0
F(Q — ’71)F<2 — ’)/2) (2 — (52 2 — 51 _— 1% ’

i=1 1=

and pid1 # 1 Let z,y € C, and a € (1,2]. Then the unique solution of problem

(Do u)(t) = a(t); t € 1:=[ab)],
(“D22*)(t) = y(t); t € T = [a,]
u(a) = \o(b) DL u(b) = Ao Y, (D2 0) ()
L 0(a) = pu(®) D o(b) = pe M, (D) (€)

(4.12)

s given by

(t) o 21 L1Aop2 bP —aP ZN (77‘ )1 o1 + bP —af I=m
u A=) I'(2—61) p =1\ p (2 71) p
A tP—af N (nf—ar\ 17O
+ F(ZQf(?l) ( P > Zi:l ( P ) ) B3
_ pide [ bP—af N (a1 1 p—ar )
(F(2—61) ( p ) Zi:l ( p ) + L(2—1) p
A tP—aPf N nf—af 1-61
- F(2351) ( P ) Zizl <—p > ) As
12 bP—a’ 2772 a2 M ff*ap 1-02 b?—a’
+ I'(2—2) P T I'(2—62) £~i=1 P P
A tP—aP
+ 1“(2*272) ( P )

2—72 P 1-62
_ [ (b’ _pe M (& —af bP—ar
(F(2—172)< P > +F(2—252) Zi:l( P ) < P )
A
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_ 2 A bP—aP N (nf—ar\1TO Mpp  (brar)' T
v(t) = (1—§\qu1) {(p(22f§1)< P) >Zi:1( p ) +F(21—M$1)< p )
+ [ M2 tP—a” bP—a” o B
r'(2—1) p p 3
_ X (bP=a” N (ni=a? o (e T
r(2—61) P Zi:l p + r'2-m) P
1—v1
1 tP—a” bP —af
- [r(2—v1) ( p ) < p ) )A3
2—79 1—62
bP—aP g2 1A M (& —af bP—aP
T <(2 ’Y2)< P ) +F(221522)Zi=1( P ) < P )
A tP—aP 'sip_ap =0
+ e §2>( ) < , ) )A2
2—2 4 1-d2
_ _1 (b= fi2\ M (& —aP b —af
<F(2w>< 2 ) T e Zi:l( P ) ( p )

P_qP M (& —ar 1-0;
(2M252) (t p )Zi—l < p ) ) 32}

+ s (MAr+ B + ’f(w [LsP=1(tr — s7)2Yy(s)ds.

where

ptmt f PHYP — sP) 7 1p(s)ds, Ay = L o2 f s (b2 — sP)eely(s)ds,

1 o4 b oy — 1—a9+6 N i _
BQ = )Iz(Tlfvvll)fa sPHbP — sP) T lg(s )d37A2 = [F)(Tiéll)Ziﬂ fan P! —
sP)2 =011y (5)ds,
1 s 52 o8 1—aq 4+
B3 = a22 522) Zz 1 f e ! 5,0 - ) 20 lx(s)d‘s’ A3 - F(all 722) f bp B

sP)=2ly(5)ds.
Proof. Solving the linear equation

(CD“ Pu)(t) = x(t).

From Lemma (1.3.4), we find easily :

tr—a’ pl=er [t -1
u(t) = ot Oy (=) + frs / SN — 7)Y (s)ds. (4.13)
o(t) =do +d (tp_ap) 2 / @ — 0y (s)ds (4.14)
S I(az) J, e |
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where ¢;,d;,» = 0,1, are arbitrary real constants. From and ( we have

201 tr— e\ plreatm ot o
cD’h,p 1) = p—1 tp_ pyo1—y1—1 d
" ult) ['(2—m) ( p ) +F(041—71)/a S =) w(s)ds,
(4.15)
2d, P — qP\ 2 plaztr ¢
cD’Y27P t) = p—1 tp _ oPYo2—72—1 d
o) ['(2 =) ( p ) N F(O@—%)/a ) y(s)ds,
(4.16)
2d1 tp _ ap 1_61 pl—a2+61 t B o
CD51,/J 1) = p—1 1P — gP)2 61—1 d
o) = s (T0) g [ e s
(4.17)
2c; tr—qp ' plrentsz ot 5
cD52,p £ = p—1 h _ gP\ do—1 ds.
at U( ) F(2 _52) ( p ) + F(Oél _52)/ S ( S ) IL‘(S) S
(4.18)
From the boundary conditions u(a) = Mwv(b) and v(a) = pu(b) and from
(4.3)and(4.14)), we have
b’ — af 1
= o=\ [do + dy < ) > + Ay (419)
b — qf T
= d() = U1 |:C() “+ 1 ( ) ) + B (420)

co = Mlm [Co+01 (bp a” ) + B+ dy (bp aﬂ) +A1]
= A [MCO + c1pn (bp aP) + By + dy (bp ap> +A1]

