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Introduction

The concept of fractional differential calculus has a long history. One may wonder
what meaning may be ascribed to the derivative of a fractional order, that is dny

dxn
,

where n is a fraction. In fact L’Hopital himself considered this very possibility in a
correspondence with Leibniz, In 1695, L’Hopital wrote to Leibniz to ask, "What if n be
1
2
" From this question, the study of fractional calculus was born. Leibniz responded

to the question, "d
1
2x will be equal to x

√
dx : x. This is an apparent paradox from

which, one day, useful consequences will be drawn."

Many known mathematicians contributed to this theory over the years. Thus, 30
September 1695 is the exact date of birth of the "fractional calculus" ! Therefore,
the fractional calculus it its origin in the works by Leibnitz, L’Hopital (1695), Bernoulli
(1697), Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier
(1822), Abel (1823), Liouville (1832), Riemann (1847), Grünwald (1867), Letnikov
(1868), Nekrasov (1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl
(1917), Riesz (1922), P. Levy(1923), Davis (1924), Kober (1940), Zygmund (1945),
Kuttner (1953), J. L. Lions (1959), and Liverman (1964)... have developed the basic
concept of fractional calculus.

In June 1974, Ross has organized the "First Conference on Fractional Calculus and
its Applications" at the University of New Haven, and edited its proceedings [133] ;
Thereafter, Spanier published the first monograph devoted to "Fractional Calculus"
in 1974 [123]. The integrals and derivatives of non-integer order, and the fractio-
nal integrodifferential equations have found many applications in recent studies in
theoretical physics, mechanics and applied mathematics. There exists the remarkably



TABLE DES MATIÈRES 5

comprehensive encyclopedic-type monograph by Samko, Kilbas and Marichev which
was published in Russian in 1987 . (for more details see [118]) The works devoted
substantially to fractional differential equations are : the book of Miller and Ross
(1993) [120], of Podlubny (1999) [126], by Diethelm (2010) [68], by Ortigueira (2011)
[125], by Abbas et al. (2012) [8], and by Baleanu et al. (2012) [39].

In recent years, there has been a significant development in the theory of fractional dif-
ferential equations. It is caused by its applications in the modeling of many phenomena
in various fields of science and engineering such as acoustic, control theory, chaos and
fractals, signal processing, porous media, electrochemistry, viscoelasticity, rheology,
polymer physics, optics, economics, astrophysics, chaotic dynamics, statistical physics,
thermodynamics, proteins, biosciences, bioengineering, etc. Fractional derivatives pro-
vide an excellent instrument for the description of memory and hereditary properties
of various materials and processes. See for example [40, 41, 84, 86, 118, 126, 138, 145].

Fractional calculus is a generalization of differentiation and integration to arbitrary
order (non-integer) fundamental operator Dα

a+ where α, a,∈ R. Several approaches to
fractional derivatives exist : Riemann-Liouville (RL),Caputo and Hadamard etc.
Implicit differential equations involving the regularized fractional derivative were ana-
lyzed by many authors, in the last year ; see for instance [20] and the references therein.

There are two measures which are the most important ones. The Kuratowski measure
of noncompactness α(B) of a bounded set B in a metric space is defined as infimum
of numbers r > 0 such that B can be covered with a finite number of sets of diameter
smaller than r. The Hausdorf measure of noncompactness χ(B) defined as infimum
of numbers r > 0 such that B can be covered with a finite number of balls of radii
smaller than r. Several authors have studied the measures of noncompactness in
Banach spaces. See, for example, the books such as [28, 42, 146] and the articles
[31, 43, 44, 49, 55, 57, 87, 121],and references therein.

Considerable attention has been given to the existence of solutions of boundary value
problem and boundary conditions for implicit fractional differential equations and
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integral equations with Caputo fractional derivative. See for example [19, 22, 25, 26,
38, 50, 51, 52, 55, 88, 98, 111, 112, 113, 115, 144, 159], and references therein.

In the theory of ordinary differential equations in a Banach space there are several
types of data dependence . On the other hand, in the theory of functional equations
there are some special kind of data dependence : Ulam-Hyers, Ulam-Hyers-Rassias,
Ulam-Hyers- Bourgin, Aoki-Rassias [134].

The stability problem of functional equations originated from a question of Ulam
[148, 149] concerning the stability of group homomorphisms : "Under what conditions
does there exist an additive mapping near an approximately additive mapping " Hyers
[89] gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers Theorem was generalized by Aoki [34] for additive mappings and by T.M.
Rassias [129] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the T.M. Rassias theorem was obtained by Gavruta [74].

After, many interesting results of the generalized Hyers-Ulam stability to a number
of functional equations have been investigated by a number of mathematicians ; see
[4, 30, 47, 92, 93, 95, 96, 107, 127, 151, 153, 154] and the books [64, 130, 131] and
references therein.
We have organized this thesis as follows :

Chapter 1.
This chapter consists of three Sections.
In Section one, we present "A brief visit to the history of the Fractional Calculus",
and in Section two, we present some "Applications of Fractional calculus".
Finally, in the last Section, we recall some preliminarys : some basic concepts, and
useful famous theorems and results (notations, definitions, lemmas and fixed point
theorems) which are used throughout this thesis.

Chapter 2.

This chapter consists of two Sections.
In the first section ; we discuss and establish the existence,the uniqueness of solu-
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tions for a coupled Caputo–Hadamard fractional differential system in Banach spaces.

We will give existence and uniqueness of solutions for a coupled system of
fractional differential equations of the form(HCDα1

1 u)(t) = f1(t, u(t), v(t))

(HCDα2
1 v)(t) = f2(t, u(t), v(t))

; t ∈ I := [1, T ],

with the multipoint boundary conditions

a1u(1)− b1u
′(1) = d1u(ξ1)

a2u(T ) + b2u
′(T ) = d2u(ξ2)

a3v(1)− b3v
′(1) = d3v(ξ3)

a4v(T ) + b4v
′(T ) = d4v(ξ4),

where T > 1, ai, bi, di ∈ R, ξi ∈ (1, T ), i = 1, 2, 3, 4, αj ∈ (1, 2], fj : I×Rm×Rm → Rm,
j = 1, 2, are given continuous functions, Rm for m ∈ N is the Banach space with a
suitable norm ‖ · ‖, HCD

αj
1 is the Caputo–Hadamard fractional derivative of order αj,

j = 1, 2.
Finally, an example will be included to illustrate our main results.

In the second section ; two results for the following coupled system of implicit
fractional differential equations in Banach spaces with Caputo-Hadamard fractional
derivative are discussed. The argument are based on Banach’s fixed point theorem
and Nonlinear alternative of Leray-Schauder type.

We establish existence and uniqueness results for the following coupled system of
implicit fractional differential equations :(HcDα1

1 u1)(t) = f1(t, u1(t), u2(t), (HcDα1
1 u1)(t))

(HcDα2
1 u2)(t) = f2(t, u1(t), u2(t), (HcDα2

1 u2)(t))
; t ∈ I := [1, T ],
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with the multipoint boundary conditions

a1u1(1)− b1u
′
1(1) = d1u1(ξ1)

a2u1(T ) + b2u
′
1(T ) = d2u1(ξ2)

a3u2(1)− b3u
′
2(1) = d3u2(ξ3)

a4u2(T ) + b4u
′
2(T ) = d4u2(ξ4)

; w ∈ Ω,

where T > 1, ai, bi, di ∈ R, ξi ∈ (1, T ); i = 1, 2, 3, 4, αj ∈ (1, 2], fj : I ×Rm ×Rm ×
Rm → Rm; j = 1, 2 are given continuous functions, Rm; m ∈ N∗ is the Euclidian
Banach space with a suitable norm ‖ · ‖, HcDαj

1 is the Caputo–Hadamard fractional
derivative of order αj; j = 1, 2.

At last and as application, an example is included.

Chapter 3.

This chapter consists of two Sections.
In the first section ; we investigate the existence of solutions for the following
coupled conformable fractional differential system :(T α1

0+ u)(t) = f1(t, u(t), v(t))

(T α2

0+ v)(t) = f2(t, u(t), v(t))
; t ∈ I,

with the following coupled boundary conditions :

(u(0), v(0)) = (δ1v(T ), δ2u(T )),

where T > 0, I := [0, T ], αi ∈ (0, 1]; i = 1, 2 fi : I × R × R → R; i = 1, 2 are
given continuous functions, T αi0 is the conformable fractional derivative of order
αi; i = 1, 2, and δ1, δ2 are real numbers with δ1δ2 6= 1.

Next, we investigate the following coupled conformable fractional differential system :(T α1

a+ u)(t) = f1(t, u(t), v(t))

(T α2

a+ v)(t) = f2(t, u(t), v(t))
; t ∈ [a,∞),
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with the coupled initial conditions :

(u(a), v(a)) = (ua, va),

where a > 0, αi ∈ (0, 1]; i = 1, 2, (E, ‖ · ‖) is a (real or complex) Banach space,
ua, va ∈ E and fi : R+ × E × E → E; i = 1, 2 are given continuous functions.

In the second section ; we investigate the existence and stability of solutions for
the following coupled Conformable fractional differential system :(T α1

0+ u)(t) = f1(t, u(t), v(t))

(T α2

0+ v)(t) = f2(t, u(t), v(t))
; t ∈ I,

with the following coupled boundary conditions :

(u(0), v(0)) = (δ1v(T ), δ2u(T )),

where T > 0, I := [0, T ], αi ∈ (0, 1]; i = 1, 2, fi : I × R × R → R; i = 1, 2 are
given continuous functions, T αi,ρ0 is the conformable fractional derivative of order
αi ; i = 1, 2, and δ1, δ2 are real numbers with δ1δ2 6= 1.

Next, we investigate the attractivity of solutions for the following coupled conformable
fractional differential system :(T α1

a+ u)(t) = f1(t, u(t), v(t))

(T α2

a+ v)(t) = f2(t, u(t), v(t))
; t ∈ [a,∞),

with the following coupled initial conditions :

(u(a), v(a)) = (ua, va),

where a > 0, αi ∈ (0, 1]; i = 1, 2, (R, ‖.‖) is a Banach space, ua, va ∈ R and
fi : R+ × R× R→ R; i = 1, 2 are given continuous functions.

At last and as application, an example is included.
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Chapter 4.

This chapter consists of two Sections.
In the first section ; we investigate the existence of solutions for the following
coupled Katugampola fractional differential system(ρDα1

0 u)(t) = f1(t, u(t), v(t))

(ρDα2
0 v)(t) = f2(t, u(t), v(t))

; t ∈ I := [0, T ],

with the multipoint boundary conditions
I2−α1,ρ

0 u(0) = a1; I2−α1,ρ
0+ u(T ) = b1

I2−α2,ρ
0 v(0) = a2; I2−α2,ρ

0+ v(T ) = b2,

where T > 0, , t ∈ (0, T ); , αi ∈ (1, 2], fi : I × Rm × Rm → Rm; i = 1, 2 are given
continuous functions, Rm; m ∈ N∗ is the Banach space with a suitable norm ‖ · ‖,
I2−αi,ρ

0 is Katugampola fractional integral of order 2− αi.

In the second section ; we investigate the existence of solutions for the following
coupled Caputo– Katugampola fractional differential system(cDα1,ρ

a+ u)(t) = f1(t, u(t), v(t))

(cDα2,ρ
a+ v)(t) = f2(t, u(t), v(t))

; t ∈ I := [a, b],

with the multipoint boundary conditions
u(a) = λ1v(b);cDγ1,ρ

a+ u(b) = λ2

∑N
i=1(cDδ1,ρ

a+ v)(ηi)

v(a) = µ1u(b);cDγ2,ρ
a+ v(b) = µ2

∑M
i=1(cDδ2,ρ

a+ u)(ξi)

;

where a, b > 0, , t ∈ (a, b); , αi ∈ (1, 2], γ1, δ1 ∈ (0, 1], ηi ∈ R for i = 1, 2.....N(N ∈
N)ξi ∈ R for i = 1, 2.....M(M ∈ N)a < ξ1 < ξ2.... < b, λi, µi, i = 1, 2 are real positive
constants fi : I × R × R → R; i = 1, 2 are given continuous functions and cDαi,ρ

a is
caputo- Katugampola fractional derivative of order αi ; i = 1, 2.

At last and as application, an example is included.



Chapitre 1

Preliminaries

1.1 A brief visit to the history of the Fractional Cal-

culus

In 1695, in a letter to the French mathematician L‘Hospital, Leibniz raised the
following question : "Can the meaning of derivatives with integer order be generalized
to derivatives with non-integer orders" L‘Hospital was somewhat curious about that
question and replied by another question to Leibniz : "What if the order will be 1

2
"

Leibnitz in a letter dated September 30, replied : "It will lead to a paradox, from
which one day useful consequences will be drawn."

In 1783, Leonhard Euler made his first comments on fractional order derivative. He
worked on progressions of numbers and introduced first time the generalization of
factorials to Gamma function. A little more than fifty year after the death of Leibniz,
Lagrange, in 1772, indirectly contributed to the development of exponents law for
differential operators of integer order, which can be transferred to arbitrary order
under certain conditions. In 1812, Laplace has provided the first detailed definition
for fractional derivative. Laplace states that fractional derivative can be defined for
functions with representation by an integral, in modern notation it can be written
as
∫
y(t)t−xdt. Few years after, Lacroix worked on generalizing the integer order

derivative of function y(t) = tm to fractional order, where m is some natural number.
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In modern notations, integer order nth derivative derived by Lacroix can be given as

dny

dtn
=

m!

(m− n)!
tm−n =

Γ(m+ 1)

Γ(m− n+ 1)
tm−n, m > n

where, Γ is the Euler’s Gamma function. Thus, replacing n with 1
2
and letting m = 1,

one obtains the derivative or order 1
2
of the function t

d
1
2y

dt
1
2

=
Γ(2)

Γ(3
2
)
t
1
2 =

2√
π

√
t

Euler’s Gamma function (or Euler’s integral of the second kind) has the same
importance in the fractional-order calculus and it is basically given by integral

Γ(z) =

∫ ∞
0

tz−1e−tdt.

The exponential provides the convergence of this integral in ∞, the convergence at
zero obviously occurs for all complex z from the right half of the complex plane
(Re(z) > 0). This function is generalization of a factorial in the following form :

Γ(n) = (n− 1)!.

Other generalizations for values in the left half of the complex plane can be obtained
in following way. If we substitute e−t by the well-known limit

e−t = lim
n→∞

(
1− t

n

)n
and then use n-times integration by parts, we obtain the following limit definition of
the Gamma function

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
.

Therefore, historically the first discussion of a derivative of fractional order appeared
in a calculus written by Lacroix in 1819.

It was Liouville who engaged in the first major study of fractional calculus.
Liouville’s first definition of a derivative of arbitrary order ν involved an infinite
series. Here, the series must be convergent for some ν. Liouville’s second definition
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succeeded in giving a fractional derivative of x−a whenever both x and are positive.
Based on the definite integral related to Euler’s gamma integral, the integral formula
can be calculated for x−a. Note that in the integral∫ ∞

0

ua−1e−xudu,

if we change the variables t = xu, then∫ ∞
0

ua−1e−xudu =

∫ (
t

x

)a−1

e−t
1

x
dt =

1

xa

∫ ∞
0

ta−1e−tdt.

Thus, ∫ ∞
0

ua−1e−xudu =
1

xa

∫ ∞
0

ta−1e−tdt.

From the Gamma function, we obtain the integral formula

x−a =
1

Γ(a)

∫ ∞
0

ua−1e−xudu.

Consequently, by assuming that dν

dxν
eax = aνeax, for any ν > 0, then

dν

dxν
x−a =

Γ(a+ ν)

Γ(a)
x−a−ν = (−1)ν

Γ(a+ ν)

Γ(a)
x−a−ν

In 1884 Laurent published what is now recognized as the definitive paper on the
foundations of fractional calculus. Using Cauchy’s integral formula for complex valued
analytical functions and a simple change of notation to employ a positive ν rather
than a negative ν will now yield Laurent’s definition of integration of arbitrary order

x0D
α
xh(x) =

1

Γ(ν)

∫ x

x0

(x− t)ν−1h(t)dts.

TheRiemann-Liouville differential operator of fractional calculus of order α defined
as

(Dα
a+f)(t) :=


1

Γ(n−α)

(
d
dt

)n ∫ t
a
(t− s)n−α−1f(s)ds if n− 1 < α < n,(

d
dt

)n
f(t), if α = n,

(1.1)

where α, a, t ∈ R, t > a, n = [α] + 1; [α] denotes the integer part of the real number
α, and Γ is the Gamma function.
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The Grünwald-Letnikov differential operator of fractional calculus of order α defi-
ned as

(Dα
a+f)(t) := lim

h→0
h−α

[ t−a
h

]∑
j=0

(−1)j(αj )f(t− jh).

Binomial coefficients with alternating signs for positive value of n are defined as

(nj ) =
n(n− 1)(n− 2) · · · (n− j + 1)

j!
=

n!

j!(n− j)!
.

For binomial coefficients calculation we can use the relation between Euler’s Gamma
function and factorial, defined as

(αj ) =
α!

j!(α− j)!
=

Γ(α)

Γ(j + 1)Γ(α− j + 1)
.

The Grünwald-Letnikov definition of differ-integral starts from classical definitions of
derivatives and integrals based on infinitesimal division and limit. The disadvantages
of this approach are its technical difficulty of the computations and the proofs and
large restrictions on functions.[160]

The Caputo (1967) differential operator of fractional calculus of order α defined as

(cDα
a+f)(t) :=


1

Γ(n−α)

∫ t
a
(t− s)n−α−1f (n)(s)ds if n− 1 < α < n,(

d
dt

)n
f(t), if α = n,

(1.2)

where α, a, t ∈ R, t > a, n = [α] + 1. This operator is introduced in 1967 by the
Italian Caputo.
This consideration is based on the fact that for a wide class of functions, the
three best known definitions ((GL), (RL), and Caputo) are equivalent under some
conditions. [85]

Unfortunately, fractional calculus still lacks a geometric interpretation of integration
or differentiation of arbitrary order.
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We refer readers, for example, to the books such as [8, 39, 86, 114, 120, 123, 126, 140]
and the articles [14, 18, 19, 36, 37, 46, 48, 50, 52, 53, 54, 55, 105, 144], and references
therein.

1.1.1 Applications of Fractional calculus

The concept of fractional calculus has great potential to change the way we see, model
and analyze the systems. It provides good opportunity to scientists and engineers for
revisiting the origins. The theoretical and practical interests of using fractional order
operators are increasing. The application domain of fractional calculus is ranging from
accurate modeling of the microbiological processes to the analysis of astronomical
images.
Next, we will present a brief survey of applications of fractional calculus in science
and engineering.

Signal and Image Processing :
In the last decade, the use of fractional calculus in signal processing has tremendously
increased. In signal processing, the fractional operators are used in the design of diffe-
rentiator and integrator of fractional order, fractional order differentiator FIR (finite
impulse response), IIR type digital fractional order differentiator (infinite impulse
response), a new IIR (infinite impulse response)-type digital fractional order diffe-
rentiator (DFOD) and for modeling the speech signal. The fractional calculus allows
the edge detection, enhances the quality of images, with interesting possibilities in va-
rious image enhancement applications such as image restoration image denoising and
the texture enhancement. He is used, in particularly, in satellite image classification,
and astronomical image processing.

Electromagnetic Theory :
The use of fractional calculus in electromagnetic theory has emerged in the last two
decades. In 1998, Engheta [72] introduced the concept of fractional curl operators and
this concept is extended by Naqvi and Abbas [122]. Engheta’s work gave birth to the
newfield of research in Electromagnetics, namely, "Fractional Paradigms in Electro-
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magnetic Theory". Nowadays fractional calculus is widely used in Electromagnetics to
explore new results ; for example, Faryad and Naqvi [73] have used fractional calculus
for the analysis of a Rectangular Waveguide.
Control Engineering :
In industrial environments, robots have to execute their tasks quickly and precisely,
minimizing production time, and the robustness of control systems is becoming im-
perative these days. This requires flexible robots working in large workspaces, which
means that they are influenced by nonlinear and fractional order dynamic effects.

Biological Population Model

The problems of the diffusion of biological populations occur nonlinearly and the
fractional order differential equations appear more and more frequently in different
research areas.

Reaction-Diffusion Equations

Fractional equations can be used to describe some physical phenomenon more accura-
tely than the classical integer order differential equation. The reaction-diffusion equa-
tions play an important role in dynamical systems of mathematics, physics, chemistry,
bioinformatics, finance, and other research areas. There has been a wide variety of
analytical and numerical methods proposed for fractional equations ([116, 157]), for
example, finite element method, Adomian decomposition method ([136]), and spectral
technique ([117]). Interest in fractional reaction-diffusion equations has increased.
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1.2 Notations and Definitions

Consider the complete metric space C := C(I,Rm) of continuous functions from I,

where I = [0, T ], T > 0 into Rm equipped with the usual metric

d(u, v) := max
t∈I
‖u(t)− v(t)‖,

where ‖·‖ is a suitable norm on Rm. Note that C is a Banach space with the supremum
(uniform) norm

‖u‖∞ := sup
t∈I
‖u(t)‖.

By C := C × C, we denote the complete metric space with the usual metric

D((u1, v1, (u2, v2)) := d(u1, u2) + d(v1, v2).

C is a Banach space with the norm

‖(u, v)‖C = ‖u‖∞ + ‖v‖∞.

As usual, AC(I) denotes the space of absolutely continuous functions from I into Rm,
and L1(I) denotes the space of Lebesgue-integrable functions v : I → Rm, with the
norm

‖v‖1 =

∫
I

‖v(t)‖dt.

For any n ∈ N, we denote by ACn(I) the space defined by

ACn(I) :=

{
w : I → E :

dn

dtn
w(t) ∈ AC(I)

}
.

Let δ = t d
dt
, define the space

ACn
δ :=

{
u : I → E : δn−1[u(t)] ∈ AC(I)

}
.

Let X := C(R+, E) be the Fréchet space of all continuous functions u from R+ into
E, equipped with the family of semi norms

‖u‖n = sup
t∈[0,n]

{‖u(t)‖ : n ∈ N},

and the distance

d(u, v) =
∞∑
n=0

2−n
‖u− v‖n

1 + ‖u− v‖n
; u, v ∈ X.
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Definition 1.2.1 ([33]). A nonempty subset B ⊂ X is said to be bounded if

sup
u∈B
‖u‖n <∞; for n ∈ N.

1.3 Fractional Calculus Theory

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [106] for a more detailed analysis.

Definition 1.3.1 (Hadamard fractional integral [106]). The Hadamard fractional
integral of order q > 0 for a function u ∈ L1(I) is defined as(

HIq1u
)

(x) =
1

Γ(q)

∫ x

1

(
ln
x

s

)q−1 u(s)

s
ds, for a.e. x ∈ I = [1, X].

provided the integral exists.

Example 1.3.1. Let 0 < q < 1. Then

HIq1 ln t =
(ln t)1+q

Γ(2 + q)
for a.e. t ∈ [1, e].

Definition 1.3.2 (Hadamard fractional derivative [106]). The Hadamard fractional
derivative of order q > 0 applied to the function u ∈ ACn

δ (I) is defined as(
HDq

1u
)

(x) = δn
(

HIn−q1 u
)

(x).

In particular, if q ∈ (0, 1] in Definition 1.3.2, then(
HDq

1u
)

(x) = δ
(

HI1−q
1 u

)
(x).

Example 1.3.2. Let 0 < q < 1. Then

HDq
1 ln t =

(ln t)1−q

Γ(2− q)
for a.e. t ∈ [1, e].

It has been proved (see e.g., Kilbas [104, Theorem 4.8]) that in the space L1(I),with
x ∈ I = [1,∞), the Hadamard fractional derivative is the left-inverse operator to the
Hadamard fractional integral, i.e.,(

HDq
1

) (
HIq1w

)
(x) = w(x).
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From [106, Theorem 2.3], we have(
HIq1
) (

HDq
1w
)

(x) = w(x)−
(

HI1−q
1 w

)
(1)

Γ(q)
(lnx)q−1.

Analogous to Hadamard fractional calculus, the Caputo–Hadamard fractional deri-
vative is defined in the following way.

Definition 1.3.3 (Caputo–Hadamard fractional derivative). The Caputo–Hadamard
fractional derivative of order q > 0 applied to the function u ∈ ACn

δ is defined as(
HCDq

1u
)

(x) =
(

HIn−q1 δnu
)

(x).

In particular, if q ∈ (0, 1] in Definition 1.3.3, then(
HCDq

1u
)

(x) =
(

HI1−q
1 δu

)
(x).