G = T [Cl,ul (bp = ) + By +dy (bp “p> +A1} :
P — aP b — aP
dozL[dv\l( a)+61( a)+)\1A1+B1}-
L= A P p

Using the boundary conditionsCD'yi’p u(b) = Ay SN (CD‘Slf v)(n;) and “D)3Pv(b) =

e M (¢ Déi”u)(@) from to, we have

2 bP —aP 1=y 2% N P —af 1-61 A
= ATE) P 1T(2=51) 2 in1 P = A2A2 —

1-02 1—72
—2 M (&—a? 2 (bP—a” .
= F(2f522) i=1 < o ) + dlw ( ) = B3z — As
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Solving the resulting equations for ¢; and d;, we find that

e = 2 |(A2)2=B2) (br—ar =72 + >\2(33u2 As) Z ng—a’ 1o
I—A I'(2—v2) o Tr(2-6) Lwi=l
1- 1-6
(B3u2—As [ bP—a” n + p2(A2X2—B2) ZM &l —aP 2
T'(2—v1) p T'(2—02) i=1 P

substituting c1 and d1 in (4.19)and(4.20f), we have

(4.22)
dl =

IS

1-6 2—
C — 21 H1A2 2 ZN nf—a” ! bP—a” + bP — a/’ n
0 A=A 1) [(2—6;) £wi=1 P P 2 m
1-61 2-m
_ P12 ny—aP b?—af 1 bP aP
(WZH( ) (5 )“FM )A‘°’

272 p 2
A bP —aP by M 5 aﬂ bP aﬂ
+ <F(#21§2) ( P ) + réi;z) >im1 ( ) ) Ay
2—v2 P 1 02
1 bP—aP w M 13 7(1‘0 bp ap
B <F(2—172) ( p ) - 1“(2—252) D im1 < o Bz]
-+ 1 )\1M1 (,ulBl + A )

and

2 A N (nf=a? O (po_ap A poar )2
do = A(I*p;\llﬂl) [(F(;u;l) Zi:l( p ) ( p )_’_F(?lf’il)( p ) Bs

A N (nf=ar\ 1O (e A w_ar 2
- F(2—251) Zi:l( P ) ( P >+F(2—171)< p ) As

2— 1-46
A bP—aP ALA M (& —ar * (br—ar
+ F(2—2’Y2) ( ) ) - u(22 1522) Zi:l < p ) ( p > Az
2—2 p —02
1 bP—a” A £ —af bP—aP
(e () T (52) 7 ()
+ T /\u (MAL+ By).

Substituting the values of ¢; and ds in (4.13), we get
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+

201 pidopz [ bP—aP ZN (77 )1 61+ p2 bP—aP I=m
A(1=A1p1) I'(2—61) P =1L p (2-m) p

1“(/\221?1) (tP;aP> Zf\il (nf+ap> 151) By

(vt (25) 20 (552) ™+ iy (55 ™
% (tP;aP> sz\il (nf%apyal) 4y

(r 5 (25) s (55) 7 (552)
i (5) (52) )

(s (559) ™ s 52 (552) ™ (5)

1=72
1 tP—aPf bP —aP
r(2—72)( ) (%) )B}

p
(mB1+ Ay) + L [rsp1(tr — sP)a—lu(s)ds.

1- >\1M1

We concluded the following lemma.

Lemma 4.3.2. Let f; : | x Rx R = R; i = 1,2 such that fi(-,u,v) € C(I) for each
u,v € C(I). Then the coupled system ({.10)- s equivalent to the problem of
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obtaining the solution of the coupled system

ru(t) A(12):\11u1) [(FEQ/\_QSLIQ) (bP;aP) Z?;(nf%ap)l_él 4 F_(Q%l) (bppap>1—v1
+ F()\QQ—#gl) (t”;a”) SN (nf;ap>151) 5,
- (et (552 £ (59) " it (55)
ﬁ (tﬂ;ap> Zi\;l (,ﬁ%)lal) 4y
(v (55 ™ iy o (52) ™ (559)
b <tp;ap) <bp_pap)1vz) i
} <F<2m72> (52) e (59) T (52

o <tp ) <bp ap>1 '72) }
I'(2—72)

+ (i By + Ap) + 1) L[t seml(te — sP)er=L fy (s, u(s), v(s))ds

1- /\1M1

2 A b —aP N (nf—ar 0 A po—ar\ T

v(t) = T Kp(f’ﬁi)( ; )Zi=1< ; ) +r(21_531)< ; )

M2 <tp—ap ) (b"—a" )

2—m1) p p

A bP—a? N (nf—af 1-41 A boar T
—r<2361>< ’ )Zz’ﬂ( ’ ) +r<2—lm< ’ )

o [ 1 (t”—a") (bp—ap>
I'(2—m1) o p

+ A2 b —a? 2_72_1_ 121 A ZM e—aP\17% (o0
I'(2—2) p [(2—d2) £~i=1 p p
) tP—qaP M (& —ar 1-6;

+ F(22—§2)< 0 )Zi:l( 0 > >A2

2—2 o 1-62

. 1 bP—aP Ha M £ —af bP—aP

<F(2—’Y2)< P ) +F(22—§2) Zi:l( P ) ( P )

p_qP M &l —aP 1-5;
_F_@%Cp)z:i:l( p ) >B2}

|t (MAL+ By) + F(a f sPT(tP — sP)o2 7 fo (s, u(s), v(s))ds.

+

N A

/N

Definition 4.3.1. By a solution of the problem - we mean a coupled
continuous functions (u,v) € C(I) x C(I) satisfying the boundary conditions ,
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and the equations on 1.

The following hypotheses will be used in the sequel.
(H%) The function f; : I x R x R — R are continuous.
(H}) There exist constants m;,n; such that The functions f;; i = 1,2 satisfy the

generalized Lipschitz condition :
\fi(t,ul,vl) - fi(t>U27U2)| < milul - Uz\ + ni\vl — V2|,
for t € I and u;,v; € R.

We are now in a position to state and prove our existence result for the problem (4. 10])-
(4.11) based on concept of measures of noncompactness and Darbo’s fixed point

theorem.

Remark 4.3.1. Condition (H}) is equivalent to the inequality
a(fi(t, B1, B2)) < mja(By) + na(Bs),

for any bounded sets By, By C C and for each t € I.

Theorem 4.3.1. Assume (HY),(H}) . If

(Kl + Kg)(ml + nl) + (K3 + K4)(m2 + ’flg) < 1, (423)
then the coupled system (4.10))- has a last one solution defined on I.

Proof. Define the operator N : C — C by

(N (u, 0))(#) = (N1u)(t), (N2v) (1)), (4.24)
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where Ny : C — C andN, : C' — C with
M) = s | (5 (55 SN ()

b (52) 25 (55) ) B

_ (Fél_)\;) (bp_pap> ZZJ\; (r;f%) 1-01 n ﬁ (bp_pap>171
-y (B2 (—)5> Auy,

n (r(ﬂzl—_?g) (bp_pa,J)?w n rftzg_%) 2?11 <55;ap>152 (@)

+ r(z 72 (tp ap) (bp; p) ) 2f2

_ ( i (bﬂ ap>2 2 2 e 2?11 <5ﬂpap>1 52 (@)

tP— a" bP — a" 1=
- F(Q ’yg 2f1

—a1

= (MlBlfl + A1f2) p(a 3 Jii 5ot — s2) 7 fi(s, u(s), o(s))ds,

and

. 2 A bP —af N nf—ap 101 A bP —af I=m
(No)(t) = G2 KF(;_“;)( p )Zizl( > ) + oy (T)
b [de (=) (o m B
r2—m) p ) 3f1
bp ap N 775*‘1/) 1-41 A bP—aP I=n
- (m = Zi:l( , ) +F(2—171>< , )
1-—m
p_gp bP—aP
F2 'Yl (t pa ) ( pa ) )A3f2
2—: -6
bP aP A1) &l —aP 2 (pp_qr
(i () o (52) (59
A P —aP M & —af 18
+ F(22—§2)< P) )Zi:l( 0 > )Asz
B 1 b —aP 2—72 oA Z gp af 1—02 bP—aP
I'(2—2) p ['(2—62) £~i=1 P)