Lemma 1.3.1 ( [90]). Let α ≥ 0 and n = [α] + 1. If u ∈ ACn
δ [1, T ], then the Caputo–

Hadamard fractional differential equation(
HCDα

1 u
)

(t) = 0

has the general solution

u(t) =
n−1∑
j=0

cj(ln t)
j,

and we have
HIα1
(

HCDα
1 u
)

(t) = u(t) +
n−1∑
j=0

cj(ln t)
j,

where cj ∈ R, j = 0, 1, . . . , n− 1.

Let us now recall some essential definitions on conformable derivatives that can be
found in [16, 101].

Let n < α < n+ 1, and set β = α− n. For a function f : [a,∞)→ R, we denote by

Iαa f(t) =

∫ t

a

(s− a)α−1f(s)ds, n = 0,

and

Iαa f(t) =
1

n!

∫ t

a

(t− s)nf(s)dβ(s, a) =
1

n!

∫ t

a

(t− s)n(s− a)β−1f(s)ds;n ≥ 1.
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Definition 1.3.4 (conformable fractional derivative). The conformable derivative of
order α ∈]0, 1[, of a function f : [a,∞)→ R is defined by

T αa f(t) = lim
ε→0

f(t+ ε(t− a)1−α − f(t)

ε
, t > a.

If T αa f(t) exists on (a, b), b > a and limt→a+ T
α
a f(t) exists, then we define

T αa f(a) = lim
t→a+

T αa f(t).

Definition 1.3.5. The conformable derivative of order α ∈]n, n + 1[ of a function
f : [a,∞)→ R, when f (n) exists, is defined by T αa f(t) = T βa f (n)(t), where β = α−n ∈
(0, 1).

Lemma 1.3.2. For the properties of the conformable derivative, we mention the
following :
Let n < α < n+ 1 and f be an (n+ 1)-differentiable at t > a, then we have

T αa f(t) = (t− a)n+1−αf (n+1)(t),

and

Iαa T αa f(t) = f(t)−
n∑
k=0

f (n)(a)(t− a)k

k!
.

In particular, if 0 < α < 1, then we have

Iαa T αa f(t) = u(t)− u(a).

Remark 1.3.1. We provide the following remarks :
– For 0 < α < 1, using Lemma 1.3.2 it follows that, if a function f is differentiable
at t > a, then one has

lim
α→1
T aα f(t) = f ′(t)

and
lim
α→0
T αa f(t) = (t− a)f ′(t),

i.e. the zero order derivative of a differentiable function does not return to the
function itself.
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– Let n < α < n+ 1, if f is (n+ 1)-differentiable on (a, b), b > a and limt→a+ f
(n+1)

exists, then from Lemma 1.3.2, we get T aα f(a) = limt→a+ T
a
αf(t) = 0.

– Let n < α < n + 1, if f is (n + 1)-differentiable at t > a, then we can show that
T aα f(t) = T aα−kf (k)(t) for all positive integer k < α.

Similarly to the classical case, we give a property on the extremum of a function that
has a conformable derivative.

Proposition 1.3.1. Let 1 < α < 2, if a function f ∈ C1[a, b] attains a global maxi-
mum (respectively minimum) at some point ξ ∈ (a, b), then T αa f(ξ) ≤ 0 (respectively
T aα f(ξ) ≥ 0.

Proof. The result follows from the fact that

T αa f(ξ) = T α−1
a f ′(ξ) = lim

ε→0

f ′(ξ + ε(ξ − a)2−α)

ε
.

Definition 1.3.6. ([99]) (The Katugampola fractional integral)
The Katugampola fractional integrals of order α > 0 of a function h ∈ Xp

c (0, T ), is
defined by

Iα,ρ0+ h(t) =
ρ1−α

Γ(α)

∫ t

0

sρ−1h(s)

(tρ − sρ)1−αds, t ∈ [0, T ] (1.3)

or ρ > 0. These integrals are called left-sided integrals. Similarly we can define right-
sided integrals ( [99]-[106])

Definition 1.3.7. ([100]) (The Katugampola fractional derivatives )
The generalized fractional derivatives of order α > 0 , corresponding to the Katugam-
pola fractional integrals ((3.22) defined for any t ∈ [0, T ], by

ρDα
0+h(t) = (t1−ρ

d

dt
)nIn−α,ρ0+ h)(t) =

ρα−n+1

Γ(n− α)
(t1−ρ

d

dt
)n
∫ t

0

sρ−1h(s)

(tρ − sρ)α−n+1
ds, t ∈ [0, T ]

(1.4)

where n = [α] + 1, and ρ > 0, provided the integrals exist.

Remark 1.3.2. ([100])

ρDα
0+t

µ =
ρα−1Γ(1 + µ

ρ
)

Γ(1− α + µ
ρ
)
tµ−αρ.



1.3 Fractional Calculus Theory 22

Giving in particular

ρDα
0+t

ρ(α−m) = 0, for each m = 1, 2, ...n.

Iα,ρa+ (tρ − aρ)γ−1 =
ρ−αΓ(γ)

Γ(α + γ)
(tρ − aρ)α+γ−1.

Theorem 1.3.1. ([99],[100]). Let α, ρ, c ∈ R, be such that α, ρ > 0. Then for any
f, g ∈ Xp

c [0, T ], where 0 ≤ p ≤ ∞, we have
- Inverse property :

ρDα
0+(Iα,ρ0+ f)(t) = f(t), for all α ∈ (0, 1). (1.5)

- Linearity property : for all α ∈ (0, 1), we haveρDα
0+(f + g)(t) =ρ Dα

0+f(t) +ρ Dα
0+g(t)

Iα,ρ0+ (f + g)(t) = Iα,ρ0+ f(t) + Iα,ρ0+ g(t)
(1.6)

Lemma 1.3.3. ([100]) Let α, ρ > 0. If u ∈ C([0, T ],R), then
(i)the fractional deferential equation ρDα

0+u(t) = 0, has a solutions

u(t) = C1t
ρ(α−1) + C2t

ρ(α−2) + ...Cnt
ρ(α−n),

where Cn ∈ R, n = 0, 1, 2, 3, ...n− 1 and n = [α] + 1

(ii)if ρDα
0+u(t) ∈ C([0, T ],R) and 1 < α ≤ 2, then

ρIα0+(ρDα
0+u)(t) = u(t) + C1t

ρ(α−1) + C2t
ρ(α−2),

for some constant C1, C2 ∈ R.

Lemma 1.3.4. Let α, ρ > 0. If u ∈ C([a, b],R), then
(i)The fractional deferential equation cDρ,α

0+ u(t) = 0, has a solutions

u(t) = C0 + C1(
tρ − aρ

ρ
) + ...Cn−1(

tρ − aρ

ρ
)n−1,

where Cn ∈ R, n = 0, 1, 2, 3, ...n− 1. and n = [α] + 1

(ii)If cDρ,α
0+ u(t) ∈ C([a, b],R) then

ρIca+D
ρ,α
0+ u(t) = u(t) + C0 + C1( t

ρ−aρ
ρ

) + ...Cn−1( t
ρ−aρ
ρ

)n−1, where Cn ∈ R, n =

0, 1, 2, 3, ...n− 1.



1.4 Some definitions and properties of the measure of non-compactness23

Theorem 1.3.2. [81](theorem of Ascoli-Arzela) Let A ⊂ C(I,R), A is relatively
compact (i.e A is compact) if :

1. A is uniformly bounded i.e, there exists M > 0 such that

|f(x)| < M for every f ∈ A and x ∈ J.

2. A is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
x, x ∈ J, |x− x| ≤ δ implies |f(x)− f(x)| ≤ ε, for every f ∈ A.

1.4 Some definitions and properties of the measure

of non-compactness

In this section we define the Kuratowski (1896-1980) measures of non-compactness
(MNC for short) and give their basic properties.

Definition 1.4.1. [150] Let (X, d) be a complete metric space and B the family of
bounded subsets of X. For every B ∈ B we define the Kuratowski measure of non-
compactness α(B) of the set B as the infimum of the numbers d such that B admits
a finite covering by sets of diameter smaller than d.

Remark 1.4.1. The diameter of a set B is the number sup{d(x, y) : x ∈ B, y ∈ B}
denoted by diam(B), with diam(∅) = 0.
It is clear that 0 ≤ α(B) ≤ diam(B) < +∞ for each nonempty bounded subset B of
X and that diam(B) = 0 if and only if B is an empty set or consists of exactly one
point.

Definition 1.4.2. [42] Let E be a Banach space and ΩE the bounded subsets of E.
The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE,

where
diam(Bi) = sup{||x− y|| : x, y ∈ Bi}.
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The Kuratowski measure of noncompactness satisfies the following properties :

Lemma 1.4.1. ([28, 42, 43, 150]) Let A and B bounded sets.
(a) α(B) = 0⇔ B is compact (B is relatively compact), where B denotes the closure
of B.

(b) nonsingularity : α is equal to zero on every one element-set.
(c) If B is a finite set, then α(B) = 0.
(d) α(B) = α(B) = α(convB), where convB is the convex hull of B.
(e) monotonicity : A ⊂ B ⇒ α(A) ≤ α(B).
(f) algebraic semi-additivity : α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.

(g) semi-homogencity : α(λB) = |λ|α(B); λ ∈ R, where λ(B) = {λx : x ∈ B}.
(h) semi-additivity : α(A

⋃
B) = max{α(A), α(B)}.

(i) α(A
⋂
B) = min{α(A), α(B)}.

(j) invariance under translations : α(B + x0) = α(B) for any x0 ∈ E.

Remark 1.4.2. The a-measure of noncompactness was introduced by Kuratowski in
order to generalize the Cantor intersection theorem

Theorem 1.4.1. [150] Let (X, d) be a complete metric space and {Bn} be a decreasing
sequence of nonempty, closed and bounded subsets of X and limn→∞ α(Bn) = 0. Then
the intersection B∞ of all Bn is nonempty and compact.

In [87], Horvath has proved the following generalization of the Kuratowski theorem :

Theorem 1.4.2. [150] Let (X, d) be a complete metric space and {Bi}i∈I be a family
of nonempty of closed and bounded subsets of X having the finite intersection property.
If infi∈I α(Bi) = 0 then the intersection B∞ of all Bi is nonempty and compact.

Lemma 1.4.2. [80] If V ⊂ C(J,E) is a bounded and equicontinuous set, then
(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
0≤t≤T

α(V (t)).
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(ii) α
(∫ T

0
x(s)ds : x ∈ V

)
≤
∫ T

0
α(V (s))ds,

where
V (s) = {x(s) : x ∈ V }, s ∈ J.

In the definition of the Kuratowski measure we can consider balls instead of arbitrary
sets.

Theorem 1.4.3. ([150]) Let B(0, 1) be the unit ball in a Banach space X. Then

α(B(0, 1)) = χ(B(0, 1)) = 0

if X is finite dimensional, and α(B(0, 1)) = 2, χ(B(0, 1)) = 1 otherwise.

Theorem 1.4.4. ([150]) Let S(0, 1) be the unit sphere in a Banach space X.
Then α(S(0, 1)) = χ(S(0, 1)) = 0 if X is finite dimensional, and α(S(0, 1)) = 2,
χ(S(0, 1)) = 1 otherwise.

Theorem 1.4.5. ([150]) The Kuratowski MNCs is related by the inequalities

χ(B) ≤ α(B) ≤ 2χ(B).

In the class of all infinite dimensional Banach spaces these inequalities are the best
possible.

Example 1.4.1. Let l∞ be the space of all real bounded sequences with the supremum
norm, and let A be a bounded set in l∞. Then α(A) = 2χ(A).

For further facts concerning measures of non-compactness and their properties we
refer to [28, 42, 43, 146, 150] and the references therein.

We recall the following definition of the notion of a sequence of measures of non-
compactness [69, 70].

Definition 1.4.3. Let MF be the family of all nonempty and bounded subsets of a
Fréchet space F. A family of functions {µn}n∈N where µn : MF → [0,∞) is said to
be a family of measures of non-compactness in the real Fréchet space F if it satisfies
the following conditions for all B,B1, B2 ∈MF :
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(a) {µn}n∈N is full, that is : µn(B) = 0 for n ∈ N if and only if B is precompact,
(b) µn(B1) ≤ µn(B2) for B1 ⊂ B2 and n ∈ N,
(c) µn(ConvB) = µn(B) for n ∈ N,
(d) If {Bi}i=1,··· is a sequence of closed sets fromMF such that Bi+1 ⊂ Bi; i = 1, · · ·
and if limi→∞ µn(Bi) = 0, for each n ∈ N, then the intersection set B∞ := ∩∞i=1Bi

is nonempty.

Some Properties :

(1) We call the family of measures of non-compactness {µn}n∈N to be homogeneous
if µn(λB) = |λ|µn(B); for λ ∈ R and n ∈ N.

(2) If the family {µn}n∈N satisfied the condition µn(B1 ∪B2) ≤ µn(B1) + µn(B2), for
n ∈ N, it is called subadditive.

(3) It is sublinear if both conditions (e) and (f) hold.
(4) We say that the family of measures {µn}n∈N has the maximum property if

µn(B1 ∪B2) = max{µn(B1), µn(B2)},

(5) The family of measures of non-compactness {µn}n∈N is said to be regular if if the
conditions (a), (g) and (h) hold ; (full sublinear and has maximum property).

Example 1.4.2. [69, 124] For B ∈ MX , x ∈ B, n ∈ N and ε > 0, let us denote by
ωn(x, ε) the modulus of continuity of the function x on the interval [0, n]; that is,

ωn(x, ε) = sup{‖x(t)− x(s)‖ : t, s ∈ [0, n], |t− s| ≤ ε}.

Further, let us put
ωn(B, ε) = sup{ωn(x, ε) : x ∈ B},

ωn0 (B) = lim
ε→0+

ωn(B, ε),

ᾱn(B) = sup
t∈[0,n]

α(B(t)) := sup
t∈[0,n]

α({x(t) : x ∈ B}),

and
βn(B) = ωn0 (B) + ᾱn(B).

The family of mappings {βn}n∈N where βn : MX → [0,∞), satisfies the conditions
(a)-(d) fom Definition 1.4.3.
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Lemma 1.4.3. [132] If Y is a bounded subset of a Fréchet space F, then for each
ε > 0, there is a sequence {yk}∞k=1 ⊂ Y such that

µn(Y ) ≤ 2µn({yk}∞k=1) + ε; for n ∈ N.

Lemma 1.4.4. [132] If {uk}∞k=1 ⊂ L1([0, n]) is uniformly integrable, then µn({uk}∞k=1)

is measurable for n ∈ N∗, and

µn

({∫ t

1

uk(s)ds

}∞
k=1

)
≤ 2

∫ t

1

µn({uk(s)}∞k=1)ds,

for each t ∈ [0, n].

Definition 1.4.4. Let Ω be a nonempty subset of a Fréchet space F, and let A : Ω→ F

be a continuous operator which transforms bounded subsets of onto bounded ones.
One says that A satisfies the Darbo condition with constants (kn)n∈N with respect to
a family of measures of non-compactness {µn}n∈N, if

µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N.
If kn < 1; n ∈ N then A is called a contraction with respect to {µn}n∈N.

1.5 Some fixed point theorems

Theorem 1.5.1. (Banach’s fixed point theorem [78]

Let C be a non-empty closed subset of a Banach space X, then any contraction
mapping T of C into itself has a unique fixed point.

Definition 1.5.1. ([137]) A nondecreasing function φ : R+ → R+ is called a compa-
rison function if it satisfies one of the following conditions :

(1) For any t > 0 we have
lim
n→∞

φ(n)(t) = 0,

where φ(n) denotes the n-th iteration of φ.
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(2) The function φ is right-continuous and satisfies

∀t > 0 : φ(t) < t.

Remark 1.5.1. The choice φ(t) = kt with 0 < k < 1 gives the classical Banach
contraction mapping principle.

For our purpose we will need the following fixed point theorem :

Theorem 1.5.2. [61, 119] Let (X, d) be a complete metric space and T : X → X be
a mapping such that

d(T (x), T (y)) ≤ φ(d(x, y)),

where φ is a comparison function. Then T has a unique fixed point in X.

Theorem 1.5.3. (Schauder fixed point theorem [146]

Let X be a Banach space, D be a bounded closed convex subset of X and T : D → D

be a compact and continuous map. Then T has at least one fixed point in D.

Theorem 1.5.4. Mönch’s Fixed Point Theorem[21, 132]
Let D be a bounded, closed and convex subset of a Banach space such that 0 ∈ D, and
let N be a continuous mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0 (1.7)

holds for every subset V of D, then N has a fixed point.
Here α is the Kuratowski measure of noncompactness.

Theorem 1.5.5. (Darbo’s Fixed Point Theorem) [42, 78]
Let X be a Banach space and C be a bounded, closed, convex and nonempty subset of
X. Suppose a continuous mapping N : C → C is such that for all closed subsets D
of C,

α(T (D)) ≤ kα(D), (1.8)

where 0 ≤ k < 1, and α is the Kuratowski measure of noncompactness. Then T has
a fixed point in C.
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Remark 1.5.2. Mappings satisfying the Darbo-condition (1.8) have subsequently been
called k-set contractions.

The following generalization of the classical Darbo fixed point theorem for Fréchet
spaces.

Theorem 1.5.6. [69, 70] Let Ω be a nonempty, bounded, closed, and convex subset
of a Fréchet space F and let V : Ω→ Ω be a continuous mapping. Suppose that V is
a contraction with respect to a family of measures of noncompactness {µn}n∈N. Then
V has at least one fixed point in the set Ω.

For more details see [21, 33, 75, 78, 150, 156]

Theorem 1.5.7. (Nonlinear alternative of Leray-Schauder type)[78]]
Let X be a Banach space and C a nonempty convex subset of X. Let U a nonempty
open subset of C with 0 ∈ U and T : U → C continuous and compact operator.
Then,
(a) either T has fixed points,
(b) or there exist u ∈ ∂U and λ ∈ [0, 1] with u = λT (u).

Theorem 1.5.8. (Schaefer’s fixed point theorem [78] Let U be a Banach space
and T : U → U be continuous and compact mapping (completely continuous mapping).
Moreover, suppose

S = {u ∈ U : u = λTu, for some λ ∈ (0, 1)}

be a bounded set. Then T has at least one fixed point in U .



Chapitre 2

Coupled Caputo-Hadamard fractional

differential systems

2.1 A coupled Caputo-Hadamard fractional diffe-

rential system

2.1.1 Introduction and Motivations

The purpose of this section, is to establish existence and uniqueness of solutions for
the following of Caputo-Hadamard fractional differential system(HCDα1u)(t) = f1(t, u(t), v(t))

(HCDα2v)(t) = f2(t, u(t), v(t))
; t ∈ I := [1, T ], (2.1)

with the multipoint boundary conditions

a1u(1)− b1u
′(1) = d1u(ξ1)

a2u(T ) + b2u
′(T ) = d2u(ξ2)

a3v(1)− b3v
′(1) = d3v(ξ3)

a4v(T ) + b4v
′(T ) = d4v(ξ4),

(2.2)

where T > 1, ai, bi, di ∈ R, ξi ∈ (1, T ), i = 1, 2, 3, 4, αj ∈ (1, 2], fj : I×Rm×Rm → Rm,
j = 1, 2, are given continuous functions, Rm for m ∈ N is the Banach space with a
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suitable norm ‖ · ‖, HCDαj is the Caputo–Hadamard fractional derivative of order αj,
j = 1, 2.
In [10], the authors studied some existence results based on the Mönch’s fixed point
theorem associated with the technique of measure of noncompactness, for the follo-
wing problem of Caputo-Hadamard fractional differential equation(HcDr

1u)(t) = f(t, u(t)), t ∈ I := [1, T ],

u(t)|t=1 = φ,
(2.3)

and the problem of Caputo-Hadamard partial fractional differential equation
(HcDr

σu)(t, x) = f(t, x, u(t, x)), (t, x) ∈ J := [1, T ]× [1, b],

u(t, 1) = φ(t); t ∈ [1, T ],

u(1, x) = ψ(x); x ∈ [1, b],

(2.4)

where r = (r1, r2) ∈ (0, 1] × (0, 1], T, b > 1, σ = (1, 1), f : J × E → E is a
given continuous function, φ : [1, T ] → E and ψ : [1, b] → E are given absolutely
continuous functions with φ(1) = ψ(1), and HcDr

1 is the Caputo-Hadamard partial
fractional derivative of order r.
In [76], the authors examined the multipoint boundary value problem for fractional
integro-differential equations :

(CDα
0+x)(t) = f

(
t, x(t),

∫ t
0
k1(t, s)g(s, x(s))ds,∫ a

0
k2(t, s)h(s, x(s))ds

)
; t ∈ [0, 1], α ∈ (1, 2],

a1x(0)− b1x
′(0) = d1x(ξ1),

a2x(1)− b2x
′(1) = d2x(ξ2).

(2.5)

They use the technique of measure of weak non compactness and the fixed point
theory to discuss the existence of weak solutions.



2.1 A coupled Caputo-Hadamard fractional differential system 32

2.1.2 Existence of solutions

Consider the complete metric space C(I) := C(I,Rm) of continuous functions from
I into Rm equipped with the usual metric

d(u, v) := max
t∈I
‖u(t)− v(t)‖,

where ‖ · ‖ is a suitable norm on Rm.

Notice that C(I) is a Banach space with the supremum (uniform) norm

‖u‖∞ := sup
t∈I
‖u(t)‖.

Let us defining what we mean by a solution of problem (2.1)-(2.2).

Definition 2.1.1. By a solution of the problem (2.1)-(2.2) we mean a continuous
function u that satisfies the equation (2.1) on I and the conditions (2.2).

For the existence of solutions for the problem (2.1)-(2.2) ; we need the following auxi-
liary lemma :

Lemma 2.1.1. Let h ∈ C and α ∈ (1, 2]. Then the unique solution of the problem
(HcDα

1 u)(t) = h(t); t ∈ I

a1u(1)− b1u
′(1) = d1u(ξ1)

a2u(T ) + b2u
′(T ) = d2u(ξ2)

is given by

u(t) =

∫ T

1

G(t, s)h(s)ds, (2.6)
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where G is the Green function with G(t, s) given by
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where

∆ = d1(lnξ1)α−1[a2(lnT )α−2 + b2
T

(α− 2)(lnT )α−3 − d2(lnξ2)α−2]

− d1(lnξ1)α−2[a2(lnT )α−1 + b2
T

(α− 1)(lnT )α−2 − d2(lnξ2)α−1] 6= 0.

Proof. From Lemma 1.3.1, the linear fractional differential equation

(HcDα
1 u)(t) = h(t),

gives
u(t) =H Iα1 h(t) + c1(lnt)α−1 + c2(lnt)α−2. (2.7)

On the other hand, by the relation Dβ
1 I

α
1 u(t) = Iα−β1 u(t), we get

u′(t) = 1
Γ(α−1)

∫ t
1
(ln t

s
)α−2h(s)ds

s

+ α−1
t
c1(lnt)α−2 + α−2

t
c2(lnt)α−3.

From the boundary conditions, we have
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Substituting the values ofc1 and c2 in (2.7), we get
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=
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1
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.

This completes the proof.

Remark 2.1.1. Note that the function G(·, ·) is not continuous over [1, T ] × [1, T ],
However, the function t 7→

∫ t
1
G(t, s)ds is continuous on [1, T ].

The following result follows now directly from Lemma 4.3.1.

Lemma 2.1.2. Let fi : I × Rm × Rm → Rm; i = 1, 2 be such that fi(·, u, v) ∈ C(I)

for each u, v, w ∈ C(I). Then the coupled system 2.1–2.2 is equivalent to the problem
of obtaining the solution of the coupled systemu(t) =

∫ T
1
G1(t, s)f1(s, u(s), v(s))ds

v(t) =
∫ T

1
G2(t, s)f2(s, u(s), v(s))ds,
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where G1 is the Green function with G1(t, s) given by
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and where G2 is the Green function with G2(t, s) given by
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(lnT

s
)α2−2]; ξ4 ≤ s, t ≤ s
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where

∆1 = d1(lnξ1)α1−1[a2(lnT )α1−2 + b2
T

(α1 − 2)(lnT )α1−3 − d2(lnξ2)α1−2]

− d1(lnξ1)α1−2[a2(lnT )α1−1 + b2
T

(α1 − 1)(lnT )α1−2 − d2(lnξ2)α1−1] 6= 0,

and

∆2 = d3(lnξ3)α2−1[a4(lnT )α2−2 + b4
T

(α2 − 2)(lnT )α2−3 − d4(lnξ4)α2−2]

− d3(lnξ3)α2−2[a4(lnT )α2−1 + b4
T

(α2 − 1)(lnT )α2−2 − d4(lnξ4)α2−1] 6= 0.