—a M & —af 1=0;
- % <tpp p) Zi:l ( o > ) B2f1:|

()‘ Alfz +Blf1) F(a f sP1 tp )a2_1f2(87u($)>v(3))d5'

—

1- ,U»1 A1
Here,
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Bij, = &5 [ 507 (07 — 7)™ fu (s, u(s), v(s))ds,
Arg, = 82 [V 507 (0 — 59)2 71 fo(s, u(s), v(s))ds

Bapo = Sy Ju 57 (0 = 570 fils,uls), o(s)ds,
Agg, = B u SN [ s (o — 50)02 0 (s, u(s), v(s) )ds
Bsj, = Bps SOM 5507 1(€l — 57)72 7071 fi(s,u(s), v(s))ds
Agg, = Bt 25071 (b9 — 52) 27 fo(s,u(s), v(s))ds

For computational convenience, we set

1-m
1-96 |M2| bP—aP
) L T2—m) < p >

A — 2[Aq] lpal[Aelpe] (62— aP
A = A|1—)\1;L1|(F(2 51) Z (

Aollp2| ( tP—ar 77 —af
+ F(;in)< p )Z

T = 2l (el (o) N (e \ TR 1 ()T
2 All=Aip| \ T(2—61) P i=1 P '(2-m) P
_ [Az] 1P—af ZN n?—a” 1-61
I'(2—61) P i=1 P )
A = 2|\ | il (bP—a? 2772+_|M2l_ ZM &-ar\'7% (o _ar
3 All=Aip| \ T'(2—2) p ['(2—-02) £~i=1 p p
o 1 tP—aPf bP —aP 1=72
I'(2—72) P P
2— 1—
A, = 2l (el (o0} *T el M (€0t} (e
4 All=Apa| \ T(2—72) p I(2—02) £~i=1 P P
+ [Xa] tP—aP bP —aP 1=
I'(2—y2) p p ’

1-6 1—
bP—aP ZN n’—af 1 4 M lp2| [ bP—ap m
P i=1 P I'(2—m) P

[A2||p2]

_ 2|1 |
A5 = o r(2—4,)

[1=A1p1]

2
Ay = _|H1|

Dol (bP—ar ZN P —aP 1*51+ M| (e \ T
I'(2—61) P i=1 P L2-m) P
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_ 2 1-5,

_ 2|pa] [A2] b? —a” |M [[A1][Az] & —a bP—aP
A? - ‘17)‘11//41| (F(2272) < pa ) —+ 2 2 152 2 Zl L ( ) ( pa )

1—69
lpz||A2| [ tP—ar M (&—a’

+  Teos) ( ) ) D im1 < ) ) ) :
_ 2— 1—62

_ 2|1 1 bP—aP lp2lAa ] £ —ar bP—af
As = [1—A1p1] (F(Q—’Yz) ( p > Tt T(2-62) ZZ 1( > ( p >

|p2] tP—qP M 55—(1” 1-02
B P(;fzsz)( 0 >Zi:1( P ) :

— ag+d —«
Ky = Al Zm D€ — )+ A im (1 — ar)
|| a
T <\1H1)\1,L11| T 1) (F(al+1 (b o ap) 1) )

—ag+dn

_ o ag+ a—
K2 = A5F (g —02+1) Zz 1(50 ) o 62+A8ﬁ(bp_ap) e
lpa |
+ |1—l/111)\1|(1—‘(a1+1 (bp ) )

a1+v2 —ag+d —
_ _ AP\1—Y2 _ aP\a2—01
Ks = A?F(a1 “H2+1) (b a ) +A3F (aa—d1+1) Zz 1( ; —a )

|A1] 2 «a
Sl e vy <F(pa2+1)(bp —af) 2) :

—aq+ —ag+48 _
Ky = Aﬁl"(cu 1’7212-1 (b o ap)al 7+ A7F (a2 261—41-1) Zz 1( - ap)a2 &
[Auflpes] a
+ (ulﬁﬂ+1>ﬂa (b — ).