Remark 2.1.2. Notice that the function G(·, ·) is not continuous over [1, T ]× [1, T ],
however the function t 7→

∫ t
1
G(t, s)ds is continuous on [1, T ]. Set

G∗ = sup
t∈[1,T ]

∫ t

1

|G(t, s)|ds.

The following hypotheses will be used in the sequel.
(H1) The function fi; i = 1, 2 satisfies the generalized Lipschitz condition :

‖fi(t, u1, v1)− fi(t, u2, v2)‖ ≤ 1

G∗i
(φi‖u1 − u2‖+ ψi‖v1 − v2‖),

for t ∈ I and ui, vi ∈ Rm. where φi, ψi; i = 1, 2 are comparison functions.
(H2) There exist continuous functionshi, pi, qi : I → R+; i = 1, 2 such that

‖fi(t, u, v)‖ ≤ hi(t) + pi(t)‖u‖+ qi(t)‖v‖; pourtout t ∈ I, et u, v ∈ Rm.

Theorem 2.1.1. Assume (H1) Then (2.1)–(2.2) has a unique solution. .

Proof.

Define the operator N : C → C by

(N(u, v))(t) = ((N1u)(t), (N2v)(t)), (2.8)

where N1, N2 : C → C with

(N1u))(t) =

∫ T

1

G1(t, s)f1(s, u(s), v(s))ds, (2.9)

and
(N2v)(t) =

∫ T

1

G2(t, s)f2(s, u(s), v(s))ds. (2.10)
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Clearly, the fixed points of the operator N are solutions of (2.1)–(2.2). For each
ui, vi ∈ C, i = 1, 2, and t ∈ I, we have

‖(N1u1)(t)− (N1u2)(t)‖ = ‖
∫ T

1
G1(t, s)[f1(s, u1(s), v1(s))− f1(s, u2(s), v2(s))]ds‖

≤
∫ T

1
‖G1(t, s)[f1(s, u1(s), v1(s))− f1(s, u2(s), v2(s))]‖ds

≤
∫ T

1
|G1(t, s)|‖f1(s, u1(s), v1(s))− f1(s, u2(s), v2(s))‖ds

≤ φ1(‖u1(s)− u2(s)‖) + ψ1(‖v1(s)− v2(s)‖)
≤ φ1(‖u1(s)− u2(s)‖) + ‖v1(s)− v2(s)‖)
+ ψ1(‖u1(s)− u2(s)‖) + ‖v1(s)− v2(s)‖)
≤ φ1(D((u1, v1), (u2, v2))) + ψ1(D((u1, v1), (u2, v2))).

Also

‖(N2v1)(t)− (N2v2)(t)‖ = ‖
∫ T

1
G2(t, s)[f2(s, u1(s), v1(s))− f2(s, u2(s), v2(s))]ds‖

≤
∫ T

1
‖G2(t, s)[f2(s, u1(s), v1(s))− f2(s, u2(s), v2(s))]‖ds

≤
∫ T

1
|G2(t, s)|‖f2(s, u1(s), v1(s))− f2(s, u2(s), v2(s))‖ds

≤ φ2(‖u1(s)− u2(s)‖) + ψ2(‖v1(s)− v2(s)‖)
≤ φ2(‖u1(s)− u2(s)‖) + ‖v1(s)− v2(s)‖)
+ ψ2(‖u1(s)− u2(s)‖) + ‖v1(s)− v2(s)‖)
≤ φ2(D((u1, v1), (u2, v2))) + ψ2(D((u1, v1), (u2, v2))).

Thus, we get
D(N(u1, v1), N(u2, v2)) ≤ φD((u1, v1), (u2, v2)).

where φ = φ1 + φ2 + φ1 + ψ2.
Consequently, from Theorem 1.5.2, the operator N has a unique fixed point, which
is the unique solution of (2.1)–(2.2) on I.
Now, we prove an existence result by using Schauder fixed point theorem. Set

h∗i := sup
t∈I

h(t), p∗i := sup
t∈I

p(t), q∗i := sup
t∈I

q(t), i = 1, 2.
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Theorem 2.1.2. Assume (H2). If

G∗1h
∗
1 +G∗2h

∗
2 < 1,

then the coupled system (2.1)–(2.2) has at least one solution defined on I.

Proof. Let N be the operator defined in 2.8. Set

R ≥ G∗1(p∗1 + q∗1) +G∗2(p∗2 + q∗2)

1−G∗1h∗1 −G∗2h∗2

and consider the closed and convex ball

BR = {(u, v) ∈ C : ‖(u, v)‖C ≤ R}.

Let (u1, u2) ∈ BR. Then, for each t ∈ I and any i = 1, 2, we have

‖(Niui)(t)‖ =
∫ T

1
‖Gi(t, s)fi(s, u(s), v(s))ds‖

≤
∫ T

1
|Gi(t, s)|‖f1(s, u(s), v(s))‖ds

≤
∫ T

1
|Gi(t, s)|[hi(s) + pi(s)‖u(s)‖+ qi(s)‖v(s)‖]ds

= G∗i (h
∗
i +Rp∗i + q∗i ).

Thus,
‖N(u1, u2)‖C ≤ R.

Hence N maps the ball BR into itself. We shall show that the operator N : BR → BR

satisfies the assumptions of Schauder’s fixed point theorem. The proof will be given
in several steps.

Step 1 : We show that N is continuous.
Let {(un, vn)} be a sequence such that (un, vn) → (u, v) in Br. Then, for each t ∈ I,
we have

‖(N(un, vn)(t)− (N(u, v)(t)‖
= Σ2

i=1

∫ T
i
‖G1(t, s)[fi(s, un(s), vn(s))− fi(s, u(s), v(s))]ds‖

≤ Σ2
i=1

∫ T
1
|G1(t, s)|‖f1(s, un(s), vn(s))− f1(s, u(s), v(s))‖ds.

Since un → u, vn → v as n→∞ et f1,f2 are continuous, by the Lebesgue dominated
convergence theorem
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‖N(un, vn)−N(u, v)‖C → 0 as n→∞.

Step 2 : We remark that N(BR) is bounded. This is clear since N : BR → BR and
BR is bounded.

Step 3 : We show that N maps bounded sets into equicontinuous sets in BR. Let
t1, t2 ∈ I be such that t1 < t2 and let (u1, u2) ∈ BR. Then, we have

‖(N(u1, u2))(t1)− (N(u1, u2))(t2)‖
≤ ‖

∫ t1
1
Gi(t1, s)fi(s, u1(s), u2(s))ds−

∫ t2
1
Gi(t2, s)fi(s, u1(s), u2(s))ds‖

≤
∫ t1

1
|Gi(t1, s)|fi(s, u1(s), u2(s))ds‖ − ‖

∫ t2
1
|Gi(t2, s)|fi(s, u1(s), u2(s))ds

≤ [(p∗i + q∗i )R + h∗i ]
[∫ t1

1
|Gi(t1, s)|ds−

∫ t2
t1
|Gi(t2, s)|ds

]
As t1 → t2, the right-hand side of the above inequality tends to zero. As a consequence
of Steps 1 to 3, together with the Arzelà–Ascoli theorem, we can conclude that N :

BR → BR is continuous and compact. From an application of Theorem 1.5.3, we
deduce that N has a fixed point u, which is a solution of problem (2.1)–(2.2).

2.1.3 Exemple

Consider the coupled system of Caputo–Hadamard fractional differential equations(HcD
3
2
1 u)(t) = f1(t, u(t), v(t));

(HcD
3
2
1 v)(t) = f2(t, u(t), v(t));

; t ∈ [1, e], (2.11)

with the multipoint boundary conditions

u(1)− u′(1) = u(2)

2u(T ) + u′(T ) = 2u(3
2
)

3v(1)− v′(1) = 3v(5
4
)

v(T ) + 2v′(T ) = v(2),

(2.12)

where
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f(t, u, v) = t
−1
4 (u(t)+1) sin(t)

4(1+
√
t)(1+|u|+|v|) , t ∈ [1, e]

g(t, u, v) = (v(t)+1) cos(t)
4(1+u(t)+v(t)

,

The hypothesis (H1) is satisfied with

φ1(x) =
x

4G∗1
, ψ2(x) =

x

4G∗2
, ψ1(x) = φ2(x) = 0.

Theorem 2.1.1 implies that the system 2.11–2.12 has a unique solution defined on
[1, e].
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2.2 Implicit Coupled Caputo-Hadamard Fractional

Differential Systems

2.2.1 Introduction and motivations

In recent years, fractional differential equations have found applications in diverse
fields such as engineering, mathematics, and physics, as well as other applied sciences.
There has been a significant focus on studying the existence of solutions for initial
and boundary value problems related to fractional differential equations. To this
end, several monographs [8, 12, 106, 140, 145, 161] and papers [63, 67, 110, 128, 139]
have explored this area in depth.

In this section, we discuss the existence and uniqueness of solutions for the following
coupled system of Caputo-Hadamard fractional differential equations(HcDα1

1 u1)(t) = f1(t, u1(t), u2(t), (HcDα1
1 u1)(t))

(HcDα2
1 u2)(t) = f2(t, u1(t), u2(t), (HcDα2

1 u2)(t))
; t ∈ I := [1, T ], (2.13)

with the multipoint boundary conditions

a1u1(1)− b1u
′
1(1) = d1u1(ξ1)

a2u1(T ) + b2u
′
1(T ) = d2u1(ξ2)

a3u2(1)− b3u
′
2(1) = d3u2(ξ3)

a4u2(T ) + b4u
′
2(T ) = d4u2(ξ4)

; w ∈ Ω, (2.14)

where T > 1, ai, bi, di ∈ R, ξi ∈ (1, T ); i = 1, 2, 3, 4, αj ∈ (1, 2], fj : I ×Rm ×Rm ×
Rm → Rm; j = 1, 2 are given continuous functions, Rm; m ∈ N∗ is the Euclidian
Banach space with a suitable norm ‖ · ‖, HcDαj

1 is the Caputo–Hadamard fractional
derivative of order αj; j = 1, 2.

In [56] ; the authors established the existence, uniqueness and stability results of
solutions for the following initial value problem for imlicit fractional order differential
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equations HDαy(t) = f(t, y(t),H Dαy(t)), t ∈ J, 0 < α ≤ 1,

y(1) = y1,

where HDα is the Hadamard fractional derivative, f : J × R × R → R is a given
function space, y1 ∈ R and J = [1, T ], T > 1.

In [47] ; the following classes of boundary value problems for the existence and sta-
bility of solutions for implicit fractional differential equations with Caputo fractional
derivative :cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], T > 0, 0 < α ≤ 1,

αy(0) + by(T ) = c,

where cDα is the fractional derivative of Caputo, f : J × R × R → R a continuous
function, and a,b,c are real constants with a+ b 6= 0, andcDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], T > 0, 0 < α ≤ 1,

y(0) + g(y) = y0,

where g : C([0, T ],R)→ R a continuous function and y0 a real constant ; are studied.
This type of non-local Cauchy problem was introduced by Byszewski. The author
observed that the non-local condition is more appropriate that the non-local condi-
tion(initial) to describe correctly some physics phenomenons and proved the existence
and the uniqueness of weak solutions and also classical solutions for this type of pro-
blems. We take an example of non-local conditions as follows :

g(y) =

p∑
i=1

ciy(ti)

where ci, i = 1...p are constants and 0 < t1 < ... < tp ≤ T.

2.2.2 Existence of solutions

Consider the complete metric space C(I) := C(I,Rm) of continuous functions from
I into Rm equipped with the usual metric

d(u, v) := max
t∈I
‖u(t)− v(t)‖,
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where ‖ · ‖ is a suitable norm on Rm. Notice that C(I) is a Banach space with the
supremum (uniform) norm

‖u‖∞ := sup
t∈I
‖u(t)‖.

Definition 2.2.1. By a solution of the implicit coupled system (2.13)-(2.14) we mean
a coupled continuous functions (u, v) ∈ C × C satisfying the boundary conditions
(2.14), and the equations (2.13) on I.

The following hypotheses will be used in the sequel.
(H3) The functions fi; i = 1, 2 satisfy the generalized Lipschitz condition :

‖fi(t, u1, u2, w1)−fi(t, v1, v2, w2)‖ ≤ 1

G∗i
(φi(‖u1−v1‖)+ψi(‖u2−v2‖))+ξi(‖w1−w2‖)).

Set
G∗ = sup

t∈[1,T ]

∫ t

1

|G(t, s)|ds.

for t ∈ I and ui, vi, wi ∈ Rm, where φi, ψi; .ξi; i = 1, 2 are comparison functions.
(H4) There exist continuous functions hi, pi, qi : I → R+ and 0 < ki < 1; i = 1, 2

such that
(1 + ‖u1‖+ ‖u2‖+ ‖wi‖)‖fi(t, u1, u2, wi)‖

≤ hi(t) + pi(t)‖u1‖+ qi(t)‖u2‖+ ki(t)‖wi‖; for t ∈ I, and ui, wi ∈ Rm.

Theorem 2.2.1. Assume that the hypothesis (H1) holds. Then the coupled system
(2.13)-(2.14) has a unique solution.

Proof. Define the operator N : C → C by

(N(u1, u2))(t) = ((N1u1)(t), (N2u2)(t)), (2.15)

where N1, N2 : C → C with

(N1u1))(t) = µ1(t) +H Iα1 g1(t), (2.16)

and
(N2u2)(t) = µ2(t) +H Iα1 g2(t). (2.17)
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Clearly, the fixed points of the operator N are solutions of the coupled system
(2.13)-(2.14).
For each ui, vi ∈ C; i = 1, 2 and t ∈ I, we have

‖(Ni(u1, u2))(t)− (Ni(v1, v2))(t)‖ ≤ 1

Γ(αi)

∫ T

1

(ln
t

s
)αi−1[‖gi(s)− hi(s)]‖

ds

s
,

where gi, hi ∈ C are given by
gi(t) = fi(t, u1, u2, gi(t)), and hi(t) = fi(t, v1, v2, hi(t)).

Then, from (H1),

‖gi(t)− hi(t)‖ ≤
1

G∗i
(φi(‖u1(t)− v1(t)‖) + ψi(‖u2(t)− v2(t)‖)) + ξi(‖gi(t)− hi(t)‖)).

Thus

‖gi(t)− hi(t)‖ ≤
φi

G∗i − ξi
(‖u1(t)− v1(t)‖) +

ψi
G∗i − ξi

(‖u2(t)− v2(t)‖),

for i = 1, 2. Hence,

‖(N1u1)(t)− (N1v1)(t)‖ ≤ 1
Γ(α1)

∫ T
1

(ln t
s
)α1−1[‖g1(s)− h1(s)]‖ds

s

≤ lnα1 (T )
Γ(α1+1)

[ φ1
G∗

1−ξ1
‖u1(s)− v1(s)‖+ ψ1

G∗
1−ξ1
‖u2(s)− v2(s)‖]

≤ lnα1 (T )φ1
Γ(α1+1)(G∗

1−ξ1)
(‖u1(s)− v1(s)‖+ ‖u2(s)− v2(s)‖)

+ lnα1 (T )ψ1

Γ(α1+1)(G∗
1−ξ1)

(‖u1(s)− v1(s)‖+ ‖u2(s)− v2(s)‖)
≤ lnα1 (T )φ1

Γ(α1+1)(G∗
1−ξ1)

(D((u1, u2), (v1, v2)))

+ lnα1 (T )ψ1

Γ(α1+1)(G∗
1−ξ1)

(D((u1, u2), (v1, v2))).

Also

‖(N1u2)(t)− (N2v2)(t)‖ ≤ 1
Γ(α2)

∫ T
1

(ln t
s
)α2−1[‖g2(s)− h2(s)]‖ds

s

≤ lnα1 (T )
Γ(α2+1)

[ φ2
G∗

2−ξ2
‖u1(s)− v1(s)‖+ ψ2

G∗
2−ξ2
‖u2(s)− v2(s)‖]

≤ lnα2 (T )φ2
Γ(α2+1)(G∗

2−ξ2)
(‖u1(s)− v1(s)‖+ ‖u2(s)− v2(s)‖)

+ lnα2 (T )ψ2

Γ(α2+1)(G∗
2−ξ2)

(‖u1(s)− v1(s)‖+ ‖u2(s)− v2(s)‖)
≤ lnα2 (T )φ2

Γ(α2+1)(G∗
2−ξ2)

(D((u1, u2), (v1, v2)))

+ lnα2 (T )ψ2

Γ(α2+1)(G∗
2−ξ2)

(D((u1, u2), (v1, v2))).
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Thus, we get

D(N(u1, u2), N(v1, v2)) ≤ φ(D((u1, u2), (v1, v2))),

where
φ =

lnα1(T )(φ1 + ψ1)

Γ(α1 + 1)(G∗1 − ξ1)
+

lnα2(T )(φ2 + ψ2)

Γ(α2 + 1)(G∗2 − ξ2)
. (2.18)

Consequently, from Theorem (1.5.2), the operator N has a unique fixed point, which
is the unique solution of our problem (2.13)-(2.14) on I.

Now, we prove an existence result by using Nonlinear alternative of Leray-Schauder
fixed point theorem.
Set

h∗i := sup
t∈I

h(t), p∗i := sup
t∈I

p(t), q∗i := sup
t∈I

q(t); i = 1, 2.

Theorem 2.2.2. Assume that the hypothesis (H2) holds. Then the problem (2.13)-
(2.14) has at least one solution defined on I.

Proof. Let N : C → C be the operator defined in (2.15). We need to show that N
satisfies the conditions in Theorem (1.5.7). The proof will be given in several steps.

Step 1 : N is continuous.
Let {((u1)n, (u2)n)} be a sequence such that ((u1)n, (u2)n)→ (u1, u2) in C. Then, for
each t ∈ I, we have

‖(N((u1)n, (u2)n))(t)−(N(u1, u2))(t)‖ ≤
2∑
i=1

1

Γ(α1)

∫ T

1

(ln
t

s
)α1−1[‖(gin)(s)−(gi)(s)]‖

ds

s

where gin, gi ∈ C such that
gin(t) = fi(t, u1n, u2n, gin(t)) and gi(t) = fi(t, u1, u2, gi(t)).

Since (u1n, u2n)→ (u1, u2) as n→∞ and fi ; i=1,2 are continuous, we get
gin(t)→ g(t) as n→∞, then by the Lebesgue dominated convergence theorem ;

‖N(u1n, u2n)−N(u1, u2)‖C → 0 as n→∞.
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Step 2 : N maps bounded sets into bounded sets in C.
Let R > 0 and set BR = {(u1, u2) ∈ C : ‖(u1, u2)‖C ≤ R}. Let (u1, u2) ∈ BR. Then,
for each t ∈ I,, and any i = 1.2, we have

(Niui)(t) = µi(t) +
1

Γ(αi)

∫ t

1

(ln
t

s
)αi−1gi(s)

ds

s
,

where gi ∈ C such that gi(t) = fi(t, u1, u2, gi(t)).

From (H2) we get

‖gi(s)‖ ≤
hi(s)

1− ki
+

pi(s)

1− ki
+

qi(s)

1− ki
.

Then,

‖(Niui)(t)‖ ≤ ‖µi(t)‖+ 1
Γ(αi)

∫ T
1

(ln t
s
)αi−1‖gi(s)‖dss

≤ ‖µi(t)‖+ 1
Γ(αi)

∫ T
1

(ln t
s
)αi−1

[
hi(s)
1−ki + pi(s)

1−ki + qi(s)
1−ki

]
ds
s

≤ ‖µi‖∞ + lnαi (T )
Γ(αi+1)

[
p∗i

1−ki +
q∗i

1−ki +
h∗i

1−ki

]
.

Thus,

‖N(u1, u2)‖C ≤
2∑
i=1

(
‖µi‖∞ +

lnαi(T )

Γ(αi + 1)

[
p∗i

1− ki
+

q∗i
1− ki

+
h∗i

1− ki

])
:= M∗.

Step 3 : N maps bounded sets into equicontinuous sets in BR.

Let t1, t2 ∈ I, such that t1 < t2 and let (u1, u2) ∈ BR. Then, we have

‖(N(u1, u2))(t1)− (N(u1, u2))(t2)‖ ≤ ‖µi(t1)− µi(t2)‖
+ 1

Γ(αi)

∫ T
1

((ln t2
s

)αi−1 − (ln t1
s

)αi−1)‖gi(s)‖dss
≤ ‖µi(t1)− µi(t2)‖
+ [

h∗i
1−ki +

p∗i
1−ki +

q∗i
1−ki ]

× 1
Γ(αi)

∫ T
1

((ln t2
s

)αi−1 − (ln t1
s

)αi−1)ds
s
.

As t1 → t2 the right-hand side of the above inequality tends to zero. As a consequence
of steps 1 to 3, together with the Arzelá–Ascoli theorem, we can conclude that N :

BR → BR is continuous and completely continuous.

Step 4 : We now show there exists an open set U ⊆ C with (u1, u2) 6= λN(u1, u2),

for λ ∈ [0, 1] and (u1, u2) ∈ ∂U. Let (u1, u2) ∈ C and (u1, u2) = λN(u1, u2), λ ∈ [0, 1]
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. Then u1(t) = λ(N1u1)(t), and u2(t) = λ(N2u2)(t). Thus, as in step 2, for each t ∈ I,
we have

‖ui(t)‖ ≤ ‖µi(t)‖+ 1
Γ(αi)

∫ T
1

(ln t
s
)αi−1‖gi(s)‖dss

≤ ‖µi(t)‖+ 1
Γ(αi)

∫ T
1

(ln t
s
)αi−1

[
hi(s)
1−ki + pi(s)

1−ki + qi(s)
1−ki

]
ds
s

≤ ‖µi‖∞ + lnαi (T )
Γ(αi+1)

[
p∗i

1−ki +
q∗i

1−ki +
h∗i

1−ki

]
.

Hence,
‖(u1, u2)‖C ≤M∗.

Set
U = {(u1, u2) ∈ C : ‖(u1, u2)‖C ≤M∗ + 1}.

By our choice of U , there is no (u1, u2) ∈ ∂U such that (u1, u2) = λN(u1, u2), for
λ ∈ [0, 1]. As a consequence of Theorem 1.5.7, we deduce that N has a fixed point
(u1, u2) in U which is a solution of problem (2.13)- (2.14).

2.2.3 Example

Consider the following implicit coupled system of Caputo–Hadamard fractional dif-
ferential equations(HcD

3
2
1 u1)(t) = f(t, u1(t), u2(t), (HcD

3
2
1 u1)(t));

(HcD
3
2
1 u2)(t) = g(t, u1(t), u2(t), (HcD

3
2
1 u2)(t));

; t ∈ [1, e], (2.19)

with the multipoint boundary conditions

u1(1)− u′1(1) = u1(2)

2u1(T ) + u′1(T ) = 2u1(3
2
)

3u2(1)− u′2(1) = 3u2(5
4
)

u2(T ) + 2u′2(T ) = u2(2),

(2.20)

where

f(t, u1, u2, w) =
t
−1
4 u(t) sin(t)

24(1 +
√
t)(1 + |u1|+ |u2|+ |w|)

; t ∈ [1, e],

g(t, u1, v2, w) =
u1(t) cos(t)

24(1 + |u1|+ |u2|+ |w|)
; t ∈ [1, e].
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The hypothesis (H1) is satisfied with

φ1(x) =
x

24G∗1
, ψ2(x)

x

24G∗2
,

ξ1(x) = ψ1(x) = φ2(x) = ξ2(x) = 0.

Hence, Theorem 2.2.2 implies that the system (2.19)-(2.20) has a unique solution
defined on [1, e].



Chapitre 3

Coupled Systems of Conformable

fractioonal differential equations

3.1 Coupled conformable fractional differential sys-

tem

3.1.1 Introduction and motivations

In [109], the authors considered the following conformable impulsive problem :
T ϑζχ(ζ) = ℵ

(
ζ, χζ , T ϑ χ(ζ)

)
, ζ ∈ Ω;  = 0, 1, . . . , β,

∆χ|ζ=ζ = Υ(χζ− ),  = 1, 2, . . . , β,

χ(ζ) = µ(ζ), ζ ∈ (−∞,κ],

where 0 ≤ κ = ζ0 < ζ1 < · · · < ζβ < ζβ+1 = κ̄ < ∞, T ϑζχ(ζ) is the conformable
fractional derivative of order 0 < ϑ < 1, ℵ : Ω × Q × R → R is a given continuous
function, Ω := [κ, κ̄], Ω0 := [κ, ζ1], Ω := (ζ, ζ+1];  = 1, 2, . . . , β, µ : (−∞,κ] → R
and Υ : Q → R are given continuous functions, and Q is called a phase space.

In this section, we investigate the existence of solutions for the following coupled
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conformable fractional differential system :(T α1

0+ u)(t) = f1(t, u(t), v(t))

(T α2

0+ v)(t) = f2(t, u(t), v(t))
; t ∈ I, (3.1)

with the following coupled boundary conditions :

(u(0), v(0)) = (δ1v(T ), δ2u(T )), (3.2)

where T > 0, I := [0, T ], αi ∈ (0, 1]; i = 1, 2 fi : I × R × R → R; i = 1, 2 are
given continuous functions, T αi0 is the conformable fractional derivative of order
αi; i = 1, 2, and δ1, δ2 are real numbers with δ1δ2 6= 1.

Next, we investigate the following coupled conformable fractional differential system :(T α1

a+ u)(t) = f1(t, u(t), v(t))

(T α2

a+ v)(t) = f2(t, u(t), v(t))
; t ∈ [a,∞), (3.3)

with the coupled initial conditions :

(u(a), v(a)) = (ua, va), (3.4)

where a > 0, αi ∈ (0, 1]; i = 1, 2, (E, ‖ · ‖) is a (real or complex) Banach space,
ua, va ∈ E and fi : R+ × E × E → E; i = 1, 2 are given continuous functions.

3.1.2 Existence Results in Banach spaces

In this section, we are concerned with the existence and uniqueness of solutions of
the problem 3.1-3.2

Lemma 3.1.1. Let x, y ∈ C, and δ1δ2 6= 1 Then the unique solution (u, v) of problem

T α1
a u(t) = x(t); t ∈ I := [0, T ], α1 ∈ (0, 1],

T α2
a v(t) = y(t); t ∈ I := [0, T ], α2 ∈ (0, 1],

u(0) = δ1v(T ),

v(0) = δ2u(T ),

(3.5)
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is given by

u(t) =
δ1

1− δ1δ2

[
δ2

∫ T

0

sα1−1x(s)ds+

∫ T

0

sα2−1y(s)ds

]
+

∫ t

0

sα1−1x(s)ds,

v(t) =
δ2

1− δ1δ2

[
δ1

∫ T

0

sα2−1y(s)ds+

∫ T

0

sα1−1x(s)ds

]
+

∫ t

0

sα2−1y(s)ds.

Proof. By Lemma 1.3.2, solving the linear fractional differential equation

T α1
0 u(t) = x(t),

we find that
J α1

0 T α1
0 u(t) = J α1

0 x(t).

Hence,

u(t) = u(0) +

∫ t

0

sα1−1x(s)ds, (3.6)

v(t) = v(0) +

∫ t

0

sα2−1y(s)ds. (3.7)

By using the boundary conditions u(0) = δ1v(T ), and v(0) = δ2u(T ), we obtain

u(0) = δ1

[
v(0) +

∫ T

0

sα2−1y(s)ds

]
, (3.8)

and
v(0) = δ2

[
u(0) +

∫ T

0

sα1−1x(s)ds

]
. (3.9)

It follows from (3.8) and (3.9) that

u(0) =
δ1

1− δ1δ2

[
δ2

∫ T

0

sα1−1x(s)ds+

∫ T

0

sα2−1y(s)ds

]
,

and

v(0) =
δ2

1− δ1δ2

[
δ1

∫ T

0

sα2−1y(s)ds+

∫ T

0

sα1−1x(s)ds

]
.

Thus,
u(t) =

δ1

1− δ1δ2

[
δ2

∫ T

0

sα1−1x(s)ds+

∫ T

0

sα2−1y(s)ds

]
+

∫ t

0

sα1−1x(s)ds,

v(t) =
δ2

1− δ1δ2

[
δ1

∫ T

0

sα2−1y(s)ds+

∫ T

0

sα1−1x(s)ds

]
+

∫ t

0

sα2−1y(s)ds.

The following lemma is a direct conclusion of Lemma 3.1.1.
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Lemma 3.1.2. Let fi : I × R × R → R, i = 1, 2, be such that fi(·, u, v) ∈ C(I)

for each u, v ∈ C(I). Then the coupled system (3.1)-(3.2) is equivalent to the coupled
system of integral equations

u(t) =
δ1

1− δ1δ2

[
δ2

∫ T

0

sα1−1f1(s, u(s), v(s))ds+

∫ T

0

sα2−1f2(s, u(s), v(s))ds

]
+

∫ t

0

sα1−1f1(s, u(s), v(s))ds,

v(t) =
δ2

1− δ1δ2

[
δ1

∫ T

0

sα2−1f2(s, u(s), v(s))ds+

∫ T

0

sα1−1f1(s, u(s), v(s))ds

]
+

∫ t

0

sα2−1f2(s, u(s), v(s))ds.

Now, we shall prove the main results concerning the existence of solutions of our first
problem by applying Schaefer’s fixed point theorem.
Let us introduce the following hypothesis :
(H) there exist real constants Li, Ki,Mi > 0; i = 1, 2, such that

|fi(t, u1, u2)| ≤ Li +Ki|u1|+Mi|u2|; for t ∈ I and ui ∈ R.

Set
W1 =

[
|δ1δ2|
|1− δ1δ2|

+ 1

]
T α1

α1

, W2 =

[
|δ1|

|1− δ1δ2|

]
T α2

α2

,

W3 =

[
|δ2|

|1− δ1δ2|

]
T α1

α1

, W4 =

[
|δ1δ2|
|1− δ1δ2|

+ 1

]
T α2

α2

.

Theorem 3.1.1. Assume that the hypothesis (H) is satisfies. If

(W1 +W3)(K1 +M1) + (W2 +W4)(K2 +M2) < 1, (3.10)

then the problem (3.1)-(3.2) has at least one solution.

Proof. Define the operator N : C → C by

(N(u, v))(t) = ((N1u)(t), (N2v)(t)), (3.11)

where N1, N2 : C → C are given by
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(N1u)(t) = δ1
1−δ1δ2

[
δ2

∫ T

0

sα1−1f1(s, u(s), v(s))ds+

∫ T

0

sα2−1f2(s, u(s), v(s))ds

]
+

∫ t

0

sα1−1f1(s, u(s), v(s))ds,

and

(N2v)(t) = δ2
1−δ1δ2

[
δ1

∫ T

0

sα2−1f2(s, u(s), v(s))ds+

∫ T

0

sα1−1f1(s, u(s), v(s))ds

]
+

∫ t

0

sα2−1f2(s, u(s), v(s))ds.

Set
R ≥ (W1 +W3)L1 + (W2 +W4)L2

1− (W1 +W3)(K1 +M1)− (W2 +W4)(K2 +M2)
,

and consider the closed and convex ball

BR = {(u, v) ∈ C : ‖(u, v)‖C ≤ R}.

Let (u, v) ∈ BR. Then, for each t ∈ I and any i = 1, 2, we have

|(N1u)(t)| ≤
∣∣∣∣ δ1δ2

1− δ1δ2

∣∣∣∣ ∫ T

0

sα1−1|f1(s, u(s), v(s))|ds

+

∣∣∣∣ δ1

1− δ1δ2

∣∣∣∣ ∫ T

0

sα2−1|f2(s, u(s), u(s))|ds

+

∫ T

0

sα1−1|f1(s, u(s), v(s))|ds

≤
[
|δ1δ2|
|1− δ1δ2|

+ 1

] ∫ T

0

sα1−1(L1 +K1|u(s)|+M1|v(s)|)ds

+
|δ1|

|1− δ1δ2|

∫ T

0

sα2−1(L2 +K2|u(s)|+M2|v(s)|)ds

≤
[
|δ1δ2|
|1− δ1δ2|

+ 1

]
T α1

α1

(L1 + (K1 +M1)R)

+

[
|δ1|

|1− δ1δ2|

]
T α2

α2

(L2 + (K2 +M2)R)

≤ W1(L1 + (K1 +M1)R) +W2(L2 + (K2 +M2)R).
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Also,

|(N2v)(t)| =
∣∣∣∣ δ2δ1

1− δ2δ1

∫ T

0

sα2−1f2(s, u(s), v(s))ds

+
δ2

1− δ2δ1

∫ T

0

sα1−1f1(s, u(s), u(s))ds

+

∫ t

0

sα2−1f2(s, u(s), v(s))ds

∣∣∣∣
≤
∣∣∣∣ δ2δ1

1− δ2δ1

∫ T

0

sα2−1f2(s, u(s), v(s))ds

∣∣∣∣
+

∣∣∣∣ δ2

1− δ2δ1

∫ T

0

sα2−1f1(s, u(s), u(s))ds

∣∣∣∣
+

∣∣∣∣∫ T

0

sα2−1f2(s, u(s), v(s))ds

∣∣∣∣
≤ W3(L1 + (K1 +M1)R) +W4(L2 + (K2 +M2)R).

Thus, we get

|N(u, v)(t)| ≤ ((W1 +W3)(K1 +M1) + (W2 +W4)(K2 +M2))R

+ (W1 +W3)L1 + (W2 +W4)L2.

Thus,
‖N(u, v)‖C ≤ R.

Hence, N maps the ball BR into itself. We shall show that the operator N : BR → BR

satisfies the assumptions of Schaefer’s fixed point theorem. The proof will be given in
several steps.
Step 1. We show that N is continuous. Let {(un, vn)} be a sequence such that
(un, vn)→ (u, v) in BR. Then, for each t ∈ I, we have

|N1(un, vn)(t)−N1(u, v)(t)|

≤ [
|δ1δ2|
|1− δ1δ2|

+ 1]

∫ T

0

sα1−1|[f1(s, un(s), vn(s))− f1(s, u(s), v(s))]|ds

+
|δ1|

|1− δ1δ2|

∫ T

0

sα2−1|[f2(s, un(s), vn(s))− f2(s, u(s), v(s))]|ds.
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Analogously, we get

|N2(un, vn)(t)−N2(u, v)(t)|

≤ [
|δ1δ2|
|1− δ1δ2|

+ 1]

∫ T

0

sα1−1|[f2(s, un(s), vn(s))− f2(s, u(s), v(s))]|ds

+
|δ2|

|1− δ1δ2|

∫ T

0

sα2−1|[f1(s, un(s), vn(s))− f1(s, u(s), v(s))]|ds.

Since (un, vn) → (u, v) as n → ∞ and fi, i = 1, 2, are continuous, by the Lebesgue
dominated convergence theorem

‖N(un, vn)−N(u, v)‖C → 0 as n→∞.

Step 2. We show that N maps bounded sets into bounded and equicontinuous sets
in BR. N(BR) is bounded. This is clear since N : BR → BR and BR is bounded.

Now, let t1, t2 ∈ [0, T ] be such that t1 < t2. and let (u1;u2) ∈ BR. Then, we have

|(N1u)(t2)− (N1u)(t1)| ≤
∫ t2

0

sα1−1|f1(s, u(s), v(s))|ds

−
∫ t1

0

sα1−1|f1(s, u(s), v(s)|ds

≤
∫ t2

t1

sα1−1|f1(s, u(s), v(s))|ds

≤ L1 +K1R +M1R

α1

(tα1
2 − tα1

1 ).

Thus,
|(N1u)(t2)− (N1u)(t1)| ≤ L1 +K1R +M1R

α1

(tα1
2 − tα1

1 ). (3.12)

In a similar manner, we can easily get

|(N2v)(t2)− (N2v)(t1)| ≤ L1 +K2R +M2R

α2

(tα2
2 − tα2

1 ). (3.13)

The right-hand sides of the inequalities (3.12) and (3.13) tend to zero as t2 → t1.

Therefore, the operator N(u, v) is equicontinuous. By collecting the above steps
along with the Arzela-Ascoli theorem, we deduce that N : BR → BR is completely
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continuous mapping.

Step 3. The set Ω = {(u, v) ∈ C : (u, v) = λN(u, v); 0 ≤ λ ≤ 1} is bounded.
Let (u, v) ∈ Ω such that (u, v) = λN(u, v). Then for any t ∈ I, we have

u(t) = λ(N1u)(t), and v(t) = λ(N2v)(t).

Hence,

u(t) =
λδ1

1− δ1δ2

[
δ2

∫ T

0

sα1−1f1(s, u, v)ds+

∫ T

0

sα2−1f2(s, u(s), v(s))ds

]
+ λ

∫ t

0

sα1−1f1(s, u(s), v(s))ds.

From the assumption (H), we obtain

|u(t)| ≤ W1(L1 + (K1 +M1)(|u(t)|+ |v(t)|)) +W2(L2 + (K2 +M2)(|u(t)|+ |v(t)|)).

By the same approach, we have

|v(t)| ≤ W3(L1 + (K1 +M1)(|u(t)|+ |v(t)|)) +W4(L2 + (K2 +M2)(|u(t)|+ |v(t)|)).

Thus, we obtain

|u(t)|+ |v(t)| ≤ ((W1 +W3)(K1 +M1) + (W2 +W4)(K2 +M2))(|u(t)|+ |v(t)|)
+ (W1 +W3)L1 + (W2 +W4)L2.

This gives

|u(t)|+ |v(t)| ≤ (W1 +W3)L1 + (W2 +W4)L2

1− ((W1 +W3)(K1 +M1) + (W2 +W4)(K2 +M2))
:= ν.

Hence,
‖(u, v)‖C ≤ ν.

Therefore, the set Ω is bounded.
As a consequence of Theorem 1.5.8, we conclude that N has at least one fixed point.
This confirms that there exists at least one solution of the coupled system (3.1)-(3.2).
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3.1.3 Existence results in Fréchet spaces

Now, we shall prove the main results concerning the existence of solutions of our
problems.
Let us introduce the following hypotheses :
(H1) The functions fi; i = 1, 2 are measurable on R+; for each t ∈ I and ui, vi ∈ E,

and the the functions (u, v) → fi(t, u, v) are continuous on E for a.e.t ∈ R+; i =

1, 2.
(H2) There exist continuous functions hi, pi, qi : R+ → R+ and 0 < ki < 1; i = 1, 2,
such that

‖fi(t, u1, u2)‖ ≤ hi(t) + pi(t)‖u1‖+ qi(t)‖u2‖; for t ∈ R+, and ui, vi ∈ E.

(H3) For each bounded sets Bi ⊂ E and for each t ∈ R+, we have

µ(fi(t, B1, B2)) < pi(t)µ(B1) + qi(t)µ(B2),

where µ is a measure of noncompactness on the Banach space E.
For n ∈ N, set

p∗i = sup
t∈[0,n]

pi(t), q
∗
i = sup

t∈[0,n]

qi(t), h
∗
i = sup

t∈[0,n]

hi(t).

Theorem 3.1.2. Assume that (H1)-(H3) are satisfied. If

(p∗1 + q∗1)
(n− a)α1

α1

+ (p∗2 + q∗2)
(n− a)α2

α2

< 1,

for each n ∈ N∗, then the problem (3.3)-(3.4) has at least one solution.

Proof. Define the operator N : C → C by

(N(u, v))(t) = ((N1u)(t), (N2v)(t)), (3.14)

where N1, N2 : C → C with

(N1u))(t) = ua +

∫ t

1

(s− a)α1−1f1(s, u(s), v(s))ds, (3.15)
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and
(N2v))(t) = va +

∫ t

1

(s− a)α2−1f2(s, u(s), v(s))ds. (3.16)

Clearly, the fixed points of the operator N are solutions of the coupled system
(3.3)-(3.4).

For any n ∈ N∗, we set

Rn ≥
‖ua‖+ ‖va‖+ h∗1

(n−a)α1

α1
+ h∗2

(n−a)α2

α2

1− ((p∗1 + q∗1) (n−a)α1

α1
+ (p∗2 + q∗2) (n−a)α2

α2
)
.

Consider the ball

BRn := B(0, Rn) = {(u, v) ∈ X : ‖u‖n ≤ Rn, ‖v‖n ≤ Rn}.

For any n ∈ N∗, and each u, v ∈ BRn and t ∈ [0, n] we have

‖(N1u)(t)‖ ≤ ‖ua‖+

∫ t

1

(s− a)α1−1 ‖f1(s, u(s), v(s))‖ ds

≤ ‖ua‖+

∫ t

1

(s− a)α1−1(h1(s) + p1(s) ‖u1‖+ q1(s) ‖u2‖)ds

≤ ‖ua‖+ (h∗1 + (p∗1 + q∗1)Rn)

∫ t

1

(s− a)α1−1ds

≤ ‖ua‖+ (h∗1 + (p∗1 + q∗1)Rn)
(n− a)α1

α1

,

and

‖(N2v)(t)‖ ≤ ‖va‖+

∫ t

1

(s− a)α2−1 ‖f2(s, u(s), v(s))‖ ds

≤ ‖va‖+

∫ t

1

(s− a)α2−1(h2(s) + p2(s) ‖u1‖+ q2(s) ‖u2‖)ds

≤ ‖va‖+ (h∗2 + (p∗2 + q∗2)Rn)

∫ t

1

(s− a)α2−1ds

≤ ‖va‖+ (h∗2 + (p∗2 + q∗2)Rn)
(n− a)α2

α2

.
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Then,

‖(N(u, v))(t)‖ ≤ ‖ua‖+ ‖va‖+ h∗1
(n− a)α1

α1

+ h∗2
(n− a)α2

α2

+ ((p∗1 + q∗1)
(n− a)α1

α1

+ (p∗2 + q∗2)
(n− a)α2

α2

)Rn

≤ Rn.

Thus,
‖(N(u, v)‖n ≤ Rn. (3.17)

This proves that N transforms the ball BRn into itself. We shall show that the
operator N : BRn → BRn satisfies all the assumptions of Theorem 1.5.6. The proof
will be given in two steps.

Step 1 : N(BRn) is bounded and N : N(BRn)→ N(BRn) is continuous.
Since N(BRn) ⊂ BRn and BRn is bounded, N(BRn) is bounded. Let {(uk, vk)}k∈N be
a sequence such that (uk, vk)→ (u, v) in BRn . Then, for each t ∈ [0, n], we have

‖(N(un, vn))(t)− (N(u, v))(t)‖

≤
2∑
i=1

∫ t

a

∥∥(s− a)αi−1[fi(s, un(s), vn(s)− fi(s, (u(s), v(s))]
∥∥ ds

≤
2∑
i=1

∫ t

a

(s− a)αi−1 ‖[fi(s, un(s), vn(s)− fi(s, (u(s), v(s))]‖ ds.

Since (uk, vk) → (u, v) as k → ∞ and fi, i = 1, 2, are continuous, by the Lebesgue
dominated convergence theorem

‖N(un, vn)−N(u, v)‖n → 0 as k →∞.

Step 2 : For each bounded equicontinuous subset D of BRn , µn(N(D)) < `nµn(D).

From Lemmas 1.4.3 and 1.4.4, for any D ⊂ BRn and any ε > 0, there exists a sequence
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{uk, vk}∞k=0 ⊂ D, such that for all t ∈ [a, n], we have

µ((ND)(t)) =
2∑
i=1

µ({uia +

∫ t

a

(s− a)αi−1fi(s, (u(s), v(s))ds; (u, v) ∈ D})

≤
2∑
i=1

µ({
∫ t

a

(s− a)αi−1fi(s, (uk(s), vk(s))ds}∞k=1) + ε

≤
2∑
i=1

∫ t

a

(s− a)αi−1µ({fi(s, (uk(s), vk(s))}∞k=1)ds+ ε

≤
2∑
i=1

∫ t

a

(s− a)αi−1pi(s)µ({(uk(s))}∞k=1) + qi(s)µ({vk(s))}∞k=1)ds+ ε

≤ ((p∗1 + q∗1)
(n− a)α1

α1

+ (p∗2 + q∗2)
(n− a)α2

α2

)µn(D).

Since ε > 0 is arbitrary, then

µ((ND)(t)) ≤ ((p∗1 + q∗1)
(n− a)α1

α1

+ (p∗2 + q∗2)
(n− a)α2

α2

)µn(D).

Thus,

µn(ND) ≤ ((p∗1 + q∗1)
(n− a)α1

α1

+ (p∗2 + q∗2)
(n− a)α2

α2

)µn(D).

As a consequence of steps 1 and 2 together with Theorem 1.5.6, we can conclude that
N has at least one fixed point in BRn which is a solution of problem (3.3)-(3.4).

3.1.4 Examples

Example 3.1.1. Consider the coupled system of Conformable fractional differential
equations (T

1
2

0+u)(t) = f1(t, u(t), v(t))

(T
1
2

0+v)(t) = f2(t, u(t), v(t))
; t ∈ [0, 1], (3.18)

with the following coupled boundary conditions :

(u(0), v(0)) = (1, 2), (3.19)



3.1 Coupled conformable fractional differential system 63

where

f1(t, u, v) =
sin(u+ v)

40(et + 1)
,

f2(t, u, v) =
tanu

10 + |u|+ |v|
, t ∈ [0, 1]; u, v ∈ R.

The hypothesis (H) and the condition (3.10) are satisfied with

M1 = K1 =
1

80
, K2 =

1

10
, δ1 = δ2 =

1

2
,

W1 = W4 =
8

3
,W2 = W3 =

4

3
.

Hence, Theorem 3.1.1 implies that the system (3.18)–(3.19) has at least one solution
defined on [0, 1].

Example 3.1.2. Let

l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
k=1

|uk| <∞

}

be the Banach space with the norm

‖u‖ =
∞∑
k=1

|uk|,

and C(R+, l
1) be the Fréchet space of all continuous functions v from R+ into l1,

equipped with the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖; n ∈ N.

Consider the coupled system of Conformable fractional differential equations(T
1
5

0+uk)(t) = fk(t, u(t), v(t))

(T
1
5

0+vk)(t) = gk(t, u(t), v(t))
; t ∈ [1,∞), k = 1, 2, . . . , (3.20)

with the following initial coupled conditions :

(uk(1), vk(1)) = (0, 0), (3.21)
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where

fk(t, u, v) =
c

1 + ‖u‖+ ‖v|
(e−7 +

1

et+5
)(2−k + uk(t)), t ∈ [1,∞),

gk(t, u, v) =
c

et+5(1 + ‖u‖+ ‖v‖)
(2−k + vk(t)), t ∈ [1,∞), k = 1, 2, · · · , c > 0,

for each t ∈ [1, n]; n ∈ N, with

f = (f1, f2, . . . , fk, . . .), g = (g1, g2, . . . , gk, . . .), and u = (u1, u2, . . . , uk, . . .).

We can show that all hypotheses of Theorem 3.1.2 are satisfied with

h1(t) = p1(t) = c(e−7 +
1

et+5
), q1(t) = p2(t) = 0, h2(t) = q2(t) =

c

et+5
.

So,
h∗1 = p∗1 = c(e−7 + e−6), h∗2 = q∗2 = ce−6.

Therefore, Theorem 3.1.2 implies that the system (3.20)–(3.21) has at least one solu-
tion defined on [1,∞).

3.2 Stability and Attractivity Results For Coupled

Fractional Conformable System

3.2.1 Introduction and motivations

In this section, we investigate the existence and stability of solutions for the following
coupled Conformable fractional differential system :(T α1

0+ u)(t) = f1(t, u(t), v(t))

(T α2

0+ v)(t) = f2(t, u(t), v(t))
; t ∈ I, (3.22)

with the following coupled boundary conditions :

(u(0), v(0)) = (δ1v(T ), δ2u(T )), (3.23)

where T > 0, I := [0, T ], αi ∈ (0, 1]; i = 1, 2, fi : I × R × R → R; i = 1, 2 are
given continuous functions, T αi,ρa is the conformable fractional derivative of order
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αi ; i = 1, 2, and δ1, δ2 are real numbers with δ1δ2 6= 1.

Next, we investigate the attractivity of solutions for the following coupled conformable
fractional differential system :(T α1

a+ u)(t) = f1(t, u(t), v(t))

(T α2

a+ v)(t) = f2(t, u(t), v(t))
; t ∈ [a,∞), (3.24)

with the following coupled initial conditions :

(u(a), v(a)) = (ua, va), (3.25)

where a > 0, αi ∈ (0, 1]; i = 1, 2, (R, ‖.‖) is a Banach space, ua, va ∈ R and
fi : R+ × R× R→ R; i = 1, 2 are given continuous functions.
The rest of this paper is organized in the following manner : In Section 3.2.2, we
briefly review some of the relevant definitions from fractional calculus and prove an
auxiliary lemma that will be used later. We discusses the Hyers-Ulam stability of
solutions to the considered problem (3.22)-(3.23) and presents sufficient conditions
for the stability, and Section 3.2.3 deals with proving the existence and attractivity of
solutions for the given problem (3.24)-(3.25) using the Schauder’s fixed point theorem.