Clearly, the fixed points of the operator NV are solutions of the coupled system (|4.10))-
(4.11)). For each u;,v; € C; i =1,2 and t € I. Define

sup fi(t,0,0) = 0; < 0.
t€la,b]

such that

R> (K1 + Ks)oy + (K3 + Ky)os)
T 1= (K + Ks)(mq +nq) + (K3 4+ Ky)(ma + no)
and consider the closed and convex ball

(4.25)

By = {(u,v) € C: ||(u,v)] < R}.
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By assumption (Hy), for (u,v) € Bg,t € [a,b], we have that

|(f1(t, u(t), v(?))| |(fr(tu(t),v(t)) — (f1(t,0,0)| + |(fi(t,0,0)]
[mafu(t)] + nafv(t)])] 4 o1

[maul] + na|v]])] + o1

[(m1 4+ n1)R+ o1,

VAN VAN VAN VAN

|(f2(t, u(t), v(®))] < [(m2 + n2) R+ 0]

Let (u,v) € Bg. Then, for each ¢t € I, and any ¢ = 1,2, we have

((Mu)@®)] < Ki(malul + naflofl + 01) + Ks(mal|ul| + no|jv]| + o2)
S [Kl(ml—l—m)+K3(m2+n2)]R+K101+K302.
Hence,

[(N1u)(t)] < [K1(mq +ny) + Ks(mg + n2)|R + Kio1 + K309.

In the same way, we can obtain that
’(NQ'U)(t)‘ S [K2<m1 + nl) + K4(m2 -+ ng)]R -+ KQO'l -+ K40'2.

Consequently, it follows that

|N(u,v)(t)] [K1(my1 4+ ny) + K3(mg + no)|R + Kio1 + K309
[K2<m1 + nl) + K4(m2 -+ NQ)]R —+ KQO’l + K4O'2

R.

IN + A

Thus

IN(u,v)]le < R. (4.26)

Hence N maps the ball Bg into it self. We shalls how that NV satisfies the assumption
of Darbo’s fixed point Theorem. The proof will be given in several steps.
Step 1 : We show that N is continuous. Let{(u,,v,)} be a sequence such that

(Un,vn) — (u,v) in Bg. Then, for each t € I, we have

|(N1up)(8) — (Niw)(0)] < (Kvma + Kgmo)|luy — ul| + (King + Ksna)|Jv, — vl]).
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Similarly,

|(N2vn)(t) = (Naw) ()] < (Ko + Kams)|un — ul| + (Kony + Kyns) o, = o).

From inequalities 4.3.2f and 4.3.2] it yields

|N (U, v3) () = N(u,v)(t)] < [(Kimy+ Ksma) + (Komy + Kymo)]||u, — ul|
+  [(Kiny + Ksna) + (Kany + Kyno)||lv, — v|]).

Since u, — u, v, — v as n — oo et fi,fs are continuous , then by the Lebesgue

dominated convergence theorem ;

N (tn, v) — N(u,v)|lc = 0 as n — oc.

Step 2 : We remark that N(Bg) is bounded. This is clear since N : B — Bpr and
Bp, is bounded.
Step 3 : We show that N maps bounded sets into equicontinuous sets in Bg. Let

t1,t2 € I, such that t; <ty and let (u,v) € Bg. Then, we have

th—t? N P —aP
(Niu)(t) = (N (0)] < | | (2 (55 2L (152)) By,
th—t?

— N P—aP\1_
rsy () L ()0 ) Ay,

-]\ bP—af)\1—
— /\272)(2;)1)( ))1 2) Ay,

r(2— P)

+ (et (S5 () By |

+ b s - sﬂ)&l Hi(s,uls), v(s))ds

= B Ja o = ) s, uls) v(s)ds|

< B [ st — 50 fi(s,u(s), v(s))ds

= ) e ()|

< Rt — ) fi(s, uls), o(s))|ds

+ B [ 5315 — 591 — (1 — 913 (s, ), o(s)) s
< w5 — 1) [(my + )R + 0]

+ %[(ml F )R+ o] [ 5PNt — sP) T — (1 — sP)1Vds,
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and

[ (N1v)(t2) —

IN

IN + IN

+

(Nyw) (1)
%fﬁ Pt — 7)1 fa(s, u(s), v(s))ds
ﬁﬁf“p% — )= fys, u(s), v(s))ds]
G [z st — ) fals, u(s), v(s))|ds
ﬁﬁf“fl%—sW”—a$—>mwh@um o(s))lds
S (1 — ) (my + o) R + )
Py [(ma2 + m2) Rt 0] [ 597 (1 — 7)1 7" — (1] — 5)* " ds.