3.2.2 Existence and Ulam stability of solutions

First, let us introduce some basic lemmas and definitions that are needed throughout
all the manuscript.
Let C := C(I,R) be the Banach space equipped with the norm defined by

‖u‖∞ := sup
t∈I
|u(t)|.

By C := C × C, we denote the complete metric space with the usual metric

D((u1, v1), (u2, v2)) := d(u1, u2) + d(v1, v2).

C is a Banach space with the norm

‖(u, v)‖C = ‖u‖∞ + ‖v‖∞.
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Let BC := BC(R+) be the Banach space of all bounded and continuous functions
from R+into R, equipped with the norm

‖u‖BC := sup
t∈R+

|u(t)|.

It is clair that the product BC := BC×BC turns out to be a Banach space if equipped
with the norm

‖(u, v)‖BC = ‖u‖BC + ‖v‖BC .

Definition 3.2.1. By a solution of problem (3.22)-(3.23), we mean a coupled function
(u, v) ∈ C that satisfies the system(T α1

0+ u)(t) = f1(t, u(t), v(t)),

(T α2

0+ v)(t) = f2(t, u(t), v(t)),

on I and the following coupled boundary conditions :

(u(0), v(0)) = (δ1v(T ), δ2u(T )).

Now, we consider the Ulam stability for system (3.22)-(3.23). Let ε > 0 and Φ : I →
R+ be a continuous function. We consider the following inequalities :|(T

α1

a+ u)(t)− f1(t, u(t), v(t))| ≤ ε
2
,

|(T α2

a+ v)(t)− f2(t, u(t), v(t))| ≤ ε
2
,

t ∈ [0, T ); (3.26)

|(T
α1

a+ u)(t)− f1(t, u(t), v(t))| ≤ 1
2
Φ(t)

|(T α2

a+ v)(t)− f2(t, u(t), v(t))| ≤ 1
2
Φ(t),

t ∈ [0, T ); (3.27)

|(T
α1

a+ u)(t)− f1(t, u(t), v(t))| ≤ ε
2
Φ(t)

|(T α2

a+ v)(t)− f2(t, u(t), v(t))| ≤ ε
2
Φ(t),

t ∈ [0, T ). (3.28)

Set

|(u(t), v(t))| := |u(t)|+ |v(t)|.
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Definition 3.2.2. [8, 135] System (3.22)-(3.23) is Ulam-Hyers stable if there exists
a real number cf1,f2 > 0 such that, for each ε > 0 and for each solution (u∗, v∗) ∈ C
of inequalities (3.26) there exists a solution (u, v) ∈ C(I) of (3.22)-(3.23) with

|(u∗(t)− u(t), v∗(t)− v(t))| ≤ εcf1,f2 , t ∈ I.

Definition 3.2.3. [8, 135] System (3.22)-(3.23) is generalized Ulam-Hyers stable if
there exists cf1,f2 : C(R+,R+) with cfi(0) = 0, i = 1, 2, such that, for each ε > 0 and
for each solution (u∗, v∗) ∈ C of inequalities (3.26)) there exists a solution (u, v) ∈ C
of (3.22)-(3.23) with

|(u∗(t)− u(t), v∗(t)− v(t))| ≤ cf1,f2(ε), t ∈ I.

Definition 3.2.4. [8, 135] System (3.22)-(3.23) is Ulam.Hyers.Rassias stable with
respect to Φ if there exists a real number cf1,f2,Φ > 0 such that, for each ε > 0 and for
each solution (u∗, v∗) ∈ C of inequalities (3.28)) there exists a solution (u, v) ∈ C of
(3.22)-(3.23) with

|(u∗(t)− u(t), v∗(t)− v(t))| ≤ εcf1,f2,ΦΦ(t), t ∈ I.

Definition 3.2.5. [8, 135] System (3.22)-(3.23) is generalized Ulam.Hyers.Rassias
stable with respect to Φ if there exists a real number cf1,f2,Φ > 0 such that, for each
solution (u∗, v∗) ∈ C of inequalities (3.28)) there exists a solution (u, v) ∈ C of (3.22)-
(3.23) with

|(u∗(t)− u(t), v∗(t)− v(t))| ≤ cf1,f2,ΦΦ(t), t ∈ I.

Remark 3.2.1. It is clear that

1. Definition (3.2.2) ⇒ Definition (3.2.3),

2. Definition (3.2.4)⇒ Definition (3.2.5),

3. Definition (3.2.4) for Φ(.) = 1⇒ Definition (3.2.2).
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Let us introduce the following hypotheses :
(H4) There exist real constants Mi, Ki > 0; i = 1, 2, such that

|fi(t, u1, v1)− fi(t, u2, v2)| ≤ Ki|u1 − u2|+Mi|v1 − v2|,

for each t ∈ I and each vi, ui ∈ R.
(H5) There exists λΦ > 0 such that, for each t ∈ I, we have

(Iαi0 Φ)(t) ≤ λΦΦ(t), i = 1, 2.

Set

W1 =

[
|δ1δ2|
|1− δ1δ2|

+ 1

]
T α1

α1

,W2 =

[
|δ1|

|1− δ1δ2|

]
T α2

α2

W3 =

[
|δ2|

|1− δ1δ2|

]
T α1

α1

,W4 =

[
|δ2δ1|
|1− δ1δ2|

+ 1

]
T α2

α2

,

f ∗i = sup
t∈I
|fi(t, 0, 0)| <∞ for all i = 1, 2.

Theorem 3.2.1. Assume that hypothesis (H1) holds with

(W1 +W3)(K1 +M1) + (W2 +W4)(K2 +M2) < 1, (3.29)

then system (3.22)-(3.23) has at least one solution defined on I. Moreover, if hypo-
theses (H1)-(H2) hold, then system (3.22)-(3.23) is generalized Ulam–Hyers–Rassias
stable.

Proof. Define the operator N : C → C by

(N(u, v))(t) = ((N1u)(t), (N2v)(t)), (3.30)

where N1, N2 : C → C are given by

(N1u)(t) = δ1
1−δ1δ2

[
δ2

∫ T
0
sα1−1f1(s, u(s), v(s))ds+

∫ T
0
sα2−1f2(s, u(s), v(s))ds

]
+

∫ t
0
sα1−1f1(s, u(s), v(s))ds,
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and

(N2v)(t) = δ2
1−δ1δ2

[
δ1

∫ T
0
sα2−1f2(s, u(s), v(s))ds+

∫ T
0
sα1−1f1(s, u(s), v(s))ds

]
+

∫ t
0
sα2−1f2(s, u(s), v(s))ds.

Set
R ≥ (W1 +W3)f ∗1 + (W2 +W4)f ∗2

1− (W1 +W3)(K1 +M1)− (W2 +W4)(K2 +M2)
,

and consider the closed and convex ball

BR = {(u, v) ∈ C : ‖(u, v)‖C ≤ R}.

Remark 3.2.2. From H1 for each u, v ∈ R and t ∈ I, we have that

|fi(t, u, v)|

6|fi(t, u, v)− fi(t, 0, 0)|+ |fi(t, 0, 0)|

6Ki|u|+Mi|v|+ f ∗i

6(Ki +Mi)R + f ∗i .

Let (u, v) ∈ BR. Then, for each t ∈ I and any i = 1, 2, we have

|(N1u)(t)| ≤
∣∣∣∣ δ1δ2

1− δ1δ2

∣∣∣∣ ∫ T

0

sα1−1|f1(s, u(s), v(s))|ds

+

∣∣∣∣ δ1

1− δ1δ2

∣∣∣∣ ∫ T

0

sα2−1|f2(s, u(s), u(s))|ds

+

∫ T

0

sα1−1|f1(s, u(s), v(s))|ds

≤
[
|δ1δ2|
|1− δ1δ2

|+ 1

] ∫ T

0

sα1−1|f1(s, u(s), v(s))|ds

+

[
|δ1|

|1− δ1δ2|

] ∫ T

0

sα2−1|f2(s, u(s), v(s))|ds

≤
[
|δ1δ2|
|1− δ1δ2|

+ 1

]
T α1

α1

((K1 +M1)R + f ∗1 )

+

[
|δ1|

|1− δ1δ2|

]
T α2

α2

((K2 +M2)R + f ∗2 )

≤W1((K1 +M1)R + f ∗1 ) +W2((K2 +M2)R + f ∗2 ).
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Also

|(N2v)(t)| =
∣∣∣∣ δ2δ1

1− δ2δ1

∫ T

0

sα2−1f2(s, u(s), v(s))ds

+
δ2

1− δ2δ1

∫ T

0

sα1−1f1(s, u(s), u(s))ds

+

∫ t

0

sα2−1f2(s, u(s), v(s))ds

∣∣∣∣
≤
∣∣∣∣ δ2δ1

1− δ2δ1

∫ T

0

sα2−1f2(s, u(s), v(s))ds

∣∣∣∣
+

∣∣∣∣ δ2

1− δ2δ1

∫ T

0

sα2−1f1(s, u(s), u(s))ds

∣∣∣∣
+

∣∣∣∣∫ T

0

sα2−1f2(s, u(s), v(s))ds

∣∣∣∣
≤W3((K1 +M1)R + f ∗1 ) +W4((K2 +M2)R + f ∗2 ).

Thus, we get

|N(u, v)(t)| ≤((W1 +W3)(K1 +M1) + (W2 +W4)(K2 +M2))R

+ (W1 +W3)f
∗

1 + (W2 +W4)f ∗2 .

Thus
‖N(u, v)‖C ≤ R.

Hence N maps the ball BR into itself. We shall show that the operator N : BR → BR

satisfies the assumptions of Schauder’s fixed point theorem. The proof will be given
in several steps.
Step 1 N is continuous.
Let {(un, vn)} be a sequence such that (un, vn)→ (u, v) in BR. Then, for each t ∈ I,
we have
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|N1(un, vn)(t)−N1(u, v)(t)|

≤
[
|δ1δ2|
|1− δ1δ2|

+ 1

] ∫ T

0

sα1−1|[f1(s, un(s), vn(s))− f1(s, u(s), v(s))]|ds

+
|δ1|

|1− δ1δ2|

∫ T

0

sα2−1|[f2(s, un(s), vn(s))− f2(s, u(s), v(s))]|ds.

Analogously, we get

|N2(un, vn)(t)−N2(u, v)(t)|

≤
[
|δ1δ2|
|1− δ1δ2|

+ 1

] ∫ T

0

sα1−1|[f2(s, un(s), vn(s))− f2(s, u(s), v(s))]|ds

+
|δ2|

|1− δ1δ2|

∫ T

0

sα2−1|[f1(s, un(s), vn(s))− f1(s, u(s), v(s))]|ds.

Since (un, vn) → (u, v) as n → ∞ and fi, i = 1, 2, are continuous, by the Lebesgue
dominated convergence theorem

‖N(un, vn)−N(u, v)‖C → 0 as n→∞.

Step 2 N(BR) is bounded. This is clear since N(BR) ⊂ BR and BR is bounded.

Step 3 We show that N maps bounded sets into equicontinuous sets in BR.
Let t1, t2 ∈ [0, T ] such that t1 < t2 and let (u, v) ∈ BR. Then, we have

|(N1u)(t2)− (N1u)(t1)|

≤
∫ t2

0

sα1−1|f1(s, u(s), v(s))|ds−
∫ t1

0

sα1−1|f1(s, u(s), v(s)|ds

≤
∫ t2

t1

sα1−1|f1(s, u(s), v(s))|ds

≤ K1R +M1R + f ∗1
α1

(tα1
2 − tα1

1 ).

Thus, we get

|(N1u)(t2)− (N1u)(t1)| ≤ K1R +M1R + f ∗1
α1

(tα1
2 − tα1

1 ). (3.31)
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In a similar manner, we can easily get

|(N2v)(t2)− (N2v)(t1)| ≤ K2R +M2R + f ∗2
α2

(tα2
2 − tα2

1 ). (3.32)

The right-hand sides of the inequalities (3.31) and (3.32) tend to zero as t2 → t1.

There- fore, the operator N(u, v) is equicontinuous. As a consequence of the above
three steps with the Arzela-Ascoli theorem, we can conclude that N : BR → BR is
continuous and compact. From an application of Theorem 1.5.3, we deduce that N
has at least a fixed point (u, v) which is a solution of our system (3.22)-(3.23).

Step 4 Generalized Ulam–Hyers–Rassias stability.
Let us assume that (u, v) is a solution of system (3.22)-(3.23), let (u∗, v∗) be a
solution of inequality (3.27) if and only if there is (g1, g2) ∈ C(I,R) (where g1

depends on solution u∗ and g2 depends on solution v∗) such that

(i) |g1(t)| ≤ 1
2
Φ(t) and |g2(t)| ≤ 1

2
Φ(t) for all t ∈ [0, T ].

(ii) For all t ∈ [0, T ] (T α1

a+ u
∗)(t)− f1(t, u∗(t), v∗(t)) = g1(t),

(T α2

a+ v
∗)(t)− f2(t, u∗(t), v∗(t)) = g2(t).

So
u∗(t) = Zu∗ + 1

2

[
δ1

1−δ1δ2

] [
δ2

∫ T
0
sα1−1g1(s)ds+

∫ T
0
sα2−1g2(s)ds

]
+

∫ t
0
sα1−1f1(s, u∗(s), v∗(s))ds+ 1

2

∫ t
0
sα1−1g1(s)ds,

and
v∗(t) = Zv∗ + 1

2

[
δ2

1−δ1δ2

] [
δ1

∫ T
0
sα2−1g2(s)ds+

∫ T
0
sα1−1g1(s)ds

]
+

∫ t
0
sα2−1f2(s, u∗(s), v∗(s))ds+ 1

2

∫ t
0
sα2−1g2(s)ds,

where

Zu∗ =
δ1

1− δ1δ2

[
δ2

∫ T

0

sα1−1f ∗1 (s, u(s), v(s))ds+

∫ T

0

sα2−1f ∗2 (s, u(s), v(s))ds

]
,

and

Zv∗ =
δ2

1− δ1δ2

[
δ1

∫ T

0

sα2−1f ∗2 (s, u(s), v(s))ds+

∫ T

0

sα1−1f ∗1 (s, u(s), v(s))ds

]
.
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It follows that

|u∗(t)− Zu∗ −
∫ t

0

sα1−1f1(s, u∗(s), v∗(s))ds|

≤1

2

[
|δ1δ2|
|1− δ1δ2|

∫ T

0

sα1−1Φ(s)ds+
|δ1|

|1− δ1δ2|

∫ T

0

sα2−1Φ(s)ds

+

∫ T

0

sα1−1Φ(s)ds

]
≤1

2

[
|δ1δ2|
|1− δ1δ2|

+ 1

]
(Iα1

0 Φ)(t) +
1

2

[
|δ1|

|1− δ1δ2|

]
(Iα2

0 Φ)(t)

≤1

2

[
|δ1δ2|+ |δ1|
|1− δ1δ2|

+ 1

]
λΦΦ(t).

Similarly

|v∗(t)− Zv∗ −
∫ t

0

sα2−1f2(s, u∗(s), v∗(s))ds| ≤ 1

2

[
|δ2δ1|+ |δ2|
|1− δ1δ2|

+ 1

]
λΦΦ(t).

From hypotheses H1 and H2, for each t ∈ I, we have

|u∗(t)− u(t)| =
∣∣∣∣u∗(t)− Zu∗ − ∫ t

0

sα1−1f1(s, u(s), v(s))ds

∣∣∣∣
≤
∣∣∣∣u∗(t)− Zu∗ − ∫ t

0

sα1−1f1(s, u∗(s), v∗(s))ds

+

∫ t

0

sα1−1f1(s, u∗(s), v∗(s))− f1(s, u(s), v(s))ds

∣∣∣∣
≤
∣∣∣∣u∗(t)− Zu∗ − ∫ t

0

sα1−1f1(s, u∗(s), v∗(s))ds

∣∣∣∣
+

∫ T

0

sα1−1|f1(s, u∗(s), v∗(s))− f1(s, u(s), v(s))|ds

≤1

2

[
|δ1δ2|+ |δ1|
|1− δ1δ2|

+ 1

]
λΦΦ(t)

+

∫ T

0

sα1−1[K1|u∗(t)− u(t)|+M1|v∗(t)− v(t)|]ds

≤1

2

[
|δ1δ2|+ |δ1|
|1− δ1δ2|

+ 1

]
λΦΦ(t)

+
T α1

α1

(K1 +M1)(|u∗(t)− u(t)|+ |v∗(t)− v(t)|).
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Also, we get

|v(t)− v∗(t)| =
∣∣∣∣v∗(t)− Zv∗ − ∫ t

0

sα2−1f2(s, u(s), v(s))ds

∣∣∣∣
≤
∣∣∣∣v∗(t)− Zv∗ − ∫ t

0

sα2−1f2(s, u∗(s), v∗(s))ds

∣∣∣∣
+

∫ T

0

sα2−1|f2(s, u∗(s), v∗(s))− f2(s, u(s), v(s))|ds

≤1

2

[
|δ1δ2|+ |δ2|
|1− δ1δ2|

+ 1

]
λΦΦ(t)

+

∫ T

0

sα2−1[K2|u∗(t)− u(t)|+M2|v∗(t)− v(t)|]ds

≤1

2

[
|δ1δ2|+ |δ2|
|1− δ1δ2|

+ 1

]
λΦΦ(t)

+
T α2

α2

(K2 +M2)(|u∗(t)− u(t)|+ |v∗(t)− v(t)|).

Thus

|(u∗(t), v∗(t))− (u(t), v(t))| =|u∗(t)− u(t)|+ |v∗(t)− v(t)|

≤
[
Tα1

α1

(K1 +M1) +
Tα2

α2

(K2 +M2)

]
× |(u∗(t), v∗(t))− (u(t), v(t))|

+
1

2

[
|δ1δ2|+ |δ1|
|1− δ1δ2|

+
|δ1δ2|+ |δ2|
|1− δ1δ2|

+ 2

]
λΦΦ(t)

≤

 1
2

[
|δ1δ2|+|δ1|
|1−δ1δ2| + |δ1δ2|+|δ2|

|1−δ1δ2| + 2
]

1−
(
T α1
α1

(K1 +M1) + T α2
α2

(K2 +M2)
)
λΦΦ(t)

≤cf1,f2,ΦΦ(t).

Hence, problem (3.22)-(3.23) is generalized Ulam–Hyers–Rassias stable.

3.2.3 Attractivity results

Let ∅ 6= Ω ⊂ BC and let N : Ω→ Ω, and consider the solution of the equation

(Nu)(t) = u(t). (3.33)
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We introduce the following concept of attractivity of solutions for equation (3.33).

Definition 3.2.6. Solutions of equation (3.33) are locally attractive if there exists a
ball B(u0, η) in the space BC such that, for any solutions v = v(t) and w = w(t) of
equations (3.33) belonging to B(u0, η) ∩ Ω ; we can write

lim
t→∞

(u(t)− v(t)) = 0. (3.34)

If limit (3.34) is uniform with respect to B(u0, η) ∩Ω ; then the solutions of equation
(3.33) are said to be uniformly locally attractive (or, equivalently, that the solutions
of (3.33) are locally asymptotically stable.

Lemma 3.2.1. [106]. Let D ⊂ BC. Then D is relatively compact in BC if the
following conditions are satisfied :
(a) D is uniformly bounded in BC;

(b) the functions belonging to D are almost equicontinuous in R+; i.e., equicontinuous
on every compact set in R+;

(c) the functions from D are equiconvergent, i.e., given ε > 0; there exists T (ε) > 0

such that
|u(t)− lim

t→∞
u(t)| < ε

for any t ≥ T (ε) and u ∈ D.

Let us introduce the following hypotheses.
(H6) The functions fi : [a,∞)× R× R→ R are continuous for a.e. i = 1, 2.
(H7) There exist continuous functions hi, pi, qi : [a,∞)→ R+ ; i = 1, 2, such that

|fi(t, u1, u2)| ≤ hi(t) + pi(t)|u1|+ qi(t)|u2|,

for t ∈ [a,∞), and ui, vi ∈ BC.

Moreover, assume that

lim
t→∞

(Iαia hi)(t) = lim
t→∞

(Iαia pi)(t) = lim
t→∞

(Iαia qi)(t) = 0.

Set

p∗i = sup
t∈[a,∞)

(Iαia pi)(t), q∗ = sup
t∈[a,∞)

(Iαia qi)(t), h∗ = sup
t∈[a,∞)

(Iαia hi)(t), ψ∗i = h∗i +(p∗i +q
∗
i )R.
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Now, we shall prove the following theorem concerning the existence and the attracti-
vity of solutions of our problem (3.24)-(3.25).

Theorem 3.2.2. Assume that (H3)-(H4) hold. Then the problem (3.24)-(3.25) has at
least one solution defined on [a,∞). Moreover, the solutions of problem (3.24)-(3.25)
are uniformly locally attractive.

Proof. Define the operator N : BC → BC by

(N(u, v))(t) = ((N1u)(t), (N2v)(t)), (3.35)

where N1, N2 : BC → BC with

(N1u)(t) = ua +

∫ t

1

(s− a)α1−1f1(s, u(s), v(s))ds, (3.36)

and
(N2v)(t) = va +

∫ t

1

(s− a)α2−1f2(s, u(s), v(s))ds. (3.37)

Clearly, the fixed points of the operator N are solutions of the coupled system
(3.24)-(3.25).

Set
R ≥ |ua|+ |va|+ h∗1 + h∗2

1− ((p∗1 + q∗1) + (p∗2 + q∗2))
,

and consider the ball

BR := B(0, R) = {(u, v) ∈ BC : ‖(u, v)‖BC ≤ R}.

The operator N maps BC into BC . Indeed the map N(u, v) is continuous on R+ for
any (u, v) ∈ BC and for each t ∈ [a,∞) ; we have

|(N1u)(t)| ≤ |ua|+
∫ t
a
(s− a)α1−1|f1(s, u(s), v(s))|ds

≤ |ua|+
∫ t
a
(s− a)α1−1(h1(s) + p1(s)|u(s)|+ q1(s)|v(s)|)ds

≤ |ua|+ h∗1 + (p∗1 + q∗1)R,

and

|(N2v)(t)| ≤ |va|+
∫ t
a
(s− a)α2−1|f2(s, u(s), v(s))|ds

≤ |va|+
∫ t
a
(s− a)α2−1(h2(s) + p2(s)|u(s)|+ q2(s)|v(s)|)ds

≤ |va|+ h∗2 + (p∗2 + q∗2)R.
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Thus, we get

|N(u, v)(t)| ≤ |ua|+ |va|+ h∗1 + h∗2 + (p∗1 + q∗1 + p∗2 + q∗2)R.

Thus
‖(N(u, v)‖BC ≤ R. (3.38)

This proves that N transforms the ball BR into itself. We shall show that the
operator N : BR → BR satisfies all the assumptions of Theorem 1.5.3. The proof will
be given in several steps.

Step 1. N is continuous.

Let {(un, vn)}n∈N be a sequence such that (un, vn)→ (u, v) in BR.
Then, for each t ∈ [a,∞), we have

|(N(un, vn))(t)− (N(u, v))(t)| 6
∑2

i=1

∫ t
a
(s− a)αi−1|fi(s, un(s), vn(s)

−fi(s, (u(s), v(s))|ds.
(3.39)

Case 1. If t ∈ [a, T ];T > a, since (un, vn) → (u, v) as n → ∞ and fi, i = 1, 2, are
continuous, by the Lebesgue dominated convergence theorem, equation (3.39) implies

‖N(un, vn)−N(u, v)‖BC → 0 as n→∞.

Case 2. If t ∈ (T,∞);T > a, then, from the accepted hypotheses and (3.39), we get

|(N(un, vn))(t)− (N(u, v))(t)| 6 2
∑2

i=1

∫ t
a
(s− a)αi−1[h(s) + p(s)|u(s)|

+q(s)|v(s)|]ds.
(3.40)

Since (un, vn) → (u, v) as n → ∞ and (Iαa hi)(t) = (Iαa pi)(t) = (Iαa qi)(t) → 0 as
t→∞, then (3.40) gives

‖N(un, vn)−N(u, v)‖BC → 0 as n→∞.
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Step 2.N(BR) is uniformly bounded.
This is clear because N(BR) ⊂ BR and BR is bounded.