As t; — to, the right-hand side of the above inequality tends to zero.

Step 4 : The operator N : B — Bp is a strict set contraction.

Let V € B and t € I, then we have

a((NV)(1))

IN

+ o+ 4+ + o+

a({((Nyw)) (1), (N30)) (1)) : (u,v) € V})
Aot oM (& ot (@ gryeila(fy (s, u(s), o(s)) : (u,) € V)ds
A SN g (g — se)e=Sia( fos, uls), v(s)) ¢ (u,v) € V)ds
A S [l (g — sy Bila  fy(s, u(s), vls) ¢ (u,0) € VY)ds
Aot [P o (g0 — gy n=da( iy (s, u(s), v(s))ds : (u,v) € V})ds
||1’\j/‘\|$1“ + 1} I(C:; fab sPH(tP — sP) o fi(s,u(s),v(s)) : (u,v) € V})ds
e [ (1 — 52y o fo(s, uls), v(s)) ¢ (w,0) € V})ds
AL s SN [ sl (El — sP) 2 a( fi (s, u(s), v(s)) ¢ (u,v) € V})ds
B SN [ sl — )0 o fo (s, u(s), v(s)) < (u,0) € V)ds
_iﬁﬁiﬁdff%ﬁ )0 la( fy(s,u(s), v(s)) : (u,v) € V})ds
ASFIQTJ;T) fabspfl(tp—sp)o‘l o (fi(s,u(s),v(s))ds : (u,v) € V})ds
L'l’\j;lf;l“ + 1} ’&;Zj f; sPTH(tP — sP) 2 Lo fo(s, u(s),v(s)) : (u,v) € V})ds
Tl gt [Pl (1 — sp) T al fi(s,u(s), v(s)) ¢ (u,0) € V)ds
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Then Remark implies that, for each s €

al{fi(s,u(s);v(s)) : (u,v) € V}) < mya({u(s);u € V}) + na({v(s);v € V}).

Then
a(NV)(t)

< A ;;222) ZZ ) f& sP7HEP — sP)22 mya({u(s) cu € V) + ma({v(s) 1 v € V})ds
+ A 'I'Zl(a:iil) iy St — sP)2 0 mya({u(s) cu € V) + naa({u(s) : v € V})ds
+ A Y [T s ! — 50)7 0 msa({u(s) s u € V) + naa({o(s)
+ A %f PP — Py M 1m1a({u(s) cu €V 4+ na({v(s) :veV})ds
+ |:|‘1)\1/|\|f11141|| + 1] % [Fse1(tr — sP) " 'mpa({u(s) s u € V}) + ma({v(s) : v € V})ds
+ I oo — ) tma({u(s) w € V) + ma({us) s € Vs
+ 25% M el — sy g a({u(s) s u € V) + ma({v(s) v € V})ds
+ A fil(a:ﬁ&il) ZZ LS sl = s ) maa({u(s) s u € V) 4 noa({v(s) 1 v € V})ds
+ A; ’El(azgzl) i1 S sem (il = sP)*2 0  mpa({u(s) t u € V) + naa({u(s) v € V})ds
+ _8% fb pfl(tp — ) mya({u(s) :u € V}) + npa({v(s) : v € V})ds
+ [l‘ﬁlyfgh +1] s [ st = s2)° imapa({u(s) 1w € V) + naa({v(s) 1 v € V})ds
bl o e (1 — ) msa({u(s) u € V) +ma({u(s) v € V))ds
< (K + Ky)(ma +na)a(V) + (K3 + Ky)(mag + ng)a(V).

Thus

ac(NV) < [(Ky + Ka)(my +ny)a(V) + (K3 + Ky)(ma + na)] (V).

So, the operator N is a set contraction. As a consequence of Theorem (|1.5.5)),we
deduce that N has a fixed point which is solution to the problem (4.10))-(4.11)). This

completes the proof.