Step 3. N(BR) is equicontinuous on every compact subset [a, T ] of R+;T > 0.

Let t1, t2 ∈ [a, T ], t1 < t2 and let (u, v) ∈ BR. Thus we have

|(N(u, v))(t2)− (N(u, v))(t1)| ≤
∑2

i=1

∫ t2
a

(s− a)αi−1|fi(s, u(s), v(s)|ds
−
∫ t1
a

(s− a)αi−1|fi(s, u(s), v(s)|ds
≤

∑2
i=1

∫ t2
t1

(s− a)αi−1|fi(s, u(s), v(s)|ds.

As t1 → t2 and the continuity of the function fi ; the right hand side of the above
inequality tends to zero.
Step 4. N(BR) is equiconvergent.
Let t ∈ [a,∞) and (u, v) ∈ BR, then we have

|(Nu)(t)| ≤ |ua|+
∫ t
a
(s− a)α1−1|f1(s, u(s), v(s))|ds

≤ |ua|+
∫ t
a
(s− a)α1−1(h1(s) + p1(s)|u(s)|+ q1(s)|v(s)|)ds

≤ |ua|+ (Iα1
a h1)(t) + [(Iα1

a p1)(t) + (Iα1
a q1)(t)]R.

Since (Iα1
a h1)(t) = (Iα1

a p1)(t) = (Iα1
a q1)(t)→ 0 as t→∞, we get

|(Nu)(t)| → |ua| as t→∞.

Hence,
|(Nu)(t)− (Nu)(∞)| → 0 as t→∞,

and

|(Nv)(t)| ≤ |va|+
∫ t
a
(s− a)α2−1|f2(s, u(s), v(s))|ds

≤ |va|+
∫ t
a
(s− a)α2−1(h2(s) + p2(s)|u(s)|+ q2(s)|v(s)|)ds

≤ |va|+ (Iα2
a h2)(t) + [(Iα2

a p2)(t) + (Iα2
a q2)(t)]R.

Since (Iα2
a h2)(t) = (Iα2

a p2)(t) = (Iα2
a q2)(t)→ 0 as t→∞, we get

|(Nv)(t)| → |va| as t→∞.
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Hence,
|(Nv)(t)− (Nv)(∞)| → 0 as t→∞.

Thus
|(N(u, v))(t)− (N(u, v))(+∞)| → 0 as t→ +∞.

As a consequence of steps 1 to 4 together with the Lemma 3.2.1, we can conclude
that N : BR → BR is continuous and compact. From an application of Theorem
1.5.3, we deduce that N has a fixed point (u, v) which is a solution of the problem
(3.24)-(3.25) on R+.

Step 5. The uniform local attractivity of solutions.
let us assume that (u0, v0) is a solution of problem (3.24)-(3.25) with the conditions
of this theorem.
Taking (u, v) ∈ B((u0, v0), R) with R = 2(ψ∗1 + ψ∗2); we have

|(N1u)(t)− u0(t)| = |(N1u)(t)− (N1u0)(t)|
≤

∫ t
a
(s− a)α1−1|f1(s, u(s), v(s))− f1(s, u0(s), v0(s))|ds

≤
∫ t
a
(s− a)α1−1|f1(s, u(s), v(s))|+ |f1(s, u0(s), v0(s))|ds

≤ 2
∫ t
a
(s− a)α1−1(h1(s) + p1(s)|u(s)|+ q1(s)|v(s)|)ds

≤ 2(h∗1 + (p∗1 + q∗1)R)

≤ 2ψ∗1,

and similarly

|(N2v)(t)− v0(t)| = |(N2v)(t)− (N2v0)(t)|
≤

∫ t
a
(s− a)α2−1|f2(s, u(s), v(s))− f2(s, u0(s), v0(s))|ds

≤
∫ t
a
(s− a)α1−1|f2(s, u(s), v(s))|+ |f2(s, u0(s), v0(s))|ds

≤ 2
∫ t
a
(s− a)α1−1(h2(s) + p2(s)|u(s)|+ q2(s)|v(s)|)ds

≤ 2(h∗2 + (p∗2 + q∗2)R)

≤ 2ψ∗2.

Thus, we get
|N(u, v)(t)− (u0, v0)(t)| ≤ 2(ψ∗1 + ψ∗2).
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Thus

‖N(u, v)− (u0, v0)‖BC ≤ R.

Hence, we conclude that N is a continuous function such that

N(B((u0, v0), R)) ⊂ B((u0, v0), R)

Moreover, if (u, v) is a solution of problem (??)-(??), then

|u(t)− u0(t)| = |(N1u)(t)− (N1u0)(t)|
≤

∫ t
a
(s− a)α1−1|f1(s, u(s), v(s))− f1(s, u0(s), v0(s))|ds

≤
∫ t
a
(s− a)α1−1[|f1(s, u(s), v(s))|+ |f1(s, u0(s), v0(s))|]ds

≤ 2
∫ t
a
(s− a)α1−1(h1(s) + p1(s)|u(s)|+ q1(s)|v(s)|)ds,

and

|v(t)− v0(t)| = |(N2v)(t)− (N2v0)(t)|
≤

∫ t
a
(s− a)α2−1|f2(s, u(s), v(s))− f1(s, u0(s), v0(s))|ds

≤
∫ t
a
(s− a)α2−1[|f2(s, u(s), v(s))|+ |f2(s, u0(s), v0(s))|]ds

≤ 2
∫ t
a
(s− a)α2−1(h2(s) + p2(s)|u(s)|+ q2(s)|v(s)|)ds.

Thus

|(u, v)(t)−(u0, u0)(t)| ≤ 2
2∑
i=1

∫ t

a

(s−a)αi−1(hi(s)+pi(s)|u(s)|+qi(s)|v(s)|)ds. (3.41)

By using (3.41) and the fact that lim
t→∞

(Iαia hi)(t) = lim
t→∞

(Iαia pi)(t) lim
t→∞

(Iαia qi)(t) = 0,

we deduce that

lim
t→∞
|(u, v)(t)− (u0, v0)(t)| = 0.

Consequently, all solutions of problem (3.24)-(3.25) are uniformly locally attractive.
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3.2.4 Examples

Example 3.2.1. Consider the coupled system of Conformable fractional differential
equations (T

1
2

0+u)(t) = f1(t, u(t), v(t))

(T
1
2

0+v)(t) = f2(t, u(t), v(t))
; t ∈ [0, 1], (3.42)

with the following coupled boundary conditions :

u(0) =
1

2
v(1), v(0) =

1

2
u(1), (3.43)

where

f1(t, u, v) =
1

4(t+ 2)2

u(t)

1 + u(t)
+

1√
t2 + 2

, t ∈ [0, 1],

f2(t, u, v) =
1

32π
sin(2πv(t)) +

1

2
, t ∈ [0, 1]; u, v ∈ R.

The hypothesis (H4) is satisfied with

L1 = sup
t∈[0,1]

f1(t, 0, 0) =
1√
2
<∞, L2 = sup

t∈[0,1]

f2(t, 0, 0) =
1

2
<∞,

K1 = M2 =
1

16
, K2 = M1 = 0,

W1 = W4 =
8

3
,W2 = W3 =

4

3
.

The hypothesis (H5) is satisfied with φ(t) = t2. With the obvious elementary
computation, we have

I
1
2
0 φ(t) =

∫ t
0
sα−1φ(s)ds

=
∫ t

0
sα−1s2ds

≤ t2

α+2

= φ(t)
α+2

.

Thus
Iα0 φ(t) ≤ t2

α + 2
:= λφφ(t).
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Hence, Theorem 3.2.1 implies that the system (3.42)–(3.43) is generalized Ulam–
Hyers–Rassias stable.

Example 3.2.2. Consider the coupled system of Conformable fractional differential
equations (T

1
2

0+u)(t) = g1(t, u(t), v(t))

(T
1
2

0+v)(t) = g2(t, u(t), v(t))
; t ∈ [1,∞), (3.44)

with the following coupled boundary conditions :

(u(1), v(1)) = (0, 0), (3.45)

where

g1(t, u, v) =
t−2(1− 5

3
t−1) cos t

64(1 +
√
t)(1 + |u|+ |v|)

, t ∈ [1,∞),

g2(t, u, v) =

√
t(t− 2)e−t sin t

(1 + t2 + |u|+ |v|)
(1 + v(t)), t ∈ [1,∞); u, v ∈ R.

Clearly, the function g1, g2 are continuous.
The hypothesis (H6) is satisfied with

h1(t) =
t−2|(1− 5

3
t−1)|| cos t|

64(1 +
√
t)

, h2(t) = q2(t) =
√
t|(t− 2|)e−t| sin t|,

p1(t) = q1(t) = p2(t) = 0; t ∈ [1,∞).

Also, for t > 2, we have

√
t|(t− 2)|e−t| sin t| ≤

√
t(t− 2)e−t,

t−2|(1− 5
3
t−1)|| cos t|

64(1 +
√
t)

≤
t−2(1− 5

3
t−1)

64
.

In addition, we have∫ t

1

s−1/2h1(s)ds ≤ 1

64

∫ t

1

s−1/2s−2(1−5

3
s−1)ds ≤ − 1

96
t−3/2(1−t−1)→ 0 as t→∞,

∫ t

1

s−1/2h2(s)ds ≤
∫ t

1

s−1/2s1/2(s− 2)e−sds ≤ (−t+ 1)e−t → 0 as t→∞.
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∫ t

1

s−1/2q2(s)ds ≤
∫ t

1

s−1/2s1/2(s− 2)e−sds ≤ (−t+ 1)e−t → 0 as t→∞.

Therefore, Theorem 3.2.2 implies that the system (3.44)–(3.45) has at least one so-
lution defined on [1,∞) and moreover, the solutions of this problem are uniformly
locally attractive.



Chapitre 4

Coupled Katugambola fractional

differential systems

4.1 A Coupled Katugampola fractional differential

system with Boundary Conditions

4.1.1 Introduction and motivations

In this chapter we investigate the existence of solutions for the following coupled
Katugampola fractional differential system(ρDα1

0 u)(t) = f1(t, u(t), v(t))

(ρDα2
0 v)(t) = f2(t, u(t), v(t))

; t ∈ I := [0, T ], (4.1)

with the boundary conditions
I2−α1,ρ

0 u(0) = a1; I2−α1,ρ
0+ u(T ) = b1

I2−α2,ρ
0 v(0) = a2; I2−α2,ρ

0+ v(T ) = b2,

(4.2)

where T > 0, , t ∈ (0, T ); , αi ∈ (1, 2], fi : I × Rm × Rm → Rm; i = 1, 2 are given
continuous functions, Rm; m ∈ N∗ is the Euclidian Banach space with a suitable
norm ‖ · ‖, I2−αi,ρ

0 is Katugampola fractional integral of order 2− αi.
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4.1.2 Existence Results in Banach spaces

In this section, we are concerned with the existence and uniqueness results of the
coupled system (4.1)-(4.2).

Lemma 4.1.1. Let h ∈ C, and α ∈ (1, 2]. Then the unique solution u ∈ C2−α,ρ(I) of
problem (ρDα1

0+u)(t) = h(t); t ∈ I

I2−α1,ρ
0 u(0+) = a1; I2−α1,ρ

0 u(T ) = b1

is given by
u(t) = 2ρ2−αT−ρ

Γ(α1)
(b1 − a1 − I2,ρ

0+ h(T ))tρ(α1−1)

+ ρ2−α

Γ(α1−1)
a1t

ρ(α1−2)

+ ρ1−α

Γ(α)

∫ t
0
sρ−1(tρ − sρ)α−1h(s)ds

.

Proof. Solving the linear equation

(ρDα
0 u)(t) = h(t),

From Lemma 1.3.3, we find easily :

u(t) = Iα,ρ0+ h(t) + C1t
ρ(α−1) + C2t

ρ(α−2) (4.3)

From the boundary conditions and from (1.3.3), we have

I2−α,ρ
0+ u(0) = I2−α,ρ

0 Iα,ρ0 h(t) + C1I
2−α,ρ
0+ tρ(α−1)

+ C2I
2−α,ρ
0+ tρ(α−2)

= I2,ρ
0+ h(0) + C1 lim

t→0+

ρα−2Γ(α)

Γ(2− α + α)
t2−α+α−1

+ C2 lim
t→0+

ρα−2Γ(α− 1)

Γ(2− α + α− 1)
t2−α+α−2

= C2
ρα−2Γ(α−1)

Γ(1)

= a1

⇒ C2 = ρ2−αa1
Γ(α−1)

C2 =
ρ2−αa1

Γ(α− 1)
.
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and
I2−α,ρ

0+ u(T ) = I2−α,ρ
0 Iα,ρ0 h(T ) + C1I

2−α,ρ
0 T ρ(α−1)

+ C2I
2−α,ρ
0+ T ρ(α−2)

= I2,ρ
0 h(0) + C1

ρα−2Γ(α)
Γ(2−α+α)

T ρ(2−α+α−1)

+ C2
ρα−2Γ(α−1)
Γ(2−α+α−1)

T ρ(2−α+α−2)

= I2,ρ
0 h(T ) + C1

ρα−2Γ(α)
Γ(2−α+α)

T ρ

+ C2ρ
α−2Γ(α− 1)

= b1

⇒ C1 = ρ2−αΓ(2)T−ρ

Γ(α)
(b1 − a1 − I2,ρ

0+ h(T ))

C1 =
ρ2−αΓ(2)T−ρ

Γ(α)
(b1 − a1 − I2,ρ

0+ h(T )).

Substituting the values of c1 and c2 in (4.3), we get

u(t) = 2ρ2−αT−ρ

Γ(α)
(b1 − a1 − I2,ρ

0+ h(T ))tρ(α−1)

+ ρ2−α

Γ(α−1)
a1t

ρ(α−2)

+ ρ1−α

Γ(α)

∫ t
0
sρ−1(tρ − sρ)α−1h(s)ds

.

We concluded the following lemma.

Lemma 4.1.2. Let fi : I×Rm×Rm → Rm; i = 1, 2 such that fi(·, u, v) ∈ C2−αi,tρ(I)

for each u, v ∈ C2−αi,ρ(I). Then the coupled system (4.1)-(4.2) is equivalent to the
problem of obtaining the solution of the coupled system

u(t) = 2ρ2−α1T−ρ

Γ(α1)
(b1 − a1 − I2,ρ

0+ h(T ))tρ(α1−1)

+ ρ2−α1

Γ(α1−1)
a1t

ρ(α1−2)

+ρ1−α1

Γ(α1)

∫ t
0
sρ−1(tρ − sρ)α1−1h(s)ds

v(t) = 2ρ2−α2T−ρ

Γ(α2)
(b2 − a2 − I2,ρ

0+ h(T ))tρ(α2−1)

+ ρ2−α

Γ(α1−1)
a2t

ρ(α2−2)

+ρ1−α2

Γ(α2)

∫ t
0
sρ−1(tρ − sρ)α2−1h(s)ds,

Definition 4.1.1. By a solution of the problem (4.1)-(4.2) we mean a coupled conti-
nuous functions (u, v) ∈ C2−α1,ρ(I) × C2−α2,ρ(I) satisfying the boundary conditions
(4.2), and the equations (4.1) on I.
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The following hypotheses will be used in the sequel.
(H ′1) There exist constantsKi > 0 and 0 < Li < 1 such that The functions fi; i = 1, 2

satisfy the generalized Lipschitz condition :

‖fi(t, u1, v1)− fi(t, u2, v2)‖ ≤ Kit
ρ(2−αi)‖u1 − u2‖+ Lit

ρ(2−αi)‖v1 − v2‖,

for t ∈ I and ui, vi ∈ Rm.

We are now in a position to state and prove our existence result for the problem(4.1)-
(4.2) based on concept of measures of noncompactness and Darbo’s fixed point theo-
rem.

Remark 4.1.1. [35] Condition (H1) is equivalent to the inequality

α(fi(t, B1, B2)) ≤ Kit
ρ(2−αi)α(B1) + Lit

ρ(2−αi)α(B2),

for any bounded sets B1, B2 ⊆ C and for each t ∈ I.

Theorem 4.1.1. Assume (H ′1). If

ρ−α1

2Γ(α1)
T ρ(α1)+

ρ−α1

Γ(α1 + 1)
T ρ(α1))(K1+L1)+

ρ−α2

2Γ(α2)
T ρ(α2)+

ρ−α2

Γ(α2 + 1)
T ρ(α2))(K2+L2) < 1,

(4.4)
then the coupled system (4.1)- (4.2) has at least one solution defined on I.

Proof. Define the operator N : C → C by

(N(u, v))(t) = ((N1u)(t), (N2v)(t)), (4.5)

where N1 : C2−α1,ρ → C2−α1,ρ and N2 : C2−α2,ρ → C2−α2,ρ with

(N1u))(t) = 2ρ2−α1T−ρ

Γ(α1)
(b1 − a1 − ρ−1

Γ(2)

∫ T
0
sρ−1(T ρ − sρ)f1(s, u(s); v(s))ds)tρ(α1−1)

+ ρ2−α1

Γ(α1−1)
a1t

ρ(α1−2)

+ ρ1−α1

Γ(α1)

∫ t
0
sρ−1(tρ − sρ)α1−1f1(s, u(s); v(s))ds.

and

(N2v))(t) = 2ρ2−α2T−ρ

Γ(α2)
(b2 − a2 − ρ−1

Γ(2)

∫ T
0
sρ−1(T ρ − sρ)f2(s, u(s); v(s))ds)tρ(α2−1)

+ ρα2−2

Γ(α2−1)
a2t

ρ(α2−2)

+ ρ1−α2

Γ(α2)

∫ t
0
sρ−1(tρ − sρ)α2−1f2(s, u(s); v(s))ds.
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Clearly, the fixed points of the operator N are solutions of the coupled system (4.1)-
(4.2).
For each ui, vi ∈ C2−αi,ρ; i = 1, 2 and t ∈ I,

R ≥

∑2
i=1

[
ρ2−αi

Γ(αi−1)
ai + 2ρ2−αi

Γ(αi)
(bi − ai) + ( ρ−αi

2Γ(αi)
+ ρ−αi

Γ(αi+1)
)T 2ρf ∗i

]
1−

∑2
i=1

[
( ρ−αi

2Γ(αi)
+ ρ−αi

Γ(αi+1)
)T ρ(α1)(Ki + Li)

] , (4.6)

and consider the closed and convex ball

BR = {(u, v) ∈ C2−αi,ρ : ‖(u, v)‖C ≤ R}.

Remark 4.1.2. (H1),we have

‖fi(t, u, v)‖ ≤ ‖fi(t, u, v)− fi(t, 0, 0)‖+ ‖fi(t, 0, 0)‖
≤ Kit

ρ(2−αi)‖u‖+ Lit
ρ(2−αi)‖v‖+ ‖fi(t, 0, 0)‖

≤ Ki‖u‖C2−α1,ρ
+ Li‖v‖C2−α2,ρ

+ ‖fi(t, 0, 0)‖
≤ (Ki + Li)R + f ∗i .

Let (u, v) ∈ BR. Then, for each t ∈ I, and any i = 1, 2, we have

‖tρ(2−α1)(N1u)(t)‖ = ‖2ρ2−α1T−ρ

Γ(α1)
(b1 − a1 − ρ−1

2

∫ T
0
sρ−1(T ρ − sρ)f1(s, u(s); v(s))ds)tρ

+ ρ2−α1

Γ(α1−1)
a1

+ ρ1−α1

Γ(α1)
tρ(2−α1)

∫ t
0
sρ−1(tρ − sρ)α1−1f1(s, u(s); v(s))ds‖

≤ 2ρ2−α1T−ρ

Γ(α1)
(b1 − a1 − ρ−1

2

∫ T
0
sρ−1(T ρ − sρ)‖f1(s, u(s); v(s))‖ds)tρ

+ ρ2−α1

Γ(α1−1)
a1

+ ρ1−α1

Γ(α1)
tρ(2−α1)

∫ t
0
sρ−1(tρ − sρ)α1−1‖f1(s, u(s); v(s))‖ds

≤ ρ1−α1

Γ(α1)

∫ T
0
sρ−1(T ρ − sρ)‖f1(s, u(s); v(s))‖ds

+ ρ2−α1

Γ(α1−1)
a1 + 2ρ2−α1

Γ(α1)
(b1 − a1)

+ ρ1−α1

Γ(α1)
tρ(2−α1)

∫ t
0
sρ−1(tρ − sρ)α1−1‖f1(s, u(s); v(s))‖ds

≤ ρ−α1

2Γ(α1)
T 2ρ[(K1 + L1)R + f ∗1 ]

+ ρ2−α1

Γ(α1−1)
a1 + 2ρ2−α1

Γ(α1)
(b1 − a1)

+ ρ−α1

Γ(α1+1)
T 2ρ[(K1 + L1)R + f ∗1 ]

≤ ( ρ−α1

2Γ(α1)
T 2ρ + ρ−α1

Γ(α1+1)
T 2ρ)R(K1 + L1)

+ ρ2−α1

Γ(α1−1)
a1 + 2ρ2−α1

Γ(α1)
(b1 − a1) + ( ρ−α1

2Γ(α1)
+ ρ−α1

Γ(α1+1)
)T 2ρf ∗1 .
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Similarly,

‖(N2v)‖C2−α2,ρ
≤ ( ρ−α2

2Γ(α2)
T 2ρ + ρ−α2

Γ(α2+1)
T 2ρ)(R(K2 + L2)) + ρ2−α2

Γ(α2−1)
a2 + 2ρ2−α2

Γ(α1)
(b2 − a2)

+ ( ρ−α2

2Γ(α2)
+ ρ−α2

Γ(α2+1)
)T 2ρf ∗2 .

Thus

‖N(u, v)‖C ≤ R. (4.7)

Hence N maps the ball BR into it self. We shalls how that N satisfies the assumption
of Darbo’s fixed point Theorem. The proof will be given in several steps.
Step 1 : We show that N is continuous. Let{(un, vn)} be a sequence such that
(un, vn)→ (u, v) in BR. Then, for each t ∈ I, we have

‖tρ(2−αi)(N(un, vn)(t)− (N(u, v)(t)‖

= Σ2
i=1‖(

ρ1−αi

Γ(α1)
T−ρtρ

∫ T

0

sρ−1(T ρ − sρ)[fi(s, un(s); vn(s))− fi(s, u(s); v(s)]ds

+ρ1−αi

Γ(α1)
tρ(2−αi)

∫ t
0
sρ−1(tρ − sρ)αi−1[fi(s, un(s); vn(s))− fi(s, u(s); v(s)]ds‖

≤ Σ2
i=1

(
ρ1−αi

Γ(α1)
T−ρtρ

∫ T
0
sρ−1(T ρ − sρ)‖[fi(s, un(s); vn(s))− fi(s, u(s); v(s)]‖ds

+ρ1−αi

Γ(α1)
tρ(2−αi)

∫ t
0
sρ−1(tρ − sρ)αi−1‖[fi(s, un(s); vn(s))− fi(s, u(s); v(s)]‖ds

)
≤ Σ2

i=1

(
ρ1−αi

Γ(α1)
T−ρtρ

∫ T
0
sρ−1(T ρ − sρ)(Kis

ρ(2−α1)‖un − u‖+ Lis
ρ(2−α1)‖vn − v‖)ds

+ρ1−αi

Γ(α1)
tρ(2−αi)

∫ t
0
sρ−1(tρ − sρ)αi−1‖(Ki‖un − u‖+ Li‖vn − v‖)ds

)
≤ Σ2

i=1

(
ρ1−αi

Γ(α1)
(Ki‖un − u‖Cαi,ρ + Li‖vn − v‖Cαi,ρ)

∫ T
0
sρ−1(T ρ − sρ)ds

+ρ1−αi

Γ(α1)
T ρ(2−αi)(Ki‖un − u‖Cαi,ρ + Li‖vn − v‖Cαi,ρ)

∫ t
0
sρ−1(tρ − sρ)αi−1ds

)
.

Since un → u, vn → v as n → ∞ et f1,f2 are continuous , then by the Lebesgue
dominated convergence theorem ;

‖N(un, vn)−N(u, v)‖C → 0 as n→∞.

Step 2 : We remark that N(BR) is bounded. This is clear since N : BR → BR and
BR is bounded.
Step 3 : We show thatN maps bounded sets into equicontinuous sets in BR. Let
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t1, t2 ∈ I, such that t1 < t2 and let (u1, u2) ∈ BR. Then, we have

‖tρ(2−αi)
2 (N(u1, u2))(t2)− tρ(2−αi)

1 (N(u1, u2))(t1)‖
≤ ‖ρ1−αiT−ρ

Γ(αi)
(tρ2 − t

ρ
1)
∫ T

0
sρ−1(T ρ − sρ)fi(s, u(s); v(s))ds

+
ρ1−αi t

ρ(2−αi)
2

Γ(αi)

∫ t2
0
sρ−1(tρ2 − sρ)αi−1fi(s, u1(s);u2(s))ds

−ρ1−αi t
ρ(2−αi)
1

Γ(αi)

∫ t1
0
sρ−1(tρ1 − sρ)αi−1fi(s, u1(s);u2(s))ds‖

≤ ‖ρ1−αiT−ρ

Γ(αi)
(tρ2 − t

ρ
1)
∫ T

0
sρ−1(T ρ − sρ)fi(s, u(s); v(s))ds

+
ρ1−αi t

ρ(2−αi)
2

Γ(αi)

∫ t2
t1
sρ−1(tρ2 − sρ)αi−1fi(s, u1(s);u2(s))ds

−ρ1−αi t
ρ(2−αi)
1

Γ(αi)

∫ t1
0
sρ−1(tρ1 − sρ)αi−1fi(s, u1(s);u2(s))ds

+
ρ1−αi t

ρ(2−αi)
2

Γ(αi)

∫ t1
0
sρ−1(tρ2 − sρ)αi−1fi(s, u1(s);u2(s))ds‖

≤ (tρ2−t
ρ
1)

ραiΓ(αi)
T ρ(f ∗i +Ki + Li)R

+
tρ1+tρ2+2(tρ2−t

ρ
1)αi

ραiΓ(αi+1)
T ρ(2−αi)(f ∗i +Ki + Li)R.

As t1 → t2, the right-hand side of the above inequality tends to zero.

Step 4 : The operator N : BR → BR is a strict set contraction.
Let V ∈ BR and t ∈ I, then we have

α(tρ(2−α1)N1(V )(t))

= α((N1(u, v)(t), (u, v) ∈ V
≤ 2ρ2−α1T−ρ

Γ(α1)
(b1 − a1 − ρ−1

2
{
∫ T

0
sρ−1(T ρ − sρ)αf1(s, u(s); v(s))ds, (u, v) ∈ V })tρ

+ ρ2−α1

Γ(α1−1)
a1 + ρ1−α1

Γ(α1)
tρ(2−α1){

∫ t
0
sρ−1(tρ − sρ)α1−1αf1(s, u(s); v(s))ds, (u, v) ∈ V }.

Then Remark 4.1.1 implies that, for each s ∈ I

α({f1(s, u(s); v(s))ds, (u, v) ∈ V }) ≤ K1α({u(s), (u) ∈ V }) + L1α({v(s), (v) ∈ V }).

Then
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α(tρ(2−α1)N1(V )(t)) ≤ K1
ρ1−α1T−ρ

Γ(α1)
tρ{
∫ t

0
sρ−1(tρ − sρ){α(u(s))}ds, (u) ∈ V }

+ L1
ρ1−α1T−ρ

Γ(α1)
tρ{
∫ t

0
sρ−1(tρ − sρ){α(v(s))}ds, (v) ∈ V }

+ 2ρ2−α1T−ρ

Γ(α1)
(b1 − a1)tρ

+ ρ2−α1

Γ(α1−1)
a1

+ K1
ρ1−α1

Γ(α1)
tρ(2−α1){

∫ t
0
sρ−1(tρ − sρ)α1−1{α(u(s))}ds, (u) ∈ V }

+ L1
ρ1−α1

Γ(α1)
tρ(2−α1){

∫ t
0
sρ−1(tρ − sρ)α1−1{α(v(s))}ds, (v) ∈ V }

≤
(K1+L1)αC2−α1,tρ

(V )ρ1−α1

Γ(α1)
tρ(α1−1)T−ρ

∫ t
0
sρ−1(tρ − sρ)ds

+ 2ρ2−α1T−ρ

Γ(α1)
(b1 − a1)tρ

+ ρ2−α1

Γ(α1−1)
a1

+
(K1+L1)αC2−α1,tρ

(V )ρ1−α1

Γ(α1)

∫ t
0
sρ−1(tρ − sρ)α1−1ds

≤ 2ρ2−α1

Γ(α1)
(b1 − a1)

+ ρ2−α1

Γ(α1−1)
a1

+
(K1+L1)αC2−α1,tρ

(V )ρ−α1

2Γ(α1)
(T ρ)α1

+
(K1+L1)αC2−α1,tρ

(V )ρ−α1

Γ(α1+1)
(T ρ)α1 .

Therefore

αC2−α1,ρ
(N1V ) ≤ (

(K1+L1)αC2−α1,tρ
(V )ρ−α1

Γ(α1+1)
+

(K1+L1)αC2−α1,tρ
(V ))ρ−α1

2Γ(α1)
)(T ρα1) + ( ρ2−α1

Γ(α1−1)
a1

+ 2ρ2−α1

Γ(α1)
(b1 − a1)).

Similarly

αC2−α2,ρ
(N2V ) ≤ (

(K2+L2)αC2−α1,tρ
(V )ρ−α2

Γ(α2+1)
+

(K2+L2)αC2−α2,tρ
(V )ρ−α2

2Γ(α2)
)(T ρα2) + ( ρ2−α2

Γ(α2−1)
a2

+ 2ρ2−α2

Γ(α2)
(b2 − a2)).

Thus

αC(NV ) ≤ (
(K1+L1)αC2−α1,tρ

(V )ρ−α1

Γ(α1+1)
+

(K1+L1)αC2−α1,tρ
(V )ρ−α1

2Γ(α1)
)(T ρα1)

+ ( ρ2−α1

Γ(α1−1)
a1 + 2ρ2−α1

Γ(α1)
(b1 − a1))

+ (
(K2+L2)αC2−α2,tρ

(V )ρ−α2

Γ(α2+1)
+

(K2+L2)αC2−α2,tρ
(V )ρ−α2

2Γ(α2)
)(T ρα2)

+ ( ρ2−α2

Γ(α2−1)
a2 + 2ρ2−α2

Γ(α2)
(b2 − a2)).
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So, the operator N is a set contraction. As a consequence of Theorem (1.5.5),we
deduce that N has a fixed point which is solution to the problem (4.1)-(4.2). This
completes the proof.

Now, Our next existence result for the problem (4.1)-(4.2) is based on concept of
measures of noncompactness and Mönch’s fixed point theorem

Theorem 4.1.2. Assume that the hypothesis (H1),(H2) holds.
then the coupled system (4.1)- (4.2) has at least one solution defined on I.

Proof.N : C → C be the operator defined in (4.5). We shall show that N satisfies the
assumption of Mönch’s fixed point theorem. We know that N : BR → BR is bounded
and continuous, we need to prove that the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of BR.Now let V be a subset of BR such that
V ⊂ convN(V ) ∪ {0}. V is bounded and equicontinuous and therefore the
function t→ v(t) = α(V (t)) is continuous on I.

tρ(2−αi)wi(t) ≤ α(tρ(2−α1)Ni(V )(t) ∪ {0})
≤ α(tρ(2−αi)Ni(V )(t))

≤ α(tρ(2−αi)Ni(ui)(t), ui ∈ V )

≤ K1
ρ1−α1T−ρ

Γ(αi)
{
∫ t

0
sρ−1(tρ − sρ){α(u1(s))}ds, (u1) ∈ V }tρ

+ L1
ρ1−αiT−ρ

Γ(αi)
{
∫ t

0
sρ−1(tρ − sρ){α(u2(s))}ds, (u2) ∈ V }tρ

+ 2ρ2−αiT−ρ

Γ(α1)
(bi − ai)tρ

+ ρ2−αi

Γ(αi−1)
ai

+ Ki
ρ1−αi

Γ(αi)
tρ(2−αi){

∫ t
0
sρ−1(tρ − sρ)αi−1{α(u1(s))}ds, (u1) ∈ V }

+ Li
ρ1−αi

Γ(α1)
tρ(2−αi){

∫ t
0
sρ−1(tρ − sρ)αi−1{α(u2(s))}ds, (u2) ∈ V }

≤ (Ki+Li)ρ
1−αi

Γ(αi)
tρ(αi−1)

∫ t
0
sρ−1(tρ − sρ)(tρ(2−αi)wi(s))ds.

+ 2ρ2−αiT−ρ

Γ(αi)
(bi − ai)tρ

+ ρ2−αi

Γ(αi−1)
ai

+ (Ki+Li)ρ
1−αi

Γ(αi)

∫ t
0
sρ−1(tρ − sρ)αi−1(tρ(2−αi)wi(s))ds.

implies that wi(t) = 0 for each t ∈ I, and then V (t) is relatively compact in E. In view
of the Ascoli-Arzel‘a theorem,Vis relatively compact in BR. Applying now Theorem
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(1.5.4) we conclude that N has a fixed point (u1, u2) ∈ BR.. Hence N has a fixed
point which is solution to the problem (4.1)- (4.2).This completes the proof.

4.2 Examples

Let

l1 =

{
u = (u1, u2, . . . , um, . . .),

∞∑
m=1

|um| <∞

}
be the Banach space with the norm

‖u‖E =
∞∑
m=1

|um|.

Consider the coupled system of Caputo–Katugampola fractional differential equations(1D
3
2
0 un)(t)(t) = fn(t, u(t), v(t))

(1D
3
2
0 vn)(t) = gn(t, u(t), v(t)),

t ∈ [0, 1] (4.8)

with the boundary conditions
I

1
2
,1

0 u(0) = 1 = I
1
2
,1

0+ u(1)

I
1
2
,1

0 v(0) = 2 = I
1
2
,1

0+ v(1)

(4.9)

where

fn(t, u(t)) =
e−t−5un(t))

1 + ‖u(t)‖l1 + ‖v(t)‖l1
, t ∈ [0, 1],

gn(t, u, v) =
(2−n + vn(t)) sin t

64(‖v(t)‖l1 + 1)(1 + ‖u(t)‖l1 + ‖v(t)‖l1)
, t ∈ [0, 1].

with f = (f1, f2, . . . , fn, . . .), g = (g1, g2, . . . , gn, . . .) and u = (u1, u2, . . . , un, . . .).

For each t ∈ [0, 1], we have

‖f(t, u(t), v(t))‖l1 =
∞∑
n=1

|fn(s, un(s), vn(s))|

≤ e−6‖u‖l1 .
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and

‖g(t, u(t), v(t))‖l1 =
∞∑
n=1

|gn(s, un(s), vn(s))|

≤ 1

64
.

The hypothesis [(H2)]is satisfied with

K1 ≤ e−6.

L∗1 = K∗2 = L∗2 = 0.

In addition, with good choice of the constants di; i = 1, 2, a simple computation show
that all conditions of Theorem 4.1.1 are satisfied. Hence, the problem (4.8)-(4.9) has
at least one solution defined on [0, 1].

4.3 A Coupled Caputo-Katugampola Fractional Dif-

ferential System with Boundary Conditions

4.3.1 Introduction and motivations

In this chapter we investigate the existence of solutions for the following coupled
Katugampola fractional differential system(cDα1,ρ

a+ u)(t) = f1(t, u(t), v(t))

(cDα2,ρ
a+ v)(t) = f2(t, u(t), v(t))

; t ∈ I := [a, b], (4.10)

with the boundary conditions
u(a) = λ1v(b);cDγ1,ρ

a+ u(b) = λ2

∑N
i=1(cDδ1,ρ

a+ v)(ηi)

v(a) = µ1u(b);cDγ2,ρ
a+ v(b) = µ2

∑M
i=1(cDδ2,ρ

a+ u)(ξi)

; (4.11)

where a, b > 0, , t ∈ (a, b); , αi ∈ (1, 2], γ1, δ1 ∈ (0, 1], ηi ∈ R for i = 1, 2.....N(N ∈
N)ξi ∈ R for i = 1, 2.....M(M ∈ N)a < ξ1 < ξ2.... < b, λi, µi, i = 1, 2 are real positive
constants fi : I × R × R → R; i = 1, 2 are given continuous functions and cDαi,ρ

a is
caputo- Katugampola fractional derivative of order αi ; i = 1, 2.
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4.3.2 Existence Results in Banach spaces

In this section, we are concerned with the existence and uniqueness results of the
coupled system (4.10)-(4.11).

Lemma 4.3.1. Let

∆ =
4
(
bρ−aρ
ρ

)2−γ1−γ2

Γ(2− γ1)Γ(2− γ2)
− 4λ2µ2

Γ(2− δ2)Γ(2− δ1)

M∑
i=1

(
ξρi − aρ

ρ

)1−δ2 N∑
i=1

(
ηρi − aρ

ρ

)1−δ1
6= 0,

and µ1λ1 6= 1 Let x, y ∈ C, and α ∈ (1, 2]. Then the unique solution of problem

(cDα1,ρ
a+ u)(t) = x(t); t ∈ I := [a, b],

(cDα2,ρ
a+ v)(t) = y(t); t ∈ I := [a, b],

u(a) = λ1v(b);cDγ1,ρ
a+ u(b) = λ2

∑N
i=1(cDδ1,ρ

a+ v)(ηi)

v(a) = µ1u(b);cDγ2,ρ
a+ v(b) = µ2

∑M
i=1(cDδ2,ρ

a+ u)(ξi)

(4.12)

is given by

u(t) = 2λ1
∆(1−λ1µ1)

[(
µ1λ2µ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1(

ηρi−a
ρ

ρ
)1−δ1 + µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ λ2µ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
B3

−
(

µ1λ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ 1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− λ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
A3

+

(
µ1λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ λ2

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
A2

−
(

µ1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− 1

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
B2

]
+ λ1

1−λ1µ1 (µ1B1 + A1) + ρ1−α1

Γ(α1)

∫ t
a
sρ−1(tρ − sρ)α1−1x(s)ds.

.
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v(t) = 2µ1
(1−λ1µ1)

[(
λ2µ2

Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ λ1µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ [ µ2
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
B3

−
(

λ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ λ1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− [ 1
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
A3

+

(
λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ µ2λ2

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
A2

−
(

1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− µ2

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
B2

]
+ µ1

1−µ1λ1 (λ1A1 +B1) + ρ1−α2

Γ(α2)

∫ t
a
sρ−1(tρ − sρ)α2−1y(s)ds.

where

B1 = ρ1−α1

Γ(α1)

∫ b
a
sρ−1(bρ − sρ)α1−1x(s)ds, A1 = ρ1−α2

Γ(α2)

∫ b
a
sρ−1(bρ − sρ)α2−1y(s)ds,

B2 = ρ1−α1+γ1

Γ(α1−γ1)

∫ b
a
sρ−1(bρ − sρ)α1−γ1−1x(s)ds, A2 = ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi −

sρ)α2−δ1−1y(s)ds,

B3 = ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1x(s)ds, A3 = ρ1−α1+γ2

Γ(α1−γ2)

∫ b
a
sρ−1(bρ −

sρ)α1−γ2−1y(s)ds.

Proof. Solving the linear equation

(CDα,ρ
a u)(t) = x(t).

From Lemma (1.3.4), we find easily :

u(t) = C0 + C1

(
tρ − aρ

ρ

)
+
ρ1−α1

Γ(α1)

∫ t

a

sρ−1(tρ − sρ)α1−1x(s)ds. (4.13)

v(t) = d0 + d1

(
tρ − aρ

ρ

)
+
ρ1−α2

Γ(α2)

∫ t

a

sρ−1(tρ − sρ)α2−1y(s)ds. (4.14)
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where ci, di, i = 0, 1, are arbitrary real constants. From (4.13) and (4.14) we have

cDγ1,ρ
a+ u(t) =

2c1

Γ(2− γ1)

(
tρ − aρ

ρ

)1−γ1
+

ρ1−α1+γ1

Γ(α1 − γ1)

∫ t

a

sρ−1(tρ − sρ)α1−γ1−1x(s)ds,

(4.15)

cDγ2,ρ
a+ v(t) =

2d1

Γ(2− γ2)

(
tρ − aρ

ρ

)1−γ2
+

ρ1−α2+γ2

Γ(α2 − γ2)

∫ t

a

sρ−1(tρ − sρ)α2−γ2−1y(s)ds,

(4.16)
cDδ1,ρ

a+ v(t) =
2d1

Γ(2− δ1)

(
tρ − aρ

ρ

)1−δ1
+

ρ1−α2+δ1

Γ(α2 − δ1)

∫ t

a

sρ−1(tρ − sρ)α2−δ1−1y(s)ds,

(4.17)
cDδ2,ρ

a+ u(t) =
2c1

Γ(2− δ2)

(
tρ − aρ

ρ

)1−δ2
+

ρ1−α1+δ2

Γ(α1 − δ2)

∫ t

a

sρ−1(tρ − sρ)α1−δ2−1x(s)ds.

(4.18)
From the boundary conditions u(a) = λ1v(b) and v(a) = µ1u(b) and from
(4.3)and(4.14), we have

⇒ c0 = λ1

[
d0 + d1

(
bρ − aρ

ρ

)
+ A1

]
(4.19)

⇒ d0 = µ1

[
c0 + c1

(
bρ − aρ

ρ

)
+B1

]
(4.20)

c0 = λ1[µ1

[
c0 + c1

(
bρ−aρ
ρ

)
+B1] + d1

(
bρ−aρ
ρ

)
+ A1

]
= λ1

[
µ1c0 + c1µ1

(
bρ−aρ
ρ

)
+ µ1B1 + d1

(
bρ−aρ
ρ

)
+ A1

]
c0 = λ1

1−λ1µ1

[
c1µ1

(
bρ−aρ
ρ

)
+ µ1B1 + d1

(
bρ−aρ
ρ

)
+ A1

]
,

d0 =
µ1

1− λ1µ1

[
d1λ1

(
bρ − aρ

ρ

)
+ c1

(
bρ − aρ

ρ

)
+ λ1A1 +B1

]
.

Using the boundary conditionscDγ1,ρ
a+ u(b) = λ2

∑N
i=1(cDδ1,ρ

a+ v)(ηi) and cDγ2,ρ
a+ v(b) =

µ2

∑M
i=1(cDδ2,ρ

a+ u)(ξi) from (4.15)to(4.18), we have

⇒ c1
2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1
− d1

2λ2
Γ(2−δ1)

∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
= A2λ2 −B2

⇒ c1
−2µ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
+ d1

2
Γ(2−γ2)

(
(bρ−aρ

ρ

)1−γ2
= B3µ2 − A3

(4.21)
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Solving the resulting equations for c1 and d1, we find that
c1 = 2

∆

[
(A2λ2−B2)

Γ(2−γ2)

(
bρ−aρ
ρ

)1−γ2
+ λ2(B3µ2−A3)

Γ(2−δ1)

∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
]

d1 = 2
∆

[
(B3µ2−A3

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1
+ µ2(A2λ2−B2)

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
] (4.22)

substituting c1 and d1 in (4.19)and(4.20), we have

c0 = 2λ1
∆(1−λ1µ1)

[(
µ1λ2µ2
Γ(2−δ1)

∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1 (
bρ−aρ
ρ

)
+ µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)2−γ1
)
B3

−
(

µ1λ2
Γ(2−δ1)

∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1 (
bρ−aρ
ρ

)
] + 1

Γ(2−γ1)

(
bρ−aρ
ρ

)2−γ1
)
A3

+

(
µ1λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

))
A2

−
(

µ1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

))
B2

]
+ λ1

1−λ1µ1 (µ1B1 + A1) ,

and

d0 = 2µ1
∆(1−λ1µ1)

[(
λ2µ2

Γ(2−δ1)

∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1 (
bρ−aρ
ρ

)
+ λ1µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)2−γ1
)
B3

−
(

λ2
Γ(2−δ1)

∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1 (
bρ−aρ
ρ

)
+ λ1

Γ(2−γ1)

(
bρ−aρ
ρ

)2−γ1
)
A3

+

(
λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

))
A2

−
(

1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

))
B2

]
+ µ1

1−λ1µ1 (λ1A1 +B1) .

Substituting the values of c1 and d2 in (4.13), we get
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u(t) = 2λ1
∆(1−λ1µ1)

[(
µ1λ2µ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1(

ηρi−a
ρ

ρ
)1−δ1 + µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ λ2µ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
B3

−
(

µ1λ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ 1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− λ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
A3

+

(
µ1λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ λ2

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
A2

−
(

µ1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− 1

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
B2

]
+ λ1

1−λ1µ1 (µ1B1 + A1) + ρ1−α1

Γ(α1)

∫ t
a
sρ−1(tρ − sρ)α1−1x(s)ds.

We concluded the following lemma.

Lemma 4.3.2. Let fi : I ×R×R→ R; i = 1, 2 such that fi(·, u, v) ∈ C(I) for each
u, v ∈ C(I). Then the coupled system (4.10)-(4.11) is equivalent to the problem of
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obtaining the solution of the coupled system

u(t) = 2λ1
∆(1−λ1µ1)

[(
µ1λ2µ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1(

ηρi−a
ρ

ρ
)1−δ1 + µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ λ2µ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
B3

−
(

µ1λ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ 1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− λ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
A3

+

(
µ1λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ λ2

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
A2

−
(

µ1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− 1

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
B2

]
+ λ1

1−λ1µ1 (µ1B1 + A1) + ρ1−α1

Γ(α1)

∫ t
a
sρ−1(tρ − sρ)α1−1f1(s, u(s), v(s))ds

v(t) = 2µ1
(1−λ1µ1)

[(
λ2µ2

Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ λ1µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ [ µ2
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
B3

−
(

λ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ λ1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− [ 1
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
A3

+

(
λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ µ2λ2

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
A2

−
(

1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− µ2

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
B2

]
+ µ1

1−µ1λ1 (λ1A1 +B1) + ρ1−α2

Γ(α2)

∫ t
a
sρ−1(tρ − sρ)α2−1f2(s, u(s), v(s))ds.

Definition 4.3.1. By a solution of the problem (4.10)-(4.11) we mean a coupled
continuous functions (u, v) ∈ C(I)× C(I) satisfying the boundary conditions (4.11),
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and the equations (4.10) on I.

The following hypotheses will be used in the sequel.
(H ′3) The function fi : I × R× R→ R are continuous.
(H ′4) There exist constants mi, ni such that The functions fi; i = 1, 2 satisfy the
generalized Lipschitz condition :

|fi(t, u1, v1)− fi(t, u2, v2)| ≤ mi|u1 − u2|+ ni|v1 − v2|,

for t ∈ I and ui, vi ∈ R.

We are now in a position to state and prove our existence result for the problem(4.10)-
(4.11) based on concept of measures of noncompactness and Darbo’s fixed point
theorem.

Remark 4.3.1. Condition (H ′4) is equivalent to the inequality

α(fi(t, B1, B2)) ≤ miα(B1) + niα(B2),

for any bounded sets B1, B2 ⊆ C and for each t ∈ I.

Theorem 4.3.1. Assume (H ′3),(H ′4) . If

(K1 +K2)(m1 + n1) + (K3 +K4)(m2 + n2) < 1, (4.23)

then the coupled system (4.10)- (4.11) has a last one solution defined on I.

Proof. Define the operator N : C → C by

(N(u, v))(t) = ((N1u)(t), (N2v)(t)), (4.24)
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where N1 : C → C andN2 : C → C with

(N1u)(t) = 2λ1
∆(1−λ1µ1)

[(
µ1λ2µ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1(

ηρi−a
ρ

ρ
)1−δ1 + µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ λ2µ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
B3f1

−
(

µ1λ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ 1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− λ2
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
A3f2

+

(
µ1λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ λ2

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
A2f2

−
(

µ1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− 1

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
B2f1

]
+ λ1

1−λ1µ1 (µ1B1f1 + A1f2) + ρ1−α1

Γ(α1)

∫ t
a
sρ−1(tρ − sρ)α1−1f1(s, u(s), v(s))ds,

and

(N1v)(t) = 2µ1
(1−λ1µ1)

[(
λ2µ2

Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ λ1µ2

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ [ µ2
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
B3f1

−
(

λ2
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ λ1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− [ 1
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
A3f2

+

(
λ2

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1λ2

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ µ2λ2

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
A2f2

−
(

1
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ µ2λ1

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− µ2

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
B2f1

]
+ µ1

1−µ1λ1 (λ1A1f2 +B1f1) + ρ1−α2

Γ(α2)

∫ t
a
sρ−1(tρ − sρ)α2−1f2(s, u(s), v(s))ds.