Now, Our next existence result for the problem (4.10)-(4.11]) is based on Mdnch’s

fixed point theorem.

cv e V}ds
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Theorem 4.3.2. Assume that the hypothesis (H})-(H}), and and the condition
hold.

Then the coupled system - has at least one solution.

Proof.N : C — C be the operator defined in . We shall show that /V satisfies the
assumption of Monch’s fixed point theorem. We know that N : Bg — Bp is bounded
and continuous, we need to prove that the implication

V =¢onuoN(V) or V =N(V)U{(0,0)} = (V) = 0 holds for every subset V' of
Bp.

Now let V' be a subset of Bg such that V" C N(V) U {(0,0)}. V is bounded and
equicontinuous and therefore the function t — «(V'(¢)) is continuous on /. By Remark

(4.3.1}) and the properties of the measure «, we have for each ¢ € I.
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Z Fl(azzzz M 1‘[51 o1 gﬂ Sp)az d2— 1m1a({u(s);u eV} +n1a({v(8);v € V})ds
AL SN[ 1 (g — e Umga({u(s)iu € V) + maa({o(s);v € V)ds
AL SN s o — ) msa({u(s);u € V) + maa({u(s); 0 € Vs

Thus,

I S S S S T T T T e A A

— p —a1+7 f p— 1(tp 8p>a1 Y1i—

e mia({u(s);u € V}) + ma({v(s);v € V})ds
el 1) e sl - ) mia({u(s)iu € V) + ma({u(s)iv € Vs
D f sP71(tP — sP) 2 Imya({u(s);u € V1) + noa({v(s):v € V})ds

[T—A1p1] F (a2)

25% o 1 f& sP=HEP — sP)2m2 mya({u(s) tu € V) + ma({v(s) 1 v € V})ds

r
_p
6T
p

a2+61

1—

T(az—d1) 51)
1— a2+61
(

= N sl — s2) 2 mga({u(s) tu € V) + nea({v(s) s v € V})ds
TT(az—01) z':l fam s~ —

sPYe2=0=Lmoa({u(s) : u € V}) +nga({v(s) : v € V})ds
Ay fy s (1 — 57 mal{uls) s u € V) + ma({(s) v € V})ds
Lhﬁ$+4rﬁﬁﬁw*wuwWWMmmwwyuevn+mmw@wvevnm

" '&‘i'w — L sl — ) impa({u(s) s u € V) + ma({v(s) v € V})ds

— 1

E%ﬁ% ﬁdfwwﬁ 50)02=02 1 (my + ny )a(V/(s))ds

ag+4q

l—ag+d7

A LSNP 1 (g — 50)02 =5 (my 4 mp)a({V (s))ds
A S [T s (i — 57)°2 707 (my + ma)a(V(s))ds

sy Jy (0 = o) s+ )V ()ds
(

I'(a1—1)
A —a
“1 1L|fbﬁl‘| + 1] e Ji 5o (12 — 52 )1 7 (my + ny)a(V(s))ds

g2 et (10— 5)02 (my + )V (s)) ds

1—ag+dg

As L2 M [ s HEl — 57)22 8 (my + g )V (s))

ag+4dq

l—ag+d7

) Ja(V(s))ds

fﬁ;ﬁiﬁf%“W%ﬂW”&Wm+MMW®Ms
Aol Sl 1o = P s ma)a(V ())ds

_8% Ojl:l f sPH(tP — sP) " (my + ng)a(V (s))ds

)
[\Alllm\ +1] pl=e2 f sPL(tP — sP)2 7 (my + ng)a(V (s))ds

[1—=X1p1] I'(az2)
1 «@
B lﬁ)ﬁLl\ T a11 f s~ (tP — 7)1 7 (my + ny)a(V(s))ds.

sup (V' (1)) < [(Ky + K2)(mq +ny) + (K3 + Kq)(ma + ng)sup a(V (2)).

tel

tel

implies that sup,.; a(V(t)) = 0, that is a(V(t)) = 0, for each t € I, and then
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V (t) is relatively compact in C. In view of the Ascoli-Arzel‘a theorem,Vis relatively
compact in Bg. Applying now Theorem (|1.5.4]) we conclude that N has a fixed point
(u,v) € Bpg.. Hence N has a fixed point which is solution to the problem (4.10)-

(4.11]).This completes the proof.

4.4 Examples

Consider the coupled system of Caputo—Katugampola fractional differential equations

(DY u)(t) = filt,ult), v(t))

) ctel:=[0,1], (4.27)
(D2 o)(t) = folt, u(t), v(t))

with the boundary conditions

u(0) = v(1);* DYP u(1) = 1/3(°Dy>*v)(3/2) + 1/3(c D> v) (4/3)
; (4.28)
v(0) = 2u(1);° DY u(1) = 1/5(°Dy/ > u)(3/5) + 1/5(° D> u)(4/5)
Here a = O,b = 1, , 1 = Qg = 3/2,71 = 1/2,’}/2 = 1/4,51 = 1/3,(52 = 1/5,N =

M = 2,7’]1 = 3/2,7’]1 = 4/3,51 = 3/5,&1 = 4/5,/\1 = 1,)\2 = 1/3,,&1 = 2,[1,2 = 1/5 By
simple calculation, we found that A = 0.265381,

where
1 lu(t)] sinv(t) 1
t,u,v) = + 4+ -, tel0,1],
filt,u,) 15v25 + 2L+ |u(t)] 65+ ' 2 0, 1]
sin|u(t)]  tan"'(v) 3
t = — t 1].
Lltwv) =55 T oo Ty L0
Note that

1 1
|f(t, ur,v1) — f(t, uz,v2) < 7—5||U1 — Upl| + @H?ﬂ — [, te€](0,1],

lg(t ) —g(t ) < ! I |+ ! I I, tel01]
U1, V1) — Ug, U — — — — .
g\t,uy, v g\t, Uz, V2) >~ 125 Uy U2 120 U1 Va|l, ’
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The hypothesis [(H3)|is satisfied with

m;=--,n = —.
L7 65
My = ——, Ny = —(—.
2712577 120

In addition, with good choice of the constants d;;7 = 1,2, a simple computation show

that all conditions of Theorem are satisfied. Hence, the problem (4.27)-(4.28])

has at least one solution defined on [0, 1].



Conclusion and Perspectives

In this thesis; we have considered the following of Caputo-Hadamard fractional dif-

ferential system

(D u)(t) = filt,ult), v(t))
(TCD20)(t) = fo(t, ult), v(t))

The Implicit Coupled Caputo-Hadamard Fractional Differential Systems

s tel:=[1,T], (4.29)

("D ur)(t) = fi(t, ua(t), ua(t), (D uy ) (1))
("eD?ug)(t) = fat, ur(t), ua(t), (" D*usz)(t))

Here #¢D¢ is the Caputo-Hadamard fractional derivative.

ctel:=[1,T],  (4.30)

After that, The existence of solutions for the following coupled conformable fractional

differential system

(Toru)(t) = fult, ult), v(t))
(To20)(t) = falt, u(t), v(t))

Here 7" is the conformable fractional derivative.

tel, (4.31)

We discussed and established the existence, the uniqueness, the stability and the

attractivity .

We consider the problem of the existence and uniqueness of solutions and ulam-
type stability and the attractivity of system differential with fractional derivatives of

Caputo, Hadamard and conformable in b-metric space.
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Résumé :

Dans cette theése, nous étudions I’existence et I'unicité de solutions
et la stabilité de type Ulam de quelques systemes différentiels
couplés d’ordre fractionnaires avec la dérivée de Caputo,
Hadamard, Katugampola et Conformable. Les problemes étudiés
sont a conditions initiales et aux limites. Les résultats obtenus sont
basés sur quelques théoremes de points fixes et la mesure de non-
compacité dans les espaces de Banach, Fréchet.

Mots clés : équation différentielle, ordre fractionnaire, solution,
stabilité, implicite, fixe, mesure de non-compacité, espace de
Fréchet, espace de Banach.

Abstract :

In this thesis, we study the existence and uniqueness of solutions
and the Ulam-type stability of some coupled differential systems
fractional order derivatives of Caputo, Hadamard, Katugampola
and Conformable. The problems studied are with boundary
conditions. The results obtained are based on some fixed point
theorems and the measure of non-compactness in the space

Banach, Fréchet.

Key words: differential equation, fractional order, solution,
stability, implicit, fixed measure of non-compactness, Fréchet
space, Banach space.
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