Here,
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B1f1 = ρ1−α1

Γ(α1)

∫ b
a
sρ−1(bρ − sρ)α1−1f1(s, u(s), v(s))ds,

A1f2 = ρ1−α2

Γ(α2)

∫ b
a
sρ−1(bρ − sρ)α2−1f2(s, u(s), v(s))ds

B2f1 = ρ1−α1+γ1

Γ(α1−γ1)

∫ b
a
sρ−1(bρ − sρ)α1−γ1−1f1(s, u(s), v(s))ds,

A2f2 = ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1f2(s, u(s), v(s))ds,

B3f1 = ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1f1(s, u(s), v(s))ds,

A3f2 = ρ1−α1+γ2

Γ(α1−γ2)

∫ b
a
sρ−1(bρ − sρ)α1−γ2−1f2(s, u(s), v(s))ds.

For computational convenience, we set

A1 = 2|λ1|
∆|1−λ1µ1|

(
|µ1||λ2|µ2|
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1(

ηρi−a
ρ

ρ
)1−δ1 + |µ2|

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ |λ2||µ2|
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
.

A2 = 2|λ1|
∆|1−λ1µ1|

(
|µ1||λ2|
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ 1

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− |λ2|
Γ(2−δ1)

(
tρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
)
.

A3 = 2|λ1|
∆|1−λ1µ1|

(
|µ1|

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ |µ2|

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− 1

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)

A4 = 2|λ1|
∆|1−λ1µ1|

(
|µ1||λ2|
Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ |µ2||λ2|

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ |λ2|

Γ(2−γ2)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ2
)
.

A5 = 2|µ1|
|1−λ1µ1|

(
|λ2||µ2|
Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ |λ1||µ2|

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

+ [ |µ2|
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
.

A6 = 2|µ1|
|1−λ1µ1|

(
|λ2|

Γ(2−δ1)

(
bρ−aρ
ρ

)∑N
i=1

(
ηρi−a

ρ

ρ

)1−δ1
+ |λ1|

Γ(2−γ1)

(
bρ−aρ
ρ

)1−γ1

− [ 1
Γ(2−γ1)

(
tρ−aρ
ρ

)(
bρ−aρ
ρ

)1−γ1
)
.
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A7 = 2|µ1|
|1−λ1µ1|

(
|λ2|

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ |µ2||λ1||λ2|

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
+ |µ2||λ2|

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
.

A8 = 2|µ1|
|1−λ1µ1|

(
1

Γ(2−γ2)

(
bρ−aρ
ρ

)2−γ2
+ |µ2||λ1|

Γ(2−δ2)

∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2 (
bρ−aρ
ρ

)
− |µ2|

Γ(2−δ2)

(
tρ−aρ
ρ

)∑M
i=1

(
ξρi−a

ρ

ρ

)1−δ2
)
.

K1 = A1
ρ−α2+δ2

Γ(α2−δ2+1)

∑M
i=1(ξρi − aρ)α2−δ2 + A4

ρ−α1+γ1

Γ(α1−γ1+1)
(bρ − aρ)α1−γ1

+
(
|µ1||λ1|
|1−λ1µ1| + 1

)(
ρ−α1

Γ(α1+1)
(bρ − aρ)α1

)
.

K2 = A5
ρ−α2+δ2

Γ(α2−δ2+1)

∑M
i=1(ξρi − aρ)α2−δ2 + A8

ρ−α1+γ1

Γ(α1−γ1+1)
(bρ − aρ)α1−γ1

+ |µ1|
|1−µ1λ1|(

ρ−α1

Γ(α1+1)
(bρ − aρ)α1).

K3 = A2
ρ−α1+γ2

Γ(α1−γ2+1)
(bρ − aρ)α1−γ2 + A3

ρ−α2+δ1

Γ(α2−δ1+1)

∑N
i=1(ηρi − aρ)α2−δ1

+ |λ1|
|1−λ1µ1|

(
ρ−α2

Γ(α2+1)
(bρ − aρ)α2

)
.

K4 = A6
ρ−α1+γ2

Γ(α1−γ2+1)
(bρ − aρ)α1−γ2 + A7

ρ−α2+δ1

Γ(α2−δ1+1)

∑N
i=1(ηρi − aρ)α2−δ1

+
(
|λ1||µ1|
|1−µ1λ1| + 1

)
ρ−α2

Γ(α2+1)
(bρ − aρ)α2 .

Clearly, the fixed points of the operator N are solutions of the coupled system (4.10)-
(4.11). For each ui, vi ∈ C; i = 1, 2 and t ∈ I. Define

sup
t∈[a,b]

fi(t, 0, 0) = σi ≤ ∞.

such that

R ≥ (K1 +K2)σ1 + (K3 +K4)σ2)

1− (K1 +K2)(m1 + n1) + (K3 +K4)(m2 + n2)
(4.25)

and consider the closed and convex ball

BR = {(u, v) ∈ C : ‖(u, v)‖ ≤ R}.
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By assumption (H4), for (u, v) ∈ BR, t ∈ [a, b], we have that

|(f1(t, u(t), v(t))| ≤ |(f1(t, u(t), v(t))− (f1(t, 0, 0)|+ |(f1(t, 0, 0)|
≤ [m1|u(t)|+ n1|v(t)|)] + σ1

≤ [m1‖u‖+ n1‖v‖)] + σ1

≤ [(m1 + n1)R + σ1],

|(f2(t, u(t), v(t))| ≤ [(m2 + n2)R + σ2].

Let (u, v) ∈ BR. Then, for each t ∈ I, and any i = 1, 2, we have

|(N1u)(t)| ≤ K1(m1‖u‖+ n1‖v‖+ σ1) +K3(m2‖u‖+ n2‖v‖+ σ2)

≤ [K1(m1 + n1) +K3(m2 + n2)]R +K1σ1 +K3σ2.

Hence,
|(N1u)(t)| ≤ [K1(m1 + n1) +K3(m2 + n2)]R +K1σ1 +K3σ2.

In the same way, we can obtain that

|(N2v)(t)| ≤ [K2(m1 + n1) +K4(m2 + n2)]R +K2σ1 +K4σ2.

Consequently, it follows that

|N(u, v)(t)| ≤ [K1(m1 + n1) +K3(m2 + n2)]R +K1σ1 +K3σ2

+ [K2(m1 + n1) +K4(m2 + n2)]R +K2σ1 +K4σ2

≤ R.

Thus

‖N(u, v)‖C ≤ R. (4.26)

Hence N maps the ball BR into it self. We shalls how that N satisfies the assumption
of Darbo’s fixed point Theorem. The proof will be given in several steps.
Step 1 : We show that N is continuous. Let{(un, vn)} be a sequence such that
(un, vn)→ (u, v) in BR. Then, for each t ∈ I, we have

|(N1un)(t)− (N1u)(t)| ≤ (K1m1 +K3m2)‖un − u‖+ (K1n1 +K3n2)‖vn − v‖).
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Similarly,

|(N2vn)(t)− (N2v)(t)| ≤ (K2m1 +K4m2)‖un − u‖+ (K2n1 +K4n2)‖vn − v‖).

From inequalities 4.3.2 and 4.3.2, it yields

|N(un, vn)(t)−N(u, v)(t)| ≤ [(K1m1 +K3m2) + (K2m1 +K4m2)]‖un − u‖
+ [(K1n1 +K3n2) + (K2n1 +K4n2)]‖vn − v‖).

Since un → u, vn → v as n → ∞ et f1,f2 are continuous , then by the Lebesgue
dominated convergence theorem ;

‖N(un, vn)−N(u, v)‖C → 0 as n→∞.

Step 2 : We remark that N(BR) is bounded. This is clear since N : BR → BR and
BR is bounded.
Step 3 : We show thatN maps bounded sets into equicontinuous sets in BR. Let
t1, t2 ∈ I, such that t1 < t2 and let (u, v) ∈ BR. Then, we have

|(N1u)(t2)− (N1u)(t1)| ≤ | 2λ1
∆(1−λ1µ1)

[(
λ2µ2

Γ(2−δ1)
(
tρ2−t

ρ
1

ρ
)
∑N

i=1(
ηρi−a

ρ

ρ
)1−δ1

)
B3f1

−
(

λ2
Γ(2−δ1)

(
tρ2−t

ρ
1

ρ
)
∑N

i=1(
ηρi−a

ρ

ρ
)1−δ1

)
A3f2

−
(

λ2
Γ(2−γ2)

(
tρ2−t

ρ
1

ρ
)( b

ρ−aρ)
ρ

)1−γ2
)
A2f2

+
(

1
Γ(2−γ2)

(
tρ2−t

ρ
1

ρ
)( b

ρ−aρ)
ρ

)1−γ2
)
B2f1

]
+ ρ1−α1

Γ(α1)

∫ t2
a
sρ−1(tρ2 − sρ)α1−1f1(s, u(s), v(s))ds

− ρ1−α1

Γ(α1)

∫ t1
a
sρ−1(tρ1 − sρ)α1−1f1(s, u(s), v(s))ds|

≤ |ρ1−α1
Γ(α1)

∫ t2
a
sρ−1(tρ2 − sρ)α1−1f1(s, u(s), v(s))ds

− ρ1−α1

Γ(α1)

∫ t1
a
sρ−1(tρ1 − sρ)α1−1f1(s, u(s), v(s))ds|

≤ ρ1−α1

Γ(α1)

∫ t2
t1
sρ−1(tρ2 − sρ)α1−1|f1(s, u(s), v(s))|ds

+ ρ1−α1

Γ(α1)

∫ t1
a
sρ−1(tρ2 − sρ)α1−1 − (tρ1 − sρ)α1−1|f1(s, u(s), v(s))|ds

≤ ρ−α1

Γ(α1+1)
(tρ2 − t

ρ
1)α1 [(m1 + n1)R + σ1]

+ ρ1−α1

Γ(α1)
[(m1 + n1)R + σ1]

∫ t1
a
sρ−1(tρ2 − sρ)α1−1 − (tρ1 − sρ)α1−1ds,
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and

‖(N1v)(t2)− (N1v)(t1)‖
≤ |ρ1−α1

Γ(α1)

∫ t2
a
sρ−1(tρ2 − sρ)α1−1f2(s, u(s), v(s))ds

− ρ1−α1

Γ(α1)

∫ t1
a
sρ−1(tρ1 − sρ)α1−1f2(s, u(s), v(s))ds|

≤ ρ1−α1

Γ(α1)

∫ t2
t1
sρ−1(tρ2 − sρ)α1−1|f2(s, u(s), v(s))|ds

+ ρ1−α1

Γ(α1)

∫ t1
a
sρ−1(tρ2 − sρ)α1−1 − (tρ1 − sρ)α1−1|f2(s, u(s), v(s))|ds

≤ ρ−α1

Γ(α1+1)
(tρ2 − t

ρ
1)α1 [(m2 + n2)R + σ2]

+ ρ1−α1

Γ(α1)
[(m2 + n2)R + σ2]

∫ t1
a
sρ−1(tρ2 − sρ)α1−1 − (tρ1 − sρ)α1−1ds.

As t1 → t2, the right-hand side of the above inequality tends to zero.

Step 4 : The operator N : BR → BR is a strict set contraction.

Let V ∈ BR and t ∈ I, then we have

α((NV )(t)) = α({((N1u))(t), (N2v))(t)) : (u, v) ∈ V })
≤ A1

ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1α(f1(s, u(s), v(s)) : (u, v) ∈ V })ds

+ A2
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1α(f2(s, u(s), v(s)) : (u, v) ∈ V })ds

+ A3
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1α(f2(s, u(s), v(s)) : (u, v) ∈ V })ds

+ A4
ρ1−α1+γ1

Γ(α1−γ1)

∫ b
a
sρ−1(tρ − sρ)α1−γ1−1α(f1(s, u(s), v(s))ds : (u, v) ∈ V })ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α1

Γ(α1)

∫ b
a
sρ−1(tρ − sρ)α1−1α(f1(s, u(s), v(s)) : (u, v) ∈ V })ds

+ |λ1|
|1−λ1µ1|

ρ1−α2

Γ(α2)

∫ b
a
sρ−1(tρ − sρ)α2−1α(f2(s, u(s), v(s)) : (u, v) ∈ V })ds

+ A5
ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1α(f1(s, u(s), v(s)) : (u, v) ∈ V })ds

+ A6
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1α(f2(s, u(s), v(s)) : (u, v) ∈ V })ds

+ A7
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1α(f2(s, u(s), v(s)) : (u, v) ∈ V })ds

+ A8
ρ1−α1+γ1

Γ(α1−γ1)

∫ b
a
sρ−1(tρ − sρ)α1−γ1−1α(f1(s, u(s), v(s))ds : (u, v) ∈ V })ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α2

Γ(α2)

∫ b
a
sρ−1(tρ − sρ)α2−1α(f2(s, u(s), v(s)) : (u, v) ∈ V })ds

+ |µ1|
|1−λ1µ1|

ρ1−α1

Γ(α1)

∫ b
a
sρ−1(tρ − sρ)α1−1α(f1(s, u(s), v(s)) : (u, v) ∈ V })ds.
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Then Remark 4.3.1 implies that, for each s ∈ I

α({fi(s, u(s); v(s)) : (u, v) ∈ V }) ≤ miα({u(s);u ∈ V }) + niα({v(s); v ∈ V }).

Then

α(NV )(t)

≤ A1
ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

+ A2
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ A3
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ A4
ρ1−α1+γ1

Γ(α1−γ1)

∫ t
a
sρ−1(tρ − sρ)α1−γ1−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α1

Γ(α1)

∫ t
a
sρ−1(tρ − sρ)α1−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

+ |λ1|
|1−λ1µ1|

ρ1−α2

Γ(α2)

∫ t
a
sρ−1(tρ − sρ)α2−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ A5
ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

+ A6
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ A7
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ A8
ρ1−α1+γ1

Γ(α1−γ1)

∫ b
a
sρ−1(tρ − sρ)α1−γ1−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α2

Γ(α2)

∫ b
a
sρ−1(tρ − sρ)α2−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ |µ1|
|1−λ1µ1|

ρ1−α1

Γ(α1)

∫ b
a
sρ−1(tρ − sρ)α1−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

≤ (K1 +K2)(m1 + n1)α(V ) + (K3 +K4)(m2 + n2)α(V ).

Thus

αC(NV ) ≤ [(K1 +K2)(m1 + n1)α(V ) + (K3 +K4)(m2 + n2)]α(V ).

So, the operator N is a set contraction. As a consequence of Theorem (1.5.5),we
deduce that N has a fixed point which is solution to the problem (4.10)-(4.11). This
completes the proof.

Now, Our next existence result for the problem (4.10)-(4.11) is based on Mönch’s
fixed point theorem.
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Theorem 4.3.2. Assume that the hypothesis (H ′3)–(H ′4), and and the condition (4.23)
hold.
Then the coupled system (4.10)- (4.11) has at least one solution.

Proof.N : C → C be the operator defined in (4.24). We shall show that N satisfies the
assumption of Mönch’s fixed point theorem. We know that N : BR → BR is bounded
and continuous, we need to prove that the implication
V = convN(V ) or V = N(V ) ∪ {(0, 0)} ⇒ α(V ) = 0 holds for every subset V of
BR.
Now let V be a subset of BR such that V ⊂ N(V ) ∪ {(0, 0)}. V is bounded and
equicontinuous and therefore the function t→ α(V (t)) is continuous on I. By Remark
(4.3.1.) and the properties of the measure α, we have for each t ∈ I.
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α(V (t)) ≤ α(NV )(t) ∪ {(0, 0)}) ≤ α((NV )(t)) ≤ α({(N1u))(t), (N2u))(t) : (u, v) ∈ V })
≤ A1

ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1m1α({u(s);u ∈ V }) + n1α({v(s); v ∈ V })ds

+ A2
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s);u ∈ V }) + n2α({v(s); v ∈ V })ds

+ A3
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s);u ∈ V }) + n2α({v(s); v ∈ V })ds

+ A4
ρ1−α1+γ1

Γ(α1−γ1)

∫ t
a
sρ−1(tρ − sρ)α1−γ1−1m1α({u(s);u ∈ V }) + n1α({v(s); v ∈ V })ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α1

Γ(α1)

∫ t
a
sρ−1(tρ − sρ)α1−1m1α({u(s);u ∈ V }) + n1α({v(s); v ∈ V })ds

+ |λ1|
|1−λ1µ1|

ρ1−α2

Γ(α2)

∫ t
a
sρ−1(tρ − sρ)α2−1m2α({u(s);u ∈ V }) + n2α({v(s); v ∈ V })ds

+ A5
ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

+ A6
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ A7
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ A8
ρ1−α1+γ1

Γ(α1−γ1)

∫ b
a
sρ−1(tρ − sρ)α1−γ1−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α2

Γ(α2)

∫ b
a
sρ−1(tρ − sρ)α2−1m2α({u(s) : u ∈ V }) + n2α({v(s) : v ∈ V })ds

+ |µ1|
|1−λ1µ1|

ρ1−α1

Γ(α1)

∫ b
a
sρ−1(tρ − sρ)α1−1m1α({u(s) : u ∈ V }) + n1α({v(s) : v ∈ V })ds

≤ A1
ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1(m1 + n1)α(V (s))ds

+ A2
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1(m2 + n2)α({V (s))ds

+ A3
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1(m2 + n2)α(V (s))ds

+ A4
ρ1−α1+γ1

Γ(α1−γ1)

∫ t
a
sρ−1(tρ − sρ)α1−γ1−1(m1 + n1)α(V (s))ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α1

Γ(α1)

∫ t
a
sρ−1(tρ − sρ)α1−1(m1 + n1)α(V (s))ds

+ |λ1|
|1−λ1µ1|

ρ1−α2

Γ(α2)

∫ t
a
sρ−1(tρ − sρ)α2−1(m2 + n2)α(V (s))ds

+ A5
ρ1−α2+δ2

Γ(α2−δ2)

∑M
i=1

∫ ξi
a
sρ−1(ξρi − sρ)α2−δ2−1(m1 + n1)α(V (s))ds

+ A6
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1(m2 + n2)α(V (s))ds

+ A7
ρ1−α2+δ1

Γ(α2−δ1)

∑N
i=1

∫ ηi
a
sρ−1(ηρi − sρ)α2−δ1−1(m2 + n2)α(V (s))ds

+ A8
ρ1−α1+γ1

Γ(α1−γ1)

∫ b
a
sρ−1(tρ − sρ)α1−γ1−1(m1 + n1)α(V (s))ds

+
[
|λ1||µ1|
|1−λ1µ1| + 1

]
ρ1−α2

Γ(α2)

∫ b
a
sρ−1(tρ − sρ)α2−1(m2 + n2)α(V (s))ds

+ |µ1|
|1−λ1µ1|

ρ1−α1

Γ(α1)

∫ b
a
sρ−1(tρ − sρ)α1−1(m1 + n1)α(V (s))ds.

Thus,

sup
t∈I

α(V (t)) ≤ [(K1 +K2)(m1 + n1) + (K3 +K4)(m2 + n2)] sup
t∈I

α(V (t)).

implies that supt∈I α(V (t)) = 0, that is α(V (t)) = 0, for each t ∈ I, and then
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V (t) is relatively compact in C. In view of the Ascoli–Arzel‘a theorem,Vis relatively
compact in BR. Applying now Theorem (1.5.4) we conclude that N has a fixed point
(u, v) ∈ BR.. Hence N has a fixed point which is solution to the problem (4.10)-
(4.11).This completes the proof.

4.4 Examples

Consider the coupled system of Caputo–Katugampola fractional differential equations(cD
3/2,ρ

0+ u)(t) = f1(t, u(t), v(t))

(cD
3/2,ρ

0+ v)(t) = f2(t, u(t), v(t))
; t ∈ I := [0, 1], (4.27)

with the boundary conditions
u(0) = v(1);cD

1/2,ρ

a+ u(1) = 1/3(cD
1/3,ρ

0+ v)(3/2) + 1/3(cD
1/3,ρ

0+ v)(4/3)

v(0) = 2u(1);cD
1/4,ρ

a+ v(1) = 1/5(cD
1/5,ρ

0+ u)(3/5) + 1/5(cD
1/5,ρ

0+ u)(4/5)

; (4.28)

Here a = 0, b = 1, , α1 = α2 = 3/2, γ1 = 1/2, γ2 = 1/4, δ1 = 1/3, δ2 = 1/5, N =

M = 2, η1 = 3/2, η1 = 4/3, ξ1 = 3/5, ξ1 = 4/5, λ1 = 1, λ2 = 1/3, µ1 = 2, µ2 = 1/5. By
simple calculation, we found that ∆ = 0.265381,

where

f1(t, u, v) =
1

15
√

25 + t2
|u(t)|

1 + |u(t)|
+

sin v(t)

65 + t2
+

1

2
, t ∈ [0, 1],

f2(t, u, v) =
sin |u(t)|
125 + t2

+
tan−1(v)

120 + 2t2
+

3

2
, t ∈ [0, 1].

Note that

‖f(t, u1, v1)− f(t, u2, v2) ≤ 1

75
‖u1 − u2‖+

1

65
‖v1 − v2‖, t ∈ [0, 1],

‖g(t, u1, v1)− g(t, u2, v2) ≤ 1

125
‖u1 − u2‖+

1

120
‖v1 − v2‖, t ∈ [0, 1].
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The hypothesis [(H2)]is satisfied with

m∗1 =
1

75
, n∗1 =

1

65
.

m∗2 =
1

125
, n∗2 =

1

120
.

In addition, with good choice of the constants di; i = 1, 2, a simple computation show
that all conditions of Theorem 4.3.1 are satisfied. Hence, the problem (4.27)-(4.28)
has at least one solution defined on [0, 1].



Conclusion and Perspectives

In this thesis ; we have considered the following of Caputo-Hadamard fractional dif-
ferential system (HCDα1u)(t) = f1(t, u(t), v(t))

(HCDα2v)(t) = f2(t, u(t), v(t))
; t ∈ I := [1, T ], (4.29)

The Implicit Coupled Caputo-Hadamard Fractional Differential Systems(HcDα1
1 u1)(t) = f1(t, u1(t), u2(t), (HcDα1

1 u1)(t))

(HcDα2
1 u2)(t) = f2(t, u1(t), u2(t), (HcDα2

1 u2)(t))
; t ∈ I := [1, T ], (4.30)

Here HcDα
1 is the Caputo-Hadamard fractional derivative.

After that, The existence of solutions for the following coupled conformable fractional
differential system (T α1

0+ u)(t) = f1(t, u(t), v(t))

(T α2

0+ v)(t) = f2(t, u(t), v(t))
; t ∈ I, (4.31)

Here T αi0 is the conformable fractional derivative.
We discussed and established the existence, the uniqueness, the stability and the
attractivity .

We consider the problem of the existence and uniqueness of solutions and ulam-
type stability and the attractivity of system differential with fractional derivatives of
Caputo, Hadamard and conformable in b-metric space.
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 الملخص:

وحدانية الحلول و استقرار من نوع اولام لبعض  ندرس وجود، في هذه الرسالة،

لكسرية مع مشتقات كابيتو،هدامارد و التفاضلية ذات الرتب ا الأنظمة أصناف

و الحدية. تستند  الأولية. المشاكل التي تمت دراستها هي مع الشروط كاتيكمبولة 
ياس عدم التراص قبعض نظريات النقطة الثابتة و  إلىالنتائج التي تم الحصول عليها 

 في فضاءات باناخ و فريشي.

 
حل، استقرار، ضمني، فضاء فريشي، فضاء معادلة تفاضلية، رتبة كسرية،  الكلمات المفتاحية:

 باناخ.
 

Résumé : 

Dans cette thèse, nous étudions l’existence et l’unicité de solutions 

et la stabilité de type Ulam de quelques systèmes différentiels 

couplés d’ordre fractionnaires avec la dérivée de Caputo, 

Hadamard, Katugampola et Conformable. Les problèmes étudiés 

sont à conditions initiales et aux limites. Les résultats obtenus sont 

basés sur quelques théorèmes de points fixes et la mesure de non-

compacité dans les espaces de Banach, Fréchet. 

 

Mots clés : équation différentielle, ordre fractionnaire, solution, 

stabilité, implicite, fixe, mesure de non-compacité, espace de 

Fréchet, espace de Banach. 

 

Abstract : 

In this thesis, we study the existence and uniqueness of solutions 

and the Ulam-type stability of some coupled differential systems 

fractional order derivatives of Caputo, Hadamard, Katugampola 

and Conformable. The problems studied are with boundary 

conditions. The results obtained are based on some fixed point 

theorems and the measure of non-compactness in the space 

Banach, Fréchet. 

 

Key words: differential equation, fractional order, solution, 

stability, implicit, fixed measure of non-compactness, Fréchet 

space, Banach space. 
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